
Borland Together 2008
Borland Together DSL Toolkit
Guide

Borland Software Corporation
4 Hutton Centre Dr., Suite 900
Santa Ana, CA 92707

Copyright 2009-2010 Micro Focus (IP) Limited. All Rights Reserved.Together contains derivative
works of Borland Software Corporation, Copyright 2007-2010 Borland Software Corporation (a
Micro Focus company).

MICRO FOCUS and the Micro Focus logo, among others, are trademarks or registered trademarks
of Micro Focus (IP) Limited or its subsidiaries or affiliated companies in the United States, United
Kingdom and other countries.

BORLAND, the Borland logo and Together are trademarks or registered trademarks of Borland
Software Corporation or its subsidiaries or affiliated companies in the United States, United
Kingdom and other countries.

All other marks are the property of their respective owners.

ii

Contents

Getting Started with Together DSL Toolkit...6
Together DSL Toolkit Overview..6

Related Resources...6

Concepts...9
Domain-Specific Languages..9

Domain-Specific Modeling...9

DSL Toolkit...10

Elements of a DSL...10

Conclusion...11

DSL Capabilities...11

DSL Toolkit Workflow..12

Create DSL Project..13

Domain Modeling...13

Diagram Development...13

Author Model Transformations...14

Create Code Generation Templates..14

Construct Transformation Sequence...14

Design DSL Report...14

Test DSL..14

Deploy DSL...14

DSL Toolkit Best Practices...14

General..15

Naming Conventions...15

Project Artifacts...15

Domain Modeling...16

Diagrams...16

Model Transformations..17

Figure Galleries...17

URI Mappings..17

DSL Toolkit Usage Scenarios...18

Complete DSL Development...18

DSL as Part of a Larger Application Framework...18

Create Model Transformations for Existing Domain Models..19

Contents | 3

Diagram definition..19

Text generation..19

Special Considerations for C# Projects ...19

Project configuration issues...19

Common Workarounds..20

Procedures..21
Creating a DSL Toolkit Project..21

Creating a Domain Model...21

Importing an Existing Domain Model...22

Loading a Model from a PDE Platform ..23

Creating a DSL Toolkit Project..23

Adding Database Persistence Support..24

..25

..25

..25

Creating a DSL Diagram Definition..26

Generating the Composite Editor...28

Printing DSL Toolkit Diagrams..28

Creating a Figure Gallery...28

Creating a Dynamic Instance Model..29

Creating a DSL Transformation..30

Generating C# Code..31

Creating a DSL Transformation Library..31

Creating a DSL Template...32

Creating a DSL Transformation Workflow...32

Declaring Shared Elements for a DSL Transformation Workflow...33

Specifying an Input for a DSL Transformation Workflow...33

Configuring an Xpand Invocation...34

Configuring a QVT Invocation..34

Validating a Workflow...35

Evaluating a Transformation Sequence..35

Generating an Ant Script for a Transformation Sequence..35

Creating a DSL Report...35

Creating a Textual Notation for Your Domain Model...36

Importing a Figure Gallery...37

Importing DSL Projects from an Existing Platform...38

Importing Models from the PDE Platform...38

4 | Contents

Migrating from the Eclipse Modeling Project..39

Importing Using Xpand...40

Importing GMF Artifacts for the Diagram Editor...40

..40

Importing ecore for the Domain Model Editor..41

..41

Migrating Xtend-Based Templates to QVTO-Based Xpand Templates.....................................41

Running a DSL...42

Regenerating a DSL...42

Deploying a DSL..43

Reference..44
DSL Perspective...44

DSL Editor..44

Domain Model Editor..49

Diagram Definition Editor...56

Textual Notation Editor...62

Overview Page of Textual Notation Editor...62

Language Page of Textual Notation Editor..63

Advanced Page of Textual Notation Editor..65

Text Page of Textual Notation Editor..65

DSL Explorer View...66

Workflow Editor..67

Template Explorer..69

Figure Gallery Editor..71

DSL Toolkit Ant Support...72

Code Generation Ant Tasks..77

Common URIs..78

Xpand Language Guide...79

Domain-Specific Language Preferences..81

DSL Toolkit Activities..82

Domain Diagram Preferences..83

DSL Model Overview..83

DSL Artifacts..85

DSL-Generated Artifacts..86

Stale Files Tasks...87

Descriptor Files Merging Tasks..88

Domain-Specific Language Glossary...89

Contents | 5

Getting Started with Together DSL Toolkit

Together DSL Toolkit Overview
Welcome to the Borland® Together DSL Toolkit. The Together DSL Toolkit provides the advantages of
domain-specific languages, including increased productivity, faster turnaround time, and adherence to the
guidelines and constraints specified in the DSL.

The following resources offer additional information and assistance:

• Borland Together Home Page
• Borland Together Documentation
• Borland Product Support

For information on how to use this Help system, see Help on Help in the Related Concepts.

Note: If your Internet access is limited by network security, or if your computer is protected by a personal
firewall, the Web-based links in this Help system might not function properly.

Note: Since Together 2008 Release 3, the feature set DSL Toolkit is not required to be installed. When
not present, the corresponding parts of the user interface and functionality are not available. Refer to the
installation instructions in the Release Notes document for additional info about the product installation
process.

Related Topics

Related Resources
The following Web resources offer additional information to supplement the DSL Toolkit Guide and Modeling
Guide Help.

Note: If your Internet access is limited by network security, or if your computer is protected by a personal
firewall, the Web-based links in this Help system might not function properly.

• Eclipse Modeling Project
• Eclipse Graphical Framework Modeling Project
• Eclipse Modeling Framework (EMF) Project (includes Query, Transaction, Validation)
• Eclipse Model-to-Model Transformation (M2M) Project (includes Procedural QVT [Operational] and

Declarative QVT [Core and Relational])
• Eclipse Model-to-Text (M2T) Project (includes Xpand and JET)
• Eclipse Model Development Tools (MDT) - UML2
• Eclipse Model Development Tools (MDT) - UML2Tools
• Eclipse Model Driven Development integration (MDDi)
• Eclipse Generative Modeling Technologies (GMT)
• OMG Unified Modeling Language (OMG UML), Superstructure, V2.1.2

6 | Getting Started with Together DSL Toolkit

http://www.borland.com/us/products/together/index.html
http://techpubs.borland.com/together/
http://support.borland.com/
http://www.eclipse.org/modeling/
http://www.eclipse.org/gmf/
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/m2m/
http://www.eclipse.org/m2m/
http://www.eclipse.org/modeling/m2t/
http://wiki.eclipse.org/MDT-UML2
http://wiki.eclipse.org/MDT-UML2Tools
http://www.eclipse.org/mddi/
http://www.eclipse.org/gmt/
http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF/

• OMG Unified Modeling Language (OMG UML), Infrastructure, V2.1.2
• OMG UML Resource Page
• OMG Meta-Object Facility Query-View-Transformations (MOF QVT) Final Adopted Specification, 1.0
• Object Constraint Language OMG Available Specification Version 2.0
• OMG Business Process Modeling Notation (BPMN) Specification, 1.1
• Borland's Model Driven Development Resource Center

The following newsgroups, mailing lists, and forums offer user discussions and additional insights into modeling
within an Eclipse environment.

• Forum: Together
• Eclipse Platform:

• Eclipse NewsPortal - eclipse.platform
• Eclipse NewsPortal - eclipse.platform.swt
• Eclipse NewsPortal - eclipse.platform.rcp
• Eclipse NewsPortal - eclipse.platform.ua
• Mailing list: platform-dev
• Mailing list: platform-ant-dev
• Mailing list: platform-compare-dev
• Mailing list: platform-core-dev
• Mailing list: platform-cvs-dev
• Mailing list: platform-debug-dev
• Mailing list: platform-doc-dev
• Mailing list: platform-ide-dev
• Mailing list: platform-releng-dev
• Mailing list: platform-scripting-dev
• Mailing list: platform-search-dev
• Mailing list: platform-swt-dev
• Mailing list: platform-team-dev
• Mailing list: platform-text-dev
• Mailing list: platform-ua-dev
• Mailing list: platform-ui-dev
• Mailing list: platform-update-dev
• Mailing list: platform-webdav-dev
• Eclipse NewsPortal - eclipse.platform
• Eclipse NewsPortal - eclipse.platform.swt
• Eclipse NewsPortal - eclipse.platform.rcp
• Eclipse NewsPortal - eclipse.platform.ua
• Mailing list: platform-dev
• Mailing list: platform-ant-dev
• Mailing list: platform-compare-dev
• Mailing list: platform-core-dev
• Mailing list: platform-cvs-dev
• Mailing list: platform-debug-dev
• Mailing list: platform-doc-dev
• Mailing list: platform-ide-dev
• Mailing list: platform-releng-dev
• Mailing list: platform-scripting-dev
• Mailing list: platform-search-dev

Getting Started with Together DSL Toolkit | 7

http://www.omg.org/spec/UML/2.1.2/Infrastructure/PDF/
http://www.uml.org/
http://www.omg.org/spec/QVT/1.0
http://www.omg.org/spec/OCL/2.0/PDF
http://www.omg.org/spec/BPMN/1.1/PDF
http://www.borland.com/us/rc/model-driven-development/index.html
http://bkn.borland.com/forums/forum.jspa?forumID=23
http://www.eclipse.org/newsportal/thread.php?group=eclipse.platform
http://www.eclipse.org/newsportal/thread.php?group=eclipse.platform.swt
http://www.eclipse.org/newsportal/thread.php?group=eclipse.platform.rcp
http://www.eclipse.org/newsportal/thread.php?group=eclipse.platform.ua
https://dev.eclipse.org/mailman/listinfo/platform-dev
https://dev.eclipse.org/mailman/listinfo/platform-ant-dev
https://dev.eclipse.org/mailman/listinfo/platform-compare-dev
https://dev.eclipse.org/mailman/listinfo/platform-core-dev
https://dev.eclipse.org/mailman/listinfo/platform-cvs-dev
https://dev.eclipse.org/mailman/listinfo/platform-debug-dev
https://dev.eclipse.org/mailman/listinfo/platform-doc-dev
https://dev.eclipse.org/mailman/listinfo/platform-ide-dev
https://dev.eclipse.org/mailman/listinfo/platform-releng-dev
https://dev.eclipse.org/mailman/listinfo/platform-scripting-dev
https://dev.eclipse.org/mailman/listinfo/platform-search-dev
https://dev.eclipse.org/mailman/listinfo/platform-swt-dev
https://dev.eclipse.org/mailman/listinfo/platform-team-dev
https://dev.eclipse.org/mailman/listinfo/platform-text-dev
https://dev.eclipse.org/mailman/listinfo/platform-ua-dev
https://dev.eclipse.org/mailman/listinfo/platform-ui-dev
https://dev.eclipse.org/mailman/listinfo/platform-update-dev
https://dev.eclipse.org/mailman/listinfo/platform-webdav-dev
http://www.eclipse.org/newsportal/thread.php?group=eclipse.platform
http://www.eclipse.org/newsportal/thread.php?group=eclipse.platform.swt
http://www.eclipse.org/newsportal/thread.php?group=eclipse.platform.rcp
http://www.eclipse.org/newsportal/thread.php?group=eclipse.platform.ua
https://dev.eclipse.org/mailman/listinfo/platform-dev
https://dev.eclipse.org/mailman/listinfo/platform-ant-dev
https://dev.eclipse.org/mailman/listinfo/platform-compare-dev
https://dev.eclipse.org/mailman/listinfo/platform-core-dev
https://dev.eclipse.org/mailman/listinfo/platform-cvs-dev
https://dev.eclipse.org/mailman/listinfo/platform-debug-dev
https://dev.eclipse.org/mailman/listinfo/platform-doc-dev
https://dev.eclipse.org/mailman/listinfo/platform-ide-dev
https://dev.eclipse.org/mailman/listinfo/platform-releng-dev
https://dev.eclipse.org/mailman/listinfo/platform-scripting-dev
https://dev.eclipse.org/mailman/listinfo/platform-search-dev

• Mailing list: platform-swt-dev
• Mailing list: platform-team-dev
• Mailing list: platform-text-dev
• Mailing list: platform-ua-dev
• Mailing list: platform-ui-dev
• Mailing list: platform-update-dev
• Mailing list: platform-webdav-dev

• Eclipse Modeling Framework (EMF)

• Eclipse NewsPortal - eclipse.technology.emft
• Eclipse NewsPortal - eclipse.tools.emf
• Mailing list: emft-dev
• Mailing list: emf-dev

• Graphical Modeling Framework (GMF)

• Eclipse NewsPortal - eclipse.modeling.gmf
• Eclipse NewsPortal - eclipse.technology.gmf
• Mailing list: gmf-dev

• Model Development Tools (MDT)

• Eclipse NewsPortal - eclipse.modeling.mdt.eodm
• Eclipse NewsPortal - eclipse.modeling.mdt
• Eclipse NewsPortal - eclipse.modeling.mdt.ocl
• Eclipse NewsPortal - eclipse.modeling.mdt.uml2
• Eclipse NewsPortal - eclipse.modeling.mdt.uml2tools
• Eclipse NewsPortal - eclipse.modeling.mdt.xsd
• Mailing list: mdt.dev
• Mailing list: mdt-eodm.dev
• Mailing list: mdt-ocl.dev
• Mailing list: mdt-uml2.dev
• Mailing list: mdt-uml2tools.dev
• Mailing list: mdt-xsd.dev

• M2* Transformations

• Eclipse NewsPortal - eclipse.modeling.m2t
• Mailing list: m2t-dev
• Eclipse NewsPortal - eclipse.modeling.m2m
• Mailing list: m2m-dev
• Mailing list: m2m-atl-dev

8 | Getting Started with Together DSL Toolkit

https://dev.eclipse.org/mailman/listinfo/platform-swt-dev
https://dev.eclipse.org/mailman/listinfo/platform-team-dev
https://dev.eclipse.org/mailman/listinfo/platform-text-dev
https://dev.eclipse.org/mailman/listinfo/platform-ua-dev
https://dev.eclipse.org/mailman/listinfo/platform-ui-dev
https://dev.eclipse.org/mailman/listinfo/platform-update-dev
https://dev.eclipse.org/mailman/listinfo/platform-webdav-dev
http://www.eclipse.org/newsportal/thread.php?group=eclipse.technology.emft
http://www.eclipse.org/newsportal/thread.php?group=eclipse.tools.emf
https://dev.eclipse.org/mailman/listinfo/emft-dev
https://dev.eclipse.org/mailman/listinfo/emf-dev
http://www.eclipse.org/newsportal/thread.php?group=eclipse.modeling.gmf
http://www.eclipse.org/newsportal/thread.php?group=eclipse.technology.gmf
https://dev.eclipse.org/mailman/listinfo/gmf-dev
http://www.eclipse.org/newsportal/thread.php?group=eclipse.modeling.mdt.eodm
http://www.eclipse.org/newsportal/thread.php?group=eclipse.modeling.mdt
http://www.eclipse.org/newsportal/thread.php?group=eclipse.modeling.mdt.ocl
http://www.eclipse.org/newsportal/thread.php?group=eclipse.modeling.mdt.uml2
http://www.eclipse.org/newsportal/thread.php?group=eclipse.modeling.mdt.uml2tools
http://www.eclipse.org/newsportal/thread.php?group=eclipse.modeling.mdt.xsd
https://dev.eclipse.org/mailman/listinfo/mdt.dev
https://dev.eclipse.org/mailman/listinfo/mdt-eodm.dev
https://dev.eclipse.org/mailman/listinfo/mdt-ocl.dev
https://dev.eclipse.org/mailman/listinfo/mdt-uml2.dev
https://dev.eclipse.org/mailman/listinfo/mdt-uml2tools.dev
https://dev.eclipse.org/mailman/listinfo/mdt-xsd.dev
http://www.eclipse.org/newsportal/thread.php?group=eclipse.modeling.m2t
https://dev.eclipse.org/mailman/listinfo/m2t-dev
http://www.eclipse.org/newsportal/thread.php?group=eclipse.modeling.m2m
https://dev.eclipse.org/mailman/listinfo/m2m-dev
https://dev.eclipse.org/mailman/listinfo/m2m-atl-dev

Concepts

Domain-Specific Languages
A domain-specific language (DSL) is designed to accomplish a specific task or type of task. A well-designed
DSL provides an environment that closely matches a task's specific needs. Domain experts can typically be
more effective because the DSL uses the vocabulary and concepts of the domain. As a result, domain experts
can more quickly build proper models without having to learn a different taxonomy because the models map
to the domain concepts. DSLs are typically designed at a high level of abstraction, such as process modeling,
and used to generate supporting software artifacts, such as source code and auxiliary text files.

The term language in this context can refer to both programming languages and modeling languages. Both
types of languages are built upon syntactic and semantic rules. In the context of DSLs, both types of languages
can be used. In fact, it is common for a DSL to include several languages for its various components. It might
use a modeling language for its models, a programming language for its implementation and a transformation
or template language to produce desired output.

General-purpose languages are designed to handle many different types of tasks. As such, they typically
provide generalized and extensible capabilities that are well-suited for many tasks. The Unified Modeling
Language (UML) is an example of a general-purpose modeling language.

Note: The UML can be seen as a collection of DSLs that include class modeling and activity modeling.
As a result, the UML is ideal for modeling parts of applications, such as class models or state machines.
At the same time, the UML can be confusing due to its sheer size and complexity, especially for those
who fail to understand the boundaries between those DSLs.

Related Topics

DSL Capabilities on page 11

DSL Toolkit Workflow on page 12

DSL Toolkit Usage Scenarios on page 18

DSL Toolkit Best Practices on page 14

Domain-Specific Modeling
By nature of their extensibility, some programming languages like LISP, Smalltalk and Ruby can be tailored
to provide a programming environment that matches the needs of particular types of tasks.This approach has
limitations because the resulting DSL, which Martin Fowler calls an internal DSL, is constrained by the features
and capabilities of the general-purpose programming language. The problem domain does not need many
capabilities that the general-purpose programming language provides. This makes the DSL more difficult to
learn and use.

An external DSL is written in a language other than the language the DSL itself uses. While their use has
certain advantages in text-based DSLs, external DSLs can cause difficulties in using and understanding the
DSL as well as extending or modifying the DSL when necessary. Potential disadvantages include the lack of
a proper semantic editor and the lack of debugging facilities.

Concepts | 9

The DSL Toolkit takes a model-centric approach to DSLs.This approach lets the Toolsmith focus on accurately
modeling the domain. The domain model is the longest-lived and most valuable part of the DSL. This
model-driven approach insulates the domain model from changes in the underlying technologies. As technologies
evolve, the domain model can be retargeted with alternate transformations and templates.

The model-driven approach offers the following advantages:

• Because the domain model uses the vocabulary of the domain and accurately captures the entities,
relationships, and rules, a single source can generate the rest of the DSL.

• Because the DSL is tightly coupled to the domain, a Practitioner can use the domain terminology and
concepts with ease.

• A necessary framework for data integrity on the technology side and high usability on the human side is
provided.

The success of any DSL depends on how easily its users can apply it.Text-based approaches require extreme
care during editing and provide little assistance in avoiding or detecting errors. The model-based approach of
the DSL Toolkit uses familiar concepts such as models and diagrams integrated into the already familiar Eclipse
workbench. The domain metamodel and Object Constraint Language (OCL) constraints help prevent errors.

DSL Toolkit
A well-designed DSL meets the specific needs and requirements of the domain while providing an environment
that is more concise and easier to use. Key benefits of a DSL include increased productivity, faster turnaround
time, and adherence to its own guidelines and constraints.

The DSL Toolkit provides such an environment in the Eclipse Modeling Framework (EMF), which is the standard
framework for models in the Eclipse platform. It includes a rich set of tools and technologies to manage models
and integrate them in the platform. DSL models use EMF and are used to capture the domain semantics in a
well-formed model complete with OCL constraints. This model-driven approach ensures the quality of the
model data and creates a more productive workflow.

DSLs involve the following two primarily roles:

• The Toolsmith creates the DSL.
• The Practitioner uses the DSL.

Elements of a DSL

Domain Model
The domain model provides the basis for the DSL. This model defines the syntax and semantics as well as
captures the domain taxonomy. The domain model is the metamodel. Instance models are derived from the
domain model and contain data.

Diagram
The DSL can provide an optional diagram that creates and edits instance models. This familiar diagramming
interface enables practitioners to easily and quickly create well-formed models.

