Liant Software Corporation
®

RM/COBOL

User's Guide

Second Edition

LIANT

This manual is a user’s guide for Liant Software Corporation’s RM/COBOL language. It is assumed that the reader is
familiar with programming concepts and with the COBOL language in general.

The information contained herein applies to systems running under Microsoft 32-bit Windows and UNIX-based operating
systems.

The information in this document is subject to change without prior notice. Liant Software Corporation assumes no
responsibility for any errors that may appear in this document. Liant reserves the right to make improvements and/or
changes in the products and programs described in this guide at any time without notice. Companies, names, and data used
in examples herein are fictitious unless otherwise noted.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopied, recorded, or otherwise, without prior written permission of Liant Software
Corporation.

The software described in this document is furnished to the user under a license for a specific number of uses and may be
copied (with inclusion of the copyright notice) only in accordance with the terms of such license.

Copyright © 1985-2008 by Liant Software Corporation. All rights reserved. Printed in U.S.A.

Liant Software Corporation
5914 West Courtyard Drive, Suite 100
Austin, TX 78730-4911
US.A.

Phone (512)343-1010
(800) 762-6265
Fax (512) 343-9487

Web site http://www.liant.com/

RM, RM/COBOL, RM/COBOL-85, Relativity, Enterprise CodeBench, RM/InfoExpress, RM/Panels, VanGui Interface
Builder, CodeWatch, CodeBridge, Cobol-WOW, WOW Extensions, InstantSQL, Xcentrisity, XML Extensions, Liant, and
the Liant logo are trademarks or registered trademarks of Liant Software Corporation.

Btrieve is a registered trademark of Pervasive Software Inc. in the United States and/or other countries.
Cobol-RPC and Cobol-CGIX are trademarks of England Technical Services, Inc.

FlexGen is a registered trademark of Transoft Inc.

IBM is a registered trademark of International Business Machines Corporation.

Microsoft, MS, MS-DOS, Windows 98, Windows Me, Windows NT, Windows 2000, Windows XP, Windows Server
2003, Windows Vista, Windows Server 2008, and Visual Basic are trademarks or registered trademarks of Microsoft
Corporation in the USA and other countries.

Novell and NetWare are trademarks or registered trademarks of Novell, Incorporated.
TrueType is a registered trademark of Apple Computer, Incorporated.

UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open
Company Ltd.

All other products, brand, or trade names used in this publication are the trademarks or registered trademarks of their
respective trademark holders, and are used only for explanation purposes.

http://www.liant.com/

Documentation Release History for the RM/COBOL User’s Guide:

Product Version Number Applicable Documents Publication Date
RM/COBOL version 12 and later Second Edition October 2008
RM/COBOL version 11 First Edition, v10 Readme and January 2007

First Edition Supplement A

RM/COBOL version 10 First Edition and v10 Readme File May 2006

RM/COBOL version 9 First Edition January 2005

Important Liant documentation is provided in Adobe PDF. All manuals are distributed in Adobe Acrobat (.PDF)
format and require the Adobe Acrobat Reader, 6.0 or higher, in order to display them. The installation program for the
Adobe Acrobat Reader is available from the Adobe web site at: www.adobe.com.

http://www.adobe.com/

Contents

Contents

Preface......cccoooi 1
Welcome to RM/COBOL for Windows and UNIX.........cccccoiiiiiiiiieeree e 1
Who Should Use ThiS BOOKc.ceuiiuiiiiiiiiiiiest ettt 1
Organization Of INfOrMAtioncceeeierciiiiieiiieniiee ettt sbe e e ae e seeesaeesseens 2
Related PUDIICATIONSoviitiiiiiiieiieiieieeest sttt sttt eae e 3
Conventions and SYMDOIS.ccieviriiiierieieeie et ste sttt ere et et esreesseeseessessaessaesseesseessesseenens 4
L4 10 211 (o) 3 TR 6
TECRNICAL SUPPOTTL.....viieieeieiieit ettt ettt ete st et e et et e eseesse et e enseenseesaessaesseenseensennnennns 6

SUPPOTt GUIACIINES ...ttt ettt ettt e et b e ne e b e eeeeeee 6
TESE CASCS -ttt ettt ettt ettt ettt e et e et et e st e st e e bt et e e bt e ateeaeeeneenaeeteenteeneeeneeneans 7

Chapter 1: INtroduction ... 9
RM/COBOL SOfIWATEc.veiuetieiieiieierieiesie sttt sttt ettt s be bt bttt et e naenbe e 9
RM/COBOL COMPILET......ceruieiieiieiiieieeiiesieeieetestestesteesseeseeseesseasseeseensesnsessaessaesseenseesesssesnns 9
RM/COBOL RUNIME SYSLEIMeeiieniieiieeiieeiiesiieieeteeeesteseeesseesaeeaesneesseesseenseessesssesseesseenses 10
COAEWALCH ..cnieteiecee ettt ettt bbbt ettt e be st ebe bt e be et e s enee 10
(10T 151 23 5 Ta RSP SSRSUS 10
Internal Libraries and Utility Programscccoeoeeoeiieiieiiereee e 10
Integrated and Add-On Packages..........cceeiuieiiiiiieiiiieceeeee e 11
File Naming CONVENTIONScerueetieiieiertientientieteeteeitesttestee st e et e et sitesaeesbeenteenbeenseentesseesbeenseas 11

Chapter 2: Installation and System Considerations for UNIX........... 13
System Requirements for UNIXcccooiiriiiiiiiieiieiieie et 13

Required HArdWareccuveieeieeieieeie ettt ettt esne e s enes 13
Required SOTEWATEoocuieiieiieiee ettt 13
System Installation for UNIXcooiiiiiiiiiiee e e e 14
Electronic Software Delivery Installation............occoveerieiieiieiineieeee e 14
CD-ROM INStAIALION ...ttt ettt sttt et ee et aese et saeene e enee s 15
Loading the License Fileccooiiiiiiiiieieeee et 15
Loading the Distribution Media.........ccveierierienieneieeeeeeeiee e 19
Performing the Installationcccveviieiiiieiieieie e 20
Unloading the Distribution Media.........cccccuerierieniieiiiieeieseesieeie e 21

System Removal for UNIX.........ccciiiiiiiiieiieiecie et 21
Locating RM/COBOL Files 0n UNIX........ccoooieiieriieiieiie ettt eeae e sseenseas 22
File Locations within Operating System Pathnames on UNIX...........ccccocevveneninencennn. 22
Directory Search Sequences on UNIXcccoiiiiiiiiiiiiieieee e e 22
File Access Names 0n UNIXccooiiiiiiiiiiieeeeeee et 24
UNIX RESOUICE File ..ottt neas 26
Resource File FOMAat.......ooooiiiiiiiiiiiieieece et 27
Command-Line OPLIONSccveereierireerieeiieeiieeieeeiteeereesseesseesaeessseesssesssseesssesssseeseesnns 27

RM/COBOL User's Guide
Second Edition

Contents

SPECITYING SYNOMYIMS ...iviiiiieiieiieieeiesee st et et et e etee e esteebeesbesssesseesseesseessesssesseasseessenns 28
Example of .rmcobolrc Fileccoiiiiiiiiiiiiciicieicceeeeeee e 29
Example of .runcobolrc Fileccoooieiiiriiiiieiecieieeee e 29
Example of .1ecoVerlre Fileccoooieiiiiiiiiieiicieeeeee e 30

Terminal Input and Output 0n UNIXcooiiiiiiiiieiieeee et 30

Terminal INtErfaCesecuieiieiieiece ettt 30
Termceap Databasececueeierieiieriiee ettt ettt 31
Terminfo Databaseccceereereiieiieriee ettt 31

CULSOT TYPS ettt ettt ettt ettt b ettt et et st esbeesbeenaeeee e 31

Terminal AIDULESeoouieiieiieeee et st 32

Terminal NAIMIEc.couiiiiiiie ettt ettt ettt et s ee e bt eae e e e e e ee 32

Terminfo and Termcap Capabilities Used by the Runtime System............cccccverveerurennnnne. 33

Keyboard Input Character SEQUENCES.........cecvievirieriieiieiieeeeiese e ere e seeseeesreeseesee e 34

Additional Termcap Capabilities Used by the Runtime System..........ccccecererereeveecnnne 39

Terminfo ConSIAErationsc..coueririreririeieietere ettt st 40

Line Draw CRaraCterscouevueeieieiiniirienienieeiteiteitete ettt ettt s sb et se e 41

Other System Considerations for UNIXcccooiiiiiiiiiiiierereee e 41

Memory Available for a COBOL Run Unit on UNIX.........ccoooiiiiiiiniiieeeeeee e 41

NUMDET OF FILES ...ttt st s ens 42

Number of Region LOCKS.cccuiiiiiiiiiiieee e 42

NEWOTK FIl ACCESSeveuieieiieiieieteete ettt ettt ettt ettt ettt e be et saeeneeneeneenes 42

Redirection of Input and OULPULc.coiiiiiriiiiiciieeeeeeee e e 42
Standard INPULc.eeevieriieiieieeeeeseee ettt ste e beebeenaeenaeees 42
Standard OULPUL........ccveeriieiieieeiecieee ettt sttt ste et e e beetaestaesbe e beesseesseeneenens 44
StaNAArd EITOT ...c.eiuiiiiiiieie ettt 45

Using Large Files 0n UNIXccoooiiiiiieiieiieieeeeseesieeie ettt sreeeesnesneesseeseense e 45

Environment Variables for UNIX.........ccooiiiiiiiiiieieeeeeeeee e 46

Chapter 3: Installation and System Considerations for

Microsoft Windows...........ccccvmmmmmmiiesnrr e 49
System Requirements fOor WindOWS...........cecieiiiiiiiienienie e 49
Required HardWareccueeiieieiieeee ettt st 49
Required SOTEWATEoocuieiieieeeeee et 50
Local Area Network (LAN) SOftWareccccvveevieieiienieieeie et 50

BIIIEVE SOTEWATE ..ottt st 50

System Installation for WindoOwWs..........cooiiiiiiiiiiiee e 51
Electronic Software Delivery Installation.............ccoecvevieriieciiecienieiieeee e 51
CD-ROM INStAIALION ...ttt sttt et 53
Installation Notes for WINAOWScoiriiiriiiiieieeneesee e e 57
Installation of RM/COBOL 0n WindOws........ccccoerirererieieieienenenesiesieeceeeeenees 57
Installation of RM/COBOL on Network Client Machinesc.ccecceceeveveienennenne. 57

Default Native Character SEt..........ccveeieieriiniirinenieniereeteteee et 57
Registering the RM/COBOL Compiler and Runtime Executables............cccoceveenrnenne 58
Compiler ReGISTIAtION.c.eiiiieiiiie ettt e e ens 58
RUnNtime ReGIStrationc.eeiueeiiiieiieeiiete ettt e ene 60

System Removal for WINAOWScooiiiriiieieieeie ettt 62
System Configuration for WindOWscccceuerieiiriiiie e 63
Creating @ WIndOWs SROTECULouiiuiriiiiietieieie ettt 63
Using Associations with Filename EXtensionscccecveevirierienieeiieieeieneeveeve e 64
Prompting for @ FIIeNamEcceecveiiiiiiiieiieieceese ettt 65
Locating RM/COBOL Files 0n WINAOWS.........cccueruiiiiiieiieiienieeie e seeseesreeseesveessesseesseensees 65
File Locations within Operating System Pathnames on Windowsc..ccccecceeeienienenn 65
Directory Search Sequences 0n WindOWSc.ccceevveriieciieienienieieeie e 66
Novell NetWare Search Paths...........cccooiiiiiiiiiieeeee e 68

vi RM/COBOL User's Guide
Second Edition

Contents

File Access Names 0N WINAOWS.ccueriiriririiieieieiee ettt 68
Windows System Print JODSc.cccveviieriiiiiiieiienieeie ettt 70
WiINAOWS REGISIIY ...uvieniieiiieiieeiieiee ettt ettt e saeesaeeseesaseeneessaenseenseensennsessnensenn 71
Windows Registry COnSIAErations.cevvierierierierieiieieeteeeeseeeieeseeresnessaesseeseenneees 72
Renaming the RM/COBOL for Windows Runtime.............ccccovvevvenincenienieeene 72

N TS84Tl (0] o1 3 1< USSR 73
Selecting a File t0 CONTIGUIEccueiiiiiieiiiiieeee ettt 73
Setting Control PrOPEItIES.cecuieuiirieriieiieie ettt ettt et sttt et eneeseeeneeens 76
AULO PaSte PTOPETLYcoiuiiiiiiiiiiieieereeeerteete ettt s 77
AULO SCAIE PTOPEILY ...cnieuiiiiiiite ettt st 78
Command Line Options Propertycocccerieiiriiniiiieniecee e 78
Cursor OVETTYPE PTOPETLYcoiviiiiieiiieeiie ettt sare e 79
CUrsOT INSEIT PTOPETLYveeueieiiiieiie ettt sttt 79
Cursor Full Field Propertyccoocevierieriieieeieeieitee ettt ne 79
Enable CloSe PrOPErtYcccveieiieiieieeie ettt ettt sse s ne 80
Enable Properties Dialog PrOPertycccvecvieieeienieiieieeie et 80
FONE PrOPEILY -ttt ettt ettt et esae e e eneeene 80
Font CharSet OEM PrOPEITYccoooieiieriiiiieieeiiesiteie ettt ne 80
Full OEM To ANSI Conversions Property.........coceereereeiereeneenieeie e 81
1CON File PIOPEILY . .cviiieeieiieieieee ettt 81
Load Registry On CALL Propertycoceeoeeierienienieeniesieesieeieeee st 81
Load Registry On RETURN Propertyccoceeierienienenienienieniceceee e 82
L0g0 Bitmap PrOPertyccvcveeriieiieiieiectiesteeie ettt ssvesseessee s e 82
Logo Bitmap File PrOPertyccccviiiiiieriieiieiieieetesie ettt s se e 82
Main Window TYPe Propertyc.cccevieriieiiieiieiesieieeie ettt ete et sre e ense e 82
Mark Alphanumeric PrOPEItYcccerieriieriieiieiesiieieeie ettt ens 83
OFFSEt X PTOPEILY ...eeeuiiieieiiieiieie ettt ettt ettt tesaessaesseesseenseenseennesseenseens 83
OFFSEE Y PrOPEILY...eieuiiieieiiieeiieit ettt ettt ettt s ae e e sseenseenseenaesseenseens 83
Panels Controls 3D PrOPEITYcceevierieriieiieieeiieee ettt 83
Panels Static Controls Border Propertyccooceeieiieiineneseeee e 83
Paste Termination PrOPEITYccevierieiieiieieeieeee ettt e 83
PersiSteNt PrOPETLYceouieiiiieiie ittt s 84
Pop-Up Window Positioning Propertycccoeeereerirenienienieieeeee e 84
Printer Dialog AIWays Property.......cccccveciieiieiisienieieeieeeeseesieeste e sseesseens 84
Printer Dialog NeVer PrOPErtycccoeierieriieiiieiieiesieeie et see e sae e sreesseese e 84
Printer Enable Escape Sequences Property.........cccceeveveeriiecienienieneeieeieeeesieeiens 85
Printer Enable Null Esc. Seq. Property.........ccccoeierieriieciieieniesieeee e 85
Printer Enable Raw Mode Propertycccecveciiecieeienieiieie e 85
Printer Font CharSet OEM Property..........cccoecueeierieniieeieniesiesieeie e seee e ns 86
Remove Trailing Blanks Propertycccoecveiieienieiieeeeseeeee e 86
Screen Read Line Draw Propertyccooceerieiieiiieiesieseeeeeeee e 86
Scroll Buffer Size Property........c.ooeeiieiieiiee ettt 87
Show Return Code Dialog Propertycccoeeeieieiienieneieseeeeee e 87
Show Through Borders PrOPEItYcoeeeieieienieieieeieeeeeeeeee e 87
SiZING Priority PIOPETLY ...cccueeiiiiiiiiieiieee et 87
Status Bar PrOPETLYeoviiiiiiiiiieiiieeie ettt ettt ettt e e 88
Status Bar TeXt PrOPEItY.....ccocviieiieiiieiiie ettt sttt s 88
SYSTEM Window Type Property........cccceceevieriieriieieeienieneeie e seesieesieesse e eens 88
Title TeXt PIOPEILY.....ievieiieeieeiieeiieteee ettt ettt eeeseeesseeseenseens 88
TOOIDAL PLOPEILY .. .eevieiieiieieeie ettt ettt et s et e s e e beenaeseeesseeseenseens 89
Toolbar Prompt PrOPEItYcccuviieiieriieiieiieieeieetee ettt ees 89
Update Timeout PrOPErtYccueevieieiieiieieeie ettt 90
Use Windows Colors PrOPETtYceeoieriieiirieiiesiereeie e 90
Setting SYNONYmM PrOpPeIties.coueriiriiiiiiiiiieiieieeie sttt ettt 90
Setting Color PrOPEITIES. ... coouiiiiiiiiiieiieie ettt ettt st nieens 92
Setting ToOIDAr PrOPEITIESccueiuieuiiiieiieieieieste ettt st e e e 94

RM/COBOL User's Guide vii
Second Edition

Contents

viii

Setting Menu Bar PrOPerti€s........ccovivciiiieiieiieiieiceieeeesteesteeieeeeseesaeesseesessnesseesseesseens 98
Setting Pop-up Menu ProPertiesceevvevierieriiesiieieeiesieesteeteeeeseeseeesaeesessesseesseesseens 99
TOOIDAT EQIOT.....cutinieitiiitieteeiee ettt ettt st ettt nen 101
Running the Toolbar EdItOrccveiiiiiiierieseeie ettt e e 103
Editing @ BItMAapcccveeieeieiieieeiecesese ettt sttt ne s e s ens 103
Testing the Bitmap........ccooieiieieeee ettt 103
Transferring the Image Up.......ccooviiiiiiiieee et 104
Importing and Exporting Bitmapsccceerierieiiiieieeeeeeeesee e 104
Character Set Considerations for Windowsccccoeiiiiririenieieneese e 104
Codepages 0N WINAOWS.coueriiiiiie ettt ettt sttt ebeeseeseeneensennens 104
RM/COBOL for ANSI Codepage on WindOWSccceeeeierienienienieniesieeieeieeeeeeeeeeieeens 106
Installation Character Set Considerations on Windows..........cccceeeererenineeienieneenennens 107
RMSETNCS ULIEY .ottt 107

Related Character Set Configuration on Windowsccecvevueeeiiiierieneeniesie e 109
Terminal Input and Output 0n WInAOWSc.eeceviiiierieiieie e 110
Terminal INTETTACESc.veiiriiiiriirtieercct ettt 110
(313510 a1 o T TSP URURSPN 110
BlnKing AttrIDULEcoouieieeieee ettt st 110
Portable Line Draw Characters..........cceoieverienierieeieeiie sttt see e 110
Keyboard Input Character SEQUENCESccuerueruiruirieiieieiieieie ettt eeaeneens 111
Other System Considerations for Windowscccooeriririiieieienieese e 115
Memory Available for a COBOL Run Unit on Windowsccccccerereninieinieneiens 115
Runtime SyStem WINAOWccueeiiiiieiieiieniierie et eeesteesteereeveseeeseesaeesaeesesssesseesseenseens 116
Control MEnU [COM......c.eiuiiiiiiiieiiieiteee et 117

Return Code MesSage BOXoouieiieiiiiiiieiienie ettt sae s esae s sveeseens 118
CALL “SYSTEM ...ttt ettt ettt sttt sttt nae 118
PeIfOIMANCEc.eiteiiiiiiceic ettt ettt 118
Using Large Files 0n WINAOWSccieiirierieiieieeie sttt enae e sseeneeeneens 119
Windows File Systems Considerations...........ceecveveeiereesieeseesienieseeseeie e 119

Large File Locking ISSUES.......ccueeruiirieiieiierieeie et 119

Test Programs Availableccooiioiiiiiiiiiei e 120
Environment Variables for WIndOWScccooeiiiiiiiiiieieeee e 120
Chapter 4: System Considerations for Btrievecccccceeeeuuecciinnnnns 123
Btrieve Adapter CONCEPLSeervieiieieeiieeiieieeteetesteste st e et eteeneesseenseenseensesnsessnesseesseensesnsennns 123
INAEXEA FILES....ceeieeieii ettt ettt ettt et ettt e et ene 123
Required Software COMPONEGNLScocuieriirrierieieieeiesie ettt eee et et et et eneeeneesreeseeeseeeneeenes 125
NOVEIL NEETWATEeeieiieiieie ettt sttt ettt e sttt e e eneeeneesneas 126
Btrieve MicroKernel Database Engine (MKDE).........ccccoeoiiiiiiiiiniiiicceeeeeie e 126
Btrieve Requester for 32-Bit WINAOWS........ccccveiiiiiriieiieeiieeiieeeee e eee e 126
Pervasive PSQL v8 (or higher) for LinuxXcocoiiiiiiiieieieeeeee e 126
RM/COBOL Compiler (for Windows and LinuX)..........ccceeveeveecierierieenieeienieseeneeenens 127
RM/COBOL Runtime System (for Windows and Linux)ccccceecevevenieriecieneeneenene 127
BUIEVE AQAPLET ... ecuvieiiieiieciieieeie ettt ettt te st e st e b e et e et e e saesse e beesseessessnessaesseenseanseans 127
Configuration fOr BIrIEVE.......cc.eeiuieiieieiieiieeee ettt et sae e s neenseenneenes 128
System Considerations for Btrieve Files.........ccoccoriirieiiinciinieieeeee e 129
RM/COBOL versus Btrieve Indexed File Performancecccccocevenenencneniencncnnens 129
Btrieve Adapter OPLIONScecueeiiieiieiieetieeerte ettt ettt e et et e bt e teeneeeseesreeseeeseeneeenes 130
EXTERNAL-ACCESS-METHOD Configuration Record Optionsccccceeveeeeeennense 130

B (Btrieve Adapter Btrieve MKDE Page Size) Optioncccecceeeereiereeneeneeennne 131

CTEALE OPLION...ueieuiiieiieeiieeieeeteeeteeeeeeteesteeebeesbeeesaeessbeessseessseenseeensseensaeensseenseean 131

D (DUuplicates) OPLiONc.ccvivvieriieiiieiieieeeeete ettt eesteeveereesaeseaesreesaeesseesneens 132

I (Initial DiSplay) OPtioncc.ccieuieieieieiee sttt ettt st et ese e 132

L (LOCK) OPtiON.....eiceiieiiiirieiieiieieiiesieesteesteeteesseeseesseesseesseessasssesssessaeseessesssesssenees 133

M (MOAE) OPLION......viiiierieniieeieeeieiteseesteeteeteetesseesseesseesseesseessesssesssesseeseessesssenses 134

RM/COBOL User's Guide

Second Edition

Contents

O (OWNET) OPLION...utiiiieiiieiiieeieetiesttesieeteeteeteeeesseesseesseesseesseessesssesssesseesseesseensenses 135
P (Btrieve Adapter Page Size) OPtionccceevieeiieriieieniesieeieeie e e seesie e v e 135
T (Diagnostic Trace Filename) Option..........ccceecuieieeienierieeieeieeiesee e 136
RUN-INDEX-FILES Configuration Record Options..........cccceeuererenenenenenenceeenens 137
Starting Btrieve Adapter for LiNUXc.ocoviiieiieiieie ettt 138
Starting Btrieve Adapter for WIndOWScoiieiiiiiiie it 139
RM/COBOL Indexed Files and Btrieve MicroKernel Database Engine
(MKDE) LIMItatiONS.ueeeeteiitieeitieeiieetieeiteeeteeeteesseeseseessseessseesssessseesssesssessseessesssseenes 140
Current Record Position Limitationscccccueiiiuiiiiiiiieieiiee e eeeee e eae e seeaeee e 140
File Position Indicator LIMItationscccuvvviiiiiiiiiiieiieeeeeiiieeee e eeaaaeeeeeeeen 141
Permission Error Detection LImItationscoovvuveeiiiiiiiiiiieeieeeeeeiiieeeeeeeeeeeiieeeeeeeeens 141
Using Existing Btrieve Files with RM/COBOLcccccooviviiiiiiiiiiieieec e 141
Btrieve MicroKernel Database Engine (MKDE) Limitations Affecting
RM/COBOL APPICAtIONSc.vieneieneieeiieiiesiieieeieeteeieesieeseesesaeseaesseesseensesssesseenseenseens 142
Variable-Length ReCOrdS........coiiviieiiiiiiiiieciesiee et 143
KeY PLACCIMENLe.eeiiieieieeit ettt ettt et et e s e e sseeseensesnnesseenseanseans 143
Automatic Creation of Variable-Length Record Files........ccccoooviiiiiiiiiiiiiiieeee, 143
Verification of Maximum Record and Block Lengthccoccooiiiiiiiiiiiiiiiceee. 143
Support for RM/COBOL Internal Data FOrmatsccecceevieviiiieiinieeceeneeeeee 143
Support for Btrieve Internal Data FOrmatsccoevveiieiieienienieeicciecee e 144
Input/Output EIrors in BIIIEVEceeiviiivieiieiieiieeieeie ettt sve v neereesreens 144
Chapter 5: System Verification...........ccooomiiiemccciiircrnneeenee 145
System Verification for UNIXccoeoiirierieriieieee ettt ettt aeseae e 145
N 311 Fed (S B <) G]SSR 145
Y LTS)l = SRR 146
System Verification for WINAOWS...........coeiiieiieiiiieiie e 147
SINEIE-USEI TESES....ccutieuiieiiieiieetiet ettt ettt ettt ettt ettt sbeesbeenbeeae e eaee 147
IMUIEI-USEE TSt ..ottt e e e et e e e e e e eaataeeeeeeeesnarareeeeeeens 147
Chapter 6: Compiling.........ccooiiimmcciiieicer e e s e e e e 149
COMPILALION PIOCESSviieiiiieiieiieiecieeie ettt ettt ettt e snsesnaessaesseeseenseens 149
N 13 10 U (USRS 150
SOUICE FILES .ottt e et e e e s et e e e e s eenaaaaeeeas 150
ODBJECE FILBS ..ottt ettt ettt e e et 150
LASING FILES .ttt sttt et ettt 150
) 5 Lo} 2 o (1 PSPPSR 150
Compile COMMEANGccceiiiieriieiieieetecie ettt eeste b e esseeseesse e baesseessesssesseesseesseensennes 151
Batch Compilation 0n WInAOWS.........ccceiierieniieiieieneesieeie e eeeseesieesseesesseesseesseenseens 152
Multiple File Compilation on Windowsc.cecuerierieriieniieienienieeie e seesee e esneesnees 153
Multiple File Selection with File Open Dialog..........cccoevververiiecienienieneeieeie e 153
Multiple File Selection with Wildcard Characters in Filename.............cccccoevenneeee. 153
Compile ComMmAand OPLIONSccueeruieruieiirierieteeieeteeeeseeseeeresaesseesseeseessesseesseenseens 154
Configuration Compile Command OPtionscecueeveeierieereereeiesieseesieeee e 158
Data Item Compile Command OPtionscceceeiueeireienienieeeie e 159
File Type Compile Command OPtionS.........cccueerueeeeeierienieeieeie e seesieeie e 160
Listing Compile Command OPtionScccueoueruereriairieieeeiene e see e eeeeeeeeeens 160
Object Program Compile Command OPtionscecvereeierierieneseeeneeieieieienans 164
Source Program Compile Command Options...........c.ceueruererenereeeneeieieieseeneenees 167
Sample Compile COMMANGS.........cceerrierrieiiieieiieriere ettt steebeeressresseesseeseeseessessaessees 169
Valid Compile COMMANGS........ceeovireiiiieiieriieriiete et esteeieereeeeesee e esseesesseesseesseenseens 169
Invalid Compile COMMANA..........ccceeviiiriiiiiiieniiete ettt et saeeaeseee e esseenseens 169

RM/COBOL User's Guide
Second Edition

Contents

LLISEINE ottt ettt ettt ettt et e e e et e s teestee b e esseesseeaeeese e s e enbeesbeesseesaesraereenseenaenees 170
Program LISHINEccvveiieierieiieeieeie sttt ettt e ste e teesbesssesesessaesaeesseessessnesseesseensenns 170
ATLOCAION IMAP ...ttt ettt ettt et et seae st e e s e e s e ensessaesseasseenseenseensennsenssenseas 175
Alphabet-Names, Symbolic-Characters, Mnemonic-Names, and Class-Names175
SPlit KEY NAMESeeiieiieieiieiie ettt ettt ettt et seee st esseesesaesneesseesseenseans 176
Data-Names, Index-Names, Condition-Names, File-Names and Cd-Names 177
CONSTANT-NAITIESeoeieiieiieiieie ettt ettt ece st et e te et es e esee bt ebe e teenseeneeeneenes 180
Called Program SUMMATYcccociiiiiiiiiieieneeie ettt eeesneesaeens 180
Cross Reference LiSTING.cooueiiiiiiriiiiiieeieseete ettt sttt 181
SUMMATY LASTINE ..eontieiiieiiieiieeie ettt st 182
Error Marker and DiagnoStiCs.coueeueiiiiienieniieieeiestte ettt 184
EITOT RECOVEIY...eiiiiiiiieeee ettt sttt e s e et s aae e e s 185
EITOr TRICAING ...ocvvieiiieiiieiieiieeee ettt e esbeebeesseesnessaesseenseens 186
Compile COMMANA MESSAZES.......eeveererieriieriierieeieeteseesteeteeseetesseeseesesnsesssessaesseesesnsennns 186
ComMPILEr StatUs IMESSAZESeeuvieueieeieeiieriieiieieetesteseeesseeseeesseeneesseenseenseensesnsessaesseesseensesnsesnns 188
Compiler Configuration EITOTSc..ccuiiieiirriirieiie ettt 195
Compiler Initialization EITors.........cooveiiiiiiiiieeeeeeeee e 196
Support Module Version ErTOrs.........oceerieiiiiiienieeeeeeeeee et 196
(0703531071 15 g 2 LA 0o T LSS 197
Chapter 7: RUNNING......ccoiiiiiiieirrr s 199
RUntime CommAaNAooueiiiriniiiiieiecenesere ettt ettt st 199
Runtime Command OPLIONScc.eeruieriirierienieiieieeeeeeesieetesaesaesseesseesessnesseesseenseens 201
Configuration Runtime Command Options...........cceecveeverieerieenieeienieseesieenee e e 203
Debug and Test Runtime Command OpPtionsceceeveerieerieerienienieneeieeee e 204
Environment Runtime Command OpPtionscccceevereieriereenenienieseesie e 204
Program Runtime Command OPtions............cceeeieierienienieieeieee e 206
Sample RUntime COmMmEaNS.........cccuierieriiieiiieniiieeieeeieesieesteesveesreesseesaeessseessnessssessseeenes 208
Valid Runtime Commands.............cccoiiiirieieieieiesie ettt st eee e 208
Invalid Runtime COMMANAScc.eeeiieieieieiesieie ettt ese e 209
RUNTME IMESSAZES ...vvevvieeveieiieiieiiieieeieeteeteeetesteesteeseesseesaesseesseesseesseessenssesssesseessesssesnsesssesses 209
DiIagNOSTIC IMESSAZES ...evvievveriieiieieeieiteiteesteesseesseessesseesseeseesseassesssesseesseessesssesseesseensenns 209
EXCCULION IMESSAZES. ... e vveeveerieiieieeiestesieesteeteeteestesseesseenteessesssesseesseensesnsessnesseesseansenns 209
Program EXit COAESeiviriieiieiieieeieiiee ettt ettt ettt e estessaessaesseeseensesnnenes 210
Chapter 8: RM/COBOL Features...........ccooummiemmmciiinniinnnnncesssssssneennns 211
ACCEPT and DISPLAY Statementscceerueerierieiieniienieeieeiteeicentceieeiesieesieesiee e eee s 211
Maximum Size of a Screen Field.........ccooeiiiiiiiiiiieeee e 211
Initial Contents of @ Screen Field..........ccooiiiiiiiiiiiiii e 212
DefINEd KEYS ..ueouiiiiiieiiieiieeieeieee ettt ettt et et e et s e sbe e e esseesbesaaessaesseenseansenns 212
Field Edit K@YS ...oovieiiiieiieieeiecie ettt et ees 213
Field Termination KEYScccuvciirierieriieie ettt sttt 216
ACCEPT and DISPLAY PRIASEScccerueruirieieiiniinienienieniceieeit ettt see s 221
CONTROL PRIGSE.....eeuieuienieieiesteeie et eiieteie it ettt et eseeaessesseeseesesseeseessensansensens 221
ERASE PRIASE.....cueiouiiiieiieieee ettt ettt e 228
HIGH PRIASE ...ttt et 228
LOW PRISE ..ottt ettt ettt ettt e et e sbesbeese e e eneennens 228
OFF PRIASE ...ttt sttt e 228
REVERSE PRIGSE.......couiiuieieiiie sttt ettt nee 229
SIZE PRIASEeveteitiitieiteiteee ettt ettt et 229
TIME PRIGSE......cteitiitiiieetietetee ettt ettt sb e st 229

ACCEPT Exception Status ValUesc.cccverierieiieieeiiesieeiecreeie e eveeeeseee e sseenne e 230

X RM/COBOL User's Guide
Second Edition

Contents

POP-UP WINAOWS....utiiiiiiiiiiieiieieeie ettt ettt steesteesbeesbesasesse e seessaessesssesssessaesseensesnsenses 230
Creating Pop-Up WINAOWSccveciiiiiiieiiieiieie ettt ettt eaesaesaae e esseenne e 230
BEEP PRIASE.....cteitiitiiiiiiieieteertees ettt 231

BLINK PRIASE ..ottt sttt ettt st 231
CONTROL PHISE......cueiuieiieiiiertisiericeitet ettt sttt ettt sttt nae 232

ERASE PRIASE.....cueiouiiiieieeieee ettt et e 232

HIGH and LOW PRrasesccceeuiiieiieniieieee ettt 232

LINE and POSITION PRIaSESscccuerieriieriieieeieeiesee et 232
REVERSE PRIGSE.......ceuiiuieieieie sttt ettt 233

UNIT PRIASE ...ttt ettt sttt ettt ae e bt et eseeneeneas 233
Removing a Pop-Up WINAOWcooiiiiiiiiiiiiii e 233
CONTROL PHIGSE......cueuienieieiesieeiesie ettt ettt st ettt 234

UNIT PRISE ...ttt st 234

Pop-Up Window Control BIOCKccceiciiiiiiiiiieieeieeeeee e 234
Identifying the Pop-Up WIndOowcccecverieriieiieiieieeeeeeee e 235
Defining the Size of the Pop-Up Windowcccccevierierieciieiececeeeeee e 235
Defining the Location of the Pop-Up Window...........cceoeiiriiiiinieniiieeceeee 235
Defining the Border of the Pop-Up Windowccceceriiiiiiiniiieneeeeeeee 235
Initializing the Pop-Up Window AT€a........cccecuevierierieiieieeieeiesieeie e 236
Defining the Location of the Title of the Pop-Up Windowccccveirininnieen. 236
Defining the Title of the Pop-Up WIndowcccooiiiiiiiiiniieieeeeee e 236

Pop-Up WiIndow Operation StatUs...........cc.eevveeeerreeiiieeeieeseesieeeeeeeseesreesseesneeeesseesseens 237
COPY SEAtCIMENL....c.eiiiiiiiiiieiieiteeitett ettt sttt ettt sttt ettt eetesatesbeesbeenaeemeesaeenae 238
STOP RUN Statement and RETURN-CODE Special Register..........ccceoveeverienienieenieneenen. 239
CALL and CANCEL StatemeEntsccueeuererueeuieieienienieniesiestesieeteesteseessessesie st sresseeseessensenses 239
Subprogram LOadingccceecieriieiiirieeiesiesieeie ettt seee s se e e ens 240
Argument CONSIACTATIONSveeiereieriieiieieetestesteesteeeestesete st esseenseesaesseessaenseensesnsesnnas 242
EXtEINal ODJECLS....cuvievieeieeiieiieieeie et ste st et te et et e st e e enteenaessaesseeseensesnsesseesseenseansenns 242
Composite Date and TIMEcceeiiriieiieieeee ettt 244
DELETE FILE OPEIatioNcccutecuieuieetiesiienieeieeteetesetesteeseeenteeeesseasseeteensesneesneesseesseenseeneeenes 244
FALE SHATIIE ...ttt ettt ettt et e s et et et e eneesseesneenaeeneeens 245
File BUITETINEeoeteiie ettt ettt st 247
Very Large File SUPPOTLocuiiuiiiiieieeeee ettt et 247
File Types and SHUCTUTEceevieriieiieiieieetestete et re s eestee e este b e esseessessaesseeseesseensessneses 247
SeQUENIAL FIlES.....uiiiieiieiiciieciieieeie ettt ettt e sbeesbeesaeenaeees 248
RECORD Clause (Sequential File Description Entry)ccccoeevveieicieneenieeienenne. 249
BLOCK CONTAINS Clause (Sequential File Description Entry)........cccccceuvneeee. 249
LINAGE Clause (Sequential File Description Entry).........ccocovevveveiieiceeniereee 249
RESERVE Clause (Sequential File Control Entry)cccccceveveninineneniencneenns 250
CODE-SET Clause (Sequential File Control Entry or File Description Entry)....... 250
REVERSED Phrase (OPEN Statement)ccueevueeeeveeeiieeeiriesreesveesieeseveeseveeenees 250

WITH NO LOCK Phrase (READ Statement)ccceeeeveeeveerieenieenieesieeeieeeneenn 250
ADVANCING ZERO LINES Phrase (WRITE Statement)...........ccccoceevevueenneennnnne. 251
ADVANCING mnemonic-name Phrase (WRITE Statement).............ccccccveevvenen. 251

REEL and UNIT Phrases (CLOSE Statement)...........cccecvevvereevieenieeieieeneesieeneenns 251

WITH NO REWIND Phrase (CLOSE Statement)ccceevevieeeiencieneenieenie e 251

DIEVICE SUPPOTL ..ttt ettt et et e et esteeste e beesbeesseesaeesaessaesseesseessesssenees 252
REIALIVE FILES ..ttt sttt ebe et 254
RECORD Clause (Relative File Description Entry)........cocceecveeevcenieneenieieeee 254
BLOCK CONTAINS Clause (Relative File Description Entry)cccccceeveienenee. 254
RESERVE Clause (Relative File Control Entry)........cccccevveviiecenienieneeieeie e 255
CODE-SET Clause (Relative File Control Entry or File Description Entry) 255

WITH NO LOCK Phrase (READ Statement)cccceeeeveeeveerieenieenieesieeeieeenenn 255

RM/COBOL User's Guide
Second Edition

Xi

Contents

Xii

INAEXEA FILES....eiiiiiiiiiieiieeee et sttt 256
Data COMPIESSION. ...c.vieiriiireirierteeieeteeeeeeesseesseeseesesssesseesseessesssesssesssesseessesssesssesses 256

Data ReCOVErabIlitycuecveiiieiieieiie ettt 256
RECORD Clause (Indexed File Description Entry)ccccoeeveeevienieneeniieeee 258
BLOCK CONTAINS Clause (Indexed File Description Entry)........cc.ccceeveeeennnee. 258
RESERVE Clause (Indexed File Control ENtry)ccccoeeveeiieiinienieneeeeeee 260
CODE-SET Clause (Indexed File Control Entry or File Description Entry)........... 260
COLLATING SEQUENCE Clause (Indexed File Control Entry)c.ccocene..e. 260

WITH NO LOCK Phrase (READ Statement)cccceeveveeeeieerieenieenieesieeeieeenenns 260

File ATLOCALION ...ttt ettt ae ettt besbeebe e eneeeens 261

File Size EStIMAation.cocueiiiiiiriiiieiiericeitec ettt 262
TeMPOTATY FIlES .. .viiiiiiiiiieiieie ettt sttt et e ste et e esbaesbesssessaessaesseensessnenes 264
Indexed File Performance.............coueiueririiiiiiiieieeeee et 265
In-Memory BUFTEringccccveiiiiiiiiieiieiiee ettt s 265
Altering the Size of Indexed File BIOCKS.......cccceiieiiiriiiiicieieeeeeeeee e 266
Controlling the Length of Record Keys........cooveiiriiiienieieiecieeeeee e 267
Correct Data RECOVETY StrateYeeovieiiriieriieiieieeieetee sttt ene 267
Using Key and Data CompresSSioncueeuereeriertieieeieeiesieesieeie e eneesseeseeeeeeneesneeseeas 268
Using RM/COBOL FaCIHItIESecveriereieiieiieieeieeiie sttt seee e 268
Indexed File Version LevVelscooeiiiiiieieiiieecesese et 268
File Version Level 0coooiiiiiiiiie ettt 269

File Version LevVel 2ooiiiiiiieie ettt 269

File Version Level 3c.ooiiiiiiriiiieee ettt 269

File Version LeVel 4couoiiiiriiiiiiiieieeeeeeesese ettt 269
Changing the File Version Level.......cccoovveriiviiiiieiecieseeiecieeee e 269
Chapter 9: Debuggingcceeemmmmmmmmmmmmmmmmmmmmmneeneeeeereeeesseeeseseesseesenee 271
Invoking a Program for DeDUEc.eoiiiiiiiiiieeeeee s 271
General Debug CONCEPLScuevueriiieiieieiieiete ettt sttt et et eetestesaesaeebeeseeneenean 274
STALEINENIES ...ttt ettt sttt et ettt eae e b et e e e et e e b e e sbeenbe et e enaeeneeeae 274
BIEAKPOINESeeevieetieiiieeieetieeeeie et ete sttt et ete et e et este e beesbeesseessesseesseessesssessnesseenseensenns 274
1 o T USRS R PSR 274

T (S] 0] 11 USSP 274
EXECULION COUNLS.....eviiiiiiiiiiieiietetee sttt ettt sbe st eanens 274
Line and Intraline NUMDETScccoiiririririeiiiiienesene sttt 275
DEbUZ VAIUCS ...ttt ettt ettt ettt et e ae e e ens 275
DAtA TYPES .ttt ettt et ettt ettt e b b e bt s baeenee s 275
Debug RETEIEINCES ...ttt ettt ettt e et eee e eee 277
Program Area RETEIENCESoiiiiiiiiiiiiiiieeceeee et 277
Data Item References.ccueiiiiiiriiiiiiii et 277
SCTEEN POSTHIONS ...c..eiuiiiiii ittt ettt et ettt e b et e e eeteeaeenaeas 277
Data Address DEVEIOPIMENTc.eeviiriieriieiieieeie e seeste e ete et e ereesseesbeessesssessaesseesseensessnenens 277
Identifier FOTMALcoooiiiiiiiiiiiee ettt 278
Address-Size FOTMALcc.cooiiiiiiiiiei it 280
ATLTIAS FOTTNAL ...ttt sttt aes 282
RegainNing CONIOL......cciiiiieiieie ettt ettt et e s e sseessaenseensesnsesnnennes 282
Debug Command PrOMPLoccuieierieniieiieie ettt ettt snaessae e e sseesesnneees 283
DebUZ EITOr MESSAZES ...c.veevieiieiiieiieetieetie ittt ettt ettt et et ete et et enteeneesneesbeenseeeeeneeenes 283
A (Address Stop) COMMANG........c.eeiiiiiiieiiet ettt ettt e e sneenaeens 289
B (Breakpoint) COMMANd...........ccooieriieiiieiieiesie ettt ettt e e e eee e 290
C (Clear) CommMEANA..........c.cccuerrieiiierieiieeieieeeteeteeteseesteesteesbeeaseessessseseesseessesssesseesseeseesseenes 291
D (Display) COMMANA........ccoiiiiiieieieieie ettt ettt ese et eeestestesbeeaeeseeneeneeneeneas 291
E (End) COMMANGcveiiiiiieeiiciiicieeieeteete ettt ettt aeesve et e eabeessesssessaesraesseenseenneenns 295
L (Line Display) COmMmandcceecuerierierieesieiieiieneenieeeeeeesreesseesseessesssesssesseessesssessnesees 295
M (Modify) COMMAN........c.cociiiierrieiieiieiieieeee st este e teste e e sreebeesbeessesssessaesseesseensesssennns 295

RM/COBOL User's Guide

Second Edition

Contents

Q (QUIt) COMMANG ...c..eeuieniiieitieteet ettt b e eb e ebt et ettt s bt bt ebeeneenseneennen 299
R (Resume) Command...........coueeuerieieienienienieeieeie ettt sttt ettt sttt eennen 300
S (Step) COmMAN.........coueviiiiiriiiiieieteer ettt ettt sttt 300
T (Trap) CommAandcceoiririririeieteereser ettt ettt st sb et eneenen 301
U (Untrap) CommANdc..coereruiriireetiientiniesie ettt ettt sttt st et ae et saesbesveeseenseneensenee 304
Chapter 10: Configuration................eeeemmmmmmmmmmmmmmmeeeneeeeeeeeeeeneeeeeae. 307
Configuration File STUCIUIEc.eevieieiieiieieeie ettt ettt essae e e seenseenaeens 307
Automatic Configuration Files..........ccivviiiiiiiiinieiice ettt 308
Command-Line Configuration Filesccceoiviiiiiiiiiiiieiicieeceesceeee e 309
Configuration Processing OTder..........c.occuerierierieieiierie sttt ettt sae e e eseeneees 310
CONfIGUIAtION EITOTSeiuiiiiiieiecieiieie ettt sttt et e e naeseeesse e seenseenseennesns 310
Configuration RECOTAScoiuieiiiiieeieiieeee ettt et 311
COMPILER-OPTIONS Configuration Recordccceeviiiiiiiiniinieieeeeee e 312
ACCEPT-BEEP-DEFAULTcoeitiieiiieiieieee ettt ettt ee s 313
ACCEPT-SUPPRESS-CONVERSION ..ottt 314
ALLOW-DATE-TIME-OVERRIDEcoccoiiiiiiiiiiiiieieeee et 314
BINARY-ALLOCATION ...ttt ettt sttt s be e ebe e eneeeens 315
BINARY-ALLOCATION-SIGNEDccctiiiririiieiiieieeeieteesie ettt 317
COBOLAT4 ettt ettt ettt ettt st bbbt et enaeeens 317
COMPUTATIONAL-AS-BINARY ...ooutieiiiiieiieiiieisieietetete ettt 317
COMPUTATIONAL-TYPE ...ttt 317
COMPUTATIONAL-VERSION ..ottt 318
DEBUG ...ttt sttt ettt sh ettt ent 319
DEBUG-TABLE-OUTPUTooiiiiit ettt ettt eneenaennens 319
DERESERVE ...ttt sttt besteesesneeneeneensennans 319
DISPLAY-UPDATE-MESSAGESciioiiiiieeeeee st 319
EXTERNAL-INDEX-NAMESottt 320
FLAGGING ...ttt etttk be ettt et et e e et e b e ebeebeeseeneeneannennens 320
INITTAL-MARGIN-R ..ot sttt 321
KEEP-TEMP-XML-SYMBOL-TABLE-FILEccccveiiiiiiiiieceeeeeeee e 321
LINKAGE-ENTRY-SETTINGS......ccoeotitetrteietirieietseieeeteteeeie et ene 321
LISTING-ATTRIBUTES ..ottt 323
LISTING-CONDITIONAL-EXCLUSION-INDICATORc.oectviieirieieiieieeeeenene 325
LISTING-CONDITIONAL-INCLUSION-INDICATORccoetrieiriieieeieeeeeennne 326
LISTING-DATE-FORMATooitiitit ettt ettt st ese s ese e nsennens 326
LISTING-DATE-SEPARATORootiiiiieieieeieee ettt 326
LISTING-DIAGNOSTIC-PREFIXctiiiieieiiieeieeeee ettt 327
LISTING-ID-AREA-SEPARATOR.......cooiiiiiiit ettt 327
LISTING-LINE-LENGTHooiiiitit ittt 327
LISTING-PATHNAME ..ottt 327
LISTING-TIME-SEPARATORccctitiiriiieieiiieietsieeeeteee ettt 327
NO-DIAGNOSTIC ..ottt ettt st sb et ebe et ee 328
OBJECT-PATHNAMEcciitiiiiieiiiieeteette ettt 328
OBJECT-VERSIONootiiiiiiintiieitett ettt ettt sttt naen 328
POSTPONE-COPY-IN-PSEUDO-TEXTccoviriiiriieiriirieieerieeeeesieee e 329
RESEQUENCE-LINE-NUMBERScccctitiiiiiieinieeeeeseeeee e e 329
RIMCOBOL-2 ..ottt ettt ettt et e e sessesbesseeseeseaneensensensensens 329
SEPARATE-SIGN ..ottt ettt ettt ettt ee e seeteene st eneensansenes 329
SEQUENTIAL-FILE-TYPEoootiiiiiiiiie ettt 330
SOURCE-ON-INPUT-DEVICE......ccceotiiitiieieeie ettt 330
SOURCE-PATTERN-EXCLUDEcc.oiiiiiiiieeieee et 330
SOURCE-PATTERN-INCLUDE.......cciiiiiiiiieeeee et 331
SOURCE-RECORD-MAX-LENGTHcccectmiiriinieieiinieieesieeeie et sieeenens 331
STRICT-REFERENCE-MODIFICATIONccttitiiiiieieeieeiee et 331

RM/COBOL User's Guide Xiii
Second Edition

Contents

Xiv

SUBSCRIPT-CHECKINGc.coiiiiiiiiiiinitetietetee ettt sttt 332
SUPPRESS-FILLER-IN-SYMBOL-TABLEcccccoitiiiiiiiiieeiieeeeesveenee e 332
SUPPRESS-LITERAL-BY-CONTENTcccoiiimininininieteteientene et 332
SUPPRESS-NUMERIC-OPTIMIZATION......ccocoirininiinieiieteteiestene st 333
SUPPRESS-XML-SYMBOL-TABLEc.ccctiitiiiininntieteecetcese e 333
SYMBOL-TABLE-OUTPUTooiiiiiiiiiiitetieeteieieesie ettt 333
WHEN-COMPILED-FORMATociiiiieiieiieieieeie sttt sttt ene e enaennens 334
WORKSPACE-SIZEoootieieieeeee ettt sttt et esesseeseeneensesens 338
DEFINE-DEVICE Configuration Record............ccccoooiiiiiniiiiiiiiiinieieeeecee e 338
DEVICE. ...ttt ettt be ettt et s e et e beebeeseene et eaeneaneas 339
ERROR-ON-CANCEL......cotiiiititiettit ettt st ebe e neeneens 339
ESCAPE-SEQUENCES ...ttt sttt 340
NONBLOCKING-FIFO ..ottt sttt 340
PATH ettt ettt st b e sb et ae 340
PIPE ..ottt ettt sttt b ettt 340
REMOTE-PRINTERcouiiiiiiiii ettt sttt 341
RAW Lttt ettt ettt a e st et et e be et eteeae e st e st e s b et e esebeeseeneeneeneennens 341
TAPE .ottt ettt ettt et et et e be st ere st ententennenans 341
WiINAOWS PIINTETS.eeeieiiieiiieiieitiee ettt ettt ettt e esneenaeens 342
EXTENSION-NAMES Configuration Record...........coocoeviiiiiiiniiniiiinienieieceeee e 343
(010 & OO USSP 343
LISTIING ..ttt ettt ettt ettt be et e bt ent e st e e e beebeebeebeeseeneeneansenens 343
OBUJECT .ttt ettt ettt bbbt bt et nneeens 344
SOURCE ...ttt st b bbbttt be s bt e be et et ene 344
EXTERNAL-ACCESS-METHOD Configuration Record...........cccccvveierienienieiienieseene, 344
CREATE-FILES ...ttt sttt 345
NAME L.ttt sttt ettt bttt ten 345
OPTIONS ..ttt ettt ettt ettt st e bt sbe bt et eanenens 345
INTERNATIONALIZATION Configuration Recordccocovievieiiniineiieieeeee e 346
EURO-CODEPOINT-ANSIoiiiititeiteeeiieieieie sttt ettt ae e stessesseeseeseessensensensens 346
EURO-CODEPOINT-OEMooiiiiiiiiiiieiieiieiieieiesie ettt ssesse s eseeneensennens 346
EURO-SUPPORT-ENABLE.......oeootititiieieeeee et 347
Euro Support Considerations Under Windowsccceeevieiiiieniienieeieceeeieereeve e 347
PRINT-ATTR Configuration RECOTAcccoveviiiiiiiiiieriiciteie et 348
AUTO-LINE-FEEDootiitiiiiiiieit sttt sttt 348
COLUMNS ..ttt ettt skt b e sh e bt et et e st et st sbeebeebeesteneentenaens 348
FORM-FEED-AVAILABLE........cocctitititititenieneeese ettt 348
LINAGE-INITIAL-FORM-POSITIONcccccctiiiiiiriimiiniininieneeiteteteieneesre e 349
LINAGE-PAGES-PER-PHYSICAL-PAGEccccoiininininiiicieeccneeseeeseeeenne 349
LINES ..ottt ettt ettt ettt et e b e se st e be et eseene e st e s e beese st eseeneeneentensenans 350
TOP-OF-FORM-AT-CLOSEccotitit ettt st ene e enaennens 350
WRAP-COLUMN ..ottt sttt ettt sttt et e seesaesessestesseeseeseaseensensansessens 350
WRAP-MODE ...ttt ettt ettt sttt ebe bt e st eneeeeseanen 350
RUN-ATTR Configuration ReCOTdccciiiiiiiiieiiiiie e 351
ACCEPT-FIELD-FROM-SCREENccoiiiiiiiiiiiiiiiteeeee et 351
ACCEPT-INTENSITY ..ottt sttt 352
ACCEPT-PROMPT-CHAR ...ttt 352
BEEP .. bttt b e b eb ettt 352
BLINK ..ttt ettt sttt ettt b e bbbt bttt naen 352
DISPLAY-INTENSITY ..ottt sttt st 352
EDIT-COMMA ..ottt ettt sttt ettt sttt st ebe et tens 352
EDIT-CURRENCY-SYMBOL ..ottt st 353
EDIT-DECIMAL.....cctitiiieieieiesteee ettt ettt sttt saesaestesseeseeseaseensensansensens 353
EDIT-DOLLAR ... ettt ettt ettt et ebe e bt eneeneeneenseanen 353
ERROR-MESSAGE-DESTINATIONooiiiiiiiitiieeeeeeee ettt 353
EXCEPTION-HANDLING......c.ciiiitit ittt sttt ebe e 354

RM/COBOL User's Guide

Second Edition

Contents

REVERSE ...ttt sttt ettt 354
SCROLL-SCREEN-AT-TERMINATION.........ccectrieuiriiieiinieniereseeiee st saeneenens 354
STRIP-LIKE-PATTERN-TRAILING-SPACES.......cceitreirinieirieneerieieie e 355
TAB et ettt bbbttt 355
UNDERLINE ...ttt sttt et st sttt 355
RUN-FILES-ATTR Configuration Record............ccoooviiiiiiiiieieieeeeeeee e 356
ALLOW-EXTENDED-CHARS-IN-FILENAMES........ccocotiieieieieeeeeee e 356
BLOCK-SIZE ...ttt ettt ettt entesaesaeseeseeseeseeneessensensensans 357
BUFFER-POOL-SIZE ..ottt sttt snea 357
DEFAULT-USE-PROCEDUREccccoiiiiiiiiiiieesest et 357
DISABLE-LOCAL-ACCESS-METHODcccociiiiiiiiieieeee et 357
ENABLE-OLD-DOS-FILENAME-HANDLINGcccccevitiniiiiieieeee et 358
EXPANDED-PATH-SEARCHocctiiiiiieieiteetsteeteee et 358
FATAL-RECORD-LOCK-TIMEOUTccctsetrtiieiniiieiieieieeeieeeeeieeee e 358
FILE-LOCK-LIMIT ..ottt sttt s 359
FILE-PROCESS-COUNT ..ottt sttt ettt s be s 359
FORCE-USER-MODEoootiiiiitit ettt st sseenesneeneennens 359
KEEP-FLOPPY-OPEN ..ottt ettt sttt sesbesseeseeneeneennans 359
LARGE-FILE-LOCK-LIMIT ...ttt ettt eneenaennens 360
RESOLVE-LEADING-NAMEcccoiiiiiiiieieeeee ettt 360
RESOLVE-SUBSEQUENT-NAMESooiiiiiiieteeee ettt 361
SKIP-INITIAL-CWD-SEARCHccooiiiiiiiiiiieeee ettt 361
USE-PROCEDURE-RECORD-LOCK-TIMEOUTcccectvtiieiriiieiinieieieeieieeeeeneenes 362
RUN-INDEX-FILES Configuration Record............cccerirriiiciiniinieniieiieieeeeeieseese e 362
ALLOCATION-INCREMENTccoeoiitiieiiriiieieitieteiete ettt 362
BLOCK-SIZE ..ottt sttt sttt bbbt naens 362
DATA-COMPRESSIONooiiiiiiiniiitintetet ettt sttt 363
DEFAULT-FILE-VERSION-NUMBERcccccoeitiiiiiiiiniiereeeee e 363
ENABLE-ATOMIC-TO ...ttt ettt st ese st eneeneensennans 363
FORCE-CLOSED........ootiiiiiieie ettt ettt ettt sttt ste e saessesseeseeseeseeseensensensens 363
FORCE-DATA ..ottt ettt ettt et e b e besbeebesseeseeneensennans 363
FORCE-DISK ...ttt ettt ettt ettt s te et e et ebeeneeneeneens 364
FORCEINDEXci ittt ettt ettt ettt s be et e eeeeneeneensennans 364
KEY-COMPRESSIONcutitiiirieit ittt st eb et 364
MINIMUM-BLOCK-SIZE........ccooiieiiiiieiieieieieieieteietet ettt ene 364
ROUND-TO-NICE-BLOCK-SIZEccoeotiiieiiriiieieieieeeieieesieseeteie et es 364
USE-LARGE-FILE-LOCK-LIMITc.occiiiiiiiieiirieieeeeeee ettt 364
RUN-OPTION Configuration ReCOTdccuevoveiieiieiieiieieeieeiecee e 365
B ettt ettt sttt b ettt 365
DISPLAY-UPDATE-MESSAGES ..ottt 365
ENABLE-LOGGINGuoetiieieieieee ettt sttt ae s sseeseeseeseensensesens 365
FILL-CHARACGTERooiiiiiie ettt ettt sttt ene st eneensennans 367
K ettt ettt a e h e et e n et ekt be et e bt e ae st et et et e eteebeebeene et enneten 367
ettt ettt h e a e h ettt ekt bt eh e bt a e st et e teebe ke ebeebeene et entetan 367
LIBRARY -PATH ...ttt st 367
LOG-PATH ...ttt st b et ebe et eens 368
MLttt bbbt h e eh e bt aeea et e bttt beebe bt et enneten 368
MAIN-PROGRAM.....ccoeittitiiteieee ettt sttt sttt 368
ettt b et h et a et st b e bbbt bbbttt b e eb e ebe et eaneten 368
RUN-REL-FILES Configuration RecOrdcecvreiirieriiiieiieieeeeeeee e 369
BLOCK-SIZE ...ttt sttt bbbttt nens 369
USE-LARGE-FILE-LOCK-LIMITccctetitiieieieieeie ettt eas 369

RM/COBOL User's Guide
Second Edition

Contents

Xvi RM/COBOL User's Guide

Second Edition

RUN-SEQ-FILES Configuration RECOrdccoecuiiviiriinieiieiieiecieeeeeee e 370
BLOCK-SIZE ...ttt ettt bbbt st ebe et een 370
DEFAULT-TYPE ...ttt st st 370
DEVICE-SLEWING-RESERVEccccoiiiiiiiiiiiiininneeeeceeeee et 370
TAB-STOPS ...ttt ettt st st eb et nae 371
USE-LARGE-FILE-LOCK-LIMITccctotitiieieieiesie ettt eas 371

