

 Best Practices for Moving to Containers | ii

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK
http://www.microfocus.com

© Copyright 2020 Micro Focus or one of its affiliates.

MICRO FOCUS, the Micro Focus logo and are trademarks or registered trademarks of Micro
Focus or one of its affiliates.

All other marks are the property of their respective owners.

14 July 2020

http://www.microfocus.com/

1 | Best Practices for Moving to Containers

Contents
About this Document .. 3

Document Versions ... 3

Benefits of Moving to a Containerized Environment ... 4

Methodology Overview .. 4

Stage A – Store your source and configuration as code ... 4

1. Store your application's source code in version control ... 5

2. Ensure you can build the application .. 5

2.1. Define the build and runtime environments ... 5

2.2. Build the application .. 5

2.3. Automate the build .. 6

3. Prepare your application configuration for version control ... 6

3.1. Prepare your Enterprise Server application to be stored in version control 6

3.2. Prepare CICS resource definition files .. 6

3.3. Prepare spool data files ... 6

3.4. Prepare catalog files ... 7

3.5. Prepare JCL cataloged data set entries .. 7

3.6. Check for system environment variables ... 7

3.7. Ensure the region uses fixed listener ports ... 7

3.8. Identify secrets and use the vault .. 7

4. Store your application's configuration in version control .. 8

4.1. Export regions to XML .. 8

5. Test the application ... 9

Stage B – Containerize the application ... 9

6. Convert the application to build using containers .. 9

6.1. Create 64-bit regions ... 9

6.2. Create the build containers ... 10

6.3. Build the application .. 10

7. Test the application ... 11

8. Convert the application to build into container images ... 11

8.1. Create a Dockerfile ... 11

8.2. Run Fileshare in a container ... 16

8.3. Security considerations for containers .. 16

8.4. Data considerations for containers .. 17

9. Test the application ... 17

 Best Practices for Moving to Containers | 2

Stage C – Deploy in a scale-out environment ... 17

10. Convert data to be scale-out ready .. 18

10.1. Migrate VSAM to RDBMS using MFDBFH .. 19

10.2. Deploy the catalog and data files to an RDBMS .. 19

10.3. Deploy the CICS resource definition file to an RDBMS .. 19

11. Configure the application so that it is capable of being deployed in a scale-out environment

 .. 20

12. Test the application built into containers with data held in the scale-out environment 21

13. Deploy the application containers into the scale-out environment 21

13.1. Prepare the application for scale-out deployment .. 21

14. Test and tune the application running multiple replicas of your application containers in the

scale-out .. 29

15. Use metrics and autoscaling ... 29

3 | Best Practices for Moving to Containers

About this Document
This document presents a Micro Focus-recommended methodology for taking an existing Enterprise

Server application and moving to build and run it in a containerized environment.

The COBOL-related functionality described in this document is available in Enterprise Developer 6.0

and Enterprise Server 6.0. Some, but not all, of the COBOL-related functionality is available in Visual

COBOL 6.0 and COBOL Server 6.0.

The information in this document is intended to supplement the documentation for Enterprise

Developer and Visual COBOL rather than to replace it. As a result, this document includes a number

of links to the current documentation for Enterprise Developer. The links are to the documentation

for Enterprise Developer for Eclipse, so if you are using Enterprise Developer for Visual Studio or

Visual COBOL you will need to ensure that the information referred to is relevant to the product you

are using.

Reference to third party companies, products and web sites is for information purposes only and

constitutes neither an endorsement nor a recommendation. Micro Focus provides this information

only as a convenience. Micro Focus makes no representation whatsoever regarding the content of

any other web site or the use of any such third party products. Micro Focus shall not be liable in

respect of your use or access to such third party products/web sites.

Document Versions
Version Date Changes

1.0 June 2020 Initial version of document to accompany release of Visual COBOL and
Enterprise Developer 6.0.

1.1 July 2020 Additional information on safely scaling down resources added to section
13.1. Prepare the application for scale-out deployment.

 Best Practices for Moving to Containers | 4

Benefits of Moving to a Containerized

Environment
Running your applications in a containerized environment offers many benefits, as described in

Benefits of Using Containers. In order to get the most benefit from running in a containerized

environment you should ensure that all changes you make to your application are tracked in a

version control system, as this gives you full traceability and reproducibility of the build of the

deployed application. The mantra of this methodology is to change one thing at a time and to retest

the application between each significant application change, thus ensuring that any introduced

errors are resolved at the earliest opportunity.

Methodology Overview
The methodology can be broken down into three distinct stages, which can in turn be broken down

into smaller steps:

Stage A – Store your source and configuration as code

1. Ensure all your existing application source files are held in a version control system

2. Ensure you can build your application in a consistent way which requires no human

intervention once started, and which uses only source files extracted from version control

3. Prepare your application configuration for version control

4. Store your application configuration in version control

5. Test the application you have built from version control using the application configuration

from version control

Stage B – Containerize the application

6. Convert your build process to build using containers

7. Test the application built using containers

8. Convert your build process to build the application into containers

9. Test the application built into containers

Stage C – Deploy in a scale-out environment

10. Convert data to be scale-out ready

11. Configure the application so that it is capable of being deployed in a scale-out environment

12. Test the application built into containers with data held in the scale-out environment

13. Deploy the application containers into the scale-out environment

14. Test the application running multiple replicas of your application containers in the scale-out

environment

15. Gather and use metrics to monitor the scale-out environment

Each stage, and the steps comprising each stage, are covered in the remainder of this document.

Stage A – Store your source and configuration as code
This document as a whole describes how you can move to a containerized environment in order to

benefit from the advantages described in Benefits of Using Containers. This section focusses on how

https://www.microfocus.com/documentation/enterprise-developer/ed-latest/ED-Eclipse/GUID-F5BDACC7-6F0E-4EBB-9F62-E0046D8CCF1B.html
https://www.microfocus.com/documentation/enterprise-developer/ed-latest/ED-Eclipse/GUID-F5BDACC7-6F0E-4EBB-9F62-E0046D8CCF1B.html

5 | Best Practices for Moving to Containers

to move your application's source files and associated configuration files into a version control

system before it will be modified to run in a containerized environment.

Using a version control system is not a requirement for moving your application to a containerized

environment, but Micro Focus recommends you use one regardless of whether you are moving to a

containerized environment. This is because using a version control system enables you to track

changes to your application builds and track which version is being used in the different application

lifecycle stages (such as development, QA, and production). Storing your configuration files (as well

as your source files) in version control enables changes to those files to be controlled and tracked in

just the same way as changes to the application programs.

Note: While Micro Focus recommends that you store your source and configuration files in a

version control system, this is not absolutely necessary and you could use a less formal form

of file storage instead. For the sake of brevity, this section uses the term "version control

system" to mean whatever method of version control or file storage that you have adopted.

Neither Enterprise Developer nor container environments impose any special requirements

on how you store application source files in a version control system, so you are free to use

whatever standards and conventions you would normally use when using a version control

system.

1. Store your application's source code in version control

Ensure all of the source files that are required to build your application are stored in your version

control system. This should include, but is not limited to: program files, copy files, include files, BMS

mapsets, and JCL files.

You should also store in your version control system any scripts or project files that are used to the

build the application. Ensure that none of the files you add to version control contain secrets such as

user credentials or certificates.

2. Ensure you can build the application

2.1. Define the build and runtime environments

Fully define the build and runtime environments used by the application. This will include the

version of Visual COBOL/Enterprise Developer that is used to build the application, the version of

COBOL Server/Enterprise Server that is used to run the application, and any other products such as

database pre-compilers or drivers.

This definition of the build and runtime environment should be held as a document in version

control with the rest of the source code, and later in the process it will be used to help containerize

the application.

2.2. Build the application

Build the entire application using only:

 the build environment defined in section 2.1 Define the build and runtime environments

 files extracted from your version control system

Preferably this would be done using a clean machine in order to guarantee that all installed software

is tightly controlled.

 Best Practices for Moving to Containers | 6

Ensure that you build all programs that are required by the application, including modules that are

supplied in source form by Micro Focus (such as XA switch modules) and Enterprise Server user exits

(such as JCL printer exits).

2.3. Automate the build

You should be able to build the application using a single batch file or shell script which requires no

further user interaction once it has been started.

Deployment packages should be generated for Interface Mapping Toolkit (IMTK) services - these are

in the form of COBOL archive (.car) files created using the imtkmake command-line utility. You can

integrate these as part of the Visual Studio or Eclipse project builds.

3. Prepare your application configuration for version control

3.1. Prepare your Enterprise Server application to be stored in version control

Enterprise Server stores its configuration in a number of different binary files. Binary files are not

well suited for storing in version control systems as you cannot easily view the changes between two

versions, so you should create text versions of these binary files wherever possible and store these

text files in your version control system.

You can use Enterprise Server utilities to export the configuration to XML text files. To reduce the

size of these XML files, before exporting the configuration you should perform routine maintenance

and clean-up on the Enterprise Server configuration, and the configuration should be adjusted to

enable it to be more easily used in a containerized environment. The following sections outline these

steps.

3.2. Prepare CICS resource definition files

If the version of Enterprise Server your application will be running under in the target environment is

different to the version it is running under in its current environment you will need to upgrade the

CICS resource definition files that it uses before you convert them to XML. If the version of

Enterprise Server that your application will use is not changing you do not need to perform this step.

How: Enterprise Developer includes the caspcupg command line utility which you can use to

upgrade your CICS resource definition files.

Note: Targeting a different version of Enterprise Server also requires you to recompile,

rebuild and retest your application. Those activities are not specific to containerization so

are not covered here.