10 | Concepts

Model Transformation
Model transformations can be used for a number of functions, including generating output models, modifying
existing models, and transforming model elements into another model's elements. Model transformations are
typically created using the Operational QVT transformation language.

Code Generation Template
A template language is often used to produce textual output. These templates are typically used to generate
source code or auxiliary deployment files.

Report
Reporting is an important part of any DSL. It is often required to visualize model data as text. The DSL Toolkit
contains features to help with generation of these reports.

UI contributions
A unique aspect of the DSL Toolkit is its deep integration into the Eclipse run time. The ability to extend the
workbench's menus demonstrates this integration and lets practitioners easily execute model transformations
and apply templates.

Conclusion
The DSL Toolkit provides the Toolsmith with a variety of tools to make Model-Driven Development (MDD) and
generative approaches easier. The Practitioner benefits from a native Eclipse run-time environment that is
immediately familiar and integrated into the platform.

Although the creation of a DSL requires time and effort, the return on this investment is a higher quality product
with fewer bugs because the DSL provides a constrained input model and generated artifacts. The DSL
eliminates the need to constantly debug and test the generated artifacts and can result in a time savings when
reused across multiple projects.

A DSL can include several components, including domain models that describe abstract and concrete syntaxes),
diagrams, transformations, reports, and templates. Several of these components are optional, depending on
the usage of the DSL.

DSL Capabilities
The DSL Toolkit within Together enables the development of a domain-specific language (DSL). The following
table identifies the capabilities that a Toolsmith uses to construct DSLs.

The DSL Toolkit supports the creation of new domain models as well as the importing
of existing ones. The Toolsmith uses the domain model editing features to capture
domain concepts and vocabulary within this model.

Domain modeling

Every Domain model uses the Eclipse Modeling Framework (EMF), which enables
compatibility across the Eclipse ecosystem.

Diagrams can be easily created for the domain model. As a result, diagrams provide
a standard, easy-to-use graphical interface for editing domain instance models.

Custom
diagramming

Concepts | 11

Common diagram features include the drawing surface, property inspectors, diagram
palette, and layout, which are generated automatically. More advanced features that
can be added programmatically include custom graphic elements and custom layout
algorithms.

The DSL Toolkit uses Operational QVT (Query/View/Transformation), which provides
a standard means to transform, modify and generate models.

Model
transformations

In addition to the QVT features provided by the open source M2M.QVT Eclipse Project
(such as the runtime engine and the editor with codesense and syntax highlight
functionality), the DSL Toolkit provides the Operational QVT Debugger, the
transformation creation wizard, and QVT refactoring and enhancements to the editor.

The Xpand template language primarily handles code generation, but JET is also
supported. The Xpand template language provides an easy and flexible means of
generating textual content, such as source code or auxiliary files.

Templates

Templates are the preferred approach to generating code. They provide flexibility and
portability far beyond handwritten Java. However, it might be prudent in some cases
to use Java for generation of certain artifacts because of existing code or possible
integration with a system requiring Java implementation.

Some simple DSLs accomplish their tasks with a single transformation or template.
More complex DSLs often require multiple steps to produce the desired outputs. For

Transformation
sequences

this reason, the DSL Toolkit provides the ability to apply multiple transformations and
templates in a sequence.

Figure galleries provide a simplified way to add custom figures or graphical elements
to diagrams. Reuse figure galleries across DSL projects.

Figure Galleries

DSLs can extend the Eclipse user interface. Common extensions, such as adding
items to a diagram's popup menu, are supported.

User interface
contributions

The DSL Toolkit generates some DSL actions to launch transformations or templates.
Other user interface contributions get added programmatically.

DSLs are deployed as Eclipse plug-ins, allowing users to install and manage DSLs
just like any other Eclipse plug-in.

DSL deployment

DSL Toolkit Workflow
This section describes the workflow of an end-to-end DSL development scenario. Some of the steps are
optional. At the core of a DSL is the domain model. It typically also provides custom diagrams, editors, model
transformations, diagram reports, code generation templates, and packaging for deployment.

• Domain-Specific Languages on page 9
• DSL Toolkit Usage Scenarios on page 18

12 | Concepts

Related Topics

Create DSL Project
The first step is to create a new DSL project. The New DSL Project wizard guides you through the basic
project settings and displays the DSL Editor. A DSL project contains the following artifacts that separately
implement the DSL:

• Domain models
• Diagrams
• Transformations
• Templates
• Reports

A DSL project also operates as the central hub for related, generated implementation projects. Alternatively,
you can import existing DSL projects into the workspace using File ➤ Import... ➤ Plug-in Development ➤
Import DSL Project from Platform from the main menu.The DSL Editor manages all the content and related
projects.

Domain Modeling
In the context of the DSL Toolkit, Toolsmiths use domain modeling to capture fundamental domain entities
and relationships. In this case, the metamodel is created and can be augmented with constraints to help ensure
model integrity. In fact, the output of domain modeling produces the most important part of the DSL. The
domain model provides the basis for all generated artifacts and is used to generate the interface for all model
transformations. The DSL Toolkit provides excellent tools for domain modeling. The Toolsmith can create new
domain models or import existing ones.

Object Constraint Language (OCL) constraints can optionally be added directly to the domain model's diagram.
Toolsmiths can then define rules for domain models to ensure data integrity. Additionally, OCL provides the
implementation for derived features and operation bodies.

Diagram Development
A DSL can use a diagram as the primary model editor.The DSL Toolkit visual diagram editor provides a unified
tool to create custom diagrams and work with diagram definitions. The diagram definition provides a standard
means to visualize a model and to control user interface (UI) controls on the diagram.The underlying technology
uses a collection of models to define the diagram.

The graphical definition model defines the nodes, links, and their corresponding visual attributes for a diagram.
The tooling definition model specifies the elements that are displayed on the diagram palette, creation tools,
and any contributed UI actions. The mapping definition model binds together the domain, graphical definition,
and tooling definition models. As a by-product of the these models, the generator model generates the code
to instantiate the DSL.

Note: While most DSLs can be depicted graphically, it is entirely possible to produce a DSL without a
diagram.

This step is optional.

Concepts | 13

Author Model Transformations
The DSL Toolkit can use Operational QVT transformations to generate, modify and transform models. Use
the provided QVT development environment (that includes QVT Debugger, refactoring and advanced editor)
to create and debug QVT transformations and libraries.

Create Code Generation Templates
DSLs typically produce textual content of some sort. Sometimes this content is source code, but it can also
be produced as text files, such as XML. The DSL Toolkit supports Xpand and JET templates for use in code
generation.

This step is optional.

Construct Transformation Sequence
Practitioners find transformation workflows useful in orchestrating the execution of several transformations,
including both model-to-model and model-to-text. Practitioners can save this set as an Ant script and even
attach it to a user interface action.

This step is optional.

Design DSL Report
The DSL Toolkit includes a report designer for domain models and diagrams that lets the Practitioner generate
reports of model content. These reports leverage the Eclipse BIRT reporting engine.

This step is optional.

Test DSL
While most testing can be done in the development workspace using dynamic instance models, the DSL Toolkit
provides a run-time environment in which you can test your DSL. The Eclipse runtime configuration replicates
the DSL run time for developer testing. More robust quality assurance uses replicated install images of the
end-user Eclipse environment. Familiar unit tests can be developed to provide automated testing of DSL
generated artifacts.

Deploy DSL
Because DSLs created by the DSL Toolkit are deployed as Eclipse plug-ins and wrapped by an optionally
generated feature, packaging and installation for DSLs is simplified.

DSL Toolkit Best Practices
DSL development crosscuts several software-development disciplines. This collection of best practices
concentrates on usage of the DSL Toolkit within Together. Best practices pertaining to metamodeling, modeling,
and DSL in general are available elsewhere.

14 | Concepts

Success with the DSL Toolkit typically depends on expertise with the following platform underlying technologies:

• Eclipse
• plug-in development
• Eclipse Modeling Framework (EMF)
• Graphical Modeling Framework (GMF)
• Eclipse Graphical Editing Framework (GEF)
• Creating a Dynamic Instance Model on page 29

General
Follow the best practices for base technologies such as EMF, GEF and GMF. Mastery of these technologies
is essential.

Naming Conventions
When applying naming conventions to your DSL projects, keep in mind the following guidelines:

• Prevent clashes in project names by inserting .dsl. between the organization segment and the domain
name. For example, when creating a DSL for a Mindmap application, the recommended DSL Project name
is com.borland.dsl.mindmap.This convention allows for the generation of a com.borland.mindmap
branding plug-in to correspond with a com.borland.mindmap-feature project.

• Use clear and consistent conventions for naming DSLs and their artifacts.
• The domain model name must be a noun that clearly describes the domain.
• Avoid changing the default file name extensions for DSL artifacts.
• Namespace URI (NS URI) must include the base package, year, and model name, such as

http://www.borland.com/2007/mindmap. Alternatively, you can use the version number instead of
the year value.

• Use unique, intelligible file extensions for DSL domain files. A good approach is to use the name of the
DSL as the extension, such as mindmap.

• Name model-to-model transformations by using <inputModel>2<outputModel>.qvto as a template, such
as Mindmap2XHTML.qvto.

• Append _diagram to the DSL name as the diagram file extension, such as mindmap_diagram.
• Regardless of the naming approach you choose, consistent naming practices make development easier.

Consistency makes it simpler to locate files, understand a particular file's usage, and help others use your
work.

You should use Java naming conventions for elements and attributes in domain models. For information on
Java naming conventions, see the information found at
http://java.sun.com/docs/codeconv/html/CodeConventions.doc8.html#367

For more information, visit the naming conventions found at http://wiki.eclipse.org/Naming_Conventions.

Project Artifacts
The DSL Toolkit leverages EMF but changes some of the default namings. For example, EMF by default
generates plug-in code to the same project where the model—that is, the *.ecore file—is found. The DSL
Project is intended to contain all artifacts and not be the generation target. Therefore, when you use domain
models in the DSL Toolkit, the default namespace for model code generation is the name of the DSL Project
with a .model suffix but without a .dsl. segment. For example, the DSL Project described previously for a

Concepts | 15

http://java.sun.com/docs/codeconv/html/CodeConventions.doc8.html#367
http://wiki.eclipse.org/Naming_Conventions

Mindmap application (com.borland.dsl.mindmap) has model code generated to
com.borland.mindmap.model. This guideline applies to generated diagram projects as well.

Use the DSL Editor Contents page to manage DSL artifacts, such as domain models, diagram definitions,
and report designs.

Domain Modeling
When working with domain models, keep in mind the following guidelines:

• Leverage existing models, when appropriate. Because XSD and EMF are popular technologies, and EMF
can import most XSDs, search for domain models that already exist before attempting to create a new one.
Also, consider publishing your domain model if you feel others might find it useful.

• Test and refine the domain model as you develope it. Create a dynamic instance, and edit the XMI file by
using the generated editor to avoid errors in the model syntax. Xpand templates, QVT transformations, and
Report templates can utilize dynamic instance models for design-time testing.

• Consider the structure of the domain model and how it maps to the wizard-automation features in the DSL
Toolkit.You can save yourself time and effort by using a structure similar to that provided in the mindmap
sample. For example, use a top-level node with 1..* containment links to diagram elements.You can use
other model structures as well.

• Modify your domain model to simplify working with templates, transformations, and diagram definitions.
Except when they use a model that cannot be altered, the Toolsmiths find it advantageous to make certain
design decisions in the domain model to suit the tooling rather than to create workarounds or write custom
code to use the tooling with a domain model.

Diagrams
When working with diagrams, keep in mind the following guidelines:

• In the mapping model, order matters, which is obvious in feature initializers but not so obvious in the case
of node labels. For example, if a node has two labels and the top one is a read-only stereotype label, the
default generated code does not enable the second node name label to be activated with the in-place editor
when the node is created on the diagram. Reverse the order of the label mappings to achieve the effect
you want.

• When working with complex figures, add a line border to see how layout and placement work.
• Compartments require the proper layout in the parent figure for proper visual appearance.The parent figure

must use a Flow Layout with vertical orientation and the force single-line option for compartments to be
displayed consistently with other UML Class nodes.

• Use the default size facet of a node element to give it the appropriate size upon creation. In the figure
definition, you can also set the maximum, minimum, and preferred sizes.

• Leverage known notations where possible.With the popularity of certain modeling notations, certain shapes
and figures already have meaning to a number of people. Also, try not to provide a diagram element when
it serves no purpose in recognition or semantic meaning for the model.Textual elements like external labels
might be the best means to provide the required information, and they do not always require a border.

• A phantom node leaves the Containment Feature blank for the top-level node and sets the Target Feature
of a Link Mapping to the containment reference for the node. In this manner, the node is stored properly
when linked but is displayed temporarily as a phantom node on the diagram until the link is made.

• To use a custom Scalable Vector Graphic (SVG) file as the graphic for a figure, set its type to CustomFigure
in gmfgraph and then add the code to the appropriate [figureName]EditPart.java file. Locate the
createNodeShape method and modify it to resemble the following code.

 /**

16 | Concepts

 * @generated NOT
 */
 protected IFigure createNodeShape() {
 URL url = FileLocator.find(BpmnDiagramEditorPlugin.getInstance()
 .getBundle(), new Path("images/circle.svg"), null); //$NON-NLS-1$
 return new ScalableImageFigure(RenderedImageFactory.getInstance(url),
 true, true, true);
 }

Model Transformations
When working with model transformations, keep in mind the following guidelines:

• You can facilitate certain mappings in QVT and template expressions by adding derived features or methods
to the domain model. For example, you can add some complex queries using OCL to the domain model
with code generated for their implementation at run time. Making a feature available in a model simplifies
transformations and the templates that access them.

• Use enumerations instead of improvised keywords. To reduce the chance of user input errors, base
transformation or generation logic on constrained input values.

• Consider using incremental model-to-model transformations instead of complex, one-step code generation.
Transforming input models to intermediate models can reduce the overall complexity of DSL transformation
sets.

• Use QVT libraries for common queries and simple mappings.
• When a model's URI is passed as an argument to the transformation, the QVT engine takes into account

any URI mappings. Define these mappings by choosing either Project ➤ Properties ➤ DSL Toolkit ➤
URI Mappings or Window ➤ Preferences ➤ DSL Toolkit ➤ URI Mappings. Evaluate the QVT script by
using the Evaluate context menu option in the Transformation Sequence section of the DSL Editor's
Transformations tab. With a successful evaluation, the QVT script can operate with metamodels that use
logical URIs defined in the project's URI mappings.

• Leverage the extensibility options of Xpand to allow for the easy modification or enhancement of your
templates. By adding placeholder DEFINE elements for select extensibility points, a Toolsmith later can
use the AROUND element to leverage Xpand's aspect-oriented capabilities.

Figure Galleries
Use figure galleries for common, reusable diagram-element-notation definitions.

Consider using the gmfgraph definitions included with the Eclipse UML2 diagrams.

URI Mappings
If your domain model uses or extends elements from another model, referencing that model in the URI Mappings
field of the Domain Model Editor is essential to managing workspace configuration issues and discrepancies
that could otherwise arise. This field maps the URIs of resources rather than the URIs of model elements.

Related Topics

Common URIs on page 78

Concepts | 17

DSL Toolkit Usage Scenarios
The DSL Toolkit within Together enables the development of a domain-specific language (DSL). This section
describes common usage scenarios for a Toolsmith who uses the DSL Toolkit features.

Given the broad definitions for DSL, these scenarios omit several legitimate usage models that the Toolsmith
often uses. This section does not include scenarios that involve creating profiles for the UML, developing
internal DSLs, or extending development tools.

Related Topics

Complete DSL Development
In some domains, DSLs provide an entire solution and operate standalone. As a result, the DSL provides all
the following components of a DSL:

• Domain model
• Model transformations
• Reports
• Code generation templates

An example of DSL development is a process definition DSL that includes a process model, process diagram,
and code generation.

You could deploy this type of DSL as an Eclipse Rich Client Platform (RCP) application.

DSLs can be deployed as Eclipse plug-ins to extend the standard workbench. However, it might be advantageous
to deploy a smaller application with fewer features than the standard Eclipse workbench installation. In these
cases, the DSL may be deployed as an Eclipse Rich Client Platform (RCP) application.This approach deploys
only the essential features and functionality.

DSL as Part of a Larger Application Framework
In many solutions a DSL is combined with more traditional approaches. Many examples of small DSLs exist
within larger frameworks, such as Enterprise Java Beans (EJBs) deployment descriptors. In this example, the
EJB deployment descriptor provides a simple means to describe how to deploy the EJB. The development of
application features requires more traditional software code.

This scenario often leverages build automation technologies, such as Apache Ant, but can also be a manual
workflow.

A simplistic version of this scenario is the addition of a custom diagram to an existing domain model.

You can use a DSL in the context of a workflow (for example, a model-to-model transformation can be followed
by a model-to-text transformation). In addition, you can use the DSL Toolkit in a manner in which both types
of transformations are used for activities like integration, export and import, and codegeneration. Use workflow
scripts to orchestrate everything.

18 | Concepts

Create Model Transformations for Existing Domain Models
Using the import features of the DSL Toolkit, you can import existing models and author model-to-model
transformations.This scenario uses only a subset of features but leverages the authoring, debugging, packaging
and deployment capabilities.

Note: This approach can also use the transformation projects available in Together.

Diagram definition
If a domain model already exists, you can define a diagram for the domain model and deploy it for the
practitioner.

Text generation

Create code generation templates
This scenario is similar to the previous one. Code generation templates are developed and applied to the input
model.

Note: This approach can leverage the model-to-text transformations in Together.

Provide reporting capabilities
You can augment a domain model with reporting capabilities. This is actually a model-to-text transformation.

Special Considerations for C# Projects
The Together C# code-generation feature is a first-of-its-kind component of the DSL Blueprint that lets customers
experience out-of-the-box functionality without having to rely on a Toolsmith. C# code generation is a basic
model-to-text (M2T) transformation that uses a QVT script and Xpand engine functionality, including
customizeable templates.

• Generating C# Code on page 31

Related Topics

Project configuration issues
The Xpand template that is used for C# code generation is deployed as part of the
com.borland.dsl.csharp.codegen plug-in. Do not make any changes to it.

The following two options of C# code generation are configurable:

• File placement
• Code formatting

Concepts | 19

Use the lesser general public license (LGPL) C# parser provided by the LLK open source parser generator to
format code.

Note: If the code returns errors from a file that has been modified, the parser does not produce an abstract
syntax tree (AST) and merge. Problems with error recovery are also possible.

This parser provides a merging capability. If an AST is successfully produced for both old and new code,
merging starts. Merging replaces all nodes—including namespaces, classifiers, members, and accessors—from
the previous version of the file that have the <generated/> tag with generated nodes that have the same
signature.The parser analyzes all nodes with the <generated/> signature for merging. If no <generated/>
tag in the node's documentation comment exists, the node and its children remain unchanged even if the
generator can create a replacement for it with the same ID.

Common Workarounds
Users who generate C# code might encounter the following problems:

• When C# code is generated into workspace resources but the generated files are edited with an external
tool, the Eclipse internal file system can potentially fail to register those changes, and the merge completes
with inappropriate data. Workaround: Press the refresh action F5 key to explicitly refresh your workspace
resources.

• The parser registers user changes as inappropriate and fails to parse the previously generated file.
Workaround: Manually replace the file's content with the newly generated content.

20 | Concepts

Procedures

Creating a DSL Toolkit Project
To create a new DSL Toolkit project

1. Choose File ➤ New ➤ Project... from the main menu. After the New Project window opens, expand the
DSL Toolkit node and select DSL Project. Click Next.

The New DSL Project wizard opens.

2. Specify the project name and click Next.

Note: To adjust the default project location settings, uncheck Use default location and select the
appropriate project location.To change the default project file name, uncheck Use default DSL Project
file name and type the appropriate project file name.This file name should end with a .dsl extension.

3. Review the Project Settings. Typically, you specify the Branding provider with your company URL in
reverse, such as com.borland.You can modify the project setting defaults in the DSL Toolkit preferences
by choosing Window ➤ Preferences ➤ DSL Toolkit ➤ Project Editor. If no default package prefix is
specified in the DSL Toolkit preferences and the project name does not contain any periods (.), org.eclipse
is used as the default base package prefix. A Create Plug-in project option is available and checked by
default.You can even convert nonplug-in projects by using a Convert to Plug-in project context menu
option.

4. To create a new domain model or import an existing one, click Next. Select Domain Model to create a
new model. Select Import Domain Model to import an existing ecore or genmodel file. Review the subtasks
later for documentation about creating or importing domain models.