RUN-SORT Configuration ReCOTd..........cccieiiriiiiiiiieriee ettt 371
INTERMEDIATE-FILES........coiiitii ettt st ene e eneennens 371
MEMORY -SIZE. ...ttt et eae st se et e e e aeanen 371

TERM-ATTR Configuration ReCOrd..........ccocieuiiiiiieiiiiiii it 372
ALWAYS-USE-CURSOR-POSITIONING......ccceititiriiitriieieieiee e 372
BCOLOR ...ttt et b ettt st b e b eb ettt 372
CHARACTER-TIMEOUT ..ottt sttt 373
COLUMNS ...ttt ettt ettt sttt bbbt s b bt e bt ebe et et ennenaens 373
DATA-CHARACTERS ...ttt sttt 373
DBCS-CHARACTERS ..ottt st 374
FCOLOR ..ottt ettt ettt ettt se e s e aebeeseeseeseeseensensansensens 375
PASS-THRU-ESCAPEcooiiiiiiet ettt st sse s enaennens 375
REDRAW-ON-CALL-SYSTEMootitiieieieieie ettt ettt 376
RO Sttt ettt ettt ettt ae st e st et et e s beebesbeebeeneeneennans 376
SCREEN-CONTENT-OPTIMIZEcooiiiiiieee et 376
SUPPRESS-NULLS ...ttt ettt e et st sbe s ebe e eneenes 376
USE-COLOR ...ttt sttt b e sbeebe et e naen 377

TERM-INPUT Configuration RECOTd...........cceviiiiiiiiiiieiiciecieeteeeie et 377
ACTION Ltttk b et b et et st s bt ebe bt est et enneneens 378
CODE ..ttt st ettt h bbbt 378
DATA ettt ettt st b et be et 379
EXCEPTION ..ottt ettt sttt ettt st b e bbb eanens 379
PRECEDENCE........cct ittt ettt sttt se et eseesaesaessesseeseeseeseeseensensensans 379
Character Sequence SPecifiCation...........ccverierieiirieriereee e 379

Translation of TERM-INPUT Sequences on Windows...........cccceevereenceneenneeenne. 380
Translation of TERM-INPUT Sequences on UNIXccccccvvviieniieeniieenieerieeeeenn 380
Character Sequence Specification for Input Data Character Keyscc.cccoeeneeee 380
Character Sequence Specification for Field Editing Keys.........cccooveviivciencvenieennnne. 381
Character Sequence Specification for Field Termination Keys.........ccccecevenenee. 384

TERM-INTERFACE Configuration RecCordcccevierieviieiieieeieieieee e 387
GUI ettt ettt bbbttt ettt besbe bt et eatenens 387
TERMO AP ..ottt ettt b ettt naen 387
TERMINFO ...ttt ettt sttt st b e st eaeeiaeeens 387
WINDOWS ettt ettt et e be et ebe e st e st e aesessesseesesseeseeneensensans 387

TERM-UNIT Configuration Record............cooiiiiiiiiiiiiieieieeeeeeee e 388
B S ettt ettt e Rttt te et et e aeete sttt eneeneentensensenans 388
CHARACTER-WIDTH.....oiiitiitiiitee ettt st 388
DEFINE-CONTROL-CHARACTERS ..ottt 388
MOVE-ATTR ..ttt ettt ettt be bt be e s enteeeseenea 389
PARITY ¢ttt ettt b ettt ettt st e bt bt est et e e nnens 389
PATH ettt et b ettt bbbt bt ettt 389
STOP-BITS ..ottt sttt ettt st sbe et e e e 389
TYPE .ttt ettt bbbttt nae 389
UNIT -ttt ettt st b e sh e bt ettt et b e st beebeeae e eneen 390

Default Configuration FAlesc.ccveiiiiiieiiieiieiiee et 390
Termcap EXAMPIE........oooviiiiiieiee ettt 391
Terminfo EXamPIeooiiiiiieiee ettt 393
WiIndows EXAMPIE........ccviiiiiiiiieiicie ettt st e beenesaae e sneenre e 395

Contents

Chapter 11: Instrumentationccccccviiiiiiii 399
InvoKing INStrUMENtAtIONccuieiieiietieitieie ettt ettt ettt et eeee b e eeeeeeneeene 399
D1 O] 1<t o) o NSRS 400
Data ANALYSISvetieiieiieie ettt ettt ettt sbee e eae 402

Appendix A: Runtime Messagescccccceviimrmeiirirrmecsssremesssersmsssneens 407
EITOT MESSAZE TYPES .eenevieiiieiiieeiiieeite ettt ettt ettt ettt ettt e et e s b e et e sabeesabeesabeesaneens 407
Data Reference EITOTS.c..coiviiiiiiiiieieeseseseseet ettt 409
Procedure EITOTScoiuiiiieiiee ettt ettt et st e s aeeee e eae 411
INPUL/OULPUL EITOTS ...ttt et ettt ettt e s e neeee e ene 418
INEEINAL EITOTS 1.ttt ettt ettt ettt et ese e s st e be e teeeeeneeeaee 440
SOTE-IMEIZE EITOTIS ..ottt sttt ettt et sb et ettt et eaeeebeenaeas 440
Message CONIOL EITOTSoouiiuieiiiieieiesese sttt sttt ee et nee s 441
CONfIGUIAtION EITOTSviivviiiiiciieciieiieie ettt st ste b esbeesbestaessa e seesseensessaenens 441
Runtime System Initialization MESSAZEScuevvieruieriieiinieriieieereeeesteesreeseeaeseeseeesseesseenns 442

INitialiZation EITOTScouiitiiiiieiieieee st 442
Support Module Initialization Errors..........ccocveeieriieiiieienieceeee e 443
Support Module Version EITOrs..........ccceviiiiiiirienieiieiteieeieseee e 443
Option Processing EITOTSocveiiiiiiiiiieiieeiese ettt snee s ens 444
Main Program Loading EITOrS.........cccoeruiiiiiiinieieieee ettt 444
RUNCODO] BANNer MESSAZEcoueeruieiieiieiieieetieie ettt ettt sttt esneenaeens 445
RUNCODO] USAZE MESSAZE ..ottt ee ettt ettt sttt e eeeeeseeesneeneeeneeene 445
Registration Error MESSAZESeevueiieiiiiieriienieeie ettt ettt sttt ettt e e 445
COBOL Normal Termination MeESSAZES.........ceueuerueruerierereieieeieieriesieseeseeetesseeseeeeneesseseenees 446

Appendix B: Limits and Ranges........cccccccoiimmmeciiimrcecsnirececssesscesneens 447
RM/COBOL Limits and RaNGES.........c.cccuerueerieriieiieiieniesie e eeeeeeseeeieeseseesaesaesseensesnneenns 447
S (3 10T o T TSRS 449

Appendix C: Internal Data Formats...........ccccommmmmccciiininnnnce, 451
Internal Data FOTMALSccoiiiiiiiieieee ettt ettt 451
INONNUMETIC DALA......etiiiiiiiiiieee ettt ettt be e sbe et ennas 452

Alphanumeric (ANS)eeiieii ettt ettt seeseeeste e st enseesaeeseeseenseensesnsesnnas 453
Alphanumeric Edited (ANSE)ooiiiieieieeee ettt 454
AIPRADEHIC (ABS) -neeieeiieieeeeeiteee ettt ettt ettt b ettt neene st e b e nneeas 454
Alphabetic Edited (ABSE)......uioiiieeee et 454
Numeric Edited (NSE).....cciiiiieii ettt s ae e 454
NUMETIC DIALA ...ttt ettt sttt ettt saeenbeebe e ens 455
Unsigned Numeric DISPLAY (NSU)...coiiiiiiiiie et 455
Signed Numeric DISPLAY, TRAILING SEPARATE (NTS)....ccceieiiiiiiiereeeeeene 456
Signed Numeric DISPLAY, LEADING SEPARATE (NLS)......cccecivievieieeieeee e 457
Signed Numeric DISPLAY, TRAILING (NTC)cooveviirieiieiieieeeeeeeieeie e 458
Signed Numeric DISPLAY, LEADING (NLC) ...ccocooiiiieriieiieiieeeeeeeeesieeie e 460
Unsigned Numeric COMPUTATIONAL (NCU)....ccevirireeieienieenenenesieeeeieeieeeeees 461
Signed Numeric COMPUTATIONAL (NCS)...cocveotirininininineeieicieneseesiese et 462
Signed Numeric COMPUTATIONAL-T (NBS) ...ovovininirinineeieicieneneseneeieeeeeee 463
Unsigned Numeric COMPUTATIONAL-3 (NPP).....cooiiiiiiiiei e 464
Signed Numeric COMPUTATIONAL-3 (NPS)...ccutiiieieeieeeeeeee e 465
Unsigned Numeric COMPUTATIONAL-4 (NBU)....cccooiiiiiiieeieeiereeeeeee e 466
Signed Numeric COMPUTATIONAL-4 (NBS)oooiiiiiiieieeeeeeeeeeee e 468
Unsigned Numeric COMPUTATIONAL-5 (NBUN)....cooiiriiiiiienienieceeeeeeeeeeen 470

RM/COBOL User's Guide xvii
Second Edition

Contents

Xvili

Signed Numeric COMPUTATIONAL-5 (NBSN)cooiiieiiinieieenieeeierieeeeieee e 471
Unsigned Numeric COMPUTATIONAL-6 (NPU)ccooiviiiieiienienieeee e 472
POINET DALA ..ottt sttt 474
Appendix D: Support Modules (Non-COBOL Add-Ons).................. 475
INEEOAUCTION. ...tttk b bt ae et et et et e et eaeeneeneeneeneenean 475
Overview of Optional Support Modules...........ccuveviiiiriiniciiceceeeeeere e 475
Locating Optional Support ModUIES..........ccevieriieriiiiiiiese e 477
In Production MOMEcc.oouiiiiiiiiiieieteee ettt 477

IN TESE MOAE. ...ttt st ettt et nbe e 478
Using a Different EXecution Dir€Ctory........ccooeverieriieiieierienieieeieeieseesie e 478

Using a Different SUDQITECtOrYcuervieriereieiierierie et 478

USING the L OPLIONcoeieiieiieiieeiiesieee ettt 479

Support Modules Available for RM/COBOLcccooiiiiiiiieieteeeee e 480
Terminal Interface Support Modules on UNIXcccccooiiiiiiiiniiieieeee e 480
Automatic Configuration File Support Module............oceiiiiiiiiniiiiiiceeeeeee 481
RM/InfoExpress Client Support Module on UNIXcccoovviiieviiiiiiiieiieieeieeeeeieenens 481
FlexGen Support Module on UNIX........cccoooiiiiiiiiiieieeieeieeeeee et 482
Cobol-RPC Server Support Module on UNIXccoovveiiieiieiiniiiieneeieeee e 482
Cobol-CGIX Server Support Module on UNIXcccoeoiiiiiiiiieiiiieneeieeie e 482
Building Your Own Support ModUIE.........c.ecoviviiiiiiieiieii ettt seee s 483
User-Written Support MOAUIEcocuieiiieiieiecieiee et 483
User-Written Support Module from Old Sub.c or SuUb.0......ccccevveriieiieieieieieeeeeenn 484
Building a Message Control System (MCS)......c.oocuvvoierierieiieiieieeieeee e 484
Message Control System (MCS) Support Moduleccoeeeiieiiniiiinieeeeeeeeee 484
Initializing the MCS ...ttt 485
Message Control System Data Structures...........oceeeeeeerienieiiee et 485
RM/COBOL Communications Descriptor (CCD).......cccvevvieeiieiiiieiienieeie e 487
Appendix E: Windows Printing.........ccccciiimieecciirssecis e eesemsnnens 489
P Subprogram LiDIary...........ccecieirieiririeiriiierieeieeteeei sttt sttt eens 489
OVEIVIBW ...ttt ettt ettt ettt et e et be bbb et e e bt eb e bt e st et et et e s bt ebesbeeseeas et ennen 493
Using Windows Printing FUNCIONScccueiieiieiieieie e 494
Returning to a "Normal" FONt...........ccoooiiiiiiiii e 494
Common P$ Subprogram ATZUMENLS.......c.cceeveeiririeirinieiniteeneneeerenteesresreee e 495
Omitting P$ Subprogram ArUMENTScccovvueueririeriririeriirieieerieieereeieeseeeeeseseenenenes 497
Windows Print Dialog BoxX SUDPrOZrams...........ccecerieriiieniiiiieieiee e 497
Printing MUltiple COPIes......ccveiieiieriieiiiieeieste et ere et et esteeressaesaesaeesseesessaesseesseenseens 500
Printing Partial REPOITS......c.cccveiieriieriiiieiiese ettt ete e seee e e saeesbeeaeseeesseesseennenns 501
PSCIEArDIALOE ...ttt ettt ettt ettt ettt b et te bt ers b anens 501
PEDiISADIEDIALOZ.cvevieieeiiriieiietieteete ettt ettt ettt et b s s 502
PEDISPIAYDIALOE.ecvivieietiitiietecteeteet ettt 502
PSENADIEDIALOZecvivieieviiieieticieeteteete ettt ettt b et b ettt b e s e 503
POGEIDIALOZvveieieeeieie ettt ettt e st et a et e aene e 503
POSEEDAALOZ ... ettt ettt ettt aene e 504
Drawing SUDPIOZIAIIIScccuieiiiieetietieieete ettt et e teseee st e st et e enteeseesseesse e teeneeeneeeneenees 505
PEDIAWBIIMADcvvvevieiietiiieieteeiieteiet ettt ettt ss bt eb s ebese s ebesesesesessesesessenes 505
PEDIAWBOX ..ottt ettt ettt st eb et s bt et bese s s ese st esessas s esess s etese s 506
PODIAWLINE ..ottt ettt ettt et ese et s es b se st se s b ese s ebese s esesessenas 506
POGELPOSILION ...ttt ettt ettt ea et s s s s b e s s ebese s esese s ebesessesesessanas 507
POLANETO 1ttt ettt ettt s e b et s et et nebeneenenes 507
PEMOVETO ocieiiteiieteiieteteet ettt ettt ettt b et et b et b et et besese s esess s esese s esesesesesennas 508
PESEtBOXSRAGE.vevieiieiiieieieetc ettt ettt ne e 508

RM/COBOL User's Guide

Second Edition

Contents

POSEIPEIL.....cuiuiietieiieteittet ettt ettt b et b et b et s b s bt es b st ebese e 509
POSELPOSITIONcueuievieiieieiiieteiiiet ettt ettt ettt s bbb st ebese s b ese s ebese s esesensenas 509
Text Manipulation SUDPIOZIAMSc.cccverieriieriierieeieeiestteteeteeeesseesseesseesesaeseeesseenseensennns 510
PECLEATFONLviteiietiteeee ettt 510
PEGEIFONT ..ottt 510
PO GEITEXIEXTENE. ..ve.vevieviieeietiieeietiiee ettt ettt ettt se e beseetesbeseesesbessesesseneesesseneens 512
POGEtTEXIMELTICSvevvvinreeietiieeeetite ettt bttt se et e s te b seesebe st esesbeseesesseseesesseneans 512
PO GEtTEXIPOSIEIONvevieieeiieiieiiieetetietete ettt ettt b s sesbe e seebesseseebesseseesessesenne 515
PESetDEfault ATIGNMENTcvveeeeeieiiit ettt 515
POSELFONL.oviietieiietieitetet ettt ettt ettt b et s et b et s s b ese s be s s ebese s ebese e 515
PSSEtLINEEXENAMOUEc.oveieireieieieiiieietcetetee ettt eb e 518
PO SEtLINESPACINGevevenieeiieieiieietettetet ettt ettt ettt be bt e s e st be s neene 518
PESEIPIECI. ..ttt 519
PO S TaADSIOPS ...ttt ettt 519
PO S TEXICOION. ...ttt sttt ee 520
PESEtTEXIPOSIHION. ...ttt ettt ne 520
POTEXEOUL.....cvietiieeietiteeietietet ettt ettt ettt b et be b eseebesbeseese s eseesabeseesesseneesesseneans 521
Common Drawing and Text Manipulation Subprogramscecceeeereerierrienieneeneeseeeeees 522
PESetDEfAUItMOMAE.cviveeieeiieeieiiieetetee ettt b et sb et be s e 522
PESEtDELAUITUNILSvcvevvieiieiciiietcecteteee ettt ettt ettt et ss et s ebese s bese s 522
POSEtLEftIMAIZIN. c...cveuieiiiiieietete ettt ettt 523
POSEUTOPMEATZINcuieieiiiieeteteieieiei ettt ettt ettt e e et s s eseses et e e e e s s seaeeas 523
Printer Control SUDPIOZIAIMScviiiiriieriieieeieiieseeste e ete st e steebeesseessessaesseeseessesnsesseesnes 524
PEChangeDeviCeMOES.c.viueuieeirieieiirieieiteieeieetete ettt se s neens 524
PSENableESCAPESEqUENCEScvivivieieiieiieiieiet ettt et seess s sbeeneas 525
PSENUMPTINEIINTO ..ottt 525
PSGetDefineDevICeInfo.c.ooueiririeiriiieeee e 526
PEGetDeviceCapabilitiescco.iiveiririeiriirieietieieee sttt 527
PEGEtHANAIE........ccveieeiiiieeieiiieeeieette ettt bbbt b be b s be s s ne 528
PEGEtPLINIEITNTO. .. c.veviviieeieiiiececeete ettt ettt sb st benens 529
PONEWPAZE. ... eeveeieieeetet ettt ettt ettt sa ettt ae s 531
PORESEIPIINLET ..ottt ettt b et b et st esetess s esese s esesena 531
PESEtDOCUMENTNAITIEcueieveeiaietieieieietieeeteeetese st ebetesesesesesesesseseseseesessssesesesesesaseena 531
PESEHANALEeeeiveeiiieieieieie ettt a ettt eb bt b et st se s esese s 532
PESEtRAWMOUEouvveeiiieiiieieiiieteiete ettt b et b et eb st esese s s esesaeseseseenes 532
(0707520 51 TR S U SRPRP 533
DEFDEV.CPY ..ttt ettt ettt sttt ettt ese bt ese b et es e nneneenn 533
DEVCAPS.CPY ittt sttt ettt bt nbeans 534
LOGFONT.CPY .ttt ettt ettt ettt et se b et s b e nsene b eneenenen 535
PRINTDLG.CPY oottt ettt et ete et e e ae e tbe e aaeesaeessaaesaeenseeesssaenseeenssaenseeas 538
PRINTINF.CPY ...ttt ettt ettt e et e et e e te e e beeesbaeeabeessbaeasseessseassseessseensseean 546
TXTMTRIC.CPY oottt et e e te e s b e e et e e s abeestbeessbeesseesssaensaeenssaenseeas 549
WINDEFS.CPY .ottt ettt ettt et e et e e tee s be e eteeeabaeenseesnbaesnseessseansseesssaensseenn 552
Example Code Fragments..........ccoouiiierieiiiierieiiescere ettt 554
Printing @ Watermarkcccoiiiioiiieieiee et sttt eee 555
Drawing Shaded Boxes With COlOTSc.ceciivieriieiieieeieseeie e 555
Drawing a BoxX around TeXt.........ccveeueivieiierieniieieeiesieesieeieeveseeeseesteeaeeaessaesseesseenseens 555
Drawing @ RUICT.........c.ooiiiiiiiieiieie ettt ste e teesaeebesaeseaesseeseenseens 556
Presetting the Print Dialog BOXccoviiiiiiiiieieiieeeeeeeee e 557
Checking the Exit Code after Displaying the Print Dialog BoXc.ccoceeveviviiiiniinicnnns 558
Printing @ BitmMapc.ooverieiieiecie ettt sttt et ens 559
Changing a Font While Printingccooooriiiieiiiiieeeeeeeecee e 559
Using the COBOL WRITE Statement to Print Multiple Text Outputs on
the SAME LINEeouiiiiii ettt sttt ean 559
Changing Orientation, Pitch, and Line Spacing........cccceeveeverieniinienieniiiiceienceee 560
Opening and Writing to Separate Printersccoceeieieiieiiinienere e 560

RM/COBOL User's Guide
Second Edition

XiX

Contents

XX

Printing Text at the Top 0f @ Pagecocvivieiiiiieiiceceeeeeeeee e 561
Printing Text at the Corners 0f @ Page.........ccceovevieiieiiiieieecie e 561
Setting the Point Size for @ FONt........cccoooiiiiiiienieiet e 562
Setting TeXt POSIHION.ccveriieiieieeie e siteseeie ettt et e st ettt eeeeessaesseesseenseennesnneenes 563
RM/COBOL-Specific ESCape SEQUENCESevvverieriieiieiieieeiesiieieeie e seeesseesseesessesenenees 564
Appendix F: Subprogram Library...........ccccmmsiiciiinnreeens 567
SUDPIOGIamM LIDIATYcviiieiiieeiieiieiieieeteee et ettt et ste b ebe e b e esaesseesseesbeenseessessaessnes 567
CBBILIMIAD ...ttt ettt ettt ettt ettt et ete et e et ete et easete et easete et essete et easesessessesessessesessensenas 570
CEOBTRY ..ottt ettt ettt ettt ettt e sb e b e et e e teeaeess e st ess e s e beebeereetseseessestenss 570
CBCARG ...ttt ettt ettt et et e aeeta e st essesb e be b e ebeeseesaeseassessesbesbeeseesaessassensansas 572
CBCEIEULY ...ttt ettt ettt ettt ettt et sete e b e s eseesesseteeseasessesesseseeseaseseesessesessesseseasessenis 575
CSClearDevelopmentIMOdeceoirieueiririeirieieeeeeie ettt 575
LGN 107001031 [S) 2117« o VUSSR 576
CECONVETLANSITOOECIN ...ttt ettt ettt re bt ebessesessessesessessesessessessssensess 577
COCONVETtOEMTOATNST ...ttt ettt ettt et et e s te ettt et eat et et e tesaeebesseeneeneeneaneenseanas 578
CODARG ...ttt ettt a e et e ra et be b e e abeetb e teebe e beenbeerreeraeeaes 578
CODCIAY ...ttt 580
OB FOTZEL ..ttt ettt ettt ettt ettt ettt et e e te et et ete et e st ete et easeteesessete et easete et essesesseasesessensenis 581
COGELEI ...ttt ettt ettt b bt b b e s e b s ese e b et ese s eseneebeseneeseseseesens 582
COGEtLASIFIIENAINEovvevivieietictieeete ettt ettt ettt ettt et seete st asese et esseressessesesseanenas 582
COGEINAVECRHAISELveveevivieietiitieeete ettt ettt et ss et st esseteesessesessessesessessesessessesessessenas 583
COGELASTFIIEOD ...vivveeivieieieeteeeteet ettt ettt ettt ettt b ssete b e ssesessessesessessesessensenis 584
COGEIRIMINTO ..ottt ettt ettt et et e b sb e beeteeseessessessesbessesesseeseessessassessansas 585
(O € 15) 1 WSSO 587
COGELSYSINTO. ...ttt n e 587
COGUICTEG ...ttt ettt ettt et et s e te e ete et e et e ete e beeateenbeeasesasestaesteeseenseenns 589
COLOZICALANA. ...ttt ettt ettt b bt neee 590
CSLOZICAICOMPLEIMENLveiiiiiiieteiiriete ettt ettt ettt 590
COLOZICAION ...ttt ettt ettt sttt eb ettt 591
COLOGICAISNITILETt . ..cviiieiceieeeecteee ettt ettt ettt ettt s et enas 592
COLOZICAISNITTRIGNEvivieviiieicticeiee ettt ettt ettt st enas 592
CBLOZICAIXOT .oviveevietieeteteteet ettt ettt ettt et b st b st ete b ssete s essesessessesesbessesebessesessessenis 593
COMBAT ...ttt ettt ettt e s bt e st e st esaesbesbesbe b e ebeeseessessesbessebeebeeseeseeseessensenss 594
COMEMOTYATIOCALEo.vivveeiviteeietiieit ettt ettt ettt ete et st s s eseebe s eseesessessesessesessensens 594
CEMEMOTYDEAIIOCALEvveeeeiieeieiieiete ettt ettt se e eseee 595
CEINARG ...ttt ettt et e et e et e e ateeaeeeteeabeeateeabeeteebeenteenteeateeraeeaes 596
COBOSLOCKINTO...veuveeietiieiietiieitete ettt ettt ettt sb b te b esseseesess et essessesessessesessensesessensens 596
COPARG ...ttt ettt st te et e e b e e tt e e et e e te et e eabeesbeetsesta e teeteenbeeraeeaes 597
COPLAYSOUNG ...ttt ettt ettt b e b 598
CORBMEIU ...ttt st ettt ettt et e bt et e e bt eatent e e e e e sbeebeeaeeaeeneeneansensennan 599
CSORERR ...ttt ettt ettt et ettt b e b et e et e eteess e st ess e b e beebeeteetsessessensenns 600
COSBaT.....itetiiietiietetetet ettt ettt bt b et b et b et b et st b et et b et e st b sent b et et s s e bens 602
CSBSCRD ...ttt ettt ettt et ettt et eta et e b e b e e b e e beeaeesa e st ess e b e b e e beereesseseessensensas 602
CBSCWR ..ottt ettt b e ettt ttesaesbesbebe e b e ebeeseessessasbesseseeseessessessessessansan 603
USAEE INOLES ...ttt ettt ettt ettt et b ettt e e bt s bt e eabeesabeesabeesabeesabaesabeesates 606
Fatal EITOTS ...ouiiiieiieieeeee ettt ettt ettt et e st e s seesseesseenseennesneenseenseens 606
EXCEPHION COAS ...ttt ettt ettt ettt et et e et st esaeesbeeteeneeeneesneenseans 607
CBSECUIEHASN.ovieieiiiieetiteeee ettt ettt bttt sb et e b ssese b esseseesessessnsensens 608
C8SetDevelopmentMOAEc.cuirieueiirieieieeeie ettt 609
CBSEEENV ..ttt ettt ettt ettt ettt eb et e st s et e s e e s e s eseesenseseesenseseesenseseesensennenn 610
CBSEESYI oo e oo oo oo oo oo oo oo oo e oo oo oo oo oo oo oo oo oo oo oo oo oo eeeeeeeeeeeeeeeeeeeeeeeeee e 610
B S OW ...ttt ettt ettt ettt e st e e s te e be e b e e aaeeaeeete et e et e enbeetaeeta e teeteenbeeraeeaes 611
COSNOWATES ...ttt ettt ettt ettt ettt e s et e b e st et e s en e eseese st et ebe st esenbeneesenseneeseseneenn 613
CBTBAL .ttt ettt ettt ettt s et s b e st et e be st et e s e st et e be st es e ben e s e beneesennennenn 614

RM/COBOL User's Guide

Second Edition

Contents

COTBATEN ...ttt ettt ettt ettt b st et be st es e b e st e s e bene et enneneenan 615
CBTBAISE(venveuveviienieteeieieteete ettt ettt ettt ettt e s et e s b est et e ssenteseesese et eeseneeseseneesenseneesenseneenn 616
O THIE -ttt bbbttt sttt ettt b et b b en st bttt n et nn 617
COBWRU .ttt ettt s ettt et b et b e b es e s e b e st s e neneens 618
DELETE ...ttt sttt et et ettt b e bbbt et enten 619
RENADME ..ottt ettt ettt ettt et et et e e beeseese e st ensensenseseeseeseeneaneensansan 620
SYSTEM.. .ottt ettt ettt ettt st et e e b e aeeseeseeseestentessensansesseeseeseentansensansenns 621
UNIX CONSIACTATIONS ...euveieeeeieeeieteeteeieeiteetee st et et eteseteseeeseeenteeneeeneasseenseenseenseeneesneas 621
WiIndows ConsSidETationsccoueeierierieniieieeientt ettt ettt et st seee st et eeesaeenieens 622
Appendix G: Utilities........ccccerriiiiniiiiiirn 623
OFGANIZALION. ... veeuveeieeeeeeeeieetieteeteeeteetaestteseeseesessaesseesseenseenseenseassenseanseensesnsesnsesseesseensennsennes 623
Utilities Delivered on Media........c.oeueiiiiieiieie ettt ens 624
General CoNSIACIATIONScouieitieiieieeiiest ettt et ee e st et ettt e et et e be e teeneesneesseesseenseeneeenes 624
Installing the Utility Programs...........ccoceerieiiiiiiienieeee e 625
Combine Program (rmpgmecom) UtIIIEYcoeeirieieieiere et 625
USING the ULIIEY .o.eieiieiieieieeeee ettt sttt nee s 625
Execution of Programs within Libraries..........ccccccereririeieieneiesese et 627
Map Program File (rmmappgm) Uityc.ccceeviieriiiiiiiesieieeeceeeeeeeee e e 628
USING the UHIILY ..ocvviiiiiieiecic ettt sttt sae e essesseessaesseenseens 628
Map Indexed File (rmmapinX) UtIILYcccvecieriieiierieieeic et 630
USING the ULIIEY c..vevieiieieeie ettt sttt e e s e steenseensesnnesneas 631
Basic File Information DiSPlay.........cccccerierieriieiieeierieneeie et ees 631
Detailed Information REPOTt.........ccueviirieriieiieieeieseee ettt 632
Key Descriptor Information DiSplaycecerieiieiinieiieseeeee et 633
Define Indexed File (rmdefinX) Utycc.eeouerieiieiiee et 636
USING the ULHIEY ..eeeeeieeie ettt et ettt e seeeseeas 636
File Pre-Cr@ationooiiiiieiiiiiiiieiie ettt e 637

File MOQIfICAtION ...ttt sttt eee e e 639

Indexed File Recovery (recover]) Utoccoierieieiieieesesc e 641
Recovery COmMMANAccueviiiieriieieiie ettt ettt te et eveseaessaesteesseessessaesseesseensenns 641
Recovery Command OPtionsS..........ccvevvieiieieriesiesieeieeieseeseesseesseesesseesseesseessesnns 642
Recovery Process DESCIIPHIONeevvieiieieeieriieieeie ettt etesae et saeeeesnnesseesseeneeens 645
Recovery Support Module Version Errors..........ccvecvveierienieiieicie e 646
ReCOVErY EXAMPIE........occiieiiiiieiieiece ettt e s ense e 646
Recovery Program Error MESSAZESeevviiriiiiiiiniieniieeieeiieete ettt 651
Standalone Use of the Recover2 Programccoocvviivienieiieiieceeeeeee e 652
Recover2 Program Error MESSAZESevueeruieriieiieieeiiesieeieee et 654
Initialization File to Windows Registry Conversion (ini2reg) Utility.........ccccooeveeeneeienennse. 655
USING the ULIIEY .o.eieiieieiieieee ettt ettt sttt et e nee s 655
RM/COBOL Configuration (rmconfig) Utility........cccoerieiieriieiiiieieeeeese e 656
USING the UHIILY ..oovviiieiieiecie ettt sbeesteesseeseesseesseenseens 656

RM/COBOL User's Guide XXi
Second Edition

Contents

Appendix H: Object Versionsccccceecciiiiiiimnnnscsssssssse s ese s 659
LeVel INUIMDETS . ..c.eeeiee ettt et et e st e b e et e e st e eseesse e beeseemeeeneeens 659
(0 0) 15T e1 VA 43 101 s SRS 661
ODBJECE VETSION 2 ..ottt ettt ettt st st e bttt eat e s bt e et e e b e e e eatesaeesbeesae 661
ODJECE VETSION 3 ...ttt ettt ettt s h e st e bt ettt e saeeeb e bt e e eatesaeesbeesae 663
ODBJECE VETSION 4 ...ttt ettt st et ettt ea e sb e e bt et et e saeesbeesae 663
ODBJECE VETSION 5 ..eiiiiiiieiieie ettt ettt eet e st e te e teesbessaesseesaeesseenseessesssesseessaessasssesssessnennns 664
ODBJECE VETSION 6 ..ottt ettt et et e st et e eteesbeesaesseesaeesseenseesseessesseessaensenssesssesseennns 664
ODBJECE VETSION 7 .vveeieiieiieii et ette et eieesteete et esteeste e seesbeesaessaesaeesseenseassesssesseessaessenssesssesseensns 666
(00) 15T A VA 43 101 1 1 SRR 666
(0 0) 15T 43 101 4 15 SRS 668
(0 0] 15T e1 A 43 103 o B PRSP SS 668
(0 0) 15T e1 VA 43 103 o O PSR SS 669
(0 0) 15T e A 43 103 s B PSSR 669
ODbJECt VETSION 13 ..ttt ettt ettt et setesaee b sae 670
ODbJECt VETSION 14 ..ottt ettt ettt et eb e bbb et saee b e 671
ODbJECE VETSION 15 .ttt et ettt et s e b sae 671

Appendix I: Extension, Obsolete, and Subset Language

Elements........ccciiiiiiiiiii 673
EXtension EISMENtS.cciiiiiiiiiiieieeesese ettt 674
ODbSO0IEte EICIMENLSc..eiuiiniiieieitiitceieetiee ettt ettt 679
SUDSEE EIBIMENLS ..ottt ettt ettt et 680

Appendix J: Code-Set Translation Tables.........ccccceeeeiirieeciiireeencnnns 685

Appendix K: Troubleshooting RM/COBOLccccccceeiiiiimrireeennnnnnnn. 701
RM/COBOL for Windows Running in a Microsoft Windows or Novell

Network ENVIFONMENL.cc.ciiiiiiiiiiiriiiieicetete ettt e 701

Old VIedir VA FIle......oouiiiiiiiiiiiiiies ettt 702

Network Redirector File Cachingccoeouveieiiiiiiiiii e 702

Opportunistic LOCKINGeoovieiiiieiieicee ettt 703

Virus Protection SOTtWATE.........cccuiiuiiiiieiieieeiece e 703

Novell NetWare CLIEnt32 VerSION.cceeeeieieierieniesieeieetteeteiieiee e see e eseeseeneeeas 703

Printing to a Novell Print Queue Using Novell NetWare Client32cccceoereennene 704

File and Printer Sharing for NetWare Networks Service.........ccocevvververiievierceeneenieenenns 704

RM/COBOL fOr UNIX ...ttt ettt ettt ettt st st e e 705

Number of Available SEMUNDO StrucCtures..........ceevvereerieeeieeciesieseenieeeesneseesseensenns 705

Appendix L: Summary of Enhancements.........cccccccceiiiiiiininnicennnnnnnn, 707

Version 12 ENhanCements.cocueiieriiiieiiiienie ettt ettt sttt e 707

Version 12 Runtime System Features.........cocovieiiiiiiienienieenieiee e 707

Version 12 Compiler FEAtUIESccueevuiiiiiieeiieiieeeiee ettt eereeseeeeeeeiveeaeeseeeeeee s 708

Features Added to Support XML EXteNnSIioNnsccceeevereeriereerieiiereeseesieeneseesseensenns 712

Version 11 ENhanCements.........cc.coiiieiiriiiiiiiiieeieteteeese et 713

Version 11 Runtime System FEatures..........cccovievvieiieierienieeiecie et sae e 713

Version 11 Compiler FEAtUIESccveviiiierieriieieeieeieseee ettt 713

Version 10 ENhanCements.........co.coeeieiiriiiininineeieieteteseses ettt 716

Version 10 Runtime System FEatures..........ccevveiieciieienieieiecie e 716

Version 10 Compiler FEAtUIescooieiiieiiiieiieieeee et 717

xxii RM/COBOL User's Guide
Second Edition

Contents

Version 9 ENhanCemMENtS.cc.eoueiiririiieieresesieeitet ettt st 718
Version 9 Runtime System Features...........cccevvieiieiiiieiieiieiecie e 718
Version 9 Compiler FEAtUresc.oecviieiiiierieiieieeesieeee e 719

Version 8 ENhanCemMENts.coeoereririiiiiieniinienenieeieetetetete ettt 721
Version 8 Runtime System Features...........cccovieiiriirienieiicieeie e 721
Version 8 Compiler FEaturescoveiiieiieiiiieeeeee et 722

Version 7.5 ENhanCements.cccueeuiiiiiieiieie ettt ettt s e e ene 723
CodeWatch Application Development Environment Introducedccoccoecieieniennen. 723
CodeBridge ENhanCements.cc.eeeeieieieieieriesie sttt st ese e e 723
Console-Mode Compiler 0n WINAOWSc.coveirieiiieiiiieiiesieeie et see v ere e e sveens 724
Multiple and Batch Compiles Easier and Faster..........ccocovevvieevieiiiieniciecieceeseeee e 724
More Reliable Indexed Files.........ooeiiiiiiiiiiiiiiiericsesce e 724
Better Indexed File Performancecocceoveieriiiiniiiniiiieeieeecee e 725
Automatic Configuration File Available for Windows.........c.ccoccvenirinicneniinienecnienene. 725
Tail Comments for Configuration Records...........cocvvvurrienieniniiiie e 725
Enhancements for Non-COBOL Subprograms on Windowsccccevveeierevenvenieenenne 726
Additions to the RM/COBOL Subprogram Librarycccccoeceevieiieinnienieeeeeeeeeen 726
Message Files ElIMINatedccooieiiiiiiiiiieneee et 727
Compiler Overlay File Eliminated............ccoocoeiieiiiiinieiieieeee e 727
Version 7.5 Runtime System Features.ccovieiiiiiieiieniienieieneeeee e 727
Version 7.5 Compiler FEAtUIESc.ccciiiiiieeiiie ettt 730
Version 7.5 Uity FEatUIES.eoviiiiiiiieiiiie ettt 733
More FIexXible LICENSING......cccviiieriieriieiiiiesiesie et eteeteesteeteeseesaeseaesseeseessessnesseesseensenns 733
Automatic Update CRECK.........ccvieriieiiiiiiiecieit ettt sae e e 733

Version 7.1 for UNIX Enhancementsc.ccoceeeeieieniinenineiiceeeeeese e 734
Runtime Linking EImMinatedccoooerieiiiiieiieieieeeeee e 734
UNIX RESOUICE FIlE ...ttt 734
Automatic Configuration File...........ccceiieiiiiiiiiienieiee e 734
Support for UNIX Added to CodeBridgeccoevieiieiirieieieeeeee e 735
Enhancements to Configuration Records............cccoeviiriiiieiieiineieee e 735

Version 7.0 for Windows Enhancements..............cocveuirierieiieninieee et 735
CodeWatch Debugger INtroduced............coueueririiiiiiiieieieee et 735
CodeBridge Cross-Language Call System Introducedcccooeiiiininiinininieeiee 736
Enhanced Windows PrINtiNgcccccvevvieriieiiiniienieiiete e seesieeie e see e sseesneesnesseenseens 736
Additions to the RM/COBOL Subprogram Libraryccceceevvievierieeneenieeieeieseennenns 737
Ability to Use Btrieve INterface.........coevuiviivieriiiiciieeecieeeeete e 737
Version 7.0 Runtime System Features..........ccoocvevvveiiirienieieeeie et 738
Version 7.0 Compiler FEaturesccocivierierieiiieieeieeeeeee et 739
Enhanced File Recovery Performance.............ccoocvevieriieniieciieiecieceeieeie e 742
New rmpgmcom Utility OPtionceeceeeierieniieiieieeie et 742

Version 6.6 ENhanCements.ccoeuiiiiiieiieie ettt s eas 743
Override Date/Time Feature for Year 2000 TeStingccccovereerierieerieneeneeieeieseceeee 743
Increased Compiler CaPACILYcc.eeieierieriiie ettt 743
Improved Compiler Performance for Large Programscccccocevveniiniiniiiinicencenene 743
New Statistics in Compilation Listing File.........ccoocoriiiiiiiiiieiee e 743
Double-Byte Character Set (DBCS) SUPPOITt......ccveviieiiiiiiieriieii e eee e eiees 744
Enhanced Indexed File Recovery Program..............ccocveeieeciieiiniinienieie e 744
Masked Input and OULPULeevuieiieiiiiecieeeee ettt seesaeeaeesae e e sseeseens 744
SUpPOort FOr Large Flesccuiiieiieiiieiieie ettt s 744

Version 6.5 ENhanCements.c.ceeeieieriirininineeieieteteseste sttt 745
Full 32-Bit IMplementationcceeeerierienieieeieeieseeieeteeete e ee e seeesseenseense e 745
Windows RegiStry SUPPOIT.cciiiuieiiiieiieeeeet ettt st 745
Extensions for 32-bit WINAOWScccoeiiiiiiieieieeee e 745
Automated System Installation and Removal............cccoooeiiiiiiiiiniiicceeeeee 745
Right Mouse Button Pop-Up MENUcccceieieiiiiiiiineieeeieeee et 746
New Subprograms for WIndOWS..........cecuiiiiriiniiiiinieiie et 746

RM/COBOL User's Guide xxiii
Second Edition

Contents

XXiv

RM/COBOL User's Guide
Second Edition

Window Style and the SYSTEM Non-COBOL Subprogram.............ccccceevvvevveeeeneennens 746
Btrieve Adapter ENhancements...........cccovveruieriiiiiiieneeieeie et sveesae v e 746
Attached Configuration Files on WindOWS........cccccuerieriiriierienieiieieeieeeeseeee e 747
Built-In Configuration File under UNIXccoccoiiiiiiiiiieieece e 747
Year 2000 SUDPIOZIAIMN........ecveiieiierieeieeiereesteeteeeesteesteeteesessaesseesseesessesseesseenseanseans 747
CSRERR Eleven-Character Extended Status............cccuevereriereneeieieceieieieie e 747
Improved recover]l Utility Programi...........ccccoeoiiiiiiiiieiieieeeeee e 747
Enhanced rmmapinx Utility Programcoccoooiiiiiiiiieiieeceeeeee e 747
Dynamically Configurable Prompt Character..............cceceouerieneneiiiineeieceeeee e 748
Building Custom Products Using the customiz Shell Script..........ccooevieiiiieiieieninee 748
Indexed File Block Sizes After OPEN OUTPUTcccoioiiiiiiieieeee e 748
DELETE FILE under UNIXccooeiieirieieiieieitrieeeieeseetee ettt 748
Resolution of Program-Names..........c.cccueiierieriieiieiesiesieeie e seeeseesieeseseeseeesseesseenseees 748
Compiler Support for External Access Methodsccoecuevienieniiicieicienieeee e 748
... 749

Contents

List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:

Compiler Search SEqUENCE..........coiiiieiieiieieeiieteee et 23
Runtime System Search SEqUENCEcccueeiirierieiieeee et 23
RM/COBOL Start Menu Programs Folder............ceceiiiiiiininiiiiiiceeeceeee, 55
Shortcut Properties Tabc.cccceiiieeeiiiiiieiieecieesre ettt et eree s e evee e 64
Select an RM/COBOL Object File Dialog BOX.......cccoceeeeieiienieniieieeiececeeene 65
Compiler SEarch SEQUENCE........c.ccvveriieriieiieieetereete e ete st se e eaeeaeseesreesseeseens 67
Runtime System Search SEqUENCEccuieiirierieriieieeie e eeeeseeeseeens 67
Synonyms Tab of the Properties Dialog BoXccceevveiieiiiienieiieie e 69
Select FIle Tab......cc.ooiriririiieieieeerie ettt 74

Control Properties Tabc.cccveieiieiieieee et 76
Synonyms Properties Tab.........ccceoieiiiierieiieie et 91
Colors Properties Tabcccooieiiiiiiiieeeeeee e 93
Toolbar Properties Tabcccoeviiiiiiiiieeee et 94
Menu Bar Properties Tab........ccoocieeeiiiiiieieceeee ettt 98
Pop-up Menu Properties Tab.........c.cccvevieviiiiiiieiiieieeieceeeeese et 100
Color Palette Showing Right and Left Mouse Colorsccccoeeverieieieieeene 103
Sample Window of an RM/COBOL Program Running Under Windows............ 116
RM/COBOL for Windows Control Menu...........cecceeeienienienenenenenenceieeeeenne 117

Figure 19: Return Code MesSsage BOXcccvccviviiiiiiieniieii ettt 118
Figure 20: Indexed File Requests on a Single-User Systemcccoecveviieeienieneeneenieenenne 124
Figure 21: Indexed File Requests on a Local Area Networkccoecvevieviercieneeneenieenne 124
Figure 22: Indexed File Requests on a Local Area Network by the Btrieve MicroKernel
Database Engine (MKDE)c.ooiiiiiiiiiee ettt st e 125
Figure 23: Btrieve Adapter Acting as an External File Access Method (On Windows)...... 128
Figure 24: Program Listing Headercooeeiiiiiiiiiniee e 170
Figure 25: Program Listing Subheader with Identification Area...........ccccooceviniieneeienense. 171
Figure 26: Program Listing Subheader without Identification Area............cccceeeeerireeennee. 171
Figure 27: Sample Program LiStINgcoceereeriiiiiienieieie et 174
Figure 28: Allocation Map (Part 1 0 4).......ccoeviiiiiiieiicii et 176
Figure 29: Allocation Map (Part 2 0F 4)......cccovieiieiieiieie ettt 177
Figure 30: Allocation Map (Part 3 0T 4)......cccueviiiieiieeee et e 179
Figure 31: Allocation Map (Part 4 0F 4).......cceevieiieiieeee e 180
Figure 32: Called Program SUMMATYcccoeoierierieniienie e seesceie et seeeseaesee e eseenneees 180
Figure 33: Cross Reference LiStINGcccoeveeiieiiiiieniesieie et 181
Figure 34: Summary LiSHNEc.cecuiiiiiieiieieeie ettt s 182
Figure 35: Error Marker and DiagnostiCscccevuieriieiirieniieiieieeesee et 184
Figure 36: Error Recovery Displaycccooeriiiiiriiiiiiienceiceeees e 185
Figure 37: Data AIlOCAtion MaPccoiiiuiiiiieiieieieie ettt sttt 281
Figure 38: Developed Data Addresscoeeveiririiiiinienieieeeei et e 281
Figure 39: Sample Data Structures DesCription..........cceevvieeiirierieniierieereeeeseeseesreeneeeee e 400
Figure 40: Excerpt of @ Merged LiStiNg.......ccceecveiiiiienieniieieeieeeete e se e eve e 404
Figure 41: Communications Descriptor Map (CCD)......cccoeevievieienieniieieeiecieseee e 487
Figure 42: Standard Windows Print Dialog BOXcccccevieiiiiinieieieececeeee e 493
Figure 43: TEXt IMELIICS ...eovuieiieieeiieiieieeieeteetesttesteeteeaessee st esseenseenseessesseesseensennsesnsesnnennes 512
Figure 44: Indexed File Recovery Utility: File Recovery Verification...........cccccceeveuennnne. 647
Figure 45: Indexed File Recovery Utility: recoverl Summary.........ccccoooeeveeneriienceneenennne 648
Figure 46: Indexed File Recovery Utility: recoverl StatiSticS.........cooereervrrieriereeneeeennes 649
Figure 47: Indexed File Recovery Utility: recoverl Finished Successfully............cccc....... 649
Figure 48: Indexed File Recovery Utility: Entering Key Information............cccceceeeennee. 650
Figure 49: Indexed File Recovery Utility: Entering KIB Information............cccceceeeveeenennee. 650
Figure 50: Indexed File Recovery Utility: recover2 Main SCIeenccocevceeeeeeeeeeeensn. 653
Figure 51: Indexed File Recovery Utility: Secondary ReCOVErYccoovvvvvvriereereenreennnne. 653
Figure 52: Select FIle Tab......cc.ociiiiieiiiieiieceesie ettt ettt s ese e 658

RM/COBOL User's Guide
Second Edition

XXV

Contents

XXVi

List of Tables
Table 1: Sample FIleNamescccoeiiruierieiieieeeee et eeas 12
Table 2: Terminfo and Termcap Names for the Runtime System............ccocceevveiiniineneennen. 33
Table 3: Input Sequences for Terminfo and TermcCap.........ccceeveeieiieeiieerciieecieecieeeee e 35
Table 4: Additional Boolean Capabilitiesccuevvverierieriierieeie ettt 39
Table 5: Additional Numeric Capability.........ccceoieiieriiiiririecreeeeee e 39
Table 6: Additional Output String Capabilitiesccceerveerierieeriieieiiereere et 39
Table 7: Standard Terminfo StriNGS.........cccvevieciieciiiiieiieriereerie ettt ebeeeeessaeseees 40
Table 8: vt100 Line Graphic CharactersS........c.ccuevueeriierieiiieiieseeste e eeeeeeesteeseesreevessaesseeseeas 41
Table 9: Environment Variables for UNIX..........ccccooiiiiiiinininininiiceiecencsesieeeeeeeeeene 46
Table 10: RM/COBOL Program ICOMNSccecverieriieiieeiesiiesieesie ettt eee e seaessaeneees 55
Table 11: Special Characters for the Button Character-String.............ccoeeeveerienveieneneenen. 95
Table 12: Default rmtbar.vrf File Button Icons...........cocoevieiiiiiiiiieeeeeceeeee 101
Table 13: Additional Character Equivalents Under RM/COBOL for Windows................... 113
Table 14: Environment Variables for WIndowsc.cccceeiriiieienienene e 120
Table 15: RM/COBOL Compile Command Options...........cc.ecveevveeieiienieerieeneeeeseenneeneenns 156
Table 16: Source Indicators in Compilation LiStingccccceceerieieniinineninereececeeeeee 173
Table 17: Abnormal Termination MESSAZESccueeviererieriierrieieererteesreereeaesaesreesseesseenns 189
Table 18: Compiler Configuration EITOTIScccccueiiiriieniiiieiieeieteereeee e 196
Table 19: Compiler EXit COAES.....cceviiiiiiriiriieiicie ettt ettt eseeaeseae e reenseesneees 197
Table 20: RM/COBOL Runtime Command OPtions............ccecuveevereerieenieenrensieseeseeneeeeeenns 202
Table 21: Program EXit COAESccevuirirriieiieiieiie ettt ettt e e e e eaesnneens 210
Table 22: Edit KEYS ..oouieriiiieiieieeieteitete ettt sttt et e esaesseeseensesnsesnnesneennes 213
Table 23: Default Editing Semantic ACLIONSccvereerrriieeienierieeie et 215
Table 24: Keys that Terminate Field Inputcccoooieiiiiiiiiieee e 217
Table 25: Valid COBOL Color NAMESccciiiieiieieeiieriieieeeeeeie ettt seeesee e 222
Table 26: System-Specific Line Draw Charactersccccoecerieieieiesienenese e 223
Table 27: Characters Used with the MASK Keyword of a CONTROL Phrase.................... 224
Table 28: Effect of Certain Keywords and Phrases on Masked Input Processing 226
Table 29: Pop-Up WIndow Error Codes..........ccveruiiviiriinieriieiieieeieseesieeseeve e e sveesne e 237
Table 30: Sharing PermiSSIONS..........cc.ecierieriiesieiieiieseesteeteeeeseeesteeteeseessessaeseeesseensessseenns 246
Table 31: RM/COBOL Debug Command Options...........ccecueecereieneeseesienieneeseesseenseeaennns 272
Table 32: Valid Data Type INAICAtOrS......ccuverveeriiiieeieriesieeie ettt sae e ee e 276
Table 33: Types of Configuration Records...........ccoevuieviirierirniieiieieeieseeeee e 311
Table 34: MF-RM Binary AILOCAtIONcc.eeiuieiureiiiieniiesie ettt 315
Table 35: Date and Time Format Codescoovruiiienienieiieiieieieeeee e 335
Table 36: ASCIL EQUIVAIENLSoeiiiieiieiieieee et 380
Table 37: RM/COBOL Generic Exception Status Values..........cccoevevieviieciieieiieniecieeeee 385
Table 38: Btrieve Status Codes and MeSSages |oveeveveeververeeereeeeeeseseeese s 437
Table 39: C Library Error COAes 'ooiimiiiiieeeeeeeeee e 439
Table 40: File Manager Detected Error Codes..........ovviirieniieiiieiiniecienieeie e 440
Table 41: NONNUMETIC DAta.....cc.eiiiiiiiiiiiiicieeceeeee et 453
Table 42: Combined Digit and SiZNc.ccvveriieiiiiieiieiieie et 458
Table 43: Bytes Allocated for an Unsigned Binary Numeric Data Item..........c..cccecvevennnne. 467
Table 44: Bytes Allocated for a Signed Binary Numeric Data Item..........ccccocceceeveeeiennenne. 469
Table 45: Optional Support Modules Used by RM/COBOL Components on UNIX 476
Table 46: Optional Support Modules Used by RM/COBOL Components on Windows......476
Table 47: MCS Completion Codesceiieiiriierie ettt et 486
Table 48: RM/COBOL Windows Printing Subprogram Library..........ccccceeevverienvenreennne. 490
Table 49: Default Colors Used With RM/COBOL........cccooiiiiieieiieie et 496
Table 50: Printer Dialog/Device Mode Parametersccecveieierieneneneecseeieeeee e 498
Table 51: Text Metric Parameters........ccccoiieriiriiriiiienienieeie ettt 514
Table 52: FONt PArametersc.ceoueieriiriiriiieiieeeieetesie sttt sttt e 517
Table 53: Device Capability Parameters..........cccevververiieriieiiiienieieeieeie e se e 528
Table 54: Printer Information Parameters............ceceeverieiienineninenieiceneese e 530

RM/COBOL User's Guide
Second Edition

Table 55:
Table 56:
Table 57:
Table 58:
Table 59:
Table 60:
Table 61:
Table 62:
Table 63:
Table 64:

Contents

Task Reference LStccceiiririiiiieieereseee et 554
RM/COBOL-Specific ESCape SEqUENCESccvervieriieierienrieieeieeieseesreeeesene e 564
RM/COBOL Subprogram Libraryccccceceeierieriienienie e sieseeesee e eeeseeeeens 567
RM/COBOL Data Types as NUMDETSc.cccuereerrierierrerresieneenseeeeseesseesseenenns 574
TWO-Digit OS COUEScvieuiieiieiieciieieeie ettt ees 601
CSSCWR EXCEPLION COESuvuvveniiieiiieieiirieieeeieieieeeee et es 607
Object Version Numbers by Productcccoveeiiiiininieiieeeeeeeee e 660
ASCII t0 EBCDIC CONVETSION.....ccuietieiienieeiieniieteeteeiteseeesseeneeeneeeeesneesseenseenseens 685
EBCDIC t0 ASCII CONVETSION.......eiutiiiieiiieniienteeie et eitentteie et sieesiee st eae e 690
Character ADDIEVIALIONSc.eeueeviruieeieieieiesesie ettt ettt st ese et nee e seeees 698

RM/COBOL User's Guide xxvii
Second Edition

Contents

xxviii RM/COBOL User's Guide
Second Edition

Welcome to RM/COBOL for Windows and UNIX
Preface

Preface

Welcome to RM/COBOL for Windows and UNIX

RM/COBOL for Windows and UNIX is a significantly enhanced version of Liant’s widely
used RM/COBOL compilers, designed for new program development and execution of
programs created with earlier versions of RM/COBOL. Although modeled on the American
National Standard COBOL X3.23-1985, there are areas where RM/COBOL varies from the
standard. A complete list of these variances is included in Appendix [: Extension, Obsolete,
and Subset Language Elements (on page 673).

The RM/COBOL operating procedures described in this manual are for use on Microsoft
32-bit Windows and UNIX-based systems that may have remote file access using Novell
NetWare (version 3.11 and later), Client for Microsoft Networks, Btrieve software, or NFS
(Network File System).

The new features for the most recent release of RM/COBOL are described in Appendix L:
Summary of Enhancements (on page 707). If you develop on one version of RM/COBOL and
deploy on other versions, you may also find it helpful to review Appendix H: Object Versions
(on page 659) as it relates new compiler and language features to the version when the
changes were introduced.

Notes

e Beginning with version 6.5, the -85 suffix is no longer a part of the RM/COBOL product
name. The -85 suffix was used to reflect current technology and to avoid confusion with
an earlier product named RM/COBOL, which referred to the 1974 ANSI standard
version. Support for RM/COBOL (74) ceased on December 31, 1994.

e The term “Windows” in this document refers to Microsoft 32-bit Windows operating
systems, including Microsoft Windows 2000, Windows XP, Windows Server 2003,
Windows Vista, or Windows Server 2008, unless specifically stated otherwise.

Who Should Use This Book

This book is intended for commercial application developers who are familiar with
programming concepts and with the COBOL language in general, and by persons running
COBOL programs developed with RM/COBOL.

RM/COBOL User's Guide 1
Second Edition

2

Organization of Information

Preface

Organization of Information

This user’s guide is divided into the following parts:

Chapter 1—Introduction describes the general concepts of the RM/COBOL compiler and
runtime system and how they are used, lists other integrated and add-on development tools
that are available to support RM/COBOL programs, and explains file naming conventions.

Chapter 2—Installation and System Considerations for UNIX explains the installation
procedures for RM/COBOL and presents information about the RM/COBOL implementation
on UNIX-based operating systems.

Chapter 3—Installation and System Considerations for Microsoft Windows explains the
installation procedures for RM/COBOL and presents information about the RM/COBOL
implementation on Microsoft 32-bit Windows operating systems.

Chapter 4—System Considerations for Btrieve presents information about the
implementation of RM/COBOL for systems using Btrieve. This chapter also describes the
limitations of RM/COBOL indexed files and the Btrieve MicroKernel Database Engine
(MKDE).

Chapter 5—System Verification describes the suite of verification programs provided with
RM/COBOL.

Chapter 6—Compiling describes RM/COBOL files, details the RM/COBOL Compile
Command, rmcobol, and its options, defines the types of errors that can be encountered
during program compilation and the messages generated as a result, illustrates and defines
each section of the program listing, and presents information on RM/COBOL error recovery.

Chapter 7—Running details the RM/COBOL Runtime Command, runcobol, and its
options, and defines the types of errors that can be encountered during program execution. It
also lists the messages generated as a result.

Chapter 8—RM/COBOL Features presents information about the implementation of
RM/COBOL with respect to specific COBOL statements.

Chapter 9—Debugging presents general debug concepts and a detailed discussion of the
Debug commands.

Chapter 10—Configuration details the methods available for modifying the RM/COBOL
default configuration.

Chapter 11—Instrumentation details the data-gathering Instrumentation facility.
It also describes a sample data analysis program—provided with Instrumentation—called
analysis.

Appendix A—Runtime Messages lists and defines the messages that may be generated
during program execution.

Appendix B—Limits and Ranges describes RM/COBOL limits and ranges.

Appendix C—Internal Data Formats describes and illustrates the internal representation of
the data types.

Appendix D—Support Modules (Non-COBOL Add-Ons) provides information on using
optional support modules to add functionality to the runtime system, compiler, and Indexed
File Recovery components of RM/COBOL.

Appendix E—Windows Printing describes the subprograms supplied with the RM/COBOL
Windows runtime system that allow access to Windows printing features.

RM/COBOL User's Guide

Second Edition

Related Publications
Preface

Appendix F—Subprogram Library describes a set of supplied subprograms that can be
called by any RM/COBOL program.

Appendix G—Utilities describes the full range of file conversion, management, and
manipulation facilities.

Appendix H—Object Versions lists the new object features that are incompatible with
earlier releases of RM/COBOL.

Appendix I—Extension, Obsolete, and Subset Language Elements lists the RM/COBOL
extensions to and variances from ANSI COBOL 1985. It also lists obsolete and subset
language elements.

Appendix J—Code-Set Translation Tables lists each ASCII and EBCDIC hexadecimal
value and its corresponding numeric, alphabetic or control character.

Appendix K—Troubleshooting RM/COBOL presents troubleshooting tips for some
common problems that might occur when running RM/COBOL on different systems.

Appendix L—Summary of Enhancements provides an overview of the new features in the
current release, and reviews the changes and enhancements that were added to earlier releases
of RM/COBOL.

The RM/COBOL User’s Guide also includes an index.