3.3. Prepare spool data files

Enterprise Developer uses a number of spool data files of the format SPL* that comprise the spool

management facility. Before making these files available for use in the containerized environment,

you should consider taking the opportunity to tidy them, removing any entries in them that are no

longer relevant. This is particularly relevant when you are migrating to a scale-out environment,

using files accessed through the Micro Focus Database File Handler (MFDBFH).

To do this tidying you use the MVSSPLHK spool housekeeping process to archive and remove all

spool data files and job records for jobs that have exceeded the maximum retain period. See

MVSSPLHK Spool Housekeeping Process for more information.

https://www.microfocus.com/documentation/enterprise-developer/ed-latest/ED-Eclipse/GUID-E8E50643-C4DE-4117-8D44-A802820C94EC.html

7 | Best Practices for Moving to Containers

3.4. Prepare catalog files

Similar to the preparation you did for the spool data files, you should perform catalog maintenance

to remove time-expired datasets that would otherwise result in the unnecessary requirement to

backup and subsequently restore files that are no longer needed.

Note: Remember to perform maintenance on any user catalogs too.

See Catalog Maintenance for more information.

3.5. Prepare JCL cataloged data set entries

If you have any catalog entries that include a full file system path you should change them so that

they specify paths that are relative to the catalog location, as this allows the region to be more

portable.

Enterprise Developer includes the mvspcrn command that enables you to make bulk updates such

as this to a catalog file. See Bulk Update of Catalog for more information.

3.6. Check for system environment variables

You should look for environment variables that your region or application uses which are set at a

system level; that is they are set outside the Enterprise Server configuration, and if possible move

them to be set in Enterprise Server as described in To Set Environment Variables from the User

Interface. Any which remain should be documented so they can be set appropriately in the

containerized environment.

Setting your environment variables in Enterprise Server in this way means that all of the information

required to configure and run the region is contained within the region.

To do this, look for environment variables that are being used in the Enterprise Server configuration.

For example:

$MY-ENV-NAME

or:

$MY-ENV-NAME/myfolder/myfile.txt

3.7. Ensure the region uses fixed listener ports

When your application is running in a container, any listeners which need to be accessed from

outside that container need to be listening on fixed ports so that they can be explicitly exposed by

the container and accessed externally.

You can use the Enterprise Server Administration interface to check that the region listeners are

using fixed ports, that is they are not listed as *:* or network-adapter:*. You should make a note of

the fixed ports that are in use and their numbers as you will need this information when you come

to containerize the application.

See Listeners and To set a fixed port in a listener endpoint address for more information.

3.8. Identify secrets and use the vault

Secrets in this context are sensitive configuration items such as user credentials and certificates, and

the vault is Enterprise Server's Vault Facility which enables some Enterprise Server components to

https://www.microfocus.com/documentation/enterprise-developer/ed-latest/ED-Eclipse/GUID-26F03A03-564D-4D7C-9307-57D14D89840E.html
https://www.microfocus.com/documentation/enterprise-developer/ed-latest/ED-Eclipse/GUID-F3AB9573-7148-44C9-8EE5-B819C2E965CD.html
https://www.microfocus.com/documentation/enterprise-developer/ed-latest/ED-Eclipse/GUID-B31297A6-577B-4118-961B-FBD8DB4C2892.html
https://www.microfocus.com/documentation/enterprise-developer/ed-latest/ED-Eclipse/GUID-B31297A6-577B-4118-961B-FBD8DB4C2892.html
https://www.microfocus.com/documentation/enterprise-developer/ed-latest/ED-Eclipse/HTPHMDSAL100.html
https://www.microfocus.com/documentation/enterprise-developer/ed-latest/ED-Eclipse/GUID-3C0E9DF0-DC09-4E21-8B61-896785610E00.html

 Best Practices for Moving to Containers | 8

keep such sensitive information in a form of storage defined as a vault, which is accessible using a

configurable vault provider.

Credentials that are used by Enterprise Server should be stored in a vault, so if you are not already

using the Vault Facility you should enable it. You enable the vault for use by the Micro Focus

Directory Server (MFDS) by specifying the MFDS_USE_VAULT=Y environment variable.

The files created by the vault are encrypted using information in the file $COBDIR/etc/secrets.cfg

(on Linux) or %PROGRAMDATA%\Micro Focus\Enterprise Developer\mfsecrets\secrets.cfg (on

Windows). You can see the encrypted files created by the vault within the vault file system location

(defined by the location element in the secrets.cfg file).

If the vault is not enabled when you export the Enterprise Server and MFDS configuration,

passwords will appear as plain text in the configuration XML files. For security reasons, you should

not store passwords as plain text in your version control system.

See Vault Facility and Configure the Default Vault for more information.

4. Store your application's configuration in version control

Enterprise Server configuration details are stored in binary format files to allow for efficient

processing when the application is running. Binary files are not suitable for storing in a version

control system, however, as version control systems work better with text-based files.

This section contains information on steps you need to perform to create or export Enterprise Server

data and configuration files into formats that are suitable for use in a version control system. The

key benefits of storing your configuration in version control are as follows:

 that you get the same trackability and accountability for your application's configuration files

that you get for the source files

 configuration changes are stored alongside the application programs to which they refer,

preventing the two from becoming out of step

It is possible that your application uses some application-specific configuration files that are not

easily converted into a text-based format. You should still add these files to the version control

system so that they are available in your containerized environment, but you will not be able to use

the version control system's full range of features on them.

4.1. Export regions to XML

You can convert the definition of an Enterprise Server region to XML using several different utilities:

 mfds exports to XML only the definition of a region.

 casrdtex exports to XML from CICS resource definition files only.

 mfcatxml exports to XML from catalog files only.

 casesxml exports to XML the definition of a catalog and resource definition files as well as a

region definition.

For more information see the following:

 mfds

 casrdtex

 Importing and Exporting a Catalog: import export utility

 casesxml

https://www.microfocus.com/documentation/enterprise-developer/ed-latest/ED-Eclipse/GUID-E5F00E82-2770-4987-B7AF-9BC9268AE5D5.html
https://www.microfocus.com/documentation/enterprise-developer/ed-latest/ED-Eclipse/GUID-0D26C45C-F9DB-49BB-BEEF-6C41CB86F256.html
https://www.microfocus.com/documentation/enterprise-developer/ed-latest/ED-Eclipse/HRADRHCOMM06.html
https://www.microfocus.com/documentation/enterprise-developer/ed-latest/ED-Eclipse/HRMTRHCOMM17.html
https://www.microfocus.com/documentation/enterprise-developer/ed-latest/ED-Eclipse/GUID-58D9A6CC-0D84-441C-B85C-F33353C9A157.html
https://www.microfocus.com/documentation/enterprise-developer/ed-latest/ED-Eclipse/GUID-5A14D369-0431-435A-B933-C6F768D8E2D8.html

9 | Best Practices for Moving to Containers

Whether you use casesxml or the individual utilities depends on which artifacts you want to export.

For example, for production regions where you would not want to export catalog files, using mfds

and casrdtex would be most appropriate, but for self-contained regions used for testing you might

choose to use casesxml.

Notes:

If you use the mfds command you must use the /x 5 parameter, or the output produced

will not be an XML file.

If you use the casrdtex command you must use the /xm switch or the output produced

will be a resource definition table (.rdt) file rather than an XML file.

It can be helpful when testing your application to able to consistently setup a test environment, so

you should consider storing some test data in version control. Never store sensitive production data

in version control.

5. Test the application

Having stored the application and configuration files in version control and built the application from

only the files in version control, you should test the rebuilt application to ensure that errors have not

been introduced. The use of automated testing tools such as Micro Focus Unified Functional Testing

or Silk Test allows you to create tests that you can easily run in a consistent way whenever you need

to test the application.

For more information see UFT One and Silk Central.

Stage B – Containerize the application
After performing the steps described in Stage A – Store your source and configuration as code, you

will have stored as much as possible of your application and its configuration in a version control

system, created scripts or batch files to enable you to use a single command to build the application

from the files in the version control system, and tested the application to ensure that it functions as

it did before you moved it into the version control system.

This section of the document looks at the steps involved in the next stage of the process, which is to

take your existing application and get it running in a containerized environment.

6. Convert the application to build using containers

Before converting your application to run in containers, you should use containers to build the

application but still run the application outside a container. If you are confident of successfully

performing the steps in this section you could combine them with the steps in section 7. Test the

application so that you can build and test the application in containers.

6.1. Create 64-bit regions

The Linux container operating systems supported by COBOL Server and Enterprise Server are 64-bit

only. As a result, if your target platform is Linux and your application has previously executed in 32-

bit mode you will need to convert the application and its regions to be 64 bit. If your chosen

platform is Windows, where 32-bit mode is still supported, you can continue to run your application

in 32-bit mode if you choose.

https://www.microfocus.com/en-us/products/uft-one/overview
https://www.microfocus.com/en-us/products/silk-central/overview

 Best Practices for Moving to Containers | 10

This document assumes that 64-bit Linux containers will be used and presents the steps required in

order for you to switch from 32-bit to 64-bit.

If you need to switch from using 32-bit regions to 64-bit regions the easiest way is to edit the

exported XML region definition, search for the “mfCAS64Bit” element and set the value to 1.

Alternatively, you can use Enterprise Server Administration to make a copy of a 32-bit region but use

the Working Mode option to specify that the new copy is 64-bit. Copying a region in this way ensures

that the old and new regions are configured the same apart from the bitism.

If you do switch the regions that an application uses from 32-bit to 64-bit mode you must also

recompile, rebuild and retest your application. Those activities are not specific to containerization so

are not covered here. See 64-Bit Native COBOL Programming for more information.

6.2. Create the build containers

Using the information from the document you created in section 2.1. Define the build and runtime

environments, you first need to create container images which include all the necessary software to

build your application.

