Silk Test 20.0

Keyword-Driven Testing

Micro Focus

The Lawn

22-30 Old Bath Road

Newbury, Berkshire RG14 1QN
UK
http://www.microfocus.com

© Copyright 1992-2019 Micro Focus or one of its affiliates.

MICRO FOCUS, the Micro Focus logo and Silk Test are trademarks or registered trademarks
of Micro Focus or one of its affiliates.

All other marks are the property of their respective owners.

2019-04-30

Contents

KeYWOrd-DriVEN TESIS ooiieieiiiiiiiii st e e e e e e e e e e e e as 4
TeSt AULOMALION OVEIVIEW ...oiiiiiiiiiiiee ittt et e e e s e e e s st e e e s snreeeeeaaes 4
Advantages of Keyword-Driven TESHING ueiieiiiiiiaiiiiiiiieie e e e e e e e e e enneees 5
(S V0] o £ PP TP PPPPPRRTRT 5
Integrating Silk Test with Silk Central ... 6
Uploading a Keyword Library to Silk Central ..o 7
Uploading a Keyword Library to Silk Central from the Command Line cccciiiieeeeennn. 9
Creating a Keyword-Driven Test by Automating a Manual Test ..., 10
Creating a Keyword-Driven Test in Silk Central ..o 11
Managing Keywords in a Test in Silk Central ... 11
Which Keywords Does Silk Test RECOMMENA? ... 13
Using Parameters With KEYWOIAS ooiiiiiiiiiiiiiie et a e 14
Example: Keywords with Parameters ... 15
Creating a Keyword-Driven Test in Silk TESt ...ooiiiiiiiiiie e 16
Recording a Keyword-Driven Test in Silk TESt ..o 17
Setting the Base State for a Keyword-Driven Test in Silk TeSt ..., 18
Implementing a Keyword in Silk TESE ..o 18
Implementing Silk Central Keywords in Silk TESt ... 19
Recording a Keyword in SilK TESE ... e e 20
Editing a KeYWOrd-DIriVEN TESE ...coiiiiiiiiiiie ettt e et e e e e e e e e e e e 20
Combining Keywords into KEyword SEQUENCES oooiiiiiiiiiiiiee et 21
Replaying Keyword-Driven Tests from EClipSe ... 21
Replaying Silk Test Tests from Silk Central ... 22
Replaying Keyword-Driven Tests from the Command Line ... 23
Replaying Keyword-Driven Tests with Apache Ant ... 24
Replaying a Keyword-Driven Test with Specific Variables —cccccoiiiis 26
Grouping KEYWOITS ittt e e e e e bbbttt e e e e e e e e s e e s aabbebeeeeeaaaeeeaesannnnnes 27

Contents | 3

Keyword-Driven Tests

Keyword-driven testing is a software testing methodology that separates test design from test development
and therefore allows the involvement of additional professional groups, for example business analysts, in
the test automation process. Silk Central and Silk Test support the keyword-driven testing methodology and
allow a very close collaboration between automation engineers and business analysts by having
automation engineers develop a maintainable automation framework consisting of shared assets in the
form of keywords in Silk Test. These keywords can then be used by business analysts either in Silk Test to
create new keyword-driven tests or in Silk Central to convert their existing manual test assets to automated
tests or to create new keyword-driven tests.

« A keyword-driven test is an executable collection of keywords. A keyword-driven test can be played back
just like any other test.

« A keyword sequence is a keyword that is a combination of other keywords. Keyword sequences bundle
often encountered combinations of keywords into a single keyword, enabling you to reduce
maintenance effort and to keep your tests well-arranged.

« A keyword is a defined combination of one or more actions on a test object. The implementation of a
keyword can be done with various tools and programming languages, for example Java or .NET.

Keyword-driven test 1

/’—“‘\

M et
ez

7 » Keyword 2

Keyword 1

Yy

|
|
=
|’v‘!
&
|
|
L
N
I

Keyword 3

Y

Keyword sequence 1

T —

Ve ~, |_ Keyword 1

— .

Keyword 2

|— _KE'DE L Keyword 4

Y

There are two phases required to create keyword-driven tests:

1. Designing the test.
2. Implementing the keywords.

Note: The following topics describe how you can automate manual tests with Silk Central, and how
you can perform keyword-driven testing with Silk Central and Silk Test. Any tasks that are performed
with Silk Test are described based on Silk4J, the Silk Test plug-in for Eclipse. The steps for Silk4ANET
and Silk Test Workbench are similar. For additional information on performing keyword-driven testing
with a specific Silk Test client, refer to documentation of the Silk Test client.

Test Automation Overview

Test automation is the process of using software to control the execution of tests by using verifications to
compare the actual outcomes of the execution with the expected outcomes. In the Silk Test context, test
automation includes automated functional and regression tests. Automating your functional and regression
tests enables you to save money, time, and resources.

A test automation framework is an integrated system that sets the rules of automation of a specific product.
This system integrates the tests, the test data sources, the object details, and various reusable modules.

4 | Keyword-Driven Tests

These components need to be assembled to represent a business process. The framework provides the
basis of test automation and simplifies the automation effort.

Advantages of Keyword-Driven Testing

The advantages of using the keyword-driven testing methodology are the following:

« Keyword-driven testing separates test automation from test case design, which allows for better division
of labor and collaboration between test engineers implementing keywords and subject matter experts
designing test cases.

« Tests can be developed early, without requiring access to the application under test, and the keywords
can be implemented later.

« Tests can be developed without programming knowledge.

« Keyword-driven tests require less maintenance in the long run. You need to maintain the keywords, and
all keyword-driven tests using these keywords are automatically updated.

» Test cases are concise.

» Test cases are easier to read and to understand for a non-technical audience.

« Test cases are easy to modify.

* New test cases can reuse existing keywords, which amongst else makes it easier to achieve a greater
test coverage.

* The internal complexity of the keyword implementation is not visible to a user that needs to create or
execute a keyword-driven test.

Keywords

A keyword is a defined combination of one or more actions on a test object. The implementation of a
keyword can be done with various tools and programming languages, for example Java or .NET. In Silk
Test, a keyword is an annotated test method (@Keyword). Keywords are saved as keyword assets.

You can define keywords and keyword sequences during the creation of a keyword-driven test and you can
then implement them as test methods. You can also mark existing test methods as keywords with the
@Keyword annotation. In Java, keywords are defined with the following annotation:

@Keyword("'keyword_name™)
A keyword sequence is a keyword that is a combination of other keywords. Keyword sequences bundle

often encountered combinations of keywords into a single keyword, enabling you to reduce maintenance
effort and to keep your tests well-arranged.

A keyword or a keyword sequence can have a combined total of 20 input and output parameters. Any
parameter of the test method that implements the keyword is a parameter of the keyword. To specify a
different name for a parameter of a keyword, you can use the following:

// Java code

@Argument("'parameter_name')

By default a parameter is an input parameter in Silk4J. To define an output parameter, use the class
OutParameter.

Note: To specify an output parameter for a keyword in the Keyword-Driven Test Editor, use the
following annotation:

${parameter_name}

In the Keyword-Driven Test Editor, you can use the same annotation to use an output parameter of
a keyword as an input parameter for other keywords.