Related Publications

For additional information, refer to the following publications that are available from Liant
Software Corporation:

CodeBridge User's Guide

CodeWatch User's Guide

Relativity Client/Server Installation Guides (Windows and UNIX)

Relativity Data Manager Installation Guide

Relativity DBA Installation Guide and Help File

Relativity Designer Installation Guide and Help File

Relativity UNIX Data Client Installation Guide

RM/COBOL Open File Manager User’s Guide

RM/COBOL Language Reference Manual

RM/COBOL Syntax Summary Help File

RM/InfoExpress User's Guide

Theory of Relativity, A Primer

WOW Extensions Designer Help File and WOW Extensions Functions and
Messages Help File

Xcentrisity Business Information Server (BIS) User's Guide
XML Extensions User’s Guide

RM/COBOL User's Guide 3
Second Edition

Conventions and Symbols
Preface

Contact the appropriate vendor for other publications:

Btrieve products are available from Pervasive Software, Inc. (formerly
Btrieve Technologies, Inc.).

NetWare products are available from Novell, Incorporated.

Microsoft products are available from Microsoft Corporation.

Conventions and Symbols

The following conventions and symbols are used or followed throughout this guide.

1.

6.
7.

4 RM/COBOL User's Guide

Second Edition

Words in all capital letters indicate COBOL reserved words, such as statements, phrases,
and clauses; acronyms; configuration keywords; environment variables; and RM/COBOL
Compiler, Runtime, and Recovery Command-line options.

Bold lowercase letters represent names of files, directories, programs, commands, and
utilities. RM/COBOL accepts uppercase and lowercase filenames. Within this
document, the lowercase version is used. Remember, however, that under UNIX
filenames are case-sensitive (for example, TEST4 and test4 represent different files).

Bold type style is also used for emphasis on some types of lists.

Text that is displayed in a monospaced font indicates user input or system output
(according to context as it appears on the screen). This type style is also used for sample
command lines, program code and file listing examples, and sample sessions.

Italic type identifies the titles of other books and the names of chapters in this guide, and
it occasionally is used for emphasis.

In syntax, italic type denotes a placeholder or variable for information you supply, as
described in the following item.

The symbols found in the syntax charts are used as follows:

italicized words Indicate items for which you substitute a specific value.

UPPERCASE WORDS Indicate items that you enter exactly as shown (although
not necessarily in uppercase).

Indicate indefinite repetition of the last item.

| Separate alternatives.

[] Surround optional items.
{1} Surround a set of alternatives, one of which is required.
{1 11} Surround a set of unique alternatives, one or more of

which is required, but each alternative may be specified
only once; when multiple alternatives are specified,
they may be specified in any order.

All punctuation must appear exactly as shown.

The term “NetWare” refers to the Novell NetWare operating system.

10.

11.

12.
13.

14.

Conventions and Symbols
Preface

Note the distinction of the following terminology:

e The term “window” refers to a delineated area of the screen, normally smaller than
the full screen.

e The term “Windows” refers to Microsoft 32-bit Windows operating systems,
including Microsoft Windows 2000, Windows XP, Windows Server 2003, Windows
Vista, or Windows Server 2008, unless specifically stated otherwise.

Note

RM/COBOL no longer supports earlier Microsoft Windows operating systems, including
Microsoft Windows 98, Windows 98 SE, Windows Me, and Windows NT 4.0.

Furthermore, in this document, any references to these versions, or to the shorthand
notation “Windows 9x-class” or “Windows NT-class” referring to these operating
systems, are included for historical purposes only.

Examples for UNIX-based systems in this document assume the use of the Bourne Shell
(sh) command interpreter.

Throughout this document, references to a printer refer to the device assigned to
PRINTER, in accordance with operating system conventions.

RM/COBOL Compile and Runtime Command-line options may be specified either with
or without a leading hyphen. Examples in this guide do not show a leading hyphen. If
any option on a command line is preceded by a hyphen, then a leading hyphen is required
for all options. When assigning a value to an option, the equal sign is optional if leading
hyphens are used.

Command-line options may be specified in either uppercase or lowercase characters.
Examples in this guide are shown in uppercase.

These capabilities are provided to support the command-line syntax of previous versions
of RM/COBOL.

Any text that applies only to a specific operating system is specified in a Note format.

Key combinations with a plus sign between key names indicate to press and hold down
the first key while pressing the second key. For example, “Press Alt + Esc” means to
press and hold down the Alt key and press the Escape key. Then release both keys. A
comma between key names means to press and release the keys one after the other.

If present in the electronic PDF file, this symbol represents a “note” that allows you to
view last-minute comments about a specific topic on the page in which it occurs. This
same information is also contained in the README text file under the section,
Documentation Changes. In Adobe Reader, you can open comments and review their
contents, although you cannot edit the comments. Notes do not print directly from the
comment that they annotate. You may, however, copy and paste the comment text into
another application, such as Microsoft Word, if you wish.

To review notes, do one of the following:

e To view a note, position the mouse over the note icon until the note description
pops up.
e To open a note, double-click the note icon.

e To close a note, click the Close box in the upper-left corner of the note window.

RM/COBOL User's Guide
Second Edition

6

Registration
Preface

Registration

Please take a moment and register your Liant product online at: http://www.liant.com.

Registering your product entitles you to the following benefits:

e Customer support. Free 30-day telephone support, including direct access to support
personnel and 24-hour message service.

e Special upgrades. Free media updates and upgrades within 60 days of purchase.

e Product information. Notification of upgrades or revisions to RM/COBOL as soon as
they are released.

You can also receive up-to-date information about Liant Software and all its products via our
web site. Check back often for updated content.

Technical Support

Liant Software Corporation is dedicated to helping you achieve the highest possible
performance from the Liant family of products. The technical support staff is committed to
providing you prompt and professional service when you have problems or questions about
your Liant products.

These technical support services are subject to Liant’s prices, terms, and conditions in place at
the time the service is requested.

While it is not possible to maintain and support specific releases of all software indefinitely,
we offer priority support for the most current release of each product. For customers who
elect not to upgrade to the most current release of the products, support is provided on a
limited basis, as time and resources allow.

Support Guidelines

When you need assistance, you can expedite your call by having the following information
available for the technical support representative:

1. Company name and contact information.

2. Liant product serial number (found in the Electronic Software Delivery email, on the
media label, or in the product banner message).

Liant product version number.
Operating system and version number.
Hardware, related equipment, and terminal type.

Exact message appearing on screen.

NS e

Concise explanation of the problem and process involved when the problem occurred.

RM/COBOL User's Guide

Second Edition

http://www.liant.com/

Technical Support
Preface

Test Cases

You may be asked for an example (test case) that demonstrates the problem. Please
remember the following guidelines when submitting a test case:

The smaller the test case is, the faster we will be able to isolate the cause of the problem.
Do not send full applications.

Reduce the test case to the smallest possible combination of components required to
reproduce the problem.

If you have very large data files, write a small program to read in your current data files
and to create new data files with as few records as necessary to reproduce the problem.

Test the test case before sending it to us to ensure that you have included all the
necessary components to recompile and run the test case. You may need to include an
RM/COBOL configuration file.

When submitting your test case, please include the following items:

1.

README text file that explains the problems. This file must include information
regarding the hardware, operating system, and versions of all relevant software (including
the operating system and all Liant products). It must also include step-by-step
instructions to reproduce the behavior.

Program source files. We require source for any program that is called during the
course of the test case. Be sure to include any copy files necessary for recompilation.

Data files required by the programs. These files should be as small as possible to
reproduce the problem described in the test case.

RM/COBOL User's Guide 7
Second Edition

Technical Support
Preface

8 RM/COBOL User's Guide
Second Edition

RM/COBOL Software
Chapter 1: Introduction

Chapter 1: Introduction

This introductory chapter of the RM/COBOL User’s Guide provides an overview of the
RM/COBOL product. It explains the general concepts of the RM/COBOL compiler and
runtime system and how they are used, lists other integrated and add-on development tools
that are available to support RM/COBOL programs, and explains file naming conventions.

Note For a description of the latest features available in this release, see Appendix L:
Summary of Enhancements (on page 707). If you develop on one version of RM/COBOL and
deploy on other versions, you may also find it helpful to review Appendix H: Object Versions
(on page 659), as it relates new compiler and language features to the version when the
changes were introduced.

RM/COBOL Software

RM/COBOL, delivered on appropriate media, contains a large number of individual files and
programs. The actual number of files and programs depends on the specific version of the
product you purchased and whether you purchased a development or a runtime-only system.
The delivered media contains one or more README files, which list the actual files and
programs delivered. Please check these README files after you have installed the product to
make sure that you have received all of the appropriate files and programs.

RM/COBOL Compiler

The RM/COBOL compiler reads COBOL source code and produces object files that can be
executed using the runtime system. These object files are portable, and they can be executed
by an RM/COBOL runtime system on many computer configurations—even computer
configurations that are different from the one used to compile the object files. For more
information on compiling COBOL programs, see Chapter 6: Compiling (on page 149).

RM/COBOL User's Guide 9
Second Edition

10

RM/COBOL Runtime System

Chapter 1: Introduction

RM/COBOL Runtime System

The RM/COBOL runtime system is used to execute compiled COBOL programs. Liant
Software Corporation provides a different runtime system for each supported computer, and
they help to insulate the COBOL programmer from the differences among computers. The
runtime system also includes a debugger to assist in developing COBOL programs. For more
information on running COBOL programs, see Chapter 7: Running (on page 199).

CodeWatch

CodeWatch is a fully integrated development system for Windows that is included with the
RM/COBOL development system. CodeWatch supports the entire development cycle,
including editing, compiling, and debugging RM/COBOL applications. CodeWatch can be
used to debug and change programs that are independently compiled, without requiring you to
build projects. Instead, all the knowledge about the structure of your application is built up
during debugging sessions. For more information, see the CodeWatch User’s Guide. If you
are debugging remote service programs running under Business Information Server (BIS) on
Microsoft Windows with Internet Information Server (1IS), see also the CodeWatch for
Xcentrisity Business Information Server User’s Guide Supplement.

CodeBridge

CodeBridge is a cross-language call system included with the RM/COBOL development
system. This facility simplifies communication between COBOL programs and non-COBOL
subprograms (such as those written in C or C++). CodeBridge allows COBOL programmers
to call external APIs or custom-developed subprograms without introducing “foreign”
language and data dependencies into their programs. For more information, see the
CodeBridge User's Guide.

Internal Libraries and Utility Programs

The RM/COBOL runtime system also includes several built-in library routines to perform
functions not described in the COBOL standard. Among other things, these routines can be
used to determine information about program arguments, control the display screen, and
execute other (non-COBOL) programs. For more information, see Appendix F: Subprogram
Library (on page 567).

In addition, a library of P$ subprograms, supplied with the RM/COBOL for Windows runtime
system, allows access to Windows printing features. This library is described in Appendix E:
Windows Printing (see page 489).

There are several utility programs delivered with RM/COBOL. These utility programs are
used to manage and manipulate both data files and RM/COBOL object files. For more
information on the utility programs, see Appendix G: Utilities (on page 623).

RM/COBOL User's Guide

Second Edition

Integrated and Add-On Packages
Chapter 1: Introduction

Integrated and Add-On Packages

Several other integrated and add-on packages are available from Liant Software Corporation
to support RM/COBOL programs. They include the following:

XML Extensions. If appropriately licensed, XML Extensions is included with the
RM/COBOL development system. XML Extensions is a facility that allows
RM/COBOL applications to interoperate freely with other applications that use XML
(eXtensible Markup Language, the universal standard format for structured documents
and data on the Web). This capability to import and export XML documents easily to
and from COBOL data structures turns RM/COBOL into an “XML engine.” For more
information, see Features Added to Support XML Extensions (on page 712) in this
manual and the XML Extensions User’s Guide.

Xcentrisity Business Information Server (BIS). Building on the power of XML as

the foundation of connectivity, Business Information Server (BIS) is a COBOL-specific
Web Application Server. Together with industry standard Web servers such as Microsoft
IIS and Apache, BIS offers application developers a unique opportunity to build state-of-
the-art, browser-based Web Applications or SOAP-based Web Services comprising
RM/COBOL programs and COBOL data files and databases. With BIS, business
application users can access data, access application functions and execute COBOL
service programs on one or many Web Information Servers located anywhere in

the world.

WOW (Windows Object Workshop) Extensions. A visual tool for developing
full-featured Windows applications completely in RM/COBOL.

Relativity. An integrated tool set that provides relational database functionality for
COBOL data without any application modifications or data conversions. It also provides
a full-featured, Microsoft Windows Open Database Connectivity (ODBC)-compliant
relational database engine that allows SQL-based access to COBOL application data.

RM/InfoExpress. A file management system designed to optimize RM/COBOL data
file access on various local area networks (LANSs) and wide area networks (WANSs).
Implementation is available for TCP/IP (Transmission Control Protocol/Internet
Protocol).

Cobol-RPC (Remote Procedure Calls). A tool for building distributed RM/COBOL
applications for LANs, WANSs, and the Internet.

Cobol-CGIX (Common Gateway Interface). A tool for integrating RM/COBOL
applications with the Internet’s World Wide Web.

InstantSQL. A package for embedding SQL statements in COBOL source programs so
that the programs can access ODBC-enabled relational databases using SQL statements.

File Naming Conventions

On those operating systems that support case-sensitive filenames, RM/COBOL filenames can
contain any combination of uppercase and lowercase letters, and numerals.

The Windows version of RM/COBOL, like Microsoft 32-bit Windows, supports long
filenames and filenames containing embedded spaces. RM/COBOL filenames can be
enclosed in quotation marks (ASCII code 22 hex). RM/COBOL filenames containing
embedding spaces must be enclosed in quotation marks to avoid having the embedded
spaces interpreted as separators.

RM/COBOL User's Guide
Second Edition

11

File Naming Conventions
Chapter 1: Introduction

For example:
"C:\My Source Directory\My COBOL Program.cbl"

Note Although 32-bit Windows stores long filenames with case preserved, filenames are
always compared and searched for in a case-insensitive manner (that is, filenames that differ
only in whether letters are uppercase or lowercase refer to the same physical file).

RM/COBOL uses the extensions .cbl, .cob, and .Ist to designate the source, object and listing
files of a program. This allows all three files to reside in the same directory. These extension
names may be changed with the EXTENSION-NAMES configuration record (see page 343).

Source files do not need to have an extension of .cbl; in fact, they do not need an extension at
all. If the compiler cannot locate the source file with the name given and the name does not
have an extension, it will try to locate the file again, using first .cbl as an extension to the
filename and then .CBL.

The RM/COBOL compiler always creates object and listing files with extensions. It will
either replace the current extension of the source file, or append an extension if the source
filename does not have one. The case of the extension will match the case of the first
character of the source file’s extension, or the first character in the source file’s name if there
is no extension. Ifthere is no extension and the first character of the source filename is not a
letter, the extension will be lowercase.

The RM/COBOL runtime system does not require object files to have an extension of .cob.
However, since the compiler generates objects with the .cob extension, the runtime system
will try to locate object files by adding first .cob and then .COB, but only if the original
filename does not already have an extension. Table 1 contains sample filenames.

Table 1: Sample Filenames

Source Filename Resulting Object Filename
TESTFILE TESTFILE.COB
Testfile Testfile.COB
Test Test.COB
Test.Cbl Test.COB
Test.cbl Test.cob
test.xyz test.cob
test. XYZ test. COB
tESTFILE tESTFILE.cob
test test.cob
test. CBL test. COB
test.cbl test.cob
2TESTFIL 2TESTFIL.cob

12 RM/COBOL User's Guide
Second Edition

System Requirements for UNIX
Chapter 2: Installation and System Considerations for UNIX

Chapter 2: Installation and
System Considerations for UNIX

This chapter lists the hardware and software required to install the RM/COBOL product,
describes how to install RM/COBOL, and provides information specific to using RM/COBOL
with UNIX-based or Linux operating systems.

Y our computer configuration is the assembled set of hardware and software that makes up
your system. Before you can develop or run RM/COBOL programs, your configuration must
meet or exceed the requirements set forth in this chapter.

System Requirements for UNIX

The version of RM/COBOL that you have purchased is for a particular combination of
hardware and operating systems. Several items listed below vary depending on the actual
version of the product that you have purchased.

Required Hardware

A machine capable of running a supported UNIX or Linux operating system.

Note Most Liant products and licenses are distributed electronically. If you elect to receive
physical media, an optical drive capable of reading a CD-ROM (for the product) and a 3.5”
floppy drive (for the license certificate file) are required at installation time.

Required Software

One of the following operating systems is required:

e HP-UX11 e SCO OpenServer 5
e IBMAIXS5.2 e SCO SVRS (UnixWare 7.1.1 or later and
SCO OpenServer 6)

e Intel UNIX System V Release 4 e Sun Solaris SPARC (2.9) and Intel x86 (2.9)

e Linux (2.6 kernel or later)

RM/COBOL User's Guide 13
Second Edition

14

System Installation for UNIX
Chapter 2: Installation and System Considerations for UNIX

System Installation for UNIX

This section describes how to install RM/COBOL on UNIX or Linux systems using the
following methods:

e Electronic Software Delivery Installation (as described below)

e (CD-ROM Installation (see page 15)

To verify that the installation is successful, see Chapter 5: Svstem Verification (on page 145).

Electronic Software Delivery Installation

Note You must have an Internet connection and an Internet browser installed to proceed with
this method of installation.

The email containing notification of your Electronic Software Delivery contains an
attachment, a file named liant.lic. This file is a license certificate authorizing you to install
the purchased software. We recommend that you create a directory on your machine to store
the license certificates for your Liant products and save the liant.lic attachment to this
directory with a name that is meaningful to you.

RM/COBOL is available as a download from the Liant Electronic Software Delivery web site
in two formats: UNIX GUNZIP TAR and ISO CD Image. From the web site, simply follow
the file download and decompress instructions for the format selected, and then perform the
installation instructions for that format, as outlined below.

e UNIX GUNZIP TAR. After downloading and decompressing the deliverables, and
creating the installation components directory from the UNIX GUNZIP TAR format,
follow these steps to install the RM/COBOL software:

1. Place a copy of your RM/COBOL license certificate, liant.lic, in the directory
containing the installation components.

2. Change to the directory containing the installation components. For example, enter:
cd /RMStage

3. Execute the installation script using the following command:
sh ./install.sh

4. Follow the prompts and instructions on the screen to complete the installation.

Messages are displayed periodically indicating the status of the installation.

During the execution of this command, you are prompted about which optional features
you wish to install. For example:

® You are asked whether you want to use the terminfo or termcap terminal interface.
For more information, see Terminal Interfaces (on page 30). Because RM/COBOL
uses separate support modules to support the two terminal interfaces, only a single
runtime and recovery utility are present on the distribution media. If you later decide
to switch from terminfo to termcap or vice versa, you will need to run the installation
command again and respond appropriately to the prompts.

RM/COBOL User's Guide

Second Edition

System Installation for UNIX
Chapter 2: Installation and System Considerations for UNIX

* You are also asked whether you want to install the FlexGen support module, the
RM/InfoExpress Client support module, or the Automatic Configuration File support
module. For additional information, see Appendix D: Support Modules (Non-
COBOL Add-Ons) on page 475.

Note If you elect to install the Automatic Configuration File support module (on
page 481), you will be able to add a configuration file for the runtime system, the
compiler, and/or the recovery utility, which will be used automatically without the
need to specify it on the command line.

e If'the installation process detects the presence of any other support modules in the
install directory, you will be asked whether you want to install those support
modules.

RM/COBOL is distributed with a default configuration that will satisfy your system
requirements. Configuration options for your system are discussed in Chapter 10:

Configuration (on page 307).

ISO CD Image. The download format for ISO CD Image contains the full RM/COBOL
product CD. Use CD-ROM Burning software, such as Nero (http://www.nero.com) or
Roxio’s Easy CD Creator (http://www.roxio.com), to create the physical CD-ROM
media. Follow the instructions described in CD-ROM Installation (see the next topic) to
install your product.

CD-ROM Installation

There are four main steps to installing RM/COBOL for UNIX from the downloaded format of
the ISO CD Image:

1.

2
3.
4

Load the license file (see the following topic).

Load the distribution media (see page 19).

Perform the installation (see page 20).

Unload the distribution media (see page 21).

Loading the License File

The Liant license file, liant.lic, is a normal text file distributed on an MS-DOS-formatted
diskette. This file is a license certificate authorizing you to install the purchased software.
Not all UNIX operating systems, however, can read an MS-DOS-formatted diskette, and not
all UNIX server machines have diskette drives. To make the license file available to the
RM/COBOL for UNIX installation script, two techniques are provided:

1.
2.

Mounting the diskette as an MS-DOS file system (see the next topic).

Transferring the Liant license file via FTP from a Windows client (see page 18).

RM/COBOL User's Guide
Second Edition

15

http://www.nero.com/
http://www.roxio.com/

System Installation for UNIX
Chapter 2: Installation and System Considerations for UNIX

Mounting the Diskette as an MS-DOS File System

Use this option to load the license file if the UNIX operating system supports MS-DOS file
systems and your hardware has a diskette drive installed. Instructions for specific platforms
and versions of UNIX are provided. In the examples below, the license certificate file,
liant.lic, is placed in the directory /tmp. We recommend, however, that you create a
directory on your machine to store the license certificates for your Liant products and save the
liant.lic file to this directory with a name that is meaningful to you.

e HP-UX 11, IBM AIX 5.2, and Intel UNIX System V Release 4

These platforms do not support mounting MS-DOS diskettes. To transfer the license file
to the UNIX server, use the FTP instructions (on page 18).

e Linux (2.6 kernel or later)
a. Insert the diskette into the diskette drive.

b. Log in as root and enter:

mount -t msdos /dev/fd0H1440 /mnt/floppy
c. Copy the license file to the /tmp directory:

cp /mnt/floppy/liant.lic /tmp/liant.lic

d. Dismount the diskette with the following command and then remove the diskette
from the diskette drive:

umount /mnt/floppy

e SCO OpenServer 5
Insert the diskette into the diskette drive.

®

=

Log in as root and enter:
mount —-f DOS, lower /dev/fd0 /floppy

Note It may be necessary to create the mount directory, / £ 1oppy, before executing
this command.

c. Copy the license file to the /tmp directory:
cp /floppy/liant.lic /tmp/liant.lic

d. Dismount the diskette with the following command and then remove the diskette
from the diskette drive:

umount /floppy

16 RM/COBOL User's Guide
Second Edition

System Installation for UNIX
Chapter 2: Installation and System Considerations for UNIX

e SCO SVRS5 (UnixWare 7.1.7 or later and SCO OpenServer 6)

a.

b.

Insert the diskette into the diskette drive.

Log in as root and enter:

mount -F dosfs /dev/dsk/f0gl8dt /Disk A
Copy the license file to the /tmp directory:

cp /Disk A/liant.lic /tmp/liant.lic

Dismount the diskette with the following command and then remove the diskette
from the diskette drive:

umount /Disk A

e Sun Solaris SPARC (2.9) and Intel x86 (2.9)

a.

b.

Insert the diskette into the diskette drive.

Log in as root and enter:
volcheck
Copy the license file to the /tmp directory:
cp /floppy/floppy0/LIANT.LIC /tmp/liant.lic

Dismount the diskette with the following command and then remove the diskette
from the diskette drive:

eject floppy

RM/COBOL User's Guide 17
Second Edition

System Installation for UNIX
Chapter 2: Installation and System Considerations for UNIX

Transferring the Liant License File via FTP from a Windows Client

To transfer the Liant license file, liant.lic, from a Windows client to the UNIX server, use one
of the many graphical FTP utilities available on Windows and transfer liant.lic as a text file.
You can also follow the procedure described below. We recommend that you create a
directory on your machine to store the license certificates for your Liant products and save the
liant.lic file to this directory with a name that is meaningful to you.

1. On the Windows client, insert the diskette into the diskette drive.

These instructions assume that this is drive A. If it is another drive, change the drive
letter to the appropriate letter in the remaining instructions.

2. Open a Command Prompt window by clicking Start on the task bar, point to Programs,
point to Accessories, and then click Command Prompt.

3. Connect to the UNIX server by entering:
ftp UnixServerName

where, UnixServerName is the network name of your UNIX server.

4. Change the directory to the /tmp directory:
cd /tmp

5. Specify a text file transfer:
ascii

6. Send the license file to the UNIX server:
send A:\LIANT.LIC liant.lic

7. Disconnect from the UNIX server:
bye

8. Close the Command Prompt window with the following command and then remove the
diskette form the diskette drive:

Exit

18 RM/COBOL User's Guide
Second Edition

System Installation for UNIX
Chapter 2: Installation and System Considerations for UNIX

Loading the Distribution Media

To load the distribution media on the UNIX machine:
1. Insert the RM/COBOL for UNIX CD-ROM in the appropriate CD-ROM drive.

2. Log in as root.

3. Enter the appropriate mount command for your system. See the following examples.

Notes

o In the list that follows, /cdrom is used as the mount directory name for all the UNIX
operating systems. Some UNIX systems, however, already have an established mount
directory for the CD-ROM. In this case, substitute the standard mount directory name for
/cdrom in the following list and in the subsequent instructions.

e The device names below are examples. The actual device name is dependent on the
hardware configuration of your UNIX server. It may be necessary to substitute the
proper value for your system. If needed, consult your UNIX System Administrator for

more details.

System Mount Command

HP-UX 11 mount -F cdfs -o ro,cdcase /dev/dsk/c0t4d0 /cdrom
IBM AIX 5.2 mount -o ro -v cdrfs /dev/cd0 /cdrom

Intel UNIX System V mount -o ro -F cdfs /dev/cdrom/c0t410 /cdrom
Release 4

Linux (2.6 kernel or later) mount -0 ro -t is09660 /dev/cdrom /mnt/cdrom

SCO OpenServer 5 mount -o ro —-f IS09660,lower /dev/cd0 /cdrom

SCO SVRS mount -F cdfs -o ro /dev/cdrom/clb0t010 /CD-ROM 1
(UnixWare 7.1.1 or later

and SCO OpenServer 6)

Sun Solaris SPARC 2.9
and Intel x86 (2.9)

If Solaris does not automatically load the CD-ROM, log in as root
and enter: volcheck

RM/COBOL User's Guide 19
Second Edition

System Installation for UNIX
Chapter 2: Installation and System Considerations for UNIX

20

Performing the Installation

After the CD-ROM has been successfully mounted, you will need to do the following:
1. Change the directory to the mount point for the CD-ROM. For example, enter:

cd /cdrom

2. From the mount point, execute the installation script using the following command:
sh ./install.sh

3. Follow the prompts and instructions on the screen to complete the installation.

Messages are displayed periodically indicating the status of the installation.

During the execution of this command, you are prompted about which optional features you
wish to install. For example:

e You are asked whether you want to use the terminfo or termcap terminal interface. For
more information, see Terminal Interfaces (on page 30). Because RM/COBOL uses
separate support modules to support the two terminal interfaces, only a single runtime
and recovery utility are present on the distribution media. If you later decide to switch
from terminfo to termcap or vice versa, you will need to run the installation command
again and respond appropriately to the prompts.

* You are also asked whether you want to install the FlexGen support module, the
RM/InfoExpress Client support module, or the Automatic Configuration File support
module. For additional information, see Appendix D: Support Modules (Non-COBOL

Add-Ons) on page 475.

Note If you elect to install the Automatic Configuration File support module (see

page 481), you will be able to add a configuration file for the runtime system, the
compiler, and/or the recovery utility, which will be used automatically without the need
to specify it on the command line.

o If'the installation process detects the presence of any other support modules in the install
directory, you will be asked whether you want to install those support modules.

RM/COBOL is distributed with a default configuration that will satisfy your system
requirements. Configuration options for your system are discussed in Chapter 10:

Configuration (on page 307).

RM/COBOL User's Guide

Second Edition

System Removal for UNIX
Chapter 2: Installation and System Considerations for UNIX

Unloading the Distribution Media

To unload (remove) the distribution media from the hardware:

1. Change your directory to a location other than the CD-ROM mount point directory, as
described in Loading the Distribution Media (on page 19).

2. Enter the appropriate command for your system. See the examples listed below.

3. Remove the distribution media from the CD-ROM drive.

System Mount Command
HP-UX 11 umount /cdrom
IBM AIX 5.2
Intel UNIX System V Release 4
SCO OpenServer 5
Linux (2.6 kernel or later) umount /mnt/cdrom
SCO SVRS (UnixWare 7.1.1 or later umount /CD-ROM_1
and SCO OpenServer 6)

Sun Solaris SPARC (2.9) eject cdrom
and Intel x86 (2.9)

System Removal for UNIX

The RM/COBOL system now comes with a command to remove the files installed in the
system command directory (or other execution directory of your choice). Issue the following
command to remove the RM/COBOL installed files, including any support modules:

./rmuninstall

During the execution of this command, you are asked to provide the location of the
RM/COBOL installed files (that is, /usr/bin or the execution directory specified when the
RM/COBOL files were installed). You are then asked which files you wish to remove.

You may elect to remove all of the RM/COBOL installed files, “complete (not prompted)”
mode, or the specific files of your choice, “selective (prompted)” mode. If, for example, you
decide that you no longer want to use the RM/InfoExpress client module, you may remove
just that single file. After the RM/COBOL system is removed, it is still possible to run the
installation command to reinstall RM/COBOL.

RM/COBOL User's Guide 21
Second Edition

Locating RM/COBOL Files on UNIX
Chapter 2: Installation and System Considerations for UNIX

22

Locating RM/COBOL Files on UNIX

File Locations within Operating System Pathnames on
UNIX

File locations are determined by the pathname of the file, according to operating system rules
and conventions. A fully qualified pathname consists of an optional directory path with slash
separators followed by a filename. The directory path may begin with a leading slash, tilde
(~), or period (.) character. A directory path with a leading slash or tilde is fully specified and
identifies a filename relative to the root file system. A directory path without a leading slash
or tilde character specifies a filename relative to the current directory.

If a pathname is specified without a directory path, RM/COBOL searches the current
directory.

Specifying a directory path with a leading slash or tilde indicates to RM/COBOL that an exact
filename has been specified. If RM/COBOL cannot find the file in the specified location, it
will not look elsewhere. If you do not specify a directory path, and RM/COBOL cannot find
the file relative to the current directory, it will search for the file according to the directory
search sequence. If a directory path is specified, but there is no leading slash or tilde, then the
EXPANDED-PATH-SEARCH keyword (see page 358) of the RUN-FILES-ATTR
configuration record determines whether the directory search sequence will be used. When
the configuration keyword is set to its default value of NO, the directory search sequence will
not be used. If the value is set to YES, then the entire name, including the directory path, will
be appended to each entry in the directory search sequence in an attempt to locate the file.

The tilde (~) character at the beginning of a pathname is used to refer to home directories.
When followed by a slash or standing alone, it expands to the user’s home directory as
reflected in the environment variable HOME. When followed by a name consisting of letter
and digit characters, the name identifies the user whose home directory should be used.

Directory Search Sequences on UNIX

You can direct RM/COBOL to search for a file not found in the current working directory by
using a predefined directory search sequence. There are two directory search sequences: one
for the compiler and one for the runtime system.

To direct the RM/COBOL compiler to use the directory search sequence, set the environment
variable RMPATH as follows:

RMPATH=path|[:path] ... ; export RMPATH

To direct the RM/COBOL runtime system to use the directory search sequence, set the
environment variable RUNPATH as follows:

RUNPATH=path[:path] ... ; export RUNPATH

RM/COBOL User's Guide

Second Edition

Locating RM/COBOL Files on UNIX
Chapter 2: Installation and System Considerations for UNIX

In both commands, path indicates the directory that is to be searched for the file and has the
form:

[/]ldirectory[/directory]

where, directory is the name of an existing directory.

If multiple paths are specified, they must be separated with colons. If the file is not located in
the current directory or the explicitly defined paths and if the file should be created, then the
file is created in the current directory.

Figure 1 and Figure 2 illustrate the compiler and runtime system search sequences on UNIX,
respectively.

Figure 1: Compiler Search Sequence

Look first in this directory: —l

\ \
RMPATH=WAGE /HOURLY/OVERTIME: /usr/local/cobol
\ |

Then look in this directory: 4T

Figure 2: Runtime System Search Sequence

Look first in this directory: —

A

\ \
RUNPATH=usr/local/cobol:~

Then look in this directory: —L‘AJ

The compiler and runtime system may be executed from a directory other than the current
directory if a complete pathname is specified on the command line, or if the PATH directory
search feature is used. If a complete pathname is not specified, the list of directories specified
by PATH is searched. Note that the current directory is not implicitly searched with the
PATH environment variable.

The compiler, runtime system, and recovery utility (recoverl.exe) require access to other files
in order to operate, including the license vault. The license vault must reside in the same
directory as the executable file. RM/COBOL looks for the other files first in the directory
containing the executable file, then in the current directory, and finally in the directories
specified in the PATH environment variable.

RM/COBOL User's Guide
Second Edition

23

Locating RM/COBOL Files on UNIX
Chapter 2: Installation and System Considerations for UNIX

24

File Access Names on UNIX

The file access name you specify in the COBOL source program specifies the physical file or
device to which input or output is directed. For information on specifying the file access
name in a COBOL source program, see the discussion of the ASSIGN clause (file control
entry) in Chapter 3: Environment Division, and the discussion of the VALUE OF clause in
Chapter 4: Data Division, of the RM/COBOL Language Reference Manual.

To establish synonymy between a file access name specified in your source program and
another name specified when the program is run, use environment variables that are set before
starting the runtime system.

If you specified a generic file access name for program input-output and wish to direct it to a
specific device or file, enter:

file-access—name-1= file-access—-name-2;
export file-access-name-1

A generic file access name is one that does not specify a directory path. Since the format of
physical pathnames, including conventions of directory names, varies from one operating
system to another, for maximum portability it is recommended that source programs specify
generic file access names, preferably with eight or fewer letters. This recommendation
applies only when the file access name is hard coded into the program as a literal.

For example, if the file control entry specifies:
SELECT REPORT-FILE ASSIGN TO PRINT, "report"
and no environment variable named “report” exists, RM/COBOL will create a file named

report in the current directory.

If, prior to running the program, you enter the command:
REPORT=/dev/lp; export report

all program output written to REPORT-FILE will be written to /dev/lp.

If—again prior to execution—you enter the command:
REPORT=/output/audit.lst; export report

RM/COBOL will create a file audit.lst in the directory /output without any need to modify or
recompile the source program.

The RESOLVE-LEADING-NAME and RESOLVE-SUBSEQUENT-NAMES keywords of
the RUN-FILES-ATTR configuration record can be used to force resolution of one or more of
the directory names from the environment. For more information, see the discussion of the
RUN-FILES-ATTR configuration record (on page 356).

When environment variables are not used, the file access name in the COBOL program
specifies the UNIX filename. The effect of a prior environment variable assignment may be
canceled by the command:

unset file-access-name

RM/COBOL User's Guide

Second Edition

Locating RM/COBOL Files on UNIX
Chapter 2: Installation and System Considerations for UNIX

Whether or not an environment variable is used to modify the file access name, if the resulting
file access name does not include a directory path, RUNPATH will be used by the runtime
system to obtain the fully qualified pathname. For additional information, see File Locations
within Operating System Pathnames on UNIX (on page 22).

Control characters, spaces, and nonprintable characters (per the locale setting) are removed
from the file access name, except that, if the path begins with a pipe character ('|'), white space
characters are preserved after the first non-white space character following the pipe character.

After environment variable mapping and removal of control characters, spaces, and
nonprintable characters, the file access name is checked against the DEFINE-DEVICE table,
which is either the default DEFINE-DEVICE table, or, if a configuration file with one or
more DEFINE-DEVICE configuration records is supplied, the specified DEFINE-DEVICE
entries in the configuration. See the DEFINE-DEVICE configuration record (on page 338)
for more information. If the resulting file access name matches a DEFINE-DEVICE entry,
the PATH value from that DEFINE-DEVICE entry becomes the final file access name, which
is not further modified. If the resulting file access name does not match an entry in the
DEFINE-DEVICE table, it is not further modified.

When the resulting file access name is "*", then
e for a sequential input file, the standard input file (stdin) is read; and,

e for a sequential output file, the standard output file (stdout) is written.

When the resulting file access name has a leading pipe character ('|'), then the pipe character
and any immediately following white space characters are removed. The remainder of the file
access name is treated as a shell command to be started when the file is opened for input or
output. The open mode of the file determines the direction of the pipe as follows:

e When the file is opened for input, the shell command is started with its standard output
redirected to the input of the associated COBOL file. That is, the COBOL program will
read the records written by the process. The shell command may be a pipeline (a series
of commands separated by pipe characters), in which case the COBOL program will read
the output of the rightmost command (the rightmost command must start a program that
writes to standard output and output redirection using the > character must not be
specified for the rightmost command). For example, an input file access name value
sort -r -k 5 filel.txt file2.txt | uniq | grep Fail" will result in reading records from the files
filel.txt and file2.txt that have been sorted and merged together in reverse order on field
five of the record without any duplicate records and only records that have the word
"Fail" in them.

e When the file is opened for output, the shell command is started with its standard input
redirected to the output from the associated COBOL file. That is, the process will read
the records written by the COBOL program. The shell command may be a pipeline (a
series of commands separated by pipe characters), in which case the leftmost command
will read the output of the COBOL program (the leftmost command must start a program
that reads from standard input and input redirection using the < character must not be
specified for the leftmost command). For example, an output file access name value "|
sort -r | uniq | grep Pass >results.txt" will cause the records written by the COBOL
program to be sorted in reverse order, duplicates removed, and only records with the
word "Pass" in them written to the file results.txt.

RM/COBOL User's Guide
Second Edition

25

26

UNIX Resource File

Chapter 2: Installation and System Considerations for UNIX

If two or more COBOL files in the same run unit are open at the same time and specify the
same file access name with a leading pipe character, each will start a separate process and
pipe input or output from or to its associated process. In contrast, two or more files open at
the same time in the same run unit will start one process and share the pipe to that process if
they have the same file access name and that file access name is resolved through a DEFINE-
DEVICE record to a pipe.

When the resulting file access name is PRINTER or PRINTERI, then the default
configuration writes the file to the print spooler. For additional information on printing, see

Printer Support (on page 252).

When the resulting file access name is TAPE, then the default configuration writes the file to
the default tape device. For additional information on tape devices, see Tape Support (on
page 252).

The DEFINE-DEVICE configuration record may define other file access names that are to be
treated as devices and may change the default treatment of PRINTER and TAPE. See
DEFINE-DEVICE configuration record (on page 338) for additional information on
configuring file access names that are to be treated as devices.

The resulting file access name should follow the operating system rules for valid filenames
and pathnames.

UNIX Resource File

A resource file capability is provided to support the C$GetSyn (see page 587) and

C$SetSyn (see page 610) subprograms and to provide stored configuration information for
the compiler, runtime system, and recovery utility. A resource file, similar in format to a
Windows initialization (.ini) file, allows for permanent storage of synonym names and values
on UNIX in the same way that the registry file does on Windows. You can use the resource
files to customize your RM/COBOL application.

The resource files may be located in the user’s home directory (local) for information that
does not need to be shared or in /etc/default (global) for information to be shared among a
group of users. For the compiler, the local resource file is named .rmcobolrc; the global
resource file is named rmcobolre. For the runtime system, the local resource file is named
.runcobolrc; the global resource file is named runcobolre. For the Indexed File Recovery
(recoverl) utility, the local resource file is named .recoverlre; the global resource file is
named recoverlre.

Note The global resource files for the compiler, runtime system, and recovery utility (located
in /etc/default) do not begin with a period. The local resource files for the compiler, runtime
system, and recovery utility (located in the user’s home directory) do include a leading period
in the name so that it is not visible to the user.

The resource files in the user’s home directory normally are maintained by the individual
user, while the resource files in /etc/default usually are maintained by the system
administrator. Although resource files may be maintained with the editor of your choice, no
editing should ever be done when the resource file is in use. There is a simple locking
mechanism to ensure that two users sharing the same resource file do not conflict with one
another, but this mechanism will not prevent an editor from changing the file.

RM/COBOL User's Guide

Second Edition

UNIX Resource File
Chapter 2: Installation and System Considerations for UNIX

Resource File Format

All resource files have the same general format. Each file may consist of a [Defaults] section
to specify default configuration information for all programs, a [Default Synonyms] section to
specify default synonyms to be used by all programs, one or more [Program] sections to
specify configuration information when a specific program is executed or compiled, and one
or more [Program Synonyms] sections to specify synonyms to be used when a specific
program is executed or compiled. Lines in a resource file should begin in column 1 (that is,
without leading spaces) and be no more than 4095 characters long. Section names, including
the Program portion of section names, are not case-sensitive. A section name matching a
prior section name, except for case, will be ignored. Comments may be included in a resource
file. Comment text begins with a semicolon (*;”) in column 1. Lines that have “;” in column
1, as well as blank lines, are ignored in their entirety.

The configuration information specified in a [Program] section overrides the configuration
information specified in the [Defaults] section when program Program is being executed or
compiled. Synonyms specified in a [Program Synonyms] section are added to the synonyms
specified in the [Default Synonyms] section with synonyms from the [Program Synonyms]
section overriding any duplicate definitions.

Note For the recovery utility, Program is actually the indexed file name, not including any
directory path, but including the extension, if any. For example, the value of Program for the
indexed file /usr/guest/mydata.inx would be mydata.inx. In contrast, the value of Program
for the source file /usr/guest/myprog.cbl or the object file /usr/guest/myprog.cob would be

myprog.

Command-Line Options

Command-line options for the compiler, runtime system, or recovery utility may be specified
either in the [Defaults] or the [Program] sections. In each case, the command-line options are
specified as:

Options=command line options

where, the command line options parameter specifies a series of command-line options to be
passed to the compiler, runtime system, or recovery utility. The command-line options from
the resource files will be processed cumulatively in the following order: global [Defaults],
local [Defaults], global [Program], and local [Program]. Any options from the resource files
are processed before options on the actual command line are processed so that the command-
line options can override any options specified from the resource files. If duplicate options
appear in the same section of any resource file, the first entry is used.

Note Some options for the runtime system may not be overridden by the actual command-
line options because the options are cumulative; that is, multiple options of this type may be
specified on the command line. The L Option (for library loads) is an example of such a
parameter. For additional information, see the descriptions of the Runtime Command (on
page 199) and the L Option (on page 207).

The environment variable, RM_IGNORE GLOBAL RESOURCES, may be defined if you
wish the compiler, runtime system, or recovery utility not to access the command-line options
defined in /etc/default. This may be useful if you are trying to do development at the same
time others are running an application in live “production mode.”

RM/COBOL User's Guide
Second Edition

27

UNIX Resource File

Chapter 2: Installation and System Considerations for UNIX

28

Specifying Synonyms

Synonyms for the compiler, runtime system, or recovery utility may be specified either in the
[Default Synonyms] or [Program Synonyms] sections. These synonyms may be used to
establish a connection between the open name of the file and the actual file access name.
Synonyms may also be used to establish the RUNPATH and RMPATH directory search
sequences. Users should not attempt to specify synonym names differing only in case. For
more information, see Directory Search Sequences on UNIX (on page 22).

In each case the synonym name and value are specified as:
SynonymName=SynonymValue

When the compiler, runtime system, or recovery utility is being initialized, synonyms are
added to the environment in the order specified below. Synonyms names are case-sensitive.
However, a synonym whose name is the same as a prior synonym, except for case, will be
initialized to the value of the prior synonym.

[Default Synonyms] section of the global resource file
[Default Synonyms] section of the local resource file
[Program Synonyms] section of the global resource file
[Program Synonyms] section of the local resource file

The environment variable, RM_IGNORE GLOBAL RESOURCES, may be defined if you
wish the compiler, runtime system, or recovery utility not to access the global synonyms
defined in /etc/default. This approach may be useful if you are trying to do development at
the same time others are running an application in live “production mode.”

The C$GetSyn and C$SetSyn subprograms may be used to retrieve and store synonym values
in the resource file. Specifically, C$GetSyn retrieves synonym values from either the
[Program Synonyms] or the [Default Synonyms] section of the local resource file (in the
user’s home directory) or, if the synonym was not found in the local resource file, from either
the [Program Synonyms] or the [Default Synonyms] section of the global resource file (in
/etc/default). C$GetSyn ignores case when searching for the synonyms. The third parameter
on the C$GetSyn CALL specifies the program-name for the synonym being retrieved.
Specifying SPACES indicates that the user wants the [Default Synonyms] section rather than
synonyms for a particular program-name. The environment variable,

RM _IGNORE GLOBAL RESOURCES, may be defined if you wish to always ignore the
global resource file for the runtime system. In this case, C$GetSyn will only have access to
the local resource file.

C$SetSyn stores synonym information in the local resource file. C$SetSyn ignores the case
of the synonym name when searching for an existing synonym value to replace. It is not
possible for C$SetSyn to modify the global resource file for the runtime system. C$SetSyn
stores the synonym information in either the [Program Synonyms] or the [Default Synonyms]
section depending upon the value of the third parameter on the CALL. If necessary,
C$SetSyn will create the local resource file in the user’s home directory.

RM/COBOL User's Guide

Second Edition

UNIX Resource File
Chapter 2: Installation and System Considerations for UNIX

Example of .rmcobolrc File

The following is an example of a UNIX local resource file for the RM/COBOL compiler:

[Defaults]
Options=<Compile Command options>

[Default Synonyms]
PRINTER=PrinterFile.prt
RMPATH=~/default/source

[AR]
Options=-1 -a -x -o=~/arobj

[AR Synonyms]
RMPATH=~/arsource
PRINTER=~/arlist/ar.prt

Example of .runcobolrc File

The following is an example of a UNIX resource file (local) for the RM/COBOL runtime
system:

[Defaults]
Options=<Runtime Command options>

[Default Synonyms]
Printerl=PrinterFile
AR-Directory=/usr/company/ar—-data

[AR]
Options=<Runtime Command options>

[AR Synonyms]
RUNPATH=<pathname>
AR-FILEl=compl/ar.dat

RM/COBOL User's Guide 29
Second Edition

Terminal Input and Output on UNIX
Chapter 2: Installation and System Considerations for UNIX

30

Example of .recoverirc File

The following is an example of a UNIX local resource file for the RM/COBOL Indexed File
Recovery (recoverl) utility:

[Defaults]
Options=-1

[Default Synonyms]
PRINTER=recovery.log

[armaster.inx]
Options=-L armrec.log -K armtempl.inx -M 5

[armaster.inx Synonyms]
DROPFILE=~/ar/armdrop.fil

[artrans.inx]
Options=-L -K arttempl.inx -M 3

[artrans.inx Synonyms]
DROPFILE=~/ar/artdrop.fil
PRINTER=~/ar/artrec.log

Terminal Input and Output on UNIX

This section describes how terminal input and output are handled by the RM/COBOL runtime
system on UNIX.

Terminal Interfaces

The runtime system uses one of two terminal interface mechanisms, termcap or terminfo, to
control cursor positioning, video display attributes, and function key mapping.

The termcap version of the runtime system uses the older termcap database, which has a
description of the user’s terminal in it. For more information, see Termcap Database (on
page 31).

The terminfo version of the runtime system uses the terminal description in the terminfo
database for both input and output control of the terminal. For more information, see
Terminfo Database (on page 31).

Both the terminfo and termcap Terminal Interface support modules are present on the
distribution media. During the installation process, you will be asked which Terminal
Interface support module to install. To switch to the other Terminal Interface support module,
you will need to run the installation command again and respond appropriately to the prompts
described in Performing the Installation (on page 20), paying particular attention to the
discussion of optional features.

RM/COBOL User's Guide

Second Edition

Terminal Input and Output on UNIX
Chapter 2: Installation and System Considerations for UNIX

Termcap Database

The runtime system locates the termcap database by first looking for the environment variable
TERMCAP. If the TERMCAP environment variable is found and contains a valid pathname,

that value is used as the pathname to the database. If the environment variable is found but it

contains a valid termcap entry, that entry will be used as the terminal description. Otherwise,

the filename /etc/termcap will be used as the name of the database.

The TERMCAP environment variable can be set as follows:

TERMCAP=pathname ; export TERMCAP

pathname is a pathname of the termcap file.
For example:

TERMCAP=/usr/sales/mytermcapfile; export TERMCAP

Terminfo Database

The runtime system locates the terminfo database by first looking for the environment
variable TERMINFO. If the TERMINFO environment variable is found, that value is used as
the pathname to the database subdirectories. Otherwise, the path /usr/lib/terminfo will be
used.

The TERMINFO environment variable can be set as follows:

TERMINFO=pathname ; export TERMINFO

pathname is a pathname of the terminfo file.
For example:

TERMINFO=/usr/sales/myterminfo; export TERMINFO

Cursor Types
The termcap and terminfo versions of the runtime system support two types of cursors, each
of which indicates a different edit mode during ACCEPT operations.

1. The attribute cursor_normal (or cursor-on) indicates that standard overtype mode
is active.

2. The attribute cursor visible (or cursor-blink) indicates that insert mode is active.

RM/COBOL User's Guide
Second Edition

31

Terminal Input and Output on UNIX
Chapter 2: Installation and System Considerations for UNIX

32

Terminal Attributes

Terminal attributes are sequences of characters (strings) that cause the terminal to perform
certain functions (they are often referred to as escape sequences). Some terminals under
UNIX require that special characters appear on the screen just before the start of an attribute
and right after the end of it. Characters in between these special characters take on the
specified attribute. To accommodate these terminals, the oV capability for termcap specifies
the number of screen positions to be used by the nM, nB, nR, nS, aL,, aB, aR, aS, and rS
capabilities. The xme capability is used for the terminfo runtime system. RM/COBOL places
the attribute characters at the position specified by the ACCEPT or DISPLAY operation, and
moves the actual start of the field by the number of positions specified by oV or xme. You
can also use the MOVE-ATTR keyword (see page 389) with the TERM-UNIT configuration
record to specify moving the attributes back the number of positions specified by oV or xmec.
However, if MOVE-ATTR causes the attribute character to move back to the next line, and
such a move is prohibited by the 1A (do not cross lines) capability described in the next
paragraph, the attribute will appear on the same line that is being displayed or accepted.

The 1A is a Boolean termcap capability and is used with terminals that require screen
positions to implement attributes, as described in the preceding paragraph. The standard
RM/COBOL model is to keep an attribute in effect—without regard to the number of screen
lines to which it applies—until it encounters the special character that signals the end of the
attribute. Some terminals, however, recognize the end of a line as the end of the attribute,
without regard to the presence or absence of the ending special character. In this case, the
presence of 1A will tell RM/COBOL that a new attribute character must be placed at the start
of every new line in a multiline ACCEPT or DISPLAY operation.

The sA is a Boolean termcap capability that is also used with terminals that require screen
positions to implement attributes. The RM/COBOL model is to assume that attributes will
not wrap from the bottom to the top of the screen. If your terminal behaves differently, and if
you have specified the MOVE-ATTR configuration keyword, use sA. This allows fields
placed at the home position (line 1, position 1) to have their attributes placed at the last line of
the screen.

Terminal Name

The name of the database entry that describes the behavior of your terminal is obtained from
the environment variable TERM. This variable should be set to the appropriate terminal name
before invoking the runtime system.

The TERM environment variable can be set as follows:

TERM=term-name ; export TERM

term-name is the name of your terminal as it appears in the termcap or terminfo database.
The termcap or terminfo capabilities used by the runtime system (if present) are listed in
the tables that follow.

RM/COBOL User's Guide

Second Edition

Terminal Input and Output on UNIX
Chapter 2: Installation and System Considerations for UNIX

Terminfo and Termcap Capabilities Used by the Runtime
System

The runtime system on UNIX uses a set of terminfo or termcap capabilities, depending on the
terminal interface in use, for controlling output to the terminal screen. These capabilities are

listed in Table 2 for reference.

Table 2: Terminfo and Termcap Names for the Runtime System

Terminfo Name Termcap Name Description
Booleans
am Am Terminal has automatic margins.
bce Be Screen erased with background color.
xenl Xn Newline ignored after 80 columns. Also used

to signify that the terminal’s cursor will not
automatically advance to the next line after
column 80 is reached, but will instead wait for
the next character.

Numbers

cols Co Number of columns in a line.

lines Li Number of lines on screen or page.

pb Pb Lowest baud where padding is needed.

xme Sg Number of blank characters left by smso or rmso.
Output Strings

acsc ac Graphic charset pairs.

bel bl Audible signal (bell).

blink Turn on blinking.

civis vi Make cursor invisible.

clear cl Clear screen and home cursor.

cnorm ve Make cursor appear normal (undo vs/vi).

cr cr Carriage return.

cubl le Move cursor left one space.

cudl do Down one line.

cufl nd Nondestructive space (cursor right).

cup cm Cursor motion.

cuul up Upline (cursor up).

cvvis Vs Make cursor very visible—insert mode.

RM/COBOL User's Guide 33
Second Edition

34

Terminal Input and Output on UNIX
Chapter 2: Installation and System Considerations for UNIX

Table 2: Terminfo and Termcap Names for the Runtime System (Cont.)

Terminfo Name Termcap Name Description

Output Strings (Cont.)

dim Turn on half-bright mode.

Ed cd Clear to end of display.

El ce Clear to end of line.

Enacs eA Enable alternate character set.

Home ho Home cursor.
Ko Termcap entries for other non-function keys.

ind sf Scroll text up.

Pad pc Pad character (rather than null).

Op op Set all colors to the original color pairs.

Rev Turn on reverse video mode.

Rmacs ae End alternate character set.

Rmcup te String to end programs that use cup.

Rmso se End of standout mode (if no nM or sgr0).
Is Terminal initialization string.

Rsl rl Terminal reset/initialization string 1.

Rs2 r2 Terminal reset/initialization string 2.

Rs3 r3 Terminal reset/initialization string 3.

Setb Sb Set current background color.

Setf St Set current foreground color.

Sgr Define video attributes, 1 through 9.

Sgr0 me Turn off all attributes.

Smacs as Start alternate character set.

Smcup ti String to begin programs that use cup.
Tc Entry of similar terminal.

Xenl Xn Newline ignored after 80 columns.

Keyboard Input Character Sequences

Character input sequences are used to interpret keyboard input for terminfo or termcap,
depending on the terminal interface being used by the runtime system. A particular input
character sequence can be mapped to an input character, input editing action, or input field
termination by use of the TERM-INPUT configuration record (see page 377).

Table 3 describes the input sequences that may be handled by the terminfo package. (For
convenience, the corresponding termcap name is also given.) These terminfo names are the
only names that will be recognized when using the TERM-INPUT configuration feature of the
runtime system. Termcap names other than the ones listed in this table can be used in TERM-
INPUT configuration records.

RM/COBOL User's Guide

Second Edition

Terminal Input and Output on UNIX

Table 3: Input Sequences for Terminfo and Termcap

Terminfo Name

Input Strings

kal
Ka3
Kb2
Kbeg
Kbs
Kcl
Kc3
Kcan
Kclo
Kelr
Kemd
Kepy
Kert
Kctab
Kcubl
Kcudl
Kcufl
Kcuul
Kdchl
Kdi1
Ked
Kel
Kend
Kent
Kext
Kf0
Kf1
Kf2
kf3
Kf4
Kf5
Kf6
Kf7
Kf8
K9
Kf10
Kfl1
Kf12
Kf13
Kf14
Kf15
Kf16
Kf17
Kf18

Termcap Name

K1
K3
K2
@l
kb
K4
K5
@2
@3
kC
@4
@5
@6
kt
kl
kd
kr
ku
kD
kL
kS
kE
@7
@8
@9
kO
k1
k2
k3
k4
k5
k6
k7
k8
k9
k;
F1
F2
F3
F4
F5
Fo6
F7
F8

Description

Upper-left of keypad.
Upper-right of keypad.

Center of keypad.

Sent by beginning key.

Sent by backspace key.
Lower-left of keypad.
Lower-right of keypad.

Sent by cancel key.

Sent by close key.

Sent by clear screen or erase key.
Sent by command key.

Sent by copy key.

Sent by create key.

Sent by clear-tab key.

Sent by terminal left arrow key.
Sent by terminal down arrow key.
Sent by terminal right arrow key.
Sent by terminal up arrow key.
Sent by delete character key.
Sent by delete line key.

Sent by clear-to-end-of-screen key.
Sent by clear-to-end-of-line key.
Sent by end key.

Sent by enter/send key.

Sent by exit key.

Sent by function key 0.

Sent by function key f1.

Sent by function key f2

Sent by function key 3.

Sent by function key f4.

Sent by function key f5.

Sent by function key 6.

Sent by function key 7.

Sent by function key f8.

Sent by function key 9.

Sent by function key f10.

Sent by function key f11.

Sent by function key f12.

Sent by function key f13.

Sent by function key f14.

Sent by function key f15.

Sent by function key f16.

Sent by function key f17.

Sent by function key f18.

RM/COBOL User's Guide

Second Edition

Chapter 2: Installation and System Considerations for UNIX

35

Terminal Input and Output on UNIX

Chapter 2: Installation and System Considerations for UNIX

Table 3: Input Sequences for Terminfo and Termcap (Cont.)

Terminfo Name

Input Strings (Cont.)
kf19
kf20
kf21
kf22
kf23
kf24
kf25
kf26
kf27
kf28
kf29
kf30
kf31
kf32
kf33
kf34
kf35
kf36
kf37
Kf38
Kf39
Kf40
Kf41
Kf42
Kf43
Kf44
Kf45
Kf46
Kf47
Kf48
Kf49
Kf50
Kf51
Kf52
Kf53
Kf54
Kf55
Kf56
Kf57
Kf58
Kf59
K160
Kfo1l

36 RM/COBOL User's Guide
Second Edition

Termcap Name

F9
FA
FB
FC
FD
FE
FF
FG
FH
FI
FJ
FK
FL
M
FN
FO
FP
FQ
FR
FS
FT
FU
FV
Fw
FX
FY
Fz
Fa
Fb
Fc
Fd
Fe
Ff
Fg
Fh
Fi
Fj
Fk
Fl
Fm
Fn
Fo
Fp

Description

Sent by function key f19.
Sent by function key f20.
Sent by function key f21.
Sent by function key f22.
Sent by function key f23.
Sent by function key {24.
Sent by function key f25.
Sent by function key f26.
Sent by function key f27.
Sent by function key f28.
Sent by function key £29.
Sent by function key f30.
Sent by function key f31.
Sent by function key f32.
Sent by function key f33.
Sent by function key f34.
Sent by function key f35.
Sent by function key f36.
Sent by function key f37.
Sent by function key f38.
Sent by function key f39.
Sent by function key f40.
Sent by function key f41.
Sent by function key f42.
Sent by function key f43.
Sent by function key f44.
Sent by function key f45.
Sent by function key f46.
Sent by function key f47.
Sent by function key f48.
Sent by function key f49.
Sent by function key f50.
Sent by function key f51.
Sent by function key £52.
Sent by function key £53.
Sent by function key £54.
Sent by function key f55.
Sent by function key £56.
Sent by function key £57.
Sent by function key f58.
Sent by function key £59.
Sent by function key f60.
Sent by function key f61.

Terminal Input and Output on UNIX

Table 3: Input Sequences for Terminfo and Termcap (Cont.)

Terminfo Name

Input Strings (Cont.)
Kf62
Kf63
Kfnd
Khlp
Khome
Khts
Kichl
Kill
kind
kil
kmsg
knp
knxt
kopn
kopt
kpp
kprt
kprv
krdo
kref
kres
krfr
kri
krmir
krpl
krst
ksav
kslt
kspd
ktbc
kund
kBEG
kCAN
kCMD
kCPY
kCRT
kDC
kDL
kKEND
kEOL
KEXT
KEND
kKHLP

Termcap Name

Fq
Fr
@0
%1
Kh
kT
kI
kA
kF
kH
%3
kN
%5
%6
%7
kP
%9
%8
%0
&l
&5
&2
kR
kM
&3
&4
&6
*6
&7

&8
&9
&0
*]
)
*3
*4
*5
*7
*g
*9
*0
#1

Description

Sent by function key f62.

Sent by function key f63.

Sent by find key.

Sent by help key.

Sent by home key.

Sent by set-tab key.

Sent by insert character/enter insert mode key.
Sent by insert line.