If your application does not use any third-party software, this step just requires you to build the

Enterprise Developer Build Tools for Docker containers which you can do by running bld.sh or

bld.bat in the container demonstration that come with Enterprise Developer. See Running the

Container Demonstration for the Enterprise Developer Base Image for more information.

If your application requires additional software you will need to also create container images which

include that software. The process you use to generate these images should be capable of being

automated, and the scripts, batch files, and other files used (such as Dockerfiles) should be stored in

version control.

6.3. Build the application

You can now build your application using the containers that you prepared in the previous section,

volume mounting the source code into the container.

Typical commands to do this are:

docker run –rm –v /src:/home/myapp –w /src microfocus/entdevhub:

rhel7_6.0_x64_login ant –lib /opt/microfocus/VisualCOBOL/lib/mfant.jar –f

.cobolBuild -logger com.microfocus.ant.CommandLineLogger

or:

docker run –rm –v /src:/home/myapp –w /src microfocus/entdevhub:

rhel7_6.0_x64_login /src/buildmyapp.sh

where the following Docker options are used:

 -rm specifies that the container's file system is automatically removed when the container

exits.

 -v specifies the volume to mount into the container.

 -w specifies the default working directory for running binaries within the container

If your application consists of one or more IMTK services, you must create COBOL archive (.car) files

for the services as part of the build process (and deploy these later using the command-line utility

https://www.microfocus.com/documentation/enterprise-developer/ed-latest/ED-Eclipse/GUID-B0F5827A-BB25-4FF8-A0C9-5B9DBF781255.html
https://www.microfocus.com/documentation/enterprise-developer/ed-latest/ED-Eclipse/GUID-981FBF6B-BD99-420D-861F-71D55262982C.html
https://www.microfocus.com/documentation/enterprise-developer/ed-latest/ED-Eclipse/GUID-981FBF6B-BD99-420D-861F-71D55262982C.html

11 | Best Practices for Moving to Containers

mfdepinst. See To install a deployment package using mfdepinst and mfdepinst command for

more information. Visual Studio and Eclipse projects provide an option to perform this packaging

automatically as part of a project build.

7. Test the application

Having built your application using containers you should test the rebuilt application to ensure that

no errors have been introduced.

8. Convert the application to build into container images

The next step of the process is to create container images that contain your application's binary files

and the configuration files required to run the application. This section describes the steps involved

in doing this.

Note that although the contents of the containers themselves remain constant once you have

created them, you can configure the container images at run-time by using environment variables or

volume-mounted files and directories, enabling you to configure items such as credential "secrets",

Transport Layer Security (TLS) certificates/keys and database connection strings.

8.1. Create a Dockerfile

The easiest way to create a container image is using a Dockerfile with your platform's container build

utility, for example docker or podman.

A Dockerfile contains all the necessary instructions to build your application into a container. Micro

Focus recommends using a multi-stage Dockerfile, as this enables you to build the application using

a container that includes the relevant utilities such as compilers, but the production application

container runs without those utilities, lessening the security risk. See Use multi-stage builds on the

Docker web site for more information.

To achieve this, a multi-stage Dockerfile enables you to build the application in one stage, then in a

later stage you assemble the final deployment image. There are other approaches that you can use

to achieve the same thing, such as a Continuous Integration (CI) pipeline, but using a multi-stage

Dockerfile generally provides most platform portability.

Note: If you are using Docker, you must be using Docker 17.05 or later to use multi-stage

builds.

If you are using Visual COBOL/Enterprise Developer projects to build your application from the IDE,

Visual COBOL/Enterprise Developer can create a template Dockerfile for you. On Eclipse, right-click

your project in the Application Explorer view, COBOL Explorer view or Project Explorer view, and

click New > Dockerfile. On Visual Studio, right-click your project in Solution Explorer and click Add >

COBOL Docker Support. See To add a Dockerfile to a native COBOL project for more information.

Remember to add your Dockerfile to your version control system.

8.1.1. Build within a container

To build within a container your Dockerfile must first COPY all the source code into the container

from the "build context" and then invoke the necessary tools from within the container to build your

application.

https://www.microfocus.com/documentation/enterprise-developer/ed-latest/ED-Eclipse/HHIMTHDPOY12.html
https://www.microfocus.com/documentation/enterprise-developer/ed-latest/ED-Eclipse/GUID-06B9CF02-D180-48E3-9E5C-06DBEBD489E9.html
https://docs.docker.com/develop/develop-images/multistage-build/
https://www.microfocus.com/documentation/enterprise-developer/ed-latest/ED-Eclipse/GUID-46D89DB3-DDBC-4F3E-81F7-B60451D153CA.html

 Best Practices for Moving to Containers | 12

As you have already built your application using containers, converting this process to build within a

container is straightforward and you will have already created suitable base containers and the

command lines to run within them.

The following Dockerfile commands show an example of how this might be done:

Build the application

FROM microfocus/entdevhub:sles15.1_6.0_x64 as BuildBankDemo

COPY Sources /Sources/

COPY Projects /Projects/

RUN . $MFPRODBASE/bin/cobsetenv $MFPRODBASE && \

 COBCPY=$COBCPY:$COBDIR/src/enterpriseserver/exit && \

 cd /Projects/Eclipse/BankDemo && \

 $COBDIR/remotedev/ant/apache-ant-1.9.9/bin/ant -lib

$COBDIR/lib/mfant.jar -logger com.microfocus.ant.CommandLineLogger -f

.cobolBuild imscobbuild

8.1.2. Build and run unit tests

If you have previously created Micro Focus Unit Tests they can be built and run as stages within the

Dockerfile. See The Micro Focus Unit Testing Framework for more information.

Building the tests is similar to building your application in that your Dockerfile must first copy all the

test source code into the container from the "build context", then it needs to invoke the necessary

tools from within the container to build your tests.

In a separate stage in the Dockerfile, COPY statements copy the required files (including the

application and test binary modules) from the previous stages, and then the cobmfurun command

executes the tests:

Build the MFUnit tests

FROM microfocus/entdevhub:sles15.1_6.0_x64 as BuildUnitTests

COPY Sources /Sources/

COPY Projects /Projects/

RUN . $MFPRODBASE/bin/cobsetenv $MFPRODBASE && \

 cd /Projects/Eclipse/BankDemoUnitTests && \

 $COBDIR/remotedev/ant/apache-ant-1.9.9/bin/ant -lib

$COBDIR/lib/mfant.jar -logger com.microfocus.ant.CommandLineLogger -f

.cobolBuild -DpathVar.sources=../../../Sources

Run the MFUnit tests

FROM microfocus/entdevhub:sles15.1_6.0_x64 as RunUnitTests

RUN mkdir /runtests

COPY --from=BuildBankDemo /Projects/Eclipse/BankDemo/deploy/*.so /runtests/

COPY --from=BuildUnitTests

/Projects/Eclipse/BankDemoUnitTests/New_Configuration.bin/BankDemoUnitTests.

* /runtests/

RUN . $MFPRODBASE/bin/cobsetenv $MFPRODBASE && \

 cd runtests && cobmfurun64 -jenkins-ci BankDemoUnitTests.so

8.1.3. Assemble the deployment container image

After the application has been built by one stage, another stage of the Dockerfile is then used to

assemble the deployment container image. The deployment container image should be based on an

appropriate Enterprise Server image augmented with additional third-party software (such as

https://www.microfocus.com/documentation/enterprise-developer/ed-latest/ED-Eclipse/GUID-56868D50-F836-4FA3-9255-8BCE6F895D1B.html

13 | Best Practices for Moving to Containers

database drivers). One stage of your Dockerfile should create this "base" image and then a later stage

should copy the application program binary modules and deployment packages (and any other

required files) that were built by the previous stage into the image along with all of the configuration

files from the build context. These files should be copied into the locations that are required by the

application and have the required permissions set for them.

The following Dockerfile commands show an example of how this might be done:

Create the base image with needed dependencies

FROM microfocus/entserver:sles15.1_6.0_x64 as base

Install rsyslog to get "logger" command

RUN zypper install -y hostname wget curl rsyslog

FROM base as publish

Create directories

RUN mkdir -p /home/esadm/deploy/Logs /home/esadm/deploy/RDEF

/home/esadm/ctflogs

Copy application binary files

COPY --from=BuildBankDemo /Projects/Eclipse/BankDemo/deploy/*.so

/home/esadm/deploy/loadlib/

Copy BMS mod binary files

COPY Projects/Eclipse/BankDemo/loadlib/*.MOD /home/esadm/deploy/loadlib/

COPY XA Switch module

COPY --from=BuildXASwitch /xa/*.so /home/esadm/deploy/loadlib/

Copy catalog - expected to be deployed into mfdbfh

COPY System/catalog /home/esadm/deploy/catalog

Copy scripts used to start and stop the container

COPY System/startserver.sh /home/esadm/deploy/

COPY System/dbfhdeploy.sh /home/esadm/deploy/

COPY System/vaultconfig.sh /home/esadm/deploy/

COPY System/pre-stop.sh /home/esadm/deploy/

Copy the region configuration

COPY System/bankdemo.xml /home/esadm/deploy/

COPY System/bankdemo_grps.xml /home/esadm/deploy/

COPY System/bankdemo _sit.xml /home/esadm/deploy/

COPY System/ bankdemo_stul.xml /home/esadm/deploy/

Change permissions of copied files prior to switching from root

RUN chmod +x /home/esadm/deploy/dbfhdeploy.sh && \

 chmod +x /home/esadm/deploy/vaultconfig.sh && \

 chmod +x /home/esadm/deploy/startserver.sh && \

 chmod +x /home/esadm/deploy/pre-stop.sh && \

 chown -R esadm /home/esadm && \

 chgrp -R esadm /home/esadm

The Dockerfile should also set any system environment variables which were previously identified:

Set the system environment variable referenced as the root directory

within the region configuration

ENV ESP /home/esadm/deploy

Application expects LANG=C to ensure character encoding is correct

ENV LANG C

Ensure credentials are accessed from the secrets vault

ENV MFDS_USE_VAULT Y

 Best Practices for Moving to Containers | 14

See ENV instruction on the Docker web site for more information.