5. Click Finish to create the project.

The DSL Editor opens.

Related Topics

DSL Editor on page 44

DSL Explorer View on page 66

Domain-Specific Language Preferences on page 81

Creating a Domain Model on page 21

DSL Toolkit Best Practices on page 14

Creating a Domain Model
To create a Domain Model

1. Create a DSL project.

Procedures | 21

2. Open the DSL Editor.

Within the Getting Started group, click the Domain Model link.

Note: Alternatively, you can open the DSL Explorer, right-click the project root, and choose New ➤
Domain Model from the context menu.

The Domain Model Creation wizard opens.

3. Choose Create new Domain Model and click Next.

The Domain Model Properties screen opens.

4. Enter properties for the Domain Model.

Note: Specify the domain name in lowercase letters, such as mindmap, for the Model name field.
Specify the Base package by commonly reversing the URL of your organization, such as com.borland.
Using a format such as http://www.borland.com/2007/mindmap, indicate the Uniform Resource
Identifier (URI) in the Namespace URI field. By appending the domain model name to the base package,
such as com.borland.mindmap.model, supply a Plug-in ID.

5. Click Finish to create the Domain Model.

The Domain Editor opens.

Tip: If you decide to use artifacts from another project, import the appropriate model from the project
development environment (PDE) platform.

Related Topics

Importing Models from the PDE Platform on page 38

DSL Explorer View on page 66

DSL Toolkit Best Practices on page 14

Importing an Existing Domain Model

1. On the Artifacts screen of the New DSL Project wizard, check the Create artifact in new DSL Project
check box and select Import Domain Model from the Available artifacts field. Click Next.

2. On the Domain Model screen, specify the domain name in lowercase letters, such as mindmap, for the
Model name field. The location of the model is listed for your reference but is read-only. Uncheck Use
default file name to make changes to the default model properties.You can modify the file name but leave
its extension as .domain.

Click Next.

3. Select the model to import.

Note: The Errors button becomes enabled if the selected model causes any validation errors. These
errors might indicate missing model references, among other things. It is possible to import the model
anyway by checking Ignore errors. However, you might need to add the missing models later in the
DSL Editor.

4. Click Next.

22 | Procedures

5. Select the model element that will function as the top-level node in the domain model.

6. Click Finish.

The Domain Editor opens.

Note: To open DSL Editor, locate the DSL file in the DSL Explorer view. Double-click to open the
editor.

Loading a Model from a PDE Platform

1. After you create a model like an Ecore model, deploy the model as a plug-in and add the plug-in to the
target platform.

2. Configure the PDE platform with any additional plug-ins or other dependencies to match the target platform.
Plug-ins can be grouped by location or name.

3. Before importing the plug-in, uncheck the Use generation model checkbox.

In doing so, you avoid warnings about missing genmodels from the Domain Editor if you did not use a
genmodel when the plug-in was created.

4. To address plug-ins from the target platform when loading the original model, specify a target:/plugin/
URI scheme in the Model URI: field.

This scheme is similar to the platform:/plugin scheme except that an instance set up with the target
platform gets looked up for plug-ins rather than a running Eclipse instance looking up plug-ins.

5. Click OK.

After you load the model by choosing Load Resource... from the context menu, the model is available for
tasks, such as creating shortcuts. After a dependency shortcut has been created, the model for the second
subsystem can use concepts and elements from the original model.

6. Replace all configuration-specific URIs with unique URIs to avoid referencing problems caused by URIs
that reflect different environments.

For example, NsURI is a good choice for Ecore models.You might need to establish other URI conventions
for other types of models, such as platform:/plugin/, which works well for the deployed model. Any
unique string that lets a client map to the correct URI is appropriate.

7. Configure URI Mappings by substituting the Resource mapping with the Actual URI.

The Actual URI points to the model from the target platform configuration.

8. Click Save.

Related Topics

Creating a DSL Toolkit Project
To create a new DSL Toolkit project

Procedures | 23

1. Choose File ➤ New ➤ Project... from the main menu. After the New Project window opens, expand the
DSL Toolkit node and select DSL Project. Click Next.

The New DSL Project wizard opens.

2. Specify the project name and click Next.

Note: To adjust the default project location settings, uncheck Use default location and select the
appropriate project location.To change the default project file name, uncheck Use default DSL Project
file name and type the appropriate project file name.This file name should end with a .dsl extension.

3. Review the Project Settings. Typically, you specify the Branding provider with your company URL in
reverse, such as com.borland.You can modify the project setting defaults in the DSL Toolkit preferences
by choosing Window ➤ Preferences ➤ DSL Toolkit ➤ Project Editor. If no default package prefix is
specified in the DSL Toolkit preferences and the project name does not contain any periods (.), org.eclipse
is used as the default base package prefix. A Create Plug-in project option is available and checked by
default.You can even convert nonplug-in projects by using a Convert to Plug-in project context menu
option.

4. To create a new domain model or import an existing one, click Next. Select Domain Model to create a
new model. Select Import Domain Model to import an existing ecore or genmodel file. Review the subtasks
later for documentation about creating or importing domain models.

5. Click Finish to create the project.

The DSL Editor opens.

Related Topics

DSL Editor on page 44

DSL Explorer View on page 66

Domain-Specific Language Preferences on page 81

Creating a Domain Model on page 21

DSL Toolkit Best Practices on page 14

Adding Database Persistence Support
The following procedure is one method of adding database persistence support for your Domain Model project.

Note: For more information on using Hibernate facilities, see http://www.hibernate.org/5.html#A7

To download Teneo and Hibernate

1. Download Teneo from the download page at the
http://www.eclipse.org/modeling/emf/downloads/?project=teneo Web site.

2. Download the following Hibernate libraries:

• hibernate-annotations-..*.GA.tar.gz

• hibernate-..*.ga.zip

• hibernate-entitymanager-..*.GA.tar.gz

3. Install Teneo from the location that you downloaded it.

24 | Procedures

http://www.hibernate.org/5.html#A7
http://www.eclipse.org/modeling/emf/downloads/?project=teneo

4. In Together, create a new plug-in project by choosing New ➤ Project... ➤ Plug-in Development ➤ Plug-in
from existing JAR archives.

For example, the project can be named HBs and contain the following files:

• hibernate3.jar

• hibernate-annotations.jar

• hibernate-entitymanager.jar

• any required JAR files from the hibernate*/lib directory
• JDBC driver

5. In the project folder, add the following text to the manifest.mf file:

Eclipse-BuddyPolicy: dependent

Related Topics

To add database persistence support manually

1. On the Overview page of the Domain Editor, check the Edit and Editor check boxes and click Generate
to generate your model.

2. Add the following text to your project's plugin.xml file:

<extension
 point="org.eclipse.emf.ecore.extension_parser">
 <parser

class="org.eclipse.emf.teneo.hibernate.resource.HibernateResourceFactory"
 type="file_extension">
 </parser>
</extension>

3. Add the following text to the manifest.mf file:

 org.eclipse.emf.teneo.hibernate;bundle-version="0.8.0",
 org.eclipse.emf.ecore.xmi;visibility:=reexport,
 HBs;bundle-version="1.0.0";visibility:=reexport

To add database persistence support using the Domain Editor

1. On the Advanced page of the Domain Editor, check the Use dynamic templates check box.

2. Check the Use advanced templates check box.

3. In the Project with Hibernate libraries: field, specify your Hibernate project name.

4. Click Populate templates....

5. On the Overview page of the Domain Editor, check the Editor check box and click Generate.

To connect to the database

Procedures | 25

1. The practitioner must start a new instance and create an EHB file with the following content:

#Example (for MySQL):
name=test4teneo
nsuri=http://www.example.org/2008/test4teneo
editorextension=test4teneo
dbname=dsldomain
database should exist
dburl=jdbc:mysql://127.0.0.1:3306/dsldomain
dbdialect=org.hibernate.dialect.MySQLInnoDBDialect
dbuser=user
dbpassword=pass
dbdriver=com.mysql.jdbc.Driver

2. Right-click the EHB file you created and choose Teneo ➤ Open resource.

The opened editor will be empty because the database does not contain elements.

3. Using the New Model wizard, select the root metaclass.

Related Topics

Domain Model Editor on page 49

Creating a DSL Diagram Definition
To create a DSL Diagram Definition

1. Open an existing DSL project.

2. Open the DSL Editor.

Within the Getting Started group, click the Diagram Definition link.

Note: Alternatively, you can open the DSL Explorer, right-click the project root, and choose New ➤
Other.... Expand the DSL Toolkit node in the tree view list, select Diagram Definition, and then click
Next.

The Diagram Definition page opens.

3. Edit the model name and location as necessary. Uncheck the Use default location check box to enable
editing of the location. Similarly, uncheck the Use default file name check box to edit the file name. In
most cases, use the default values. Click Next.

The Source Model screen opens.

Note: Because the list of models is loaded asynchronously to increase wizard responsiveness, all
models might not be readily viewable.

4. You can choose from ECORE, DOMAIN, and GMFMAP models. Of these, only DOMAIN models inherently
reference GenModel files, in which case you can continue with the next step. For ECORE and GMFMAP
models, you can specify the GenModel file by selecting the model and clicking Next to access the Domain
Genmodel page.

Tip: In cases when the GenModel file is out of sync with the model, the wizard can fail to produce a
GMFGEN model. Check the Reload check box on the Domain Genmodel page to ensure that the
GenModel file is not stale.

26 | Procedures

5. Select the source model and click Next.

Note: In most cases, select the main domain model associated with the DSL. However, it is possible
to create the diagram definition for any model in the workspace and those models that are deployed
to the Eclipse installation.

Note: The Errors button becomes enabled if the selected model causes any validation errors. These
errors might indicate missing model references, among other things. It is possible to import the model
anyway by checking Ignore errors. However, you might need to add the missing models later in the
DSL Editor.

The Graphical and Tooling Definition Models screen opens.

6. Use the Add and Remove buttons to manage available figure galleries. Adjust the Canvas and Palette
selections as necessary.

Click Next

The Diagram element screen opens.

7. Select the top-level element for the diagram canvas. The canvas typically maps to the domain model's
EClass root element, which should contain all instances of EClasses present on the diagram, directly or
indirectly.

Click Next.

The Diagram structure screen opens.

8. Configure the diagram structural elements by declaring that an element is either a Node, Link, or Label.

Although the wizard makes these initial selections, review them and change them as necessary.You can
restore the wizard's initial selections by clicking the Defaults button.

Typically, leave the Diagram Element as Create... unless you need to assign a previously added figure
gallery to the figure. The Creation Tool specifies whether the element will be displayed on the diagram's
palette.

Note: In the list box, enable only those model elements that you want visually displayed on the diagram.
Even if they are not enabled here, all model attributes are available in the Properties view. These
check boxes enable visualization on the diagram.

Note: If an existing diagram canvas was chosen, all model elements and the palette must map to the
existing diagram elements and palette. A GMFGRAPH model is not created in this case.

9. Click Finish to create the diagram definition.

The Diagram Editor opens.

Related Topics

Creating a Figure Gallery on page 28

Printing DSL Toolkit Diagrams on page 28

Diagram Definition Editor on page 56

DSL Explorer View on page 66

Procedures | 27

Generating the Composite Editor
To generate the Composite Editor

1. In the DSL Editor, open up the Contents page of your .dsl project.

2. Select your diagram listed under the Diagrams tab.The Generate Composite Editor check box is displayed
to the right.

3. Click the Generate Composite Editor check box.

A combined editor is generated into your DSL project, which is defined in the Project Editor.The Composite
Editor has two pages. The first page graphically displays a synchronized diagram of the root element. The
second page displays a tree-view EMF editor.You can use both to make simultaneous modifications to
your topic map.

Note: The Composite Editor is registered on all files that have your model's extension. The combined
editor expects the diagram file to have the same name and diagram extension as the model file. If the
diagram file is not found near the model file, the Composite Editor creates the diagram file.

Related Topics

DSL Editor on page 44

Printing DSL Toolkit Diagrams
• To print from Windows, make sure that the org.eclipse.gmf.runtime.common.ui.printing.win32 plug-in

is installed.
• To print from Together, make sure that the Printing Enabled option on the Advanced page of the diagram

editor is selected.
• To print from GMF, make sure that the printingEnabled property of GenPlugin is set to true and that

diagram code is regenerated.

Note: The Java print library cannot update the standard printer settings. If necessary, set the paper and
orientation settings to match the Together Print Preferences.

Related Topics

Creating a DSL Diagram Definition on page 26

Creating a Figure Gallery on page 28

DSL Explorer View on page 66

Creating a Figure Gallery
To create a figure gallery

1. Open an existing DSL project.

28 | Procedures

2. Open the DSL Explorer, right-click the project root, and choose New ➤ Other....

Expand the DSL Toolkit node in the tree view list, select Figure Gallery, and then click Next.

The Figure Gallery wizard opens.

3. Type a name for the figure gallery in Model name.

Verify the path in Location.

Uncheck Use default location to edit Location.

Uncheck Use default file name if you want to use alternative names.

4. Click Finish.

The Figure Gallery editor opens.

Related Topics

Diagram Definition Editor on page 56

DSL Explorer View on page 66

Figure Gallery Editor on page 71

Creating a Dynamic Instance Model
To create a dynamic instance model

1. Open an existing domain model.

2. Open the Domain model editor.

Within the Diagram page, locate the top-level class in the domain model. Right-click that class and choose
Create Dynamic Instance.

The Dynamic Model wizard opens. Enter an appropriate name and choose the location for the XMI file.

The XMI editor opens.

Tip: Within the XMI editor, you can create instance models with sample data. Instance models can
be very useful in developing DSLs.

Note: Creating a dynamic instance is useful when developing a DSL because it contains sample model
data for use when developing reports, templates and transformations. It is an XMI file derived from the
domain model.

Related Topics

Domain Model Editor on page 49

Domain-Specific Language Glossary on page 89

Procedures | 29

Creating a DSL Transformation
To create a DSL Transformation

1. Open an existing DSL project.

2. Open the DSL Editor.

Within the Getting Started group, click the Model transformation link.

Note: Alternatively, you can open the DSL Explorer, right-click the project root and choose New ➤
Transformation.

The New Operational QVT Transformation wizard opens.

3. Ensure Source container is set to the proper location.

If you choose to, type a value for Namespace.

Type a name for the transformation in Module Name.

Typically, a transformation has one input model parameter and one output model parameter, although
Operational QVT allows any number of input, output, and inout models for transformation.

4. Click the Add button. Set Direction as inout or in.

Edit Name.

Click the button in Metamodel and select the appropriate input models.

Select the Entry point type to the desired type.

Tip: You can type the first letters of the metamodel and the Entry point names and press Ctrl-Space
to use the code completion feature.

5. Click the Add button.

Leave Direction as out.

Edit Name.

Click the button in Metamodel and select the appropriate output models. Select the Entry point type to
the desired type.

Tip: Use Move up and Move down to add more models and adjust their order. Review the
Transformation signature preview.

6. Click Next.

The Import metamodels screen opens.

7. Select the additional metamodels to import and click Next.

The Import libraries page opens.

8. Select the additional libraries or transformations to import and click Next.

The Initial mapping operations screen opens.

9. Create initial mappings as desired and click Finish.

The QVT Editor opens.

30 | Procedures

Note: Manually register shared metamodels when they are imported to avoid losing registration information.

Related Topics

Manually Registering a Metamodel for Use with QVT (Together Modeling Guide)
DSL Editor on page 44

DSL Explorer View on page 66

QVT Operational Developer Guide

Generating C# Code
You can transform a UML model into a C# model and generate C# code from the transformation. The cheat
sheets provided with Together include an example of how to generate C# code from a model.

To access the C# cheat sheet

1. On the main menu, click Help ➤ Cheat Sheets....

2. Expand the Together C# modeling node.

3. Select Generate C# code from model and click OK.

Related Topics

Special Considerations for C# Projects on page 19

Creating a DSL Transformation Library
To create a DSL Transformation Library

1. Choose File ➤ New ➤ Other... from the main menu.

Expand the DSL Toolkit node in the tree view list, select QVT Library, and then click Next.

The New Operational QVT Library wizard opens.

2. Ensure Source container is set to the appropriate location.

If you choose to, type a value for Namespace. Type a name for the library in Module Name.

Click the Next button.

The Import metamodels screen displays.

3. Select the additional metamodels to import and click Next.

The Import libraries screen opens.

4. Select the additional libraries or transformations to import and click Finish.

The QVT Editor opens with the library declaration and imported members.

Procedures | 31

/help/topic/com.togethersoft.togetherxj.doc.user_togetherxj/html/qvtregmetamodel.htm
/help/topic/org.eclipse.m2m.qvt.oml.doc/references/overview.html

Related Topics

DSL Editor on page 44

QVT Operational Developer Guide

Creating a DSL Template
To create a DSL template (model-to-text transformation)

1. Open an existing DSL project.

2. Open the DSL Editor.

Navigate to the Transformations page and expand Template Collections.

Note: Alternatively, you can open the DSL Explorer, right-click the project root and choose New ➤
Other.... Expand the DSL Toolkit node in the tree view list, select Xpand Template, and then click
Next. The New Xpand Template wizard opens.

3. Click Template Collection.

Type a name and click OK.

4. Click Xpand Template.

You might need to expand the new template collection node. Double-click the new template file to open its
editor.

Note: It is also possible to create a JET template.

Related Topics

JET Tutorial Part 1 (Introduction to JET)
DSL Editor on page 44

DSL Explorer View on page 66

Xpand Language Guide on page 79

Creating a DSL Transformation Workflow
To create a DSL Transformation Workflow

1. Open or create a DSL project.

2. In the DSL Editor, navigate to the Transformations page and expand the Workflows section.

3. Click New.... In the wizard dialog, accept the default Script Model name or provide an alternate.You can
optionally change the location and file name.

Note: The Workflow Editor has both a Diagram and a Workflow page for defining execution scripts.
Both offer the same creating and editing capabilities, although the Diagram page is graphical and

32 | Procedures

/help/topic/org.eclipse.m2m.qvt.oml.doc/references/overview_con.html
/help/topic/org.eclipse.emf.doc/tutorials/jet1/jet_tutorial1.html

might be easier to work with.The palette groups on the diagram correspond similarly to the items found
within each combo box grouping on the form editor.

4. Set up shared elements—that is, template roots—in addition to inputs, outputs, and transformations to
define a transformation sequence.

Note: The text fields in the property pages of shared elements support clipboard actions, including
Ctrl-C and Ctrl-Insert for copying, Ctrl-X and Shift-Delete for cutting, and Ctrl-V and Shift-Insert
for pasting.

Related Topics

DSL Editor on page 44

Creating a DSL Transformation on page 30

Creating a DSL Template on page 32

Declaring Shared Elements for a DSL Transformation
Workflow

1. Create a new Template Root by selecting the script root element on the Workflow page and then an
element under the Shared Elements combo box on the form. Alternatively, select a tool in the Shared
Elements palette group on the Diagram page.

Note: For more advanced scenarios, use the query-based (QVTO or OCL) template roots and
class-loader context options available in the shared elements category. A simple selection of a declared
template root usually suffices for workflow definition.

2. Click Pick... to choose a template root that has been already declared in the project.

Note: By specifying the name of the template root, you enable the translation of this location into the
appropriate platform:/ URI when the transformation script is executed.You can also specify a full
platform:/resource or platform:/plugin URI.

Specifying an Input for a DSL Transformation Workflow
Specifying an input

1. If you are using the form editor, select the script root element.

2. If you are using a file that has a known location at execution time, create a Resource input or specify a full
URI.

Note: If you specify a selected file in the workspace as an input, create the Context element and
accept the default Selection option.

Procedures | 33

Related Topics

Configuring an Xpand Invocation

1. Select the script root element using the form editor.

2. In the Invocation group, select the Xpand element. Input and Output elements are also created.

3. Select the template root shared element that you created previously.

4. Click Pick... to select the domain model, and select DEFINE from the Choose template field.

5. In the Diagram page, use the Input link tool to allow the Xpand Template element's input pin to be connected
to its input. For deployments, you can use the Selection Context input that you created previously. A
Resource input is useful in local testing.

6. Next to the input selection, check the Chain check box.

7. Type the correct Imperative OCL statement in Expression, such as self->first(), to select the root
element of the input model.

8. Select the Output pin if you are using the diagram. Set the Regular file Name property to an appropriate
file name and extension.

Note: An OCL expression can be used to form complex output paths, which typically use the
platform:/ URI scheme. In the case of multiple input elements, as determined by the input query,
multiple outputs can be generated, which likely means that you need to express a model property or
counter in the output path.