Sent by scroll-forward/down key.
Sent by home-down key.

Sent by message key.

Sent by next-page key.

Sent by next-object key.

Sent by open key.

Sent by options key.

Sent by previous-page key.
Sent by print key.

Sent by previous-object key.
Sent by redo key.

Sent by reference key.

Sent by resume key.

Sent by refresh key.

Sent by scroll-backward/up key.
Sent by exit insert mode key.
Sent by replace key.

Sent by restart key.

Sent by save key.

Sent by select key.

Sent by suspend key.

Sent by clear-all-tabs key.
Sent by undo key.

Sent by shifted beginning key.
Sent by shifted cancel key.
Sent by shifted command key.
Sent by shifted copy key.

Sent by shifted create key.
Sent by shifted delete-char key.
Sent by shifted delete-line key.
Sent by shifted end key.

Sent by shifted clear-line key.
Sent by shifted exit key.

Sent by shifted find key.

Sent by shifted help key.

RM/COBOL User's Guide
Second Edition

Chapter 2: Installation and System Considerations for UNIX

37

Terminal Input and Output on UNIX
Chapter 2: Installation and System Considerations for UNIX

Table 3: Input Sequences for Terminfo and Termcap (Cont.)

Terminfo Name Termcap Name Description

Input Strings (Cont.)

kHOM #2 Sent by shifted home key.

kIC #3 Sent by shifted input key.

Kmov %4 Sent by move key.

Kmrk %2 Sent by mark key.

KLFT #4 Sent by shifted left arrow key.
KSAV 1 Sent by shifted save key.

KSPD 12 Sent by shifted suspend key.
KUND 13 Sent by shifted undo key.

KMSG %a Sent by shifted message key.
KMOV %Db Sent by shifted move key.

KNXT %oc Sent by shifted next key.

KOPT %d Sent by shifted options key.
KPRV Y%e Sent by shifted prev key.

KPRT %f Sent by shifted print key.

KRDO %g Sent by shifted redo key.

KRPL %h Sent by shifted replace key.

KRIT %I Sent by shifted right arrow key.
KRES %j Sent by shifted resume key.

Lf0 10 Labels on function key f0 if not f0.
Lfl 11 Labels on function key f1 if not f1.
Lf2 12 Labels on function key 2 if not f2.
Lf3 13 Labels on function key 3 if not {3.
Lf4 14 Labels on function key f4 if not 4.
L5 15 Labels on function key f5 if not 5.
Lf6 16 Labels on function key f6 if not f6.
Lf7 17 Labels on function key {7 if not {7.
Lf8 18 Labels on function key {8 if not 8.
L 19 Labels on function key 9 if not 9.
Lf10 la Labels on function key f10 if not f10.
Nel nw Sent by newline key.

38 RM/COBOL User's Guide
Second Edition

Terminal Input and Output on UNIX
Chapter 2: Installation and System Considerations for UNIX

Additional Termcap Capabilities Used by the Runtime
System

When the termcap terminal interface is used by the runtime system, additional termcap
capabilities not previously described may be used, as shown in the following tables.

Table 4 describes the additional Boolean capabilities used by RM/COBOL when accessing
the termcap database.

Table 4: Additional Boolean Capabilities

Termcap Name Description
1A Attributes will not wrap lines.
SA Attributes will wrap screen.

Table 5 describes the additional numeric capability used by RM/COBOL when accessing the
termcap database.

Table 5: Additional Numeric Capability

Termcap Name Description

oV Number of blank characters left by additional RM/COBOL
attribute capabilities.

Table 6 describes the additional output string capabilities used by RM/COBOL when
accessing the termcap database.

Table 6: Additional Output String Capabilities

Termcap Name Description
aB Low intensity blink.
Ab Low intensity underline and blink.
alL Low intensity.
Al Low intensity underline.
aR Low intensity reverse.
aS Low intensity blink and reverse.
nB High intensity blink.
Nb High intensity underline and blink.
nM High intensity.
Nm High intensity underline.
nR High intensity reverse.
nS High intensity blink and reverse.
vr End of field.

RM/COBOL User's Guide
Second Edition

39

Terminal Input and Output on UNIX
Chapter 2: Installation and System Considerations for UNIX

Terminfo Considerations

The Boolean capabilities sA and 1A cannot be added to the terminfo database since it is a
closed system; these capabilities are not used by the terminfo runtime system. Under runtime
systems that use terminfo for output, the xmec numeric capability determines the width of
attribute characters and the starting position of fields. Specifying xmc#0 indicates a physical
attribute terminal for which the attributes do not occupy a screen position but still must be
written at the physical start and end of each field.

Runtime systems that use the terminfo database directly for output sequences will use the
set_attributes or sgr string for all field attributes, if it is available. The terminfo
set_attributes string has nine parameters or attributes that can be set. RM/COBOL makes
use of six of these parameters. The second parameter is set if the underline attribute is
requested. The third parameter is set if the reverse attribute is requested. The fourth
parameter is set if the blinking attribute is requested. The fifth parameter is set if the
low-intensity attribute is used. The sixth parameter is set if the high-intensity attribute is
used. The ninth parameter may be used when line draw characters are requested for pop-up
window borders. The only exception to requesting line draw characters in this manner is in
terminals where xmc and sgr are specified (for example, physical attribute terminals). On
these terminals, the alternate character set attribute can either be a field attribute or a single
character attribute. Because the terminfo database does not indicate how to determine this
behavior for a terminal, RM/COBOL will infer that the terminal has the alternate character set
as a single character attribute, if the smac definition is in the terminfo database for the
terminal. In this case, the smacs and rmacs sequence will be used for the writing of graphics
or alternate character set data and the ninth parameter will always be specified as off.

Each of the sgr parameters is set to one if an ACCEPT or DISPLAY requests the
corresponding attribute. Otherwise, a zero is set for the parameter. A zero is also set for all
other parameters.

Attributes are reset by using the sgr0 string if it is defined. Otherwise, they are reset using all
zeroes as parameters to the set_attributes string.

If the set_attributes string is not available, the standard terminfo strings listed in Table 7 will
be used.

Table 7: Standard Terminfo Strings

Terminfo Name Description
blink High intensity blink.
dim Low intensity.
rev High intensity reverse video.
rmacs End alternate character set.
rmso Reset attributes (also used for high intensity if no sgr0).
sgr0 High intensity.
smacs Start alternate character set.
sSmso High intensity (if no sgr0 or rmso).

If color keywords are specified in the CONTROL phrase, the terminfo setf or setb sequence
will be used to set the foreground or background color. These sequences accept a single
numeric parameter indicating the desired color. If these sequences are not already defined for

40 RM/COBOL User's Guide
Second Edition

Other System Considerations for UNIX
Chapter 2: Installation and System Considerations for UNIX

your terminal and you wish to define them, the association of colors to color numbers is
normally defined in the C include file, curses.h.

Line Draw Characters

If line draw characters are requested for either pop-up window borders, or because the
GRAPHICS keyword in the CONTROL phrase was specified in an ACCEPT or DISPLAY
statement, the terminfo database is examined for the acse sequence. UNIX systems provide
the acsc string to map generic (vt100) line draw characters to the correct characters for your
terminal. These characters are then enabled through the ninth sgr parameter (see page 40).
To support double-line draw characters, RM/COBOL has extended the acsc string to include
six more mappings. These mappings extend the generic (vt100) characters by describing the
double-line graphic characters with the corresponding uppercase letters, as shown in Table 8.

Table 8: vt100 Line Graphic Characters

Description Single-Line Character Double-Line Character
lower-right corner i@) T
upper-right corner k(Qq) K3)
upper-left corner 1(p) L(p
lower-left corner m (b M (L)
horizontal line q=) Q>
vertical line x(]) X

Other System Considerations for UNIX

This section describes special system considerations for using RM/COBOL under the UNIX
operating system.

Memory Available for a COBOL Run Unit on UNIX

The memory available for a run unit in the operating system environment is implementation
specific. If the total memory required by a run unit exceeds the amount of available memory,
runtime system errors will occur. These errors indicate the inability to obtain enough memory
to perform a desired operation. The RM/COBOL runtime system does not provide a virtual
memory scheme, although your system may.

Segmentation and subprograms should be used to manage the dynamic memory requirements
of very large run units.

Most modern UNIX systems (for example, BSD, System V, Sun OS) are supplied with
built-in virtual memory systems. These systems make it appear as though there is always
sufficient memory for the runtime system, regardless of how much physical RAM is installed
in the machine.

RM/COBOL User's Guide 41
Second Edition

Other System Considerations for UNIX
Chapter 2: Installation and System Considerations for UNIX

42

Number of Files

The operating system determines the number of files a run unit is allowed to open. The
maximum number of files that may be opened is three fewer than the maximum number of
open files per process. Most UNIX systems allow this maximum to be changed by
reconfiguring the kernel.

Number of Region Locks

The runtime system uses the operating system region lock facility to provide file level locking
and to control file sharing, as well as to support record locking. To implement file locking,
the runtime system applies one region lock to each open file in addition to the locks applied
for record locks. During an I/O statement, one or two additional region locks may be applied
to a single file. If the program employs multiple record locking, these region locks remain
until the program unlocks the records.

Network File Access

It is possible to receive a 98,27 error when accessing an indexed file through the network file
system (NFS) when logged in as super-user (or root). If the file permissions do not include
write permission for “other”, an open operation may inadvertently succeed for modes other
than input mode. This is misleading because writes to the file will appear to succeed, even
though the data is not updated. This problem is undetectable and will appear as a 98,27 error
on the next access of the file after writing or deleting a record.

Redirection of Input and Output

RM/COBOL supports standard piping and standard redirection of input and output.

The use of the redirection and piping operators (> , >>, <, and |) on the Runtime
Command line affects the operations of ACCEPT and DISPLAY statements in several ways.
Piping is a means of chaining the standard output (DISPLAY statements) of one run unit to
the standard input (ACCEPT statements) of a second run unit; therefore, piping appears
identical to redirection at the program level. Note that a Format 1 ACCEPT or DISPLAY
statement that includes the FROM/UPON CONSOLE phrase or FROM/UPON mnemonic-
name phrase where mnemonic-name is defined as CONSOLE IS mnemonic-name, is not
redirected or piped unless it is configured to come from standard input or go to standard
output. If this is not the case, you must use either 2> or 2>> for redirection. Note also that if
an ACCEPT or DISPLAY statement contains a UNIT phrase, it will not be redirected.

Standard Input

The standard input device is defined by default to be the keyboard of the terminal that started
the run unit. Standard input may be redirected to a file or other device by the operating
system conventions for standard input redirection and piping on the command line that starts
the run unit.

RM/COBOL User's Guide

Second Edition

Other System Considerations for UNIX
Chapter 2: Installation and System Considerations for UNIX

For example:
runcobol getdata <inputfile

redirects standard input to the file inputfile, and
runcobol putdata | runcobol getdata

pipes the standard output from program putdata to the standard input of program getdata.

ACCEPT statements that do not specify the FROM CONSOLE phrase read from the standard
input device.

When standard input is redirected, the ACCEPT statement (Formats 1 and 3) operation is
modified. Only the SIZE, CURSOR, ECHO, CONVERT and ON EXCEPTION phrases of
Format 3 are used; all other phrases are ignored. Note that Format 1 ACCEPT statements
with numeric operands are treated as Format 3 ACCEPT statements unless the program
containing the ACCEPT statements was compiled with the M Compile Command Option
(see page 164).

At the beginning of each ACCEPT statement, the next record is read from standard input into
the ACCEPT buffer. The following operations take place for each of the receiving data items
in the ACCEPT statement:

1. Ifthere are no characters in the ACCEPT buffer, the next record is read from standard
input into the ACCEPT buffer. The default size for the ACCEPT buffer is 264
characters. However, the B Runtime Command Option (see page 204), or its equivalent
B keyword (see page 365) in the RUN-OPTION configuration record, may be specified
to change the size of this buffer up to a maximum of 65280 characters.

2. If the number of characters in the ACCEPT buffer does not exceed the size of the current
receiving item, those characters are transferred to the receiving item in the appropriate
format (that is, left justified, space fill for all Format 1 and for alphanumeric Format 3,
and with appropriate conversion for numeric Format 3).

3. If the number of characters in the ACCEPT buffer exceeds the size of the current
receiving item, only the leftmost “size” characters are transferred, as described in the
previous operation. The characters that remain in the ACCEPT buffer are used for the

next receiving item or are discarded if the current receiving item is the last receiving item
in the ACCEPT statement.

Note Where numeric sending and receiving data items are used with piping, the use of the
CONVERT phrase with DISPLAY and ACCEPT statements is strongly recommended.

The M Runtime Command Option (see page 205) modifies the operation of Format 1
ACCEPT statements to conform to Level 2 ANSI semantics. The actions described above are
modified as follows:

1. If the number of characters in the ACCEPT buffer does not equal or exceed the size of
the current receiving item, one or more records are read from standard input and are
concatenated until there are enough characters.

2. The leftmost “size” characters are transferred as described in steps 2 and 3 in the

instructions above. The characters that remain in the ACCEPT buffer are discarded.
Note that the use of the M Runtime Command Option requires close matching of ACCEPT
and DISPLAY statements when used with piping.

Also note that the M Runtime Command Option affects the operation of Format 1 ACCEPT
statements which are not redirected; the console operator is required to enter enough

RM/COBOL User's Guide
Second Edition

43

44

Other System Considerations for UNIX
Chapter 2: Installation and System Considerations for UNIX

characters to fill the receiving item. If the Enter key is pressed before enough characters have
been entered, the request will be reissued until the concatenation of the characters entered is
sufficient to fill the receiving item.

The M Runtime Command Option does not affect the operation of Format 3 ACCEPT
statements.

An end-of-file condition is reported to Format 3 ACCEPT statements as an exception variable
of 64 (Send). If an end-of-file condition occurs and there is no ON EXCEPTION phrase, a
runtime system error is reported and execution ends.

Standard Output

The standard output device is defined by default to be the monitor of the terminal that started
the run unit. Standard output may be redirected to a file or other device by the operating
system conventions for standard output redirection and piping on the command line that starts
the run unit.

For example:
runcobol putdata >outputfile
redirects standard output to the file outputfile, and
runcobol putdata | runcobol getdata

pipes the standard output from program putdata to the standard input of program getdata.

DISPLAY statements—that do not specify the UPON or UPON CONSOLE phrase—write to
the standard output device.

When standard output is redirected, all phrases, except SIZE and CONVERT, of the Format 2
DISPLAY statement are ignored. All sending operands are concatenated (within the limits of
the DISPLAY buffer as described in the following paragraphs) and are transferred to standard
output as one or more records. The default size for the DISPLAY buffer is 264 characters.
However, the B Runtime Command Option (see page 204), or its equivalent B keyword (see
page 365) in the RUN-OPTION configuration record, may be specified to change the size of
this buffer up to a maximum of 65280 characters.

A Format 1 DISPLAY statement generates one record and may generate more than one
record, depending on the presence or absence of the M Runtime Command Option (see

page 205). If the M Option is not present in the Runtime Command, all sending operands are
concatenated, the resulting operand is truncated to the DISPLAY buffer size, and a single
record is written. If the M Option is present, all sending operands are concatenated and the
resulting operand is split into zero or more records equal in length to the DISPLAY buffer
size, along with a final record no longer than the DISPLAY buffer size.

If a Format 2 DISPLAY statement is redirected, one or more records are generated,
depending on the size of the discrete sending items. If the size of the sending operand does
not exceed the space remaining in the DISPLAY buffer, the sending operand is appended to
the current buffer and the DISPLAY buffer is written if the sending operand is the last
operand. If the size of the sending operand exceeds the space remaining in the DISPLAY
buffer, the current DISPLAY buffer is written and the sending operand is truncated to the size
of the DISPLAY buffer. The new DISPLAY buffer contents are written if the sending
operand is the last operand.

RM/COBOL User's Guide

Second Edition

Other System Considerations for UNIX
Chapter 2: Installation and System Considerations for UNIX

Standard Error

The standard error device is defined by default to be the monitor and keyboard. Interactive
debug input and output, temporary STOP statement message output and operator response
input, and runtime system message output are directed to the standard error device. These
operations can be redirected by a configuration option; see the discussion of the ERROR-
MESSAGE-DESTINATION keyword (on page 353).

These operations also can be redirected using the operating system standard-error redirection
convention on the command line that starts the run unit.

For example:
runcobol putdata 2>error.out
To direct standard output and standard error to the same destination, specify:

runcobol putdata >all.out 2>&1

Using Large Files on UNIX

RM/COBOL supports files larger than 2 gigabytes (GB). Large file support is available only

on those UNIX systems that provide native support for files larger than 2 GB. The following

UNIX systems provide such support: IBM AIX 5.2; HP-UX 11; some versions of Linux, Sun
Solaris SPARC 2.9; and SCO SVRS (UnixWare 7.1.1 or later and SCO OpenServer 6).

Many UNIX systems are configured to restrict the size of files to which normal user accounts
can write. Often this limit is 2 GB or less. On systems that support large files, the system
administrator may be able to configure the system or the user accounts to allow a large
ULIMIT, or the user may need to run the ulimit command to increase the ULIMIT before
creating or accessing large files.

For more information, refer to Very Large File Support (on page 247).

RM/COBOL User's Guide 45
Second Edition

Other System Considerations for UNIX
Chapter 2: Installation and System Considerations for UNIX

Environment Variables for UNIX

An environment variable is an operating system feature that allows a value to be equated with
aname. Table 9 lists those environment variables that are used by RM/COBOL on UNIX.

Note In addition to the environment variables listed in the following table, RM/COBOL uses
environment variables to map generic file access names as explained in File Access Names on
UNIX (on page 24).

Table 9: Environment Variables for UNIX

Environment Variable Usage
HOME Locating files. See File Locations Within Operating
System Pathnames on UNIX (on page 22).
LD LIBRARY PATH Locating optional support modules (see page 477).

Note that this environment variable is system-
specific. Other UNIX operating systems may use
the environment variables LIBPATH or SH PATH.

PATH Locating files. See Directory Search Sequences on
UNIX (on page 22).

PRINTER Printer support (see page 252).

RMPATH Locating files. See Directory Search Sequences on
UNIX (on page 22).

RMTERM132 ACCEPT/DISPLAY CONTROL SCREEN-
COLUMNS (see page 227).

RMTERMS0 ACCEPT/DISPLAY CONTROL SCREEN-
COLUMNS (see page 227).

RM_COMPILER._ WRAP LONGNAMES | Controls whether the compiler will wrap rather than
truncate long user-defined words in the listing
summary (allocation map, cross reference, summary
error messages, and so forth). The value “Yes”
causes wrapping; the value “No” causes truncation.
The value can be specified as “Y” or “N” and case
does not matter. See also the WRAP-
LONGNAMES value (on page 325) for the
LISTING ATTRIBUTES keyword of the
COMPILER-OPTIONS configuration record.

RM_DEVELOPMENT MODE CS$SetDevelopmentMode subprogram (see
page 609).
RM _DYNAMIC LIBRARY TRACE Tracing support module loads. See Locating

optional support modules (on page 477).

RM_ENCODING Specifies the encoding of characters in the source
for purposes of translating them to Unicode in the
XML symbol table. The built-in and predefined
values of RM_LATIN 1 and RM_LATIN 9, which
are used to designate Latin-1 or Latin-9,
respectively, may be used as well as any encoding
names supported by an available iconv library. If
not specified, RM_LATIN 9 is assumed. For more
information, see “UNIX Character Encoding” in the
XML Extensions User’s Guide.

46 RM/COBOL User's Guide
Second Edition

Other System Considerations for UNIX

Chapter 2: Installation and System Considerations for UNIX

Table 9: Environment Variables for UNIX (Cont.)

Environment Variable

RM_ESCAPE_TO_COMMAND

RM_IGNORE_GLOBAL_RESOURCES

RM_KEEP_XML_SYMTAB_FILE

RM_LIBRARY_SUBDIR

RM_LOAD WOW_CLIENT

RM_VERBOSE BANNER

RM_Y2K

RUNPATH

SHELL
TAPE
TERM
TERMCAP
TERMINFO
TMPDIR
TZ

Usage

TERM-INPUT ACTION=ESCAPE-TO-
COMMAND (see page 378).

Causes the compiler, runtime system, or recovery
utility not to access the global resources file. This
may be useful if you are trying to develop at the
same time others are running an application in live
“production mode.” See Command-Line Options
(on page 27) and Specifying Synonyms (on

page 28).

The value specifies the path of the directory where
the temporary XML-format symbol table file from
the compiler should be preserved. See also the
KEEP-TEMP-XML-SYMBOL-TABLE-FILE
keyword (on page 321) of the COMPILER-
OPTIONS configuration record.

Locating optional support modules. See Using a
Different Subdirectory (on page 478).

Loading the WOW Extensions support module,
libtclnt.so.

Compile command messages (see page 186) and
runcobol banner message (see page 445).

COMPILER-OPTIONS ALLOW-DATE-TIME-
OVERRIDE (see page 314).

Locating files. See Directory Search Sequences on
UNIX (on page 22).

SYSTEM subprogram (see page 621).

Tape support (see page 252).
Terminal I/O. See Terminal Name (on page 32).

Terminal I/O. See Termcap Database (on page 31).
Terminal I/O. See Terminfo Database (on page 31).

Temporary files (see page 264).

Standard C TimeZone variable.

RM/COBOL User's Guide 47
Second Edition

Other System Considerations for UNIX
Chapter 2: Installation and System Considerations for UNIX

48 RM/COBOL User's Guide
Second Edition

System Requirements for Windows
Chapter 3: Installation and System Considerations for Microsoft Windows

Chapter 3: Installation and
System Considerations for
Microsoft Windows

This chapter lists the hardware and software required to install the RM/COBOL product,
describes how to install RM/COBOL, and provides information specific to using RM/COBOL
with Microsoft 32-bit Windows operating systems.

Y our computer configuration is the assembled set of hardware and software that makes up
your system. Before you can develop or run RM/COBOL programs, your configuration must
meet or exceed the requirements set forth in this chapter.

System Requirements for Windows

RM/COBOL runs on the IBM PC and full compatibles. Appropriately licensed versions run
in conjunction with Client for Microsoft Networks or Novell NetWare software to provide
support for multi-user file access.

Required Hardware

An IBM PC or compatible machine capable of running Microsoft Windows 2000, Microsoft
Windows XP, Microsoft Windows Server 2003, Microsoft Windows Vista, or Microsoft
Windows Server 2008.

Note Most Liant products and licenses are distributed electronically. If you elect to receive
physical media, an optical drive capable of reading a CD-ROM (for the product) and a 3.5”
floppy drive (for the license certificate file) are required at installation time.

RM/COBOL User's Guide
Second Edition

49

System Requirements for Windows
Chapter 3: Installation and System Considerations for Microsoft Windows

Required Software

One of the following operating systems is required:
e Microsoft Windows 2000

e Microsoft Windows XP

e Microsoft Windows Server 2003

e Microsoft Windows Vista

e Microsoft Windows Server 2008

Note Beginning with RM/COBOL version 11, RM/COBOL no longer supports earlier
Microsoft Windows versions, including Windows 98, Windows 98 SE, Windows Me, and
Windows NT 4.0.

Local Area Network (LAN) Software

To provide multi-user access, one or both of the following network programs is required:
e Novell NetWare version 3.11 or later

e Client for Microsoft Networks for 32-bit Windows

Btrieve Software

To access local Btrieve files, the following software is required:

e Version 6.15 or later of Btrieve for 32-bit Windows

To access remote Btrieve files, both of the following software components are required:

e Version 6.15 or later of Btrieve MicroKernel Database Engine for NetWare or a
Windows operating system

e Version 6.15 or later of Btrieve Requester for 32-bit Windows

Note Btrieve components are available from Pervasive Software Inc.

50 RM/COBOL User's Guide
Second Edition

System Installation for Windows
Chapter 3: Installation and System Considerations for Microsoft Windows

System Installation for Windows

This section describes how to install RM/COBOL on Microsoft Windows systems using the
following methods:

e Electronic Software Delivery Installation (as described below)

e (CD-ROM Installation (see page 53)

You may also automate the installation program for RM/COBOL, which allows the
installation of RM/COBOL to be incorporated with the installation of your application. For
more information, navigate to www.liant.com/docs.html and refer to the “RM/COBOL
Runtime Installation Details” and “RM/COBOL Recoverl Utility Details” sections of the
LiantInstall Program User’s Reference documentation. You may also wish to refer to the
“RM/COBOL Compiler Installation Details” and “RM/COBOL CodeWatch Integrated
Development Environment Installation Details” sections.

To verify that the installation is successful, see Chapter 5: System Verification (on page 145).

Electronic Software Delivery Installation

Note You must have an Internet connection and an Internet browser installed to proceed with
this method of installation.

The email containing notification of your Electronic Software Delivery contains an
attachment, a file named liant.lic. This file is a license certificate authorizing you to install
the purchased software. We recommend that you create a directory on your machine to store
the license certificates for your Liant products and save the liant.lic attachment to this
directory with a name that is meaningful to you.

RM/COBOL is available as a download from the Liant Electronic Software Delivery web site
in two formats: Windows Self-Extracting EXE and ISO CD Image. From the web site,
simply follow the download and decompress instructions for the file format selected, and then
perform the installation instructions for that format, as outlined below.

e Windows Self-Extracting EXE. After downloading and decompressing the
deliverables, and creating the installation components directory from the Windows Self-
Extracting EXE format, follow these steps to install the RM/COBOL software on the
Windows operating system:

Note When the Windows Self-Extracting EXE is decompressed and the installation
components directory is created, the LiantInstall program should start automatically. If
this is the case, proceed to step 6. Otherwise, begin with step 1.

1. Place a copy of your RM/COBOL license certificate, liant.lic, in the directory
containing the installation components.

2. Click Start, and then click Run. In the Run dialog box, click the Browse button.

3. Inthe Browse dialog box, navigate to the directory containing the installation
components.

4. Click on the file, LiantInstall, and then click Open.
5. Inthe Run dialog box, click OK.

6. The LiantInstall program begins executing. Follow the instructions presented on
the screen and press the Next button to advance through the various pages.

RM/COBOL User's Guide 51
Second Edition

http://www.liant.com/docs.html

System Installation for Windows
Chapter 3: Installation and System Considerations for Microsoft Windows

7. On the Software License Agreement page, you must click “T accept the terms in the
license agreement” in order to continue with the installation.

8. On the License Certificates page, the license certificate file for the product being
installed is displayed. Do one of the following:

o If the license certificate for RM/COBOL software being installed is present in
the list area, press the Next button.

o Ifthe license certificate for the RM/COBOL software being installed is not
present in the list area:

a. Press the Add button.

b. Inthe Select License Certificates dialog box, navigate to the directory
containing the license certificate file for the RM/COBOL software being
installed and select the filename for the license certificate. (This license
file, named liant.lic, is attached to the original electronic software delivery
email for the product.)

c. Press the Open button and then press Next.
9. On the Installation Type page, do one of the following:

e Select the “Standard Installation” option to install all the components of all the
license certificates listed on the License Certificates page immediately, using
their default settings. Press the Install button.

e Select the “Custom Installation” option to select specific components (for those
products with multiple components) of all the license certificates listed on the
License Certificates page, and install them, changing their default installation
settings, as necessary.

Follow the custom installation instructions presented on the remaining pages.
On the Ready to Begin Installations page, press the Install button.

When the installation for the RM/COBOL components starts, follow the
additional instructions presented by the installation program.

e Select the “Administrative Installation” option to select specific components (for
those products with multiple components) to install in a shared Network Folder
for installation later on Network Client Machines.

Follow the administrative installation instructions presented on the remaining
pages. On the Ready to Begin Installations page, press the Install button.

Following the installation, the shared Network Folder will contain the necessary
files to install the components on the Network Client Machines, including the
license certificate files and a copy of the LiantInstall program, which then can
be used to control the installation.

e Select the “Network Installation” option to select specific components (for those
products with multiple components) to install from shared Network Folder onto
Network Client Machines.

Follow the network installation instructions presented on the remaining pages.
On the Ready to Begin Installation page, press the Install button.

10. When either the standard, custom, administrative, or network installation is
complete, click the Finished button on the Installation Status page.

After installation is complete, you can display the RM/COBOL Start Menu Programs
folder, which is illustrated in Figure 3 on page 55.

52 RM/COBOL User's Guide
Second Edition

System Installation for Windows
Chapter 3: Installation and System Considerations for Microsoft Windows

ISO CD Image. The download format for ISO CD Image contains the full RM/COBOL
product CD. Use CD-ROM Burning software, such as Nero (http://www.nero.com) or
Roxio’s Easy CD Creator (http://www.roxio.com), to create the physical CD-ROM
media. Follow the instructions described in the following topic to install your product.

CD-ROM Installation

After downloading and decompressing the deliverables, and creating the installation
components directory from the ISO CD Image format, follow these steps to install the
RM/COBOL software on the Windows operating system:

1.
2.

Insert the RM/COBOL for 32-bit Windows CD-ROM in the appropriate CD-ROM drive.

Do one of the following:

e If'the installation program starts automatically, proceed to step 3.

e If'the installation program does not start automatically, click Start, and then click
Run. In the Open text box of the Run dialog box, type the following:

d:LiantInstall

where, d is the drive letter of the CD-ROM drive. Click OK.

The LiantInstall program begins executing. Follow the instructions presented on the
screen and press the Next button to advance through the various pages.

On the Software License Agreement page, you must click “I accept the terms in the
license agreement” in order to continue with the installation.

On the License Certificates page, the license certificate for the product being installed is
displayed. Do one of the following:

o If'the license certificate for the RM/COBOL software being installed is present in the
list area, press the Next button.

e Iflicense certificates for any products you do not wish to install are present in the list
area, select them and press the Remove button. Then, press the Next button.

e If the license certificate for the RM/COBOL product software being installed is not
present in the list area:

a. Press the Add button.

b. In the Select License Certificates dialog box, navigate to the directory
containing the license certificate file for the RM/COBOL software being
installed and select the filename for the license certificate.

This license file, usually named liant.lic, is included on the license diskette that
came as part of the installation media.

c. Press the Open button and then press Next.

Note The liant.lic license certificate file can be copied from the diskette to a
location on a hard drive and that location can be specified during installation. We
recommend that you create a separate directory on your machine to store the license
certificate files for all of your Liant products and save those files with a name that is
meaningful to you.

e If there are license certificates for any other products that you wish to install at this
time, press the Add button again to add them; otherwise, press the Next button.

RM/COBOL User's Guide
Second Edition

53

http://www.nero.com/
http://www.roxio.com/

System Installation for Windows
Chapter 3: Installation and System Considerations for Microsoft Windows

54

6.

7.

On the Installation Type page, do one of the following:

Select the “Standard Installation” option to install all the components of all the
license certificates listed on the License Certificates page immediately, using their
default settings. Press the Install button.

Select the “Custom Installation” option to select specific components (for those
products with multiple components) of all the license certificates listed on the
License Certificates page, and install them, changing their default installation
settings, as necessary.

Follow the custom installation instructions presented on the remaining pages. On the
Ready to Begin Installations page, press the Install button.

When the installation for the RM/COBOL components starts, follow the additional
instructions presented by the installation program.

Select the “Administrative Installation” option to select specific components (for
those products with multiple components) to install in a shared Network Folder for
installation later on Network Client Machines.

Follow the administrative installation instructions presented on the remaining pages.
On the Ready to Begin Installations page, press the Install button.

Following the installation, the shared Network Folder will contain the necessary files
to install the components on the Network Client Machines, including the license
certificate files and a copy of the LiantInstall program, which can then be used to
control the installation.

Select the “Network Installation” option to select specific components (for those
products with multiple components) to install from shared Network Folder onto
Network Client Machines.

Follow the network installation instructions presented on the remaining pages. On
the Ready to Begin Installation page, press the Install button.

When either the standard, custom, administrative, or network installation is complete,
click the Finished button on the Installation Status page.

After installation is complete, you can display the RM/COBOL Start Menu Programs folder,
which is illustrated in Figure 3. The programs are described in Table 10 (see page 55).

Note For further information on installing RM/COBOL on a Windows operating system and
network client machines, see Installation Notes for Windows (on page 57).

RM/COBOL User's Guide
Second Edition

System Installation for Windows

Chapter 3: Installation and System Considerations for Microsoft Windows

Figure 3: RM/COBOL Start Menu Programs Folder

& RMCOBOL v12

Eile

@ Back - -_)

Edit View Favorites Tools Help

lﬁ p search [EL

Folders =

Address (@ C: \Documents and Settings|All Users\Start Menu'Programs \Liant RMCOBOL v12|

v|GD

File and Folder Tasks

7 Make a new folder

e Publish this folder to the
Web

[e? Share this folder

Other Places

@ Lant

My Documnents

H My Computer

&g My Network Places

Details

RMCOBOL v12
File: Folder

Date Modified: Today, October
03, 2008, 6:06 FM

CodeBridge User's Guide
Shortcut

1KB

CodeWatch ReadMe
Shorteut
1KB

Compiler Readie
Shorteut
1KB

ixverify
Shortcut
2KB

00 Registry Configuration

Shortcut
2KB

RMCOBOL Syntax Summary Help

Shortcut
1KB

rmmapinx
Shortcut
2KB

Runtime
Shortcut

szKB

¥ML Extensions User's Guide
Shortcut
1KB

CodeWatch
Shortout
2KB

Codewatch User's Guide
Shortout
1KB

Al doverify
i shortcut
2KB

Recoverl
Shortout
2KB

Shortout
1KB

RMCOBOL User's Guide
Shortout
1KB

A% rmmappgm
Shortout
2KB

Runtime ReadMe
Shortout
1KB

g 3 39 2 2 3

S WML Extensions ReadMe
Shortut
1KB

[

RMCOBOL Language Ref,

1 Rl B

[P
7 e

L

LB

CodeWatch Help
Shortout
1KB

Compiler
Shortout
2KB

IMI to Registry
Shortout
2KB

Recover 1 ReadMe
Shortout
1KB

RMCOBOL Syntax Summary

Shortout
1KB

rmdefinx
Shortout
2KB

rmpgmeom
Shortout
2KB

Toolbar Editor
Shortout
2KB

| ®
26 objects 33.0KB H My Computer
Note Depending upon the RM/COBOL package that you purchased, not all of the program
icons in Figure 3 will be displayed on your system.
Table 10: RM/COBOL Program Icons
Program Icon Name Description
CodeBridge User’s Guide Starts Adobe Reader for the CodeBridge User’s Guide
PDF file.
CodeWatch Starts CodeWatch, a fully integrated development
environment for RM/COBOL for Windows.
CodeWatch Help Starts the CodeWatch help file.
CodeWatch Readme Starts Notepad for the CodeWatch Readme text file.
CodeWatch User’s Guide Starts Adobe Reader for the CodeWatch User’s Guide
PDF file.
Compiler Starts the RM/COBOL compiler (rmcobol.exe) and prompts
for a source filename.
Compiler Readme Starts Notepad for the Compiler Readme text file.
doverify Starts the RM/COBOL verification suite.
RM/COBOL User's Guide 55

Second Edition

System Installation for Windows
Chapter 3: Installation and System Considerations for Microsoft Windows

56

Table 10: RM/COBOL Program Icons (Cont.)

Program Icon Name

INI to Registry

ixverify

Recoverl

Recoverl Readme

Registry Configuration

RMCOBOL Language Ref.

RMCOBOL Syntax Summary

RMCOBOL Syntax Summary
Help

RMCOBOL User’s Guide

rmdefinx
rmmapinx

rmmappgm

rmpgmcom

Runtime

Runtime Readme

Toolbar Editor

XML Extensions Readme
XML Extensions User’s Guide

RM/COBOL User's Guide
Second Edition

Description

Starts the Initialization File to Windows Registry Conversion
utility (ini2reg.exe). This program takes a Windows
initialization (.ini) file and inserts its entries into the Windows
registry database used by RM/COBOL.

Starts the RM/InfoExpress verification suite.

Starts the Indexed File Recovery utility (recoverl.exe). This
program is used to recover damaged indexed files.

Starts Notepad for the Recoverl Readme text file.

Starts the RM/COBOL Configuration utility (rmconfig.exe).
This program sets the runtime system (runcobol.exe),
compiler (rmcobol.exe), and Indexed File Recovery utility
(recoverl.exe) options for RM/COBOL programs and

data files.

Starts Adobe Reader for the RM/COBOL Language
Reference Manual PDF file.

Starts Adobe Reader for the RM/COBOL Syntax Summary
PDF file.

Starts the RM/COBOL Syntax Summary help file.

Starts Adobe Reader for the RM/COBOL User’s Guide
PDF file.

Starts the Define Indexed File utility program (rmdefinx.cob).
Starts the Map Indexed File utility program (rmmapinx.cob).

Starts the Map Program File utility program
(rmmappgm.cob).

Starts the Combine Program File utility program
(rmpgmcom.cob).

Starts the RM/COBOL runtime system (runcobol.exe) and
prompts for a program-name.

Starts Notepad for the Runtime Readme text file.
Starts the toolbar button editor program (rmtbedit.exe).
Starts Internet Explorer for the XML Extensions Readme file.

Starts Adobe Reader for the XML Extensions User’s Guide
PDF file.

System Installation for Windows
Chapter 3: Installation and System Considerations for Microsoft Windows

Installation Notes for Windows

The following notes apply to installing RM/COBOL on Windows systems.

Installation of RM/COBOL on Windows

The RM/COBOL installation procedure checks the system configuration for compatibility of
other products with RM/COBOL. Certain Windows features can cause problems with
RM/COBOL. To avoid these problems and fix incorrect Windows registry entries, see
Network Redirector File Caching (on page 702) and Opportunistic Locking (on page 703).

Installation of RM/COBOL on Network Client Machines

The RM/COBOL installation process for CodeWatch, Runtime, Recoverl, and Compiler
supports users who wish to install RM/COBOL on a network server machine and then install
RM/COBOL on multiple client machines using the RM/COBOL installation on the server.

First, install all of the RM/COBOL components that you need onto the server machine using
the “Administrative Installation” method. This may be performed either directly on the server
or from a client machine via a mapped network drive. The administrative installation will
prompt for a Network Folder. This must be the shared folder that the client machines will
access for the installation.

Note Using the “Administrative Installation” will not result in a working installation on the
network server or the client machine on which it was run. An administrative installation is
merely a preparation for installing on client machines. You must perform a standard, custom,
or network installation to have a complete installation on the server machine. This is a change
in behavior from previous versions of RM/COBOL.

Then, on each remaining client machine, invoke the LiantInstall program in the network
shared directory that was specified as the Network Folder during the administrative
installation, and then specify a network installation on the Installation Type page. This causes
the installation process to install the RM/COBOL program folder and icons for those
components that already exist in the original server installation. Shared system DLLs (such as
CTL3D32.DLL and MSVCRT.DLL) also will be installed on the client machine (if a later
version does not already exist there) and appropriate Windows registry entries will be created.

Default Native Character Set

Once RM/COBOL has been installed on Windows, the character set defined by the OEM
codepage becomes the default native character set for the compiler, runtime, and CodeWatch.
Starting with version 9, RM/COBOL also has support for a native character set using the
ANSI codepage. A complete explanation of native character set selection is provided in
Character Set Considerations for Windows (see page 104).

RM/COBOL User's Guide
Second Edition

57

System Installation for Windows
Chapter 3: Installation and System Considerations for Microsoft Windows

58

Registering the RM/COBOL Compiler and Runtime
Executables

The RM/COBOL compiler and runtime system use clients and servers that conform to
Microsoft Windows Component Object Model (COM) technology standard. The server must
be registered with Windows, which is normally done by the during system installation. This
section discusses the information that must be considered when components of the
RM/COBOL compiler or runtime system are moved or renamed after installation, if the
Windows registry is damaged. For information on registering the runtime, see Runtime

Registration (on page 60).

Compiler Registration

The RM/COBOL for Windows compiler consists of two components:
e A client, which may be either of the following:

— The console-mode client, called rmcobolc.exe

— The GUI-mode client, called rmcobolg.exe

Either client may be called rmcobol.exe.

e A server, called rmcbl12c¢.dll

The compiler server DLL, which must be registered with Windows before RM/COBOL
programs can be compiled, is automatically registered when the compiler is installed. If the
compiler is moved to a directory other than the installation directory without a reinstallation,
an error message is displayed indicating that there is a registration problem. The error
message is displayed either in the console window for the console-mode compiler or in a
message box for the GUI-mode compiler. The text of the error message is as follows:

An error occurred while the RM/COBOL compiler was loading:
Class not registered (the code is 80040154).

To resolve this problem, reinstall the RM/COBOL compiler, or register
the RM/COBOL compiler with the /REGSERVER command.

As indicated, there are two ways to resolve this problem. You can do either of the following:
e Repeat the installation process.

e Use the /REGSERVER command-line option.

RM/COBOL User's Guide

Second Edition

System Installation for Windows
Chapter 3: Installation and System Considerations for Microsoft Windows

Registering the Compiler

To register the RM/COBOL for Windows compiler in a directory other than the installation
directory using the /REGSERVER command-line option:

1. First, make sure that rmebl12c.dll is in the Windows System directory.

2. Then, either click the Windows Start button and select Run from the menu, or open a
Command Prompt window.

3. Enter the following command:
path\RMCOBOL /REGSERVER

where, path is the drive and directory or the UNC location of these two files. For
example:

"c:\program files\rmcobol vl12\rmcobol" /regserver

Note The quotes are necessary only if the executable pathname contains spaces.

4. If the registration process is successful, a message, such as the following, is displayed:

Server "c:\windows\system\rmcbl1120c.dll"
registration succeeded.

It does not matter which of the two clients, the console-mode or GUI-mode, is used to register
the server, other than that the console-mode compiler displays the message in the console
window while the GUI-mode compiler displays the message in a message box. Regardless of
which client registers the server, either compiler client can use the registered server.

Unregistering the Compiler

The RM/COBOL compiler also provides the /UNREGSERVER command-line option to

unregister the compiler from Windows. Although the uninstallation program automatically

unregisters the compiler, this can be done manually with the following command:
path\RMCOBOL /UNREGSERVER

When the compiler server has been properly registered, a message, such as the following, is

displayed either in the console window for the console-mode compiler or in a message box for

the GUI-mode compiler:

Server "c:\windows\system\rmcbll2c.dl1l" unregistration succeeded.

If the compiler server had not been properly registered or has already been unregistered, a
detailed error message is displayed instead. For example:

The server could not be unregistered: Class not registered

In this error message, “Class not registered” indicates that the server was not registered.

It is not necessary to unregister the compiler server before re-registering the compiler server
from a different location.

RM/COBOL User's Guide
Second Edition

59

System Installation for Windows
Chapter 3: Installation and System Considerations for Microsoft Windows

60

Showing the Compiler Registration

Finally, the following option will display the location of the currently registered compiler
server:

path\RMCOBOL /SHOWSERVER
When the compiler server has been properly registered, a message, such as the following, is
displayed either in the console window for the console-mode compiler or in a message box for
the GUI-mode compiler:

Server "c:\windows\system\rmcbll2c.dll" is currently registered.

If the compiler server is not properly registered, a detailed error message is displayed instead.
For example:

Show server failed: Class not registered

In this error message, “Class not registered” indicates that the server is not registered.

Runtime Registration

The RM/COBOL for Windows runtime system consists of two components:
e A client, called runcobol.exe

e A server, called rmcbl12r.dll

The runtime server DLL, which must be registered with Windows before RM/COBOL
programs can be run, is automatically registered by the Setup program when the runtime
system is installed. If the runtime is moved to a directory other than the installation directory
without a reinstallation, an error message is displayed in a message box indicating that there is
a registration problem. The text of the error message is as follows:

An error occurred while the RM/COBOL runtime was loading:
Class not registered (the code is 80040154).

To resolve this problem, reinstall the RM/COBOL runtime, or register
the RM/COBOL runtime with the /REGSERVER command.

As indicated, there are two ways to resolve this problem. You can do either of the following:
e Repeat the installation process.

e Use the /REGSERVER command-line option.

RM/COBOL User's Guide

Second Edition

System Installation for Windows
Chapter 3: Installation and System Considerations for Microsoft Windows

Registering the Runtime

To register the RM/COBOL for Windows runtime in a directory other than the installation
directory using the /REGSERVER command-line option:

1. First, make sure that rmebl12r.dll is in the Windows System directory.

2. Then, either click the Windows Start button and select Run from the menu, or open a
Command Prompt window.

3. Enter the following command:
path\RUNCOBOL /REGSERVER

where, path is the drive and directory or the UNC location of these two files. For
example:

"C:\program files\rmcobol v9\runcobol" /regserver

Note The quotes are necessary only if the pathname contains spaces.

4. If the registration process is successful, a message, such as the following, is displayed:

Server "c:\windows\system\rmcbll2r.dl1l" registration succeeded.

Unregistering the Runtime

The RM/COBOL runtime also provides the /UNREGSERVER command-line option to
unregister the runtime from Windows. Although the uninstallation program automatically
unregisters the runtime, this can be done manually with the following command:

path\RUNCOBOL /UNREGSERVER

When the runtime server has been properly registered, a message, such as the following, is
displayed:

Server "c:\windows\system\rmcbll2r.dl1l" unregistration succeeded.

If the runtime server had not been properly registered or has already been unregistered, a
detailed error message is displayed instead. For example:

The server could not be unregistered: Class not registered

In this error message, “Class not registered” indicates that the server was not registered.

It is not necessary to unregister the runtime server before re-registering the runtime server
from a different location.

RM/COBOL User's Guide
Second Edition

61

System Removal for Windows
Chapter 3: Installation and System Considerations for Microsoft Windows

62

Showing the Runtime Registration

Finally, the following option will display the location of the currently registered runtime
server:

path\RUNCOBOL /SHOWSERVER

When the server has been properly registered, a message, such as the following,
is displayed:

Server "c:\windows\system\rmcbll2r.dl1l" is currently registered.

If the runtime server is not properly registered, a detailed error message is displayed instead.
For example:

Show server failed: Class not registered

In this error message, “Class not registered” indicates that the server is not registered.

System Removal for Windows

To remove RM/COBOL from your system:

1. Open the Windows Control Panel.

2. In the Control Panel, do one of the following:
e On Windows 2000, XP, or Server 2003, double-click Add or Remove Programs.
e On Windows Vista or Server 2008, double-click Programs and Features.

3. Ineither the Add or Remove Programs Properties window or the Programs and Features
window, select Liant RM/COBOL vx Compiler from the list of currently installed
programs and updates. (vx is the version number of the product to be removed.)

Note Follow these same instructions to select and remove other RM/COBOL product
components (for example, Liant RM/COBOL vx CodeWatch Debugger, Liant
RM/COBOL vx Recoverl, and Liant RM/COBOL vx Runtime), if necessary.

4. Do one of the following to start the uninstall process:
e On Windows 2000, XP, or Server 2003, click the Remove button.
e On Windows Vista or Server 2008, click the Uninstall button.

5. Inthe message box, click Yes to proceed with the uninstall process.

6. The Liant RM/COBOL vx Compiler dialog box is then displayed, detailing the progress
of the uninstall.

When the uninstall is successfully completed, click OK.

7. Click OK to close either the Add or Remove Programs window or the Programs and
Features window.

8. Close the Windows Control Panel.

All installed RM/COBOL system programs, files, shortcuts, and Windows registry entries are
now removed. Customer files are not affected.

RM/COBOL User's Guide

Second Edition

System Configuration for Windows
Chapter 3: Installation and System Considerations for Microsoft Windows

System Configuration for Windows

As mentioned, RM/COBOL supports IBM PCs, full PC compatibles, and Windows systems.
This section sets forth information required to configure RM/COBOL with each type of
system.

Creating a Windows Shortcut

When you create a shortcut in Windows, you must also specify the properties of the item.
Properties include a description of the item (the application name) and the working directory
where the application files are stored.

To create a shortcut for an application under Windows:

1.

Open the folder to which you want the item added. (Note that you can also add an item
directly to the desktop.)

Click the right mouse button to open a context menu. Point to the New option and click
Shortcut. The Create Shortcut dialog box opens.

In the Command line text box, type in a runtime system command, as described in
Chapter 7: Running (on page 199). Click the Next button.

When prompted to name the shortcut, choose a name that uniquely identifies the
application program. This name becomes the label that is displayed under the shortcut
icon.

After Windows creates the shortcut, you must modify the properties of the shortcut in
order for it to work properly. Right-click the shortcut icon and choose Properties. The
Shortcut Properties dialog box opens.

Select the Shortcut tab in the dialog box. (Figure 4 illustrates the Shortcut Properties
Tab used in this example.)

In the Start in text box, enter the name of the directory where the program files for this
application are located and where new files will be placed. The directory you specify
here becomes the current directory while the application program is running.

RM/COBOL User's Guide 63
Second Edition

System Configuration for Windows
Chapter 3: Installation and System Considerations for Microsoft Windows

64

Figure 4: Shortcut Properties Tab

Shortcut to verify.cob Properties

General | Shorteut |Se-:ur'rt}'

M Shartcut to verfy.cob

Target type: RMCOBOL Object
Target location: RMCOBOLy12

Target: |C:"-.F‘n:|g||am Files*Liant"\RMCOBOLy 12 werfy cob |

Start in: |C:"-.F‘n:|glam Files'Liart \RMCOBOLv12 |

Shortcut key: | Maone| |

Bun: | Momal window e |

Comment: | |

[Eind Target...] [Change lcon...] [Advanced...]

ok || cancel || Aepy |

Using Associations with Filename Extensions

During installation, RM/COBOL for Windows automatically sets up filename extension
associations for .cbl and .cob files. These associations allow the user to compile or run source
or object files by double-clicking these files when running the Windows File Manager or
Windows Explorer.

Normally, you cannot pass command-line options to Windows programs executed using a
filename extension association. However, using the Windows registry (see page 71), it is
possible to inform the RM/COBOL compiler or runtime system of command-line options for
all programs or for specific programs. For a discussion of the command-line options in the
RM/COBOL configuration, see the Command Line Options property (on page 78).

Under Windows, it is also possible to drag and drop .cbl and .cob files to the RM/COBOL
compiler or runtime system for execution. Dropping a .cbl file on a printer icon will print that
source file.

RM/COBOL User's Guide

Second Edition

Locating RM/COBOL Files on Windows
Chapter 3: Installation and System Considerations for Microsoft Windows

Prompting for a Filename

If the command line specified for the compiler or the runtime system has a ? character for the
source or object filename, the Select an RM/COBOL Object File dialog box is displayed, as
shown in Figure 5.

Figure 5: Select an RM/COBOL Object File Dialog Box

PIx

Select an RW/COBOL Object File

Look in: | 3 RMCOBOLv12

=~ & & e E-

y) chridge @Mroevice.coe @Mvdttest.cab
ﬁ) InstantsgL @hronaoccoe @verify.cob

My Recent [C3PDFLb @MrcerFonT.coe @Mwinatrb.cob
Documents |~ pmautold @rrnro.cos (@winbardr.cob
'_T [CHRMNEt ﬁprntest.cob ﬁ';-.'incnlnr.cob
[Chsamples ﬁF‘TEZx‘I‘I’ﬂI:‘I’.COB ﬁ';-.'inrelt'-.-'.cnb

Dasktop [isuppartTocls @MReEcovER2.co8 @Mwinstat.cob

] CsMLENT @hrecovery.coe @wintest.cob

—_) @Mansivsis.coe @MRvoEFccoE @ wintite.cob

o @M coverify.cab @hrvmro.cos

@MoseoiaLG.coB
ﬁﬁletest.cob

_3])3 ﬁhelo';-.'rld.cnb

ﬁix'-.—'eriﬁ'.cob

@M RimapTGCoB

@ rmmapPaM.coB
@M riPGMCoM,COB

@hRunPAN2. CoB

Nty Computer
ﬁnuctest.cnb ﬁsnrttest.cnb
‘ -g @Mozcetestoon (@MsvsIvFo.CoB
My Metwork
Places

File name: | j Open
| RM/COBOL Objects j Cancel

Files of type:

When the user selects the file from the list available in the space below the Look in
drop-down list box, the filename in the File name text box replaces the ? character on the
command line. To open (or start) the source or runtime system file, click the Open button.
Double-clicking the name of the file also opens (or starts) the selected object file.

Locating RM/COBOL Files on Windows

File Locations within Operating System Pathnames on
Windows

File locations are determined by the pathname of the file, according to operating system rules
and conventions. A fully qualified pathname contains the drive specifier, a directory path, the
filename, and the filename extension. A filename that begins with a universal naming
convention (UNC) specifier (|\server) is also treated as a fully qualified pathname.

Note Novell NetWare syntax (server\volume:filename) is no longer supported. Use of UNC
filename is now required (\\server\volume\filename).

RM/COBOL User's Guide 65
Second Edition

Locating RM/COBOL Files on Windows
Chapter 3: Installation and System Considerations for Microsoft Windows

66

If a pathname is specified without a drive specifier, the current drive is assumed. If a
pathname is specified without a directory path, RM/COBOL searches the current directory of
the specified or assumed drive.

Specifying a directory path with a leading slash, a drive letter, or a volume name indicates to
RM/COBOL that an exact filename has been specified. If RM/COBOL cannot find the file in
the specified location, it will not look elsewhere. If you do not specify a directory path, and
RM/COBOL cannot find the file in the assumed location, it will search for the file according
to the directory search sequence. If a directory path is specified, but there is no leading slash,
drive letter, or volume name, then the EXPANDED-PATH-SEARCH keyword (see page 358)
of the RUN-FILES-ATTR configuration record determines whether the directory search
sequence will be used. When the configuration keyword is set to its default value of NO, the
directory search sequence will not be used. If the value is set to YES, then the entire name,
including the directory path, will be appended to each entry in the directory search sequence
in an attempt to locate the file.

Directory Search Sequences on Windows

You can direct RM/COBOL to search for a file not found in the current working directory by
using a predefined directory search sequence. There are two directory search sequences: one
for the compiler and one for the runtime system.

To direct the RM/COBOL compiler to use the directory search sequence, set the RMPATH
environment variable. You can do this by setting a synonym with the RM/COBOL
Configuration (rmconfig) utility (see page 656). Alternatively, you can right-click the mouse
button on a .cbl file, select the Synonyms Properties tab, and set the RMPATH synonym with
the following syntax (as discussed in Setting Synonym Properties on page 90):

path [;path]

To direct the RM/COBOL runtime system to use the directory search sequence, set the
RUNPATH environment variable. You can do this by setting a synonym with the
RM/COBOL Configuration (rmconfig) utility. You may also right-click the mouse button on
a .cob file, select the Synonyms Properties tab, and set the RUNPATH synonym with the
following syntax (as discussed in Setting Synonym Properties on page 90):

path [;path]

For both the RMPATH and RUNPATH environment variable values, path indicates the
directory that is to be searched for the file, and has the form:

[d:] [\] directory [\directory]

where, d is the drive specifier.

directory is the location of an existing file, or the location of a file that will be created.

If multiple paths are specified, they must be separated with semicolons.

Means other than setting synonyms can be used to set the RMPATH or RUNPATH
environment variable values. Consult your operating system documentation for such
methods. If synonyms are set, the synonyms will override values set by the operating system.

RM/COBOL User's Guide

Second Edition

Locating RM/COBOL Files on Windows
Chapter 3: Installation and System Considerations for Microsoft Windows

Figure 6 and Figure 7 illustrate the compiler and runtime system search sequences,
respectively.

Figure 6: Compiler Search Sequence

Look first in this directory on drive A: ‘l

A:wage\hourly\overtime;B:

Then look in the current directory on drive B:

Figure 7: Runtime System Search Sequence

Look first in the current directory on drive A:,
then drive B:

Then look in the root directory on drive C: j

Files made to appear in the current directory by using Novell search directories when the
Novell Search Mode is set to a value other than 2 will not be accessed. If a file to be accessed
resides in a directory other than the current directory, that directory must be included in the
RMPATH or RUNPATH directory list. This requirement also applies to files located in
Novell search directories when the Novell Search Mode is set to a value other than 2.

The compiler, runtime system, and Indexed File Recovery (recoverl) utility (see page 641)
require access to other files in order to operate. These include the license vault and dynamic
link library files (with an extension of .dll). The license vault must reside in the same
directory as the executable file. RM/COBOL looks for the other files first in the directory
containing the executable file, then in the current directory, and finally in the directories
specified in the PATH environment variable. For the dynamic link library files, the default
Windows system directory (or directories), followed by the default Windows directory, will
be searched prior to searching the directories specified in the PATH environment variable.
The search of the Windows 32-bit system directory is followed by a search of the Windows
16-bit system directory, if available.

The compiler and runtime system may be executed from a directory other than the current
directory if a complete pathname is specified in the command line, or if either the search
directory of Novell NetWare or the DOS PATH directory search feature is used. If a
complete pathname is not specified and the compiler or runtime system is not located in the
current directory, the directories specified by PATH are searched.

RM/COBOL User's Guide
Second Edition

67

68

Locating RM/COBOL Files on Windows
Chapter 3: Installation and System Considerations for Microsoft Windows

Novell NetWare Search Paths

Novell NetWare defines a search path for locating command files. RM/COBOL defines a
search path for locating compiler files (RMPATH) and for locating runtime system files
(RUNPATH). Both Novell NetWare and RM/COBOL search paths consist of a list of
directories from which attempts are made to open files.

With RM/COBOL search paths, if any one of the directories in a user’s path does not have
search permission for the user, then the searching sequence stops for all remaining directories
and a security violation is reported. This security violation indicates that the runtime system
has been prevented from examining the directory for a file. If a security violation occurs, and
the file is located in a directory for which the user has permission, examine the permissions
for other directories in the RUNPATH sequence.

To prevent this security violation, take one of the following actions:

e Give the user search permission for all directories in RUNPATH, RMPATH, and the
Novell NetWare search path.

e Alternatively, remove the directory from the search path.

Note This same security violation can occur when creating a new file, even if it is with
OPEN OUTPUT. The RM/COBOL runtime system still searches RUNPATH to locate a file
that needs to be replaced.

File Access Names on Windows

The file access name you specify in the COBOL source program specifies the physical file or
device to which input or output is directed. For information on specifying the file access
name in a COBOL source program, see the discussion of the ASSIGN clause (file control
entry) in Chapter 3: Environment Division, and the discussion of the VALUE OF clause in
Chapter 4: Data Division, of the RM/COBOL Language Reference Manual.

To establish synonymy between a file access name, specified in your source program and
another name specified when the program is run, use an environment variable. Environment
variables may be set using the Synonyms tab of the Properties dialog box, as illustrated in
Figure 8. The Synonyms Properties tab is described in the topic Setting Synonym Properties
(see page 90). Consult your operating system documentation for other methods of setting
environment variables.

RM/COBOL User's Guide

Second Edition

Locating RM/COBOL Files on Windows
Chapter 3: Installation and System Considerations for Microsoft Windows

Figure 8: Synonyms Tab of the Properties Dialog Box

% doverify Properties for Runtime

Colors] Toolbar] Menu Bar] Fop-up Menu]
Select e | Control Synonyms

Select the synonym name you want to change at the top, and then
enter a new value at the bottam.

Hame
repark
Hemove
R ermowve Al
Walle:
LPT1

O | Cancel Apphy

For example, let us say that you specified a generic file access name for program input-output
and wish to direct it to a specific device or file. A generic file access name is one that does
not specify a directory path or drive letter. Since the format of physical pathnames, including
conventions of specifying drive letters and directory names, varies from one operating system
to another, for maximum portability it is recommended that source programs specify generic
file access names, preferably with eight or fewer letters. This recommendation only applies
when the file access name is hard coded into the program as a literal.

For example, if the file control entry specifies:
SELECT REPORT-FILE ASSIGN TO PRINT, "report"
and no environment variable with the name “report” is found, RM/COBOL will create a file

named report in the current directory on the current drive.

If, prior to running the program, you set the synonym “report” to a value of LPT1, all program
output written to REPORT-FILE will be written to LPT1.