Building the image should also import the Enterprise Server configuration; that is the MFDS and

region configuration, so that this is does not need to be performed when the container starts. IMTK

services which have been assembled into deployment packages (.car files) during the build stage can

be installed into Enterprise Server using the mfdepinst command-line utility.

This could be done as follows:

Import the region definition into the MFDS directory

RUN /bin/sh -c '. $MFPRODBASE/bin/cobsetenv && \

 /bin/sh -c "$COBDIR/bin/mfds64 &" && \

 /bin/sh -c "while ! curl --output /dev/null --silent --fail

http://127.0.0.1:$CCITCP2_PORT; do sleep 1; done; "&& \

 $COBDIR/bin/mfds64 /g 5 /home/esadm/deploy/bankdemo.xml S && \

 cd /home/esadm/deploy && $COBDIR/bin/mfdepinst myservice.car

 mv /var/mfcobol/logs/journal.dat

/var/mfcobol/logs/import_journal.dat'

You should ensure that when the application is run, the user name (or UID) is set to be a user with

the minimum permissions necessary to run the application. Do not use "root" unless it is essential to

do so. See USER instruction on the Docker web site for more information.

This could be done as follows:

Swap away from being the root user so Enterprise Server is not running

with elevated privileges

USER esadm

One effect of using an alternative user to root is that your user needs special permissions to bind to

network ports < 1024. By default, MFDS uses port 86, so when starting MFDS for a non-root user you

should set the CCITCP2_PORT environment variable to override the default port on which MFDS

listens. You can set this environment variable in the Dockerfile using an ENV statement such as the

following:

ENV CCITCP2_PORT 34570

The image should also declare all the listener ports used by the image, and the command it runs

needs to start MFDS and the Enterprise Server:

EXPOSE $CCITCP2_PORT 34567-34569 10086

ENTRYPOINT ["/home/esadm/deploy/startserver.sh"]

Add a HEALTHCHECK statement to your Dockerfile to ensure that your Enterprise Server region is

running:

HEALTHCHECK --interval=30s CMD ps -eaf | grep casmgr | grep -v grep || exit

1

See HEALTHCHECK instruction on the Docker web site for more information.

https://docs.docker.com/engine/reference/builder/#env
https://docs.docker.com/engine/reference/builder/#user
https://docs.docker.com/engine/reference/builder/#healthcheck

15 | Best Practices for Moving to Containers

Secrets such as user credentials and certificates should not be included the container image (as

these would be insecure while "at rest" in the container registry), neither should other resources

(such as configuration files) which you would want to change without rebuilding the image. Such

things should be "injected" into the container at run-time either by using environment variables or

volume mounting files into the container.

The following example docker run command shows how you could specify an environment

variable that defines a password and volume mount a folder containing certificate details:

docker run –e password=SYSAD –v /certificates:/apps/bankdemo/certificates

bankdemo

You need to create an executable script that is to be run when the container is started; that is, the

script will be specified by the ENTRYPOINT or CMD command in the Dockerfile. The script should

ensure that the environment is setup before starting MFDS and the Enterprise Server.

An example script is shown below:

#!/bin/bash

. $MFPRODBASE/bin/cobsetenv $MFPRODBASE

echo Starting MFDS

$COBDIR/bin/mfds64 &

while ! curl --output /dev/null --silent --fail

http://127.0.0.1:$CCITCP2_PORT; do sleep 1; done;

echo Waiting for DB to come on-line

until $COBDIR/bin/dbfhdeploy list sql://PGSQL/JCLTEST; do sleep 2; done;

Start the Enterprise Server, reading credentials from the vault

echo Starting the Enterprise Server

$COBDIR/bin/casstart /R$ES_SERVER /S:C /U`mfsecretsadmin read

microfocus/CAS/casstart-user` /P`mfsecretsadmin read

microfocus/CAS/casstart-password`

Wait for console log to be created signalling the server is running

while [! -f /var/mfcobol/es/$ES_SERVER/console.log]; do sleep 3; done;

Output the console log until the ES daemon terminates

CASCD_PID=`pgrep cascd64`

tail -n+1 --pid=$CASCD_PID -F /var/mfcobol/es/$ES_SERVER/console.log

As noted in the section 3.8. Identify secrets and use the vault, you should already have ensured that

the Vault Facility is enabled for your application. You should now ensure that before MFDS is started,

the necessary vault secrets are recreated within the running container.

You can use environment variables or volume mounts to pass the secret values into the container

and then set these into the vault using mfsecretsadmin command-line utility. See The

mfsecretsadmin Utility for more information.

For example, the following command will recreate the pgsql.pg.postgres.password secret in the

vault using the value of the DB_PASSWORD environment variable:

https://www.microfocus.com/documentation/enterprise-developer/ed-latest/GUID-94EAFB40-14A8-4E6B-850E-BB0C8C7F1871.html
https://www.microfocus.com/documentation/enterprise-developer/ed-latest/GUID-94EAFB40-14A8-4E6B-850E-BB0C8C7F1871.html

 Best Practices for Moving to Containers | 16

mfsecretsadmin write microfocus/mfdbfh/pgsql.pg.postgres.password
$DB_PASSWORD

Micro Focus recommends that you unset these environment variables in the container before

starting MFDS in order to avoid the values of the environment variables being visible to anyone

using ESCWA, MFDS, or Enterprise Server Monitor and Control (ESMAC) to remotely monitor the

server.

The contents of the console.log file should be made easily available outside the container, as can be

seen in the example script above, where the tail command is used for this. Other logs, such as the

Micro Focus Communications Server (MFCS) log.html, are also useful for monitoring and diagnostic

purposes.

For more information see Enterprise Server Log Files and Communications Process Log Files.

8.2. Run Fileshare in a container

Fileshare uses console input to perform administrative activities such as turning on tracing and

shutting down the server. When running within a container, this functionality is not available and

Fileshare will issue an error message unless it is started with the –b option to specify that it is to run

in background mode (on Linux) or run as a service (on Windows). For more information see Running

Fileshare as a Background Process and Running Fileshare as a Windows Service.

Because administrative functions need to be performed using FSView, you need to configure

Fileshare to use the vault with suitable FSView credentials specified. You use the /uv option when

starting Fileshare to do this.

You need to consider the following configuration files:

 fs.cfg

 fhredir.cfg

 dbase.ref

See Fileshare Server Configuration Options for more information.

8.3. Security considerations for containers

You should carefully consider the security requirements of your application. In addition to the

general security requirements that you should consider for any deployment environment, there are

several areas specific to using and configuring Micro Focus Server products in containers that you

should consider:

 If you are not already using an External Security Manager (ESM) to control access to

Enterprise Server you should start using one. For example, you could use Active Directory or

some other security manager to restrict access to Enterprise Server and ESCWA.

 Restrict the use of listeners as much as possible.

 Do not expose any ports that are not strictly required to run your application.

 Enable auditing within the security manager. For best performance, run a local syslog server

which you can configure to write to a file and/or forward the events to an external syslog

server.

 Run the container using a user name (UID) with minimum possible permissions

For more information see Enterprise Server Security and Enterprise Server Auditing.

https://www.microfocus.com/documentation/enterprise-developer/ed-latest/ED-Eclipse/BKCACATRBLU005.html
https://www.microfocus.com/documentation/enterprise-developer/ed-latest/ED-Eclipse/BKCACATRBLU010.html
https://www.microfocus.com/documentation/enterprise-developer/ed-latest/ED-Eclipse/BKFSFSONUXS002.html
https://www.microfocus.com/documentation/enterprise-developer/ed-latest/ED-Eclipse/BKFSFSONUXS002.html
https://www.microfocus.com/documentation/enterprise-developer/ed-latest/ED-VS2019/BKFSFSADVOU017.html
https://www.microfocus.com/documentation/enterprise-developer/ed-latest/ED-Eclipse/BKFSFSCNFGU004.html
https://www.microfocus.com/documentation/enterprise-developer/ed-latest/ED-Eclipse/GUID-82C665EA-6A9F-4D7F-9426-2493B31678F2.html
https://www.microfocus.com/documentation/enterprise-developer/ed-latest/ED-Eclipse/GUID-21A5B09C-9118-4B76-9B01-782F4E1CF739.html

17 | Best Practices for Moving to Containers

8.4. Data considerations for containers

Depending on your application, you might need to consider some or all of the following data-related

issues which are specific to using and configuring Micro Focus Server products in containers:

 If you are moving your application from Windows to Linux (or vice versa), bear in mind the

following:

o The default file extension of data files is different between the two platforms, so

could require additional configuration using the IDXNAMETYPE option in the File

Handler configuration file (extfh.cfg). For more information see Configuration File

and IDXNAMETYPE.

o The different platforms have different behavior in a number of areas such as case

sensitivity, and path and filename separators. You must ensure that your application

correctly handles these areas on the platforms it will be deployed on.

 Your container might require additional software and configuration to allow SQL access. For

example, to use ODBC this would be as follows:

o Install database drivers such as openODBC.

o Build the appropriate XA switch modules.

o Configure the ODBC configuration file.

The steps required would be different if you were using a different database.

For more information see Building RM Switch Modules and Using XA-compliant Resources

(XARs).