Configuring a QVT Invocation

1. Select the script root element using the form editor.

2. In the Invocation group, select the QVT element. Input and Output elements are also created.

3. Click Browse to select the transformation QVTO file.

Note: In the Transformation field, use a project-relative path so that this location can be translated
into the appropriate platform:/ URI scheme when the transformation script is executed. Alternatively,
specify any valid URI. By default, the path takes the form transformations/<myscript>.qvto,
where <myscript> is the name of the QVT script file.

4. In the Diagram page, use the Input link tool to allow the QVT element's input pin to be connected to its
input. For deployments, you can use the Selection Context input that you created previously. A Resource
input is useful in local testing.

5. Next to the input selection, check the Chain check box. When you use the Diagram view, select the input
pin in order to view these properties.

6. Type the correct Imperative OCL statement in Expression, such as self->first(), to select the root
element of the input model.

7. Select the Output pin, if you are using the diagram.

34 | Procedures

Set the Regular file Name property to an appropriate file name and extension.

Note: An OCL expression can be used to form complex output paths, which typically use the
platform:/ URI scheme.

Related Topics

Validating a Workflow

1. On the Workflow page, select the root of the script in the list box.

2. Right-click the root of the script in the list box and choose Validate.

3. Fix any errors so that you can achieve a clear validation before proceeding.

Evaluating a Transformation Sequence

1. On the Workflow page, select the root of the script in the list box.

2. Right-click the root of the script in the list box and choose Evaluate.

Note: For convenience, use Evaluate with a local dynamic instance model as a Resource input when
developing workflows. Replace the local resource with a Selection Context before generating and
deploying the script.

Related Topics

Generating an Ant Script for a Transformation Sequence

1. On the Workflow page, select the root of the script in the list box.

2. Right-click the root of the script in the list box and choose Generate Ant Script. This creates an Ant
build.xml file in the workspace.You can run the Ant script locally, or the Practitioner can deploy it for
execution.

Note: You can choose between Ant and Java to execute your workflow scripts. Both are available
when defining script invocation UI contributions in the DSL Editor.

Creating a DSL Report
To create a report for your domain model, you need to create a plugin project using existing DSL Report
Example template

Procedures | 35

1. Create a new plug-in project. (Click File > New > Project, and choose Plug-in Project,and then click Next.)

2. On the Plug-in Project page, specify the name for your project , and check the box for Create a Java
Project (this should be the default). Leave the other settings on the page with their default settings, and
then click Next to accept the default plug-in project structure.

3. On the Plug-in Content page, make sure that Generate an activator... and This plug-in will make
contributions to the UI boxes are checked (this should be the default). Click Next.

4. On the Templates page, check the box for Create a plug-in using one of the templates. Then select the
DSL Report Example template and then click Next.

5. On the DSL Repoirt Example Generator page, specify the required report properties:

• is the name for the report.Report Name

is the domain model for the report.Input Model

is the instance model's file extension.Typically, this value remains
as the default value.

Model File Extension

is the root element of the report.Master Element

is chosen among EString properties of metaclass specified as
master element.

Master Name

are chosen from master element children.Child Elements

is chosen among EString properties of metaclass specified as
child element.

Child Name

is the URI of the input model instance.Instance URI

Note that all fields are required except for Instance URI; it can be omitted, but specifying it will help to design
the report because it includes sample model data.

The plugin generates a stub report (model_report.rptdesign) for the domain model and registers an
action on files with extension specified as Model File extension that runs the report; generated stub can
be opened in BIRT report editor and modified appropriately. See BIRT Report Developer Guide for more info.
Note that DSL Toolkit adds EMF Datasource to the list of BIRT datasources, making report designing for emf
models easier.

Note that the steps above can better be made a cheatsheet, in this case the procedure should just reference
the corresponding cheatsheet; existing models like CSharp can be used as example.

Related Topics

DSL Explorer View on page 66

Creating a Textual Notation for Your Domain Model

1. Open your domain model.

2. From the main menu, choose File ➤ New ➤ Other.
The Select a wizard page appears.

3. Under the DSL Toolkit node, select the Textual notation wizard and click Next.
The Textual Notation page appears.

4. Type a location and name for your notation, or accept the default values, and click Next.

36 | Procedures

The Source Model page appears.

5. Select the existing Genmodel or Domain and click Next.
The GenPackage page appears.

6. Select the main genpackage and click Finish.
A <modelname>.tnt file opens in your workspace.

7. As necessary, adjust the settings on the Textual Notation editor's Overview, Language, Advanced, and
Text pages.

8. On the Overview page, click Generate.
A console appears displaying a log of the generation results, including all conflicts that need to be resolved.
A generated plugin will also be listed in your Package Explorer window.

9. In the Console view, ensure that no conflicts occurred:

........
 [exec] Number of Shift-Reduce conflicts: 0
 [exec] Number of Reduce-Reduce conflicts: 0
 [exec] Number of Keyword/Identifier Shift conflicts: 0
 [exec] Number of Keyword/Identifier Shift-Reduce conflicts: 0
 [exec] Number of Keyword/Identifier Reduce-Reduce conflicts: 0
.......

Importing a Figure Gallery
To import a figure gallery

1. Open an existing DSL project.

2. Choose File ➤ New ➤ Other....

Expand the DSL Toolkit node in the tree view list, select Import Figure Gallery, and then click Next.

The Figure Gallery wizard opens.

3. Type a name for the figure gallery in Model name.

Verify the path in Location.

Uncheck Use default location to edit Location.

Uncheck Use default file name if you want to use alternative names.

4. Click Next.

The Canvas page opens.

5. Select the figure gallery to import.

Choose the diagram canvas, and click Finish.

The Figure Gallery editor opens. The linked gmfgraph models are included on the Tree page.

Related Topics

Figure Gallery Editor on page 71

DSL Artifacts on page 85

Procedures | 37

Importing DSL Projects from an Existing Platform
Together provides a wizard that allows you to import other DSL projects from an existing platform into your
workspace.

To import a DSL project from an existing platform

1. From the Together main menu, select File ➤ Import....

2. In the Import dialog, select the Import DSL Project from platform under the Plug-in development node.

3. The Plug-ins and Fragments Found field displays all available DSL projects in the platform.

• Select the projects you want to import into your workspace and click Add.
• To add all available projects, click Add All.
• To delete projects you have already added, select those projects in the Plug-ins and Fragments to

Import field and click Remove or Remove All.
• Select a project in each field and click Swap to switch their places in one step.
• Click Required Plug-ins to populate the Plug-ins and Fragments to Import field with generated

projects associated with selected DSLs.

4. Filter the list in the Plug-ins and Fragments Found field further by optionally selecting the check box next
to the following options, all of which are enabled by default:

• Include fragments when computing required plug-ins
• Show latest version of plug-ins only
• Show DSL-related plug-ins only

5. Click Finish.

Related Topics

Importing Models from the PDE Platform on page 38

Importing Models from the PDE Platform
In some cases, users on a project might want to make use of artifacts from another project. To do so, those
artifacts must be imported.

To import a model from the project development environment (PDE) platform

1. Select the model with the artifacts you want to import.

2. Making sure that all model files—including all the files in the META-INF and model folders—are selected
to be included in the binary build, deploy the model as an Eclipse plug-in. For example, choose Export ➤
Deployable plug-ins and fragments. If another build infrastructure is in place, adjust these selections
accordingly.

3. Specify a location on your local file system as the destination directory for your build artifacts. This action
deploys the binary version of the plug-in as a regular JAR file.

4. Clear a new workspace for your target platform by choosing File ➤ Switch workspace).

38 | Procedures

5. Although the target platform contains its own subsystem, dependencies must be established to other parts
of the common product. Unzip the binary build to a local file system and configure the PDE for additional
plug-ins.You can optionally group the plug-ins by location; if this option is not selected, plug-ins are grouped
by name.

6. Before importing the plug-in, disable the Use generation model option to avoid warnings about missing
genmodels from the Domain Editor in case a generation model was not used when the plug-in was created.

7. Load the original plug-in to the target platform by choosing Load Resource... from the context menu.

The Model URI field in the Select Model dialog indicates a target:/plugin/ scheme.

After it is loaded, the model is available for tasks such as creating shortcuts.You can link the models of
the two subsystems so that concepts and elements can be shared.

The model file stores model references as full URIs, which can cause problems if the client environment differs
from the local machine's environment. For example, another team might use both subsystems in its workspaces
and address them differently. To avoid this issue, replace configuration-specific URIs with other unique URIs.
For Ecore models, nsURI is the best choice.You might need to establish a URI convention for other types of
models. Any unique string through which each client maps to the correct URI is appropriate. If possible, use
a form that works without any mapping. For Ecore models, nsURI works; for other models,
platform:/plugin/ might be a good choice because it form fits the deployed product well.

Related Topics

Migrating from the Eclipse Modeling Project
Users who are familiar with the Eclipse Modeling Project (EMP) might decide to migrate to the DSL Toolkit in
order to take advantage of its functionality. The DSL Toolkit comes with commercial features that are not
available in such open source projects as Eclipse Modeling Framework (EMF), Graphical Modeling Framework
(GMF), Generative Modeling Technologies (GMT), Model Development Tools (MDT), Model-to-Model
Transformation (M2M), and Model To Text (M2T).

When migrating from the Eclipse Modeling Project open source project to the Together DSL Toolkit, users can
access a number of import wizards that make the transition straightforward. The following scenarios contain
best practice considerations when transitioning to the DSL Toolkit.

When migrating to a DSL Project

1. In the Together main menu, choose File ➤ New ➤ DSL Project.

2. Using the New DSL Project wizard, create a DSL project for each domain model and its corresponding
artifacts.You can combine the artifacts from the following project types into a single DSL project:

• EMF
• GMF
• QVTO
• oAW

Related Topics

DSL Toolkit Best Practices on page 14

Importing a Figure Gallery on page 37

Procedures | 39

Importing Using Xpand
When importing using Xpand

Note: The underlying expression language used by Together's implementation of Xpand changed from
the proprietary language that the Xtend language had built upon. Together's Xpand is based on the OCL
and QVT Operational Mapping Language standards. Some noteworthy variations between the two
implementations exist, including the following differences:

• Together Xpand accesses language features as properties instead of operations (for example,
isEmpty() instead of isEmpty).

• There is no metaType property available in Together's Xpand (instead, use eClass() for elements
that extend EObject).

• There are no counter or counter0 properties on iterators in Together Xpand.

For more information on OCL and QVT Operational Mapping Language standards, refer to the Object
Constraint Language OMG Available Specification Version 2.0 and the MOF QVT Final Adopted
Specification.

1. Replace the use of «FILE» with workflow-based persistence declaration of files.

The Xpand version in Together views templates as string builders, and the persistence of the generated
stream is handled external to the file. Typically, an OCL expression accomplishes this persistence in the
template invocation, though the specification of a simple file name can also be used.

2. Migrate MWE files to Together workflow scripts (*.exec models).

Related Topics

Importing GMF Artifacts for the Diagram Editor

When importing GMF artifacts for the Diagram Editor

1. To import each graphical definition model to create a Figure Gallery, choose File ➤ New ➤ Import Figure
Gallery.

2. Import each *.gmfgraph model to create a new Figure Gallery.

3. To import each GMF mapping model to create a Diagram Definition, choose File ➤ New ➤ Diagram
Definition.

4. Import each *.gmfmap model to the *.diagram model for use in the Diagram Definition Editor.

40 | Procedures

http://www.omg.org/spec/OCL/2.0/PDF
http://www.omg.org/spec/OCL/2.0/PDF
http://www.omg.org/spec/QVT/1.0
http://www.omg.org/spec/QVT/1.0

Importing ecore for the Domain Model Editor

Related Topics

1. To import metamodels into a domain, choose File ➤ New ➤ Import Domain Model.

2. Import each *.ecore or *.genmodel to create a *.domain model for use in the Domain Model Editor.

Note: The Domain Model Editor supports both *.ecore and *.genmodel diagrams. Updates to both
are made simultaneously.

Migrating Xtend-Based Templates to QVTO-Based Xpand
Templates

The migration tool to migrate from QVTO-based Xpand comes included with the DSL Toolkit as part of GMF
2.2M4.

To migrate to QVTO-based Xpand

1. Ensure that legacy Xtend-based templates are available in the workspace and can be compiled.

You might have to create a valid .xpand-root file in the root of the project with templates so that your
project can point local templates to their external template roots in other projects or plug-ins.

2. Right-click the legacy project in your workspace and choose Migrate to new QVTO-based xpand.

A new folder with the QVTO-based templates is created as a sibling of each template root specified in the
.xpand-root file, which also references newly created *.migrated template folders. In addition, new
Java source root (*.qvtlib) is created, QVTO native extensions are registered in the plugin.xml file,
the new template builder (org.eclipse.gmf.xpand.xpandBuilder) is registered, and the
org.eclipse.m2m.qvt.oml.project.TransformationNature and
org.eclipse.m2m.qvt.oml.QvtBuilder are installed on the project.

3. Open the .xpand-root file in a text editor and verify that all external QVTO-based template roots specified
there are available in your configuration and were updated during migration.

4. Examine the QVT source container, generated by
org.eclipse.m2m.qvt.oml.project.TransformationNature and
org.eclipse.m2m.qvt.oml.QvtBuilder, for errors in the *.qvto files.

The current QVT builder allows only one root to be specified as the QVT source container. By default, the
first migrated template root is designated as the QVT source container. To see QVT build errors for other
template roots, specify the appropriate folder as the QVT source container in the corresponding project
properties.

5. Add the org.eclipse.m2m.qvt.oml plug-in to the list of required plug-ins. This resolves references to
org.eclipse.m2m.qvt.oml.blackbox.java.Operation, which generated Java code imports for
Java annotations.

Procedures | 41

6. Repeat the preceding steps for each template project as necessary. If you have cross-project dependencies,
migrate the project with the most commonly referenced templates first.

Note: Existing projects with legacy templates cannot be compiled correctly using the new builder until
they are migrated. This includes independent template projects. Before the migration templates project
gets compiled with the legacy Xtend-based builder, the builder of the project gets replaced with the new
QVTO-based project builder. Note that only *.xpt and *.ext files are migrated to the template root. All
other files from the legacy template root are copied into the same relative directory beneath the template
root.

Running a DSL
To run a DSL

1. Create a new run configuration by choosing Run ➤ Open Run Dialog... from the main menu.

The Run manager dialog opens.

2. Right-click Eclipse Application and choose New.

Type a descriptive title in the name text box and click Apply.

Note: You might need to adjust the default configuration to improve memory management. Remove
unnecessary plug-ins on the Plug-ins tab and adjust the VM arguments on the Arguments tab. Modify
settings like -Xms128M -Xmx512M -XX:PermSize=64M -XX:MaxPermSize=128M to match your
system.

Related Topics

Regenerating a DSL
To regenerate a DSL

1. Open the DSL Editor.

Within the Generation group, click Generate.

2. Optional: Depending on the complexity of your edits, you might want to click Regenerate in the Export
group. This action regenerates the required plug-ins.

Tip: Under some circumstances, you might need to delete the generated projects to clear compiler errors.
After manually editing the gmfgraph model, for instance, you might need to delete the generated diagram
project.

Caution: Exercise caution when deleting generated projects because any manual edits are lost.

42 | Procedures

Related Topics

DSL Toolkit Workflow on page 12

DSL Editor on page 44

Deploying a DSL
To deploy a DSL

1. Open the DSL Editor.

Within the Export group, click the Regenerate link.

2. Open the Deployment page and ensure that the feature is configured and the plug-ins or features that you
want are selected.

Under normal circumstances, this content is managed automatically. Some cases require manual editing.

3. Open the Overview page and click Export Wizard.

This action launches the standard Eclipse export wizard to guide you through the deployment process.The
exported feature is ready for installation.

Related Topics

DSL Editor on page 44

Procedures | 43

Reference

DSL Perspective
The Domain-Specific Language perspective configures the Eclipse interface for DSL development.The following
table describes elements of the perspective:

Provides a logical view of each DSL project in terms of artifacts and lets you manage
them.

DSL Explorer

The Domain-specific language perspective provides several wizards. These wizards
create new DSL projects, domain models, diagram definitions, figure galleries, model
report definitions, operational QVT transformations and libraries, and Xpand templates.

Wizards

To choose the domain-specific language perspective:

From the main menu, choose Window ➤ Open Perspective ➤ Other.

The Select Perspective dialog box opens.

Select the Domain-specific language perspective from the list and click OK.

DSL Editor
• Domain-Specific Languages on page 9
• Creating a DSL Toolkit Project on page 23
• Creating a Domain Model on page 21
• Creating a DSL Diagram Definition on page 26
• Creating a DSL Diagram Definition on page 26
• Creating a DSL Template on page 32
• Creating a DSL Report on page 35
• Workflow Editor on page 67
• Template Explorer on page 69

Overview Page

This page provides access to common DSL editing tasks.

Getting Started

Contains a collection of links to DSL Toolkit wizards.

New Domain Model creates a new domain model.

Imported Domain Model creates a domain model based on an existing EMF model or XSD schema.

Textual Notation creates a textual representation of the domain model.

44 | Reference

Dynamic Instance selects a class to instantiate.

Diagram Definition creates a new diagram definition.

New Figure Gallery creates a new figure gallery.

Imported Figure Gallery creates a new figure gallery based on an existing gmfgraph model.

Model Transformation creates a new QVT transformation.

Report Definition creates a new domain model report (ecore).

Diagram Report Definition creates a new diagram model report (gmfgraph) that includes embedded diagrams
saved as image files. Instead of the .domain model as the input, the .diagram model is used so that the
diagram file and its content is available in the report definition.

Template Collection creates a new template collection.

Workflow creates a new Script model.

General Properties

Contains fields for configuring general DSL Project options for the creation of new artifacts.

User-Friendly name specifies an easily identifiable name for your project.

Branding Provider specifies the branding provider for newly created artifacts and generated plug-ins. For
example, Borland Inc..

Base Package specifies your project's base package. For example, com.borland.mindmap.

Validation and Generation

Provides validation and generation options for the DSL.

Validate checks the integrity of your DSL project models and configuration.

Generate creates the necessary plug-ins and source code for the DSL.

Generate included domains enables generation of code for domain models included in this DSL.

Generate included diagrams enables generation of code for diagrams defined within this DSL.

Navigation

A set of links to pages in this editor.

Contents manages artifacts included in this DSL.

Transformations configures transformations for this DSL.

User interface generates custom UI extensions.

Deployment manages deployment of the DSL.

Export

Provides links to assist in packaging and exporting the DSL.

Contents

This page manages the artifacts included in the DSL.

Domain Models

Reference | 45

New creates a new domain model and adds it to this DSL.

Import creates a new domain model based on an existing EMF model or XSD schema and adds it to this DSL.

Add contributes an existing domain model to this DSL.

Open domain diagram opens the diagram for the selected domain model.

Configure edits the list of referenced models.

Generates Model and Edit code indicates which plug-ins are generated for the domain.

Expose to M2M transformations makes the selected domain model usable by QVT transformations.

Textual notations

New creates a new textual notation and adds it to this DSL.

Add contributes an existing textual notation to this DSL.

Diagrams

New creates a new diagram definition and adds it to this DSL.

Add contributes an existing diagram definition to this DSL.

Generate Composite Editor combines the Eclipse Modeling Framework (EMF) and Graphical Modeling
Framework (GMF) editors into a single editor for simultaneous modifications to this DSL.

Dynamic Instances

New creates a new metaclass of dynamic instance that is available across your entire DSL project instead of
for a specific domain model only.

Add lets you select other project-wide dynamic instances, which are subsequently listed in a folder under a
DSL Project root in the DSL Explorer for viewing and organizing.

Audits and Metrics

New creates a new audit or metric and adds it to this DSL.

Add contributes an existing audit or metric to this DSL.

Transformations

This page manages transformations, templates and transformation sequences.

Transformations

Model transformations defined for the DSL.

New creates a new QVT transformation and adds it to the DSL.

Add chooses an existing QVT transformation and adds it to the DSL.

Launch opens the Run configuration dialog box with pre-populated values for the selected transformation.

Template Collections

Lists template collections (folders) with their contents (Xpand or JET templates).

Xpand template enabled only when a template collection is selected. Creates a new Xpand template.

JET template enabled only when a template collection is selected. Creates a new JET template.

New Group enabled only when a template collection is selected. Creates a template collection nested under
the selected template collection.