If—again prior to execution—you set the synonym “report” to a value of
“A:\output\audit.Ist”’, RM/COBOL will create a file named audit.lst in the subdirectory
\output on drive A without any need to modify or recompile the source program.

RM/COBOL User's Guide 69
Second Edition

Locating RM/COBOL Files on Windows
Chapter 3: Installation and System Considerations for Microsoft Windows

70

When an environment variable is not set, because there is no synonym set and no other
method of setting the environment variable has been used, the file access name in the COBOL
program specifies the actual filename. Synonym values can be canceled by highlighting the
entry on the Synonyms tab of the Properties dialog box, clicking the Remove button, and
restarting runcobol.exe.

Whether or not an environment variable is used to modify the file access name, if the resulting
file access name does not include either a drive letter or a directory path, RUNPATH will be
used by the runtime system to obtain the fully qualified pathname. For additional
information, see File Locations within Operating System Pathnames on Windows (on

page 65).

The RESOLVE-LEADING-NAME and RESOLVE-SUBSEQUENT-NAMES keywords of
the RUN-FILES-ATTR configuration record can be used to force resolution of one or more of
the directory names from the environment. For more information, see the discussion of the
RUN-FILES-ATTR configuration record (on page 356).

Control characters are removed from the file access name, but spaces are preserved since
Win32 supports spaces in filenames.

The resulting file access name should follow the operating system rules for valid filenames
and pathnames. If the file access name contains any of the characters

\ / : * ? " < > |

an error will occur when the file is opened, with the exception that “\” may be used as a
directory separator and “:” may be used to indicate a device.

Windows System Print Jobs

When the resulting file access name is PRINTER or PRINTER#, where 7 is a decimal digit
from 1 to 9, RM/COBOL refers to the Windows printer device attached to LPT1: or LPTn:
respectively, provided that LPT1: or LPT#: has a Windows printer attached to it.

When the resulting file access name is a dynamic printer device, as described in Windows
Printers (on page 342), RM/COBOL displays the standard Windows Print dialog box when
the file is opened. This allows the user to select the destination Windows printer in a dynamic
manner (that is, at execution). Once the dynamic printer device has been opened, the selected
printer is remembered by the runtime, and subsequent opens do not display the standard
Windows Print dialog box. The program may call the P§EnableDialog subprogram (see

page 503) to force a standard Windows Print dialog box on the next open of a dynamic
printer. The program may also call the P$DisableDialog subprogram (see page 502) to cause
the Windows Print dialog box not to be displayed when the dynamic printer device is opened
for the first time. This feature can be useful when P$SetDialog (see page 504) has been called
to preset the needed printer (obtained from P$EnumPrinterInfo or by other methods) and the
application does not want the dialog to be displayed. The user may also set the Printer Dialog
Always property (see page 84) file to True to force the dialog box on every open of a dynamic
printer. The program may also call the P$DisplayDialog subprogram (see page 502) at any
time, to force the standard Windows Print dialog box to be displayed.

The DEFINE-DEVICE configuration record may define other file access names that are to be
treated as devices and change the default treatment of PRINTER and PRINTER#. See
DEFINE-DEVICE Configuration Record (on page 338) for additional information on
configuring file access names that are to be treated as devices.

RM/COBOL User's Guide

Second Edition

Windows Registry
Chapter 3: Installation and System Considerations for Microsoft Windows

Windows Registry

Beginning with version 6.5, RM/COBOL for Windows stores configuration information for
the runtime system (runcobol), compiler (rmcobol), and Indexed File Recovery utility
program (recoverl) in the Windows registry. The registry is a hierarchical database used to
store configuration settings and options maintained by Windows.

The Windows registry is organized much like a disk drive’s directory structure. All of
RM/COBOL’s configuration information is stored under the “directory” path

“HKEY LOCAL MACHINE\SOFTWAREN\Liant Software
Corporation\RM/COBOL\CurrentVersion”. Three subdirectories underneath that path
(rmcobol, runcobol, and recoverl) correspond with information previously stored in the
separate initialization files rmcobol.ini, runcobol.ini, and recoverl.ini.

Note Previous versions of RM/COBOL for Windows stored program configuration
information in separate initialization files located in the main Windows directory. These
initialization files are no longer used. However, when distributing configuration information
to end-users, initialization files can still be shipped with your product. To merge your
program’s configuration information into the Windows registry, include a call to the supplied
Initialization File to Windows Registry Conversion (ini2reg) utility (see page 655) in your
application’s installation procedure.

You are not required to know the inner details of the Windows registry structure in order to
change the properties of your programs. RM/COBOL for Windows includes Windows shell
extensions that allow the manipulation of configuration information for default values as well
as individual program settings without having to navigate through the Windows Registry
Editor. Configuration information for a specific COBOL program may be edited by right-
clicking a source or object file and choosing Properties. If a source file is chosen, the
properties used when compiling that program can be modified. If an object file is chosen, the
properties used when running that program can be modified. The configuration options
available in the Properties dialog box are described in the section Setting Properties (on

page 73). Configuration information for programs and generic default values may also be
edited by running the supplied RM/COBOL Configuration (rmconfig) utility (see page 656).

Users may migrate the complete RM/COBOL Windows registry information from one
machine to another by using the Registry Editor (regedit.exe), which is included with
Windows. This program allows entire sections of the Windows registry to be exported to a
text file (with the .reg extension), which can then be imported into the Windows registry of
another machine. Consult the Microsoft Windows help documentation for more information
on regedit.exe.

RM/COBOL User's Guide 71
Second Edition

Windows Registry
Chapter 3: Installation and System Considerations for Microsoft Windows

72

Windows Registry Considerations

Several Windows registry issues may be encountered when using the Initialization File to
Windows Registry Conversion (ini2reg) utility (see page 655) if the RM/COBOL for
Windows runtime executable has been renamed.

Renaming the RM/COBOL for Windows Runtime

By default, the Windows registry key created by the ini2reg utility is the same as the name of
the input initialization file (.ini). This registry key is also used by the RM/COBOL
Configuration (rmconfig) utility (see page 656). The RM/COBOL for Windows runtime
expects to find the configuration information under a key based on the name of the executable
module. If you rename the RM/COBOL for Windows runtime executable, runcobol.exe, it is
also necessary to rename the initialization file (runcobol.ini) to match the new runtime name
before the ini2reg utility is run.

Furthermore, if the RM/COBOL for Windows runtime is renamed, the Windows Explorer
SHELL/OPEN registry entry that names the runtime must be updated to reflect the new name.
Otherwise, Windows Explorer will be unable to find the runtime when a .cob file is opened,
and the runtime will not correctly read configuration information from the registry.

The RM/COBOL installation program automatically sets the SHELL/OPEN registry entry to
the drive and directory where the RM/COBOL for Windows runtime is installed. If the
runtime is later renamed or moved, the Registry Editor (regedit.exe) supplied with Windows
can be used to update the registry. The key is:

HKEY LOCAL MACHINE
Software
Classes
RMCOBROL.Object
shell
open
command

This entry must be set to the following:
x:\dir\filename.exe "$1"

where, x:\dir is the drive and directory containing the runtime, and filename is the name
of the RM/COBOL for Windows runtime. If this path contains spaces, it must be
surrounded by double quotes.

WARNING Use extreme caution when editing the Windows registry. Liant Software
recommends that you do not change any other entries.

This entry can also be updated automatically using a properly prepared .reg file. See your
Windows documentation for details.

RM/COBOL User's Guide

Second Edition

Setting Properties
Chapter 3: Installation and System Considerations for Microsoft Windows

Setting Properties

This section describes the configuration options that can be set using the Properties
dialog box.

Note The Properties dialog box contains a set of seven tabs. Each tab contains a set of three
buttons that are active in all the tabs and which serve the same function. The OK button
accepts all the settings selected on that tab and then closes the dialog box. The Cancel button
closes the dialog box without saving any changes. The Apply button saves the settings
specified on that tab without closing the dialog box, allowing you to select another page of
options.

The following definitions explain terms used throughout this section.

Term Meaning

Boolean Indicates a value of True or False. A value of 1 or 0 may also be used to
indicate True or False.

number Indicates a positive integer value less than 65536, specified as a string of

decimal digits with an optional leading sign (“+”). A non-decimal digit
character, other than the optional leading sign character, terminates the
evaluation of the number, but is otherwise ignored, including any
characters which follow. Numbers greater than 65535 are evaluated
modulo 65536. A leading “- sign is allowed, but the decimal number
following is subtracted from 65536 to yield a positive value.
Valid examples (excluding the delimiter quotes):

“1pm

w1
Invalid examples (excluding the delimiter quotes):

“-5” (yields +65531)

“=5” (yields 0 because of leading non-decimal digit)

“SA” (yields 5 because trailing non-decimal digits terminate scan of the

number)
string Indicates alphanumeric characters.
filename Indicates the operating system filename.

Selecting a File to Configure

The Select File tab, illustrated in Figure 9, allows you to select the source file, object file, or
indexed file that you want to configure. The title bar on each tab of the Properties dialog box
provides three important pieces of information depending on the settings selected on the
Select File tab. First, it displays either the name of the specific COBOL program you selected
or “Default”, if you are setting system defaults for all programs. Second, it displays whether
you are configuring the program for the runtime, compiler, or recovery utility. Third, it
indicates the name of the custom key in the Windows registry if the default key is not being
used.

Note If you have opened the Properties dialog box by right-clicking the mouse button on

an RM/COBOL source or object file and then selected Properties, this tab will not be
available. You are only able to configure options for the default key in the currently selected
individual file.

RM/COBOL User's Guide
Second Edition

73

74

Setting Properties

Chapter 3: Installation and System Considerations for Microsoft Windows

Figure 9: Select File Tab

% doverify Properties for Runtime

Colors]
Select File

Toolbar] Menu Bar] Fop-up Menu]

l Control

] Synonyms

Select the RM/COBOL component and the file you wizh to
configure. Thiz zelection affectz all other configuration pages.

Configure Configure for
¢ Default Properties *+ Buntirme

] = " Compiler
dareerify {" Recovery
dowverify Scope
filetest

o

ALt * .-'1'-.|_|.L|sers
prritest " Thiz User
zorttest
vdttest Kew
werify + Default
winattrb ™ Custom
winbordr -
wincolor
winrelty:
izt ak

l

I—
-
Browsze Remove
Use Defaus|

Uze Defaulkz

ok | cancel | Apply |

The Select File tab contains the following options:

RM/COBOL User's Guide
Second Edition

Configure. The two options provided in this area allow the specification of
configuration options for all programs or for a specific COBOL program.

Default Properties. When selected, the Default Properties option enables the other
Properties tabs (Control, Synonyms, Colors, Toolbar, Menu Bar, and Pop-up Menu)
to set system defaults for all files.

Individual File. When selected, the Individual File option enables the other
Properties tabs to change the properties for the file selected from the list box. (If the
needed file has not yet been configured, the Browse button can be used to add a new
file to the list or the Remove button can be used to remove a file from the list.) Any
directory path for the selected file must not be specified. For source and object files,
the extension must not be specified. For example, the source file
c:\mysrcdir\mysource.cbl must be specified as mysource and the object file
c:\myobjdir\myobject.cob must be specified as myobject. For indexed files, the
extension, if any, must be specified. For example, the indexed file
c:\mydatdir\mydata.inx must be specified as mydata.inx. The name specified is
not necessarily a file at all, but corresponds to the first argument from the command
line. In the case of the Runtime Command, this may be a program-name of a
program within a library file.

Setting Properties
Chapter 3: Installation and System Considerations for Microsoft Windows

Note that the following buttons are enabled only when the Individual File option is
selected:

e Browse. Use this button to open a dialog box that allows you to look for a file
for which you want to set properties.

e Remove. Use this button to remove a selected file from the list of files.

Configure for. The three options provided in this area determine the activity for which
component the Properties tabs will configure a file.

— Runtime. Ifthis option is selected, the settings for the object file (.cob) will be
shown and used when running the file.

— Compiler. If this option is selected, the settings for the source file (.cbl) are
affected.

— Recovery. Ifthis option is selected, the settings used for recovering a data file with
the Indexed File Recovery (recoverl) utility (see page 641) are affected.

Scope. The two options provided in this area allow you to specify the extent of the
configuration settings.

— All Users. If this option is selected, all of the configuration options apply to all
users. These options are written into the Windows registry key,
HKEY LOCAL MACHINE.

Note You must have Administrator privileges and, on Windows Vista, the
RM/COBOL Configuration (rmconfig) utility (see page 656) must be running as
Administrator. Furthermore, on Windows Vista,

HKEY LOCAL MACHINE\SOFTWARE always appears writable even without
Administrator privileges because it is virtualized for each user into:

HKEY CURRENT USER\Software\Classes\VirtualStore\MACHINE\SOFTWARE

— This User. If this option is selected, all of the configuration options apply only to
the current user. These options are written into the Windows registry key,
HKEY_ CURRENT_ USER.

Key. This option allows you to override the master key in the Windows registry that is
used to store the configuration information. This is most useful if you have renamed the
compiler, runtime, or recovery utility program. The options in this area include:

— Default. If this option is selected, the default key for each product is used. For the
runtime, the default key is runcobol; for the compiler, it is rmcobol; and for the
recovery utility, it is recoverl.

— Custom. Use this option to override the default key. Enter a new key name in the
text box and press the Set button.

Note The combination of the selections in the Configure for area and the Key option
together affect where the values are stored.

RM/COBOL User's Guide
Second Edition

75

Setting Properties
Chapter 3: Installation and System Considerations for Microsoft Windows

e Use Defaults. The behavior of the Use Defaults button is dependent upon whether the
Default Properties or the Individual File option in the Configure area is in effect.

— If the Default Properties option is selected, choosing the Use Defaults button causes
the system defaults to be reset to the values that were in place when the product was

originally installed. Note, however, that any property values set for an individual file
will not be reset.

— If the Individual File option is selected, choosing the Use Defaults button causes

property values that have been overridden for the selected file to be reset to use the
system defaults.

Setting Control Properties

The Control Properties tab, illustrated in Figure 10, allows you to set various properties for
the Default Properties or Individual File, Configure for component (Runtime, Compiler, or
Recovery), Scope (All Users or This User), and Key (Default or Custom text) options that
were specified using the Select File tab (see page 73). The control properties that can be set
or modified are discussed in the following sections.

Figure 10: Control Properties Tab

& doverify Properties for Runtime

Colors] Toolbar] Menu Bar] Pop-up Menu]
Select File Control l Synormyms]

Select the zetting you want to change on the left, and then
zelect itz new value oh the right.

Praperty

* Default Setting

o F " Custom Setting

Auta Scale
Command Line Options Yalue:

Curzor Overtype

Curzor [nsert J
Curzor Full Field

Enable Cloze

Enable Properties Dialog

Fant

Font CharSet OEM hd

The Auto Pazte property specifiez a Boolean walue that enables
or dizables the Auto Pazte function. Setting Auta Paste to True
enables the Auto Paste feature and double-clicking the mouse
button transfers the marked data to a pending ACCEFT field. [f
Auto Pagte iz zet to Falze, double-clicking the mousze buttan
marks a word of text. The default value is False.

O | Cancel

76 RM/COBOL User's Guide
Second Edition

Setting Properties
Chapter 3: Installation and System Considerations for Microsoft Windows

The Control Properties tab contains the following options:

e Property. This list box presents an alphabetical listing of the properties that are used to
configure the physical appearance of the RM/COBOL program. An area below this list
box contains a description of the selected property. (Each of these properties is discussed
in the sections that follow.)

o Default Setting. Select this button to use the selected property’s default value. That
default value will be shown in the Value area (described below). See the Default
Properties option on the Select File tab for information on configuring default values, as
discussed in Selecting a File to Configure (on page 73).

e Custom Setting. Select this button to override the default value for the selected
property.

e Value. This area displays the value associated with the property selected in the Property
list box and allows you to change it. Note that this area is disabled unless the Custom
Settings button is selected.

Once set, control properties, other than the Command Line Options Property described on
page 78, are used by performing the following ordered search: Program Specific Properties
for the Current User, Program Specific Properties for All Users, Default Properties for the
Current User, and Default Properties for All Users. The first setting of a particular property
from this ordered search is used and the search is terminated.

Note A call to CSGUICFG (see page 589) to set a control property will temporarily override
this search. The value specified in CSGUICFG will be used instead until the next update of
control properties from the registry.

Auto Paste Property

The Auto Paste property specifies a Boolean value that enables or disables the Auto Paste
function. Setting Auto Paste to True enables the Auto Paste feature and double-clicking the
mouse button transfers the marked data to a pending ACCEPT field. If Auto Paste is set to
False, double-clicking the mouse button marks a word of text. The default value for this
property is False.

Note During installation you have the option to allow certain configuration information to be
added to the Windows registry. This configuration information, included in the file
rmcobol.reg, sets the system default value of the Auto Paste control property to the custom
setting True. This default value will be used for individual files unless overridden by a
custom setting.

The CSGUICFG subprogram (see page 589) can be used to change the Auto Paste property
temporarily in order to manipulate the graphical user interface.

RM/COBOL User's Guide
Second Edition

77

78

Setting Properties

Chapter 3: Installation and System Considerations for Microsoft Windows

Auto Scale Property

The Auto Scale property specifies a Boolean value that determines whether to implement auto
scaling of fonts when the RM/COBOL runtime window is resized. Setting Auto Scale to True
automatically changes the font size when the window is resized. Setting Auto Scale to False
turns off this capability. The default value for this property is True. See also the Sizing

Priority property (on page 87).

The setting of the Auto Scale property is ignored if the Scroll Buffer Size property (see
page 87) is set to a non-zero value.

The C$GUICFG subprogram (see page 589) can be used to change the Auto Scale property
temporarily in order to manipulate the graphical user interface.

Command Line Options Property

The Command Line Options property defines a series of command-line options to be passed
to the compiler, runtime system, or recovery utility, depending on whether “Compiler”,
“Runtime”, or “Recovery” was selected as the “Configure for” component on the Select File
tab in the configuration Properties dialog box, as described in Selecting a File to Configure
(on page 73). Command-line options are processed first from the Command Line Options
property settings and then from the options specified in the actual command line submitted by
the user.

Since for most options, a later specification of the option overrides a prior specification, this
means that options specified on the actual command line take precedence over command-line
options specified in the Command Line Options property. This is not true of cumulative
options, such as the L Runtime Command Option, which are accumulated from left to right as
the command-line options are processed in the order given above. The maximum total length
of the command line options is 4095 characters. For more information, see Compile
Command Options (on page 154), Runtime Command Options (on page 201), and Recovery
Command Options (on page 642).

For the Command Line Options property, the options are processed in the following order:
Default Properties for All Users, Default Properties for the Current User, Program Specific
Property for All Users, and Program Specific Property for the Current User. Then the options
specified on the actual command-line, if any, are processed.

Notes

e Some options for the runtime system specified in the Command Lines Options property
may not be overridden by the actual command-line options because the options
themselves are cumulative; that is, multiple options of this type may be specified on the
command line. The L Option (for library loads) is an example of such a parameter. For
additional information, see the descriptions of the Runtime Command (on page 199) and
the L Option (on page 207).

e The environment variable RM_IGNORE GLOBAL RESOURCES may be defined if
you wish the compiler, runtime system, or recovery utility not to access the Command
Line Options Property defined for All Users. This may be useful if you are trying to
develop at the same time others are running an application in live “production mode.”

e For a clarification regarding the use of “?” or wildcard characters in the filename
specified on the Compile Command line and the effects for Command Line Options
property specified for a specific file, see Multiple File Compilation on Windows (on
page 153).

RM/COBOL User's Guide

Second Edition

Setting Properties
Chapter 3: Installation and System Considerations for Microsoft Windows

Cursor Overtype Property

The Cursor Overtype property determines the appearance of the cursor during ACCEPT
operations when in overtype mode. For more information, see Cursor Types (on page 110).
The following values are valid:

Value Meaning
HorzLine Displays the cursor as a horizontal line at the bottom
of the character cell.
HalfBox Displays the cursor as a half box at the bottom of the
character cell.
FullBox Displays the cursor as a full box.
VertLine Displays the cursor as a vertical line at the right of the

character cell.

The default value for this property is HorzLine.

Cursor Insert Property

The Cursor Insert property determines the appearance of the cursor during ACCEPT
operations when in insert mode (see page 110). The following values are valid:

Value Meaning
HorzLine Displays the cursor as a horizontal line at the bottom
of the character cell.
HalfBox Displays the cursor as a half box at the bottom of the
character cell.
FullBox Displays the cursor as a full box.
VertLine Displays the cursor as a vertical line at the right of the

character cell.

The default value for this property is HalfBox.

Cursor Full Field Property

The Cursor Full Field property determines the appearance of the cursor during ACCEPT
operations when the input field is full. See Cursor Types (on page 110). The following
values are valid:

Value Meaning
HorzLine Displays the cursor as a horizontal line at the bottom
of the character cell.
HalfBox Displays the cursor as a half box at the bottom of the
character cell.
FullBox Displays the cursor as a full box.
VertLine Displays the cursor as a vertical line at the right of the

character cell.

The default value for this property is FullBox.

RM/COBOL User's Guide
Second Edition

79

Setting Properties
Chapter 3: Installation and System Considerations for Microsoft Windows

80

Enable Close Property

The Enable Close property specifies a Boolean value that enables or disables the Close menu
item on the Control menu as well as the Close button in the upper-right corner of the window.
Setting Enable Close to True enables the Close menu item and the Close button. Setting
Enable Close to False dims and disables the Close menu item and the Close button. The
default value for this property is True.

The C$GUICFG subprogram (see page 589) can be used to change the Enable Close property
temporarily in order to manipulate the graphical user interface.

Enable Properties Dialog Property

The Enable Properties Dialog property specifies a Boolean value that enables or disables the
Properties menu item on the Control menu. Setting Enable Properties Dialog to True enables
the Properties menu item. Setting Enable Properties Dialog to False dims and disables the
Properties menu item. The default value for this property is True.

The CSGUICFG subprogram (see page 589) can be used to change the Enable Properties
Dialog property temporarily in order to manipulate the graphical user interface.

Font Property

The Font property specifies the typeface to use as well as point size and style. The typeface
must be a fixed-width (or monospaced) font, such as Courier. Clicking the Select Fonts
button opens the Fonts dialog box, which provides a list of available fonts, styles, and sizes.

Font CharSet OEM Property

The Font CharSet OEM property determines the display character sets considered to be OEM
character sets when the native character set uses the OEM codepage. In this case,
RM/COBOL considers internal character data to be OEM and converts displayed characters
to ANSI unless the chosen display font has an OEM character set. Fonts with the Arabic,
Baltic, East Europe, Greek, Hebrew, Russian, and Turkish character sets generally require
conversion from OEM to ANSI. The value NotANSI assumes all character sets other than the
ANSI character set are OEM; this was the original RM/COBOL assumption. The value
OEMSymbolDefault assumes that only the OEM, Symbol, and Default character sets are
OEM and that all other character sets are ANSI. The default is OEMSymbolDefault. For
printer character sets, as opposed to display character sets, see the Printer Font CharSet OEM

property (on page 86).

Note The value of the Font CharSet OEM property is stored in the registry as a string value
for the key FontCharsetOem. This string is a comma- or space-separated list of OEM
character set numbers. A range of OEM character set numbers may be specified with a
hyphen-separated pair of numbers. Alphabetic text or any text contained between braces is
considered commentary. While the RMCONFIG user interface only allows setting NotANSI
(that is, “1-255”) or OEMSymbolDefault (that is, “255,2,1”), any set of character set numbers
may be listed in the registry in order to include or exclude specific character sets for the OEM
to ANSI conversion done when characters are displayed. The specified string will be used
until it is modified, either by RMCONFIG or other means, such as regedit.

When the native character set uses the ANSI codepage, this property is ignored. In this case,
code points are converted from ANSI to OEM only when the display font default script is
OEM/DOS; otherwise, no conversion is necessary and none occurs.

RM/COBOL User's Guide

Second Edition

Setting Properties
Chapter 3: Installation and System Considerations for Microsoft Windows

Full OEM To ANSI Conversions Property

The Full OEM To ANSI Conversions property specifies a Boolean value that determines
whether to convert a character from OEM to ANSI or from ANSI to OEM when the native
character set uses the OEM codepage. This property affects titles, menus, and other Windows
objects. Because Windows uses the ANSI character set, the default setting (True) causes all
output to be converted from the OEM character set to the ANSI character set and all input
from these controls to be converted from ANSI to OEM. If, however, the user wants to avoid
these conversions, this property should be set to False in order to suppress the conversion.
Setting this value to False causes the runtime system to behave as it did prior to the
RM/COBOL 6.5 release.

Note The European “Latin-1” character set is the same as the Windows native ANSI
character set.

The CSGUICFG subprogram (see page 589) can be used to change the Full OEM to ANSI
Conversions property temporarily in order to manipulate the graphical user interface.

When the native character set uses the ANSI codepage, this property is ignored.

Icon File Property

The Icon File property specifies the icon filename from which to load icons for the toolbar.
See the Name option of the Toolbar Properties tab, described in Setting Toolbar Properties.
This property is used only if the Toolbar property (see page 89) is set to True. The default
value is rmtbar.vrf. See Table 12 on page 101 for more information.

The CSGUICFG subprogram (see page 589) can be used to change the Icon File property
temporarily in order to manipulate the graphical user interface.

Load Registry On CALL Property

The Load Registry On CALL property specifies a Boolean value that enables or disables
additional processing of the Windows registry file. If this property is set to True, the registry
is re-examined whenever a COBOL subprogram is called. The subprogram name is treated as
if it were a filename and causes corresponding registry entries to be processed. If the value is
set to False, the registry is not re-examined. The default value for this property is False.

Note Use caution when setting the value of the Load Registry On CALL property to True as
a system default. Doing so can affect the performance of your application. This behavior can
occur when using RM/Panels because an RM/Panels application uses many subprogram calls.
Alternatively, you can use the C$TBar (see page 614), CSMBar (see page 594), or

C3GUICFG (see page 589) subprograms to manipulate the toolbar and menu bar instead of
using the Windows registry file and the Load Registry on CALL property.

RM/COBOL User's Guide
Second Edition

81

Setting Properties
Chapter 3: Installation and System Considerations for Microsoft Windows

Load Registry On RETURN Property

The Load Registry On RETURN property specifies a Boolean value that enables or disables
additional processing of the Windows registry file. If this property is set to True, the registry
is re-examined whenever a COBOL subprogram is exited. The calling program’s name is
treated as if it were a filename and causes corresponding registry entries to be processed. If
the value is set to False, the registry is not re-examined. The default value for this property
is False.

Note Use caution when setting the value of the Load Registry On RETURN property to True
as a system default. Doing so can affect the performance of your application. This behavior
can occur when using RM/Panels because an RM/Panels application uses many subprogram
calls. Alternatively, you can use the C$TBar (see page 614), CSMBar (see page 594), or
CSGUICEFG (see page 589) subprograms to manipulate the toolbar and menu bar instead of
using the Windows registry file and the Load Registry on RETURN property.

Logo Bitmap Property

The Logo Bitmap property specifies a Boolean value that determines whether a Logo Bitmap
is displayed. If the value is set to True, the file specified by the Logo Bitmap File property
(described below) is displayed. If the value is set to False, it is not displayed. The default
value for this property is True.

Logo Bitmap File Property

The Logo Bitmap File property specifies the bitmap (.bmp) filename that may be displayed in
the RM/COBOL runtime window when an application is started. The bitmap is centered in
the RM/COBOL runtime window until an erase screen operation is encountered (DISPLAY
ERASE). You can build a simple RM/COBOL program that displays a bitmap, responds to
keyboard sequences (such as function keys that could be generated from the menus or
toolbar), and dispatches the appropriate code. The default value is run.bmp, rme.bmp, or
rec.bmp for the runtime system, compiler, and Indexed File Recovery utility program,
respectively. If the bitmap file is not found, or if Logo Bitmap (described previously) is set to
False, this property is ignored.

Main Window Type Property

The Main Window Type property determines the style of the RM/COBOL runtime window
(the window that is activated when the RM/COBOL application begins execution). The
following values are valid:

Value Meaning
Hidden The window is not activated and is hidden.
Minimized The window is activated and is displayed as an icon.
Maximized The window is activated and is displayed in its

maximized state.

Show The window is activated and is displayed in its current
size and position.

The default value for this property is Show.

82 RM/COBOL User's Guide
Second Edition

Setting Properties
Chapter 3: Installation and System Considerations for Microsoft Windows

Mark Alphanumeric Property

The Mark Alphanumeric property specifies a Boolean value that determines the terminating
conditions for selecting a word from the application window. If Mark Alphanumeric is set to
True, double-clicking the mouse button to mark a word selects characters until a non-
alphanumeric character is encountered. If Mark Alphanumeric is set to False, selection occurs
when a blank is encountered. The default value for this property is True.

The C$GUICFG subprogram (see page 589) can be used to change the Mark Alphanumeric
property temporarily in order to manipulate the graphical user interface.

Offset X Property

The Offset X property specifies a number that identifies the leftmost location (as a pixel offset
from the left edge of the screen) of the RM/COBOL runtime window. The default value for
this property is 0.

Offset Y Property

The Offset Y property specifies a number that identifies the uppermost location (as a pixel
offset from the top edge of the screen) of the RM/COBOL runtime window. The default
value for this property is 0.

Panels Controls 3D Property

The Panels Controls 3D property specifies a Boolean value that enables or disables three-
dimensional effects in certain RM/Panels for Windows controls (date, time, alpha, and
numeric fields). The default value, False, causes applications to be displayed as they were
before the 3D capability was added to RM/COBOL.

Panels Static Controls Border Property

The Panels Static Controls Border property specifies a Boolean value that causes the Static
Text Control (an RM/Panels control type) to have a border. The default value, False, causes
these controls to be drawn without a border.

Paste Termination Property

The Paste Termination property specifies a Boolean value that affects automatic termination
of fields pasted into a pending ACCEPT statement, using either the Paste function (see

page 117) or the Auto Paste property (see page 77). If Paste Termination is set to True, data
transfer will continue until the data is exhausted, including all tabs and carriage returns. If
Paste Termination is set to False, data transfer stops when a tab or carriage return is
encountered. There is a carriage return at the end of each line of text in the Windows
Clipboard. The default value for this property is True.

The CSGUICFG subprogram (see page 589) can be used to change the Paste Termination
property temporarily in order to manipulate the graphical user interface.

RM/COBOL User's Guide
Second Edition

83

Setting Properties
Chapter 3: Installation and System Considerations for Microsoft Windows

84

Persistent Property

The Persistent property specifies a Boolean value that affects the behavior of the RM/COBOL
runtime window when the RM/COBOL program, compiler, or Indexed File Recovery utility
program terminates. If Persistent is set to True, the window will not close until dismissed by
the user. If Persistent is set to False, the window will close immediately upon completion.
The default value for this property is False.

If any RM/COBOL runtime window disappears upon completion before the user is able to
read the final text displayed in that window, then set Persistent to True and close the window
manually after reading the final text.

The C$GUICFG subprogram (see page 589) can be used to change the Persistent property
temporarily in order to manipulate the graphical user interface.

Pop-Up Window Positioning Property

The Pop-Up Window Positioning property determines the method used to initially position a
pop-up window. The value Corrected positions the pop-up window with LINE 1 COLUMN 1
at the line and column specified in the DISPLAY statement, as specified in the documentation
for pop-up windows in Line and Position Phrases (see page 232). The value Traditional
positions the pop-up window as incorrectly implemented in initial releases of RM/COBOL for
Windows, where the pop-up window is generally positioned lower and further to the right by
a few pixels. The default value is Traditional.

Printer Dialog Always Property

The Printer Dialog Always property specifies a Boolean value that affects the behavior of the
RM/COBOL runtime when opening the selected dynamic printer device (see page 342). If
Printer Dialog Always is set to True, the standard Windows Print dialog box will be displayed
each time the dynamic printer device is opened, unless the P$DisableDialog subprogram

(see page 502) has been called to suppress the dialog box. If Printer Dialog Always is set to
False, the dialog box will be displayed only the first time the dynamic printer is opened,
unless the P$DisableDialog subprogram has been called to suppress the dialog box. In the
False case, the PSEnableDialog subprogram (see page 503) may be called to cause the dialog
to be displayed on a subsequent open of the dynamic printer. The default value for this
property is False.

The CSGUICFG subprogram (see page 589) can be used to change the Printer Dialog Always
property temporarily.

Printer Dialog Never Property

The Printer Dialog Never property specifies a Boolean value that affects the behavior of the
RM/COBOL runtime when opening a dynamic printer device, as described in Windows
Printers (see page 342). If Printer Dialog Never is set to True, the standard Windows Print
dialog box will never be displayed when a dynamic printer device is opened. In this case, a
dynamic printer device behaves like a default (PATH=DEFAULT, ... in the DEFINE-DEVICE
configuration record) printer device, that is, the Windows default printer is opened. If Printer
Dialog Never is set to False, the display of the dialog box is controlled by the setting of the
Printer Dialog Always property, described above. The default value for this property is False.

RM/COBOL User's Guide

Second Edition

Setting Properties
Chapter 3: Installation and System Considerations for Microsoft Windows

The CSGUICFG subprogram (see page 589) can be used to change the Printer Dialog Never
property temporarily.

Note If the Printer Dialog Never property is set to True, the standard Windows Print dialog
box will never be displayed, regardless of the state of the Printer Dialog Always property.

Printer Enable Escape Sequences Property

The Printer Enable Escape Sequences property specifies a Boolean value that determines
whether printing will allow embedded RM/COBOL-specific escape sequences. For a
description of these sequences, see RM/COBOL-Specific Escape Sequences (on page 564).
If the value is set to True, the RM/COBOL runtime system will recognize the sequences. If
the value is set to False, the runtime system will ignore those escape sequences. The default
value for this property is False.

Note Setting the Printer Enable Escape Sequences property to True affects all Windows
printers that the COBOL program uses. To allow embedded RM/COBOL-specific escape
sequences for only specific printers, use the P$EnableEscapeSequences subprogram (see
page 525) or the ESCAPE-SEQUENCES keyword (see page 340) of the DEFINE-DEVICE
configuration record.

Printer Enable Null Esc. Seq. Property

The Printer Enable Null Esc. Seq. property defines a Boolean value that specifies whether the
ASCII NUL character will be ignored when written to a printer from within an escape
sequence. When the value is set to True, NUL characters within an escape sequence are
ignored and are not sent to the printer. When the value is set to False, NUL characters are
changed to spaces. The default value for this property is False. For more information, see
RM/COBOL-Specific Escape Sequences (on page 564).

Printer Enable Raw Mode Property

The Printer Enable Raw Mode property specifies a Boolean value that determines whether
Windows printers will be opened in raw mode. If the value is set to True, the runtime system
will open printers in raw mode. This allows certain networked printers on Windows servers
to respond to embedded escape sequences. See the P$SetRawMode subprogram (on

page 532) for a more complete description of raw mode. Most P$ subprograms are not
available if raw mode is used. If the value is set to False, the runtime system will treat the
printer as a normal Windows printer. The default value for this property is False.

Note Setting the Printer Enable Raw Mode property to True affects all Windows printers (see
page 342) that the COBOL program uses. To allow raw mode printing for only specific
printers, use the P§SetRawMode subprogram.

RM/COBOL User's Guide
Second Edition

85

Setting Properties
Chapter 3: Installation and System Considerations for Microsoft Windows

86

Printer Font CharSet OEM Property

The Printer Font CharSet OEM property determines the character sets considered to be OEM
character sets for printer fonts when the native character set uses the OEM codepage. In this
case, RM/COBOL considers internal character data to be OEM and converts printed
characters to ANSI unless the chosen printer font has an OEM character set. Fonts with the
Arabic, Baltic, East Europe, Greek, Hebrew, Russian, and Turkish character sets generally
require conversion from OEM to ANSI. The value NotANSI assumes all character sets other
than the ANSI character set are OEM; this was the original RM/COBOL assumption. The
value OEMSymbolDefault assumes that only the OEM, Symbol, and Default character sets
are OEM and that all other character sets are ANSI. The default value for this property is
OEMSymbolDefault. For display character sets, as opposed to printer character sets, see the
Font CharSet OEM property (on page 80).

Note The value of the Printer Font CharSet OEM property is stored in the registry as a string
value for the key PrinterFontCharsetOem. This string is a comma or space separated list of
OEM character set numbers. A range of OEM character set numbers may be specified with a
hyphen-separated pair of numbers. Alphabetic text or any text contained between braces is
considered commentary. While the RMCONFIG user interface only allows setting NotANSI
(that is “1-255) or OEMSymbolDefault (that is, “255,2,1”), any set of character set numbers
may be listed in the registry in order to include or exclude specific character sets for the OEM
to ANSI conversion done when characters are printed. The specified string will be used until
it is modified, either by RMCONFIG or other means such as regedit.

When the native character set uses the ANSI codepage, this property is ignored. In this case,
code points are converted from ANSI to OEM only when the printer font default script is
OEM/DOS; otherwise, no conversion is necessary and none occurs.

Remove Trailing Blanks Property

The Remove Trailing Blanks property defines a Boolean value that specifies whether trailing
blanks will be removed from the Toolbar and Menu Bar strings before they are sent to the
COBOL program’s ACCEPT statement for processing. The default value for this property is
True. For more information, see Setting Toolbar Properties (on page 94) and Setting Menu

Bar Properties (on page 98).

The CSGUICFG subprogram (see page 589) can be used to change the Remove Trailing
Blanks property temporarily in order to manipulate the graphical user interface.

Screen Read Line Draw Property

The Screen Read Line Draw property defines a Boolean value that enables or disables the
return of DOS line draw characters in the screen read buffer for the line draw characters
specified in Table 26: System-Specific Line Draw Characters (on page 223) when doing a
screen read, as discussed in the C$SCRD subprogram (on page 602). The default value for
this property is False, which causes a screen read to return plus, hyphen, and bar characters
for line draw characters.

The CSGUICFG subprogram (see page 589) can be used to change the Screen Read Line
Draw property temporarily during the execution of a run unit.

RM/COBOL User's Guide

Second Edition

Setting Properties
Chapter 3: Installation and System Considerations for Microsoft Windows

Scroll Buffer Size Property

The Scroll Buffer Size property specifies a number that affects the virtual size of the
RM/COBOL runtime window. The number of rows initially displayed in the window is
determined by the ROWS keyword (see page 376) in the TERM-ATTR configuration record.
The Scroll Buffer Size property determines the number of rows that can be scrolled off the
screen using the vertical scroll bar. Setting the Scroll Buffer Size to a non-zero value
overrides the Auto Scale property (see page 78) and automatically turns on the vertical scroll
bar. The default value for this property is 0.

The maximum value depends on the font size and is limited to approximately 2400 lines on
Windows operating systems. Values larger than the maximum may be set, but display
problems can occur if more than the actual maximum number of lines is scrolled without an
intervening erase. The actual maximum is a limit on the number of pixels in the virtual screen
height, which is computed as the font height in pixels (typically, 15 to 20) times the quantity
of the Scroll Buffer Size plus the number of rows in the actual screen area. This pixel limit is
50,000 because of an RM/COBOL implementation limit.

Show Return Code Dialog Property

The Show Return Code Dialog property specifies a Boolean value that determines whether the
Return Code message box (see page 118), indicating the compiler exit codes (see page 197)
and program exit codes (see page 210), should be displayed when an error occurs. Automated
systems, which handle such errors and do not require operator assistance, may wish to
suppress the message box and continue processing. The default value for this property is
True, which causes the message box to be displayed.

Show Through Borders Property

The Show Through Borders property specifies a Boolean value that determines whether the
border of an overlaid pop-up window is shown when overlaid by a pop-up window without a
FILL character. When Show Through Borders is set to True, the border is visible. When
Show Through Borders is set to False, the border is not visible. The default value for this
property is False.

Sizing Priority Property

The Sizing Priority property specifies whether to make the width or height a priority when
auto scaling fonts. If the user resizes the window and auto scaling is on, the system will select
a font to match the new size of the window. The new size will be based on the width or
height of the window. The default value for this property is Width. See also the Auto Scale

property (on page 78).

The CSGUICFG subprogram (see page 589) can be used to change the Sizing Priority
property temporarily in order to manipulate the graphical user interface.

RM/COBOL User's Guide
Second Edition

87

Setting Properties
Chapter 3: Installation and System Considerations for Microsoft Windows

Status Bar Property

The Status Bar property specifies a Boolean value that determines whether the status bar is
initially visible. Setting Status Bar to True turns on the status bar. Setting Status Bar to False
turns off the status bar. The default value for this property is False.

The CSGUICFG subprogram (see page 589) can be used to change the Status Bar property
temporarily in order to manipulate the graphical user interface.

Status Bar Text Property

The Status Bar Text property specifies the initial string of text to be placed in the status bar.
The default value is an empty string. This text is displayed in the status bar whenever the
mouse is in the client area of the window.

Note The C$SBar subprogram (see page 602) also can be used to display a status bar in the
RM/COBOL runtime window.

SYSTEM Window Type Property

The SYSTEM Window Type property determines the style of the window shown by a
program run using the SYSTEM (see page 621) non-COBOL subprogram. The following
values are valid:

Value Meaning
Hidden The window is not activated and is hidden.
Minimized The window is activated and is displayed as an icon.
Maximized The window is activated and is displayed in its

maximized state.

Show The window is activated and is displayed in its
current size and position.

ShowNoActivate The window is displayed in its most recent size and
position, but is neither activated nor given focus.

MinimizedNoActive The window is displayed as a minimized window,
but the window is neither activated nor given focus.

The default value for this property is Show.

The C$GUICFG subprogram (see page 589) can be used to change the System Window Type
property temporarily for subsequent calls to the SYSTEM non-COBOL subprogram in the
same run unit.

Title Text Property

The Title Text property specifies the string of text to be placed in the runtime window of the
RM/COBOL program that is currently running. The default title is “RM/COBOL” if no
program-name is specified on the runcobol command line. Otherwise, the default value for
this property is the initial program-name.

Note The C$Title subprogram (see page 617) also can be used to specify the text to be placed
in the RM/COBOL runtime window.

88 RM/COBOL User's Guide
Second Edition

Setting Properties
Chapter 3: Installation and System Considerations for Microsoft Windows

Toolbar Property

The Toolbar property specifies a Boolean value that determines whether the toolbar is visible
initially. Setting Toolbar to True turns on the toolbar. Setting Toolbar to False turns off the
toolbar. The default value for this property is False.

The CSGUICFG subprogram (see page 589) can be used to change the Toolbar property
temporarily in order to manipulate the graphical user interface. In addition, the C$TBar (see
page 614), C§TBarEn (see page 615), and C$TBarSeq (see page 616) subprograms can be
used to affect the toolbar during execution.

Toolbar Prompt Property

The Toolbar Prompt property specifies how to display the toolbar prompt string value when
the mouse cursor hovers over a toolbar command button. The following values are valid:

Value Meaning
None The prompt is not displayed.
StatusBar The prompt is displayed only in the status bar.
ToolTip The prompt is displayed only as a tooltip.
Both The prompt is displayed in the status bar and as
a tooltip.
SplitNewline The prompt is split at the first newline (x'0a ")

character; the leading portion is displayed in the status
bar and the trailing portion is displayed as a tooltip.

SplitColon The prompt is split at the first colon (:) character; the
leading portion is displayed in the status bar and the
trailing portion is displayed as a tooltip.

SplitVertBar The prompt is split at the first vertical bar (|)
character; the leading portion is displayed in the status
bar and the trailing portion is displayed as a tooltip.

The default value for this property is Both.

For information on setting toolbar prompt values, see Setting Toolbar Properties (on page 94)
and C$TBar (on page 614).

The CSGUICFG subprogram (see page 589) can be used to change the Toolbar Prompt
property temporarily in order to manipulate the graphical user interface. Changes to the
Toolbar Prompt property do not affect the display of the prompt for an existing toolbar; the
change affects only the display of the prompt for a toolbar created by calling C$TBar after the
change has been made.

RM/COBOL User's Guide
Second Edition

89

Setting Properties
Chapter 3: Installation and System Considerations for Microsoft Windows

90

Update Timeout Property

The Update Timeout property specifies a number that represents a delay before a screen
refresh occurs. The value of number is specified in milliseconds. A larger number causes
DISPLAY statements to occur less frequently, potentially improving screen display
performance (especially when multiple DISPLAY statements of short records occur in a short
period of time). This property may also be used to force DISPLAY statements to occur more
frequently. The default value is 500 milliseconds (half of a second).

The C$GUICFG subprogram (see page 589) can be used to change the Update Timeout
property temporarily in order to manipulate the graphical user interface.

Use Windows Colors Property

The Use Windows Colors property defines a Boolean value that specifies whether the
standard Windows colors, as set in the Windows Control Panel (Display Properties dialog
box, Appearance tab), are used as the RM/COBOL default foreground and background colors.
If Use Windows Colors is set to True, the standard Windows colors will be used. If Use
Windows Colors is set to False, BLACK will be used for the background and WHITE for the
foreground. A value of False allows the same behavior as that found in versions of
RM/COBOL prior to 6.0. The default value for this property is True.

Setting Synonym Properties

The Synonyms Properties tab, illustrated in Figure 11, allows you to establish synonym
name(s) and their value(s) for the Default Properties or Individual File, Configure for
component (Runtime, Compiler, or Recovery), Scope (All Users or This User), and Key
(Default or Custom text) options that were specified using the Select File tab (see page 73).
The name is a string that is the name of a variable placed in the program’s environment. The
value is a string that is the value of name in the environment. A synonym can be used to
specify the actual file access name for a COBOL program, or to specify other environment
variables such as the RMPATH and RUNPATH directory search sequences described in
Directory Search Sequences on Windows (on page 66).

During initialization, the synonym name(s) and their value(s) are set into the environment in
the following order: Default Properties for All Users, Default Properties for the Current User,
Program Specific Properties for All Users, and Program Specific Properties for the Current
User. When duplicate synonym names occur in this ordering, the last setting of a synonym
name is the result setting in the environment.

Note The environment variable RM_IGNORE GLOBAL RESOURCES may be defined if
you wish the compiler, runtime system, or recovery utility not to access the Synonym
Properties defined for All Users. This may be useful if you are trying to develop at the same
time others are running an application in live “production mode.”

C8GetSyn (see page 587) obtains the specified synonym for the Current User, if the synonym
is defined for the Current User. If the specified synonym is not defined for the Current User,
then C$GetSyn gets the synonym for All Users. If the
RM_IGNORE GLOBAL RESOURCES environment variable is defined, the All Users
setting is ignored when the synonym is not defined for the Current User.

C$SetSyn (see page 610) always sets the synonym for the Current User; that is, the property
does not attempt to change the synonym for All Users.

RM/COBOL User's Guide

Second Edition

Setting Properties
Chapter 3: Installation and System Considerations for Microsoft Windows

Note This is a change in RM/COBOL behavior on Windows. C$SetSyn previously always
set the synonym for All Users. The old behavior would not be possible on Windows Vista
without running as Administrator.

Figure 11: Synonyms Properties Tab

¢ doverify Properties for Runtime

Colors] Toolbar] Menu Bar] Pop-up Menu]
Select File | Cortrol Synoryms

Select the spnonym name you want to change at the top, and then
enter a new value at the bottom,

Mame
repork
Remove
R ermowve Al
Walue:
LPT1

QK | Cancel Apphy

The Synonyms Properties tab contains the following options:

e Name. The value entered in this list box is the name of the synonym to which you are
assigning a value.

e Value. The value in this text box is the value assigned to the synonym selected in the
Name list box.

e Remove. Use this button to clear the value for the currently selected synonym name and
remove it from the list.

e Remove All. Use this button to clear all synonym values for the currently selected
program.

These synonyms are used to set environment variables for the runtime, compiler, or

recovery utility (per the Select File tab setting, as described in Selecting a File to Configure
on page 73). Synonyms override environment variable settings that may already exist
because of operating system methods of setting environment variables, such as the DOS SET
command or the Environment Variables system property on Windows operating systems.
However, environment variables set with CodeWatch cause any matching synonym names to

RM/COBOL User's Guide
Second Edition

91

Setting Properties
Chapter 3: Installation and System Considerations for Microsoft Windows

92

be ignored, so that the environment variables will have the values specified in CodeWatch
(see the “Creating a Workspace” topic in the CodeWatch manual for information on setting
environment variables with CodeWatch). As a result, these synonyms may be used to
establish a connection between the open name of the file, literal-1 or data-name-1 (see the
“Input-Output Section” in Chapter 3: Environment Division of the RM/COBOL Language
Reference Manual for more information), and the actual file access name.

If either the Load Registry On CALL property (see page 81) or Load Registry On RETURN
property (see page 82) is set to True, synonyms will be reprocessed whenever a subprogram is
called or exited. Synonym assignments are cumulative. For example, if a synonym is
assigned for a called subprogram, its value is unchanged when the subprogram exits unless
Load Registry On RETURN is set to True and the synonym is defined for the calling
program.

Setting Color Properties

The Colors Properties tab, illustrated in Figure 12, allows you to control color mapping for the
Default Properties or Individual File, Configure for component (Runtime, Compiler, or
Recovery), Scope (All Users or This User), and Key (Default or Custom text) options that
were specified using the Select File tab (see page 73). Note that only the Runtime component
uses Color properties.

Once set, color properties are processed cumulatively in the following order: Program
Specific Properties for the Current User, Program Specific Properties for All Users, Default
Properties for the Current User, and Default Properties for All Users. The first setting of a
particular property from this ordered search is used and the search is terminated.

RM/COBOL User's Guide

Second Edition

Setting Properties
Chapter 3: Installation and System Considerations for Microsoft Windows

Figure 12: Colors Properties Tab

% doverify Properties for Runtime

Select File] Cortrol] Synonyms]
Colars l Toolbar] Menu Bar] Pop-up Menu]

Select the caolar you want to change on the left, and then select the
"Change..." button to change it.

Calor

LChange...

i

Green * Uze Default
Cyan *
FRed*

b agenta *
Brown *
white
aray *
LightBlue *
LightGreen *
LightCyan *

An * after the color name indicates
that the default will be uzed.

O | Cancel

The Colors Properties tab contains the following options:

e Color. Use this list box to select the color you want to change. The first eight colors in
this list box correspond to the color-names for the keywords (FCOLOR and BCOLOR)
allowed in a CONTROL phrase of an ACCEPT or DISPLAY statement. These colors
are displayed if low intensity is selected. The remaining eight colors correspond to the
same color-names if high intensity is selected. Note that GRAY is “HIGH BLACK” and
YELLOW is “HIGH BROWN.” The current color setting is displayed to the right of
each name. For more information, see ACCEPT and DISPLAY Phrases (on page 221).

Note An asterisk (*) after the name indicates that the default color has not been
overridden and the default will be used. If the Change button (see the following item) is
used to override the default, the overriding color is displayed on the right.

e Change. Use this button to display a Color Selection dialog box that allows you to select
a color to override the selected color name.

e Use Default. Use this button to clear the overriding color for the currently selected color
name, thereby using the default color.

RM/COBOL User's Guide 93
Second Edition

94

Setting Properties

Chapter 3: Installation and System Considerations for Microsoft Windows

Setting Toolbar Properties

The Toolbar Properties tab, illustrated in Figure 13, allows you to define the string that is to
be sent to the program through the COBOL ACCEPT statement when the corresponding
toolbar button is pressed. The Toolbar Properties tab affects the program determined from the
Default Properties or Individual File, Configure for component (Runtime, Compiler, or
Recovery), Scope (All Users or This User), and Key (Default or Custom text) options that
were specified using the Select File tab (see page 73). Note that only the Runtime component
uses Toolbar properties.

The C$TBar subprogram (see page 614) also can be used to display a toolbar in the
RM/COBOL runtime window.

Once set, toolbar properties are processed cumulatively in the following order: Program
Specific Properties for the Current User, Program Specific Properties for All Users, Default
Properties for the Current User, and Default Properties for All Users. The first setting of a
particular property from this ordered search is used and the search is terminated.

Figure 13: Toolbar Properties Tab

i doverify Properties for Runtime

Select File] Cortrol] Synonyms]
Colore Toalbar l Menu Bar] Pop-up Menu]
Select the button name wou want to zet, and then enter the new
prompt and string values below,
Hame
EMTER
1ESE.-'1'«F'E beove Up
3 _HoveDown |
3
EMNTER
Hemove
R ermowve Al
Prompt;
|Enter F.ey
String:
|'\n

O | Cancel

RM/COBOL User's Guide

Second Edition

Setting Properties
Chapter 3: Installation and System Considerations for Microsoft Windows

The Toolbar Properties tab contains the following options:

Name. The value entered in this text box is the name of the icon stored in the filename
specified by the Icon File property (see page 81).

Prompt. The value entered in this text box is an optional text string that is displayed
whenever the mouse cursor hovers over the toolbar icon that is specified by the icon
name. The text string may be displayed in the status bar, as a tooltip, or both as specified
by the Toolbar Prompt property (see page 89). The text string may contain one of the
separator characters newline (x’0a”), colon (“:”), or vertical bar (“|”) to divide it into
separate status bar and tooltip text. The appropriate separator character is determined by
the Toolbar Prompt property.

String. The value entered in this text box is the ASCII text string returned when the
toolbar icon is clicked. This text string may also contain special characters for the
Return, Tab, Escape, or Function keys. If the first character is a greater than character
(>), the characters that follow are executed as a command. The special characters are
described in Table 11. (These characters are interpreted by the COBOL ACCEPT
statement, as configured by the TERM-INPUT configuration record on page 377 or by
the default configuration supplied by the runtime. The default TERM-INPUT
configuration is specified by the Windows Example, as discussed on page 395.)

Notes

— The modifiers “\a” (Alt), “\c¢” (Ctrl), “\g” (AltGr), and “\s” (Shift), are not required
before ASCII character values, but are necessary to modify non-character items such
as function keys when the modifier is needed. The modifier “\a” (Alt) is actually
shorthand for “\c\s” (Ctrl+Shift), the Windows substitute for the Alt key. The Alt
key is trapped by the Windows operating system and is therefore not available to
applications. The modifier “\g” (AltGr) is actually shorthand for Alt+Ctrl (but not
“\a\c”), the Windows substitute for the AltGr key.

— When the characters “a” through “z” (lowercase only) are preceded by “\c” (Ctrl) or
either of the modifiers “\a” or “\g”, which imply Ctrl, they are converted to 1 through
26 (SOH through SUB). Since the values 1 through 26 are not normally configured
as data characters, this means that the configured TERM-INPUT virtual-key code
will be used to determine the action. The toolbar button generated virtual-key code
is the uppercase equivalent of the letter; that is, “A” through “Z”, plus any modifier
flags for Ctrl, Alt, or Shift. Thus, “\c” followed by “a” through “z” matches the
default Windows configuration for Ctrl+“a” through Ctrl+“z”, respectively.

Table 11: Special Characters for the Button Character-String

Special Character Description
>commandline execute commandline:
\a Alt
\b Backspace
\ Backslash character
\c Control
\d Delete
\e Escape
\fO Function key 10
\f1 Function key 1

RM/COBOL User's Guide
Second Edition

95

Setting Properties
Chapter 3: Installation and System Considerations for Microsoft Windows

96

RM/COBOL User's Guide
Second Edition

Table 11: Special Characters for the Button Character-String (Cont.)

Special Character

\f2
\f3
\f4
\f5
\fo
\f7
\f8
\f9
\fa
\fb
\fc
\fd to \fn
\g
\i
\n
\p
\qa
\qc
\qp
\s
\t
\wa
\we
\we
\wl
\wp
\wr
\wx
\X
\zb
\zc
\zd
\ze

\zh

Description
Function key 2
Function key 3
Function key 4
Function key 5
Function key 6
Function key 7
Function key 8
Function key 9
Function key 10
Function key 11
Function key 12
Function key 13 to Function key 23
AltGr (TERM-INPUT: NUL WAGR)
Insert
Newline
Pause (TERM-INPUT: NUL PAUSE)
ATTN (TERM-INPUT: NUL ATTN)
Caps Lock (TERM-INPUT: NUL CAPITAL)
PA1 (TERM-INPUT: NUL PAl)
Shift
Tab
Applications (TERM-INPUT: NUL APPS)
CRSEL (TERM-INPUT: NUL CRSEL)
EREOF (TERM-INPUT: NUL EREOF)
Left Windows Logo (TERM-INPUT: NUL LWIN)
PLAY (TERM-INPUT: NUL PLAY)
Right Windows Logo (TERM-INPUT: NUL RWIN)
EXSEL (TERM-INPUT: NUL EXSEL)
Exit program
Begin
Clear
Down Arrow
End

Home

Setting Properties
Chapter 3: Installation and System Considerations for Microsoft Windows

Table 11: Special Characters for the Button Character-String (Cont.)

Special Character Description
\zl Left Arrow
\zm ZOOM (TERM-INPUT: NUL ZOOM)
\zn Next (Page Down)
\zp Prior (Page Up)
\zr Right Arrow
\zs Scroll Lock (TERM-INPUT: NUL SCROLL)
\zu Up Arrow
\z9 Num Lock (TERM-INPUT: NUL NUMLOCK)

The string “\g” is used as a modifier corresponding to the AltGr (alternate graphics) key
found on many international keyboards. Windows supports the AltGr key with the key
combination Alt+Ctrl, which can be entered even on a keyboard that does not have an
AltGr key. In a button string, the escape “\g” is normally followed by another escape,
such as “\f1”, to represent AltGr+F1.

To be effective in a button string, these keys must be configured in the TERM-INPUT
records of the configuration. The commonly used keys, such as F1 through F12, are
configured by the default Windows configuration, but several of the less common keys
such as F13 through F23, CRSEL, EXSEL, PA1, and ZOOM are not configured in the
default Windows configuration. (For the keys configured by the default configuration,
see the Windows Example on page 395; additionally, the windows.cfg file, which is
provided by product installation, also represents the default Windows configuration and
has commentary that clarifies which keys are configured.) When configured by TERM-
INPUT configuration records, the buttons will activate the configured entry regardless of
whether the keyboard actually supports the particular key. The Caps Lock, Num Lock,
and Scroll Lock keys can be sent to the application, but do not affect the state of the
keyboard; that is, they do not toggle the corresponding lock state.

Move Up and Move Down. Use these buttons to control the order of the buttons shown
in the toolbar. This order is determined by the order of the names in the Name list box.
When you choose Move Up, the currently selected name moves up one position in the
list. Choosing the Move Down button moves the selected name down one position.

Remove. Use this button to clear the value for the currently selected toolbar button
name and remove it from the list.

Remove All. Use this button to clear all toolbar button values for the currently
selected program.

RM/COBOL User's Guide
Second Edition

97

Setting Properties

Chapter 3: Installation and System Considerations for Microsoft Windows

Setting Menu Bar Properties

The Menu Bar Properties tab, illustrated in Figure 14, allows you to identify a list of pulldown
menu names and their associated values for the Default Properties or Individual File,
Configure for component (Runtime, Compiler, or Recovery), Scope (All Users or This User),
and Key (Default or Custom text) options that were specified using the Select File tab (see
page 73). Note that only the Runtime component uses Menu Bar properties.

The C$MBar subprogram (see page 594) also can be used to display a menu bar in the
RM/COBOL runtime window.

Once set, menu bar properties are processed cumulatively the following order: Program
Specific Properties for the Current User, Program Specific Properties for All Users, Default
Properties for the Current User, and Default Properties for All Users. The first setting of a
particular property from this ordered search is used and the search is terminated.

Figure 14: Menu Bar Properties Tab

i doverify Properties for Runtime

Select File] Cortrol] Synonyms]
Colore] Toolbar Menu Bar l Pop-up Menu]

Select the menu name you want to zet, and then enter the new
prompt and string values below,

Hame
LFunction
Hemove
R ermowve Al
Prompt;

|Seleu:t Functior|
String:

|[&1 :Compile"Compile venfy suite''=1 22 enfy"Run vernfy suite"

O | Cancel

The Menu Bar Properties tab contains the following options:

e Name. The value entered in this text box is the string that is displayed in the menu bar.
If the first character is a tilde (~), the name is disabled. An ampersand (&) character
causes the next character to be underlined and used as an accelerator.

e Prompt. The value entered in this text box is an optional text string that is displayed
when the cursor is placed on the menu bar item.