Keyword-Driven Tests | 5

Example

A test method that is marked as a keyword can look like the following:
// Java code
@Keyword(*'Login')
public void login(){
.-- // method implementation
}

or

// Java code

@Keyword(value="Login", description="Logs in with the given

name and password.')

public void login(@Argument(*'UserName™) String userName,
@Argument("'Password’) String password,
@Argument("'Success') OutParameter success) {

. // method implementation
}

where the keyword logs into the application under test with a given user name and
password and returns whether the login was successful. To use the output parameter as
an input parameter for other keywords, set the value for the output parameter inside the
keyword.

f Note: If you are viewing this help topic in PDF format, this code
sample might include line-breaks which are not allowed in
scripts. To use this code sample in a script, remove these line-
breaks.

» The keyword name parameter of the Keyword annotation is optional. You can use
the keyword name parameter to specify a different name than the method name. If
the parameter is not specified, the name of the method is used as the keyword
name.

« The Argument annotation is also optional. If a method is marked as a keyword, then
all arguments are automatically used as keyword arguments. You can use the
Argument annotation to specify a different name for the keyword argument, for
example UserName instead of userName.

Integrating Silk Test with Silk Central

Integrate Silk Test and Silk Central to enable collaboration between technical and less-technical users.

When Silk Test and Silk Central are integrated and a library with the same name as the active Silk Test
project exists in Silk Central, the Keywords view under Silk4J > Show Keywords View displays all
keywords from the Silk Central library in addition to any keywords defined in the active Silk Test project.

Note: The Silk Central connection information is separately stored for every Silk Test user, which
means every Silk Test user that wants to work with keywords and keyword sequences from Silk
Central must integrate Silk Test with Silk Central.

Integrating Silk Test with Silk Central provides you with the following advantages:

« Test management and execution is handled by Silk Central.

» Keywords are stored in the Silk Central database (upload library) and are available to all projects in Silk
Central.

e Manual tests can be directly automated in Silk Central and the created keyword-driven tests can be
executed in Silk Test from Silk Central.

6 | Keyword-Driven Tests

Note: In Silk Test, you can edit and execute keyword-driven tests that are located in Silk Test, and you
can execute keyword-driven tests that are stored in Silk Central. To edit a keyword-driven test, which
is stored in Silk Central, open the keyword-driven test in the Keyword-Driven Test Editor and click
Edit.

The following steps show how you can integrate Silk4J with Silk Central. The steps for Silk4NET and Silk
Test Workbench are similar. For additional information on performing keyword-driven testing with a specific
Silk Test client, refer to the documentation of the Silk Test client.

1. From the menu, select Silk4J > Silk Central Configuration. The Preferences dialog box opens.
2. Type the URL of your Silk Central server into the URL field.

For example, if the Silk Central server name is sctm-server, and the port for Silk Central is 13450, type
http://sctm-server:13450.

3. Specify the web-service token for authentication.

You can generate a web-service token in the User Settings page of Silk Central, which you can access
by clicking on the user name in the Silk Central menu.

Note: To authenticate with your Silk Central user name and password, you could select User
name and password from the Authentication list. However, for security reasons, Micro Focus
recommends using a web-service token for authentication instead of sending your user name and
password over the network.

4. Click Verify to verify if Silk Test can access the Silk Central server with the specified user.
5. Click OK.

Uploading a Keyword Library to Silk Central

To work with Silk Central, ensure that you have configured a valid Silk Central location. For additional
information, see Integrating Silk Test with Silk Central.

To automate manual tests in Silk Central, upload keywords that you have implemented in a Silk Test project
as a keyword library to Silk Central, where you can then use the keywords to automate manual tests.

In Silk Test, select the project in which the keyword-driven tests reside.

Ensure that a library with the same name exists in Silk Central (Tests > Libraries).

In the toolbar, click Upload Keyword Library.

Optional: Provide a description of the changes to the keyword library.

Optional: Click Configure to configure the connection to Silk Central.

Optional: To see which libraries are available in the connected Silk Central instance, click on the link.
Click Upload.

No gD e

/1», Caution: If the keyword library in Silk Central is already assigned to a different automation tool or
"~ another Silk Test client, you are asked if you really want to change the type of the keyword library.
Upload the library only if you are sure that you want to change the type.

Silk Test creates a keyword library out of all the keywords that are implemented in the project. Then Silk
Test saves the keyword library with the name library.zip into the output folder of the project. The
library is validated for consistency, and any changes which might break existing tests in Silk Central are
listed in the Upload Keyword Library to Silk Central dialog box. Finally, Silk Test uploads the library to
Silk Central. You can now use the keywords in Silk Central. Any keyword-driven tests in Silk Central, which
use the keywords that are included in the keyword library, automatically use the current implementation of
the keywords.

Keyword-Driven Tests | 7

8 | Keyword-Driven Tests

Uploading a keyword library from a project that was created in Silk Test 15.5

To upload keyword libraries from Silk Test projects that were created with Silk Test 15.5,
you need to edit the bui 1d .xml file of the project.

1. In the Package Explorer, expand the folder of the project from which you want to
upload the keyword library.

2. Open the build.xml file.

3. Add the keyword assets directory of the project to the JAR build step of the compile
target:

<fileset dir="Keyword Assets" includes="**/*_kwd"
erroronmissingdir="false" />

4. Add the following target for the keyword library:

<target name="build.keyword. library" depends="compile'>
<java
classname=""com.borland.silk.kwd.library.docbuilder._DocBuilder"
fork="true'>
<classpath refid="project.classpath" />

<arg value="AutoQuote Silk4J Library"™ />
<arg value="${output}"” />
<arg value="${output}/library.zip" />
</java>
</target>

The new bui Id.xml file should look like the following:

<?xml version="1.0" encoding=""UTF-8"7?>
<project name=""AutoQuote'" default="compile'>

<property name="'src'" value=''src" />

<property name="bin" value="build" />
<property name="output"™ value="output" />
<property name="lib" value="lib" />

<property name="buildlib" value="buildlib" />

<path id="project.classpath’>
<fFileset dir="${lib}" includes="*_jar"
excludes=""*source*" />
<fileset dir="${buildlib}" includes="*_jar"
excludes=""*source*" />
</path>

<target name="clean'>
<delete dir="${output}" />
</target>

<target name="compile”™ depends="clean>
<mkdir dir="${output}” />

<delete dir="${bin}" />
<mkdir dir="${bin}" />

<componentdef name="ecj"
classname=""org.eclipse.jdt.core.JDTCompilerAdapter"
classpathref="project.classpath" />
<javac srcdir="${src}" destdir="${bin}" debug="true"
source="1.7" target="1.7" encoding=""utf-8"
includeantruntime="false">
<classpath refid="project.classpath” />
<ecj />
</javac>

<jar destfile="${output}/tests.jar"” >
<fFileset dir="${bin}" includes="**/*_class" />
<fFileset dir="${src}" includes="**/*" excludes=""**/
*_java" />
<fileset dir="0Object Maps" includes="**/*_objectmap"
erroronmissingdir="false" />
<fileset dir="Image Assets" includes="**/*_iImageasset"
erroronmissingdir="false" />
<fileset dir="Verifications" includes="**/*_verification"
erroronmissingdir="false" />
<fileset dir="Keyword Assets" includes="**/* kwd"
erroronm ssi ngdi r="fal se" />
</jar>

<copy todir="${output}" overwrite=""true'>
<fileset dir="${lib}" includes="*_jar"
excludes=""*source*" />
</copy>
<delete dir="${bin}" />
</target>

<target name="buil d. keyword. | ibrary" depends="conpile">
<j ava
cl assname="com bor | and. si | k. kwd. | i brary. docbui | der. DocBui | der"
fork="true">
<cl asspath refid="project.classpath" />

<arg val ue="AutoQuote Sil k4J Library" />
<arg val ue="${output}" />
<arg value="${output}/library.zip" />
</java>
</target>
</project>

Uploading a Keyword Library to Silk Central from the
Command Line

Upload an external keyword library to Silk Central from a Java-based command line to integrate Silk
Central and your keyword-driven tests into your continuous integration build system, for example Jenkins.