Remove deletes the selected node as well as any children of that node.

46 | Reference

Template Collection creates a new template collection folder.

Design-time contains custom templates for UI and feature projects generation. Use this option with Show
templates view to override templates.

Show templates view opens the Templates Explorer view.

Force deployment forces the template collection to be copied into a UI plug-in. The template collection is
otherwise used in action contributions or in workflow scripts.

Workflow

Lists workflow scripts associated with this DSL.

New creates a new Workflow script and adds it to the DSL.

Add chooses an existing Workflow and adds it to the DSL.

Right-clicking a listed workflow script and selecting the Open menu item (or double-clicking the script) opens
the selected workflow in its editor.

Right-clicking a listed workflow script and selecting the Unlink menu item removes the selected workflow from
the list.

Right-clicking a listed workflow script and selecting the Delete with resource(s) menu item removes the
selected workflow from the list and deletes the corresponding *.exec and *.exe_diagram files.

User Interface

UI Contribution Plug-in

Offers options to extend the Eclipse runtime UI.

Enable enables generation of the UI plug-in, which has its content described on this page, and the editing of
the Action Contributions group.

Plug-in ID identifies the UI plug-in ID (*.ui).

Version identifies the plug-in version.

Plug-in Name identifies the UI project name.

Activator class identifies the UI activator class (*.ui.Activator).

Localization class identifies the UI localization class (*.ui.Messages).

Generate Activity specifies whether to automatically generate an activity, and whether to generate activity
that hides all contributions of this DSL project. These contributions include domains, diagrams, and the UI
project. Each activity's category is visible from Window ➤ Preferences ➤ General ➤ Capabilities menu. To
access the activities themselves, you must follow the same navigation and then click Advanced.... When you
expand the categories, the activities are displayed.

ID identifies the activity's category ID (*.activity).

Name specifies the name of the DSL.

Description describes the activity.

Category ID identifies the activity's category ID.

Category Name identifies the activity's category name.

Category Description describes the activity's category.

Enable by default sets generated activity to be enabled by default.

Action Contributions

Reference | 47

Lists actions associated with this DSL. The actions are context-menu options for the DSL models when
deployed.

Invoke template adds a menu item to execute an Xpand template.

Run transformation creates a menu item to apply a model transformation.

Run report lets users run a defined report for the model.

Run script provides a menu item to apply a transformation sequence.

Generate Project Wizard

Offers options to generate a wizard to create new instances of the DSL as well as a new Eclipse perspective.

Generate wizard enables generation of a project wizard for this DSL.

ID sets the identifier for the wizard.

Name provides a name for the wizard.

Description describes the wizard.

Class Name assigns a class name for the wizard.

Category ID provides a category for the wizard.

Category Name names the wizard category.

Generate icon for wizard enables generation of an icon for the wizard.

Generate perspective enables generation of a new perspective for the DSL.

ID sets the identifier for the perspective.

Name provides a name for the perspective.

Description describes the perspective.

Class assigns the class for the perspective.

Deployment

Manages DSL deployment artifacts.

DSL Feature

Enables generation of a feature plug-in.

Generate feature enables generation of a feature project.

Project name specifies the name for the feature project.

ID sets the identifier value for the feature.

Version defines the version number.

Name names the feature.

Provider sets the provider value.

Generate feature project executes the generation of the feature.

Generate stale files

Lists files that can safely be deleted. Stale files are artifacts that are leftover after a model changes to such a
degree that regeneration no longer produces those artifacts. The list is populated automatically after each
successful regeneration. After you review the files, you can click Remove or Remove all to delete the stale
files.

48 | Reference

Note: If your custom file is listed among the stale files, remove all @generated comments from it.

Delete stale files as soon as possible.

Plug-ins and Features

These lists define additional plug-ins to include into feature definition. Domain, Diagram, and UI plug-ins are
included automatically.You can add your own custom plug-ins to these lists.

Related Topics

Domain Model Editor
The Domain Model Editor defines the abstract syntax of a domain-specific language. A domain model is defined
in terms of Eclipse Modeling Framework's (EMF's) Ecore metamodel, which is closely aligned with the Object
Management Group's (OMG's) Essential Meta Object Facility (EMOF) specification.While traditional EMF-based
development involves the creation and synchronization of a model (ECORE file) and a corresponding generator
model (GENMODEL file), the Domain Editor lets you work with both simultaneously using a feature-rich diagram
editor.

Overview Page

This page contains general information about this domain model and its generated plug-in.

General Properties

Domain Name is the name of the domain model.

NS URI specifies the namespace URI. Use this URI when importing the model in templates or during model
transformations.

NS Prefix is the namespace prefix.

Generation Options

Manages generation of support code for the domain model

Plug-in ID names the plug-in identifier.

Base Package specifies the base package name used in generating code.

Validate verifies the integrity of the domain model.

Generate generates artifacts for the domain model.

Use generation model is enabled by default, which indicates that the generation model (GenModel) is
persistent.

Generation model file is normally left as the default.

Show generation properties shows or hides the generation properties.

Use advanced merge capabilities merges plugin.xml and MANIFEST.MF when generating code and
keeps them synchronized throughout the development process. Disable this option if you prefer to manually
manage them.

Generate all referenced models includes all referenced generator models in the generation of this domain
model.

Reference | 49

Stale Files

Lists files that can safely be deleted. Stale files are artifacts that are leftover after a model changes to such a
degree that regeneration no longer produces those artifacts. The list is populated automatically after each
successful regeneration. After you review the files, you can click Remove or Remove all to delete the stale
files.

Navigation

Contains links to the other pages in this editor, as follows:

• Diagram
• References
• Advanced
• Tree
• Generation

Diagram

Domain model diagram lets you visually model the domain by using standard diagram concepts.

Note: When you use the Properties view to review model and element properties, you can set negative
values as necessary. However, when you use the in-place editor, which you can access by pressing the
F2 key, all negative values less than -2 are recognized as -2, and the unspecified label indicates -2
multiplicity. Only elements of the Domain models, Generator models, and Ecore models listed in the
Domain Model Editor's References page that are compatible with the corresponding property type are
displayed in the Properties view.

The palette of the Diagram page supports graphical representation of Object Constraint Language (OCL)
annotations, such as the Constraint option in the OCL group. This feature visualizes the predefined semantics
of OCL annotations. Each visual notation maps to a particular EAnnotation structuring.

Derived Feature and Operation Body graphical notation options are also on the palette. OCL derive |
body constraints can be used as EAnnotation keys with a value of OCL expression. Code can then be generated
based on these annotations, although code generation does not depend on annotations.

Note: With QVT projects, OCL annotations can be used for the derived features and operation bodies of
dynamic instances without prompting code generation. Continue to synchronize dynamic and generated
instances because such OCL constraints can be overridden in the proper runtime contexts. OCL annotations
apply to dynamic instances only. Generated instances come with appropriate OCL-related runtime
applications, and in these cases the code generator is responsible for specifying that OCL declarations
are applied. Other clients, including the Dynamic Instance editor, do not suport OCL annotations at all.

Text

The Text page of the Domain Editor contains text representation of the domain model.

The following example demonstrates an Ecore textual notation of a zoo metamodel.

package zoo {
 documentation : "This metamodel is a sample of domain textual notation";
 documentation : "http://www.wwf.org/";
 nsPrefix : "zoo";
 nsURI : "http://www.domain.example.org/2009/zoo";

 interface Creature {
 documentation : "documentation is special annotation, which is also used in
Properties view for 'Documentation' tab. \n"

50 | Reference

 "All text values in text notation can have multiple lines";
 reference cage : Cage<Creature> opposite content {
 documentation : "Reference with opposite feature";
 }
 operation eat(food : Food) throws BadFoodException {
 documentation : "Sample of operation that throws an exception";
 }
 }

 class Zoo {
 documentation : "This class contains special annotation for EMF constraints\n"

 "Body of 'constraints' annotation contains a list of validation names with
space or line feed";
 constraints : "EmfConstraint1 EmfConstraint2 EmfConstraint3";
 containment animals : Animal[0..*] {
 documentation : "Multiplicity in square brackets";
 }
 containment birds : Bird[0..*];
 containment cagesForAnimals : Cage<Animal>[0..*] {
 documentation : "Containment reference has type with type argument";
 }
 containment cagesForBirds : Cage<Bird>[0..*];
 operation getAllCreatures : Creature[0..*] {
 documentation : "Operation with ocl implementation";
 operationbody :
"birds.oclAsType(Creature)->asOrderedSet()->union(animals)->asOrderedSet()";
 }
 }

 interface Cage<T extends Creature> {
 documentation : "Class with type parameter";
 containment content : T opposite cage {
 documentation : "Containment reference with 'type parameter' as type";
 }
 operation canContain(t1x : T, t2x : T) : EBoolean;
 operation canContain as canContain1(t : T[1..*]) : EBoolean {
 documentation : "'canContain1' is ID of the operation. \n"
 "If the name of an element is unique in model, it is not necessary to add
additional ID, \n"
 "name of element will be used as element identifier.\n";
 }
 operation put(creature : T) throws InvalidCreatureException<T>;
 }

 class InvalidCreatureException<CR extends Creature> {
 reference creature : CR;
 }

 interface Animal extends Creature {
 documentation : "'interface' is a class with interface attribute";
 ~unique attribute size : EDouble {
 documentation : "All datatypes declared in Ecore metamodel are available by
short name";
 }
 }

 class StBernard extends Animal {
 attribute name : EString = "Beethoven" {
 documentation : "Attribute with the default value";
 }

Reference | 51

 }

 class Doghouse {
 reference dogs : StBernard[0..*] {
 keys : name;
 }
 }

 abstract class AbstractCage<Y extends Creature> extends Cage<Y> {
 documentation : "Sample of the derived feature and its implementation";
 attribute length : EDouble;
 attribute width : EDouble;
 attribute height : EDouble;
 derived volatile attribute volume : EDouble {
 featurebody : "length * width * height";
 }
 }

 class Canines {
 documentation : "Sample of ocl constraint for 'length' feature";
 oclconstraint : "-- valid length of canines\n"
 "lenght > 0" {lenght};
 attribute lenght : EInt;
 }

 class SuperCage<E extends Creature> extends Cage<E> {
 documentation : "Class with implementations for abstract operations from super
 class";
 operationbody : "true" {canContain1};
 operationbody : "true" {canContain};
 }

 interface Bird extends Creature;

 interface Predator extends Animal {
 containment canines : Canines[1..1];
 }

 interface Dinosaur extends Creature {
 documentation : "@deprecated";
 }

 datatype BadFoodException {
 documentation : "Datatype with instance class name attribute";
 instanceClassName : "org.example.domain.zoo.BadFoodException";
 }
 datatype Food {
 documentation : "This datatype contains special annotation \n"
 "'extendedMetaData' - annotation with fixed source:
'http:///org/eclipse/emf/ecore/util/ExtendedMetaData'";
 extendedMetaData {
 "baseType" -> "http://www.example.org/2000/FoodSchema#food";
 }
 instanceClassName : "org.example.domain.zoo.Food";
 }

 package bestiary {
 documentation : "Example of subpackage";
 annotation "superSource" {
 documentation : "Example of list with line wrapping";
 references : Dinosaur, Bird, Predator, InvalidCreatureException,

52 | Reference

BadFoodException, Canines, SuperCage, Cage, AbstractCage,
 Doghouse, Creature, zoo;
 }
 nsPrefix : "bestiary";
 nsURI : "http://www.domain.example.org/2009/zoo/bestiary";
 class Chimera;
 }
}

References

This group provides editors for managing referenced models. If your domain model uses or extends elements
from another model, include a reference in the appropriate list.

Domain Models adds and removes domain models (*.domain)

Generator Models adds and removes generator models (*.genmodel)

Ecore Models adds and removes ecore models (*.ecore)

Advanced

This page provides additional model and generation properties.

Other Properties

Compliance level sets the compliance level for the generated code.

Copyright text defines the copyright text to use in the generated artifacts.

Advanced generation properties

Use dynamic templates enables use of dynamic templates for code generation.

Path to dynamic templates is the location of the dynamic templates.

Show templates view allows you to browse the hierarchy of EMF's built-in JET templates used for model
code generation. This option also lets you override necessary template files by copying them into the folder
you specified in the Path to dynamic templates: field.You can then customize their content. Code generators
can be dynamically created from those templates.

Use advanced templates enables use of advanced dynamic templates for code generation. Because the
editor does not populate these templates automatically, click Populate Templates... to load the available
templates before generating the code.

Use UUIDs lets you initialize the Resource Type for the genpackage as XMI. When the code is generated,
the editor overrides the *ResourceImpl.useUUIDs() method for all genpackages with type != XMI. XMI
resources can use unique identifiers, which assign unchangeable unique IDs to entities such as GMF diagrams.
Consequently, an entity's ID remains the same even if the name of the entity changes. However, resource text
readability can suffer.

Generate database support lets you persist Domain Models in a Hibernate database library.When this option
is checked, a dialog box lets you initialize the Resource Type for the genpackage as none. Database
persistence allows you to retain your Domain Model work in a database library so that it exists beyond your
program execution. Hibernate library features include support for relational databases, OR Mapping of class
hierarchies, data query and retrieval, HQL query language, and second-level caching. A validation warning is
also generated.

In the Project with Hibernate libraries: field, select the name of the Eclipse project with the Hibernate binary
library.

Reference | 53

Dynamic Instances

Lists the dynamic instances for this model.

Add opens a dialog box that lets you create a dynamic instance for the model element you select.

Remove deletes the reference to the dynamic instance without deleting the XMI file.

Validate verifies the integrity of the dynamic instance.

Cleanup removes dynamic instances that are no longer part of the project.

Tree

A tree view and editor of the domain model. Edits in this view are synchronized with the diagram view.

Tip: Use the Properties view to review model and element properties. The Properties view displays
only elements of the Domain models, Generator models, and Ecore models listed in the Domain Model
Editor's References page that are compatible with the type of corresponding property.

Generation

A table view/editor of the domain model

TypePropertyGroup

BooleanBundle ManifestAll

1.4, 5.0 or 6.0Compliance Level

BooleanCopyright Fields

stringCopyright Text

stringModel Name

FQNModel Plug-in ID

BooleanNon-NLS Markers

BooleanRuntime Compatibility

BooleanRuntime JAR

BooleanCreation CommandEdit

BooleanCreation icons

locationEdit Directory

FQNEdit Plug-in Class

FQNProvider Root Extends Class

54 | Reference

TypePropertyGroup

BooleanCreation SubmenusEditor

locationEditor Directory

FQNEditor Plug-in Class

BooleanRich Client Platform

BooleanArray AccessorsModel

BooleanBinary Compatible Reflective
Methods

BooleanContainment Proxies

[none, reflective, virtual]Feature Delegation

BooleanGenerate Schema

BooleanMinimal Reflective Methods

locationModel Directory

FQNModel Plug-in Class

string[]Model Plug-in Variables

BooleanSuppress Containment

BooleanSuppress EMF Metadata

BooleanSuppress EMF Model Tags

BooleanSuppress GenModel
Annotations

BooleanSuppress Interfaces

BooleanSuppress Notification

BooleanPublic ConstructorsModel Class Defaults

FQNRoot Extends Class

FQNRoot Extends Inteface

Reference | 55

TypePropertyGroup

FQNRoot Implements Interface

listStatic Packages

stringBoolean Flags FieldModel Feature Defaults

integerBoolean Flags Reserved Bits

FQNFeature Map Wrapper Class

FQNFeature Map Wrapper
Interface

BooleanSuppress EMF Types

BooleanSuppress Unsettable

BooleanCode FormattingTemplates and Merge

BooleanDynamic Templates

FQNFacade Helper Class

BooleanForce Overwrite

BooleanRedirection Overwrite

stringTemplate Directory

listTemplate Plug-in Variables

BooleanUpdate Classpath

locationTests DirectoryTests

FQNTest Suite Class

Diagram Definition Editor
• Template Explorer on page 69
• Model Audits and Metrics Descriptions
• Creating a DSL Diagram Definition on page 26
• Regenerating a DSL on page 42

56 | Reference

/help/topic/com.togethersoft.togetherxj.doc.user_togetherxj/html/qamodelauditdescriptions.htm

Overview Page

The main page contains several groups to manage general configuration properties and provide generation
actions.

General Properties

This group lets you modify plug-in attributes. It is recommended that you accept the default values.

ID specifies the identifier for the plug-in, which is used to name the generated diagram-implementation project).

Version sets the version number.

Name is a descriptive name for this diagram definition.

Provider is typically the name of the organization.

Activator specifies the name of the generated diagram plug-in's activator class.

Generation Options

Configures options for the diagram, such as file extensions for the domain model and diagram files.

Model ID is the identifier for the domain model.

Domain File Extension displays the file extension for corresponding domain model instances.

Diagram File Extension specifies the file extension for instances of this diagram.

Package Name Prefix configures package naming for the generated code.

Generation

Provides actions to assist with generating implementation for the diagram definition.

Generate generates code for the diagram definition.

Validate checks the integrity of the diagram definition.

Update will update the generator model with content changes.

You can further define update reconciliation properties by optionally selecting the Always update generator
model before generation and Reconcile changes in generator model check boxes.

Note: The DSL Toolkit contains a trace facility to help with reconciling changes made to the generator
model when retransforming from the mapping model. It is recommended that you use this facility if you
plan to make changes or augment the generator model in any way.

Navigation

A collection of links to open the other pages available in this editor.

The Advanced page defines advanced properties, such as user-defined templates.

The Palette page lets you customize your diagram palette.

The Content page defines mapping properties between a domain element and its representation.

The Audits And Metrics page lets you add audits and metrics to the diagram.

The Tree page lets you browse applicable models using a traditional tree structure.

Reference | 57

Figure Galleries

Lists figure galleries in use by this diagram definition.

If you select the Embed figures code in generator model check box, figure code is inserted into the generator
model and placed within the EditPart class. Alternatively, a figure gallery can generate a standalone figure
plug-in that is referenced by the generator.

Add imports an existing figure gallery for use.

Remove removes the reference to the selected figure gallery but does not delete the figure gallery.

Advanced

Provides editing of advanced properties.

Advanced Properties

Diagram plug-in properties.

Enable Print support activates the ability to print the diagram at runtime.

Same file for diagram and model enables physically storing model content and diagram layout information
in the same file at runtime.

Use the Copyright text field to define the copyright text to include in generated artifacts.

Use dynamic templates enables usage of dynamic templates in code generation. Use the Path: field to
specify the location of the dynamic templates.You can browse the hierarchy of XPand templates used by GMF
for diagram generation, and copy (override) or aspect (extend) necessary template files (or just their <define>
parts) into a specified Template folder. There you can customize the template content. Modified templates can
then be used on the next code generation.

Mapping to Generator Transformation

Properties to configure transforming the mapping model to the generator model.

Use IMapMode configures usage of IMapMode in generated GEF code. It is recommended to leave this
property enabled.

Utilize enhanced features of GMF runtime enables the generator to target the full GMF runtime instead of
the “lite runtime.” It is recommended to leave this property enabled.

Generate RCP instructs the generator to use the minimal dependencies in order to provide a lightweight
diagram editor for the Eclipse platform.

Property Sheet

Properties to configure the generated property view for the diagram.

Needs Caption generates a properties view with a label.

Read Only prevents editing the properties view.

Package Name: specifies the package for the generated property sheet.

Label Provider Class Name: names the class that provides the label for the property sheet.

Shortcuts

Properties to manage model and diagram references.

Referenced models specifies models whose elements can be referenced in this diagram.

58 | Reference

Referencing diagrams specifies other diagrams that might reference this diagram.

Palette

This page is an editor for the diagram's tooling palette and its elements.You can customize your palette by
clicking one of the following links and filling in the property fields.

Creation tool includes elements for instantiating nodes and links.

Standard tool includes standard elements such as Select, Zoom In, and Note.

Generic tool includes generic elements for use with custom tool classes.

Group arranges several palette elements together.

Separator graphically separates elements or groups of elements.

delete removes the selected elements.

Properties lets you view and optionally edit key properties for the selected element. Note that you can use
the Eclipse Properties view as well to view and edit all available properties. Configurable properties include:

Specifies the name of the tool or group.
Title:

Specifies the function of the tool or group.
Description:

Lets you specify whether a palette tool is displayed as a large icon by default. Tip:
Click the image plate (the blank square beneath the Default check box) to access
a popup dialog that lets you specify a bundle.