98 RM/COBOL User's Guide

Second Edition

Setting Properties
Chapter 3: Installation and System Considerations for Microsoft Windows

e String. The value entered in this text box defines the items in the pulldown menu along
with the strings that are returned to the COBOL program when an item is selected. Using
the following syntax, it can specify either a value to be returned or additional sub-menu
items:

pulldownname["prompt"]=menu

where, pulldownname is the string that is displayed in the menu bar.

prompt is an optional text string that is displayed on the status bar when the cursor is
placed on the menu bar item specified by pulldownname.

menu defines the items in the pulldown menu along with the strings that are returned
to the COBOL program when an item is selected. The syntax for menu is shown as

follows:
menu -> [(litems][)]
items -> item name=[string | (menu)] [, items]
item name -> pulldownname["menu prompt"]
string -> string to be sent (see the Toolbar Properties tab)

If the first character of pulldownname is a tilde (~), the menu is disabled. An ampersand
(&) in pulldownname causes the next character to be underlined and used as an
accelerator.

e Move Up and Move Down. Use these buttons to control the order of the pulldown menu
names shown in the menu bar. This order is determined by the order of the names in the
Name list box. When you choose Move Up, the currently selected name moves up one
position in the list. Choosing the Move Down button moves the selected name down one
position.

e Remove. Use this button to clear the value for the currently selected pulldown menu
name and remove it from the list.

e Remove All. Use this button to clear all pulldown menu values for the currently selected
program.

Setting Pop-up Menu Properties

The Pop-up Menu Properties tab, illustrated in Figure 15, allows you to identify a list of pop-
up menu names and their associated values that will be displayed when right-clicking the
mouse button on an RM/COBOL program in the client area of the window. The Pop-up
Menu Properties tab affects the program determined from the Default Properties or Individual
File, Configure for component (Runtime, Compiler, or Recovery), Scope (All Users or This
User), and Key (Default or Custom text) options that were specified using the Select File tab
(see page 73). Note that only the Runtime component uses Pop-up Menu properties.

The C$RBMenu subprogram (see page 599) also can be used to display a pop-up menu in the
RM/COBOL runtime window when the right mouse button is pressed.

Note If you are using RM/Panels, a pop-up menu defined by RM/Panels will override a pop-
up menu defined by setting mouse menu properties.

Once set, pop-up menu properties are processed cumulatively in the following order:

Program Specific Properties for the Current User, Program Specific Properties for All Users,
Default Properties for the Current User, and Default Properties for All Users. The first setting
of a particular property from this ordered search is used and the search is terminated.

RM/COBOL User's Guide
Second Edition

99

Setting Properties

Chapter 3: Installation and System Considerations for Microsoft Windows

Figure 15: Pop-up Menu Properties Tab

% doverify Properties for Runtime

Select File] Cortrol Symonyms]
Colors] Toolbar] Menu Bar Pop-up Menu

Select the menu name you want to zet, and then enter the new
prompt and string values below,

Hame
|&Funn:tiu:url
Hemove
R ermowve Al
Prompt;

|Seleu:t Functiar

String:

|[&1 :Compile"Compile venfy suite''=1 22 enfy"Run vernfy suite"

O | Cancel

The Pop-up Menu Properties tab contains the following options:

e Name. The value entered in this text box is the string that is displayed in the pop-up
menu. If the first character is a tilde (~), the name is disabled. An ampersand (&) causes
the next character to be underlined and used as an accelerator.

e Prompt. The value entered in this text box is an optional text string that is displayed
when the cursor is placed on the pop-up menu item.

e String. The value entered in this text box defines the items in the pop-up menu along
with the strings that are returned to the COBOL program when an item is selected. It can
specify either a value to be returned or additional sub-menu items by using the following
syntax:

pop—-upname ["prompt"]=menu

where, pop-upname is the string that is displayed in the pop-up menu.

prompt is an optional text string that is displayed on the status bar when the cursor is
placed on the pop-up menu item specified by pop-upname.

menu defines the items in the pop-up menu along with the strings that are returned to
the COBOL program when an item is selected. The syntax for menu is shown as
follows:

100 RM/COBOL User's Guide

Second Edition

Toolbar Editor
Chapter 3: Installation and System Considerations for Microsoft Windows

menu -> [(litems][)]

items -> item name=[string | (menu)] [, items]
item name -> pop-upname["menu prompt"]

string -> string to be sent (see the Toolbar Properties tab)

If the first character of pop-upname is a tilde (~), the menu is disabled. An ampersand
(&) in pop-upname causes the next character to be underlined and used as an accelerator.

e Move Up and Move Down. Use these buttons to control the order of the names shown
in the pop-up menu. This order is determined by the order of the names in the Name list
box. When you choose Move Up, the currently selected name moves up one position in
the list. Choosing the Move Down button moves the selected name down one position.

e Remove. Use this button to clear the value for the currently selected pop-up menu name
and remove it from the list.

e Remove All. Use this button to clear all pop-up menu values for the currently selected
program.

Toolbar Editor

RM/COBOL provides a default toolbar in the file, rmtbar.vrf. This toolbar is the default
value specified in the Icon File property (see page 81). The buttons provided in the default
toolbar are documented in Table 12. A bitmap editor (rmtbedit.exe), provided with your
RM/COBOL development system, allows you to create or edit the buttons on the toolbar.

Table 12: Default rmtbar.vrf File Button Icons

Button Description
1-39 Numbers 1 through 39 (useful for menu picks)
A-Z Letters A through Z (useful for menu picks)
AF1 - AF23 Alternate Function keys 1 through 23
AP Accounts Payable
AR Accounts Receivable
BREAK Hammer smashing object (Break key)
CF1-CF23 Control Function keys 1 through 23
COMPANION Two buddies (Companion)
DISK Hard disk drive
DISKETTE Floppy disk
DOWN Down Arrow key
END Curtains closing (End key)
ENTER Enter key
ESCAPE Escape key
EXIT Door with exit sign
F1 -F23 Function keys 1 through 23

RM/COBOL User's Guide
Second Edition

101

Toolbar Editor

Chapter 3: Installation and System Considerations for Microsoft Windows

Button

FILE

GF1 - GF23
GL

GO

GRAPH
GREEN
HELP
HOME
INFO

LEFT
LINELEFT
LINERIGHT
MAIL
MENU
PAGEDOWN
PAGEUP
PHONE

PR
PRINTER
RED
REPORT
RIGHT
SAFE
SEARCH
SF1 — SF23
SGF1 — SGF23
STOP
TERMINAL
UP

WRITE
YELLOW
YIELD

102 RM/COBOL User's Guide
Second Edition

Table 12: Default rmtbar.vrf File Button Icons (Cont.)

Description

File cabinet

Alternate Graphics Function keys 1 through 23 (AltGr)

General Ledger

GO sign

Three-dimensional graph

Green traffic light

Question mark

Little house (Home key)

Italic lowercase i

Left Arrow key

Left Arrow key pointing at margin bar (Tab left)
Right Arrow key pointing at margin bar (Tab right)
Bundle of letters

Menu

Down Arrow key pointing at margin bar

Up Arrow key pointing at margin bar
Telephone

Payroll

Printer

Red traffic light

Text on computer paper

Right Arrow key

Archive (Safe)

Flashlight

Shift Function keys 1 through 23

Shift Alternate Graphics Function keys 1 through 23
Stop sign

Display and keyboard (Data terminal or PC)

Up Arrow key

Pencil writing on paper

Yellow traffic light

Yield sign

Toolbar Editor
Chapter 3: Installation and System Considerations for Microsoft Windows

Running the Toolbar Editor

To run the Toolbar Editor, choose the Toolbar Editor icon. The application presents you
with a menu bar. Under the File menu, you can choose a command to open a toolbar file or
create a new one. A Resource dialog box then displays the bitmap buttons available in the
toolbar file.

Note The file created by the Toolbar Editor is a resource file that is composed of bitmap
buttons, each of which has a name. It is that name that you reference in the Toolbar
Properties tab when defining character actions, as described in Setting Toolbar Properties (on
page 94).

When the Resource dialog box is active, a Resource menu is available. You can edit, delete,
copy, and save the bitmap buttons presented in the Resource dialog box. Opening or creating
a bitmap Resource dialog box opens a bitmap editor.

Editing a Bitmap

When you start the bitmap editor, you are in draw mode. When you move the cursor into the
editor’s grid area, the cursor changes to a pen. You can use the left and right mouse buttons
to modify your bitmap. Each button can hold in memory a color that you choose from the
color palette. For example, if you click red with the left mouse button and blue with the right
mouse button, these colors are stored until you click on another color. By default, when you
start the bitmap editor, the left button is black and the right button is gray until you change the
color.

In the bottom portion of the color palette, the center square contains the mouse’s left button
color and the background color is in the mouse’s right button color. For example, the color
palette in Figure 16 shows the center square to be black (indicating that the color stored in the
left mouse button is black) and the background is gray (indicating that the color stored in the
right mouse button is gray).

Figure 16: Color Palette Showing Right and Left Mouse Colors

Buttons are shown in a pair of frames. The first frame represents the up image of the button.
The second frame in the sequence represents the down image of the button.

Testing the Bitmap

To test a button, choose the Bitmap | Test Button command from the menu bar.

A dialog box is displayed that shows the bitmap as a button.

RM/COBOL User's Guide
Second Edition

103

Character Set Considerations for Windows
Chapter 3: Installation and System Considerations for Microsoft Windows

Transferring the Image Up

The bitmap that you create can be duplicated to the down image of the button. Select the
Transfer Up Image command from the Bitmap menu on the menu bar. At the prompt, either
choose Yes to transfer the image or choose No to terminate the transfer.

Importing and Exporting Bitmaps

You may import a bitmap by choosing the Import command from the Resource menu on the
menu bar. This command opens the Import Bitmap dialog box. Enter the name of the .bmp
file you want to import and choose the OK button.

You may export a bitmap by choosing the Export command from the Resource menu on the
menu bar. This command opens the Save Bitmap As dialog. Enter the name of the file you
want to export and choose the OK button.

Character Set Considerations for Windows

This section describes character set considerations for using RM/COBOL under the Windows
operating system, including the following topics:

e Codepages on Windows (see the following topic)

e RM/COBOL for ANSI Codepage on Windows (see page 106)

o Installation Character Set Considerations On Windows (see page 107)

e Related Character Set Configuration On Windows (see page 109)

These considerations result from Windows having both an OEM codepage for MS-DOS and
an ANSI codepage for Windows. RM/COBOL has historical roots in MS-DOS and, thus, in
the OEM codepage, which has resulted in issues caused by the dominance of Windows and
its preference for the ANSI codepage.

Codepages on Windows

Windows has two system codepages: the ANSI codepage and the OEM codepage. A
codepage defines a mapping of character code points (often called bytes) to a set of character
glyphs. The lower half of all Windows-supported ANSI and OEM codepages, code points
000 — 127 (0x00 — 0x7F), always match each other exactly because they represent the same
ASCII character set. The upper half of Windows ANSI and OEM codepages, code points 128
— 255 (0x80 — 0xFF) can differ significantly in the characters that particular code points
represent. If you know that your programs do not use code points from the upper half of the
codepage, that is, your programs only use and accept ASCII characters, these character set
considerations do not affect you. However, if your program does expect to use characters
from the upper half of the codepage, that is, extended characters, you need to understand these
character set considerations as further described here.

Note The acronym “ANSI” actually stands for American National Standards Institute. In
RM/COBOL documentation, “ANSI” is usually used with its appropriate meaning. For
example, “ANSI COBOL” refers to an implementation of COBOL that follows the American
National Standard for the COBOL language and “ANSI ACCEPT/DISPLAY” refers to the

104 RM/COBOL User's Guide

Second Edition

Character Set Considerations for Windows
Chapter 3: Installation and System Considerations for Microsoft Windows

American National Standard Institute’s definition of the COBOL ACCEPT and DISPLAY
verbs. Such uses have nothing to do with character sets or codepages. Microsoft originally
designed the Windows character set following an ANSI standard character set, but then
deviated from that standard in their actual implementation. Microsoft documentation,
however, continued to use “ANSI” to designate the Windows character set as opposed to the
MS-DOS OEM character sets used before Windows. Thus, the term “ANSI codepage” or
“ANSI character set” is misleading, but must be used to aid in relating this discussion to
Microsoft documentation of character sets on Windows.

Most Windows internal functions interpret code points as being from the ANSI codepage.
RM/COBOL was developed and in use much earlier than Windows, so data files written by
RM/COBOL under MS-DOS have long existed with OEM code points stored in the files,
including files that contain COBOL source programs. Rather than make customers convert
their source and data files when Windows was introduced, RM/COBOL continued to consider
character data—in files and in memory—as being from the OEM codepage. Thus,
conversions from OEM to ANSI or ANSI to OEM take place on RM/COBOL for Windows in
the following principal cases:

e When the RM/COBOL runtime system makes calls to Windows functions requiring
ANSI code points, the runtime system converts the code points from the OEM codepage
to their corresponding code points in the ANSI codepage.

e Most screen and printer fonts have a default script (also called a character set) that
interprets code points as being from the ANSI codepage. Thus, when displaying or
printing character data to such fonts, the RM/COBOL runtime system converts the in-
memory code points from the OEM codepage to the ANSI codepage. (Fonts can support
multiple scripts, but the RM/COBOL system currently uses only the default script for a
font.)

e Windows delivers data entered from the keyboard to the runtime system with code points
from the ANSI codepage. Accordingly, the RM/COBOL runtime system converts the
keyed data to the corresponding code points in the OEM codepage to keep the in-memory
data consistently OEM. (Note that extended characters can be keyed only when the
TERM-ATTR configuration record on page 372 specifies the keyword DATA-
CHARACTERS with a value that allows characters with a code point greater than 126 to
be treated as input data characters; otherwise, only ASCII code points 32 — 126 are
considered to be valid input data characters.)

Now that Windows has been the dominant operating system for such a long time, customers
who use extended characters are having difficulties with the assumption that RM/COBOL
character data is from the OEM codepage. They use Windows editors that produce source
program files using code points from the upper half of the ANSI codepage. Nonnumeric
literal values containing these non-ASCII characters display as expected in the editor, but do
not display or print as expected at runtime. This is because the RM/COBOL runtime system
assumes that they are code points in the OEM codepage and converts them to the
corresponding code points in the ANSI codepage. Since the code points were already from
the ANSI codepage, this conversion scrambles the code points in the upper half instead of
producing the desired code points. As a result, the extended characters are displayed or
printed incorrectly. Also, data entered from the keyboard often undergoes two conversions,
one from ANSI to OEM on being keyed, and then from OEM to ANSI on being displayed or
printed to a font with a default script that is not OEM/DOS. Since among the extended
characters of the two codepages there is not always a matching character, these conversions
prevent some characters that can be keyed from displaying or printing as intended by the
person entering the characters. The conversion from ANSI to OEM may substitute a close
match such as “Y” (LATIN CAPITAL LETTER Y) for “y” (LATIN CAPITAL LETTER Y
WITH DIAERESIS) or, if there is no close match, a character such as “?” (QUESTION
MARK) or “ ” (LOW LINE or SPACING UNDERSCORE), which then remains the same
when converted from OEM to ANSI since the replacement characters are in the lower

RM/COBOL User's Guide
Second Edition

106

Character Set Considerations for Windows
Chapter 3: Installation and System Considerations for Microsoft Windows

common half of the character set. That is, the original ANSI character keyed is not recovered
despite the conversion back to ANSI.

RM/COBOL for ANSI Codepage on Windows

RM/COBOL provides direct support for using the ANSI codepage in order to assist customers
desiring to develop new applications in ANSI mode. Prior to version 9 of RM/COBOL, there
was only support for the OEM codepage. The OEM mode should be used for applications
previously created for the OEM codepage.

WARNING Great care should be taken to avoid mixing ANSI and OEM code points in any
one application or set of application data files, since there is no computable means of undoing
the mixing; a human would need to review all the character data to undo the mixed set of code
points. If necessary, an application can be converted from OEM to ANSI or ANSI to OEM,
but the entire application and its entire set of data files must be converted to avoid mixing
ANSI and OEM code points in the same application. If two or more applications share a set
of data files, all the applications must be converted at the same time.

When RM/COBOL is installed, it defaults to OEM mode, as was the case before version 9.
The command-line option /cs_ansi may be specified before the program name to enable ANSI
mode. If ANSI mode will be your preferred mode, the runcobol_ansi.exe file, installed into
the installation directory at install time, may be copied over the runcobol.exe file. The
compiler can be switched to ANSI mode in a similar manner so that data displayed or printed
by the compiler will interpret the code points in the source program correctly. CodeWatch
also supports setting the project mode to OEM or ANSI, and the CodeWatch command-line
program, rmcw.exe, supports the /cs_ansi and /cs_oem command-line options. (Further
information about the support for ANSI or OEM native character sets is provided in the
CodeWatch User’s Guide.) A utility named RMSETNCS Utility (see page 107) is provided
to accomplish switching between a default of OEM and ANSI.

In ANSI mode, the compiler, runtime system and CodeWatch development environment
assume that code points represent characters from the Windows system ANSI codepage.
Thus, a data conversion for character data is required only in that rare situation where a
display or printer font is chosen that has a default script of OEM/DOS. In such a situation,
the ANSI code points are converted to their corresponding OEM code points before the data is
displayed or printed. Also, no conversion is required for keyboard input in ANSI mode since
Windows delivers the characters as code points from the ANSI codepage.

Note The compiler running in ANSI console mode will not display characters correctly in the
console window when the default raster fonts for console windows are used. Use the Console
Window Properties dialog box to change the console window font to a True Type font, such
as Lucida Console, so that the characters will display correctly.

The C$GetNativeCharset subprogram (see page 583)s has been provided so that a COBOL
program can determine at runtime which character set, ANSI or OEM, is in use as the native
character set. The runtime call back table, described in the CodeBridge User’s Guide, has
also been extended to contain a pNativeCharset pointer so that non-COBOL programs can
determine the native character set used by the calling COBOL program. Note that any single
run unit can have only one native character set for the entire duration of that run unit. The
native character set for the run unit is established when the run unit is started.

CodeBridge version 9 has been enhanced to allow the native character set of the non-COBOL
character data to be declared ANSI or OEM. This information is used in conjunction with the
known native character set of the COBOL run unit to provide the appropriate translations for
nonnumeric data passed between the COBOL and non-COBOL programs. If the non-
COBOL character data is not declared to be from the ANSI or OEM codepage, then no
conversion is done. In this case, the non-COBOL character data must either match the native

106 RM/COBOL User's Guide

Second Edition

Character Set Considerations for Windows
Chapter 3: Installation and System Considerations for Microsoft Windows

character set of the COBOL run unit or the COBOL program must handle any necessary
translations using the C$ConvertAnsiToOem (see page 577) or C$ConvertOemToAnsi (see
page 578) library subprograms.

Installation Character Set Considerations on Windows

When RM/COBOL version 9 is installed on Windows, two client files are installed for
starting a COBOL run unit: runcobol_oem.exe and runcobol_ansi.exe. These two clients
differ only in their default native character set, as indicated by their names. The
runcobol_oem.exe client is also copied to runcobol.exe during installation. Thus, the default
native character set after installation is OEM when the runcobol command is used to start the
runtime system. The runcobol_ansi.exe file can be copied to the runcobol.exe file to change
the default native character set to ANSI.

Either client can be started with the /es_oem or /es_ansi command-line option before the
main program file name to force the native character set for that run unit to OEM or ANSI,
respectively. Alternatively, the runcobol_oem.exe or runcobol_ansi.exe client may be used
to start the run unit.

Similarly for a development system, four client files are installed for starting a COBOL
compilation: rmcobolc_oem.exe, rmcobolg_oem.exe, rmcobolc_ansi.exe, and
rmcobolg_ansi.exe. These correspond, respectively, to the console and GUI compiler clients
with a default native character set of OEM, and the console and GUI compiler clients with a
default native character set of ANSI.

RMSETNCS Utility

A utility named rmsetncs.exe is provided during installation to allow easy switching between
the ANSI and OEM default clients, and, for a development system, between the console and
GUI compilers. The utility also modifies the CodeWatch INI file rmew.ini in the Windows
directory so that new projects will default to the same character set mode as the runcobol and
rmcobol commands.

The RMSETNCS command line is as follows:
RMSETNCS charset-spec [compiler-mode]
where,

charset-spec:
/cs_ansi to select the ANSI character set
/cs_oem to select the OEM character set

compiler-mode:
/console to select the console-mode compiler
/GUI to select the GUI mode compiler

The command-line options are case-insensitive per Windows conventions. The options can
be specified in either order if both are specified. The charset-spec option is required, but
compiler-mode is optional and will default to /console. Hyphens can be used instead of
slashes to introduce the options, if desired.

The RMSETNCS utility must be run in an RM/COBOL installation folder and assumes
that the execution folder is the folder to be modified. That is, the folder to be modified is
the folder containing the rmsetncs.exe file, which is not necessarily the current directory. For

RM/COBOL User's Guide
Second Edition

107

Character Set Considerations for Windows
Chapter 3: Installation and System Considerations for Microsoft Windows

example, when the command is executed with a pathname specified preceding the command,
the pathname specifies the installation folder to be modified. Successful execution results in a
display of the following lines in a development installation folder for the given command line:

[C:\Liant\test\cwl] rmsetncs /cs_ansi /gui
Modifying folder C:\Liant\test\cwl\ --
setting character set to ANSI;
setting compiler mode to GUI.
Runtime client runcobol ANSI.exe copied to runcobol.exe.
Compiler client rmcobolg ANSI.exe copied to rmcobol.exe.
CodeWatch INI file rmcw.ini file modified.
RMSETNCS modified folder C:\Liant\test\cwl\ successfully
for a development system.

For a runtime-only installation folder, that is, one without a compiler client, the following
output would be produced for the given command line:

[C:\Liant\test\cwl] rmsetncs /cs_ansi
Modifying folder C:\Liant\test\cwl\ --
setting character set to ANSI;
setting compiler mode to Console.
Runtime client runcobol ANSI.exe copied to runcobol.exe.
Installation path does not contain compiler client rmcobolc ANSI.exe.
RMSETNCS modified folder C:\Liant\test\cwl\ successfully
for a runtime-only system (compiler client not found).

The runtime client must exist in the execution folder. If it does not, output similar to the
following will occur for the given command line:

[C:\Liant\test\cwl] rmsetncs /cs_ansi
Modifying folder C:\Liant\test\cwl\ --
setting character set to ANSI;
setting compiler mode to Console.
Installation path does not contain runtime client runcobol ANSI.exe.
RMSETNCS terminated with error. Be sure utility was run in
installation folder.

The RMSETNCS utility sets the exit code (ERRORLEVEL) to zero if successful and one if
unsuccessful. The results of running the utility can be checked using the following
commands:

runcobol /showcharset (for aruntime-only or development system)
rmcobol /showcharset (for a development system)

Running any runtime or compiler client with just the /showcharset command-line option will
cause the client to display its native default character set. This is useful when the client has
been renamed and it is necessary to verify the default native character set. The native
character set actually in use is shown in the banner when verbose banners are requested, either
with the =V Runtime Command Option or the RM_VERBOSE BANNER=Y environment
variable setting. (The native character set actually in use may differ from the default native
character set for a client if the /cs_ansi or /cs_oem command-line option has been specified.)

108 RM/COBOL User's Guide

Second Edition

Character Set Considerations for Windows
Chapter 3: Installation and System Considerations for Microsoft Windows

Related Character Set Configuration on Windows

Several properties and configuration keywords allow modification of how RM/COBOL
handles the ANSI and OEM conversions. These are described briefly below, along with how
they relate to whether the native character set is ANSI or OEM.

The Font CharSet OEM property (see page 80) specifies those display font scripts that are
considered to be OEM/DOS and thus whether a conversion does not occur when the
native character set is OEM; otherwise, a conversion from OEM to ANSI is done as
required. If the native character set is ANSI, this property is ignored and a conversion
from ANSI to OEM occurs only when the display font script is OEM/DOS.

The Full OEM To ANSI Conversions property (see page 81) causes additional
conversions from OEM to ANSI to occur when the native character set is OEM. These
conversions are ones that were missed in earlier implementations of the runtime system
for Windows. This property has no effect when the native character set is ANSI, since no
OEM to ANSI conversions are needed in this case.

The Printer Font CharSet OEM property (see page 86) specifies those printer font scripts
that are considered to be OEM/DOS and thus whether a conversion does not occur when
the native character set is OEM; otherwise, a conversion from OEM to ANSI is done as
required. If the native character set is ANSI, this property is ignored and a conversion
from ANSI to OEM occurs only when the printer font script is OEM/DOS.

The ALLOW-EXTENDED-CHARS-IN-FILENAMES keyword (see page 356) in the
RUN-FILES-ATTR configuration record determines whether extended characters are
allowed in filenames passed from the runtime system to Windows file management
functions. If extended characters are allowed, this keyword can further specify whether
the characters should be interpreted as ANSI or OEM code points. This keyword should
generally be set to the value ANSI when the native character set is ANSI and extended
characters are used in filenames. Similarly, it should be set to the value OEM when the
native character set is OEM and extended characters are used in filenames.

The DATA-CHARACTERS keyword (see page 373) in the TERM-ATTR configuration
record determines if keyboard input can include extended characters. By default,
extended characters cannot be entered from the keyboard.

The EURO-CODEPOINT-ANSI keyword (see page 346) in the
INTERNATIONALIZATION configuration record specifies the code point in the ANSI
codepage to use to represent the euro symbol. This can be used to preserve the euro
symbol when converting between ANSI and OEM codepages that may not have a euro
symbol defined.

The EURO-CODEPOINT-OEM keyword (see page 346) in the
INTERNATIONALIZATION configuration record specifies the code point in the OEM
codepage to use to represent the euro symbol. This can be used to preserve the euro
symbol when converting between ANSI and OEM codepages that may not have a euro
symbol defined.

RM/COBOL User's Guide
Second Edition

109

Terminal Input and Output on Windows
Chapter 3: Installation and System Considerations for Microsoft Windows

Terminal Input and Output on Windows

This section describes how terminal input and output are handled by the RM/COBOL runtime
system on Windows.

Terminal Interfaces

The runtime system uses only one terminal interface named GUI (Graphical User Interface)
on Windows. Screen output is displayed within the client area of the Runtime System
Window (see page 116).

Cursor Types

Under default conditions, there are three types of cursors, each of which indicates a different
edit mode during ACCEPT operations.

The underscore cursor indicates that standard overtype mode is active.

[| The full-height cursor indicates that you have typed to the end of the field
and that the TAB phrase has been specified in the ACCEPT statement.
A backspace key or field termination key is the only valid keystroke in
this mode.

u The half-height cursor indicates that insert mode is active.

In versions of RM/COBOL prior to 7.5, the cursors were drawn by the RM/COBOL runtime
system. In versions 7.5 and higher, the runtime uses the Windows cursor, which is a blinking
cursor where the rate at which the cursor blinks is controlled by the Keyboard settings in the
Windows Control Panel. The shapes of the three cursors can be configured using three
properties in the RM/COBOL Windows registry file: Cursor Overtype property, Cursor Insert
property, and Cursor Full Field property. For more information, see the discussion of these
properties in Setting Control Properties (on page 76).

Blinking Attribute

The blinking attribute is not supported in the Windows environment, as noted in the
description of the BLINK keyword (on page 352) in the RUN-ATTR configuration record.

Portable Line Draw Characters

The GRAPHICS keyword of the ACCEPT and/or DISPLAY CONTROL phrase translates the
characters described in Table 26 (on page 223) to system-specific line draw characters.
Characters that are not listed in this table are output unchanged.

It is not required that the current font contain line draw characters because the runtime system
dynamically creates these characters as required.

110 RM/COBOL User's Guide

Second Edition

Terminal Input and Output on Windows
Chapter 3: Installation and System Considerations for Microsoft Windows

Keyboard Input Character Sequences

Input character sequences are translated to field input data characters, field editing actions, or
field termination by use of the TERM-INPUT configuration record (see page 377). There is a
default set of TERM-INPUT configuration records when the configuration file is not specified
or does not contain any TERM-INPUT configuration records.

The interpretation of a particular input character sequence differs depending on whether the
sequence begins with a NUL character or without a NUL character, as described in the
following paragraphs.

When the sequence specification does not begin with a NUL on Windows, the translation of
TERM-INPUT sequences is as follows:

1. Character values 1 through 26, SOH through SUB as shown in Table 36: ASCII
Equivalents (on page 380), are translated to Ctrl+“a” through Ctrl+“z”, respectively. For
example, the sequence “BS” is the same as “NUL WCNT H”; that is, Ctrl+“h”.

2. Character value 27 (ESC) is not translated and corresponds to the virtual-key code for the
Esc key.

3. Character value 28 (FS) is translated to Ctrl+“\” for U.S. keyboards. The translation uses
VK _OEM 5 (0xDC), which may correspond to a different key on non-U.S. keyboards.

4. Character value 29 (GS) is translated to Ctrl+“]” for U.S. keyboards. The translation uses
VK _OEM_6 (0xDD), which may correspond to a different key on non-U.S. keyboards.

5. Character value 30 (RS) is translated to Ctrl+“6”.

6. Character value 31 (US) is translated to Ctrl+“-”. The translation uses
VK _OEM_MINUS (0xBD), which should be the minus key for any country.

7. Character values 32 (SP) through 255, with twenty-two exceptions, are not translated and
correspond directly to the virtual-key code values. The exceptions are as follows:

e 034/039 (“"'”) are translated to VK_OEM_7=0xDE

e 043/061 (“+=") are translated to VK_OEM_PLUS=0xBB

e (044/060 (“,<”) are translated to VK_OEM_COMMA=0xBC
e (045/095 (“-_”) are translated to VK_OEM_MINUS=0xBD
e (046/062 (“.>”) are translated to VK_OEM_PERIOD=0xBE
e 047/063 (“/7”) are translated to VK_OEM_2=0xBF

o 058/059 (“;:”) are translated to VK_OEM_1=0xBA

e 091/123 (“[{”) are translated to VK_OEM_4=0xDB

o 092/124 (*\]”) are translated to VK_OEM_5=0xDC

e 093/125 (“]}”) are translated to VK_OEM_6=0xDD

e (096/126 (“"~”) are translated to VK_OEM 3=0xC0

These exceptions allow a character sequence to specify a nonalphanumeric character to obtain
the virtual-key code for that key on a U.S. keyboard. For non-U.S. keyboards, the translation
is often incorrect. Thus, outside the U.S., this method of specifying a sequence should be
avoided by specifying a leading NUL in the sequence.

RM/COBOL User's Guide 111
Second Edition

Terminal Input and Output on Windows
Chapter 3: Installation and System Considerations for Microsoft Windows

When the sequence specification does begin with a NUL on Windows, the translation is
as follows:

1. Two 0 (NUL) characters in sequence (NUL NUL) represents a Ctrl+Break key press.
(RM/COBOL internally converts the 0x03 virtual-key code returned by Ctrl+Break to
zero, an unused virtual-key code value, for historical reasons having to do with
RM/COBOL on MS-DOS).

2. The value 127 (DEL) indicates that the next character, if there is one, is an ASCII OEM
character code. If there is no next character, 127 is interpreted the same as WF16
(VK _F16 = 0x7F = 127).

3. Any other value is treated as a virtual-key code value. The value may be specified as one
of the following:
e asingle OEM ASCII character (example: A);
e aquoted single OEM ASCII character (example: “A”);
e one of the ASCII equivalents from Table 36 (see page 380) (example: ETX);
e one of the Code Names from Table 13 (example: WF2);
e adecimal number (example: 113 for F2); or

e ahexadecimal number (example: 0x71 for F2).

However, even though OEM ASCII values can be specified in a TERM-INPUT character
sequence, they represent virtual-key code values, except as described in the translation used
when the sequence does not begin with a NUL. The description of a value specification in a
configuration record (see page 308) describes how to specify a decimal or hexadecimal
numeric value and when quotes are required around an ASCII character. The virtual-key
codes for letters are the uppercase version of the letter; the lowercase letters represent other
keys on the keyboard (for example, the letter “a”, with the value 0x61, is the virtual-key code
for the numeric keypad 1 key). Documentation on virtual-key codes is available from
Microsoft on their MSDN Library web site at http://msdn.microsoft.com/library/.

Additional character equivalents, listed in Table 13, have been defined for the character
sequence specifications. If a character equivalent, which actually specifies a virtual-key code
value, is used to specify a character sequence, the sequence specification should begin with a
NUL. This is necessary because character values are translated in the absence of a leading
NUL, and there is overlap between character values and virtual-key code values.

Another special incoming character sequence has been added. Specify NUL DEL <ascii-
char-code> on the TERM-INPUT record to match on the ASCII character code rather than the
virtual key code. <ascii-char-code> is the decimal value of the ASCII code in the range 0
through 255. In order for this record to be effective, the <ascii-char-code> must not be
included in the TERM-ATTR record DATA-CHARACTERS range. As an example, an
Umlaut-Uppercase-U can be input by:

TERM-INPUT DATA=154 NUL DEL 154

Note Alt-key sequences are not available under RM/COBOL for Windows because the
underlying Windows-based environment traps the Alt-key sequences. Alt-key sequences
are entered as Ctrl-Shift-key combination sequences. For example, use Ctrl-Shift-I instead
of Alt-1.

112 RM/COBOL User's Guide

Second Edition

http://msdn.microsoft.com/library/

Terminal Input and Output on Windows

Table 13: Additional Character Equivalents Under RM/COBOL for Windows

Code Name
APPS
ATTN
CAPITAL
CRSEL
EREOF
EXSEL
KB'"
KB,<
KB.>
KB/?
KB;:
KB[{
KB\
KB}
KB-_
KB'~
KB=+
KBO0)
KBI1!
KB2@
KB3#
KB4$
KB5%
KB6”
KB7&
KB8*
KB9(
LWIN
NKP-
NKP*
NKP.
NKP/
NKP+
NKPO ... NKP9

Description (Virtual key code)
Applications key (0x5D)
ATTN key (0xF6)
Caps Lock key (0x14)
CRSEL key (0xF7)
Erase EOF key (0xF9)
EXSEL key (0xF8)
Regular KeyBoard apostrophe/quotation mark (0xDE)
Regular KeyBoard comma/less than (0xBC)
Regular KeyBoard period/greater than (0xBE)
Regular KeyBoard slash/question mark (0xBF)
Regular KeyBoard semicolon/colon (0xBA)
Regular KeyBoard left bracket/left brace (0xDB)
Regular KeyBoard backslash/vertical bar (0xDC)
Regular KeyBoard right bracket/right brace (0xDD)
Regular KeyBoard minus sign/underscore (0xBD)
Regular KeyBoard grave accent/tilde (0xCO)
Regular KeyBoard equal sign/plus sign (0xBB)
Regular KeyBoard zero/right parenthesis (0x30)
Regular KeyBoard one/exclamation point (0x31)
Regular KeyBoard two/at sign (0x32)
Regular KeyBoard three/number sign (0x33)
Regular KeyBoard four/dollar sign (0x34)
Regular KeyBoard five/percent sign (0x35)
Regular KeyBoard six/caret (0x36)
Regular KeyBoard seven/ampersand (0x37)
Regular KeyBoard eight/asterisk (0x38)
Regular KeyBoard nine/left parenthesis (0x39)
Left Windows logo key (0x5B)
Numeric KeyPad Subtract (minus sign) (0x6D)
Numeric KeyPad Multiply (asterisk) (0x6A)
Numeric KeyPad Decimal (period) (0x6E)
Numeric KeyPad Divide (slash) (0x6F)
Numeric KeyPad Add (plus sign) (0x6B)
Numeric KeyPad 0 ... 9 (zero ... nine) (0x60 ... 0x69)

RM/COBOL User's Guide
Second Edition

Chapter 3: Installation and System Considerations for Microsoft Windows

113

Terminal Input and Output on Windows
Chapter 3: Installation and System Considerations for Microsoft Windows

Table 13: Additional Character Equivalents Under RM/COBOL for Windows (Cont.)

Code Name Description (Virtual key code)
NKPS Numeric KeyPad Separator (not on most keyboards) (0x6C)
NUMLOCK Num Lock key (0x90)

OEM 1 “;:” for US (0xBA)
OEM_2 “/?” for US (0xBF)
OEM_3 “~ for US (0xCO0)

OEM 4 “[{” for US (0xDB)
OEM_5 “\|” for US (0xDC)

OEM_6 “1}” for US (0xDD)
OEM_7 «“ <> for US (0xDE)
OEM_8 (0xDF)

OEM_COMMA «,” for any country (0xBC)
OEM_MINUS “-” for any country (0xBD)
OEM_PERIOD “.” For any country (0xBE)
OEM_PLUS “+” for any country (0xBB)
PAI PA1 key (0XFD)

PAUSE Pause key (0x13)

PLAY Play key (0xFA)

RWIN Right Windows logo key (0x5C)
SCROLL Scroll Lock key (0x91)
WAGR AltGr key (Ctrl+Alt under Windows)
WCNT Control key (0x11)

WCNT Control key (0x11)

WDEL Delete key (0x2E)

WDWN Down Arrow key (0x28)
WEND End key (0x23)

WEND End key (0x23)

WF1 ... WF23 Function 1 ... Function 23 (0x70 ... 0x86)
WHOM Home key (0x24)

WINS Insert key (0x2D)

WLFT Left Arrow key (0x25)
WPGD PgDn key (0x22)

WPGU PgUp key (0x21)

WPRT Print key (0x2C)

WRGT Right Arrow key (0x27)

114 RM/COBOL User's Guide
Second Edition

Other System Considerations for Windows
Chapter 3: Installation and System Considerations for Microsoft Windows

Table 13: Additional Character Equivalents Under RM/COBOL for Windows (Cont.)

Code Name Description (Virtual key code)
WSFT Shift key (0x10)
WuP Up Arrow key (0x26)
ZOOM Zoom key (0xFB)
Example

The NKPx and KBxx names are useful if you want the numeric keypad to return a different
character than the same key on the regular portion of the keyboard. Suppose you want the
period key on the regular keyboard to continue to return a period (ASCII decimal 46), while
the period key on the numeric keypad returns a comma (ASCII decimal 44). To remove the
period (46) from the range, replace the normal record:

TERM-ATTR DATA-CHARACTERS=32,126
with the following two new records:

TERM-ATTR DATA-CHARACTERS=32,45

TERM-ATTR DATA-CHARACTERS=47,126
Then, to obtain the required behavior, add the following two new records:

TERM-INPUT DATA=46 NUL KB.>

TERM-INPUT DATA=44 NUL NKP.

Other System Considerations for Windows

This section describes special system considerations for using RM/COBOL under the
Windows operating system.

Memory Available for a COBOL Run Unit on Windows

The memory available for a run unit depends on the configuration of your PC. If the total
memory required by a run unit exceeds the amount of available memory, runtime system
errors will occur. These errors indicate an inability to obtain enough memory to perform a
desired operation. This is unlikely to occur under Windows because 32-bit Windows
provides virtual memory. However, it is still possible to use segmentation and subprograms
to manage the dynamic memory requirements of very large run units.

RM/COBOL User's Guide 115
Second Edition

Other System Considerations for Windows
Chapter 3: Installation and System Considerations for Microsoft Windows

Runtime System Window

Figure 17 illustrates a sample window of an RM/COBOL program running under Windows.

Figure 17: Sample Window of an RM/COBOL Program Running Under Windows

Menu bar Title bar
I_ Control menu button J
Doverify !EIB{
Function
RM/COBOL Verification Suite |
Press 1 to Compile, 2 to execute, 3 to exit_
Toolbar
The Liant COBOL Solution
|] 1:Compile
py
FEsit
Teminate
’7 [N
L— Pop-up menu)
Status bar Client area

The runtime system window is a typical Windows operating system window with the
following areas:

Client area. Used by the RM/COBOL program input and output.

Menu bar. Configurable by the developer. Menu bar can be different for each program.
COBOL programs can also display a menu bar by using the CSMBar subprogram (see
page 594).

Status bar. Displays prompt text when the user moves the mouse in the client area,
through a menu pick or over a toolbar button. It is configurable by the developer. Status
bar can be different for each program. COBOL programs can also display text in the
status bar by using the C§SBar subprogram (see page 602). It can be turned on or off by
the user.

Control menu button. Opens the Control menu.

Title bar. Identifies the program-name currently running the COBOL program and
displays the Minimize, Maximize, and Close buttons. It is configurable by the developer.
Title bar can be different for each program. COBOL programs can also display a title by
using the C$Title subprogram (see page 617).

Toolbar. Configurable by the developer. Toolbar can be different for each program. It
can be turned on or off by the user. COBOL programs can also display a toolbar by
using the C$TBar subprogram (see page 614).

Pop-up menu. Configurable by the developer. Pop-up menu can be different for each
program. RM/COBOL programs can also change the contents of a pop-up menu by
using the CSRBMenu subprogram (see page 599).

116 RM/COBOL User's Guide

Second Edition

Other System Considerations for Windows
Chapter 3: Installation and System Considerations for Microsoft Windows

Control Menu Icon

The upper-left corner of the title bar has a button that enables the Control menu (sometimes
referred to as System menu). Although the Control menu is standard in the Windows
operating system, RM/COBOL for Windows has added functions to this menu. Figure 18
illustrates the RM/COBOL for Windows Control menu.

Figure 18: RM/COBOL for Windows Control Menu

= Restore

Move
Size
= Minimize

O Maximize
¥ Close Alt+F4

Copy
Copy table
Paste

Properties

The Restore, Move, Size, Minimize, Maximize, and Close commands are standard Control
menu functions for the Windows operating system. (For more information, see the Microsoft
Windows documentation that accompanied the operating system.) The Copy, Copy table,
Paste, and Properties commands have been added to the Control menu by RM/COBOL for
Windows. Each of these commands is described in the following sections.

Copy

Choosing the Copy command from the Control menu copies the text selected in the client area
of the RM/COBOL runtime window to the Windows Clipboard. To select text, hold down
the mouse button and drag the mouse to the target area. Double-clicking the mouse button
selects text in the manner described in the Mark Alphanumeric property (see page 83).

Copy table

Choosing the Copy table command from the Control menu copies the text selected in the
client area of the RM/COBOL runtime window to the Windows Clipboard, and also replaces
multiple spaces with a tab. This feature is useful in copying a table of numbers to a
spreadsheet, since spreadsheets require that number fields be separated by the tab character.

Paste

Choosing the Paste command from the Control menu copies the text in the Windows
Clipboard to the currently running RM/COBOL program through the COBOL ACCEPT
statement. If more data is pasted than can be accepted by the ACCEPT command, the data
is buffered.

RM/COBOL User's Guide
Second Edition

117

Other System Considerations for Windows
Chapter 3: Installation and System Considerations for Microsoft Windows

Properties

Choosing the Properties command from the Control menu opens the Properties dialog box,
which is illustrated in Figure 10 (see page 76).

Return Code Message Box

When runcobol.exe terminates with an exit code other than 0, a Return Code message box is
displayed with the status code (that is, the exit code), as shown in Figure 19. For more
information, see compiler exit codes (on page 197) and program exit codes (on page 210). If
a COBOL error occurred, that error message is displayed as well. The Show Return Code
Dialog property (see page 87) can be used to suppress the display of this message box.

The message box contains two command buttons. The OK button dismisses the message box
and closes the application. The Cancel button dismisses the message box only. The
application window remains open until you select the Close option from the Control menu.
To close the message box, you can click the Close button in the upper-right corner of the
window.

Figure 19: Return Code Message Box

Return Code

Program 'EZREPORT' terminated with return code 252,

Cancel |

CALL “SYSTEM”

When using the SYSTEM (see page 621) non-COBOL subprogram (CALL “SYSTEM”) with
DOS programs and batch files, you can customize how these programs run by modifying the
Command Prompt properties. This can be done by right-clicking the mouse on the Command
Prompt icon and selecting Properties from the pop-up menu.

Performance

For increased file system performance in single-user mode, set the RUN-FILES-ATTR
configuration record option to FORCE-USER-MODE=SINGLE (see page 359).

118 RM/COBOL User's Guide

Second Edition

Other System Considerations for Windows
Chapter 3: Installation and System Considerations for Microsoft Windows

Using Large Files on Windows

RM/COBOL supports files larger than 2 gigabytes (GB), but not on all versions of Windows
and not on all Windows file systems. In addition, even if a particular version of Windows and
a particular version of the Windows file system allow local files larger than 2 GB, this does
not guarantee that all other machines in a peer-to-peer network can successfully access the
large file. The following information describes the conditions under which applications can
count on large file support in various Windows environments.

Windows File Systems Considerations

Microsoft provides several different Windows file systems.

Windows 95 operating systems prior to the release of Windows 95 OEM Service Release 2
(OSR2), version number 4.00.950B, support only the File Allocation Table (FAT) file system,
which limits files to no more than 2 GB. The Windows 9x-class of operating systems
(excluding Windows 95 without OSR2) included an updated version of the File Allocation
Table file system, called FAT32. This updated file system allows support for files larger than
2 GB, but not larger than 4 GB. Windows 98 and Windows Me support both the FAT (2 GB)
and the FAT32 (4 GB) file system.

Although the FAT32 file system supports local files up to 4 GB, Liant Software has
determined that Windows 95 does not support access to files larger than 2 GB from remote
clients. Attempts to create files larger than 2 GB on a Windows 95 FAT32 file system and to
access the file from another machine may result in a hung client when the RM/COBOL
runtime attempts the WRITE operation that would cause the file to grow past 2 GB.
Everything will work correctly until the attempt to exceed the 2 GB boundary.

While Windows NT-class operating systems do not support the FAT32 file system, they do
support the NTFS file system, which allows multiple terabyte (TB) files.

In addition to these file systems considerations for the different versions of the Windows
operating system, there are also other variants of the Windows operating systems. In
particular, there have been several Service Pack updates for Windows NT 4.0. Liant Software
recommends that Windows NT 4.0 Servers be upgraded to at least Service Pack 6. Microsoft
generally provides downloadable updates for system modules from their web site between
updates.

Large File Locking Issues

Very large files, defined as RM/COBOL indexed files larger than 2 GB, and RM/COBOL
relative and sequential files larger than 1 GB, require the use of the LARGE-FILE-LOCK-
LIMIT keyword (see page 360) of the RUN-FILES-ATTR configuration record to specify a
lock limit larger than 2 GB. The Define Indexed File (rmdefinx) utility (see page 636) may
be used to set the Large File Lock Limit for version 3 indexed files. The lock limit may not
be set to more than 4 GB unless the RM/COBOL runtime is running on a Windows NT-class
operating system and the file resides on an NTFES file system.

For indexed files, the block size and the value of the lock limit determine how large the
indexed file can be. For example, with a 4 GB lock limit, a block size of 1024 will allow a
3.2 GB indexed file and a block size of 4096 will allow a 3.7 GB indexed file. For relative
and sequential files, the file size may be no more than one half of the lock limit. Thus, a
sequential file may be no more than 2 GB when the lock limit is 4 GB.

Using very large files also requires that the Windows system support region locking at the
value specified by the Large File Lock Limit. All Windows systems seem to be able to lock

RM/COBOL User's Guide
Second Edition

119

Other System Considerations for Windows
Chapter 3: Installation and System Considerations for Microsoft Windows

at 4 GB (above 4 GB in the case of a Windows NT-class operating system), but remote access
to very large files requires that the network redirector (on the client machine) and the File and
Printer Sharing Network Service (on the server machine) also support such locks.

Test Programs Available

In order to help the RM/COBOL applications developer who needs to use files larger than 2
GB in a Windows environment, Liant Software has developed some simple C programs
which attempt to answer the question of how various Windows systems react to the use of
very large files. These programs and any additional information discovered after the release
of this product may be found on the Liant Software web site at http://www.liant.com.

Because the Windows environment is very complex with regard to the use of very large files,
Liant strongly recommends that the applications developer use these test programs to
determine whether it is possible to use very large files in the required Windows environment.
Failure to do this testing may result in unfortunate surprises (for example, when the file grows
larger than 2 GB) long after the application has been deployed at a customer site.
Periodically, Liant will add additional information to the web site. If your application
requires very large files, continue to check the web site often for updates.

It is also possible to use the RM/COBOL runtime system to write a test indexed file of the
desired size to verify that your application will not have problems with a specific Windows
environment. This technique is particularly useful when running in a Windows peer-to-peer
environment.

Environment Variables for Windows

An environment variable is an operating system feature that allows a value to be equated
with a name. Table 14 lists those environment variables that are used by RM/COBOL on
Windows.

Note In addition to the environment variables listed in the following table, RM/COBOL uses
environment variables to map generic file access names, as explained in File Access Names
on Windows (on page 68).

Table 14: Environment Variables for Windows

Environment Variable Usage
COMSPEC SYSTEM subprogram (see page 621).
GROUP C3GetSysInfo subprogram (see page 587).
GROUPID C8$GetSysInfo subprogram (see page 587).
NAME C8GetSysInfo subprogram (see page 587).
PATH Locating files (see page 66).
PRINTER Printer support (see page 252).
RMPATH Locating files (see page 66).

120 RM/COBOL User's Guide
Second Edition

http://www.liant.com/

Other System Considerations for Windows
Chapter 3: Installation and System Considerations for Microsoft Windows

Table 14: Environment Variables for Windows (Cont.)

Environment Variable

RM_COMPILER_ WRAP_LONGNAMES

RM_DEVELOPMENT MODE

RM_DYNAMIC LIBRARY TRACE
RM_IGNORE_GLOBAL RESOURCES

RM_KEEP XML SYMTAB FILE

RM_LOAD WOW _CLIENT

RM_LIBRARY_SUBDIR
RM_VERBOSE BANNER

RM_Y2K

RUNPATH
STATION
TEMP or TMP
TZ

USER
USERID

Usage

Controls whether the compiler will wrap rather than
truncate long user-defined words in the listing
summary (allocation map, cross reference, summary
error messages, and so forth). The value “Yes”
causes wrapping; the value “No” causes truncation.
The value can be specified as “Y” or “N” and case
does not matter. See also the WRAP-
LONGNAMES value (on page 325) for the
LISTING ATTRIBUTES keyword of the
COMPILER-OPTIONS configuration record.

C$SetDevelopmentMode subprogram (see
page 609).

Tracing support module loads (see page 477).

Causes the compiler, runtime system, or recovery
utility not to access the Command Line Options
property defined for All Users. This may be useful
if you are trying to develop at the same time others
are running an application in live “production
mode.” See Setting Control Properties (on page 76)
and Setting Synonym Properties (on page 90).

The value specifies the path of the folder where the
temporary XML-format symbol table file from the
compiler should be preserved. See also the KEEP-
TEMP-XML-SYMBOL-TABLE-FILE keyword (on
page 321) of the COMPILER-OPTIONS
configuration record.

Loading the WOW Extensions support module,
rpepluswow.dll.

Locating optional support modules (see page 477).

Compile command messages (see page 186) and
runcobol banner message (see page 445).

COMPILER-OPTIONS ALLOW-DATE-TIME-
OVERRIDE (see page 314)

Locating files (see page 66).
C8GetSysInfo subprogram (see page 587).

Temporary files (see page 264).

Standard C TimeZone variable.

C8GetSysInfo subprogram (see page 587).

C8GetSysInfo subprogram (see page 587).

RM/COBOL User's Guide
Second Edition

121

Other System Considerations for Windows
Chapter 3: Installation and System Considerations for Microsoft Windows

122 RM/COBOL User's Guide
Second Edition

Btrieve Adapter Concepts
Chapter 4: System Considerations for Btrieve

Chapter 4: System
Considerations for Btrieve

This chapter describes special considerations for using RM/COBOL to access Btrieve files.
Btrieve files are an alternative indexed file format to the RM/COBOL indexed file format.
Btrieve files can reside on the local machine, in which case they are accessed via client-based
Btrieve, or they can reside on a remote machine, in which case they are accessed via
server-based Btrieve. Btrieve Adapter for Windows (rmbtrv32.dll) provides the
communication between the RM/COBOL runtime and Btrieve runtime, translating COBOL
requests to Btrieve requests.

Btrieve Adapter for Linux (librmbtrv.so) is also available. While this chapter primarily
describes the Windows systems considerations for Btrieve, most of the content also applies to
the implementation of the Btrieve support module on the Linux operating system. For
specific considerations on Linux, see Starting Btrieve Adapter for Linux (on page 138) in this
chapter and the EXTERNAL-ACCESS-METHOD configuration record (on page 344).

Btrieve Adapter Concepts

Btrieve Adapter, which collectively refers to both the rmbtrv32.dll program on Windows and
the librmbtrv.so support module on Linux, improves performance by providing a mechanism
to reduce the overhead required to transmit requests for records in an indexed file across a
local area network (LAN).

The goal of the Btrieve Adapter is to use the local area network for passing general requests to
other machines and for receiving completed requests back from the other machines. As a
result, significant increases may occur in the performance of the application program, the
cost-effectiveness of the local area network, and the productivity of the user.

Note See RM/COBOL versus Btrieve Indexed File Performance (on page 129) for a
situation in which the performance of Btrieve index files may not exceed that of RM/COBOL
indexed files.

Indexed Files

The application program can request a specific record of information in an indexed file. The
location of the specified record within the indexed file is determined by means of an identifier
known as a key. Indexed files use a much more efficient method of locating the record than

RM/COBOL User's Guide 123
Second Edition

Btrieve Adapter Concepts
Chapter 4: System Considerations for Btrieve

simply searching through all the records in the file until the requested record is found.
Instead, indexed files build overhead tables into the file that are similar to indexes in a book.
These overhead tables enable the indexed files to quickly look up the desired location and
then read the desired data. Figure 20 illustrates this process on a single-user system.

Note In Figure 20, Figure 21, and Figure 22, each line represents a separate event that
happens at a separate time. The lighter lines represent a small transfer of information, and the
heavier lines represent a large transfer.

Figure 20: Indexed File Requests on a Single-User System

Request for Overhead Table

_
Overhead Table Data
«— ° ——
Request for Actual Data —
_ '_i'z\ _ Disk Drive
_— <—
Computer

When this process happens over a network, the situation is very similar, as shown in
Figure 21.

Figure 21: Indexed File Requests on a Local Area Network

Local Area Network Cable
— —
< +— [0 =
P E— — P E— —
=] = = = Disk Drive
— [f—5\ «—
Computer 1 Computer 2
(Client) (Server)

In Figure 21, Computer 2 acts as a conduit, called a server, through which the requests of
Computer 1, called a client, are routed. (The server routes requests for more than one client
computer, which is an advantage of local area networks.) A more effective way to route
requests, however, is shown in Figure 22.

124 RM/COBOL User's Guide
Second Edition

Required Software Components
Chapter 4: System Considerations for Btrieve

Figure 22: Indexed File Requests on a Local Area Network by the Btrieve MicroKernel
Database Engine (MKDE)

Requests for Key Cable

— —
¢ ° C =]
= =\ Data for Key = Disk Drive
— —

Computer 1 Computer 2
(Client) (Server)

Figure 22 illustrates the way in which a Btrieve Requester (running on the client, Computer 1)
and a Btrieve MicroKernel Database Engine (running on the server, Computer 2), makes the
processing of messages even more efficient. (Note that the Btrieve MicroKernel Database
Engine is a key external component of the Btrieve Adapter.) Although the interactions
between Computer 2 and the disk drive are the same as shown in Figure 21, the interactions
between Computer 1 and Computer 2 are significantly different. Instead of Computer 1
giving Computer 2 many small instructions to carry out, Computer 1 now gives Computer 2

a single, general request. Computer 2 searches the overhead table for the indexed files to
locate the desired record and then returns only the requested record.

There are several advantages to this method, but the following two are the most significant:

1. The overall operation may be quicker because the number of transfers between the two
computers is reduced.

2. Because there are fewer transfers between the Computer 1 and Computer 2, the local area
network can use the time that it is not performing transfers between the two computers to
make transfers between other computers on the network. It allows the network to handle
more computers, which makes it more cost-effective.

Required Software Components

The components required when using RM/COBOL to access Btrieve files are described in the
following sections.

For Windows

e Novell NetWare version 3.11 or later

e Btrieve MicroKernel Database Engine (MKDE) for NetWare Server
e Btrieve Requester for 32-bit Windows

e RM/COBOL compiler (development system) for Windows

e RM/COBOL runtime system for Windows

e Btrieve Adapter for Windows (rmbtrv32.dll)

RM/COBOL User's Guide 125
Second Edition

Required Software Components
Chapter 4: System Considerations for Btrieve

For Linux

e Pervasive PSQL v8 (or higher)

e RM/COBOL compiler (development system) for Linux
e RM/COBOL runtime system for Linux

e Btrieve Adapter for Linux (librmbtrv.so)

Note NetWare products are available from Novell, Incorporated. Btrieve products are
available from Pervasive Software Inc. (formerly Btrieve Technologies Inc.).

Novell NetWare

NetWare is the software that communicates between computers on the local area network.
These NetWare products are responsible for handling the actual hardware connections,
recovering from transmission errors detected by the hardware, and routing the messages from
one program executing on one computer to another program executing on another computer.

NetWare augments the operating system by providing access to files on file servers.

Btrieve MicroKernel Database Engine (MKDE)

The MKDE component consists of two types. The first type, a client-based Btrieve MKDE,
provides access to files that are located on the same machine as the application program. The
second type, NetWare Btrieve MKDE, provides access to files that are located on a remote
machine in a multi-user environment.

The NetWare Btrieve MKDE is a record management system similar to the indexed files built
into the RM/COBOL runtime system. Because the NetWare Btrieve MKDE is not built into
the RM/COBOL runtime system, it can run on a separate computer using NetWare, thus
providing access to files in the manner illustrated in Figure 22 (on page 125).

There are also versions of the Btrieve MKDE that run on other types of networks and on a
single machine (client-based Btrieve MKDE), without network support. The client-based
Btrieve MKDE, however, no longer has the speed advantage over the RM/COBOL file
management system, since both systems have the same access to the disk drive.

Btrieve Requester for 32-Bit Windows

The 32-bit Windows requester, a dynamic link library (DLL) program, runs on the client
computer and communicates with either the server-based or the client-based Btrieve MKDE.

Pervasive PSQL v8 (or higher) for Linux

The Pervasive PSQL components are a set of programs and libraries that communicate with
either the server-based or the client-based Btrieve MKDE.

126 RM/COBOL User's Guide
Second Edition

Required Software Components
Chapter 4: System Considerations for Btrieve

RM/COBOL Compiler (for Windows and Linux)

The RM/COBOL compiler (development system) is a GSA-certified high implementation of
the American National Standard COBOL X3.23-1985 with extensions and support for most
optional features of the language.

RM/COBOL Runtime System (for Windows and Linux)

The RM/COBOL runtime system executes the application program and carries out its
instructions. The runtime system has an internal file management system that accepts input
from the user, processes data, produces data in the form of output to the user, and, most
importantly, generates requests for records to be written to and read from files.

The runtime system has been designed so that any existing RM/COBOL application may be
run in many different environments without changes either to the source of the program or to
the actual executable object. Furthermore, any existing RM/COBOL runtime system that
executes on Windows or Linux can also use Btrieve Adapter.

Btrieve Adapter

Btrieve Adapter acts as an interpreter between either of the two types of Btrieve MKDEs,
which are described in Btrieve MicroKernel Database Engine (MKDE) on page 126, and
COBOL application programs. In order to understand how this transparent interface is
achieved, it is necessary to briefly describe the different ways in which the Btrieve MKDE
and the COBOL language provide access to indexed files.