To upload your keyword library to Silk Central from a Java-based command line:

1.

Select Help > Tools in Silk Central and download the Java Keyword Library Tool.

2. Call the command line tool that is contained in the downloaded jar file with the following arguments:

« Java
« —jar com.borland.silk.keyworddriven.jar
« -upload

e Library name of the library in Silk Central to be updated, or created if it does not yet exist.

« Package name of the library package (zip archive) to be uploaded.

e Hostname:port of the Silk Central front-end server.

« Web-service token of the Silk Central user. Required for authentication. You can generate a

web-service token in the User Settings page of Silk Central, which you can access by clicking on
the user name in the Silk Central menu.

Note: For security reasons, Micro Focus recommends using a web-service token for
authentication instead of sending your user name and password over the network.

Keyword-Driven Tests

9

« Username of the Silk Central user. Not required when using a web-service token for authentication.
« Password of the Silk Central user. Not required when using a web-service token for authentication.
* Update information, describing the changes that were applied to the library, in quotes.

« [-allowUsedKeywordDeletion], an optional flag to allow the deletion of keywords that are used

in a test or keyword sequence. By default, an error is raised if used keywords are attempted to be
deleted.

The following example outlines the command line to upload a library to Silk Central with Java 9 or later:

jJjava --add-modules=java.activation, java.xml_ws -jar
com.borland.silk.keyworddriven.jar -upload

"My library™ "./output/library.zip"” silkcentral:19120 sclLogin
scPassword "Build xy: Implemented missing keywords"

Examples

The following example outlines the command line to upload a library to Silk Central with
Java 8 or prior by using a web-service token for authentication:
java -jar com.borland.silk_keyworddriven.jar -upload

"My library™ "./output/library.zip” silkcentral:19120 scToken
"Build xy: Implemented missing keywords"

To upload the same library with Java 8 or prior by using user name and password for
authentication, use a command like the following:
java -jar com.borland.silk.keyworddriven.jar -upload

"My library" "./output/library.zip" silkcentral:19120 scLogin
scPassword "Build xy: Implemented missing keywords"

The corresponding commands with Java 9 or later are:

java --add-modules=java.activation, java.xml_ws -jar
com.borland.silk.keyworddriven.jar -upload

"My library™ "./output/library.zip"” silkcentral:19120 scToken
"Build xy: Implemented missing keywords"

java --add-modules=java.activation, java.xml_ws -jar
com.borland.silk.keyworddriven.jar -upload

"My library™ "./output/library.zip"” silkcentral:19120 sclLogin
scPassword "Build xy: Implemented missing keywords"

f Note: When uploading a keyword-driven library with Java 9 or
later, ensure JAVA_HOME is defined on the execution servers
and points to a JDK with the corresponding Java version.

Creating a Keyword-Driven Test by Automating a Manual
Test

To convert a manual test to a keyword-driven test in Silk Central:

1. In the menu, click Tests > Details View .

2. Right-click the manual test in the Tests tree and select Automate with... > Keyword-Driven Test from
the context menu. The Keyword-Driven Test Properties dialog box appears.

3. Select the Library which contains the keywords that you want to use.
The library is required to store the set of keywords that the keyword-driven test uses.
4. Click Finish.

Automating a manual test as keyword-driven test generates the following:

10 | Keyword-Driven Tests

The manual test is converted to an automated keyword-driven test, containing a draft keyword for each
test step. These keywords are added to the library that has been selected for this test.

If the test contains calls to shared steps that already exist as keyword sequences, these keyword
sequences are referenced.

If the test contains calls to shared steps that don't exist as keyword sequences, these shared steps
objects are referenced and enhanced to also be keyword sequences, containing a draft keyword for
each test step. This also applies to nested shared steps (shared steps that reference other shared
steps). If the hierarchy of nested shared steps is more than 30 levels deep, draft keywords for calls to
shared steps below that level are created.

If the test contains calls to shared steps that are in a different library, draft keywords for these steps are

created and referenced.

If your test steps contain parameters that you want to access in the generated keywords, the Action
Description of a test step must use the correct syntax. Parameters use the syntax ${<name>}, for

example ${username}. When converting a manual test to a keyword-driven test, these parameters are

automatically added to the generated keyword.

Creating a Keyword-Driven Test in Silk Central

1. In the menu, click Tests > Details View .

2. Select a container or folder node in the Tests tree where you want to insert a new test, or select the test

that you want to edit.

Click I (New Child Test) on the toolbar, or click E| (Edit).

The New Test/Edit Test dialog box appears.
4. Type a name and description for the test.
Note: Silk Central supports HTML formatting and cutting and pasting of HTML content for
Description fields.
5. Select the test type Keyword-Driven Test from the Type list.
6. Select the Library which contains the keywords that you want to use.
The library is required to store the set of keywords that the keyword-driven test uses.
7. Click Finish.

Managing Keywords in a Test in Silk Central

Tests > Details View > <Test> > Keywords

The Keywords page enables you to manage the keywords of the selected keyword-driven test. The
following actions are possible:

Task Steps
Opening a test or keyword Click Open with Silk Test to open the selected test or keyword sequence in Silk
sequence in Silk Test Test.

Adding a keyword 1. Click New Keyword at the bottom of the keywords list, or right-click a

keyword and select Insert Keyword Above from the context menu.

Note: You can let Silk Test recommend keywords based on their
usage. Toggle the recommendations on or off with Enable

Recommendations or Disable Recommendations in the context

Keyword-Driven Tests

11

Task

Steps

menu. For additional information, see Which Keywords Does Silk Test
Recommend?.
2. Select a keyword from the list of available keywords or type a new name to
create a new keyword.
3. Click Save.

Alternatively, double click an existing keyword in the All Keywords pane on the
right or drag and drop it.

(% Tip: You can select multiple keywords with Ctrl+Click. When dropping
= them, they will be sorted in the order that you selected them in.

Deleting a keyword

Click X in the Actions column of the keyword that you want to delete. Click
Save.

Changing the order of keywords

Drag and drop a keyword to the desired position. Click Save.

Creating a keyword sequence (a
keyword consisting of other
keywords)

1. Select the keywords that you want to combine in the keywords list. Use Ctrl
+Click or Shift+Click on the row number column to select multiple keywords.

2. Right-click your selection and click Combine.
3. Specify a Name and Description for the new keyword sequence.

Extracting keywords from a
keyword sequence

Right-click a keyword sequence and click Extract keywords. The original
keyword sequence is then replaced by the keywords that it contained, but it is not
removed from the library. Click Save.

Copying and pasting keywords
into tests or keyword sequences

1. Select the keywords that you want to copy in the keywords list. Use Ctrl
+Click or Shift+Click on the row number column to select multiple keywords.

2. Press Ctrl+C to copy your selection, or Ctrl+X if you want to move the
keywords.

3. Open the test or keyword sequence that you want to copy the keywords to
and select the row above which the keywords will be inserted.