 You need to consider where you are going to store your data files. Any changes made to

data within a container are lost when the container is stopped. This can be useful during

testing but is unlikely to be suitable for production use. Options you could consider using

include the following:

o Volume mounts to some persistent storage

o Data volumes

o An external database

9. Test the application

Now that you have built your application into containers you need to test the rebuilt application to

ensure that its behavior has not changed. You can reuse the automated tests that you used earlier to

do this. You should be able to run application using a docker run or podman run command

that sets the necessary environment variables and volume mounts directories as required.

For example:

docker run –rm -e ENVVAR1=yes -e ENVVAR2=no -v /user/data:/user/data

myapplication:latest

Stage C – Deploy in a scale-out environment
Once you have your tested application running in containers, you will probably need to move on to

the next stage of the process which is to investigate how you can make your application more

scalable by running it in a scale-out environment.

https://www.microfocus.com/documentation/enterprise-developer/ed-latest/ED-Eclipse/BKFHFHCNFGU002.html
https://www.microfocus.com/documentation/enterprise-developer/ed-latest/ED-Eclipse/HRFLRHEXFH16.html
https://www.microfocus.com/documentation/enterprise-developer/ed-latest/ED-Eclipse/GUID-F6E07E71-C0AB-4DB8-8884-42ED7B57E067.html
https://www.microfocus.com/documentation/enterprise-developer/ed-latest/ED-Eclipse/BKCACACONFU020.html
https://www.microfocus.com/documentation/enterprise-developer/ed-latest/ED-Eclipse/BKCACACONFU020.html

 Best Practices for Moving to Containers | 18

In a scale-out environment, an application is processed using a number of small resources, such as

computers, rather than a single large resource. As load on the application increases or decreases,

the environment can easily be scaled up or down simply by adding or removing resources.

Containerized scale-out environments, such as Kubernetes, provide scaling at the level of a logical

grouping of containers. Kubernetes refers to this as a Pod. Many Pods can run on the same node

(computer) and the Pods can be monitored by Kubernetes controllers so that the number of Pods

scales up or down depending on the application load and any failed Pods are automatically

restarted.

Creating scale-out applications poses a challenge to maintain data consistency across the different

application instances while increasing availability. To help with this, Enterprise Server includes the

Micro Focus Database File Handler (MFDBFH). MFDBFH enables sequential, relative, and indexed

sequential files to be migrated to an RDBMS in order to provide improved scaling, and is a

requirement for running Performance and Availability Clusters (PACs). MFDBFH is not currently

supported by Visual COBOL file access.

For more information see Micro Focus Native Database File Handling and Enterprise Server Region

Database Management and Scale-Out Performance and Availability Clusters.

10. Convert data to be scale-out ready

Before you can deploy your application in a scale-out environment, you must carefully consider how

your data will be stored and accessed in order to be sure that the data access will scale effectively.

Using MFDBFH enables you to store and subsequently access VSAM data in an RDBMS by only

making application configuration changes; that is, without making any changes to your program

source code. Section 10.1. Migrate VSAM to RDBMS using MFDBFH provides more information on

this.

You could use a Fileshare server in a scale-out environment, but the Fileshare technology was not

specifically designed for such an environment so you must ensure that it would be suitable for your

use. In particular, you should ensure that the performance and recovery options of Fileshare meet

your needs.

If data is already stored in an RDBMS you should review whether the current server configuration is

suitable for a scale-out deployment.

You should migrate all non-static data. This includes catalogued and spool files (which you should

have performed housekeeping on as described in 3. Prepare your application configuration for

version control when you moved your application configuration files to your version control system),

and any other CICS files that are accessed via FCTs. In your final production move this will need to be

carefully planned. Sections 10.2. Deploy the catalog and data files to an RDBMS and 10.3. Deploy the

CICS resource definition file to an RDBMS provide more information on this.

Enterprise Server supports the use of a scale-out environment with a Performance and Availability

Cluster (PAC). A PAC uses MFDBFH and the open-source, in-memory data structure store Redis to

share data between members of the PAC. You can deploy multiple instances of your Enterprise

Server container and store data in an RDBMS using SQL natively within the application. Visual COBOL

does not support the use of Performance and Availability Clusters or MFDBFH. For more information

see Redis on the Redis web site and Scale-Out Performance and Availability Clusters.

https://www.microfocus.com/documentation/enterprise-developer/ed-latest/ED-Eclipse/GUID-B216C0F9-1DF6-4C12-AC19-A331415B4C9C.html
https://www.microfocus.com/documentation/enterprise-developer/ed-latest/ED-Eclipse/GUID-B216C0F9-1DF6-4C12-AC19-A331415B4C9C.html
https://www.microfocus.com/documentation/enterprise-developer/ed-latest/ED-Eclipse/GUID-F6E1BBB7-AEC2-45B1-9E36-1D86B84D2B85.html
https://redis.io/
https://www.microfocus.com/documentation/enterprise-developer/ed-latest/ED-Eclipse/GUID-F6E1BBB7-AEC2-45B1-9E36-1D86B84D2B85.html

19 | Best Practices for Moving to Containers

10.1. Migrate VSAM to RDBMS using MFDBFH

If, as part of this process you are moving some or all of your VSAM files to RDBMS using MFDBFH,

you should consider the following points:

 If you have not already done so, convert any catalog entries that are not using relative paths
to be so, or convert them to have the correct paths for use with MFDBFH. Use Unix-style file
separators ("/" rather than "\") as they can be deployed on either Windows or Linux.

Tip: Micro Focus recommends that you convert your catalog to use only relative paths so

that as soon as you deploy your catalog to an RDBMS, the paths for all the entries will be

correct for using MFDBFH.

If you do not convert all the entries to be relative paths you will need to keep a copy of

the original catalog. This is to enable you to retrieve the physical file location when

deploying the data files to the RDBMS using the dbfhdeploy tool.

 Check to see whether you have any PCDSN overrides in your JCL job cards. Look for
%PCDSN% in your job card. Ideally you should change these to use catalog lookup, although
you could alternatively specify the correct paths for MFDBFH.

 If you are running CICS and are using FCTs rather than the catalog, you will need to change
these entries to MFDBFH locations.

10.2. Deploy the catalog and data files to an RDBMS

When deploying the catalog and data files to an RDBMS you should consider the following points:

 You should use your catalog to retrieve a list of files that need to be deployed.

 When deploying files without headers; that is, fixed block sequential and line sequential
files, you will need to supply information regarding format and record lengths. You can
retrieve this information from the catalog.

Tip: For production this will be a one-time operation. For testing and development,

deploying a "known" catalog and set of data improves the repeatability of your

environment.

10.3. Deploy the CICS resource definition file to an RDBMS

When deploying the CICS resource definition file to an RDBMS you should consider the following:

 Regions that handle CICS should be part of a Performance and Availability Cluster (PAC).
Micro Focus recommends that you deploy your CICS resource definition file to MFDBFH and
configure your region to use it, although you can replicate the CICS Resource Definition file
locally within each container image.

Tip: Any static changes that you make to resources in the CICS resource definition file

should be committed to version control.

For more information see Configuring CICS Applications for Micro Focus Database File Handling,

Configuring CICS resources for Micro Focus Database File Handling and PAC Best Practices.

https://www.microfocus.com/documentation/enterprise-developer/ed-latest/ED-Eclipse/GUID-9404F890-260F-4C4A-8F81-1392BB2B8761.html
https://www.microfocus.com/documentation/enterprise-developer/ed-latest/ED-Eclipse/GUID-A2CD2AC4-D0EB-4421-A56C-9204CDF23884.html
https://www.microfocus.com/documentation/enterprise-developer/ed-latest/ED-Eclipse/GUID-8912B235-0FB6-4EF6-8545-B91BD295B540.html

 Best Practices for Moving to Containers | 20

11. Configure the application so that it is capable of being deployed in a

scale-out environment

Before you can run an application in a scale-out environment you must perform some additional

configuration steps:

 Reconfigure shared data access to work with a scale-out capable data source, for example

MFDBFH backed by a SQL database. Update the Dockerfile to install any additional RDBMS

drivers that are required:

Create the base image with needed dependencies

FROM microfocus/entserver:sles15.1_6.0_x64 as base

Install updated ODBC driver required by mfdbfh

RUN zypper install -y unixODBC postgresql && \

 cd /tmp && wget

https://download.postgresql.org/pub/repos/zypp/11/suse/sles-12.4-

x86_64/repodata/repomd.xml.key && rpm --import ./repomd.xml.key && \

 zypper install -y

https://download.postgresql.org/pub/repos/zypp/11/suse/sles-12.4-

x86_64/postgresql11-libs-11.5-1PGDG.sles12.x86_64.rpm && \

 zypper install -y

https://download.postgresql.org/pub/repos/zypp/11/suse/sles-12.4-

x86_64/postgresql11-odbc-11.01.0000-1PGDG.sles12.x86_64.rpm

 Set up any additional configuration such as odbc.ini or odbcinst.ini:

ADD System/odbcinst.ini.su /etc/unixODBC/odbcinst.ini

 Build an appropriate XA switch module:

Build the Postgres XA switch module required by the application

FROM microfocus/entdevhub:sles15.1_6.0_x64 as BuildXASwitch

RUN . $MFPRODBASE/bin/cobsetenv $MFPRODBASE && \

 mkdir /xa && \

 cd /xa && \

 cp $COBDIR/src/enterpriseserver/xa/* . && \

 /bin/bash ./build pg

 Configure Enterprise Server to specify the database to be used by MFDBFH. This involves

configuring the XA Resource Configuration with settings appropriate to the specific database

instance.

You can specify the XA Switch module as an environment variable within the configuration

and set the value of that environment variable within the Dockerfile, or you can simply

specify the full path to where the XA switch module is located within the container image

file system.