The Btrieve MKDE lets an application program access records stored in indexed files, and
provides the necessary functions for storing, retrieving, and updating the information. The
Btrieve MKDE’s method of accessing indexed files is an efficient system that provides
significant increases in functionality to the user in certain cases. However, because the
Btrieve MKDE does not use COBOL language features that provide access to indexed files, a
COBOL application program cannot communicate directly with the Btrieve MKDE.

A COBOL application program uses American National Standard COBOL 1985 language
features, such as OPEN, READ, WRITE, REWRITE, and CLOSE, to access indexed files.
The RM/COBOL runtime system contains a file management system that provides the
runtime system with support for these features. The RM/COBOL runtime system
communicates with the file management system by means of requests and responses that are
called messages. These messages are processed outside of the file management system by
any one of a variety of external file access methods.

The Btrieve Adapter, in effect, is one such external file access method for the RM/COBOL
runtime system. Btrieve Adapter receives messages from the RM/COBOL file management
system. Then, acting as an application program for the Btrieve MKDE, Btrieve Adapter
translates the messages into Btrieve requests, enabling the Btrieve MKDE to carry out the
action originally requested by the COBOL application program. The Btrieve MKDE
performs the action either on the user’s computer system or acts with NetWare on a remote
system using the local area network. (The drive letter in the pathname of the file indicates the
machine on which the file resides.) After the Btrieve MKDE has completed the requests,
Btrieve Adapter constructs an appropriate response message, which is sent to the RM/COBOL
file management system, and, finally, back to the COBOL application program. Figure 23
illustrates this process (for Windows).

RM/COBOL User's Guide 127
Second Edition

Configuration for Btrieve

Chapter 4: System Considerations for Btrieve

Figure 23: Btrieve Adapter Acting as an External File Access Method (On Windows)

COBOL application RM/COBOL file The rmbtrv32 program |
program requests management system "l translates COBOL request
record. sends request to the into Btrieve request and
rmbtrv32 program sends it to the Btrieve
for processing. MKDE.
RM/COBOL file rmbtrv32 translates The Btrieve MKDE carries
management system | Btrieve response into out the request and sends | |
sends response to COBOL response the Btrieve response tothe
the COBOL and sends it to the rmbtrv32 program.
application program. RM/COBOL file

management system.

See also Btrieve Adapter Options (on page 130).

Configuration for Btrieve

The installation and configuration of client-based Btrieve (also called Workstation Btrieve)
for 32-bit Windows are fully described in the appropriate Btrieve installation and operation
manual supplied by Pervasive Software with your Btrieve system. The client-based Btrieve is
the MicroKernel Database Engine (MKDE) that is used to access local files (that is, Btrieve
files residing on the computer where the RM/COBOL runtime system is run). A number of
configuration settings can be modified using the Btrieve Setup utility. After configuring
Btrieve, use the Btrieve File Manager utility (or other Btrieve software) to verify that Btrieve
is working properly before using Btrieve with RM/COBOL.

Similarly, the installation and configuration of server-based Btrieve (for NetWare or for a
Windows Server) are fully described in the appropriate Btrieve installation and operation
manual that was supplied by Pervasive Software with your Btrieve system. These manuals
also describe the installation and configuration of the requesters used to communicate with
server-based Btrieve. The server-based Btrieve is the MKDE that is used to access remote
files (that is, Btrieve files residing on the NetWare or on a Windows Server). A number of
configuration settings for both the MKDE and the requesters can be modified by using the
appropriate Btrieve Setup utility.

The Btrieve Programmer’s Guide, supplied by Pervasive Software with your Btrieve
Developer Kit, is an excellent source of information for help in setting the Btrieve
configuration options properly. In addition, several books on Btrieve are available
commercially, and the Btrieve Developer’s Journal is published quarterly by Smithware, Inc.

128 RM/COBOL User's Guide

Second Edition

Configuration for Btrieve
Chapter 4: System Considerations for Btrieve

System Considerations for Btrieve Files

Btrieve Adapter creates Btrieve files when necessary or if requested. Btrieve files created by
Btrieve Adapter have a computed page size based on one of the following methods that
produces the largest value:

1. The size of the block requested by the COBOL application.
2. The size necessary for the length of the longest key, times eight.

3. The size of the largest record requested by the application, plus eight times the number of
linked duplicate keys, plus six (for overhead information), plus four if the file specifies
variable-length records (again for overhead information). For more information, see
Variable-Length Records (on page 143).

Furthermore, if the record size is greater than the maximum page size and the keys of the file
all fit into that maximum, the Btrieve Adapter creates a variable-length file. (The Btrieve
MKDE restricts the fixed-length part of records to less than the page size.)

Finally, Btrieve Adapter creates the file with the following characteristics:

e Data compression

e Blank truncation

e Five-percent, free-space threshold

e No page preallocation

To create Btrieve files with characteristics other than those previously listed, use the Btrieve
File Manager utility, the filename, and the Btrieve description-file that contains the
characteristics for the new file. For more information, see the chapter about using the File
Manager utility in the appropriate Btrieve installation and operation manual. Characteristics

established using the Btrieve File Manager utility could have a direct impact on performance,
including the following:

e The page preallocation value can be used to reserve pages for use by the file. This has
the advantage of ensuring, in advance, that the file has the disk space it needs. It can also
improve performance by concentrating the location of the file on the disk media
(assuming that the disk space is not already fragmented).

e The free-space threshold value can be set to 10, 20, or 30 percent to allow for growth of
variable-length records.

e Keys can be created that are binary or have any of the extended key types.
e Null keys can be created.

e More keys can be defined than can be used by the COBOL program. These keys must be
defined either at starting locations that are different from the COBOL keys or after the
COBOL key description for the same location. Such keys can have any Btrieve attribute
and can be split.

RM/COBOL versus Btrieve Indexed File Performance

In general, when used across the network, Btrieve indexed files have better performance than
RM/COBOL indexed files because less network activity has to occur to access a record.

However, this may not be true when a COBOL program opens an indexed file WITH LOCK.
In this case, the COBOL program then has exclusive access to that file. This has an important

RM/COBOL User's Guide
Second Edition

129

Btrieve Adapter Options

Chapter 4: System Considerations for Btrieve

consequence for RM/COBOL indexed files. In this case, the RM/COBOL runtime system
knows that no other user is able to change the indexed file overhead tables on the server, and
it keeps the overhead tables on the local machine. This results in fewer requests across the
network for the overhead tables and may result in better performance than the same program
using Btrieve indexed files.

This effect is most pronounced when the indexed file is being read sequentially (for example,
producing a report).

Btrieve Adapter Options

Btrieve Adapter has options that are specified on the EXTERNAL-ACCESS-METHOD
configuration record (see page 344) or on the RUN-INDEX-FILES configuration record (see
page 362) in the RM/COBOL configuration file. These configuration file options, described
in the following sections, give Btrieve Adapter information that the Btrieve MKDE requires,
but which is not contained in RM/COBOL file management system messages.

Note Typically when configuring the Btrieve MKDE, it is often sufficient to specify only the
“Largest Compressed Record Size” Btrieve configuration option, if you are using
compression (see the appropriate Btrieve installation and operation manual for more details).

EXTERNAL-ACCESS-METHOD Configuration Record
Options

Most of the information that the Btrieve Adapter needs to operate can be obtained through
requests received from the RM/COBOL file management system. However, when Btrieve
Adapter needs information required by the Btrieve MKDE, which the RM/COBOL file
management system cannot supply, it is possible to provide this information directly to
Btrieve Adapter with options in the EXTERNAL-ACCESS-METHOD configuration record.

These options are as follows:

e B (Btrieve Adapter Btrieve MKDE page size) option
e Create option

e D (duplicates) option

e I (initial display) option

e L (lock) option

e M (mode) option

e O (owner) option

e P (Btrieve Adapter page size) option

e T (diagnostic trace filename) option

These options are described in the following sections.

Note The create option is specified by the CREATE-FILES keyword and the other options
(B,D,I,L, M, O, P, and T) are specified by the OPTIONS keyword, both of which are in the
EXTERNAL-ACCESS-METHOD configuration record (see page 344).

130 RM/COBOL User's Guide

Second Edition

Btrieve Adapter Options
Chapter 4: System Considerations for Btrieve

B (Btrieve Adapter Btrieve MKDE Page Size) Option

This option is obsolete and should not be specified. The “Maximum Page Size” is no longer
a configurable parameter of the Btrieve engine, which always assumes the Btrieve limit of
4096 bytes. If this value were inadvertently specified as an amount smaller than 4096,
Btrieve Adapter may create a Btrieve file with variable-length records when such records
would not be needed.

Create Option

The create option, for creating a new file, has the following values:
e Y (Yes) Create new files as Btrieve indexed files (the default).

e N (No) Do not create new files.

See the description of the CREATE-FILES keyword (on page 345) in the EXTERNAL-
ACCESS-METHOD configuration record.

The create option is the determinant parameter supplied to Btrieve Adapter, because it
determines the system that will be responsible for creating a new indexed file. Depending on
the value specified in this parameter, the new file can be created by Btrieve Adapter, by
another external file access method, or by the RM/COBOL file management system. In order
to understand how this process works, it is helpful to know more about the way in which the
RM/COBOL file management system searches for a file.

Before an application program creates a file, the RM/COBOL file management system first
tries to locate an existing file having the same name as the one specified in the create attempt.
The file management system searches the current directory first, and then all the other
directories located in the environment variable, RUNPATH. See Directory Search Sequences
on Windows (on page 66) for more information on setting the RUNPATH variable.

In addition to Btrieve Adapter, other external file access methods can be running on the
computer or network at the same time. In searching for a file, the RM/COBOL file
management system also communicates with all other known external file access methods.

The search for the filename occurs in the following sequence:

1. Any external file access methods currently running (including Btrieve Adapter) search
the current directory.

2. The RM/COBOL file management system searches the current directory.
3. The external file access methods search the first directory in the RUNPATH list.

4. The RM/COBOL file management system searches the first directory in the
RUNPATH list.

The search continues until all pertinent directories have been checked. If a file having the
same name as the one specified in the create attempt is found, it will be opened. If such a file
cannot be found, and the application program wants to create one, then a designated external
file access method can create the file.

The Btrieve Adapter create option value is a yes or no indicator that specifies whether you
want Btrieve Adapter to create any new indexed files as Btrieve files. Regardless of the value
specified, any new file is created in the first directory possible, usually the current directory.
Valid values are Yes and No. The default value is Yes.

RM/COBOL User's Guide 131
Second Edition

Btrieve Adapter Options

Chapter 4: System Considerations for Btrieve

A value of Yes causes any new indexed files to be created as Btrieve files:
EXTERNAL-ACCESS-METHOD NAME=RMBTRV32 CREATE-FILES=YES

A value of No causes Btrieve Adapter not to create the file and enables another external file
access method or the RM/COBOL file management system to create new indexed files:

EXTERNAL-ACCESS-METHOD NAME=RMBTRV32 CREATE-FILES=NO

D (Duplicates) Option

The duplicates option is used to specify whether linked or repeating duplicatable keys are
used for files created by Btrieve Adapter.

The duplicates option has the following values:

e L Create linked duplicatable keys. Linked duplicates mean that only one copy of the
duplicated key value is stored in index pages. The data records with the duplicated
key value are linked together with pointers in a doubly linked list.

e R Create repeating duplicatable keys. Repeating duplicates mean that the duplicated
key value is repeated in the index pages for each data record with that value. The
data records are not linked together. Using repeating duplicates uses more space in
index pages, but saves space in data pages and also helps avoid position lost errors
when files are shared.

The default value is L. Refer to the Btrieve Programmer’s Guide for more information.

The following example tells Btrieve Adapter to create files with repeating duplicatable keys:

EXTERNAL-ACCESS-METHOD NAME=RMBTRV32 OPTIONS='D=R'

I (Initial Display) Option

The initial display option is used to specify whether Btrieve Adapter should display an initial
message box when it is first invoked.

The initial display option has the following values:

e Y (Yes) Display the message box. The message box shows the Btrieve Adapter
version number and the OPTIONS parameter string that was passed to it from the
EXTERNAL-ACCESS-METHOD configuration record. The user must click the
OK button to acknowledge and continue. This option is most useful the first time the
user attempts to use Btrieve Adapter with RM/COBOL and Btrieve.

Note I=Y should not be used in a production environment.

e N (No) Do not display the message box.

The default value is N.

132 RM/COBOL User's Guide

Second Edition

Btrieve Adapter Options
Chapter 4: System Considerations for Btrieve

Example
The following example tells Btrieve Adapter to display the informative message box:

EXTERNAL-ACCESS-METHOD NAME=RMBTRV32 OPTIONS='I=Y'

L (Lock) Option

The lock option is used to specify the manner in which Btrieve Adapter is to handle the WITH
LOCK phrase on OPEN statements.

The lock option has the following values:

e [Ignore the WITH LOCK phrase. Use the Btrieve MKDE open mode indicated with
the M (mode) option (see page 134).

e D Denythe WITH LOCK phrase.

e A Acceptthe WITH LOCK phrase. If OPEN WITH LOCK is requested by the
application, ignore the open mode indicated with the M (mode) option (see page 134).

The default value is A.

Examples

The following example tells Btrieve Adapter to ignore the WITH LOCK phrase on OPEN
statements:

EXTERNAL-ACCESS-METHOD NAME=RMBTRV32 OPTIONS='L=I'

The following example tells Btrieve Adapter to deny the WITH LOCK phrase on OPEN
statements:

EXTERNAL-ACCESS-METHOD NAME=RMBTRV32 OPTIONS='L=D'

The following example tells Btrieve Adapter to accept the WITH LOCK phrase on OPEN
statements:

EXTERNAL-ACCESS-METHOD NAME=RMBTRV32 OPTIONS='L=A"

RM/COBOL User's Guide 133
Second Edition

Btrieve Adapter Options

Chapter 4: System Considerations for Btrieve

M (Mode) Option

The mode option is used to specify a value to Btrieve Adapter at the time a Btrieve file is
opened. The following values are used only if the file is not OPENed WITH LOCK. The
mode option has the following values:

e N Normal

e A Accelerated

e R Read-only

e V Verify

e E Exclusive
The default value is N.

Note The ability of Btrieve Adapter to specify a mode value is dependent on whether the
application program requests the WITH LOCK phrase on OPEN statements. For more
information, see the L (lock) option (on page 133).

Examples

In normal mode, the Btrieve MKDE behaves as it normally does with its recovery option

enabled, allowing update requests and performing normal writes to the disk drive. The

following example specifies a value of normal when the file is opened:
EXTERNAL-ACCESS-METHOD NAME=RMBTRV32 OPTIONS='M=N'

In accelerated mode, the data recovery capability of the Btrieve MKDE is disabled to increase

the speed at which records are updated. The following example specifies a value of

accelerated when the file is opened:

EXTERNAL-ACCESS-METHOD NAME=RMBTRV32 OPTIONS='M=A'

In read-only mode, no updates can be performed. The following example specifies a value of
read-only when the file is opened:

EXTERNAL-ACCESS-METHOD NAME=RMBTRV32 OPTIONS='M=R'

Verify mode is now disregarded and the MKDE assumes normal mode instead.

In exclusive mode, the user has exclusive access to the file until the user closes it. This is the
same as specifying EXCLUSIVE or WITH LOCK on the OPEN statement in the COBOL
program.

EXTERNAL-ACCESS-METHOD NAME=RMBTRV32 OPTIONS='M=E'

134 RM/COBOL User's Guide

Second Edition

Btrieve Adapter Options
Chapter 4: System Considerations for Btrieve

O (Owner) Option

The owner option specifies the “owner” ID (actually a security password) for new files and
open requests for existing files. The value is a string of up to a maximum of eight characters
delimited by a trailing space. The value cannot contain spaces. The following example
specifies an owner ID of YELLOW:

EXTERNAL-ACCESS-METHOD NAME=RMBTRV32 OPTIONS='O=YELLOW'

P (Btrieve Adapter Page Size) Option

The Btrieve Adapter page size option is the default minimum page size for the files created by
Btrieve Adapter. Btrieve files are physically accessed in fixed-length pieces called pages.
When Btrieve Adapter creates a new file, the Btrieve MKDE requires the specification of a
page size. The size of a page is determined from either the page size option or a computation
based on the size of the record. For more information, see Variable-Length Records (on

page 143). A larger page size transfers more data in a single disk request, requires more time
to transfer, and requires more memory to contain the pages. A smaller page size allows more
blocks in memory for a fixed amount of memory, but requires more time to randomly access a
record by increasing the tree depth of each index for the file.

If specified, the value must be a multiple of 512 in the range of 512 to 4096, inclusive. When
creating a file, the page size used will be the smallest multiple of 512 sufficient to hold the file
overhead, eight keys, the fixed part of the record, or, if specified, the default page size,
whichever is greater.

The following example sets the value of the page size option to 1024:

EXTERNAL-ACCESS-METHOD NAME=RMBTRV32 OPTIONS='P=1024"

RM/COBOL User's Guide 135
Second Edition

Btrieve Adapter Options

Chapter 4: System Considerations for Btrieve

T (Diagnostic Trace Filename) Option

This diagnostic trace filename option is used to specify the pathname of a file to which
Btrieve Adapter will write a trace of open requests. This feature is used when there is a
problem with a Btrieve file not being successfully opened by a COBOL program. It is not to
be used in a production environment, because it degrades performance and the trace file can
become quite large, which might exhaust disk space. To turn on the trace feature, edit the
RM/COBOL configuration file for the COBOL program in question and add a T=trace-file-
name parameter to the OPTIONS keyword (see page 345) in the EXTERNAL-ACCESS-
METHOD configuration record.

For example, the following record writes trace information to the file c:\test\trace.fil:
EXTERNAL-ACCESS-METHOD NAME=RMBTRV32 OPTIONS='T=C:\test\trace.fil'

The trace file contains a “Begin open” and “End open” pair of records for every open request
that Btrieve Adapter receives. This includes all opens that runcobol does for files, such as
the COBOL program file, as well as every OPEN statement executed by the COBOL
program. The “End open” line shows the COBOL status code returned to the RM/COBOL
file management system. Between the “Begin” and “End” lines, zero or more “BTRV
Create” or “BTRV Open” lines show the full pathname of the file, the exact Btrieve status
code returned by the name of the file, and the exact Btrieve status code returned by the
Windows Btrieve DLLs. The following is a sample trace file:

Trace Initialized
Begin open, Not indexed

End open, Code=35
Begin open, Not indexed
End open, Code=35
Begin open, Not indexed
End open, Code=35
Begin open, Flags=0x4900 (file must exist)
UFN=INX1

BTRV Open status 0 on file C:\TEST\INX1
End open, Code=0
Begin open, Flags=0xel00 (file must exist)
UFN=INX2

BTRV Open status 12 on file C:\TEST\INX2
End open, Code=35
Begin open, Flags=0xe000

UFN=INX2

BTRV Open status 12 on file C:\TEST\INX2
BTRV Create status 0 on file C:\TEST\INX2
End open, Code=0

When you are finished diagnosing the problem, be sure to edit the configuration file again and
remove the T=trace-file-name parameter from the OPTIONS keyword in the EXTERNAL-
ACCESS-METHOD configuration record.

136 RM/COBOL User's Guide

Second Edition

Btrieve Adapter Options
Chapter 4: System Considerations for Btrieve

RUN-INDEX-FILES Configuration Record Options

In addition to the options specified on the EXTERNAL-ACCESS-METHOD, two RUN-
INDEX-FILES keywords have meaning for Btrieve Adapter: DATA-COMPRESSION (see
page 363) and BLOCK-SIZE (see page 362).

Specifying DATA-COMPRESSION=NO causes Btrieve Adapter to create uncompressed
Btrieve files. The default is to create compressed Btrieve files. (Note that Btrieve does not
support key compression.)

Specifying BLOCK-SIZE=nnnn causes Btrieve Adapter to create files with a page size of
nnnn. Btrieve Adapter first computes the minimum allowable page size for the file based on
the record size, number of key segments, type of duplicates, and so forth. It then uses the first
value greater than or equal to the computed minimum value in the following order:

1. From the BLOCK CONTAINS clause in the program’s file description entry.

2. From the P=<page size> option parameter on the OPTIONS keyword (see page 345) in
the EXTERNAL-ACCESS-METHOD configuration record (see page 344).

3. From the RUN-INDEX-FILES BLOCK-SIZE=<size> configuration record.

If none of these three values is present or acceptable, Btrieve Adapter uses the computed
minimum value.

Example

The following example represents a typical command line invoking runcobol using Btrieve
Adapter:

runcobol userprog x=config.cfg
where, the config.cfg file contains the following records:

RUN-INDEX-FILES DATA-COMPRESSION=NO
EXTERNAL-ACCESS-METHOD NAME=RMBTRV32
& CREATE-FILES=YES

& OPTIONS='P=1024, D=R, O=XyZzY'

The ampersand (&), which begins the third and fourth lines in this example, is the
configuration file record continuation character. Note that different RM/COBOL applications
can specify different Btrieve Adapter option parameters by using different RM/COBOL
configuration files.

RM/COBOL User's Guide
Second Edition

137

Starting Btrieve Adapter for Linux
Chapter 4: System Considerations for Btrieve

Starting Btrieve Adapter for Linux

Btrieve Adapter for Linux, librmbtrv.so, can be used by placing the shared object (support
module) in the execution directory for the RM/COBOL runtime.

Note If you are using the RM/COBOL installation directory as your execution directory and
you have Btrieve in use on your system, the external access method for Btrieve from
RM/COBOL will be used automatically. If you do not want to use the Btrieve support
module, you may specify one or more EXTERNAL-ACCESS-METHOD configuration
records (see page 344) to identify the external access methods you do wish to use.

The only installation requirement is that Linux must be able to locate the various executable
files that are required. Place librmbtrv.so in the same directory as the RM/COBOL runtime
system (runcobol) for Linux, typically, /usr/bin.

Furthermore, in order for this support module to be loaded properly, you must make sure that
you have set the LD LIBRARY PATH environment variable. Add the directory that
contains the Pervasive libraries, DSOs (dynamic shared objects), to LD LIBRARY PATH.
For example:

export LD LIBRARY PATH=/usr/local/psqgl/lib:/usr/lib

Note that if you logged into the system as “psql”, these paths will have already been set.

To verify that the shared object, librmbtrv.so, is being loaded properly by the RM/COBOL
runtime, type the following from the shell command line. For more information about the V
Option, see Configuration Runtime Command Options (on page 203).

runcobol xxx -V

If the following line is displayed in the RM/COBOL runtime banner, then Btrieve Adapter for
Linux has been loaded correctly:

SEXEDIR/librmbtrv.so — RM/COBOL Btrieve Adapter (vnn.nn/rnnnn).

Note The server-based Btrieve MKDE must be started separately. Refer to the appropriate
Btrieve installation and operation manual for information on starting server-based Btrieve.

138 RM/COBOL User's Guide

Second Edition

Starting Btrieve Adapter for Windows
Chapter 4: System Considerations for Btrieve

Starting Btrieve Adapter for Windows

Btrieve Adapter for Windows, rmbtrv32.dll, and either the client-based Btrieve MKDE or
32-bit Windows Btrieve Requester programs, are all started automatically. This process is
initiated by the user placing the following configuration record in the RM/COBOL
configuration file and starting the RM/COBOL runtime system:

EXTERNAL-ACCESS-METHOD NAME=RMBTRV32

The only requirement is that Windows must be able to locate the various executable files that
are required.

Note The server-based Btrieve MKDE must be started separately. Refer to the appropriate
Btrieve installation and operation manual for information on starting server-based Btrieve.

Btrieve Adapter program for Windows, rmbtrv32.dll, is a dynamic link library (DLL) that
can be loaded by the 32-bit Windows version of RM/COBOL. rmbtrv32.dll communicates
directly with wbtrv32.dll, which is the Btrieve interface DLL supplied with your Btrieve
system. The wbtrv32.dll file is normally installed, along with a number of other DLL, EXE,
and other Btrieve files, in a separate Btrieve executable subdirectory.

Since RM/COBOL and Btrieve are separate products supplied by separate vendors, the
executable files required by each are normally installed in the separate directory structures.
Therefore, the recommended way of ensuring that Windows can locate the files is to place the
directory names containing the files into the Windows PATH environment variable. For
RM/COBOL, this is the directory containing rmbtrv32.dll (and also containing
runcobol.exe, and so forth). For Btrieve, this is the directory containing wbtrv32.dll (and
other DLLs and EXEs). Add these two directory names to your Windows PATH (which is
often done in the autoexec.bat file).

Although it is not the recommended method, Windows will find the executable files if they
reside in any combination of the following:

1. The directory that contains the runcobol.exe that is started.

2. The current directory.

3. The Windows system directory (normally c:\windows\system).

4. The main Windows directory (normally c:\windows).

5. Any directory in the PATH environment variable

Note Both the Btrieve MKDEs and rmbtrv32.dll have keywords that can be passed to them
when they are started. If no parameters are specified, the programs use default values.

For information on specifying keywords, see the EXTERNAL-ACCESS-METHOD
configuration record (on page 344). For more information on Btrieve Adapter options, see
Btrieve Adapter Options (on page 130).

The rmbtrv32.dll program, the 32-bit Windows Btrieve Requester, and the client-based
Btrieve Microkernel Database Engine (MKDE) all terminate automatically when the final
RM/COBOL runtime system using them terminates. Server-based Btrieve must be terminated
separately; however, server-based Btrieve normally remains running as long as the server
computer remains running.

RM/COBOL User's Guide 139
Second Edition

RM/COBOL Indexed Files and Btrieve MicroKernel Database Engine (MKDE) Limitations
Chapter 4: System Considerations for Btrieve

RM/COBOL Indexed Files and Btrieve MicroKernel
Database Engine (MKDE) Limitations

This section describes the limitations of the Btrieve MicroKernel Database Engine (MKDE),
and the way in which these limitations affect RM/COBOL indexed files. Although these two
systems perform the same functions, they do not operate in the same manner.

Note For more information on the RM/COBOL limits and ranges, see Appendix B: Limits
and Ranges (on page 447).

Current Record Position Limitations

A COBOL application program can sequentially read through all the records in an indexed
file. The manner in which a requested record is presented to the application program for the
READ operation varies, depending on how the file was created. The Btrieve MicroKernel
Database Engine (MKDE) behaves according to ANSI COBOL 1985 for simple READ
statements.

However, for READ NEXT statements, the behavior of the Btrieve MKDE can vary from
ANSI COBOL 1985. According to ANSI COBOL 1985, the determination of the next record
to be read is not affected by subsequent non-READ operations. As long as the COBOL
application program does not perform any non-READ operations to the indexed file, the
Btrieve MKDE behaves according to ANSI COBOL 1985. If non-READ operations are
performed to the file, however, the Btrieve MKDE defines the next record as being the one
after the non-READ operation.

The Btrieve Adapter compensates for this variation by remembering the location of the record
that was last read, and the surrounding records, in order to set the position indicator back to
the correct place following the non-READ operation. This compensation works completely
when a single-user is accessing the file, but can fail in a shared file environment.

In a Btrieve shared file environment, Btrieve Adapter can become lost when reading records
via a key containing duplicate key values. If the COBOL application program performs a
non-READ operation between a READ and a READ NEXT statement, and an application
program running on the same or another computer deletes the current record and the records
around it (and all these records contain duplicate key values), then Btrieve Adapter becomes
lost and returns an error message 46, 02 to the application program. See Input/Output Errors
for more information.

This position-lost problem can be avoided when the shared Btrieve file is accessed via Btrieve
MKDE. Btrieve Adapter sets the new No Currency Change (NCC) option on Insert and
Update operations so that Btrieve will not change the current record position. In addition,

the user can specify the use of repeating duplicatable keys (see the D (Duplicates) Option on
page 132 of this user’s guide and the discussion of Linked versus Repeating Duplicatable
keys in the Btrieve Programmer’s Guide). Using both of these features avoids the position
lost problem and retrieves the correct record.

140 RM/COBOL User's Guide

Second Edition

RM/COBOL Indexed Files and Btrieve MicroKernel Database Engine (MKDE) Limitations
Chapter 4: System Considerations for Btrieve

File Position Indicator Limitations

The file position indicator specifies the next record to access within a file during certain
sequences of input-output operations.

If the COBOL program executes a START LESS THAN statement and there are multiple
records in the file that contain duplicate keys (for example, multiple records having the same
key value that satisfy the START LESS THAN condition), then the file position indicator will
be positioned to the last record in the sequence of duplicate key values. The same result
occurs if you execute a START LESS THAN OR EQUAL statement where the equal
condition is not met.

If no new records containing duplicates for a key value are added to the file, then Btrieve
Adapter behaves identically to the RM/COBOL file management system for the succeeding
READ NEXT or READ PREVIOUS statements. The RM/COBOL file management system
does not move the file position indicator from the record originally located by the START
statement. This position is the record returned for succeeding READ NEXT or READ
PREVIOUS statements.

The Btrieve MKDE does not allow Btrieve Adapter to emulate this behavior if new records
are added that contain duplicates for a key value. Btrieve Adapter moves the file position
indicator to the last record added at the time of the succeeding READ NEXT or READ
PREVIOUS statement.

Note Once the READ statement has been executed, the position is known, and the
RM/COBOL file management system and the Btrieve MKDE again behave the same.

Permission Error Detection Limitations

When you attempt to open an RM/COBOL indexed file and Btrieve Adapter is active, Btrieve
Adapter may open the file before the RM/COBOL file management system opens the file. If
the indexed file is already opened by the RM/COBOL file management system on another
computer, the Btrieve MKDE returns a Permission Error to Btrieve Adapter instead of a Not a
Btrieve File error. Btrieve Adapter assumes that the file is an already-opened RM/COBOL
indexed file and reports an Invalid Organization error to the file management system, which
then attempts to open the file. If the file is an RM/COBOL indexed file, the open succeeds.
If the problem was one with permissions, then the RM/COBOL file management system
encounters it also and returns the correct error code.

Using Existing Btrieve Files with RM/COBOL
RM/COBOL and ANSI COBOL 1985 define some limitations on indexed files that are not
imposed by the Btrieve MKDE.

Btrieve Adapter creates new Btrieve files that are compatible with the COBOL concept of
indexed files. Existing Btrieve files can be used also, providing they have the following
characteristics:

e The primary key cannot have a null value.

e Alternate keys can be modified, can use either the native or alternate collating sequence
(ACS), can be binary, and can have a null value.

e Keys cannot have the following Btrieve key flags: descending, supplemental, and any-
segment null. Keys must use ACS number zero, if any.

RM/COBOL User's Guide
Second Edition

141

RM/COBOL Indexed Files and Btrieve MicroKernel Database Engine (MKDE) Limitations
Chapter 4: System Considerations for Btrieve

o Keys do not have to be created in the file in any particular order. However, within the
file, there must be at least one key residing at the correct position for each COBOL key.
That key must be of the correct length, contain the correct duplicates flag, and cannot
contain any of the restrictions on keys as described above. Furthermore, this key must be
defined within the Btrieve file before any other keys that start at the same position.
Subsequent keys may have forbidden characteristics.

e There can be more keys in the Btrieve file than in the COBOL description, and they can
have characteristics that are not legal for COBOL keys. However, they must either have
a starting position that does not match the starting position for any COBOL key, or they
must occur in the Btrieve definition after the COBOL key description for that position.

e Within the record, there should not be any multiple-byte integer data fields. Btrieve
Adapter will not reject any files with fields of this type. Because of byte ordering,
however, there are no COBOL data types that can directly manipulate the integer data in
the field.

If an OPEN OUTPUT is performed on an existing Btrieve file, all characteristics of the
original file are preserved. This includes any compression (or lack of it) and any extra keys.
The file is simply made empty.

Btrieve MicroKernel Database Engine (MKDE)
Limitations Affecting RM/COBOL Applications

The Btrieve MKDE has limitations that may affect existing COBOL applications:

e Version 5 Btrieve files have a maximum record size of 55296 bytes. Version 6 Btrieve
files support record sizes of 64 KB or more using “chunk” operations. Btrieve Adapter
does not use any Btrieve “chunk” operations; therefore, the maximum record size is
limited by the communication environment in which Btrieve runs. When accessing
server-based Btrieve (remote files), the maximum record size is 57000 bytes. When
accessing client-based Btrieve (local files), the maximum record size is 64512 bytes. The
largest possible record size without using variable-length records is 4088 bytes.
RM/COBOL files have a maximum record size of 65280 bytes.

e Btrieve files have a minimum record length of four bytes. RM/COBOL files have a
minimum record length of one byte. Btrieve Adapter supports files whose record size is
less than four bytes by using a zero-filled, four-byte record.

e Btrieve files must have all keys located within the first 4096 bytes of a record.
RM/COBOL files may have keys located anywhere within the record.

e Btrieve files have a limit of 119 key segments. RM/COBOL files have a limit of 255
key segments.

e Btrieve files have a maximum key size of 255 bytes. The RM/COBOL runtime system
(including Btrieve Adapter), however, supports a maximum key size of 254 bytes.

142 RM/COBOL User's Guide
Second Edition

RM/COBOL Indexed Files and Btrieve MicroKernel Database Engine (MKDE) Limitations
Chapter 4: System Considerations for Btrieve

Variable-Length Records

RM/COBOL will support variable-length records using the Btrieve MKDE’s variable-length
record files. The size of the Btrieve data page will be either the minimum record length or the
maximum Btrieve MKDE page size, whichever is smaller.

For more details, refer to the discussion of variable-length records, logical and physical record
lengths, and page sizes in the Btrieve Programmer’s Guide.

Key Placement

The Btrieve MKDE restricts placement of keys within the first data page of a record. If a file
has variable-length records, the keys must fit within the minimum record length of the file or
the maximum Btrieve MKDE page size, whichever is smaller.

Automatic Creation of Variable-Length Record Files

If a COBOL program creates a file with a record size greater than the maximum Btrieve page
size, and the keys of that file fit within the maximum Btrieve page size, then the file will be
created with a record size equal to the maximum Btrieve page size, with the remainder of the
record in the variable-length portion of the Btrieve record. (The Btrieve MKDE allows the
portion of the record past the fixed length to be considerably longer.)

Verification of Maximum Record and Block Length

Btrieve files do not have a mechanism for storing the maximum record length and maximum
block length for a file. If a Btrieve file is opened with a maximum length for its RECORD
CONTAINS or BLOCK CONTAINS clause that does not match the maximum length at the
time the file was created, the mismatch will not be detected.

Support for RM/COBOL Internal Data Formats

The Btrieve MKDE internally stores integers in Intel binary integer format, with the most
significant byte at the highest address and the least significant byte at the lowest address.
Therefore, applications that access Btrieve files written outside of RM/COBOL cannot
directly access the following three RM/COBOL internal data formats since they store
numbers in the opposite manner (as binary integers with the most significant byte at the
lowest address and the least significant byte at the highest address):

e BINARY data
e COMPUTATIONAL-1 data
e COMPUTATIONAL-4 data

For more information about RM/COBOL internal data formats, refer to Appendix C: Internal
Data Formats (on page 451).

RM/COBOL User's Guide
Second Edition

143

RM/COBOL Indexed Files and Btrieve MicroKernel Database Engine (MKDE) Limitations
Chapter 4: System Considerations for Btrieve

Support for Btrieve Internal Data Formats

RM/COBOL programs can directly access the following Btrieve internal data formats:

e Decimal

e Money

e Numeric Signed ASCII

e Numeric Signed Trailing Separate

e String

All other Btrieve internal data formats can be interpreted by an RM/COBOL program on a

byte-by-byte basis. For more information about Btrieve internal data formats, refer to
“Extended Key Types” in the Btrieve Programmer’s Guide.

Input/Output Errors in Btrieve

Input/output errors that you would expect to occur for an RM/COBOL indexed file may not
occur for a Btrieve file. Because of its file structure and organization, information in Btrieve
files is stored differently than in RM/COBOL indexed files, or it is not recorded at all. Thus,
the RM/COBOL runtime system is unable to check or verify certain values in these files.

For example, the error message 39, 01, which normally occurs if an error is encountered when
the runtime system is trying to open an RM/COBOL indexed file, may not occur if the file is a
Btrieve file. Appendix A: Runtime Messages (see page 407) provides more information on
this and other specific input/output error codes where this behavior can occur.

144 RM/COBOL User's Guide

Second Edition

System Verification for UNIX
Chapter 5: System Verification

Chapter 5: System Verification

A suite of verification programs is provided with RM/COBOL. These programs ensure that
you have installed the required software correctly, as described in Chapter 2: Installation and
System Considerations for UNIX (on page 13) and Chapter 3: Installation and System
Considerations for Microsoft Windows (on page 49).

System Verification for UNIX

To invoke compilation and execution of the verification suite, enter:
doverify

For runtime-only systems, the compilation step is ignored.

The verification suite is designed to be self-explanatory. Follow the prompts on the screen for
instructions on selecting and running individual tests.

Notes

e Ifaproblem occurs with the display features of the verification suite, make sure you have
properly set and exported the environment variable TERM for your terminal type. If you
have done this and a problem exists, verify that your terminal type has an entry in the
system terminal database (termcap or terminfo) and check the accuracy of the cursor
motion sequence. This can be accomplished by running the system visual editor (vi).

e Ifany of the menu selections within the terminal configuration test work incorrectly, refer
to Chapter 8: RM/COBOL Features (on page 211) for details on the terminal attributes
required by the runtime system for complete ACCEPT and DISPLAY functionality.

Single-User Tests

Six sets of tests are provided in the verification suite for single-user versions. They are as
follows:

1. Terminal Configuration Test. This consists of individual tests that verify the
functionality of ACCEPT and DISPLAY statements and defaults, screen editing
functions and color functions (for appropriately configured terminals).

2. File System Test. This tests the sequential, relative, and indexed file system. It reads
and writes records to each of the three file types.

RM/COBOL User's Guide 145
Second Edition

System Verification for UNIX
Chapter 5: System Verification

3. Nucleus Test. This tests the modules of the RM/COBOL nucleus.

4. Printer Test. This tests that the printer configuration is correct and that communication
from RM/COBOL to the printer is successful. If no printer is attached, preserve the test
result in the pratst.out file by entering:

PRINTER=prntst.out; export PRINTER

before running this test.
5. Sort-Merge Test. This tests the sort-merge function of RM/COBOL.

6. Pop-Up Window Manager Test. This tests the RM/COBOL Pop-Up Window Manager
feature. The program displays a self-explanatory menu that allows you to test the various
features of the Pop-Up Window Manager system.

Multi-User Test

An additional verification program is provided with an appropriately licensed, multi-user
version of RM/COBOL. This test ensures that RM/COBOL is interacting correctly with the
file protection mechanisms employed by your system.

The program pacetest needs to be run simultaneously from at least two terminals that use the
RM/COBOL runtime system on the computer. This test creates and uses two indexed files:
pinx and pinxfl. pinx is a file that contains a single control record, which contains the next
available record in pinxfl. pinxfl is the working data file.

pacetest reads the control record, saves it, increments the control record, and writes it back to
pinx. The original number read is used as the primary key for the record written to the
growing pinxfl file. This scenario is repeated 100 times for each user running the test. With
two users running, 200 records would be written to pinxfl. The directions for running
pacetest are as follows:

1. Invoke pacetest at each terminal as follows:
runcobol pacetest

2. At one terminal only, choose function 1 to create the initial files. Wait for this operation
to complete.

3. At each terminal, choose function 2 to do simultaneous write operations. You will be
required to enter a unique station ID (1, 2, and so forth). Then, all stations should try to
press the Enter key simultaneously.

4. At any of the terminals, choose function 3 to read the file. Make sure all the records are
shown in order and are all there (100 records are written by each station).

If pacetest encounters any errors while reading the file, it will sound an alarm and display an
error message next to the record in question. Should this occur, double-check your software
installation. If everything appears to be set up correctly and you are still having problems,
contact Liant technical support services.

146 RM/COBOL User's Guide

Second Edition

System Verification for Windows
Chapter 5: System Verification

System Verification for Windows

To invoke compilation and execution of the verification suite, choose the icon named
doverify. The doverify program allows the user to select compilation and/or execution. For
runtime-only systems, the program detects that the compiler is not present and informs the
user. The user may still select the execution option.

The verification suite is designed to be self-explanatory. Follow the prompts on the screen for
instructions on selecting and running individual tests.

Single-User Tests

Six sets of tests are provided in the verification suite for single-user versions. They are as
follows:

1. Terminal Configuration Test. This consists of individual tests that verify the
functionality of ACCEPT and DISPLAY statements and defaults, screen editing
functions and color functions (for appropriately configured terminals).

2. File System Test. This tests the sequential, relative and indexed file system. It reads and
writes records to each of the three file types.

3. Nucleus Test. This tests the modules of the RM/COBOL nucleus.

4. Printer Test. This tests that the printer configuration is correct and that communication
from RM/COBOL to the printer is successful. If no printer is attached, preserve the test
result in the pratst.out file by setting a synonym before running this test. Using the
Synonyms Properties tab, type PRINTER in the Name text box and type pratst.out in the
Value text box. For more information, see Setting Synonym Properties (on page 90).

5. Sort-Merge Test. This tests the sort-merge function of RM/COBOL.

6. The Pop-Up Window Manager Test. This program displays a self-explanatory menu
that allows you to test the various features of the Pop-Up Window Manager.

Multi-User Test

An additional verification program is provided with an appropriately licensed, multi-user
version of RM/COBOL. This test ensures that RM/COBOL is interacting correctly in a
network environment.

The program pacetest needs to be run simultaneously from each computer that uses the
RM/COBOL runtime system on the network. This test creates and uses two indexed files:
pinx and pinxfl. pinx is a file that contains a single control record, which contains the next
available record in pinxfl. pinxfl is the working data file.

pacetest reads the control record, saves it, increments the control record, and rewrites it back
to pinx. The original number read is used as the primary key for the record written to the
growing pinxfl file. This scenario is repeated 100 times for each user running the test. With
two users running, 200 records would be written to pinxfl. The directions for running
pacetest are as follows:

1. Compile pacetest by choosing the RMCOBOL icon and selecting pacetest.cbl as the
source file.

2. Invoke pacetest at each computer by choosing the RUNCOBOL icon and selecting
pacetest.cob as the object file.

RM/COBOL User's Guide 147
Second Edition

System Verification for Windows
Chapter 5: System Verification

3. At one computer only, choose function 1 to create the initial files. Wait for this to
complete.

4. At each computer, choose function 2 to do simultaneous write operations. You will be
required to enter a unique station ID (1, 2, and so forth). Then, all stations should try to
press the Enter key simultaneously.

5. At any of the computers, choose function 3 to read the file. Make sure all the records are
shown in order and are all there (100 records are written by each station).

If pacetest encounters any errors while reading the file, it will sound an alarm and display an
error message next to the record in question. Should this occur, double-check your network
installation. If everything appears to be set up correctly and you are still having problems,
contact Liant technical support services.

148 RM/COBOL User's Guide

Second Edition

Compilation Process
Chapter 6: Compiling

Chapter 6: Compiling

RM/COBOL programs are compiled with a single pass of the RM/COBOL compiler.
Specifically, the compiler performs the following actions on the contents of the source
programs:

e Verifies syntactic accuracy.

e Creates object programs for execution with the RM/COBOL runtime system. Liant’s
use of this technique provides compactness and machine-independence.

e Creates program listings, the contents of which are chosen by entering the appropriate
Compile Command options.

This chapter presents complete information about the RM/COBOL compiler.

Compilation Process

Once invoked, the compiler makes one pass through the specified source file. During this
pass, both object files and listing files are generated. The RM/COBOL compiler is invoked
when you enter the Compile Command, rmcobol. The object file contains the machine-
independent object code, executed at runtime, for the RM/COBOL program. The listing file
contains a source image, which may be printed at the end of each compilation. Using the
available Compile Command options, you can alter, augment, and suppress portions of the
information contained in the listing.

RM/COBOL provides standard COBOL subprogram structure, but no intermediate linkage
process stands between program compilation and execution. It is also possible to define
sections of code within your program as overlay segments to the fixed permanent segment, as
explained in the discussion of segmentation in Chapter 5: Procedure Division of the
RM/COBOL Language Reference Manual.

Note By default, on Windows the RM/COBOL GUI compiler window disappears
immediately when a successful compilation completes. If you want the window to remain
visible, set the Persistent property (see page 84) to True or use the console mode compiler.

RM/COBOL User's Guide 149
Second Edition

System Files
Chapter 6: Compiling

System Files

RM/COBOL takes its input from a source file, and creates an object file and a listing file.

Source Files

RM/COBOL source files contain the RM/COBOL source code. Source lines are made up
of variable-length records. Source text is ASCII, with either a line feed (LF) character or

a carriage return (CR) and line feed (LF) character paired as the line separator. Embedded
tab characters are expanded to one or more spaces, according to the default tab column
position, which is every fourth column, starting with column 8§ and ending with column 72,
or according to the value of the TAB-STOPS keyword (see page 371) in the RUN-SEQ-
FILES configuration record.

Object Files

An object file is created on disk as a purely binary file. Its filename is identical to the
filename of the source file, with the filename extension .cob or .COB or the extension
specified in the EXTENSION-NAMES configuration record (see page 343).

You can direct the object file to a directory other than the one on which the source file resides.
To do this, use the O Compile Command Option (see page 164). The object file may be
suppressed by the use of the N Compile Command Option (see page 164).

Listing Files

The contents of RM/COBOL listings are detailed in the topic Listing (on page 170). Listings
can be directed to a disk file, the printer, the screen, or any combination thereof, depending
on the options selected in the Compile Command. Listing files are given the filename of the
source program, with the filename extension .Ist or .LST or the extension specified in the
EXTENSION-NAMES configuration record (see page 343). The listing file is a printer

file and, therefore, may be configured using the PRINT-ATTR configuration record (see
page 348).

Libraries

A source file can contain more than one source program. Files containing a sequence of two
or more programs are referred to in this manual as libraries. With libraries, the generated
object file contains a distinct object module for each source program in the source file,
excluding contained programs. The object for a contained program is considered part of the
object of the program that contains it. The listing file contains a complete listing of each
source program in the source file.

Each noncontained program in a source file or library is compiled strictly independent of the
other programs: there need be no relationship between them. However, this capability to
concatenate multiple source programs into a single library is used most effectively when there
is some logical relationship among the programs. This might be a main program and the
called subprograms, or all the programs that include a specific copy file or group of copy

150 RM/COBOL User's Guide

Second Edition

Compile Command
Chapter 6: Compiling

files. In the latter case, recompilation of all the source programs affected by a change in one
of the copy files can be accomplished with a single invocation of the Compile Command
(rmcobol).

Note RM/COBOL versions 1 and 2 did not require END PROGRAM headers to separate a
sequence of source programs. Versions 3 and later support nested programs, which make
END PROGRAM headers necessary. If you have a source file with a sequence of programs
and no END PROGRAM headers, you can either add the headers or specify the Z=2 Compile

Command Option (see page 166).

Use the Combine Program (rmpgmcom) utility (on page 625) to combine multiple object files
into a single library when the source modules are contained in separate files.

Compile Command

Use the Compile Command (rmcobol) to request program compilation and to specify options.

Under UNIX, the Compile Command is entered at a shell prompt. After typing the desired
command and options, press Enter to begin compilation.

Under Windows, the Compile Command can be entered in the Command line text box of the
Create Shortcut dialog box. For instructions, see Creating a Windows Shortcut (on page 63).
Choose the RMCOBOL icon to begin compilation. Programs also may be executed by
dragging the .cbl source file to the RMCOBOL object or by double-clicking the source file.

The format of the Compile Command is as follows:

rmcobol filename [[(] [[~]loption] ... [) comment]]

filename is the name of the source file to be compiled. It may be any valid operating
system pathname, and may by partially or fully qualified. Specifying an extension is
optional, but that extension must not be the same as the object file extension (.cob or
.COB unless configured otherwise). If you do not enter a filename extension with the
pathname, the compiler begins its search for the source file by looking first for the file
exactly as specified. If it cannot find such a file, it looks for a file with the supplied name
and an extension .cbl. If the file is still not found when running under UNIX, it looks for
a file with an extension of .CBL. For all attempts to open the source file, if neither a
drive designator nor a directory path is specified, the directory search sequence is used.
If a directory path is specified, a directory search sequence may be used if configured
properly. See the discussions of Directory Search Sequences on UNIX (on page 22),
Directory Search Sequences on Windows (on page 66), and the EXPANDED-PATH-
SEARCH keyword (on page 358) in the RUN-FILES-ATTR configuration record.

~ (tilde) can be used as a negation character. Its purpose is to negate the presence of
attributes in a COMPILER-OPTIONS configuration record (see page 312). Its use is
described in Compile Command Options (see page 154).

option specifies the RM/COBOL compiler options. (A complete discussion of the
Compile Command options begins on page 154.) Spaces or commas must separate
options. Options may be entered in either uppercase or lowercase letters. If an option is
repeated in a command, the last occurrence of the option is used. Each option may be
preceded by a hyphen. If any option is preceded by a hyphen, then a leading hyphen
must precede all options. When a value is assigned to an option, the equal sign is
optional if leading hyphens are used.

RM/COBOL User's Guide 151
Second Edition

Compile Command
Chapter 6: Compiling

comment is used to annotate the command. The comment is ignored by the compiler and
has no effect on the compilation. The left parenthesis is always optional. The right
parenthesis is a required separator if comments are entered. Under UNIX, the parenthesis
must be preceded with a backslash (\) character in order to be protected from the shell.

Up to 54 characters of the filename specified in the Compile Command are copied into the
“Source file:” field of the listing header. Up to 110 characters of options and comment from
the Compile Command are copied into the “Options:” field within the listing header. The
options will also include options specified in the registry (on Windows) or resource files (on
UNIX). Thus, this information is reproduced at the top of each listing page. See Figure 24 on
page 170 for an example of a listing header.

In addition, the RM/COBOL for Windows compiler also supports the following command-
line options, which do not follow the command format described earlier in this section:

e Three OLE server registration commands. These options are described in Compiler
Registration (see page 58).

rmcobol /regserver
rmcobol /unregserver
rmcobol /showserver

e Three character-set commands. These options are described in Character Set
Considerations for Windows (see page 104).

rmcobol /cs_ansi
rmcobol /cs_oem
rmcobol /showcharset

Batch Compilation on Windows

For Windows, the RM/COBOL compiler can be run as a console application using the
rmcobolc command or as a GUI application using the rmcobolg command. Copying or
renaming either of these executables to rmeobol can be done to choose the default method of
compilation. The two compilers support the same Compile Command options and produce
the same results. The console application compiler runs in a console window (a Command
Prompt window). The GUI compiler runs in a standard graphical Windows window.

The console application is particularly useful for batch compilations using a command script,
for example, in a batch command file. The GUI compiler can also be used for batch
compilations, but in this case, the Windows start command with the wait option should be
used as follows:

start /wait rmcobolg [options]

This command causes the script to wait until the compilation completes before executing the
next command in the script; otherwise, the next command in the script is executed in parallel,
which can lead to problems such as script errors if the next command attempts to access files
produced by the compilation or too many parallel compilations. When using the GUI
compiler in batch mode, it is often desirable to set the Main Window Type property to Hidden
for compiling so that GUI windows are not flashed on the display screen as each file is
compiled. For more information, see the Main Window Type property (on page 82).

152 RM/COBOL User's Guide

Second Edition

Compile Command
Chapter 6: Compiling

Multiple File Compilation on Windows

The Compile Command on Windows supports two methods of selecting more than one file
for compilation. The first method involves the use of the File Open dialog box and the second
method involves the use of wildcard characters within a filename specification. Both methods
employ the question mark character (?), although in different ways.

When multiple files are compiled either by selecting multiple files after specifying a question
mark for the filename on the command line or by using wildcard characters in the filename on
the command line, the multiple files are compiled as if the user had entered a sequence of
command lines with the selected filenames and the same set of Compile Command options
specified in the original command line. The question mark or filename with wildcard
characters in it is not used as a registry key for looking up properties set for a particular
program. Instead, for each selected program, the properties set for that program are used. For
information on setting default properties and program-specific properties in the registry, see

Setting Properties (on page 73).

Multiple File Selection with File Open Dialog

Both the console and GUI mode compilers support specifying a question mark for the
filename Compile Command parameter, which displays a File Open dialog box for selecting
the file or files to be compiled. Multiple files may be selected by using the Ctrl or Shift keys
in the standard Windows manner for multiple selections. Compilation stops after all the files
are compiled or when any single compilation returns a non-zero compiler exit code. Each
compilation uses the same Compile Command options that were specified with the question
mark for the filename. For example, the Compile Command:

rmcobol ? L A X

would display the File Open dialog box and then compile all the selected files with a listing
file (the L Option) and the list file will contain an allocation map (the A Option) and a cross
reference listing (the X Option).

Note The default filter for the File Open dialog box Files of type: drop-down list is “*.cbl”
regardless of the value defined by the SOURCE keyword (see page 344) of the EXTENSION-
NAMES configuration record.

Multiple File Selection with Wildcard Characters in Filename

In the preceding example, the question mark is not quoted in the Compile Command because
quotes cause the question mark to be interpreted as a wildcard character within a filename
specification. In addition to the question mark, an asterisk (*) is also recognized as a wildcard
character. An asterisk represents zero or more of any character whereas the question mark
represents zero or one of any character. Hidden files, system files, offline files, directories,
and reparse points are ignored. For example, the Compile Command:

rmcobol *.cbl Y=3 L

compiles all regular files in the current directory that have an extension of .cbl. The Y=3
Compile Command Option is set for each of the compilations. Compilations stop when all
the indicated files have been compiled or when any single compilation returns a non-zero
compiler exit code.

RM/COBOL User's Guide
Second Edition

153

Compile Command
Chapter 6: Compiling

As another example, the Compile Command:
rmcobol \\server\src\???.cbl L

compiles all regular files in the directory \\server\sre that have filenames zero to three
characters in length and an extension of .cbl. The L Compile Command Option is set for each
compilation.

More than one asterisk can be used. For example, the Compile Command:
rmcobol *ar*.cbl L X

compiles all regular files in the current directory that have “ar” somewhere in the filename
and an extension of .cbl. The L and X Compile Command Options are set for each
compilation. A single unquoted question mark (?) is interpreted as meaning that a File Open
dialog box should be displayed instead of as a pathname with a wildcard character. If the
question mark is quoted or is part of a pathname, it is interpreted as a wildcard character. For
example, either of the Compile Commands:

rmcobol "?" L

rmcobol .\? L

compile all regular files that have a 0 to 1 character length name in the current directory. A
File Open dialog box is not displayed in either of these cases. Quotes are required if the
filename contains spaces, regardless of whether wildcard characters are used or not used. The
wildcard characters are only permitted in the final edgename of the filename. For example,
the Compile Commands:

rmcobol ?\test.cbl

rmcobol *\test.cbl

will cause an open error because the path portion of the filename contains a wildcard
character. The open error will occur regardless of the existence of a file named test.cbl in a
subdirectory of the current directory. If the list of files that match a filename containing
wildcard characters is empty, the compiler attempts to open the given filename. Since
Windows prohibits the wildcard characters in filenames, this will normally result in an open
error. See Open error for file pathname (on page 194) for information about the open error
message that is displayed. (The expansion of wildcard characters is accomplished using the
Windows FindFirstFile and FindNextFile functions.)

Compile Command Options

Compile Command options can be specified in the following three ways:

1. They can be placed into the registry (on Windows) or the resource files (on UNIX). In
the registry, the Command Line Options property (see page 78) provides command-line
options for the compiler when Compiler is selected on the Select File tab of the
RM/COBOL Properties dialog box. In resource files, the Options keyword, which is
described in Command-Line Options (on page 27), provides command-line options for
the compiler in the global resource file /etc/default/rmcobolre and the local resource file
~/.rmcobolrec.

2. They can be specified in the Compile Command itself.

154 RM/COBOL User's Guide

Second Edition

Compile Command
Chapter 6: Compiling

3. They can be placed into a configuration file, which is processed by the RM/COBOL
compiler when the configuration file is automatically located or specified with a
configuration command-line option. For information on configuration files, see
Automatic Configuration Files (on page 308) or Configuration Compile Command
Options (on page 158). For a discussion of the compiler options that can be configured,
see the COMPILER-OPTIONS configuration record (on page 312).

Options are processed in the order given above, but options specified in the configuration do
not override options specified in the resultant set of command-line options as determined from
items 1 and 2 above. This means that options specified in a Compile Command will take
precedence over conflicting or contradictory options specified by the registry or resource files
(item 1) or configuration (item 3). The configured options, together with the options that
appear in a Compile Command, apply to every source program in the source file (or, on
Windows, files) specified in that Compile Command.

You can override specific options in a configuration file by negating the option in the
Compile Command. To do this, enter a tilde (~) and the option in the Compile Command.
For example, the following configuration file, possibly named config.cfg:

COMPILER-OPTIONS FLAGGING=HIGH, COM2, OBSOLETE
& OBJECT-VERSION=9
& LISTING-PATHNAME=LISTINGS

directs RM/COBOL to flag HIGH, COM2 and OBSOLETE language elements, to restrict the
object version level to 9, and to write the listing file to the directory named LISTINGS.

For a particular compilation, you may want to suppress some or all configured options. For
example, to suppress the flagging of COM2 elements and the creation of the listing file (here,
assuming the program-name is PAYROLL), enter the following Compile Command:

rmcobol payroll G=config.cfg F=~COM2 ~L

This negates the flagging of COM2 elements and suppresses the creation of the listing file (L
option) for the compilation. The next time you use this configuration file in a compilation,
the configured options will be in effect again.

To disable all flagging, and to write the listing to the current directory, enter the following
Compile Command:

rmcobol payroll G=config.cfg ~F, L=.
This negates the flagging of HIGH, COM2 and OBSOLETE elements, and writes the listing
to the current directory instead of to LISTINGS as specified in the configuration file.

A negated option calls up the default value for that option; that is, it behaves exactly as if no
option were configured.

RM/COBOL User's Guide
Second Edition

156

Compile Command
Chapter 6: Compiling

For quick reference, Table 15 summarizes the Compile Command options in alphabetical
order. The Compile Command options, however, are grouped into six categories and are
explained more fully in these sections:

1. Configuration (see page 158)
Data Item (see page 159)

Listing (see page 160)

AN

File Type (see page 160)

Object Program (see page 164)
Source Program (see page 167)

Table 15: RM/COBOL Compile Command Options

Option
A
(see page 160)

B
(see page 160)

Cl=n
see page 160)

D
(see page 167)

E
(on page 162)

F={(keyword-list)|keyword}
(see page 167)

G=pathname
(see page 158)

H=pathname
(see page 158)
K

(see page 158)

L[=pathname
(see page 162)

M
(see page 164)

156 RM/COBOL User's Guide
Second Edition

Description

Directs the compiler to generate the allocation map in the
listing.

Defines as binary sequential those sequential files not
explicitly declared to be line sequential in their file control
entries.

Suppresses the inclusion of copied text, replaced text,
replacement text, or COPY statement text in the listing.
ncanbe 0to 15 Specifying C is equivalent to C=1.

Directs RM/COBOL to compile all source programs as if the
WITH DEBUGGING MODE clause appeared in each
compiled program.

Suppresses the inclusion of the source program component in
the listing except for lines associated with diagnostic
messages.

Directs the compiler to flag occurrences of these language
elements:

COM1 INTERMEDIATE
COM2 OBSOLETE
EXTENSION SEGI

HIGH SEG2

If leading hyphens are used, the parentheses are optional.

Designates a file to be used as the primary compiler
configuration.

Designates a file as a supplement to the compiler
configuration.

Suppresses the banner message and the terminal error listing.

Directs the compiler to produce a listing file and optionally
specify the directory in which to place the listing file.

Directs the compiler to suppress automatic input conversion
for Format 1 and 3 ACCEPT statements with numeric
operands and to suppress right justification of justified
operands. Direct the compiler to suppress automatic output
conversion for numeric fields of Format 3 DISPLAY
statements.

Compile Command
Chapter 6: Compiling

Table 15: RM/COBOL Compile Command Options (Cont.)