4. Press Ctrl+V.

Tip: You can also paste your selected keywords into Excel, and copy and
= paste them from there into your tests or keyword sequences.

Defining parameters for a
keyword sequence

1. Click Parameters above the keywords list. The Parameters dialog box
appears.

2. Click Add Parameter.

3. Specify a Name for the new parameter. If the parameter is an outgoing
parameter (delivers a value, instead of requiring an input value), check the
Output checkbox.

4. Click OK.

5. Click Save.

Note: A keyword or a keyword sequence can have a combined total of 20
input and output parameters.

Editing a draft keyword

Click =" in the Actions column of the draft keyword that you want to edit.
2. Select a Group or specify a new group for the keyword.

3. Type a Description for the keyword. This information is valuable for the
engineer who will implement the keyword.

12 | Keyword-Driven Tests

Task Steps

4. Click OK.

5. Optional: Click into a parameter field to add parameters for the keyword. If the
keyword is implemented with Silk Test, these parameters will appear in the
generated code stub.

6. Click Save.

Searching for a keyword Use the search field in the All Keywords pane on the right to find a specific
keyword. When you enter alphanumeric characters, the list is dynamically
updated with all existing matches. Tips for searching:

« The search is case-insensitive: doAction will find doaction and
DOAction.

< Enter only capital letters to perform a so-called CamelCase search: ECD will
find Enter Car Details, Enter Contact Details and
EnterContactDetails.

» Keyword and group names are considered: test will find all keywords that
contain test and all keywords in groups where the group name contains
test.

» ?replaces 0-1 characters: user?test will find userTest and
usersTest.

¢ *replaces 0-n characters: my*keyword will find myKeyword,
myNewKeyword and my_other_keyword.

e <string>. only searches in group names: group . will find all keywords
in groups where the group name contains group.

« .<string> only searches in keyword names: . keyword will find all
keywords that contain keyword.

« <string>.<string> searches for a keyword in a specific group:
group.word will find myKeyword in the group myGroup.

« Use quotes to search for an exact match: "Keyword" will find Keyword
and MyKeyword, but not keyword.

Which Keywords Does Silk Test Recommend?

When you add keywords to a keyword-driven test or a keyword sequence in the Keyword-Driven Test
Editor, Silk Test recommends existing keywords which you might want to use as the next keyword in your
test. The recommended keywords are listed on top of the keywords list, and are indicated by a bar graph,
with the filled-out portion of the graph corresponding to how much Silk Test recommends the keyword.

Silk Test recommends the keywords based on the following:

< When you add the first keyword to a keyword-driven test or a keyword sequence, Silk Test searches for
similar keywords that are used as the first keyword in other keyword-driven tests or keyword sequences.
The keywords that are used most frequently are recommended higher.

« When you add additional keywords to a keyword-driven test or a keyword sequence, which already
includes other keywords, Silk Test recommends keywords as follows:

» If there are keywords before the position in the keyword-driven test or the keyword sequence, to
which you add a new keyword, Silk Test compares the preceding keywords with keyword
combinations in all other keyword-driven tests and keyword sequences and recommends the
keywords that most frequently follow the preceding combination of keywords.

Keyword-Driven Tests | 13

« If there are no keywords before the position in the keyword-driven test or the keyword sequence, but
there are keywords after the current position, then Silk Test compares the succeeding keywords with
keyword combinations in all other keyword-driven tests and keyword sequences and recommends
the keywords that most frequently precede the succeeding combination of keywords.

« Additionally, Silk Test takes into account how similar the found keywords are. For example, if both the
name and group of two keywords match, then Silk Test recommends these keywords higher in
comparison to two keywords for which only the name matches.

« If you have established a connection with Silk Central, any keywords included in keyword-driven tests,
which belong to the keyword library that corresponds to the current project, are also considered.

Using Parameters with Keywords

A keyword or a keyword sequence can have a combined total of 20 input and output parameters. This topic
describes how you can handle these parameters with Silk Test.

In the Keyword-Driven Test Editor, you can view any defined parameters for a keyword or a keyword
sequence and you can edit the parameter values.

In the Keywords window, you can see which parameters are assigned to a keyword or a keyword
sequence when you hover the mouse cursor over the keyword or keyword sequence.

Input parameters for simple keywords

You can define and use input parameters for keywords in the same way as for any other test method.
The following code sample shows how you can define the keyword setUserDetai Is with the two input
parameters userName and password:

@Keyword
public void setUserDetails(String userName, String password) {

-

Output parameters for simple keywords

You can define a return value or one or more output parameters for a keyword. You can also use a
combination of a return value and one ore more output parameters.

The following code sample shows how you can define the keyword getText that returns a string:

@Keyword
public String getText() {
return "‘text";

}

The following code sample shows how you can define the keyword getUserDetai Is with the two output
parameters userName and password:

@Keyword

public void getUserDetails(OutParameter userName, OutParameter password) {

userName.setValue("'name');
password.setValue(*'password'™);

}

Parameters for keyword sequences

You can define or edit the parameters for a keyword sequence in the Parameters dialog box, which you
can open if you click Parameters in the Keyword Sequence Editor.

14 | Keyword-Driven Tests

Example: Keywords with Parameters

This topic provides an example of how you can use keywords with parameters. A keyword or a keyword
sequence can have a combined total of 20 input and output parameters.

As a first step, create a keyword-driven test which contains the keywords that you want to use. You can do
this by recording an entire keyword-driven test, or by creating a new keyword-driven test and by adding the
keywords in the keyword-driven test editor.

In this example, the keyword-driven test includes the following keywords:

Start application This is the standard keyword that starts the AUT and sets the base state.

Login This keyword logs into the AUT with a specific user, identified by a user name and a
password.

GetCurrentUser This keyword returns the name of the user that is currently logged in to the AUT.
AssertEquals This keyword compares two values.

Logout This keyword logs the user out from the AUT.

The next step is to add the parameters to the keywords. To do this, open the test scripts of the keywords
and add the parameters to the methods.

To add the input parameters UserName and Password to the keyword Login, change

@Keyword(*'Login')
public void login(Q) {

}

to

@Keyword(*'Login')
public void login(String UserName, String Password) {

}
To add the output parameter UserName to the keyword GetCurrentUser, change

@Keyword('GetCurrentUser')
public void getCurrentUser() {

}

to

@Keyword("'GetCurrentUser™)
public void getCurrentUser(OutParameter CurrentUser) {

-

The keyword-driven test in the Keyword-Driven Test Editor should look similar to the following:

Keyword-Driven Tests | 15

Keyword Parameters
Start application

Login

GetCurrentUser

AssertEquals

X X X X X
&l &1 &l & &

Logout

Now you can specify actual values for the input parameters in the Keyword-Driven Test Editor. To retrieve
the value of the output parameter UserName of the keyword GetCurrentUser, provide a variable, for
example ${current user}. You can then pass the value that is stored in the variable to subsequent keywords.

Keyword Parameters
® [Start application
* & Login
* [GetCurrentUser Mcurrent user}
* [AssertEquals John Smith Heurrent user}
x & Logout

Creating a Keyword-Driven Test in Silk Test

Before you can create a keyword-driven test in Silk Test, you have to select a project.

Use the Keyword-Driven Test Editor to combine new keywords and existing keywords into new keyword-
driven tests. New keywords need to be implemented as automated test methods in a later step.