For more information see Building RM Switch Modules and Using XA-compliant Resources

(XARs).

For more information see Database File Handling Environment Variables, Micro Focus Native

Database File Handling and Enterprise Server Region Database Management and Scale-Out

Performance and Availability Clusters.

https://www.microfocus.com/documentation/enterprise-developer/ed-latest/ED-Eclipse/GUID-F6E07E71-C0AB-4DB8-8884-42ED7B57E067.html
https://www.microfocus.com/documentation/enterprise-developer/ed-latest/ED-Eclipse/BKCACACONFU020.html
https://www.microfocus.com/documentation/enterprise-developer/ed-latest/ED-Eclipse/BKCACACONFU020.html
https://www.microfocus.com/documentation/enterprise-developer/ed-latest/ED-Eclipse/GUID-DE3C6204-1B77-4F16-8420-B6057FD1B8F8.html
http://stargate/docs/webhelp/vced60/ED_Eclipse/GUID-B216C0F9-1DF6-4C12-AC19-A331415B4C9C.html
http://stargate/docs/webhelp/vced60/ED_Eclipse/GUID-B216C0F9-1DF6-4C12-AC19-A331415B4C9C.html
https://www.microfocus.com/documentation/enterprise-developer/ed-latest/ED-Eclipse/GUID-F6E1BBB7-AEC2-45B1-9E36-1D86B84D2B85.html
https://www.microfocus.com/documentation/enterprise-developer/ed-latest/ED-Eclipse/GUID-F6E1BBB7-AEC2-45B1-9E36-1D86B84D2B85.html

21 | Best Practices for Moving to Containers

12. Test the application built into containers with data held in the scale-

out environment

If you have migrated the data to a different technology, for example using MFDBFH, you should

retest the application without access to the original data to ensure that no errors have been

introduced and that all data has been migrated correctly.

13. Deploy the application containers into the scale-out environment

This section describes the steps you need to perform when you are ready to deploy your application

into your scale-out environment.

13.1. Prepare the application for scale-out deployment

Before you can deploy your containerized application in a scale-out environment, you must create

deployment descriptors (Kubernetes .yaml files, for example) and ensure that all parts of the scale-

out architecture are in place.

The rest of this section assumes the use of a Kubernetes cluster.

You must give careful consideration to the security requirements of your application, such as which

user id an application runs as, which network ports are exposed, and what firewall rules are applied.

When considering these aspects, the aim should always be to use only the minimum possible

permissions and minimum open ports in order to reduce security vulnerability. Any files which you

create or modify while implementing the security requirements should be stored in version control.

You should use lifecycle hooks to ensure that scaling down your application's resources does not

result in the unexpected termination of Enterprise Server work, particularly in the case of long-

running batch jobs. By using lifecycle hooks you can prevent new work from being allocated to a

region, and also guarantee that the region will remain running until it has completed its current

workload. The auto-scaling rules that you define should specify a grace period during which this

shutdown procedure will be allowed to run before the host instance is terminated. In the case where

a region is running batch jobs, this grace period should be at least the expected amount of time for

the batch job to complete.

There are many different valid configurations that you can use to deploy the application either using

Cloud provider-managed services (such as Amazon ElastiCache for Redis, Microsoft Azure Cache for

Redis. Microsoft Azure Database for PostgreSQL, or Amazon Aurora) or running equivalents within

the cluster or on premise. You need to evaluate which option best suits your requirements.

13.1.1. Create the Kubernetes YAML files

Having planned the different aspects of your scale-out architecture you're ready to create a

Kubernetes StatefulSet for the container image that you created in the earlier stages.

If you are using Enterprise Server, in the StatefulSet configuration specify the use of a Performance

and Availability Cluster (PAC). This involves specifying the following:

 The name of the PAC using the ES_PAC environment variable.

 The configuration of the Scale Out Repository (SOR). This involves setting the following

environment variables:

o ES_DB_FH to enable database file handler support.

o ES_DB_SERVER to specify the database name.

o ES_SCALE_OUT_REPOS_1 to specify the SOR to be used.

 Best Practices for Moving to Containers | 22

o MFDBFH_CONFIG to specify the MFDBFH configuration.

For more information see PAC and SOR Environment Variables and Database File Handling

Environment Variables.

If you are using Visual COBOL for SOA, specify a label for the application which can be used by

ESCWA’s Kubernetes auto-discovery mechanism to efficiently select appropriate Pods (see below for

more details). Define the port used by the Micro Focus Directory Server; that is, the value of the

CCITCP2_PORT environment variable, running in the Pod with the IANA-registered name

"mfcobol" even when the default port (86) is not being used as this allows ESCWA to automatically

discover the port it should use to communicate with the directory server.

Tip: Kubernetes secrets are used to inject credentials and certificates into the application

using environment variables and files. Use an init container to populate the vault with the

credentials stored in environment variables, then use a shared "Memory" emptyDir volume

to add these into the application container, for example, by volume-mounting to the

location /opt/microfocus/EnterpriseDeveloper/etc/secrets/microfocus. If you were to

directly inject the credentials environment variables into the application container, they

would be visible (unencrypted) to anyone with ESCWA access to the running Pod.

See Distribute Credentials Securely Using Secrets on the Kubernetes web site for more

information.

The following YAML fragment shows how to specify the scale-out features, configure a PAC and SOR

for use with your application, and specify liveness and readiness probes to check that the application

is running correctly:

apiVersion: apps/v1

kind: StatefulSet

metadata:

 name: ed60-bnkd-statefulset-mfdbfh

 labels:

 app: ed60-bnkd-mfdbfh

spec:

 replicas: 1

 selector:

 matchLabels:

 app: ed60-bnkd-mfdbfh

 serviceName: ed60-bnkd-svc-mfdbfh

 template:

 metadata:

 labels:

 app: ed60-bnkd-mfdbfh

 spec:

 # Allow time for clean shutdown of Enterprise Server

 terminationGracePeriodSeconds: 120

 nodeSelector:

 "beta.kubernetes.io/os": linux

 securityContext:

 runAsUser: 500

 fsGroup: 500

 initContainers:

 # Initialize the local vault with needed secrets

https://www.microfocus.com/documentation/enterprise-developer/ed-latest/ED-Eclipse/GUID-790603C6-ADBD-48D1-9971-B4DD061584CF.html
https://www.microfocus.com/documentation/enterprise-developer/ed-latest/ED-Eclipse/GUID-DE3C6204-1B77-4F16-8420-B6057FD1B8F8.html
https://www.microfocus.com/documentation/enterprise-developer/ed-latest/ED-Eclipse/GUID-DE3C6204-1B77-4F16-8420-B6057FD1B8F8.html
https://kubernetes.io/docs/tasks/inject-data-application/distribute-credentials-secure/

23 | Best Practices for Moving to Containers

 - name: vault-config

 image: bankdemo:latest

 imagePullPolicy: Always

 command: ["/home/esadm/deploy/vaultconfig.sh"]

 env:

 # XA Open string prefix, used with username and password in

 # vaultconfig.sh

 - name: MFDBFHOPENSTRING

 value: "DSN=PG.JCLTEST,LOCALTX=T"

 # Database connection credentials

 - name: DB_USERNAME

 valueFrom:

 secretKeyRef:

 name: pgsql-secret

 key: db-username

 - name: DB_PASSWORD

 valueFrom:

 secretKeyRef:

 name: pgsql-secret

 key: db-password

 # OpenLDAP connection password

 - name: LDAP_PASSWORD

 valueFrom:

 secretKeyRef:

 name: ldap-secret

 key: ldap-password

 # Credentials used to start region

 - name: ES_PASSWORD

 valueFrom:

 secretKeyRef:

 name: es-secret

 key: es-password

 - name: ES_USERNAME

 valueFrom:

 secretKeyRef:

 name: es-secret

 key: es-username

 volumeMounts:

 - name: vault-volume

 mountPath:

/opt/microfocus/EnterpriseDeveloper/etc/secrets/microfocus

 # Shared region workarea

 - name: region-workarea-volume

 mountPath: /var/mfcobol/es/BANKDEMO

 containers:

 # Main application container - Enterprise Server running the

 # application

 - name: application

 image: bankdemo:latest

 imagePullPolicy: Always

 env:

 # Performance and Availability Cluster identifier

 - name: ES_PAC

 value: "MYPAC"

 # Enable use of MFDBFH

 - name: ES_DB_FH

 Best Practices for Moving to Containers | 24

 value: "true"

 # Set MFDBFH configuration

 - name: MFDBFH_CONFIG

 value: "/home/esadm/MFDBFH.cfg"

 # Set name of MFDBFH server Enterprise Server should use - must

 # match server name in MFDBFH.cfg

 - name: ES_DB_SERVER

 value: "PGSQL"

 # Primary Scale Out Repository configuration

 - name: ES_SCALE_OUT_REPOS_1

 value: "RedisLocal=redis,ed60-bnkd-svc-redis:6379##TMP#TD=*#TS=*"

 # Force MFDS to use secrets vault

 - name: MFDS_USE_VAULT

 value: "Y"

 # Location of trusted root certificate for OpenLDAP server

 - name: OPENLDAP_CAROOT

 value: /var/run/secrets/microfocus/ca.crt

 # Port opened by sidecar running syslog daemon

 - name: SYSLOG_PORT

 value: "2514"

 ports:

 - containerPort: 34568

 name: mfcobol-ws

 protocol: TCP

 - containerPort: 34570

 name: mfcobol

 protocol: TCP

 - containerPort: 34571

 name: telnet

 protocol: TCP

 lifecycle:

 preStop:

 exec:

 command: ["/home/esadm/deploy/pre-stop.sh"]

 readinessProbe:

 httpGet:

 path: /esmac/casrdo00

 port: 34568

 initialDelaySeconds: 5

 periodSeconds: 10

 livenessProbe:

 httpGet:

 path: /esmac/casrdo00

 port: 34568

 initialDelaySeconds: 60

 periodSeconds: 30

 volumeMounts:

 # Vault initialized by init-container

 - name: vault-volume

 mountPath:

/opt/microfocus/EnterpriseDeveloper/etc/secrets/microfocus

 # Database configuration

 - name: iniconfig-volume

 mountPath: /etc/unixODBC/odbc.ini

 subPath: odbc.ini

 # MFDBFH configuration

 - name: mfdbfh-config-volume

25 | Best Practices for Moving to Containers

 mountPath: /home/esadm/MFDBFH.cfg

 subPath: MFDBFH.cfg

 # Shared region workarea - sidecars process log files from this

 # location

 - name: region-workarea-volume

 mountPath: /var/mfcobol/es/BANKDEMO

The above fragment includes references to the files vaultconfig.sh and pre-stop.sh. Example

contents for vaultconfig.sh are shown below:

#!/bin/bash

. $MFPRODBASE/bin/cobsetenv

echo Setting up the vault

Setup the XA connection string in the vault

$COBDIR/bin/mfsecretsadmin write

microfocus/MFDS/1.2.840.5043.07.001.1573035249.139659451564033-OpenString

$MFDBFHOPENSTRING,USRPASS=$DB_USERNAME.$DB_PASSWORD

Setup the MFDBFH password secrets

$COBDIR/bin/mfsecretsadmin write

microfocus/mfdbfh/pgsql.pg.cas.crossregion.password $DB_PASSWORD

$COBDIR/bin/mfsecretsadmin write

microfocus/mfdbfh/pgsql.pg.cas.mypac.password $DB_PASSWORD

$COBDIR/bin/mfsecretsadmin write

microfocus/mfdbfh/pgsql.pg.datastore.password $DB_PASSWORD

$COBDIR/bin/mfsecretsadmin write microfocus/mfdbfh/pgsql.pg.jcltest.password

$DB_PASSWORD

$COBDIR/bin/mfsecretsadmin write

microfocus/mfdbfh/pgsql.pg.postgres.password $DB_PASSWORD

$COBDIR/bin/mfsecretsadmin write

microfocus/mfdbfh/pgsql.pg.utilities.password $DB_PASSWORD

Setup ESM LDAP password

$COBDIR/bin/mfsecretsadmin write

microfocus/MFDS/ESM/1.2.840.5043.14.001.1573468236.2-LDAPPwd $LDAP_PASSWORD

Setup ES admin credentials

$COBDIR/bin/mfsecretsadmin write microfocus/CAS/casstart-user $ES_USERNAME

$COBDIR/bin/mfsecretsadmin write microfocus/CAS/casstart-password

$ES_PASSWORD

Example contents for pre-stop.sh are shown below:

#!/bin/bash

Request the region is stopped

. $MFPRODBASE/bin/cobsetenv && casstop -r$ES_SERVER -u`mfsecretsadmin read

microfocus/CAS/casstart-user` -p`mfsecretsadmin read

microfocus/CAS/casstart-password`

Loop until the server has stopped

while [! -f /var/mfcobol/es/BANKDEMO/shutdown.txt]; do sleep 3; done;

The following YAML fragment shows how to use sidecar containers to output any log files needed for

diagnostic purposes into the Kubernetes logging framework:

 Best Practices for Moving to Containers | 26

 # Sidecar for logging mfcs log.html

 - name: mfcs-log

 image: bankdemo:latest

 command: ["/bin/bash", "-c", "while [! -f

/var/mfcobol/es/BANKDEMO/log.html]; do sleep 3; done; tail -n+1 -F

/var/mfcobol/es/BANKDEMO/log.html"]

 lifecycle:

 preStop:

 exec:

 # Wait for the server to signal to have been shutdown then

 # stop outputting the mfcs log

 command: ["/bin/bash", "-c", "while [! -f

/var/mfcobol/es/BANKDEMO/shutdown.txt]; do sleep 3; done; TAIL_PID=`pgrep

tail`; kill -s SIGTERM $TAIL_PID"]

 volumeMounts:

 - name: region-workarea-volume

 mountPath: /var/mfcobol/es/BANKDEMO

The following YAML fragment shows how to use a sidecar to run a syslog daemon within the Pod to

receive Enterprise Server audit output and potentially forward it to a remote syslog daemon:

- name: mfaudit-log

 image: bankdemo:latest

 command: ["rsyslogd", "-n", "-f", "/etc/mfaudit/rsyslog.conf"]

 imagePullPolicy: "Always"

 ports:

 - name: incoming-logs

 containerPort: 2514

 lifecycle:

 preStop:

 exec:

 # Wait for the server to signal to have been shutdown then

 # terminate the syslog daemon

 command: ["/bin/sh", "-c", "while [! -f

/var/mfcobol/es/BANKDEMO/shutdown.txt]; do sleep 3; done;

RSYSLOG_PID=`pgrep rsyslogd`; kill -s SIGTERM $RSYSLOG_PID"]

 volumeMounts:

 # RSYSLOG Configuration - rsyslog.conf loaded from configmap

 - name: syslog-conf-volume

 mountPath: /etc/mfaudit/

 - name: region-workarea-volume

 mountPath: /var/mfcobol/es/BANKDEMO

The following YAML fragment shows how to use a sidecar to run a Prometheus metrics provider to

allow Horizontal Pod Autoscaling to scale based on the Enterprise Server metrics.

Typically, you will define Kubernetes services for the application listeners that you need to expose,

such as 3270 and Web Service listeners, will front these with a load balancer. The following YAML

shows how you might do this:

kind: Service

apiVersion: v1

metadata:

 name: ed60-bnkd-svc-mfdbfh

spec:

27 | Best Practices for Moving to Containers

 selector:

 app: ed60-bnkd-mfdbfh

 ports:

 # Web Service listener port - also used by readiness/liveness probes

 - name: mfcobol-ws

 protocol: TCP

 port: 34568

 targetPort: 34568

 # Directory server listener port

 - name: mfcobol

 protocol: TCP

 port: 86

 targetPort: 34570

kind: Service

apiVersion: v1

metadata:

 name: ed60-bnkd-svc-mfdbfh-tn

spec:

 selector:

 app: ed60-bnkd-mfdbfh

 ports:

 # Telnet listener port

 - name: telnet

 protocol: TCP

 port: 23

 targetPort: 34571

 type: LoadBalancer

13.1.1.1. Create the cluster (or gain access to an existing cluster)

Create your scale out cluster (using Amazon Elastic Kubernetes Service (Amazon EKS) or Azure

Kubernetes Service (AKS), for instance) and familiarize yourself with it and its capabilities.

13.1.1.2. Ensure Redis and database servers are available

If you are running your Enterprise Server in a Performance and Availability Cluster (PAC) you must

ensure you have use of a running Redis server. Either deploy a suitable Redis server for the

application or make use of a suitable Redis service from your Cloud provider, for example AWS

Elasticache, Azure Redis Cache, or Google Cloud Memorystore.

Your chosen database server must also be available. Create Kubernetes services to route

connections to Redis and the database servers and use these service addresses when configuring

Enterprise Server resources. For example:

apiVersion: v1

kind: Service

metadata:

 labels:

 app: ed60-bnkd-svc-redis

 name: ed60-bnkd-svc-redis

spec:

 externalName: <address of Redis server>

 selector:

 app: ed60-bnkd-svc-redis

 type: ExternalName

status:

 Best Practices for Moving to Containers | 28

 loadBalancer: {}

apiVersion: v1

kind: Service

metadata:

 labels:

 app: pgsql-svc

 name: ed60-bnkd-svc-pgsql

spec:

 externalName: <address of database server>

 selector:

 app: pgsql-svc

 type: ExternalName

status:

 loadBalancer: {}

13.1.1.3. Deploy ESCWA

To enable you to easily monitor your application you should deploy an ESCWA instance into the

cluster. You should configure the ESCWA instance to monitor the PAC (if you are deploying to

Enterprise Server) or Kubernetes dynamic discovery (if you are deploying to COBOL Server).

If you are using Visual COBOL for SOA within a Kubernetes cluster you can run ESCWA within the

same Kubernetes cluster, and configure it to scan the cluster for Enterprise Server Pods.

See Using ESCWA with Kubernetes for more information.

For example, use a sidecar container to run kubectl proxy using the Pod's port 8001 and start ESCWA

with the command line:

--K8sConfig={"Direct":false,

 "Port":"8001",

 "LabelEnvironment":false,

 "Label":"app%3Dmyapp-label"}

If you are using Enterprise Server and your servers are running as part of a Performance and

Availability Cluster (PAC) you can alternatively/additionally configure ESCWA to show the members

of the Performance and Availability Cluster.

For example, use the following option when starting ESCWA:

--SorList=[{"SorName":"MySorName",

 "SorDescription":"My PAC instance",

 "SorType":"redis",

 "SorConnectPath":"my-redis-server:6379",

 "Uid" : "1"}]

ESCWA should be configured with TLS and ESM security enabled, and the ESCWA deployment should

not be replicated as this is currently not supported. For more information see Transport Layer

Security (TLS) in ESCWA and Specifying an External Security Manager.

https://www.microfocus.com/documentation/enterprise-developer/ed-latest/ED-Eclipse/GUID-04E2A622-A22C-446F-9BF1-13CEAB21E2A6.html
https://www.microfocus.com/documentation/enterprise-developer/ed-latest/ED-Eclipse/GUID-7DA2637C-771D-407A-A5A6-B6091D5D6CB3.html
https://www.microfocus.com/documentation/enterprise-developer/ed-latest/ED-Eclipse/GUID-7DA2637C-771D-407A-A5A6-B6091D5D6CB3.html
https://www.microfocus.com/documentation/enterprise-developer/ed-latest/ED-Eclipse/GUID-3B367029-3D3A-4634-A3A9-38CEA77A7125.html

29 | Best Practices for Moving to Containers

14. Test and tune the application running multiple replicas of your

application containers in the scale-out

Having deployed the application into a scale-out environment, you should test and tune the

application once again.