Large Icon:

Lets you specify whether a palette tool is displayed as a small icon by default. Tip:
Click the image plate (the blank square beneath the Default check box) to access
a popup dialog that lets you specify a bundle.

Small Icon:

Lets you specify whether a palette group is displayed as stacked or collapsible
(available when a palette group is selected).

Grouping:

Lets you specify the class of a new tool.
Class:

Lets you specify whether a new tool is SELECT, SELECT_PAN, MARQUEE,
ZOOM_PAN, ZOOM_IN, or ZOOM_OUT.

Kind:

References specifies how a selected element is used in the diagram.

Details provides a Reconcile action on a selected element that launches a wizard to update the palette model
based on changes in the domain model.

Mapping

This page provides for the mapping of diagram graphical elements to their domain and tooling elements. The
layout of this page is designed to guide the Toolsmith through actions that create mappings in a diagram-centric
manner.

Following the creation of a diagram definition using the provided wizard, the Content page will contain a Canvas
mapping. The domain model has its elements listed in the Domain Element section. These elements are
mapped by selection in the context of the currently selected Diagram Element. The Actions section provides
links to create or remove elements for the selected context.

Reference | 59

If a Canvas is selected:

• In the Actions section, the Add node action initializes a new diagram node on the Canvas.
• Properties can be specified in the Properties section, and selections can be made in the Figure section

and Creation Tool section:

• A Domain Element is selected to map the new node to a class from the domain it is to represent.
• The Containment Reference field is used to select the domain model reference where objects of this

type are stored.
• The Children Reference field is used to select a reference from which children are retrieved. This

property can be left blank, because it applies only to the domain modeling pattern whereby a single
containment reference is used to store all objects of a general type. Separate read-only references are
used to retrieve objects of a particular type.

• Related Diagrams can be added or removed. By declaring the Canvas of a diagram definition as related,
you can double-click this node to open diagrams of that type.

• An Initializer can be defined to set properties (such as an attribute value or reference) of the newly
created domain element.

• A Specialization can be defined using one of several languages (such as OCL, Java, regexp, or nregexp)
to more strictly define the domain elements that are being mapped. For example, if multiple mappings
apply to a single domain element, the value of a feature can be used to distinguish between them.

• The Figures section provides a list of eligible figures from the associated galleries. The Creation Tool
section displays the available tools from the Palette, with actions to add a new tool or group without first
navigating to the Palette page of the editor.

If a node is selected:

• Remove the node deletes the node mapping from the diagram definition.
• Add node reference enables this node to specify a child node to be reused from another node mapping.

This avoids duplication of mappings throughout the definition if there are many similar nodes. A node
reference element has Containment Reference and Children Reference properties, and its Actions
section provides the ability to Remove the node reference.

• Add a node creates a child node below the current node and displays all the properties for a node. An
infinite level of children nodes can be mapped in this manner, as dictated by the graphical notation.

• Add compartment provides a compartment in which a node can be defined. The Child Nodes property
lets you select nodes found within the compartment, and the Figures section lets you select from available
compartment figures in the referenced galleries. A Remove the compartment action is also available.

• Add label creates a mapping for an optionally Read Only label using the label selected in the Figure
section. Note that unlike an attribute-based label mapping, this is a static label mapping that does not
provide text based on a feature. A design label is used when diagrams are defined without a domain model.
A Remove this label action becomes available when the label is selected in Diagram Element as well.

• The Add attribute-based label action creates a label mapping where one or more domain element attributes
can be selected for edit and display on the diagram.The following properties are available for attribute-based
labels:

• Read Only prevents the Practitioner from modifying this label's value on the diagram.
• Add or remove Attributes using hyperlinks. The Add button opens a dialog with the available attributes

of the parent node's mapped domain model class.
• View Pattern defines how the attribute is seen when the label is not in edit mode. By default, the

MESSAGE_FORMAT View Method is used, which allows for the specification of patterns using the Java

60 | Reference

MessageFormat class. See the JavaDoc on this class for more information. Optionally, select the NATIVE
(Java), REGEXP, or PRINTF patterns for View Method and Edit Method.

• Edit Pattern defines the format of the label when the parser accepts it after changes are made. For
example, if the View Pattern displays several attribute values separated by commas, you can type each
value into the in-place editor of the label using colon delimiters.

• The Add link action initializes a new diagram link. Actions available with a link selected include Remove
the link, Add label, and Add design label. Select figures and palette tools using the corresponding sections
in the editor. Additionally, the following Properties are available for a link mapping:

• Containment Reference refers to the location that stores new instances of link elements (for example,
when a domain element class is used to represent a link, and is selected using the Domain Element
section). In this case, a Source Reference and Target Reference mapping will be defined as well.
Links that represent domain model references require only the Target Reference. Specialization and
Initializer properties (described previously) are also available for link mappings.Note: In order to indicate
where they are stored in the domain model, some nodes need to be first created and then linked. In
these cases, a Node element is created without a Containment Reference specified. Instead, a link
mapping is created and specifies the containment to be used for storing the node in its Target Reference
property.

• Source Constraint and Target Constraint elements can be added to a link to restrict how a Practitioner
creates links between elements on the diagram. OCL, Java, regexp, and nregexp languages can be
used to define constraints.

Validation

This page lets you define the audits and metrics of diagrams and domain models. Use the audit to detect the
deviation from a best practice or to validate the content of a model prior to some processing (for example,
transformation or code generation). Use metrics to gather numeric data on model content (for example, the
number of elements of type X).

From the Mapping root element in the tree, use the New Child right-click menu action to add Audit Container
and Metric Container elements.These elements have the following properties that open in the Details section.

Note: The Metric Container has no properties of its own but can contain child Metric Rule elements.

• Metric Rule elements have Name, Description, Key, Low Limit, and High Limit properties. A Value
Expression child can be added, which allows for the specification of an OCL, Java, Regexp, or NRegexp
expression that defines the rule. Along with a Value Expression, a Domain, Diagram, or Notation Element
is declared as the context for the expression.

• Audit Container has Id, Name, and Description properties. Child Audit Container elements can be
created. Audit Rule elements can also be added and, like Metric Rule elements, consist of a Constraint
and an associated context model element. Additionally, Audit definitions can report on Metric results.

Tree

This page provides a composite viewer and editor for all models involved in this diagram.

Tip: This tree provides easy access to the gmfgraph model. Common graphical customizations are made
on the Tree page, such as visual attributes for diagram elements. Enable Always update generator
model before generation on the Overview page to reconcile changes made here.

Reference | 61

Related Topics

Textual Notation Editor
Textual notation is a DSL artifact that comes with its own editor, the Textual Notation editor, and generates a
single plug-in.

The Textual Notation editor contains four pages: Overview, Language, Advanced, and Text.

Related Topics

Overview Page of Textual Notation Editor on page 62

Language Page of Textual Notation Editor on page 63

Advanced Page of Textual Notation Editor on page 65

Text Page of Textual Notation Editor on page 65

Overview Page of Textual Notation Editor

General Properties

The General Properties node contains the following fields that let you define and configure your generated
textual notation plug-in, and also provides generation options.

Specifies the plug-in ID of the textual notation.Plug-in ID

Specifies the root package for generation.Base package

Specifies the extension of the file in which the model is persisted in textual
form.

Text File Extension

Specifies the name of the textual notation.Plug-in Name

Specifies the plug-in provider.Plug-in Provider

Lets you browse for dynamic templates to customize generation. Click on
the Custom templates link to open the Template Explorer.

Custom Templates

Lets you specify a path to a QVT file transformation for creating a
generation model.

Custom Transformation

Lets you specify a Java class to customize generated code. The Custom
Factory Class link opens the selected class in the editor or prompts you

Custom Factory Class

to create a class if one does not already exist (alternatively, click the
Browse button to select an existing class).

Source packages

The Source packages node lets you select source language metamodels for your textual notation. By clicking
the Add button, you specify which source models and Genpackages to contribute.

Uncheck the Use default file extension check box to specify a different extension to the model file (the default
value is taken from the domain model). The file extension is used to register converter actions and editor for
XMI resource.

62 | Reference

Validation and Generation

The Validation and Generation node contains the following options and buttons for enabling features and
generating.

Check this check box if you want to be able to convert between textual
and XMI representations.

Actions to convert between text and
model

Check this check box if you want to be able to work with the text file
in the same way you work with the usual model.

Register resource factory for text
file

Check this check box if you want to be able to edit XMI files as text
(this option transparently converts between textual and XMI
representations upon each save/load).

Register Text editor for XMI model
resource

Click this button to generate your textual notation.Generate

Click this button to validate your textual notation before generating.Validate

Related Topics

Textual Notation Editor on page 62

Language Page of Textual Notation Editor

Textual Notation

The Language page lets you define the syntax and formatting of your textual notation. It contains a single
node, the Textual Notation node, which displays the filtered model tree and lets you specify how each of your
model elements contribute to your notation. Drag and drop features to reorder them.

In addition to the Expand and Collapse display options, use the following icons on the upper right of the
window to filter the content of the tree:

• Show Model Types and Features (default)
• Show All Inherited Features Without Excluded
• Hide Excluded Features and Types
• Show Only Excluded Features and Types

Depending on the language element selected, different configurable options appear that let you control how
selected elements appear in the notation, including a Preview window that displays how your settings affect
the notation.

The following configurable options appear:

By default, all classes in your model begin with a reserved word, possibly followed by its
instance identifier. All attributes are enumerated one by one in curly braces (class body).

Class options

Lets you customize the reserved word, which is the metaclass
name by default.

Custom Literal

Space-separated list of tokens and formatting rules, including:Literal

Introduces soft keyword.identifier

Introduces hard keyword.!identifier

Reference | 63

Standard tokens, such as comma and
semi-colon.

sequence of control
characters

Space in the text._

New line in the text.[NL]

Lets you customize the class body.Element body options

Lets you select an identifying attribute that makes references to
the class more friendly. This option is inherited by subclasses.

Custom identity
attribute

Lets you check the appropriateness of the class in the outline.Show in Outline

Feature options include the following:Feature
options

Lets you customize the reserved word (the default is the
feature name).

Custom Literal

Space-separated list of tokens and formatting rules,
including:

Literal

Introduces soft keyword.identifier

Introduces hard keyword.!identifier

Standard tokens, such as comma
and semi-colon.

sequence of control
characters

Space in the text._

New line in the text.[NL]

Defines the location of the feature within the class.Location

Lets you customize list syntax and formatting.List options (for multi-valued
features only)

Shows the feature's value in the outline.Show in Outline

Inserts the feature value into the class body without
preceding it with the literal.

Default containment (for
containment features only)

Lets you select a color (created on the Advanced page).Feature color

Enumeration literal options include the following:Enumeration
literal options

Lets you customize the textual representation of the literal (the default
is the literal name).

Custom Literal

Space-separated list of tokens and formatting rules, including:Literal

Introduces soft keyword.identifier

Introduces hard keyword.!identifier

Standard tokens, such as comma and
semi-colon.

sequence of control
characters

Space in the text._

New line in the text.[NL]

64 | Reference

Related Topics

Textual Notation Editor on page 62

Advanced Page of Textual Notation Editor

Preferences

The Preferences node contains the following check boxes and fields that let you set preference page options.

Select this check box to specify a different name for your editor's
preference page from the default name.

Custom editor's preference page
name

Specify the custom name for your editor's preference page here.Category name

Select this check box to specify a custom parent category for your
preference pages (appear in the root of preferences by default).

Custom category for preference page

Specify the ID of the category where you would like to place your
preference pages.

Parent category ID

Specify the name for your coloring preference page here.Syntax coloring preference page
name

Notation defaults

The Notation defaults node lets you change Doctype and maximum line width default values in the generated
editor.

Additional highlighting

The Additional highlighting node lets you add colors for custom semantic highlighting. When you add a
color, options appear that let you specify the color's ID, title, and color.You can also specify whether the text
for the ID you specify has bold, italic, strikethrough, or underline highlighting.

Created colors can be used on the Language page. Select any feature to see the Semantic Highlighting
option to the right.

Related Topics

Textual Notation Editor on page 62

Text Page of Textual Notation Editor
The Text page of the Textual Notation editor is a full-featured text editor that contains options from the Textual
Notation editor's first three pages in a text form and includes the following features:

• copy/paste
• syntax highlighting
• code completion
• error highlighting
• outline
• quick outline
• reference navigation

Reference | 65

All changes you make are applied to the underlying model incrementally when you save or switch to another
page.

The editor validates the text as you type, using EMF validation. To customize how often text is validated,
choose Window ➤ Preferences ➤ DSL Toolkit ➤ Config Textual Editor. To customize colors, choose
Window ➤ Preferences ➤ DSL Toolkit ➤ Config Textual Editor ➤ Syntax Coloring.

Related Topics

Textual Notation Editor on page 62

DSL Explorer View
For enhanced navigation of your DSL projects, DSL Toolkit offers a specialized DSL Explorer view. The DSL
Explorer provides a logical view of each DSL and lets you perform a variety of DSL tasks. Using the DSL
Explorer, you can create DSL projects, fill them with artifacts (including domain models, diagrams, textual
notations, report definitions, transformations, templates, and transformation sequences), transfer artifacts
between existing projects, validate projects and their contained artifacts, use templates and create new template
collection folders, and generate all the DSL code.

The DSL Explorer is similar to the more general Project Explorer view, both of which are based on the Eclipse
Common Navigator Framework. While both views are available, the Project Explorer no longer provides DSL
navigation. View any DSL project content by using the DSL Explorer.

Note: The DSL Explorer does not yet support any Java contributions that you can browse. This issue
stems from Eclipse Common Navigator Framework's inability to support two or more major contributors,
such as Java, in one view. To browse Java projects, it is necessary to switch from you DSL Explorer to
your Package Explorer.

Importing DSL Projects from an Existing Platform on page 38

Features of the DSL Explorer

The following DSL Explorer features enhance navigation by supplying a more specialized, logical view of DSL
projects:

• The DSL Explorer is always synchronized with all of the project editors. When you add a domain in an
editor, the domain is immediately propagated to the DSL Explorer. Conversely, domains added through
the DSL Explorer are immediately propagated to the editor.

• You can navigate all DSL projects that have been contributed into the platform. These projects are listed
under the DSL Explorer's Platform node. To enable this node, you must first turn off the Platform DSL
Projects filter by clicking the DSL icon (Show Platform DSL Projects) on the toolbar. Alternatively, choose
Customize View on the View Menu and ensure that the Platform DSL Projects option is not selected.

• To import DSL projects from the platform into your workspace, choose the Import DSLs... context menu
option. Alternatively, choose File ➤ Import... from the main menu and select the Import DSL Project from
Platform option under the Plug-in Development node.

• The DSL Explorer supports working sets. From the toolbar menu, choose Top Level Elements ➤ Working
Sets to create a new set, reorder existing sets, or input more projects into a set. Drag and drop projects to
move them between sets.

• You can view all of your project resources under the DSL Explorer's Resources node. Although this node
is not displayed by default, you can turn it on by choosing Customize View... ➤ Resources in DSL Project.

• When you drop a DOMAIN, TNT, DIAGRAM, DSLDESIGN, or QVTO file into a DSL project, an artifact is
automatically added to the DSL project and stored in its DSL file. In DSL Explorer, this reference is listed

66 | Reference

under the project's appropriate category. For example, .domain references are displayed under Domain
Diagrams. When no editor is opened for the DSL file, any added or imported artifacts are stored directly
to disk.

• When you use the DSL Editor to add project-wide dynamic instances, the DSL Explorer lists them in a
folder under the DSL Project root. From there you can view and organize all dynamic instance models that
you have specified in the project.

• The Model Refactor dialog box is automatically displayed when a selection contains at least one model
file. From the toolbar, select Window ➤ Preferences ➤ DSL Toolkit ➤ Model Refactor and check the
Search/Update references (in file types selected below) option.Whenever you drag and drop a resource
or template of a model, the Model Refactor dialog box is automatically displayed. Dragging and dropping
nonmodel files moves the files but does not open the Model Refactor dialog box.

• You can add new templates and template groups in the templates subtree. After you create a new template
or template group, that template or template group is selected in the subtree.

• You can remove artifacts from the project while keeping their resources on the disk. To remove artifacts
along with their resources, choose the context menu option Delete with resource(s). An Unlink from
Project and Delete Resources confirmation dialog box with a list of artifact resources is displayed, and
you can select which of them you want to delete.

• You can create an Audits and Metrics model by choosing New ➤ Audits and Metrics from the context
menu. A folder for your Audits and Metrics models is created in your DSL project.Your DSL project editor
contains references of Audits and Metrics models, in addition to tools for creating Audits and Metrics models.

• Use the DSL Explorer to generate and validate your DSL project code.
• The DSL Explorer is the default view to the left of the editor in the DSL Perspective.

Workflow Editor
The Workflow Editor manages transformation workflow scripts, which are used to define model transformation
executions that are invoked independently or in chained sequences. Scripts are maintained in *.exec model
files (listed under the editor's Workflow and Tree pages) and have corresponding *.exec_diagram files
(listed under the editor's Diagram page). Workflows can be defined using either or both the diagram and
form-based user interfaces.

Path definitions in script elements can be project-relative, or they can be in the platform:/resource or
platform:/plugin URI scheme, depending on the execution scenario requirements.

Execute scripts using generated Java code or using a generated Ant script. The scripts can also be evaluated
in-place during development for testing purposes using dynamic instance models.

DSL Editor on page 44

Toolbar Actions

The following toolbar actions are available for use with the Workflow Editor:

Invokes an evaluation of the script. Contextual inputs will be satisfied by a pop-up dialog
that allows for selection of workspace files. Alternatively, this can be done using the
Evaluate action available from a script root on the Workflow page.

Generate

Invokes a validation of the workflow script to ensure its correctness.
Validate

Diagram Page

The diagram surface is populated with nodes and links available from the following groups of palette tools.

Reference | 67

Input Group

The Input group of tools can be used for each of the following input types used in a workflow definition.

Resource creates a resource element with a value that can be any valid platform:/ URI path.

OCL Query defines an input based on an OCL expression.

Context defines contextual input, with a provided default value of Selection that corresponds to a Practitioner's
resource selection in the deployed workspace.

Chain defines an input based on the output of another transformation, especially useful in model-to-text
following model-to-model transformation sequences.

Proxy defines a new input pin on an existing model-to-model transformation where multiple input models are
used.

Invocations Group

The Invocation group of tools can be used for each of the following model transformation types.

QVT creates a new invocation element representing an operational QVT transformation (*.qvto) file,
preconfigured with an input and output pin. Additional input pins can be added using the Proxy tool.

Xpand Template creates a new Xpand template invocation element, preconfigured with an input and output
pin.

JET Template creates a new JET template invocation element, preconfigured with an input and output pin.

Composite creates a new transformation group element to hold template roots for invocation.

Note: The Composite tool provides a compartment in which you can add elements into the compartment
if you start drawing the corresponding element near the top of the compartment. However, there exists a
GMF limitation against adding elements inside non-list compartments.

Shared Elements Group

The Shared Elements group of tools can be used to define shared elements for use in input definitions.

Resource Template Root creates a new template root element for use within the context of a model-to-text
template invocation.

OCL Query-based Template Root creates a model-defined template root that allows for an OCL expression
language value, condition, and input context.

Composite Template Root creates a composite template root element.

Classload Context creates a classload context element with a list of bundle IDs that specify an execution
context.

Output Group

The Output group of tools can be used to specify output elements for a transformation.

Plain File specifies an output file name, which can be specified using a platform:/ URI.

OCL-based allows an output to be defined using an OCL expression.

Feature-based allows for a feature-based path declaration.

Memory defines a memory output when chaining transformations without an intermediate file.

68 | Reference

Links Group

Used for making a connection between workflow elements.

Input links transformation input pins to Input elements. Dependencies are indicated by links drawn in the
direction of the pin to the input.

Workflow Page

This page presents a form-based user interface that includes similar functionality as the diagram page. Tool
groups on the diagram palette correspond roughly to combo boxes on the form (for example, the Input group's
OCL Query tool on the Diagram page corresponds to the OCL Query input resource on the Workflow page,
and the Model Root Shared element form on the Workflow page corresponds to the OCL Query-based
Template Root tool on the Diagram page).

The lists in the Workflow page interface do allow for the evaluation of workflow scripts, validation, and ant file
generation. In addition, the following functionality is available on the Workflow page of the editor:

Lists the available post processors that you can add to a transformation
output.

Post Processors

Lets you specify a path to merge settings used with JMerge when generating
Java code.