This topic shows you how to create a keyword-driven test in Silk4J. The steps for Silk4NET and Silk Test
Workbench are similar. For additional information on performing keyword-driven testing with a specific Silk
Test client, refer to the documentation of the Silk Test client.

1. Click Silk4J > New Keyword-Driven Test. The New Keyword-Driven Test dialog box opens.
2. Type a name for the new test into the Name field.
3. Select the project in which the new test should be included.
By default, if a project is active, the new test is created in the active project.
Note: To optimally use the functionality that Silk Test provides, create an individual project for each
application that you want to test, except when testing multiple applications in the same test.
4. Click Finish.
5. Click No to create an empty keyword-driven test. The Keyword-Driven Test Editor opens.
6. Perform one of the following actions:
* To add a new keyword, type a name for the keyword into the New Keyword field.
« To add an existing keyword, expand the list and select the keyword that you want to add.
7. Press Enter.
8. Repeat the previous two steps until the test includes all the keywords that you want to execute.
9. Click Save.

16 | Keyword-Driven Tests

Continue with implementing the keywords or with executing the test, if all keywords are already
implemented.

Recording a Keyword-Driven Test in Silk Test

Before you can create a keyword-driven test in Silk Test, you have to select a project.
To record a single keyword, see Recording a Keyword.

To record a new keyword-driven test:

1. Click Silk4J > New Keyword-Driven Test. The New Keyword-Driven Test dialog box opens.

2. Type a name for the new test into the Name field.

3. Select the project in which the new test should be included.

By default, if a project is active, the new test is created in the active project.

Note: To optimally use the functionality that Silk Test provides, create an individual project for each
application that you want to test, except when testing multiple applications in the same test.

4. Click Finish.

5. Click Yes to start recording the keyword-driven test.

6. If you have set an application configuration for the current project and you are testing a web application,
the Select Browser dialog box opens:
a) Select the browser.
b) Optional: If you want to test a web application on a desktop browser with a predefined browser size,
select the browser size from the Browser size list.
For example, to test a web application on Apple Safari and in a browser window which is as big as
the screen of the Apple iPhone 7, select Apple iPhone 7 from the list.

¢) Optional: Select an Orientation for the browser window.

d) Optional: Click Edit Browser Sizes to specify a new browser size and to select which browser sizes
should be shown in the Browser size list.

7. Depending on the dialog that is open, perform one of the following:

* Inthe Select Application dialog box, click OK.
* In the Select Browser dialog box, click Record.
8. In the application under test, perform the actions that you want to include in the first keyword.

For information about the actions available during recording, refer to the documentation of the Silk Test
client .

9. To specify a name for the keyword, hover the mouse cursor over the keyword name in the Recording
window and click Edit.

Note: Silk Test automatically adds the keyword Start application to the start of the keyword-driven
test. In this keyword, the applications base state is executed to enable the test to replay correctly.
For additional information on the base state, refer to the documentation of the Silk Test client.

10.Type a name for the keyword into the Keyword name field.
11.Click OK.

12.To record the actions for the next keyword, type a name for the new keyword into the New keyword
name field and click Add. Silk Test records any new actions into the new keyword.

13.Create new keywords and record the actions for the keywords until you have recorded the entire
keyword-driven test.

14.Click Stop. The Record Complete dialog box opens.

Silk Test creates the new keyword-driven test with all recorded keywords.

Keyword-Driven Tests | 17

Setting the Base State for a Keyword-Driven Test in Silk
Test

When you execute a keyword-driven test with Silk Test and the keyword-driven test calls a base state
keyword, Silk Test starts your AUT from the base state.

During the recording of a keyword-driven test, Silk Test searches in the current project for a base state
keyword, which is a keyword for which the isBaseState property is set to true.

« If a base state keyword exists in the current project, Silk Test inserts this keyword as the first keyword of
the keyword-driven test.

< If there is no base state keyword in the project, Silk Test creates a new base state keyword with the
name Start application and inserts it as the first keyword of the keyword-driven test.

To manually mark a keyword as a base state keyword, add the isBaseState property to the Keyword
annotation, and set the value of the property to true:

@Keyword(value = "Start application”, isBaseState = true)
public void start application() {
// Base state implementation

}

Implementing a Keyword in Silk Test

Before implementing a keyword, define the keyword as part of a keyword-driven test.

The following steps show how you can implement a keyword in Silk4J. The steps for Silk4NET and Silk
Test Workbench are similar. For additional information on performing keyword-driven testing with a specific
Silk Test client, refer to the documentation of the Silk Test client.

To implement a keyword for reuse in keyword-driven tests:

1. Open a keyword-driven test that includes the keyword that you want to implement.

In the Keyword-Driven Test Editor, click Implement Keyword to the left of the keyword that you want
to implement. The Select Keyword Location dialog box opens.

Click Select to select the package and class to which you want to add the keyword implementation.
Optional: Define the package name for the new keyword implementation in the Package field.
Define the class name for the new keyword implementation in the Class field.

Click OK.

Perform one of the following actions:

n

N o oMo

* To record the keyword, click Yes.
* To create an empty keyword method, click No.
8. If you have set an application configuration for the current project and you are testing a web application,

the Select Browser dialog box opens:

a) Select the browser.

b) Optional: If you want to test a web application on a desktop browser with a predefined browser size,
select the browser size from the Browser size list.
For example, to test a web application on Apple Safari and in a browser window which is as big as
the screen of the Apple iPhone 7, select Apple iPhone 7 from the list.

c) Optional: Select an Orientation for the browser window.

d) Optional: Click Edit Browser Sizes to specify a new browser size and to select which browser sizes
should be shown in the Browser size list.

18 | Keyword-Driven Tests

9. Click Record.
For additional information on recording, refer to the documentation of the Silk Test client.

If an implemented keyword is displayed as not implemented in the Keywords window, check Project >
Build Automatically in the Eclipse menu.

Implementing Silk Central Keywords in Silk Test

Before implementing Silk Central keywords, define the keywords as part of a keyword-driven test in Silk
Central.

The following steps show how you can implement Silk Central keywords in Silk4J. The steps for Silk4ANET
and Silk Test Workbench are similar. For additional information on performing keyword-driven testing with a
specific Silk Test client, refer to the documentation of the Silk Test client.

To implement a Silk Central keyword in Silk Test:

1. Create a project in Silk Test with the same name as the keyword library in Silk Central, which includes
the keyword-driven test.

2. If the keyword library in Silk Central has no type assigned, click Silk4J > Upload Keyword Library to
set the library type.

3. Optional: To implement a specific keyword in Silk Test from Silk Central, open the Keywords tab of the
library in Silk Central and click Implement with Silk Test in the Actions column of the keyword.

4. In the Silk Test menu, click Silk4J > Show Keywords View.
5. In the Keywords view, double-click the keyword-driven test.

To update the Keywords view with any changes from Silk Central, click Refresh.
6. In the toolbar, click Record Actions.

7. If you have set an application configuration for the current project and you are testing a web application,
the Select Browser dialog box opens:

a) Select the browser.

b) Optional: If you want to test a web application on a desktop browser with a predefined browser size,
select the browser size from the Browser size list.
For example, to test a web application on Apple Safari and in a browser window which is as big as
the screen of the Apple iPhone 7, select Apple iPhone 7 from the list.

c) Optional: Select an Orientation for the browser window.

d) Optional: Click Edit Browser Sizes to specify a new browser size and to select which browser sizes
should be shown in the Browser size list.