You should adjust the number of replicas and the number of SEPs within each replica to achieve the

best balance of performance and resilience. You can use tools such as LoadRunner and UFT to test

various scenarios. For more information see LoadRunner Professional and UFT One.

15. Use metrics and autoscaling

Kubernetes supports autoscaling pods to handle varying application demands. You can use this

capability with Enterprise Server, but you should note that there are limitations.

Kubernetes autoscaling works particularly well for stateless applications, such as stateless REST

applications, but many Enterprise Server applications are stateful in nature, as is typical of CICS 3270

applications. Once a 3270 user session is connected to a particular server pod instance, that session

is "sticky" to that pod which means that if the pod becomes overloaded, scaling up the cluster will

not necessarily improve the performance for existing sessions. Also, if the cluster is scaled down,

active sessions connected to a pod which is terminated as part of that scale down will be

disconnected and in-flight transactions might not be completed.

For applications where load is known but varies at different times of day, for example, online load

during the day and batch load at night, manual (or timed) scaling of the application might be more

appropriate than using the Kubernetes autoscaling support. You could use a command of the

following form to achieve this:

kubectl scale --replicas=NN statefulset/statefulsetname)

Kubernetes Horizontal Pod Autoscaling is configured via a HorizontalPodAutoscaler

definition which specifies details such as the minimum and maximum number of replicas to scale

between, and the name of a metric to use as the basis for scaling (along with its target value).

Kubernetes provides a number of built-in metrics such as memory and CPU usage but these are not

always the most appropriate metrics for use with Enterprise Server. You can supplement the

standard Kubernetes metrics with the use of custom Prometheus metrics, and Enterprise Server

contains an Event Manager exit module called casuetst which when enabled via the environment

variable ES_EMP_EXIT_n (ES_EMP_EXIT_1=casuetst, for example) creates a file called

ESmonitor1.csv which is a simple comma-separated value file containing information such as the

numbers of tasks processed per minute, average task latency, average task duration, and task queue

length.

Specifically, lines in the ESmonitor1.csv file have the following format:

YYYYMMDDhhmmssnn,Tasks-PM,AvLatency,AvTaskLen,-Queue--,TotalTasks,SEPcount,-

Dumps--,FreeSMem,

where:

YYYYMMDDhhmmssnn is the date and time that the metrics were recorded
Tasks-PM is the numbers of tasks processed per minute

https://www.microfocus.com/en-us/products/loadrunner-professional/overview
https://www.microfocus.com/en-us/products/uft-one/overview

 Best Practices for Moving to Containers | 30

AvLatency is the average task latency
AvTaskLen is the average task duration
-Queue-- refers to queued transactions
TotalTasks is the total number of tasks run in the system
SEPcount is the number of SEPs in use
-Dumps-- is the number of dumps taken by Enterprise Server
FreeSMem is the amount of free shared memory

These metrics can be added to a Prometheus server which the Kubernetes metrics server can be

configured to query (through the use of the Kubernetes Prometheus adapter).

You can expose the Enterprise Server metrics using a side-car container running a small program

which reads the contents of the ESmonitor1.csv file and exposes the relevant values in the

Prometheus metrics format. Client libraries for a number of programming languages are available to

make this straight-forward, one of easiest to use being the Golang version.

A sample Golang program is shown below. It demonstrates the creation of Prometheus "Gauges" for

the Enterprise Server metrics (which a background thread keeps up to date based on the changing

values in the ESmonitor1.csv file), with the metrics themselves returned by an http GET request to

the pod’s port 8080/metrics:

package main

import (

 "io/ioutil"

 "log"

 "net/http"

 "os"

 "strconv"

 "strings"

 "time"

 "github.com/prometheus/client_golang/prometheus"

 "github.com/prometheus/client_golang/prometheus/promhttp"

)

func recordMetrics() {

 // Start background thread which reads ESmonitor1.csv and

 // updates the gauges, then sleeps 30 seconds and repeats

 go func() {

 arg1 := os.Args[1]

 time.Sleep(60 * time.Second)

 for {

 data, err1 := ioutil.ReadFile(arg1)

 if err1 != nil {

 log.Printf("File reading error: %v", err1)

 time.Sleep(60 * time.Second)

 }

 log.Printf("Contents of file: %s", string(data))

 s := strings.Split(string(data), ",")

 i1, err := strconv.ParseFloat(s[1], 64)

 log.Printf("Tasks per minute : %f", i1)

 i2, err := strconv.ParseFloat(s[2], 64)

 log.Printf("Average Latency : %f", i2)

31 | Best Practices for Moving to Containers

 i3, err := strconv.ParseFloat(s[3], 64)

 log.Printf("Average task length : %f", i3)

 i4, err := strconv.ParseFloat(s[4], 64)

 log.Printf("Queued tasks : %f", i4)

 if err != nil {

 log.Printf("convert to float error: %v", err)

 }

 tPM.Set(i1)

 avgLatency.Set(i2)

 avgTaskDuration.Set(i3)

 workQueued.Set(i4)

 time.Sleep(30 * time.Second)

 }

 }()

}

// Create the gauges

var (

 tPM = prometheus.NewGauge(prometheus.GaugeOpts{

 Name: "es_tasks_per_minute",

 Help: "number of tasks per minute",

 })

 avgLatency = prometheus.NewGauge(prometheus.GaugeOpts{

 Name: "es_average_task_latency",

 Help: "average latency",

 })

 workQueued = prometheus.NewGauge(prometheus.GaugeOpts{

 Name: "es_queued_transactions",

 Help: "amount of work queued",

 })

 avgTaskDuration = prometheus.NewGauge(prometheus.GaugeOpts{

 Name: "es_average_task_duration",

 Help: "average task duration",

 })

)

func init() {

 // Metrics have to be registered to be exposed:

 prometheus.MustRegister(tPM)

 prometheus.MustRegister(avgLatency)

 prometheus.MustRegister(avgTaskDuration)

 prometheus.MustRegister(workQueued)

}

func main() {

 recordMetrics()

 // The Handler function provides a default handler to expose metrics

 // via an HTTP server. "/metrics" is the usual endpoint for that.

 http.Handle("/metrics", promhttp.Handler())

 port := os.Getenv("LISTENING_PORT")

 if port == "" {

 port = "8080"

 Best Practices for Moving to Containers | 32

 }

 log.Printf("listening on port:%s", port)

 err := http.ListenAndServe(":"+port, nil)

 if err != nil {

 log.Fatalf("Failed to start server:%v", err)

 }

}

An example side-car definition is shown below:

- name: custom-metrics

 image: es-metrics:latest

 imagePullPolicy: "Always"

 ports:

 - name: metrics

 containerPort: 8080

 volumeMounts:

 - name: region-workarea-volume

 mountPath: /esmetric/workarea

Kubernetes autoscaling works by querying the Kubernetes Metrics Server, so in order for

Prometheus metrics to be used for autoscaling they must first be accessible via the Kubernetes

Metrics Server. This is achieved using the k8s-prometheus-adapter with a configuration that

details the required Prometheus metrics, and by adding annotations to the application pod template

specification to make Prometheus scrape the actual metric values from the pods.

For more information see Metrics Server on the Kubernetes web site, k8s-prometheus-adapter on

GitHub, and the Scraping Pod Metrics via Annotations section of Prometheus on Helm Hub.

For example, the following pod annotations would indicate that Prometheus should scrape metrics

from the pod's port 8080:/metrics URL:

 metadata:

 annotations:

 prometheus.io/scrape: "true"

 prometheus.io/path: /metrics

 prometheus.io/port: "8080"

The Prometheus adapter must be configured with rules that detail which metric values to add to the

Kubernetes Metrics Server, as described in Configuration Walkthroughs on GitHub.

The following example shows how you might do this:

rules:

 default: true

 custom:

 - seriesQuery: 'es_tasks_per_minute'

 seriesFilters: []

 resources:

 overrides:

 kubernetes_namespace:

 resource: namespace

 kubernetes_pod_name:

https://kubernetes.io/docs/tasks/debug-application-cluster/resource-metrics-pipeline/#metrics-server
https://github.com/DirectXMan12/k8s-prometheus-adapter
https://hub.helm.sh/charts/stable/prometheus
https://github.com/DirectXMan12/k8s-prometheus-adapter/blob/master/docs/config-walkthrough.md

33 | Best Practices for Moving to Containers

 resource: pod

 name:

 matches: "es_tasks_per_minute"

 as: ""

 metricsQuery: <<.Series>>{<<.LabelMatchers>>,container_name!="POD"}

The metric can then be used with the Kubernetes Horizontal Pod Autoscaler by applying a suitable

HorizontalPodAutoscaler resource, as shown below:

apiVersion: autoscaling/v2beta1

kind: HorizontalPodAutoscaler

metadata:

 name: hpa-bankdemo

spec:

 scaleTargetRef:

 apiVersion: apps/v1

 kind: StatefulSet

 name: ed60-bnkd-statefulset-mfdbfh

 minReplicas: 1

 maxReplicas: 5

 metrics:

 - type: Pods

 pods:

 metricName: es_tasks_per_minute

 targetAverageValue: 100