Java Merge

Formats Java code following generation.
Java Formatter

Cleans up import statements in generated Java code, and shortens fully
qualified Java class names in the body into import statements.

Import Organizer

Tree Page

Displays the *.exec model files of your scripts in a tree view.

Related Topics

Template Explorer
The Template Explorer lets you view a set of templates by their root, including an overlay of how local templates
can override or extend a configured base set of templates. This view is particularly helpful when working with
a complex set of templates arranged in a hierarchy, such as EMF and GMF code generation templates. Both
JET and Xpand templates are supported.

To access the Template Explorer, create a Template Collection directory within the DSL Editor's Template
Collections tab. When you select the directory, click the Show Templates View link that is displayed.
Alternatively, select Window ➤ Show View ➤ Other and click the Template Explorer check box under the
DSL Templates node.

The Template Explorer has the ability to display Base Template Sets and Configured Template Contexts. Use
the Properties View to display template information when selecting elements in this view.

Using the Template Explorer, you can extend templates so that generated code capabilities are improved, add
dependencies to base templates, compare templates that have local overrides with their base (parent) templates,
and even compare directory structures.

Reference | 69

Note: The Compare With context menu option is available when templates are selected in the Template
Explorer.The feature opens a two-layered display with a Structure Compare (for comparing entire folders)
pane on top and an empty pane on the bottom. Double-click the item in the top pane in order to textually
compare the template files in the bottom pane.

Note: The Generic Templates Browser and Dynamic Templates view that were available in earlier versions
of the DSL Toolkit have been deprecated. However, you can activate these capabilities by accessing the
Window ➤ Preferences menu item, clicking the Capabilities node under General, and then clicking the
Advanced... button. When you expand the Model to Text Transformation capability, you can enable
the Generic and Dynamic Template features by selecting the Template Exploring (Legacy) node.

Base Template Sets

Base Template Sets show the template roots for a set of configured sources that can be overridden within the
context of a DSL Project. This view is visible when you select All from the main toolbar. Elements display a
tooltip when the mouse hovers over them.The tooltip itself will display various options when the mouse hovers
over it, including Open in Editor, Close, and Open Properties View.

Base Template Sets can also be searched, collapsed, or expanded using right-click context menus.

Configured Template Contexts

Configured Template Contexts display the set of template sets found in projects, with the active template
shown in boldface. Use the right-click context menu on each template context to access the Activate, Collapse
All, Remove, Search, Refresh, Expand All, and Collapse All options.

Activating a template context also causes the view to show only this root and its base overlay. Font coloring
shows the difference between the local template structure and that of its base, including overrides and extension.
Additionally, a Customize this Template menu item is available to allow the Toolsmith to conveniently import
a template for modification into the DSL project. When in the contextual view model, you can also select from
several overlay options from the top of the view.

Toolbar Menu Items

The Template Explorer has toolbar items that provide navigation, filtering, and configuration functions:

Displays project template roots for you to select in the Template Explorer. During
import, template roots and base sets can be configured, as they can in the
Xpand Roots section of the project properties dialog.

Import template roots from
your projects

Lets you select previously browsed template roots, view the entire history, switch
between different configured contexts, or clear the history list.

Show History List

Opens the editor that originally configured the selected template root.
Open In Editor

Updates template structure for nonworkspace templates (for example, the Base
Template Sets from the platform plug-ins) and updates all configured templates
at the same time.

Refresh Structure

Expands the current selection or root.
Expand All...

Collapses the current selection or root.
Collapse All...

70 | Reference

Displays the Base Template Sets and Configured Template Context roots and
their contents within the Template Explorer. The active configured template
context is displayed in boldface. This option is available in the Active mode.

All

Causes the view to show only the configured template context that is active.
This option is available in the All view mode.

Active

Returns you to the previously viewed template structure.
Back

Focuses the view on the current selection's content only.
Go Into

View Menu Items

The Template Explorer has the following view menu items:

Lets you modify the color settings for base templates, aspects, arounds,
arounds errors, base templates calling local, and local templates.

View Preferences

Lets you control whether a folder has a flat or hierarchical display.
Folder Presentation

Figure Gallery Editor
Descriptions of the Figure Gallery pages.

Creating a Figure Gallery on page 28

Overview Page

Configures basic details for the Figure Gallery.

General Information

Lets you modify plug-in attributes. Typically, accept the default values.

ID sets the identifier for the plug-in.

Version specifies the version number.

Name provides a name for the Figure Gallery.

Provider specifies the provider name.

Package defines the package for the generated code.

Figure Gallery Generator

Configures generator options.

Use IMapMode By default, the DSL Toolkit uses HiMetricMapMode where coordinate points are 0.01 of an
inch. IMapMode uses IdentityMapMode where coordinate points are equal to pixels.

Utilize enhanced features enables the use of enhanced merge capabilities.

Template Directory specifies custom code generation templates.

Reference | 71

Figures Plug-in

Generate generates implementation of this figure gallery.

Validate verifies figure gallery model integrity.

Figures Page

Figures provides a tree view of the figure gallery model.

Details displays key properties for the selected element. Access full properties from the Properties view.

Elements Page

Diagram Elements provides a tree view of the figure gallery model.

Details displays key properties for the selected element. Access full properties from the Properties view.

Tree Page

This page provides a composite viewer and editor for all models involved in this figure gallery.

Related Topics

DSL Toolkit Ant Support
• Model Transformation Support
• Creating Model-To-Text Transformations
• Creating a Model-To-Model Transformation
• EMF API for Together Profiles

Ant Editor

The Ant editor provides basic editing features for Ant scripts. Content Assist, which you can access by pressing
and holding Ctrl and spaceaccessible via ctrl+space, provides a list of proposals including DSL Toolkit tags.

Build Script Overview

The following code snippets will provide a basic tour of an Ant script used for a template sequence.

<project name="build.xml" default="invokeAll" basedir="."
xmlns:xpt="borland:xpand.exec.dsl/2007" xmlns:dsl="borland:exec.dsl/2007"
xmlns:fs="borland:resource.exec.dsl/2007" xmlns:qvt="borland:qvt.exec.dsl/2007"
>

 <dsl:templateset id="tset1"
url="platform:/resource/org.eclipse.dsl.mindmap/templates"/>

 <fs:input id="input1"
uri="platform:/resource/org.eclipse.dsl.mindmap/model/Map.xmi"/>

 <target name="invokeAll">
 <antcall target="invoke1"/>
 <antcall target="invoke2"/>
 </target>

72 | Reference

/help/topic/com.togethersoft.togetherxj.doc.user_togetherxj/html/qvtsupport.htm
/help/topic/com.togethersoft.togetherxj.doc.user_togetherxj/html/qvtcreatemodel2text.htm
/help/topic/com.togethersoft.togetherxj.doc.user_togetherxj/html/qvtcreatemodel2model.htm
/help/topic/com.togethersoft.togetherxj.doc.user_togetherxj/html/profilesemfapi.htm

 <target name="invoke1">
 <xpt:template name="mindmap2csv::CSVFile" templateset="tset1" >
 <?together generated="true"?>
 <xpt:selector refid="input1" expression="first()" id="input2"/>
 <fs:destfile
value="platform:/resource/org.eclipse.dsl.mindmap/out/mindmap.csv"/>
 </xpt:template>
 </target>

 <target name="invoke2">
 <qvt:transform
script="platform:/resource/org.eclipse.dsl.mindmap/transformations/mindmap2requirements.qvto">

 <?together generated="true"?>
 <xpt:selector refid="input1" expression="first()" id="input3"/>
 <fs:destfile
value="platform:/resource/org.eclipse.dsl.mindmap/out/mindmap.requirements"/>
 </qvt:transform>
 </target>

</project>

This build script defines the following items:

• a template set (tset1)
• input (input1)
• Xpand template (invoke1)
• QVT (invoke2)

xpt:template

Defines namespaces for Xpand template invocation.

Example:

<xpt:template name="RubyGen" xmlns:xpt="borland:xpand.exec.dsl/2007"
xmlns:fs="borland:resource.exec.dsl/2007" xmlns:dsl="borland:exec.dsl/2007"
xmlns:model="borland:model.exec.dsl/2007"
/>

DescriptionValueAttribute

Specifies the Xpand template name.stringname

jet:template

Defines namespaces for Java Emitter Template (JET) invocation.

Example:

<jet:template name="Jet2Merlin" xmlns:jet="borland:jet.exec.dsl/2007"
xmlns:xpt="borland:xpand.exec.dsl/2007" xmlns:fs="borland:resource.exec.dsl/2007"
 xmlns:dsl="borland:exec.dsl/2007" xmlns:model="borland:model.exec.dsl/2007"
/>

Reference | 73

DescriptionValueAttribute

Specifies the JET template name.stringname

xpt:context

Defines the Xpand context.

Example:

<xpt:context id="thisContext">
 <xpt:bundle name="bundleName"/>
</xpt:context>

DescriptionValueAttribute

Specifies the Xpand context.stringid

Specifies the Xpand bundle.stringxpt:bundle

xpt:selector

Defines the Xpand selector.

Example:

<xpt:selector id="thisSelector" refId="theRefId" expression="first()"/>

DescriptionValueAttribute

Specifies the Xpand selector.stringid

Specifies the Xpand reference identifier.stringrefId

A valid query that produces the result
set used as input to the template.

stringexpression

model:selector

Defines the model selector.

Example:

<model:selector id="thisSelector" refId="theRefId" type="eClass"/>

DescriptionValueAttribute

Specifies the model selector.stringid

Specifies the model reference identifier.stringrefId

74 | Reference

DescriptionValueAttribute

A valid Eclipse Modeling Framework
(EMF) type.

stringtype

model:selector

Defines the model selector.

Example:

<model:selector id="thisSelector" refId="theRefId" type="eClass"/>

DescriptionValueAttribute

Specifies the model selector.stringid

Specifies the model reference identifier.stringrefId

A valid Eclipse Modeling Framework
(EMF) type. Use either the type or
feature attribute but not both.

stringtype

A valid EMF feature. Use either the
type or feature attribute but not
both.

stringfeature

fs:input

Defines a resource input.

Example:

<dsl:templateset id="tplRoot" url="templates"/>

DescriptionValueAttribute

Specifies the template root identifier.stringid

Specifies the template root URL.stringurl

collect-stale-files

Cleans stale files.

Example:

<collect-stale-files id="cleanId" destLocation="/temp" log="WARNINGS"

Reference | 75

exclude="/custom"/>

DescriptionValueAttribute

Specifies the identifier.stringid

Specifies the location in which to clean
stale files.

stringdestLocation

Specifies the logging level.stringlog

Specifies the locations to avoid.stringexclude

tg-merge-xml

Merges Plugin.xml.

Example:

<tg-merge-xml file1="${in1}" file2="${in2}" target="${target}"/>

DescriptionValueAttribute

Specifies the first Plugin.xml file.stringfile1

Specifies the second Plugin.xml
file.

stringfile2

Specifies the target file that contain the
merged contents of file1 and
file2.

stringtarget

tg-merge-manifest

Merges MANIFEST.MF.

Example:

<tg-merge-manifest file1="${in1}" file2="${in2}" target="${target}"/>

DescriptionValueAttribute

Specifies the first manifest file.stringfile1

Specifies the second manifest file.stringfile2

Specifies the target file that contain the
merged contents of file1 and
file2.

stringtarget

76 | Reference

Code Generation Ant Tasks
Use the custom Ant tasks in this topic to generate code. Generate tasks to invoke the Xpand
(borland:xpand.exec.dsl/2007:template) and Java Emitter
(borland:jet.exec.dsl/2007:template) templates automatically by selecting the Generate Ant Task
action in the context menu of the com.borland.dsl.exec.Script element.

• QVT Operational Developer Guide
• Xpand Language Guide on page 79
• DSL Toolkit Ant Support on page 72
• QVTO Ant Tasks (Together Modeling Guide)

Xpand Template Task

An example of an Xpand template task follows:

<xpt:template name="Uml2Java::Model" templateset="uml2java">
<global name="INPUT" value="this"> <context refid="uml"> <xpt:destfile
expression="this.eClassifiers.name"> <xpt:selector refid="UMLPackage"
expression="this.eClassifiers">
</xpt:template>

Java Emitter Template Task

An example of a Java Emitter template task follows:

<jet:template name="rdb/Column.javajet" templateset="rdb2ddl">
<global name="INPUT" value="this"> <context refid="rdb"> <fs:destfile
value="/testProject/output.ddl"> <model:selector refid="rdbCore" type="Column"
imports="http://www.eclipse.org/qvt/1.0.0/Operational/examples/rdb">
</jet:template>

Attributes

The attributes for both templates are as follows.

DescriptionValueAttribute

Specifies the template name relative to
the template root (templateset).

stringname

Specifies the identifying reference on
the root in which templates are located.
This attribute is not defined.

stringtemplateset

Specifies the identifying reference on a
classload context and indicates which

stringcontext

bundles to use in the classpath during
code generation.

Nested Elements

The nested elements for both templates are as follows.

Reference | 77

/help/topic/org.eclipse.m2m.qvt.oml.doc/references/overview.html
/help/topic/com.togethersoft.togetherxj.doc.user_togetherxj/html/anttasksreferenceqvto_ref.htm

DescriptionValueAttribute

Specifies the template parameter.stringparameter

Specifies the identifying reference on
the root in which templates are located.
This attribute is not defined.

stringtemplateset

Specifies the identifying reference on a
classload context and indicates which

stringcontext

bundles to use in the classpath during
code generation.

Specifies the global variable.stringglobal

Specifies the destination to which the
template evaluation result is written.

stringdestfile

Specifies the template Input Selector.stringinput selector

Related Topics

Common URIs
DSL Toolkit supports the use of ubiquitous URIs, which are URIs that are not tied to a specific Eclipse workspace
location or run-time configuration.

Note: To ensure that the URI support feature is turned on, open the bundles.info file in the
eclipse/configuration/org.eclipse.equinox.simpleconfigurator directory and verify that the line with
the com.borland.dsl.ubiquity plug-in entry ends with true. For earlier versions of DSL Toolkit,
open the config.ini file in the eclipse/configuration directory and verify that the osgi.bundles line
has configured com.borland.dsl.ubiquity@start.

Advantages of Common URIs

Although DSL Toolkit supports conventional file-like URIs such as
platform:/plugin/<bundlename>/<path-to-model-file> and
platform:/resource/<projectname>/<path-to-model-file>, using ubiquitous URIs avoids the
following constraints:

• File-like URIs do not allow you to switch model locations easily. The ability to switch becomes important
when working in environments that contain many models but only a few of which are actually being modified
or accessed at any given time. For example, suppose a modeler is developing two models in a workspace,
Model A and Model B, and Model B references elements in Model A by using a platform:/resource
reference. If another modeler is developing a Model C that depends on Model B—and, implicitly, Model
A—any attempt to access elements from Model B requires that all dependencies of Model A are resolved
and checked into the workspace before work can continue with Model C.

• Until the incorporation of ubiquitous URIs, no mechanism was available for models to access models and
other artifacts from a target platform. In some environments, not all the modules that a developer uses as

78 | Reference

artifacts are necessary in the running platform, platform:/, but some modules are more applicable to
target platforms like target:/ in which components for an application are developed. Target platforms
that are easily configurable and updateable allow users to include in the workspace only those plug-ins that
are essential to their subsystems.You can access other dependencies, such as the entire product itself or
other needed subsystems, through the platform:/ mechanism.This way, you can easily access updates
and install them as new targets.

Supported URI Syntaxes

In addition to platform:/plugin/ and platform:/resource/ schemes, the following ubiquitous URI
syntaxes are supported in DSL Toolkit. In these schemes, <bundle-id> refers to the Bundle-SymbolicName
entry in the bundle or plug-in manifest file (MANIFEST.MF), and <token> is the identifier for a model that
maps to a file within the specified bundle by using a models.tg file.

Allows users to reference a plug-in with model files either from the workspace or from the target platform. Plug-ins in the workspace take precedence. The containing bundles
can then be saved as JAR files like the platform's other plug-ins.

target:/plugin/<bundle-ID>/<path-to-model-file>

Looks up bundle or plug-in first in workspace, then in target platform, and then in the running platform. This hierarchical syntax, in which EMF attempts builds by navigating
through a ../../../ type directory structure, uses the metainformation file to map tokens to actual model files. The key=value plain-text file, models.tg, resides in the

model:/plugin/<bundle-ID>/<token>

META-INF/ directory of a plug-in and is deployed with the bundle, adjacent to its MANIFEST.MF file in the META-INF folder. It has a model-per-line format of <token>=<bundle
relative-path-to-model-file>, as in the following example.

ecore-baseline-version=/model/execute.ecoregenmodel-baseline-version=/model/execute.genmodellatest-domain=/model/exec_2008.domain

With this syntax, tokens provide more information for the modeler, such as where to access the latest version of a model file. For example, suppose that a framework.uml2
model were deployed in a /model folder in a bundle named com.borland.framework. To reference the model by using framework as the identifier, the models.tg file
must contain the framework=model/framework.uml2 reference.

A path within a model can also be specified, following the normal EMF model path syntax. For example, if the preceding framework model included an IFramework element,
specify the model as either of the following paths.model:framework@com.borland.framework#//IFramework
model:/plugin/com.borland.framework/framework#//IFramework

Similar to the model:/plugin/<bundle-ID>/<token> syntax except that model references are handled in a non-hierarchical form. For example, users can use
model:latest-domain@com.borland.dsl.exec without any further information about folder structures or file names. If there is a com.borland.dsl.exec project in

model:<token>@<bundle-ID>

the workspace, that model is used. If it is not in the workspace, the target platform is searched. If the bundle with the specified ID is also absent, the handler reverts to the
running Eclipse instance.

Xpand Language Guide

Introduction

Xpand is the template language that the DSL Toolkit uses to generate textual output from models.This section
provides an overview of the syntax and semantics of the language.

Xpand instructions are surrounded by guillemet (« and ») characters.The Xpand editor provides Content Assist
entries to aid in writing Xpand templates. Press the Content Assist key combination (CTRL+SPACEBAR by
default) to display the window.

Note: Mac users must set their workspace encoding settings to ISO-8859-1 when working with Xpand
templates in the editor. Open Eclipse Preferences. Expand General and then Workspace. Select Other
under Text file encoding. Choose "ISO-8859-1" from the list. Click OK.

Reference | 79

Xpand files must contain only letters, numbers and underscores.

Simple Xpand template

The following example template illustrates the basic structure of the language.

«IMPORT "http://org.example/ant/2007"»

«DEFINE buildxml FOR BuildScript»
<?xml version="1.0"?>
<project name="«name»" default="«defaultTarget»" basedir="«basedir»">
«ENDDEFINE»

Syntax

Comment tags, legal only outside of other tags. Comments can span multiple lines.
COMMENTS

«REM»commentary«ENDREM»

A tag, essentially a method, for an element. It includes a name, parameter list, and the
name of the domain model element.

DEFINE

«IMPORT "http://www.example.org/2007/ant"»

«DEFINE buildxml FOR BuildScript»

«EXPAND genProject FOR this.project»

«ENDDEFINE»

«DEFINE genProject FOR Project»

<?xml version="1.0"?>

<project name="«this.name»" default="." basedir="«this.basedir»">

</project>

«ENDDEFINE»

This statement expands another DEFINE method in the current context and redirects its
output at the current location.

EXPAND

«IMPORT "http://www.example.org/2007/ant"»

«DEFINE buildxml FOR BuildScript»

«EXPAND genProject FOR this.project»

«ENDDEFINE»

«DEFINE genProject FOR Project»

<?xml version="1.0"?>

<project name="«this.name»" default="." basedir="«this.basedir»">

</project>

«ENDDEFINE»

80 | Reference

Declares an import for an Extend file.
EXTENSION

«EXTENSION example::ExtenderClass»

The FILE directive is not supported. Instead you can configure file output as part of a
transformation sequence or a UI contribution.

FILE

Applies the designated Expand method against the result of the expression.
FOR

«EXPAND genProject FOR this.project»

Applies the designated Expand method against each element in the collection.
FOREACH

«EXPAND myDef FOREACH entity.allAttributes»

Alternatively, you can use FOREACH to iterate inplace.

«FOREACH targets AS t» <target name="«t.name»"> </target>
«ENDFOREACH»

Defines conditional expansion statements. ELSEIF and ELSE are optional.
IF

«IF private» private «ELSEIF public» public «ELSE» protected «ENDIF»

Imports a namespace.
IMPORT

«IMPORT "http://www.borland.com/2007/mindmap"»

Defines a local variable for use with the expression.
LET

«LET "<target name=\"" + t.name + "\"/>" AS tag» «tag» «ENDLET»

Expressions language guide

For more information about the expressions language, refer to
http://www.eclipse.org/gmt/oaw/doc/4.1/r10_expressionsReference.pdf.