8. Click Record.
For additional information on recording, refer to the documentation of the Silk Test client.
9. Record the actions for the first unimplemented keyword.
10.When you have recorded all the actions for the current keyword, click Next Keyword.
11.To switch between keywords in the Recording window, click Previous Keyword and Next Keyword.
12.Click Stop. The Record Complete dialog box opens.

Note: You cannot delete keywords or change the sequence of the keywords in a keyword-driven test
from Silk Central, as these tests are read only in Silk Test.

If an implemented keyword is displayed as not implemented in the Keywords window, check Project >
Build Automatically in the Eclipse menu.

Keyword-Driven Tests | 19

Recording a Keyword in Silk Test

You can only record actions for a keyword that already exists in a keyword-driven test, not for a keyword
that is completely new. To record a new keyword-driven test, see Recording a Keyword-Driven Test.

To record the actions for a new keyword:

1. Open a keyword-driven test that includes the keyword that you want to record.

2. In the Keyword-Driven Test Editor, click Implement Keyword to the left of the keyword that you want
to implement. The Select Keyword Location dialog box opens.

Click Select to select the package and class to which you want to add the keyword implementation.
Optional: Define the package name for the new keyword implementation in the Package field.

Define the class name for the new keyword implementation in the Class field.

Click OK.

If you have set an application configuration for the current project and you are testing a web application,
the Select Browser dialog box opens:

a) Select the browser.

b) Optional: If you want to test a web application on a desktop browser with a predefined browser size,
select the browser size from the Browser size list.
For example, to test a web application on Apple Safari and in a browser window which is as big as
the screen of the Apple iPhone 7, select Apple iPhone 7 from the list.

¢) Optional: Select an Orientation for the browser window.
d) Optional: Click Edit Browser Sizes to specify a new browser size and to select which browser sizes
should be shown in the Browser size list.
8. Click Record. The Recording window opens and Silk Test starts recording the actions for the keyword.
9. In the application under test, perform the actions that you want to test.

For information about the actions available during recording, refer to the documentation of the Silk Test
client .

N o g ks w

10.Click Stop. The Record Complete dialog box opens.

The recorded actions are displayed in the context of the defined class.

Editing a Keyword-Driven Test

Note: In Silk Test, you can edit and execute keyword-driven tests that are located in Silk Test, and you
can execute keyword-driven tests that are stored in Silk Central. To edit a keyword-driven test, which
is stored in Silk Central, open the keyword-driven test in the Keyword-Driven Test Editor and click
Edit.

To edit a keyword-driven test:

1. Open the keyword-driven test in the Keyword-Driven Test Editor.
a) Under Tests > Details View in the Silk Central menu, expand the project in which the keyword-
driven test resides.
b) Select the keyword-driven test in the Tests tree.
c) Select the Keywords tab.
2. To add a new keyword to the keyword-driven test:
a) Click into the New Keyword field.
b) Type a name for the new keyword.
c) Press Enter.

20 | Keyword-Driven Tests

To edit an existing keyword, click Open Keyword to the left of the keyword.
Note: Silk Central has the ownership of any keyword that has been created in Silk Central, which
means any changes that you make to such keywords are saved in Silk Central, not in Silk Test.
To copy a keyword into the keyword-driven test:
a) Select the keyword.

) Tip: Use Ctrl+Click or Shift+Click on the row number column to select multiple keywords.
i

b) Press Ctrl+C.

c) Select the row above which you want to insert the keyword.
d) Press Ctri+V.

To move a keyword to another location in the keyword-driven test, click on the keyword and drag it to the
new location, or:

a) Select the keyword.

) Tip: Use Ctrl+Click or Shift+Click on the row nhumber column to select multiple keywords.
id

b) Press Ctri+X.
c) Select the row above which you want to insert the keyword.
d) Press Ctri+V.

To remove the keyword from the keyword-driven test, click Delete Keyword to the left of the keyword.

The keyword is still available in the Keywords window and you can re-add it to the keyword-driven test
at any time.

To save your changes, click Save.

Combining Keywords into Keyword Sequences

Use the Keyword-Driven Test Editor to combine keywords, which you want to execute sequentially in
multiple keyword-driven tests, into a keyword sequence.

1.

N

o > w

6.

Open the keyword-driven test that includes the keywords that you want to combine.

In the Keyword-Driven Test Editor, press and hold down the Ctrl key and then click the keywords
that you want to combine.

Right-click on the selection and click Combine. The Combine Keywords dialog box opens.
Type a name for the new keyword sequence into the Name field.

Optional: Type a description for the new keyword sequence into the Description field.

Click Combine.

The new keyword sequence opens and is also displayed in the Keywords window. You can use the
keyword sequence in keyword-driven tests.

Note: Like any other keyword, you cannot execute a keyword sequence on its own, but only as part of
a keyword-driven test.

Replaying Keyword-Driven Tests from Eclipse

The following steps show how you can replay a keyword-driven test in Silk4J. The steps for Silk4NET and
Silk Test Workbench are similar. For additional information on performing keyword-driven testing with a
specific Silk Test client, refer to the documentation of the Silk Test client.

1.

In the Project Explorer, navigate to the keyword-driven test asset that you want to replay.

Keyword-Driven Tests

21

Richt-click the asset name.

Choose Run As > Keyword-Driven Test.

Optional: To open the Run Configurations dialog box, choose Run As > Run Configurations.
Optional: In the Run Configurations dialog box, you can select a different test or project.

Optional: In the Global variables grid of the Run Configurations dialog box, you can set the values of

any variables that are used for the execution of the keyword-driven test. These values are used

whenever you execute the keyword-driven test asset.

a) Type a Variable Name and a Value for the variable into the corresponding fields.

b) Type Enter to add a new line to the grid.

c) Repeat the previous two steps until you have set the values of all the global variables that you want
to use.

When executing keyword-driven tests that are part of an automation framework and that are managed

in a test management tool, for example Silk Central, you can also add a new .properties file to a project

to set the values of global variables for the entire project. For additional information, see Replaying a

Keyword-Driven Test with Specific Variables.

7. Optional: To close the Run Configurations dialog box and to start the execution of the keyword-driven
test asset, click Run.

8. If you are testing a web application, the Select Browser dialog box opens. Select the browser and click

Run.

9. Optional: If necessary, you can press both Shift keys at the same time to stop the execution of the test.

10.When the test execution is complete, the Playback Complete dialog box opens. Click Explore Results
to review the TrueLog for the completed test.

o g~ wDN

Replaying Silk Test Tests from Silk Central

To access Silk Test tests from Silk Central, you need to store the Silk Test tests in a JAR file in a repository
that Silk Central can access through a source control profile.

To replay functional tests in Silk Test from Silk Central, for example keyword-driven tests:

1. In Silk Central, create a project from which the Silk Test tests will be executed.
2. Under Tests > Details View, create a new test container for the new project.

For additional information about Silk Central, refer to the Silk Central Help.

The test container is required to specify the source control profile for the Silk Test tests.
a) In the Tests tree, right-click on the node below which you want to add the new test container.
b) Click New Test Container. The New Test Container dialog box opens.

c) Type a name for the new test container into the Name field.
For example, type Keyword-Driven Tests

d) Inthe Source control profile field, select the source control profile in which the JAR file, which
contains the Silk Test tests, is located.

e) Click OK.
3. Create a new JUnit test in the new test container.