Related Topics

Domain-Specific Language Preferences
Note: A single workspace-wide registry of URI mappings, which is stored in the workspace preferences,
can be used to resolve any cross-model references.You can use the project preferences to override the
default URI map for each project.

Save all modified resources automatically prior to code generation Enable this
setting to save modified files and avoid warning messages when generating code.

DSL Toolkit

These settings assist with maintaining consistent URI references among DSL models
during refactoring operations.

Model Refactor

Reference | 81

http://www.eclipse.org/gmt/oaw/doc/4.1/r10_expressionsReference.pdf

Participate in workspace resource refactorings enables model-refactoring features.

Add history script as project file artifact enables generation of a file to track refactoring
history. Adjust the file extension as desired.

Search/Update references enables file types for management during refactorings. Use
the Add and Remove buttons to modify the list of file types.

Search for references from runtime platform Expands detection to references from
installed plug-ins. Click Configure to select which plug-ins to include.

Show model URIs in DSL Explorer view Adds URI to model nodes in the DSL Explorer.
Project Editor

Default version for new projects Set this value to configure the version number for
new DSL projects.

Default prefix for base package Configure this option for your organization's base
package, which will automatically appear in new DSL artifacts plug-in configuration.

Default Branding Provider for new projects Set this value for new DSL projects. For
example, Borland Inc..

Open the associated perspective when generating a report Select a value of Always,
Never or Prompt to adjust behavior when working with reports.

Report Definition
Editor

Overwrite user changes in .rptdesign when generating a report Select a value
[Always, Never or Prompt] to adjust behavior when generating reports.

Maps logical URIs and physical URIs.You can add, clone, remove, edit, move, import,
or export entries.

URI Mappings

Related Topics

DSL Explorer View on page 66

DSL Toolkit Activities
The DSL Toolkit includes traditional open-source Eclipse features as well as activities configured specially for
DSL Toolkit that extend upon those open-source features.

The activities configured specially for DSL Toolkit are enabled by default. Turn all of these features on or off
by selecting Window ➤ Preferences... ➤ General ➤ Capabilities and then clicking Advanced.The different
features are listed as nodes under the DSL Development feature.

Tip: The capabilities configured specifically for DSL Toolkit and enabled by default provide the most
useful implementation of domain-specific language and model-driven development. As a best practice,
avoid enabling the open-source features, such as Eclipse Graphical Modeling Framework and Eclipse
Modeling Framework listed under the Development capabilities group, unless first disabling those
features enabled by default. Enabling all the capabilities at the same time can lead to confusion with
cluttered menu items and wizards of the UI.

Capabilities associated with developing a diagram definition for a domain
model.

Diagram Definition

82 | Reference

Capabilities associated with developing a domain-specific model.
Domain Modeling

Support for DSL-specific project structures.
DSL Project

Related Topics

DSL Explorer View on page 66

Domain Diagram Preferences
The following table describes the global settings and saving options for domain diagrams.

Enable animated layout – Enhances the perception of a diagram's spacial movement
by animating the layout.

Global settings

Enable animated zoom – Enhances the perception of a diagram's spacial movement by
animating zoom level changes.

Enable anti-aliasing – Minimizes the distortion of high-level resolution signals at a lower
resolution.

Draw diagram nodes shadows – Creates a shadow effect beneath diagram nodes.

Draw classes with gradient – Creates labels with gradient background filling for class
nodes.

Show name of abstract classes as italic – Displays abstract class names in italics. If
this option is not selected, class names can still be in italics if the corresponding class
node has an option for italics.

Show operation parameters – Enables all operation parameters, such as name:type,
to be visible on a diagram.

Validate on save – Validates the domain model and EMF generator model automatically
when saving. This option can slow down diagram editor performance in larger models.

Saving options

Generate on save – Generates relevant code automatically when saving.This option can
slow down diagram editor performance in larger models.

Automatically save diagram – Saves the domain editor automatically after each
modification.

Delete stale files after code generation – Automatically removes leftover artifacts that
are no longer updated with each regeneration.

Code generation
options

Related Topics

DSL Model Overview
Descriptions of the DSL models.

Reference | 83

At the heart of any DSL project is the DSL model. This model is basically a wrapper for all
content that the DSL manages. It contains basic DSL information as well as references to

DSL model

domain models, diagrams, templates, transformations, reports and transformation
sequences.

The domain model typically captures the concepts and vocabulary of the problem domain.
It not only provides the structure for the input models but also contributes to the generation
of the DSL implementation.

Domain model

The diagram definition model references the GMFMAP and GMFGEN models and provides
options for transforming them. It lets you specify which figure galleries to use. A single

Diagram
definition model

diagram definition can contain references to multiple figure galleries. By pointing to the
target GMFGEN model, the diagram definition model lets you tweak that model's advanced
options. Multiple diagrams or views can reside within a single DSL.

The graphical definition model, gmfgraph.ecore, comes from the GMF project. Its
constructs closely resemble those of the Graphical Editor Framework (GEF). It is advisable
to become familiar with those concepts for success in using the DSL Toolkit.

Graphical
definition model
(GMFGRAPH)

The graphical definition model has its own code-generation templates, which are invoked
either during the creation/recreation of the GMF generator model or the generation of a
stand-alone figures plug-in. Some models contain figure definitions for class and state
machine diagram elements in the org.eclipse.gmf.graphdef plug-in. Other figures
are defined as part of the org.eclipse.uml2.diagram.def UML2 diagram definition
plug-in.

The root element of a graphical definition model is the canvas. It contains references to
figure galleries, nodes, connections, compartments, and labels. Note the distinction between
figures and diagram elements. In a GMF graphical definition, a figure is defined within the
Figure Gallery, which is then referenced by Node, Connections, Compartment, and
Label diagram elements. These diagram elements are siblings to the Figure Gallery
elements. Because they can reference figure definitions from other graphical definition
models, you can reuse figure definitions across DSLs.

A Figure Gallery contains figures, figure descriptors and an optional implementation bundle.
The implementation bundle is used only when generating standalone figure plug-ins. This
property is not intended to be used by the Toolsmith directly.

Figures are typically generated as subclasses of org.eclipse.draw2d.Figure. It is
also possible to define a figure by using an Scalable Vector Graphics (SVG) file.

The tooling model is one of the simplest GMF models. It is primarily used to define items
on a diagram's palette. This model's tools create nodes and links.

Tooling
definition model
(GMFTOOL)

The palette can contain icon images, palette separators, tool groups, and creation tools.
A tool group logically organizes creation-tool entries, such as nodes or links. A separator
can be added between tools and results in a horizontal line on the palette. A creation tool
has image child elements, which are large and small icon bundles that can provide either
the default EMF icons or can use provided icon graphics files.

The mapping model transforms the graphical and tooling models into one or more generator
models that drive templates for code generation.The quality of the mapping model depends

Mapping
definition model
(GMFMAP)

on the quality of the input models. As a result, Toolsmiths must use the validation facilities
provided for each of the input models.

84 | Reference

The canvas-mapping element is required and represents the diagram canvas.You can
create the top node references on the diagram canvas. The domain model must contain
the elements. The containment feature defines where these objects are added.

Each top node reference contains a single node mapping. This mapping binds together a
diagram node, tool, and domain model element. The diagram node is from the graphical
definition model. The tool comes from the tooling definition model, and the element itself
is from the domain model.

The GMF generator model is the largest model used in GMF and the one most likely to be
extended to provide customizations, likely using a decorator model. Much of the model

Generator
model

does not need to be covered in detail because most elements are prefixed with Gen from
the input model.

A trace facility reconciles changes made to the generator model when retransforming from
the mapping model. It is recommended that you use this feature if you plan to make changes
or augment the generator model in any way.

The generator model has references to the EMF domain and generator models for use in
generating the diagram code. The figures used in the diagram are either serialized into
fields in the generator model during the transformation from GMFMAP to GMFGEN or are
referenced by class name from their corresponding generated figure plug-in.

Related Topics

DSL Artifacts on page 85

DSL Artifacts

DescriptionTypeName

DSL definitionmodel.dsl

EMF metamodelmodel.ecore

EMF generator modelmodel.genmodel

domain modelmodel.domain

workflow script modelmodel.exec

domain diagramdiagram.domain_diagram

workflow diagramdiagram.exec_diagram

DSL diagram definitiondiagrams model.diagram

GMF generator modeldiagrams model.gmfgen

Reference | 85

DescriptionTypeName

GMF graphical modeldiagrams model.gmfgraph

GMF mapping modeldiagrams model.gmfmap

GMF tooling definitiondiagrams model.gmftool

model-to-model transformationtransformations.qvto

Textual Notation Configurationmodel.tnt

Textual Notation Generator Modelmodel.tmfgen

Xpand templatetemplates.xpt

report designreports.dsldesign

Related Topics

DSL Model Overview on page 83

DSL-Generated Artifacts on page 86

DSL-Generated Artifacts

DescriptionTypeName

main project for DSLprojectDSL project

model implementationgenerated
project

project.model

diagram implementationgenerated
project

project.model.diagram

model edit implementationgenerated
project

project.edit

model editor implementationgenerated
project

project.editor

text editor implementationgenerated
project

project.text

86 | Reference

DescriptionTypeName

UI contributions implementationgenerated
project

project.ui

DSL feature plug-ingenerated
project

project-feature

used internally for model-to-model
transformation

transformations.qvtotrace

used internally for regenerating
genmodel

diagrams model.trace

textual representation of the
domain model

textual notation.tnt

mappingXMI.xmi

Related Topics

DSL Model Overview on page 83

DSL Artifacts on page 85

Stale Files Tasks

Syntax:
It is important to keep track of stale files during project generation. <varProduct/> enables you to collect a list
of all generated files prior to running a code generation. This way, you can note which files have been
regenerated and which files have been unrevised. Then you can remove specific files you do not want or all
of them.

Selectively deleting stale files avoids having to completely delete the existing project prior to regeneration
(which has been the regular approach to ensure cleanly generated code). However, deletion of an entire project
risks the erroneous removal of essential hand-written code.

Collect Stale Files

By using the collect-stale-files Ant script, stale files are collected from the destlocation folder that
was created prior to running this task. These files can subsequently be deleted by running
clean-stale-files. For an example of this task and its associated attributes, refer to DSL Toolkit Ant
Support.

Report Stale Files

By using the report-stale-files Ant script, you can print the names of the files that were collected by
the collect-stale-files task.

The attributes for this task are as follows:

Reference | 87

DescriptionValueAttribute

Specifies the reference ID of the
collect-stale-files task.

Stringrefid

A pattern that specifies which files are
to be excluded from the list of stale files.

Stringexclude

These files will not be reported. The
pattern may contain '?' and '*' symbols.

Delete Stale Files

By using the clean-stale-files Ant script, you can delete the files that were collected by the
collect-stale-files task.

The attributes for this task are as follows:

DescriptionValueAttribute

Specifies the reference ID of the
collect-stale-files task.

Stringrefid

A pattern that specifies which files are
to be excluded from the list of stale files.

Stringexclude

These files will not be deleted. The
pattern may contain '?' and '*' symbols.

Alternatively, you can select specific files among the stale files listed in the Deployment task of the DSL Editor
and click the Remove button, or click Remove All to remove them all.

Descriptor Files Merging Tasks

Syntax:
You can use the following custom Ant tasks to merge Eclipse descriptor files.

Merge Manifest Task

By using the tg-merge-manifest Ant script, you can merge manifest.mf files by directing generated output
to a file next to manifest.mf (if one exists). For an example of this task and its associated attributes, refer to
DSL Toolkit Ant Support.

Merge Plug-in Descriptor Task

By using the tg-merge-xml Ant script, you can merge generated plugin.xml code for a diagram plug-in so
that values you input are not reset to default values when you regenerate the diagram. For an example of this
task and its associated attributes, refer to DSL Toolkit Ant Support.

88 | Reference

Related Topics

Domain-Specific Language Glossary
This section provides a description of domain-specific language terminology.

A model, also referred to as a
http://www.computer-dictionary-online.org/index.asp?q=concrete%20syntax, that

Diagram Definition

references a number of other models used to define a diagram for a domain-specific
language. This model's filename extension is .diagram and is located by default in the
/diagrams directory of a DSL project.

The central model of any DSL, which is sometimes referred to as an
http://www.computer-dictionary-online.org/index.asp?q=abstract%20syntax or a

Domain Model

metamodel. It defines the elements, attributes and relationships of the domain. It also
captures the domain vocabulary in the naming of model members and can ensure data
integrity through constraints. The model contains references to the .ecore and
.genmodel models. This model's filename extension is .domain and is located by
default in the /model directory of a DSL project.

A Domain-Specific Language or DSL is a language designed for a particular and singular
domain.

DSL

The DSL Toolkit takes a model-centric approach to DSLs. It extends Eclipse and several
key Eclipse projects, such as EMF and GMF, to assist the Toolsmith in creating DSLs
and artifacts used in model-driven development scenarios.

DSL Toolkit

An XMI file that aids in developing a DSL because it can contain sample model data for
use when developing reports, templates and transformations without the need to generate
code or launch a runtime workbench.

Dynamic Instance
Model

Eclipse Modeling Framework is a modeling framework and code-generation facility for
building tools and other applications based on a structured data model. For more
information about EMF, see http://www.eclipse.org/modeling/emf/.

EMF

A figure is the term used in GEF terminology for graphical elements on a DSL diagram.
Figure

A model that defines graphical elements for use in DSL diagrams. Figure galleries can
be reused across multiple diagrams.

Figure Gallery

Eclipse Graphical Editing Framework allows developers to create a rich graphical editor
from an existing application model. For more information about GEF, see
http://www.eclipse.org/gef/.

GEF

Eclipse Graphical Modeling Framework provides a generative component and run-time
infrastructure for developing graphical editors based on EMF and GEF. For more
information about GMF, see http://www.eclipse.org/gmf/.

GMF

Reference | 89

http://www.computer-dictionary-online.org/index.asp?q=concrete%20syntax
http://www.computer-dictionary-online.org/index.asp?q=abstract%20syntax
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/gef/
http://www.eclipse.org/gmf/

Object Constraint Language is a declarative language used for describing model rules
and queries. The specification is available at
http://www.omg.org/technology/documents/modeling_spec_catalog.htm#OCL.

OCL

The role in a software development team that uses the DSL created by the Toolsmith.
Practitioner

A model transformation language, Query / Views / Transformations (QVT) is language
designed to facilitate model-to-model transformations. It is an

QVT

http://www.omg.org/spec/QVT/1.0/ based heavily on OCL constructs. The DSL Toolkit,
supports operational QVT.

Eclipse Rich Client Platform is a platform for deploying GUI applications. It includes an
extensible component framework, which provides the ability to deploy to a variety of
desktop operating systems.

RCP

Reports can be included as part of a DSL to provide documentation generation for
domain models and diagrams.

Report

A template provides model to text transformation. In the DSL Toolkit, Xpand and JET
are used for generating textual content from models.

Template

The member of a software development team who creates and extends software tools.
The Toolsmith often creates DSLs and provides tool configurations, customizations and
extensions.

Toolsmith

A transformation is the generation of one software artifact from another. Typical
tranformations include model-to-model or model-to-text.

Transformation

A series of transformations, both model-to-model and model-to-text, defined for execution
in a script. Workflow models are maintained in *.exec model files and have
corresponding *.exec_diagram files.

Workflow

This template language is used to generate textual content from models.
Xpand

Related Topics

Domain-Specific Languages on page 9

GMF Programmer's Guide
DSL Editor on page 44

90 | Reference

http://www.omg.org/technology/documents/modeling_spec_catalog.htm#OCL
http://www.omg.org/spec/QVT/1.0/
/help/topic/org.eclipse.gmf.doc/prog-guide/index.html

Index

A

activities 82
Ant support 72
artifacts 85, 86

C

C#
generating code 31

Composite Editor
generating 28

D

diagram definition
creating 26

domain models
editor 49

domain-specific languages (DSLs)
overview 9
reports 35

DSL model overview 83
DSL reports

creating 35
DSL Toolking

running 42
DSL Toolkit

capabilities 11
deploying 43
importing from platform 38
overview 9
regenerating 42
workflow 12

DSL Toolkit project
creating 21, 23
importing an existing domain model 21, 23
loading models from PDE platforms 21, 23

dynamic instances
creating 29

F

figure galleries
creating 28
importing 37

figure gallery
editor 71

G

glossary 89

M

metamodels 12
migrating from EMF 39
migrating from Xtend-based templates 41

O

Object Constraint Language (OCL) 12

P

PDE platform
models 38

preferences 81, 83
printing DSL Toolkit diagrams 28

Q

QVT 12, 24, 30, 31
libraries 31
manually registering a metamodel 24
transformations 30

S

supported syntaxes 78

T

Template Explorer 69
templates 32
transformation sequences

configuring a QVT invocation 32
configuring an Xpand invocation 32
creating 32
evaluating 32
generating an Ant script 32
setting up a template root 32
validating 32

Index | 91

	Contents
	Getting Started with Together DSL Toolkit
	Together DSL Toolkit Overview
	Related Resources

	Concepts
	Domain-Specific Languages
	Domain-Specific Modeling
	DSL Toolkit
	Elements of a DSL
	Domain Model
	Diagram
	Model Transformation
	Code Generation Template
	Report
	UI contributions

	Conclusion

	DSL Capabilities
	DSL Toolkit Workflow
	Create DSL Project
	Domain Modeling
	Diagram Development
	Author Model Transformations
	Create Code Generation Templates
	Construct Transformation Sequence
	Design DSL Report
	Test DSL
	Deploy DSL

	DSL Toolkit Best Practices
	General
	Naming Conventions
	Project Artifacts
	Domain Modeling
	Diagrams
	Model Transformations
	Figure Galleries

	URI Mappings
	DSL Toolkit Usage Scenarios
	Complete DSL Development
	DSL as Part of a Larger Application Framework
	Create Model Transformations for Existing Domain Models
	Diagram definition
	Text generation
	Create code generation templates
	Provide reporting capabilities

	Special Considerations for C# Projects
	Project configuration issues
	Common Workarounds

	Procedures
	Creating a DSL Toolkit Project
	Creating a Domain Model
	Importing an Existing Domain Model
	Loading a Model from a PDE Platform
	Creating a DSL Toolkit Project
	Adding Database Persistence Support
	
	
	

	Creating a DSL Diagram Definition
	Generating the Composite Editor
	Printing DSL Toolkit Diagrams
	Creating a Figure Gallery
	Creating a Dynamic Instance Model
	Creating a DSL Transformation
	Generating C# Code
	Creating a DSL Transformation Library
	Creating a DSL Template
	Creating a DSL Transformation Workflow
	Declaring Shared Elements for a DSL Transformation Workflow
	Specifying an Input for a DSL Transformation Workflow
	Configuring an Xpand Invocation
	Configuring a QVT Invocation
	Validating a Workflow
	Evaluating a Transformation Sequence
	Generating an Ant Script for a Transformation Sequence
	Creating a DSL Report
	Creating a Textual Notation for Your Domain Model
	Importing a Figure Gallery
	Importing DSL Projects from an Existing Platform
	Importing Models from the PDE Platform
	Migrating from the Eclipse Modeling Project
	Importing Using Xpand
	Importing GMF Artifacts for the Diagram Editor
	

	Importing ecore for the Domain Model Editor
	

	Migrating Xtend-Based Templates to QVTO-Based Xpand Templates
	Running a DSL
	Regenerating a DSL
	Deploying a DSL

	Reference
	DSL Perspective
	DSL Editor
	Domain Model Editor
	Diagram Definition Editor
	Textual Notation Editor
	Overview Page of Textual Notation Editor
	Language Page of Textual Notation Editor
	Advanced Page of Textual Notation Editor
	Text Page of Textual Notation Editor

	DSL Explorer View
	Workflow Editor
	Template Explorer
	Figure Gallery Editor
	DSL Toolkit Ant Support
	Code Generation Ant Tasks
	Common URIs
	Xpand Language Guide
	Domain-Specific Language Preferences
	DSL Toolkit Activities
	Domain Diagram Preferences
	DSL Model Overview
	DSL Artifacts
	DSL-Generated Artifacts
	Stale Files Tasks
	Descriptor Files Merging Tasks
	Domain-Specific Language Glossary

	Index