For additional information about Silk Central, refer to the Silk Central Help.
a) In the Test class field of the JUnit Test Properties dialog box, type the name of the test class.

Specify the fully-qualified nhame of the test suite class. For additional information, see Replaying
Keyword-Driven Tests from the Command Line.

b) In the Classpath field, specify the name of the JAR file that contains the tests.
¢) For keyword-driven testing, also specify the paths to the following files, separated by semicolons.

o com.borland.silk.keyworddriven.engine.jar

22 | Keyword-Driven Tests

http://documentation.microfocus.com:8080/help/topic/com.microfocus.sctm.doc/GUID-22CEF941-BB3D-449B-AE75-A9AEF8F9217B.html
http://documentation.microfocus.com:8080/help/topic/com.microfocus.sctm.doc/GUID-22CEF941-BB3D-449B-AE75-A9AEF8F9217B.html

« com.borland.silk.keyworddriven. jar
o silktest-jtf-nodeps.jar

These files are located in the Silk Test installation directory. For example, the Classpath field for the
keyword-driven tests in the JAR file tests. jJar might look like the following:

tests.jar;C:\Program Files

(x86)\Si IkK\Si lkTest\ng\KeywordDrivenTesting
\com.borland.silk._keyworddriven.engine.jar;C:\Program Files
(x86)\Si IkK\Si lkTest\ng\KeywordDrivenTesting
\com.borland.silk.keyworddriven. jar;C:\Program Files
(x86)\Si IK\Si lkTest\ng\JTF\si lktest-jtf-nodeps. jar

4. Click Finish.
5. Execute the tests.
For additional information about executing tests in Silk Central, refer to the Silk Central Help.

Replaying Keyword-Driven Tests from the Command Line

You must update the PATH variable to reference your JDK location before performing this task. For
additional information, see JDK Installation for Microsoft Windows.

To replay keyword-driven tests from the command line, for example when replaying the tests from a ClI
server, use the KeywordTestSui te class.

1. To execute a keyword-driven test from the command line, create a JUnit test suite with the
@KeywordTests annotation. For example, if you want to execute the keyword-driven test My Keyword-
Driven Test, create the JUnit test suite MyTestSuite as follows:

@RunWith(KeywordTestSuite.class)
@KeywordTests({ "My Keyword-Driven Test" })
public class MyTestSuite {

by
2. Include the following in the CLASSPATH:
e junit_jar.
« The org.hamcrest.core JAR file.
e silktest-jtf-nodeps.jar.
e com.borland.silk.keyworddriven._engine.jar.
e The JAR of folder that contains your keyword-driven tests.
set CLASSPATH=<eclipse_install_directory>\plugins
\org.-junit_4.11.0.v201303080030\junit.jar;<eclipse_install_directory>
\plugins\org.-hamcrest.core 1.3.0.v201303031735. jar ;%OPEN_AGENT_HOME%\JTF

\silktest-jtf-nodeps. jar;%OPEN_AGENT_HOME%\KeywordDrivenTesting
\com.borland.silk.keyworddriven.engine. jar;C:\myTests. jar

3. Optional: Add a new .properties file to the project to set the values of any variables that are used for the
execution of the keyword-driven test.

For additional information, see Replaying a Keyword-Driven Test with Specific Variables.
4. Run the JUnit test method by typing java org.junit.runner._JUnitCore <Name>, where the
Name is the name of the JUnit test suite that you have created in the first step.

Note: For troubleshooting information, reference the JUnit documentation at: http://
junit.sourceforge.net/doc/fag/fag.htm#running_1.

Keyword-Driven Tests

23

http://documentation.microfocus.com:8080/help/topic/com.microfocus.sctm.doc/GUID-22CEF941-BB3D-449B-AE75-A9AEF8F9217B.html
http://docs.oracle.com/javase/7/docs/webnotes/install/windows/jdk-installation-windows.html
http://junit.sourceforge.net/doc/faq/faq.htm#running_1
http://junit.sourceforge.net/doc/faq/faq.htm#running_1

Example

For example, to run the two keyword driven tests My Keyword Driven Test 1 and My
Keyword Driven Test 2, create the following class:

package demo;
import org.-junit.runner_RunWith;

import com.borland.silktest. jtf_keyworddriven.KeywordTestSuite;
import com.borland.silktest. jtf._keyworddriven.KeywordTests;

@RunWith(KeywordTestSuite.class)
@KeywordTests({ "My Keyword Driven Test 1', "My Keyword Driven

Test 2" })
public class MyTestSuite {
}

To run the class from the command line, type the following:
java org.junit.runner.JUnitCore demo.MyTestSuite

To run the class from the command line, using global variables stored in the file c:\temp
\globalvariables.properties, type the following:
jJjava -Dsilk_keyworddriven.engine.globalVariablesFile=c:\temp

\globalvariables.properties org.junit.runner.JunitCore
demo.MyTestSuite

For additional information, see Replaying a Keyword-Driven Test with Specific Variables.

Replaying Keyword-Driven Tests with Apache Ant

To perform the actions described in this topic, ensure that Apache Ant is installed on your machine.

To replay keyword-driven tests with Apache Ant, for example to generate HTML reports of the test runs,
use the KeywordTestSuite class.

1. To execute a keyword-driven test with Apache Ant, create a JUnit test suite with the @KeywordTests
annotation. For example, if you want to execute the keyword-driven test My Keyword-Driven Test, create
the JUnit test suite MyTestSuite as follows:

@RunWith(KeywordTestSuite.class)
@KeywordTests({ "My Keyword-Driven Test" })
public class MyTestSuite {

}
2. Open the bui ld.xml file of the Silk Test project, which includes the keyword-driven test.

3. To execute the keyword-driven test, add the following target to the bui Id . xml file:

<target name="'runTests' depends="compile'>
<mkdir dir="_/reports'/>
<junit printsummary="true"™ showoutput="true”™ fork="true'>
<classpath>
<fileset dir="${output}">
<include name="**/*_jar" />
</fileset>
<fileset dir="${buildlib}">
<include name="**/*_jar"™ />
</fTileset>
<fileset dir="C:/Program Files (x86)/Silk/SilkTest/ng/
KeywordDrivenTesting'>

24 | Keyword-Driven Tests

<include name="**/*_jar" />
</fileset>
</classpath>

<test name="'"MyTestSuite" todir="_/reports'/>
</junit>
</target>

For additional information about the JUnit task, see https://ant.apache.org/manual/Tasks/junit.html.
4. Optional: To create XML reports for all tests, add the following code to the target:

<formatter type="xml" />
5. Optional: To create HTML reports out of the XML reports, add the following code to the target:

<junitreport todir="_/reports'>
<fileset dir="_/reports'>
<include name="TEST-*.xml" />
</fileset>
<report format="noframes" todir="_/report/html" />
</junitreport>

For additional information about the JUnitReport task, see https://ant.apache.org/manual/Tasks/
junitreport.html.

The complete target should now look like the following:

<target name="runTests" depends="'compile'>
<mkdir dir="_/reports'/>
<junit printsummary=""true' showoutput=""true' fork="true'">
<classpath>
<fileset dir="${output}">
<include name="**/*_jar" />
</Tileset>
<fileset dir="${buildlib}">
<include name=""**/*_jar" />
</Tileset>
<fileset dir="C:/Program Files (x86)/Silk/SilkTest/ng/
KeywordDrivenTesting'>
<include name="**/*_jar" />
</Tileset>
</classpath>

<formatter type="'xml" />

<test name="'"MyTestSuite" todir="_/reports'/>
</junit>
<junitreport todir="_/reports'>

<fileset dir="_/reports">

<include name="TEST-*.xml" />

</fTileset>

<report format="noframes" todir="_/report/html" />
</junitreport>

</target>

6. To run the tests from Eclipse, perform the following actions:
a) In the Package Explorer, right-click the bui 1d.xml file.
b) Select Run As > Ant Build
¢) Inthe Targets tab of the Edit Configuration dialog box, check runTests.
d) Click Run.

You can also execute the tests from the command line or from a Cl server. For additional information, see
https://ant.apache.org/manual/running.html and Replaying Tests from a Continuous Integration Server in
the Silk Test Help.

Keyword-Driven Tests | 25

https://ant.apache.org/manual/Tasks/junit.html
https://ant.apache.org/manual/Tasks/junitreport.html
https://ant.apache.org/manual/Tasks/junitreport.html
https://ant.apache.org/manual/running.html

Replaying a Keyword-Driven Test with Specific Variables

Before you can set the values of variables for the execution of a keyword-driven test, you have to create the
project.

To set the values of global variables for all executions of a keyword-driven test asset, where these
executions are triggered by you, use the Global variables grid of the Run Configurations dialog box. For
additional information, see Replaying Keyword-Driven Tests from Eclipse.

When executing keyword-driven tests that are part of an automation framework and that are managed in a
test management tool, for example Silk Central, you can set the values of any variables that are used for
the execution of the keyword-driven test in Silk Test. To set the values of global variables for the entire
project, which means that these values are used whenever a Silk Test user executes the keyword-driven
test assets in this project, perform the following actions:

=

In the Package Explorer, expand the project which includes the keyword-driven tests that you want to
execute based on the variables.

Right-click the folder src of the project and select New > File. The New File dialog box opens.
Type globalvariables.properties into the File name field.

Click Finish. The new properties file opens.

Add new lines to the file to specify the variables.

SAE I

The format for a new variable is:
name=value

For example, to specify the two variables user and password, type the following:
user=John
password=john5673

For information about the format of a properties file and how you can enter UNICODE characters, for
example a space, see Properties File Format.
6. Save the globalvariables.properties file.
7. Open the keyword-driven test that you want to execute.
8. In theKeyword-Driven Test Editor, edit the parameters to use the new variables.
Use the following annotation:
${variable name}

For example, in the following keyword-driven test, the ${current user} parameter uses a global

variable:
Keyword Parameters
= [l Start application
= (= Login
x &l GetCurrentUser HMcurrent user}
= [y AssertEquals John Smith Hcurrent user}
= [y Logout

Whenever a keyword-driven test in the project is executed from Silk Test, the variables are used.

26 | Keyword-Driven Tests

http://docs.oracle.com/cd/E23095_01/Platform.93/ATGProgGuide/html/s0204propertiesfileformat01.html

Grouping Keywords
To better structure the keywords in a library, you can group them.

This topic shows how you can add a keyword to a specific group in Silk4J. The steps for Silk4ANET and Silk
Test Workbench are similar. For additional information on performing keyword-driven testing with a specific
Silk Test client, refer to the documentation of the Silk Test client. These group names are also used by Silk
Central and your keywords are grouped accordingly.

To add a keyword to a specific group:

1. Open the implementation of the keyword.
a) Open the project in which the keyword is implemented.
b) Open the Keywords window.
¢) Inthe Keywords window, select the keyword.
d) Click Go to implementation.
2. To add all methods in a class to the keyword group, add the keyword group before the start of the class.
For example, to add the group calculator to the keywords, type:
@KeywordGroup(**Calculator'™)

In the Keywords window, the displayed keyword name now includes the group. For example, the keyword
Addition in the group Calculator is displayed as Calculator _Addition.

Keyword-Driven Tests | 27

28 | Index

Index
A

adding
keywords 11
adding keywords
keyword-driven tests 20
Ant
running keyword-driven tests 24
application configurations
keyword-driven tests 18

B

base state
keyword-driven tests 18

C

combining

keywords 11
command line

running keyword-driven tests 23
concepts

test automation 4
continuous integration

uploading keyword libraries 9
converting

manual tests to keyword-driven tests 10
creating

keyword-driven tests 11, 16

D

deleting
keywords 11

E

executing keyword-driven tests
variables 26

G

grouping
keywords 27

I

implementing
keywords 11

integrations
configuring Silk Central location 6

K
keyword libraries

uploading 9
keyword sequences
creating 21
parameters 14
keyword-driven
testing 4
keyword-driven test editor
recommended keywords 13
keyword-driven testing
advantages 5
keyword recommendations, algorithm 13
overview 5
parameters, example 15
keyword-driven tests
adding keywords 20
application configurations 18
base state 18
converting from manual tests 10
creating 11, 16
editing 20
executing from Silk Central 22
implementing keywords 18
implementing Silk Central keywords 19
recording 17
removing keywords 20
replaying 21
running from command line 23
running with Ant 24
specifying variables, execution 26
stopping 21
uploading keywords, Silk Central 7
keywords
about 5
adding 11
combining 11, 21
deleting 11
grouping 27
implementing 11, 18
managing 11
nesting 11
opening 11
parameters 11, 14
parameters, example 15
recording 20
replacing 11
sequences 11
uploading to Silk Central 7

L

libraries
uploading 9

M

managing

keywords 11
manual tests

converting to keyword-driven tests 10

nesting

keywords 11

opening

keywords 11

parameters

handling, keywords 14

recommendations

algorithm 13

recommended keywords

keyword-driven test editor 13

recording

keyword-driven tests 17
keywords 20

removing keywords

keyword-driven tests 20

replacing

keywords 11

running tests
Silk Central 22

S

Silk Central
configuring location 6
running tests 22
uploading keywords 7
Silk Central keywords
implementing 19
stopping
running keyword-driven tests 21

T

test automation
overview 4

U

uploading
keyword libraries 9
libraries 9

\Y,

variables
executing keyword-driven tests 26

Index | 29

	Contents
	Keyword-Driven Tests
	Test Automation Overview
	Advantages of Keyword-Driven Testing
	Keywords
	Integrating Silk Test with Silk Central
	Uploading a Keyword Library to Silk Central
	Uploading a Keyword Library to Silk Central from the Command Line
	Creating a Keyword-Driven Test by Automating a Manual Test
	Creating a Keyword-Driven Test in Silk Central
	Managing Keywords in a Test in Silk Central
	Which Keywords Does Silk Test Recommend?
	Using Parameters with Keywords
	Example: Keywords with Parameters
	Creating a Keyword-Driven Test in Silk Test
	Recording a Keyword-Driven Test in Silk Test
	Setting the Base State for a Keyword-Driven Test in Silk Test
	Implementing a Keyword in Silk Test
	Implementing Silk Central Keywords in Silk Test
	Recording a Keyword in Silk Test
	Editing a Keyword-Driven Test
	Combining Keywords into Keyword Sequences
	Replaying Keyword-Driven Tests from Eclipse
	Replaying Silk Test Tests from Silk Central
	Replaying Keyword-Driven Tests from the Command Line
	Replaying Keyword-Driven Tests with Apache Ant
	Replaying a Keyword-Driven Test with Specific Variables
	Grouping Keywords