Option
N
(see page 164)

O=pathname
(see page 164)

P
(see page 163)

Q
(see page 165)

R
(see page 165)

S
(see page 159)

T
(see page 159)

U[={B|D|P}]
(see page 159)

\Y

(see page 160)
W=n

(see page 158)

X
(see page 163)

Y[=n]
(see page 165)

Z=version
(see page 166)

2
(see page 168)

7
(see page 166)

Description

Suppresses the generation of an object program.

Specifies the directory pathname where the object file will be
placed.

Directs the compiler to write a copy of the listing to the
printer.

Directs the compiler to eliminate debugging information from
generated object programs.

Directs the compiler to generate a sequential number in the
first six columns of source records as they appear on the
listing.

Directs the compiler to assume a separate sign when the SIGN
clause is not specified for a DISPLAY usage, signed numeric
data item (that is, for a data item whose character-string
within a PICTURE clause begins with S).

Directs the compiler to write a copy of the listing to the
standard output device.

Directs the compiler to assume an alternative usage for data
items described as COMP or COMPUTATIONAL.

e The U Option specified alone or as U=B directs the
compiler to assume BINARY usage for data items
described as COMP or COMPUTATIONAL.

e The U=D Option directs the compiler to assume
DISPLAY usage for items described as COMP or
COMPUTATIONAL.

e The U=P Option directs the compiler to assume
PACKED-DECIMAL usage for items described as
COMP or COMPUTATIONAL.

Defines as line sequential those sequential files not explicitly
declared to be binary sequential in their file control entries.

Specifies the amount of memory (in kilobytes) that the
compiler should use for its internal table storage. n can be a
decimal number from 32 to 524288.

Directs the compiler to generate a cross reference map in the
listing.

Directs the compiler to output the symbol table and debug line
table to the object program file. n can be 0 to 3. Specifying
Y is equivalent to Y=1.

Indicates the object version of the RM/COBOL runtime you
want to use. version can be 9 through 15.

Directs the compiler to accept source programs created for the
RM/COBOL 2.n compiler.

Specifies the semantic rules under which the program is to be
compiled as conforming to the American National Standard
COBOL 1974.

RM/COBOL User's Guide
Second Edition

157

Compile Command
Chapter 6: Compiling

Configuration Compile Command Options

The following options designate a file to be used as the complete compiler configuration or as
a supplement to it and allow suppression of the compiler banner message.

G

158 RM/COBOL User's Guide
Second Edition

Use the G Option to designate a file to be used as the compiler configuration. If
the G Option is specified, any automatic configuration is ignored (that is, not
processed). The G Option has the following format:

G=pathname

Configuration files are fully described in Chapter 10: Configuration (on page 307).
See also the H Compile Command Option below.

By default, a configuration file is not designated.

Use the H Option to designate a file as a supplement to the compiler
configuration. The specified file is processed after any automatic configuration
and after any file specified in the G Option, but before any other command-line
options are processed. The H Option has the following format:

H=pathname
If no configuration exists (either automatic or specified with the G Compile

Command Option), the specified file serves as the complete configuration. For more
information, see Chapter 10: Configuration (on page 307).

By default, a supplemental file is not designated.

Use the K Option to suppress the banner message and the terminal error listing.
This is useful when you are running under batch files or shell scripts.

By default, this information is displayed on the standard output device. The default
can be configured with the NO-TERMINAL-DISPLAY value for the COMPILER-
OPTIONS configuration record keyword LISTING-ATTRIBUTES (see page 323).

Use the W Option to specify the amount of memory (in kilobytes) that the
compiler should use for its internal table storage. The W Option has the
following format:

W=n

where, 7 is a decimal number from 32 to 524288.

The default value is 1024 kilobytes (1024 KB) and is generally sufficient for a
20,000 — 40,000 line source program. A program with 135,000 source lines
compiles at top speed with w=3072. The compiler will adjust the workspace size
automatically as needed, but with a performance penalty. The compilation listing
summary has information about the maximum amount of memory required for
compilation, as described in Summary Listing (on page 182). This information can
be used to choose an appropriate value for the W option.

The default can be configured with the COMPILER-OPTIONS configuration record
keyword WORKSPACE-SIZE (see page 338).

Compile Command
Chapter 6: Compiling

Data Item Compile Command Options

The following compiler options direct the compiler to assume a certain usage for data items.

S

Use the S Option to direct the compiler to assume a separate sign when the
SIGN clause is not specified for a DISPLAY usage, signed numeric data item
(that is, for a data item whose PICTURE character-string clause begins with S).
The S Option also allows a BLANK WHEN ZERO clause to be specified in the
data description entry of a signed numeric data item for compatibility with
RM/COBOL 2.n. In such cases, a trailing fixed insertion plus symbol (+) is
assumed for the PICTURE character-string.

Note This option should be used only when compiling existing source programs
written with an earlier version of RM/COBOL, and then only with caution. The use
of this option creates inconsistencies between RM/COBOL and ANSI COBOL 1974
and 1985.

The default is to assume a trailing combined (zoned) sign unless the SIGN clause is
present and to disallow the BLANK WHEN ZERO clause for signed numeric data
items. For more information about trailing combined (zoned) signs, see Table 41:
Nonnumeric Data (on page 453).

The default can be configured with the COMPILER-OPTIONS configuration record
keyword SEPARATE-SIGN (see page 329).

Use the U Option to direct the compiler to assume an alternative usage for data
items described as COMP or COMPUTATIONAL. The U Option has the
following format:

U[=B|D|P]

The U Option specified alone or as U=B directs the compiler to assume BINARY
usage for data items described as COMP or COMPUTATIONAL. This option
causes COMP data items to be compatible with IBM OS/VS COBOL COMP data
items and may result in improved computational speed at runtime.

The U=D Option directs the compiler to assume DISPLAY usage for items described
as COMP or COMPUTATIONAL.

The U=P Option directs the compiler to assume PACKED-DECIMAL usage for
items described as COMP or COMPUTATIONAL.

The U[=B] and 2 Options are mutually exclusive; they may not appear in the same
Compile Command.

The default is to assume unpacked decimal format for data items described as COMP
or COMPUTATIONAL. The default can be configured with the COMPILER-
OPTIONS configuration record keywords COMPUTATIONAL-AS-BINARY (see
page 317) or COMPUTATIONAL-TYPE (see page 317).

RM/COBOL User's Guide
Second Edition

159

Compile Command
Chapter 6: Compiling

File Type Compile Command Options

The following compiler options determine whether a sequential file is declared as a binary
sequential or a line sequential file.

B Use the B Option to define as binary sequential those sequential files not
explicitly declared to be line sequential in their file control entries. For more
information, see the discussion of file types and structure (on page 247).

v Use the V Option to direct that any sequential file not declared to be binary
sequential be considered line sequential.

The defaults for these compiler options can be configured with the COMPILER-OPTIONS
configuration record keyword SEQUENTIAL-FILE-TYPE (see page 330).

Note The B and V Options are mutually exclusive; they may not appear in the same Compile
Command. If neither the B nor the V Option is used, the decision as to whether the file is
binary sequential or line sequential is deferred to program execution. The choice is then
controlled by the configured DEFAULT-TYPE keyword (see page 370) in the RUN-SEQ-
FILES configuration record.

Listing Compile Command Options

The following compiler options generate a listing and control the destination and contents of
the listing.

Note The L, P, and T Options direct the listing to different destinations; any or all of these
options may appear in the same Compile Command. If neither the T nor the K Option is
selected, an error-only listing is written to standard output.

A Use the A Option to direct the compiler to generate the allocation map (see
page 175) in the listing.

This is useful during program development for use with the RM/COBOL Interactive
Debugger.

The A Option may not be specified if none of the L, P, T, or Y=3 Options are
specified or configured.

By default, the allocation map is not created as part of the listing or debugging
information in the object file. The default can be configured with the
ALLOCATION-MAP value of the COMPILER-OPTIONS configuration record
keyword LISTING-ATTRIBUTES (see page 323).

C Use the C Option to suppress the inclusion of copied text in the listing. Copied
text is source text brought into the program as a result of encountering a COPY
statement. See the description of the COPY statement (on page 238) and in
Chapter 1: Language Structure of the RM/COBOL Language Reference
Manual.

The C Option suppresses only the inclusion of the copied text in the listing; the
copied text is always compiled. Even though the C Option is selected, erroneous
lines encountered in the copied text during compilation are written to the listing
along with the associated diagnostic message.

Text to the right of the COPY statement in the source line that contains that
statement appears on a line by itself, immediately following the copied text.

160 RM/COBOL User's Guide

Second Edition

Compile Command
Chapter 6: Compiling

The C Option may not be specified if none of the L, P, or T Options is specified or
configured.

The value specified in the C Option has been extended to allow specification of a
numeric value from 0 through 15. When the binary value includes the 4 bit (0100),
then replacement lines are suppressed in the listing. When the binary value includes
the 8 bit (1000), then COPY statement lines are suppressed in the listing.

The C Option has the following variations:

Option Action

C=0 or ~C Is equivalent to specifying the negated C Option (~C); that is, copied text is
not suppressed in the listing. This is also the default behavior if C is not
specified. In version 11 and later, replaced text is also suppressed by
default unless the KEEP-REPLACED-LINES value of the LISTING-
ATTRIBUTES keyword of the COMPILER-OPTIONS configuration
record is specified.

C=lorC Specifies suppression of copied text in the listing. This option setting can
also be configured with the SUPPRESS-COPIED-LINES value of the
LISTING-ATTRIBUTES keyword in the COMPILER-OPTIONS
configuration record.

C=2 Specifies suppression of replaced text in the listing. This option setting can
also be configured with the SUPPRESS-REPLACED-LINES value of the
LISTING-ATTRIBUTES keyword in the COMPILER-OPTIONS
configuration record.

C=3 Specifies suppression of copied and replaced text in the listing.

C=4 Specifies suppression of replacement text in the listing. This option setting
can also be configured with the SUPPRESS-REPLACEMENT-LINES
value of the LISTING-ATTRIBUTES keyword in the COMPILER-
OPTIONS configuration record.

C=5 Specifies suppression of copied and replacement text in the listing.
C=6 Specifies suppression of replaced and replacement text in the listing.
Cc=7 Specifies suppression of copied, replaced, and replacement text in

the listing.

C=8 Specifies suppression of COPY statement text in the listing. This option
setting can also be configured with the SUPPRESS-COPY-STATEMENT-
LINES value of the LISTING-ATTRIBUTES keyword in the COMPILER-
OPTIONS configuration record.

C=9 Specifies suppression of copied and COPY statement text in the listing.

C=10 Specifies suppression of replaced text and COPY statement and text in
the listing.

C=11 Specifies suppression of copied, replaced and COPY statement text in
the listing.

C=12 Specifies suppression of replacement and COPY statement text in the
listing.

C=13 Specifies suppression of copied, replacement and COPY statement text in

the listing.

C=14 Specifies suppression of replaced, replacement and COPY statement text in
the listing.

C=15 Specifies suppression of copied, replaced, replacement, and COPY
statement text in the listing.

RM/COBOL User's Guide 161
Second Edition

Compile Command
Chapter 6: Compiling

162 RM/COBOL User's Guide
Second Edition

By default, copied text is included in the source listing. Copied text immediately
follows the line that contains the COPY statement. The default option settings can
be configured with the LISTING-ATTRIBUTES keyword (see page 323) in the
COMPILER-OPTIONS configuration record.

Note The LISTING directive provides more control over what source is listed or not
listed in the compilation listing. For more information on compiler directives, see
Chapter 1: Language Structure of the RM/COBOL Language Reference Manual.

Use the E Option to suppress the inclusion of the source program component in
the listing. However, if errors are encountered during compilation, the listing
will include the erroneous lines and their associated diagnostic messages.

The E Option may not be specified if none of the L, P, or T Options is specified or
configured.

By default, the source program component is included in the listing. The default can
be configured with the ERROR-ONLY-LIST value of the COMPILER-OPTIONS
configuration record keyword LISTING-ATTRIBUTES (see page 323).

Use the L Option to direct that a listing file be written to disk. The L Option has
the following format:

L[=pathname]

The L Option specified above directs the compiler to write the listing to the default
directory.

pathname specifies a directory into which the listing file is to be written.

The listing file will always have the same name as the source file; its extension will
be the listing file extension (.Ist or .LST unless configured otherwise). On those
operating systems that have case-sensitive filenames, the case of the extension will
match the case of the first character of the source file’s extension, or the first
character in the source file’s name if there is no extension. If there is no extension
and the first character of the source filename is not a letter, then the extension .Ist
will be used. For examples of valid filenames, see Table 1 (on page 12).

The default directory, when pathname is not specified, depends on whether the
source filename was specified with a drive or directory in its value.

If the source filename was specified with a drive or directory in its value, the default
directory is the one containing the source file.

Otherwise, the default directory is determined by using the compiler directory search
sequence. If an existing file with the same name as the source file and the listing file
extension is found using the compiler directory search sequence, the default
directory is the one in which that file is found. If such a file is not found using the
compiler directory search sequence, the default directory is the current directory.

See the discussions of Directory Search Sequences on UNIX (on page 22) and
Directory Search Sequences on Windows (on page 66).

If a file already exists with the specified name and extension in the specified or
default directory, it is overwritten.

By default, the listing is not written to disk. The default can be configured with the
LISTING-FILE value of the COMPILER-OPTIONS configuration record keyword
LISTING-ATTRIBUTES (see page 323).

Compile Command
Chapter 6: Compiling

Use the P Option to direct the compiler to write a copy of the listing to the
printer.

Without a print spooler, the P Option cannot be used when the printer is busy.

By default, a copy of the listing is not written to the printer; see the discussion of the
topic Listing (on page 170). The default can be configured with the PRINT-
LISTING value of the COMPILER-OPTIONS configuration record keyword
LISTING-ATTRIBUTES (see page 323).

Use the R Option to direct the compiler to generate a sequential number in the
first six columns of source records as they appear on the listing. The source file
itself is not affected.

If selected, this option numbers records beginning with 1 for each source or copy
input file. The number can be helpful when editing the source file. This line number
cannot be used with the RM/COBOL Interactive Debugger.

The default is to print the source record exactly as read, including any commentary
information present in columns 1 through 6. The default can be configured with
either of the following options in the COMPILER-OPTIONS configuration record:

e the RENUMBER-SEQUENCE-AREA value of the LISTING-ATTRIBUTES
keyword (see page 323)

o the RESEQUENCE-LINE-NUMBERS keyword (see page 329)

Use the T Option to direct the compiler to write a copy of the listing to the
standard output device. Generally, the standard output device is the screen, but
this can be controlled through redirection.

By default, a copy of the listing is not written to the standard output device.
However, the last two lines of the summary listing—as well as all erroneous lines
and associated diagnostic messages—are written to the standard output device
regardless of the T Option. This display can be suppressed with the K Option (see
page 158). The default can be configured with the TERMINAL-LISTING value of
the COMPILER-OPTIONS configuration record keyword LISTING-ATTRIBUTES
(see page 323).

Use the X Option to direct the compiler to generate a cross reference map in the
listing. The cross reference map contains an alphabetic list of all user-defined
words that appear in the source program. For each user-defined word, the line
number of each appearance is listed. Each line number is marked to indicate
that the word is being used as a declaration, a source operand or a possible
destination operand. (See Figure 33 on page 181 for a sample of the cross
reference map.)

The X Option may not be specified if none of the L, P, T, or Y=3 Options is
specified or configured.

By default, the cross reference map is not included in the listing or in the debugging
information in the object file. The default can be configured with the CROSS-
REFERENCE value of the COMPILER-OPTIONS configuration record keyword
LISTING-ATTRIBUTES (see page 323).

RM/COBOL User's Guide
Second Edition

163

Compile Command
Chapter 6: Compiling

Object Program Compile Command Options

The following compiler options generate or suppress an object program and control the
destination and features of the object program.

M

164 RM/COBOL User's Guide
Second Edition

Use the M Option to direct the compiler to suppress automatic conversions in
certain ACCEPT and DISPLAY statements. In Format 1 and 3 ACCEPT
statements, this option suppresses automatic input conversion for numeric
operands and suppresses right justification for justified operands. For Format 3
DISPLAY statements (DISPLAY screen-name), this option suppresses
automatic output conversion for numeric fields within the screen description

entry.

Note This option must be used if Format 1 ACCEPT statements with numeric
operands are to be treated in compliance with ANST COBOL 1985 and 1974.

The default is to provide input conversion for numeric operands of Format 1 and 3
ACCEPT statements, right justification for justified operands of Format 1 and 3
ACCEPT statements, and output conversion for numeric fields of Format 3
DISPLAY statements. The default can be configured with the COMPILER-
OPTIONS configuration record keyword ACCEPT-SUPPRESS-CONVERSION
(see page 314).

Use the N Option to suppress the generation of an object program.

The default is to generate object code according to the rules for the O Option,
described in the following section. There is no corresponding configuration for this
command-line option.

Use the O Option to specify the directory pathname where the object file will be
placed. The O Option has the following format:

O=pathname

where, pathname specifies a directory into which the object file is to be written.

The object file will always have the same name as the source file. Its extension will
be the object file extension (.cob or .COB unless configured otherwise). On those
operating systems that have case-sensitive filenames, the case of the extension will
match the case of the first character of the source file’s extension, or the first
character in the source file’s name if there is no extension. If there is no extension
and the first character of the source filename is not a letter, then the extension .cob
will be used. For examples of valid filenames, see Table 1 (on page 12).

The O and N Options may appear together in a single compilation. For example, the
OBJECT-PATHNAME keyword (see page 328) in the COMPILER-OPTIONS
configuration record specifies the directory for the object file. Entering the N Option
on the Compile Command suppresses the generation of the object file (and as a result
negates the OBJECT-PATHNAME keyword in the configuration file).

The default directory depends on whether or not the source filename was specified
with a drive or directory in its value.

If the source filename was specified with a drive or directory in its value, the default
directory is the one containing the source file.

Otherwise, the default directory is determined by using the directory search
sequence. If an existing file with the same name as the source file and the object file
extension is found using the compiler directory search sequence, the default

Compile Command
Chapter 6: Compiling

directory is the one in which that file is found. If such a file is not found using the
compiler directory search sequence (see the appropriate installation and systems
considerations chapter in this user’s guide for your specific operating system), the
default directory is the current directory.

If a file already exists with the specified name and extension in the specified or
default directory, it is overwritten.

Use the Q Option to direct the compiler to eliminate debugging information
from generated object programs. Programs compiled with this option will
appear invisible to the Interactive Debugger and Instrumentation. A statement
address consisting of an optional segment number and segment offset will be
substituted for line numbers in Normal Termination, Error Termination and
Traceback runtime system messages. A segment number and segment offset
replace line number references when this option is selected.

The Q and Y options are mutually exclusive; that is, they may not appear in the same
Compile Command.

Note This option may be used to both reduce the memory requirements and increase
the execution speed of most programs.

The default is to generate debugging line number information in object programs.
There is no corresponding configuration for this command-line option.

Use the Y Option to direct the compiler to output debugging information in the
object file. The Y Option has the following variations:

Option Action

Y=0 or ~Y Omits the symbol and debug line table from the object program
file. This is also the default behavior if Y is not specified.

Y=lorY Places the symbol table but not the debug line table in the object
file. When the symbol table is included in the object program file,
the source program data-names and index-names may be used in
Debug commands during execution. For more information, see
Chapter 9: Debugging (on page 271).

Y=2 Places both the symbol table and the debug line table in the object
file. The line table is used by CodeWatch to display the source
program.

Y=3 Same as Y=2, except that the debug line table also includes

allocation map and cross-reference information if the A and/or X
options are also specified. This information can then be viewed
within CodeWatch, but may lead to large object program files.

Object program files created with Y=2 and Y=3 are fully compatible with all
versions of the RM/COBOL runtime (note that previous versions will ignore these
tables). This option does increase the size of the object program files, but has no
effect on runtime performance or memory requirements.

The Y and Q options are mutually exclusive; that is, they may not appear in the same
Compile Command.

Note A new option in the Combine Program (rmpgmcom) utility (see page 625),
STRIP, may be used to remove symbol table and debug line table information from
object files that were created with Y=1 or Y=2. For source code security, object
program files that contain line table information should be reduced in size with this
option or recompiled without the Y option before they are redistributed.

RM/COBOL User's Guide
Second Edition

165

Compile Command
Chapter 6: Compiling

By default, the symbol table is omitted from the object file. The default option
settings can be configured with the COMPILER-OPTIONS configuration record
keywords DEBUG-TABLE-OUTPUT (see page 319) and SYMBOL-TABLE-
OUTPUT (see page 333).

V4 Use the Z Option to indicate the highest allowed object version of the generated
code. The Z Option has the following format:

Z=version

where, version must be an integer in the range 9 through 15.

Statements or clauses that require a higher object version level than the value specified
will be flagged in error. See the Compile Command Messages (on page 186) and the
description of the COMPUTATIONAL-VERSION keyword (on page 318) for the
COMPILER-OPTIONS configuration record. This option forces the generation of
code accepted by earlier versions of the RM/COBOL runtime system.

Appendix H: Object Versions (on page 659) lists the changes between object
versions.

The default is to use the current object version number (15) as the limit, but the
generated object version is the minimum necessary for any given source program,
but not less than 9. The default can be configured with the COMPILER-OPTIONS
configuration record keyword OBJECT-VERSION (see page 328).

7 Use the 7 Option to specify the semantic rules under which the program is to be
compiled.

7 specifies that the source program is to be compiled with ANSI COBOL 1974
semantics. ANSI COBOL 1974 semantics affect the I-O status values,
PERFORM . .. VARYING statements, ALPHABETIC class conditions, and
alphabetic-edited data items. A more specific discussion of these semantic
differences can be obtained by contacting Liant technical support services.

The 7 Option is implied if the 2 Option is specified.

The default is to compile the source program using ANSI COBOL 1985 semantics.
The default can be configured with the COMPILER-OPTIONS configuration record
keyword COBOL-74 (see page 317).

166 RM/COBOL User's Guide
Second Edition

Compile Command
Chapter 6: Compiling

Source Program Compile Command Options

The following compiler options affect the analysis of the source program and cause flagging
of certain source features.

D

Use the D Option to direct RM/COBOL to compile all source programs as if the
WITH DEBUGGING MODE clause appeared in each compiled program. This
option causes all source lines with the letter D in the indicator area to be
compiled as if they had a space in the indicator area.

This option is independent of the RM/COBOL Interactive Debugger, described in
Chapter 9: Debugging (on page 271).

The default is to treat source lines with the letter D in the indicator area as
commentary information unless the WITH DEBUGGING MODE clause is specified
in the source program. The default can be configured with the COMPILER-
OPTIONS configuration record keyword DEBUG (see page 319).

Use the F Option to direct the compiler to flag occurrences of these language
elements:

COM1 INTERMEDIATE
COM2 OBSOLETE
EXTENSION SEGI

HIGH SEG2

The F Option has the following format:

F=(keyword—1ist)
F=keyword

where, keyword-list specifies multiple elements to be flagged. Enclose the list in
parentheses, and if the keyword-list contains more than one item, separate them with
a space or comma. Ifleading hyphens are being used, the parentheses are optional.
You can negate an individual keyword by preceding it with a tilde (~).

keyword specifies a single element to be flagged.

The names of elements can be abbreviated, as long as they remain unique. If the
abbreviation is not unique, the keyword that occurs first alphabetically is chosen.
For example, C, CO and COM are valid abbreviations of COM1 but not of COM2.

Certain keywords cause more than one element of the language to be flagged:

1. Selecting INTERMEDIATE flags both HIGH and INTERMEDIATE elements.
2. Selecting COM1 flags both COM1 and COM2 elements.

3. Selecting SEG1 flags both SEG1 and SEG2 elements.

See Appendix [: Extension, Obsolete, and Subset Language Elements (on page 673)
for a complete list of elements flagged.

By default, no elements of the language are flagged. The default can be configured
with the COMPILER-OPTIONS configuration record keyword FLAGGING (see
page 320).

RM/COBOL User's Guide
Second Edition

167

Compile Command
Chapter 6: Compiling

168 RM/COBOL User's Guide
Second Edition

Use the 2 Option to direct the compiler to accept source programs created for the
RM/COBOL (74) 2.n compiler.

If the programs were compiled (or designed to be compiled) without the RM/COBOL
(74) 2.n compiler ANSI Option, the separate sign (S) Option (see page 159) and
line sequential (V) Option (see page 160) may also need to be selected.

The 2 Option removes certain words from the list of RM/COBOL reserved words.
The removed words are those that are RM/COBOL additions to RM/COBOL (74)
2.n; thus, all words used in the earlier version as user-defined words are still valid.
Note carefully that if RM/COBOL language features are added to the program,

the 2 Option can no longer be used, and the program must be changed accordingly.
There is also a technique for removing individual words from the list of reserved
words. See the discussion of the COMPILER-OPTIONS configuration record (on
page 312).

The 2 Option directs that COMP-3 data items always be signed, irrespective of the
presence or absence of an S in the associated PICTURE character-string.

The 2 Option directs that COMP-1 data items behave as in RM/COBOL (74) 2.n.
This causes the number of digits in the PICTURE character-string describing a
COMP-1 item to be ignored in three situations: when the item is the receiving item
in a MOVE statement, in an arithmetic statement that specifies ON SIZE ERROR,
and in an ACCEPT statement that specifies, explicitly or implicitly, input
conversion. In these situations, the COMP-1 item may contain any value in the
range —32768 through 32767.

The 2 Option directs that OPEN EXTEND create a new file when the file is not
present, even when OPTIONAL was not specified in the file control entry.

The 2 Option directs that equality and inequality relation conditions, where the
subject and object are similar signed packed-decimal (COMP-3 or PACKED-
DECIMAL usage) or signed unpacked-decimal (COMP usage) operands, should not
be optimized to use string comparison operations. The string comparison
optimization prevents detection of equality when the only difference between the
subject and object of the relation results from the change in positive sign convention
for such items.

The 2 Option directs that the size of index data items be two bytes in length.

The 2 Option directs that the implied EXIT PROGRAM required by ANSI COBOL
1985 at the end of the Procedure Division be omitted. RM/COBOL (74) 2.n had
only an implied STOP RUN at the end of the Procedure Division.

The 2 and U[=B] Options are mutually exclusive; they may not appear in the same
Compile Command.

The 2 Option implies the 7 Option.

The default is to recognize all RM/COBOL reserved words, treat COMP-3 data
items without an S in their PICTURE character-string as unsigned data items, treat
COMP-1 data items the same as two-byte COMP-4 data items, return a file not
present error for OPEN EXTEND of a nonexistent file not described with the
OPTIONAL phrase in its file control entry, use the string comparison optimization
for conditional relations of similar signed COMP-3 and COMP data items, use a size
of four bytes for index data items, and include the implied EXIT PROGRAM at the
end of the Procedure Division. The default can be configured with the COMPILER-
OPTIONS configuration record keyword RMCOBOL-2 (see page 329).

Sample Compile Commands
Chapter 6: Compiling

Sample Compile Commands

Here are examples of valid and invalid RM/COBOL Compile Commands.

Valid Compile Commands

rmcobol payroll.con P, V R

This command compiles the program named payroll.con; it directs the listing to the system
printer (the P Option); declares all sequential files not defined as binary sequential in the
source program to be line sequential files (the V Option); and sequentially numbers the
printed listing, starting with 1 for each copy level, in the first six columns of the listing (the R
Option).

rmcobol demo.prg (D,L=COBOL,S X) 3RD COMPILE

This command compiles the program demo.prg; the program is compiled as if the WITH
DEBUGGING clause were present (the D Option); the listing is written to the directory
named COBOL (the L Option); a separate sign is assumed in the absence of a SIGN clause
(the S Option); and the cross reference map is generated (the X Option). A comment—3RD
COMPILE—is reproduced in the listing header, but is ignored by the compiler.

Note Under UNIX, the parenthesis must be preceded with a backslash (\) character in order
to be protected from the shell.

Invalid Compile Command

rmcobol payroll.cob B V

Here, the extension to the filename (.cob) is illegal, since .cob is the default extension for the
object file. The B and V Options are entered together: B treats all sequential files not
specified as either binary sequential or line sequential in the file control entry as binary
sequential, but V treats all such files as line sequential.

RM/COBOL User's Guide 169
Second Edition

Listing
Chapter 6: Compiling

Listing

Depending on the options specified in the Compile Command, the compiler generates a
detailed listing. The T Option (see page 163) directs the listing to standard output. The
listing can be directed to the printer with the P Option (see page 163) and to a file with the

L Option (see page 162). All three of these options—or any combination thereof—may be
specified. However, keep in mind that in certain circumstances the listing may contain lines
as long as 132 characters. If the device to which the listing is sent cannot accommodate lines
of that width, characters at the right end of the long lines may be truncated or wrapped.

Note Error lines are always listed to standard output unless suppressed by the K Option
(see page 158).

The components of the listing (in order of appearance) are as follows:
1. Program listing, which contains the source image of the program.
2. Allocation map, which defines and locates each identifier used in the program.

3. Called program summary, which lists the names of all programs called or canceled by
the program being compiled.

4. Cross reference listing, which lists the names of all identifiers used in the program,
along with the source line numbers at which they are declared and used.

5. Summary listing, which provides status information on the compilation itself.
When the listing is written to a printer (either because the P Option is selected or because a

disk file that was generated as a result of the L Option is printed), each component starts a
new page.

Program Listing

At the top of each page of the program listing, a header appears, a sample of which appears in
Figure 24.

Figure 24: Program Listing Header

RM/COBOL (Version 12.0n.00) for operating-system 03/15/2008 08:52:03 Page 1

O Source file: ALLOCMAP Options: L A X 0O

Note The date and time formats are configurable. For more information, see the discussion
of the COMPILER-OPTIONS configuration record (on page 312).

170 RM/COBOL User's Guide

Second Edition

Listing
Chapter 6: Compiling

Each page of the program listing also contains a subheader, illustrated in Figure 25 and
Figure 26.

Figure 25: Program Listing Subheader with Identification Area

LINE DEBUG PG/LN -A 1

185 09000020 000% 000080000 000000000000 BooooToooo®oooo oo || IBENIIHCEY

o) o)

Figure 26: Program Listing Subheader without Identification Area

LINE DEBUG PG/LN -A 1

136 0% 000 0B0000Fonoo0B0000WoooollonocPooooDooooPoocoo@oocoolooooPaooloo

o) o)

These subheaders set a scale against which material on each page can be measured. The
column of numbers under the “LINE” heading contains sequential line numbers assigned by
the compiler to each line read from the source file or from a copy file; these line numbers are
used in the cross reference listing and in Debug. The numbers under the “DEBUG” heading
are used with the Interactive Debugger or for interpreting error messages when the compiler
Q Option is used; this column is used only when listing the Procedure Division. The
remaining headings locate the regions of the source line images: the internal six-column line
number field, area A, area B, the main body of the source image (subdivided into ten-column
subregions) and the Identification area, if present.

If the R Option was present in the Compile Command or the configuration specified an
equivalent, the program listing contains a compiler-generated line number in the PG/LN
column. This line number, in the listing only, replaces whatever was in columns 1 through 6
of the original source line.

The setting of margin R, as determined by the INITIAL-MARGIN-R keyword (see page 321)
of the COMPILER-OPTIONS configuration record and the IMP MARGIN-R directive,
determines whether or not there is an Identification area. When margin R is set less than the
maximum source record length, the Identification area is present from margin R to the end of
the source record. When margin R is set greater than or equal to the maximum source record
length, the Identification area is not present. The program listing subheader indicates the
presence or absence of an Identification area as follows:

e If there is an Identification area, the listing source column header shows the Identification
area starting with “IDENTFCN”. Unless configured differently, as described in the
LISTING-ID-AREA-SEPARATOR keyword (see page 327), the Identification area is
separated from the program-text area by a “|”” character in the header and each source line
that is printed in the listing. The separator character is suppressed for comment lines that
have nonblank characters within two characters of the Identification area (to avoid
changing comments that continue from the program-text area into the Identification area)
and for directives.

e When there is no Identification area, the listing source column header simply shows a
column ruler to the configured listing line length (see the LISTING-LINE-LENGTH
keyword on page 327), or the maximum source record length (see the SOURCE-
RECORD-MAX-LENGTH keyword on page 331) if the maximum source record length
is less than the configured listing line length.

The compiler updates the source column header for the listing file when the margin R setting
is changed by the IMP MARGIN-R directive in the source, but does not automatically force a
new page. If the new header is desired immediately, a new listing page can be forced with the

RM/COBOL User's Guide 171
Second Edition

Listing
Chapter 6: Compiling

“/” comment indicator or by using the PAGE directive on a line following the IMP MARGIN-
R directive.

The program listing itself contains the sequential line number, statement address, copy level
indicator (described in the next paragraph) and the source record. If errors were detected
during compilation, the appropriate error message diagnostic appears. See Error Marker and
Diagnostics (on page 184).

The copy level indicator is a character-string of the following form:

where, n is a decimal digit in the range 1 through 9. The copy level indicator appears
between the sentence address (DEBUG heading) and source record in the listing
whenever the source record has been copied at level 7.

Note The “+” indicator characters may be replaced with other indicator characters as
noted in Table 16.

A sample of a program listing is shown in Figure 27 on page 174.

Statement addresses are listed in decimal notation. For overlay segments, the segment
number is printed as part of the statement address. A slash separates the segment number
from the offset within the segment. For example:

50/000100

refers to location 100 within segment 50. Segment numbers and the slash are suppressed for
the fixed permanent segment.

The generation of the program listing may be suppressed by specifying the E Option (see
page 162) in the Compile Command. Copied source text can be suppressed with the

C Option (see page 160). Error messages (if any) and their associated undermarks and
source text are not suppressed, even when the C or E Option has been selected.

The copy level indicator has been expanded into a source indicator by varying the brackets
around the copy nesting level number n. Copy nesting level number 0 is the original source
file that is being compiled. A source indicator of +0+ is never included in the listing, but the
new source indicators may be used with copy nesting level number 0 because of the
REPLACE statement. The source indicators have the following meanings:

172 RM/COBOL User's Guide

Second Edition

Listing
Chapter 6: Compiling

Table 16: Source Indicators in Compilation Listing

Source Indicator

+n+

<n>

>p<

Meaning
The source text was copied at copy nesting level #n without modification.

The source text was replaced at copy nesting level n because of a
REPLACE statement, the REPLACING phrase of a COPY statement, or
the DATE-COMPILED paragraph. Such source text is listed on a
comment line in the listing, even though the original line that contained
the source text was not a comment line.

The source line was inserted at copy nesting level n by a REPLACE
statement, the REPLACING phrase of a COPY statement, or the DATE-
COMPILED paragraph.

The source line contains a COPY statement, which has been logically
replaced by the copied file.

Note Prior to version 11, this indicator meant the source line was
modified by a REPLACE statement, the REPLACING phrase of a COPY
statement, or by relocation of source text that occurred on the same line as
all or part of a COPY statement (the compiler relocated the source text so
that it would be compiled after the copied file). Version 11 and later
eliminated such “modified” lines by treating them as replaced lines.

The source text was relocated to a new line because it followed a matching
replacement key of a REPLACE statement or of the REPLACING phrase
of a COPY statement, or it occurred on the same line as all or part of a
COPY statement. When possible for replacements, such source text is
merged with the last line of the inserted replacement text. Therefore, this
source indicator only occurs when the merge is not possible. That is,
when the merge is possible, the source indicator >n< is printed for the last
line of the inserted replacement text that includes the merged text-words.
(Source text that is split from a COPY statement is not merged with the
last line of the copied file.)

For easy reference, a summary of the source indicator meanings is included in the summary
listing portion of the listing file when the source indicator is used in the listing, as described in

Summary Listing (on page 182).

RM/COBOL User's Guide 173
Second Edition

Listing
Chapter 6: Compiling

Figure 27: Sample Program Listing

O
Sw N R

o U

10

12
13
14

16
17

18

20
21
22

24
25
26

28
29
30

32
33
34

151
O 152
153
154
155

157

000002
000005
000016

000035

IDENTIFICATION DIVISION.
PROGRAM-ID. ALLOCMAP.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.

SOURCE-COMPUTER. IBM-PC-XT.
OBJECT-COMPUTER. IBM-PC-XT,
PROGRAM COLLATING SEQUENCE EBCDIC-CODE.
SPECIAL-NAMES.
SWITCH-1 IS REPORT-MODE,
ON STATUS IS REPORT-LIST,
OFF STATUS IS REPORT-NOLIST;
SWITCH-3 IS DISPLAY-MODE,
ON STATUS IS DISPLAY-LIST,
OFF STATUS IS DISPLAY-NOLIST;
COl IS TOP-OF-FORM;
CO5 IS AMOUNT-LINE;
CONSOLE IS PC-DISPLAY;
SYSIN IS STANDARD-IN;
SYSIN IS STANDARD-OUT;
ALPHABET ASCII-1 IS STANDARD-1;
ALPHABET ASCII-2 IS STANDARD-2;
ALPHABET NATIVE-1 IS NATIVE;
ALPHABET EBCDIC-CODE IS EBCDIC;
ALPHABET BACKWARDS IS "ZYXWVUTSRQPONMLKJIHGFEDCBA";
SYMBOLIC CHARACTERS QUESTION-MARK, ASTERISK ARE 64, 43;
CLASS PUNCTUATION IS ";", ",m™, ".m, min, mon,
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT REPORT-FILEl ASSIGN TO PRINTER;
ORGANIZATION IS SEQUENTIAL;
ACCESS IS SEQUENTIAL.
SELECT LOOKUP-FILE1 ASSIGN TO DISC;
ORGANIZATION IS RELATIVE;

ACCESS IS SEQUENTIAL.

PROCEDURE DIVISION USING ARG1-GROUP, ARG2-GROUP.

A.
CALL "CHRRTN" USING NW5-MDATE, NW5-MTIME.
CALL MATHRTN USING NBS-1, NBU-1, NCS-1, NCU-1,
NLC-1, NPS-1.
STOP RUN.

END PROGRAM ALLOCMAP.

174 RM/COBOL User's Guide
Second Edition

Listing
Chapter 6: Compiling

Allocation Map

The allocation map provides information on each user-defined word from the source
program, listed in the order declared. The type of user-defined word (described in the
following section) determines the allocation map format. The allocation map is generated
in the listing when the A Option (see page 160) is specified in the Compile Command or the
LISTING-ATTRIBUTES keyword (see page 323) is configured with the ALLOCATION-
MAP value.

Alphabet-Names, Symbolic-Characters, Mnemonic-Names, and
Class-Names

User-defined words declared in the SPECIAL-NAMES paragraph are listed in the allocation
map with the following information:

1. Association, which is the value for a figurative or symbolic-character; the code-name for
an alphabet-name; the switch-name for a mnemonic-name or condition-name associated
with a switch-name; the channel-name for a mnemonic-name associated with a
channel-name; the low-volume-I-O-name for a mnemonic-name associated with a
low-volume-I-O-name; or blank for a class-name. The value of a figurative or
symbolic-character is listed as the hexadecimal value in the native character set. If that
value represents a printable character, the printable character is listed in quotation marks.

2. Status, which is On or Off for a condition-name associated with a switch-name. The
letters PCS appear with an alphabet-name declared as the program collating sequence.
Otherwise, the column is blank.

3. Type, which indicates whether the user-defined word is: an alphabet-name; a mnemonic-
name associated with a switch-name; a condition-name; a mnemonic-name associated
with a channel-name; a mnemonic-name associated with a low-volume-I-O-name; a
class-name; or a symbolic-character.

4. Name, which is the actual user-defined word declared with the indicated attributes or the
figurative constant LOW-VALUE or HIGH-VALUE. These particular figurative
constants are listed since their value depends on the program collating sequence declared
in the source program.

Figure 28 is an example of this part of the allocation map.

RM/COBOL User's Guide 175
Second Edition

Listing
Chapter 6: Compiling

Figure 28: Allocation Map (Part 1 of 4)

Special-Names
Association
X"oo"
X"FE"
SWITCH-1
SWITCH-1 On
SWITCH-1
SWITCH-3
SWITCH-3 On
SWITCH-3 Off
co1
co5
CONSOLE
SYSIN
SYSOUT
STANDARD-1
STANDARD-2
NATIVE
EBCDIC PCS
Literal
X"3F" = "2"

nxn

X"OA" =

Status

Type

Figurative constant
Figurative constant
Switch-name
Condition-name
Condition-name
Switch-name
Condition-name
Condition-name
Channel-name
Channel-name
Low-volume-I-O-name
Low-volume-I-O-name
Low-volume-I-O-name
Alphabet-name
Alphabet-name
Alphabet-name
Alphabet-name
Alphabet-name
Symbolic-character
Symbolic-character

Class-name

Name
LOW-VALUE
HIGH-VALUE
REPORT-MODE
REPORT-LIST
REPORT-NOLIST
REPORT-MODE
REPORT-LIST
REPORT-NOLIST
TOP-OF-FORM
AMOUNT-LINE
PC-DISPLAY
STANDARD-IN
STANDARD-OUT
ASCII-1
ASCII-2
NATIVE-1
EBCDIC-CODE
BACKWARDS
QUESTION-MARK
ASTERISK

PUNCTUATION

alphabet-names, symbolic-characters, mnemonic-names, and class-names

Split Key Names

User-defined words, declared as part of a RECORD KEY clause in an indexed file control
entry of the Environment Division that defines a split key, are listed in the allocation map

with the following information:

1.
2.

3.
4.

Figure 29 illustrates a section of the allocation map for a file that defines split keys for the

File-Name is the name of the file from the indexed file control entry.

Key-Number specifies the number of the key that has a split key defined. A value of
zero indicates the prime record key. Alternate keys are numbered from 1 to 254.

Type indicates that the entry is a split-key-name.

Name is the name associated with the split key.

primary key and the second alternate key in the file control entry.

176 RM/COBOL User's Guide
Second Edition

Listing
Chapter 6: Compiling

Figure 29: Allocation Map (Part 2 of 4)

File-Name Key-Number Type Name
O FILE-1 0 sSplit-key-name KEY-1 @)
2 Split-key-name KEY-2

Split Key Names for program SPLITKEY

split-key-names

Data-Names, Index-Names, Condition-Names, File-Names and
Cd-Names

User-defined words declared in the Data Division are listed in the allocation map with the
following information:

1.

Address, which is the decimal address for data-names and index-names. The “Address”
column is blank for file-names, cd-names and condition-names.

For data items declared with the external attribute in the File Section or Working-Storage
Section, the compiler-generated external number is printed on a line preceding the file or
level 01 item description or index-name.

For data-names declared in the Linkage Section, each level 01 or 77 item is preceded by
an indication of how it is addressable:

e Ifitis listed in the USING phrase of the Procedure Division header, “Un:” and
“Using argument »” are printed to indicate the formal argument umber is 7 within
the USING argument list.

o Ifitis listed in the GIVING (RETURNING) phrase of the Procedure Division
header, “G:” and “Giving argument” are printed to indicate that the item is the
formal GIVING argument.

e Ifitis abased linkage record and is not a formal argument, “Brn:” and “Based
linkage record n” are printed to indicate that the compiler assigned based linkage
record number is 7.

e Ifnone of the preceding descriptions apply, “Not addressable” is printed to indicate
that the Linkage Section data item is not available to the program.

Size, which is the decimal number of character positions required to store the value of a
data-name, or the maximum block size—in characters or records—for a file-name
declared with a non-zero block size. The “Size” column is blank for cd-names and
condition-names. The “Size” column for index-names contains the span of the table
entry associated with the index-name, that is, the decimal number of character positions
to advance the index-name value from one occurrence of the table to the next occurrence;
the actual size of an index-name itself is always four bytes.

Debug, which contains an abbreviated type indicator used in the Interactive Debugger to
describe the format of the data item. The “Debug” column contains “Fixed” or
“Variable” for file-names to indicate that records of the file are fixed or variable length,
respectively. The “Debug” column is blank for cd-names and condition-names.

Note These first three columns (Address, Size, and Debug) are used with the Interactive
Debugger to display and modify the values of data-names. See Chapter 9: Debugging
(on page 271).

RM/COBOL User's Guide 177
Second Edition

Listing
Chapter 6: Compiling

Order, which indicates the number of subscripts required when referencing the
data-name or condition-name. The “Order” column is blank for data-names not requiring
subscripting and also for file-names and cd-names. When one or more subscripts are
required, the order is indicated with a decimal number enclosed in parentheses. In
version 12 and later, for an item described with the OCCURS clause without the
DEPENDING ON phrase, an asterisk (“*”) follows the closing parenthesis and, for an
item described with the OCCURS clause with the DEPENDING ON phrase, an
octothorpe (“#”) follows the closing parenthesis. When the parenthesized order is present
and neither an asterisk nor an octothorpe follows the closing parenthesis, the data item is
a subordinate item of the nearest preceding group table item of the same order and is not
described with an OCCURS clause itself.

Type, which is a brief description of the item associated with the user-defined word. For
files, the organization and access are listed, in that order, separated by a slash.

[Level], which is the level-number of data-names. The level-number is omitted for
index-names. The level-indicator FD or CD is shown for file-names or cd-names,
respectively.

Name, which is the actual user-defined word declared with the listed attributes. The
name is indented one column to the right for each increase in level-number.

Figure 30 is an example of this part of the allocation map.

178 RM/COBOL User's Guide
Second Edition

Figure 30: Allocation Map (Part 3 of 4)

Listing

Chapter 6: Compiling

Address Size
)
8 80
8 40
)
Address Size
0 532 112
532 8
540 8
548 8
) 556 6
0 ©
)

O Address Size

Ul:
0 44
0 4
) 4 8

Address Size

734 12

0 746 12
758 12

770 12

782 6

Debug
Variable
ANS

ANS

Debug
GRP
ABS
ANSE
ABS
NSU

INX

Debug

GRP
NSU

ANS

Debug

ANS
ANS
ANS
ANS

NSU

File Section for program ALLOCMAP

Order Type
File Seqg/Seq
Alphanumeric

Alphanumeric

Working-Storage Section for program ALLOCMAP

Order Type
Group
Alphabetic
Alphanumeric edited
Alphabetic, just
(1) * Numeric unsigned

Index-name

Linkage Section for program ALLOCMAP

Order Type
Using argument 1
Group
Numeric unsigned

(1) * Alphanumeric

O Communication Section for program ALLOCMAP

Order Type
Cd for Input
Alphanumeric
Alphanumeric
Alphanumeric
Alphanumeric

Numeric unsigned

[Level] Name

FD REPORT-FILE1
01 REPORT-RECORD-1

01 REPORT-RECORD-2

[Level] Name
01 G1
05 ABS-1
05 ANSE-1
05 ABSR-1
05 NUM-1

INX-1

[Level] Name

01 ARG-GROUP
05 ARG-COUNT

05 ARG-AREA

[Level] Name
CD NET-WORK-1
02 NW1-SYM-Q
02 NW1-S0Q1
02 NW1-SQ2
02 NW1-SQ3
02 NW1-MDATE

data-names, index-names, condition-names, file-names and cd-names

RM/COBOL User's Guide
Second Edition

179

Listing
Chapter 6: Compiling

Constant-Names

User-defined words declared as constant-names in the Data Division are listed in the

allocation map with the following information:

1. Constant Value, which is the value associated with the constant-name. If the constant-
name value was specified with a constant-expression, then the result value is shown.
Otherwise, the literal associated with the constant-name is shown.

2. Type, which is a brief description of the type of the value associated with the constant-
name. If the constant-name value was specified with a constant-expression, then the type
is always Numeric unsigned. Otherwise, the type is the type of the literal specified as the
value for the constant-name.

3. [Level], which is the level-number for constant-names. Constant-names always have a

level-number of 78.

4. Name, which is the actual user-defined word declared as the constant-name.

Figure 31 is an example of this part of the allocation map.

Figure 31: Allocation Map (Part 4 of 4)

Constant Value

02

"STRINGL"

QUOTE (QUOTES)

-256.357
O x"454647"

ALL "ABC"

ZERO (ZEROS, ZEROES)

SPACE (SPACES)

Constant-names for program ALLOCMAP

Type

Numeric unsigned
Alphanumeric
Alphanumeric
Numeric signed
Alphanumeric
Alphanumeric
Numeric unsigned

Alphabetic

[Level] Name

78
78
78
78
78
78
78
78

TWO
STRING1
MY-QUOTES
CONSTANT1
HEX1
STRING2
MY-ZEROS

MY-SPACES

constant-names

Called Program Summary

The called program summary lists the names of all called and canceled programs and the
using count associated with each. Figure 32 illustrates this listing.

Figure 32: Called Program Summary

Called Program Summary
Program-name required

O MATHRTN

"CHARRTN"

Using count
6
2

The program-name appears without quotation marks for dynamic (identifier) references and
inside quotation marks for static (literal) references. The “Using count” field lists the
maximum number of arguments used in any CALL reference to the listed literal or identifier.

180 RM/COBOL User's Guide

Second Edition

Listing
Chapter 6: Compiling

Cross Reference Listing

The cross reference alphabetically lists all user-defined words used in the program, and
provides the line number of each declaration, source, and possible destination reference. The
line number is enclosed in slashes if the reference is a declaration or in asterisks if the
reference is a possible receiving item. The line number is not marked for sending items.
Procedure-names specified as the first operand of an ALTER statement and data-names that
are specified as receiving operands of Procedure Division statements are considered
destination references and are thus marked with asterisks in the cross reference listing. The
cross reference is generated in the listing when the X Option (see page 163) is specified in the
Compile Command or the LISTING-ATTRIBUTES keyword (see page 323) is configured
with the CROSS-REFERENCE value. Figure 33 illustrates the cross reference listing.

Note The method used to mark possible destination references with surrounding asterisks errs
on the conservative side, particularly in arithmetic statements. The compiler marks the
second operand of an arithmetic statement as a possible destination even though it may be
followed by the GIVING phrase, which causes the second operand to be only a sending item.
The operands in the USING phrase of a CALL statement are always considered to be possible
destination references unless they are subject to a BY CONTENT phrase.

Figure 33: Cross Reference Listing

Cross reference /Declaration/ *Destination*
A /0152/

O aBsE-1 /0082/ 0
ABSR-1 /0083/
ABS-1 /0081/
AMOUNT-LINE /0016/

O aNsE-1 /0085 O
ANSR-1 /0086/
ANS-1 /0084/
ARG1-AREA /0113/

O ARG1-COUNT /0112/)
ARG1-GROUP /0111/ 0151
ARG2-AREA /0116/
ARG2-COUNT /0115/

O ARG2-GROUP /0114/ 0151 ¢)
ARG3-AREA /0119/
ARG3-COUNT /0118/
ARG3-GROUP /0117/

O ascri-1 /0020/ 0
ASCII-2 /0021/
ASTERISK /0025/
BACKWARDS /0024/

O DpB1-DATA /0070/)
DB1-KEY 0047 /0069/

RM/COBOL User's Guide 181
Second Edition

Listing
Chapter 6: Compiling

Summary Listing
The summary listing shows the sizes of the regions of the generated object program, the
maximum compilation memory used, and other summary information about the entire source

program. Figure 34 illustrates this listing.

Figure 34: Summary Listing

Program Summary Statistics

Read only size: 266 (X"0000010A") bytes
O Read/write size: 532 (X"00000214") bytes 0]
Overlayable segment size: 0 (X"00000000") bytes
Total generated object size: 798 (X"0000031E") bytes
Maximum EXTERNAL size: 88 (X"00000058") bytes
O Total EXTERNAL size: 92 (X"0000005C") bytes O

Source program used 4489 (0%) of 840000 available identifiers
(T1C limit).
Source program used 33004 (0%) of 8400000 available user-defined

O word space (T2B limit). O
Maximum compilation memory used was 487K bytes (2 presses and 0
increases required).
+n+ Source was copied from copy file at copy nesting level n

O (level 0 indicator is suppressed) . 0
<n> Source was replaced at copy nesting level n because of REPLACE
or REPLACING.
>n< Source was inserted by REPLACE or REPLACING.

(0] [n] Source was modified by REPLACE, REPLACING, or split of text 0
following a COPY statement.
(n) Source was split from a previous line with a replacement
match or COPY statement.

O Errors: 1, Warnings: 0, Lines: 157 for program ALLOCMAP)
Previous diagnostic message occurred at line 151.
Object version level = 3
Options in effect:

O A - Allocation map listing 0O
L - Listing file

X - Cross reference listing

The line labeled “Read only size” lists the size of that region of the object program that
contains values that do not change during program execution. It consists primarily of the
instructions generated for the resident (or fixed) portion of the Procedure Division,
representations of the literals mentioned in the Procedure Division, and descriptors of the
operands referred to in the Procedure Division.

The line labeled “Read/write size” lists the size of that region of the object program that
contains values that might change during the course of execution. It consists primarily of a
current record area and a control block for each of the files specified, an area for the Working-
Storage Section and other internal control information.

182 RM/COBOL User's Guide

Second Edition

Listing
Chapter 6: Compiling

The line labeled “Overlayable segment size” lists the size of the region of the object program
that is reserved for the independent and fixed overlayable segments of the Procedure Division.
Its length is the length of the longest independent or fixed overlayable segment. All such
segments are loaded into this common region on an as-needed basis.

The line labeled “Total generated object size™ lists the sum of the preceding values, and is
therefore the amount of memory needed to load the object program. It is not the total size
needed to execute that program. To execute the program there must be memory available to
accommodate not only the total size (as shown on the fourth line) but also the operating
system, the runtime system, any external data items and the I/O buffers. Although you have
no control over the size of the operating system or runtime system, you can exercise some
control over the memory requirement for the I/O buffers by use of the RESERVE and
BLOCK CONTAINS clauses, described in detail in File Types and Structure (on page 247) in
Chapter 8: RM/COBOL Features.

The line labeled “Maximum EXTERNAL size” indicates the size of the single largest record
area with the external attribute declared in the source program. This number is useful because
the maximum allowed value varies depending on the environment in which the program is
run. For more information on these limitations, see Memory Available for a COBOL Run
UNIT on UNIX (on page 41) and Memory Available for a COBOL Run UNIT on Windows
(on page 115).

The line labeled “Total EXTERNAL size” indicates the sum of the sizes of all record areas
with the external attribute declared in the source program. This number provides information
needed in estimating the runtime system memory requirements of the program, but is not a
direct measure since the memory requirements depend on the use of matching external
records in other programs of the run unit.

Note The two lines regarding EXTERNAL size are omitted in the listing file when the
program does not specify the EXTERNAL clause for any item.

The line labeled “Source program used ... of 840000 available identifiers ...” indicates the
amount of the identifier table limit consumed. Identifiers are the individual items (classes,
symbolic-characters, data items, conditions, and so forth) declared in the program. Each data
item and condition defined in the program requires its own identifier entry even if the data-
name or condition-name for the data item or condition is the same, since qualification can be
used to distinguish between the data items or conditions. The T1C in the message refers to
the compiler limit listed in Table 17 (beginning on page 189).

The line labeled “Source program used ... of 8400000 available user-defined word space ...”
indicates the amount of the user-defined word space consumed. User-defined words are the
unique spellings of words used as alphabet-names, cd-names, class-names, condition-names,
data-names, file-names, index-names, key-names, mnemonic-names, paragraph-names,
section-names, and symbolic-characters in the source program. Any particular spelling
consumes space only once in the user-defined word table. The T2B in the message refers to
the compiler limit listed in Table 17. The limit of 1400000 shown in that table assumes 30-
character names, which use six words each in the user-defined word space. If names averaged
24-characters in length (5 words average use of word space), the limit would be 1680000
names.

2

The line labeled “Maximum compilation memory ...” indicates the amount of memory
required to compile the source program. Setting the workspace size for the compiler to a
value at least this size or slightly larger results in the best compilation speed with the
minimum amount of memory consumption. The workspace size can be set using the

W Compile Command Option (see page 158) or the WORKSPACE-SIZE keyword (see

page 338) of the COMPILER-OPTIONS configuration record. The number of presses
indicates how many times the compiler attempted to recover unused memory. Minimizing the
number of presses by increasing the workspace size provides improved compilation speed. If
the number of presses is zero, then the compilation speed cannot be improved by increasing

RM/COBOL User's Guide 183
Second Edition

Listing
Chapter 6: Compiling

the workspace size. The number of increases indicates the number of times the compiler had
to request more memory because the original workspace size was too small.

The line labeled “Source indicators ...” and the lines indented under this header provide a
summary of the source indicators used in columns 16-18 of the listing. Only those
explanation lines for source indicators actually used in the program listing are included in the
summary. If no source indicators were used in the program listing, then the header line is not
printed in the summary listing. For further details, see source indicators (on page 172).

The lines labeled “Errors: . . .” and “Previous diagnostic message . . .” summarize the number
of diagnostic messages issued during compilation and the location of the last diagnostic
message, respectively.

The line labeled “Object version level” indicates the object version level of the object
program associated with the program being compiled. For complete information on the object
version levels accepted by RM/COBOL, see Appendix H: Object Versions (on page 659).

The line labeled “Options in effect” and the lines that follow list the options selected for the
compilation. The listed options may have been specified in the Compile Command (see
page 151) or be part of a configuration file, as discussed in the COMPILER-OPTIONS
configuration record (see page 312). All command-line options are listed, as well as some
configuration options important to understanding the generated object program, such as
BINARY-ALLOCATION in the COMPILER-OPTIONS configuration record; if no options
were specified, these lines will not appear.

Error Marker and Diagnostics

Violations of syntactical or semantic rules are detected during the compiler’s pass through the
source program. If an error is detected, it is undermarked by a dollar sign. Figure 35
illustrates the RM/COBOL diagnostic message format.

Figure 35: Error Marker and Diagnostics

1 IDENTIFICATION DIVISION.
2 PROGRAM-ID. ALLOCMAP.

O 3 ENVIRONMENT DIVISION O
4 CONFIGURATION SECTION.

S
WLy 1) 0319: E Period space separator expected.

) 5 SOURCE-COMPUTER. RMCOBOL.)

6 OBJECT-COMPUTER. same.

$
LI 1) 0382: E Computer-name must be user-defined word instead of
O reserved word. (scan suppressed) . O
***x*Previous diagnostic message occurred at line 4.
7 PROGRAM COLLATING SEQUENCE EBCDIC-CODE.
$
O *xxxx 1) 0005: I Scan resumed. O
***x*Previous diagnostic message occurred at line 6.
8 SPECIAL-NAMES.

9 SWITCH-1 IS REPORT-MODE,

184 RM/COBOL User's Guide

Second Edition

Listing
Chapter 6: Compiling

The first number on the line following the line with the undermark refers to the undermark
number. Multiple errors on the same line are numbered in ascending order, reading left to
right. The next number is the error number. This corresponds to the appropriate message
listed in Appendix B: Compiler Messages of the RM/COBOL Language Reference Manual.

Following the error number is a single letter that indicates the severity of the error. There are
three classes:

1. Tindicates the message is informational only.
2. E indicates a severe error.

3. W indicates a warning.

Error Recovery

The RM/COBOL compiler may display a recovery message along with the error diagnostic.
This recovery message is generated if—as often happens—a compilation error interrupts
scanning. In this case, the source text is ignored until the compiler finds a recovery point.
This minimizes the amount of code you need to examine if an error occurs. See Figure 36 for
an illustration.

Figure 36: Error Recovery Display

10 ON STATUS IS REPORT-LIST,
11 OFF STATUS IS REPORT-NOLIST;
0 12 C21 IS TOP-OF-FORM;)

$
**%x%% 1) 0088: E Wrong code-name in ALPHABET clause. (scan suppressed) .
****+*pPrevious diagnostic message occurred at line 7.
0O 13 CONSOLE IS CRT-DISPLAY; 0
14 PROCEDURE DIVISION.
S

Axx%% 1) 0005: I Scan resumed.

The undermark indicates that the compiler did not recognize the alphabet code-name given.

When the compiler encounters an error, it first attempts to make an assumption about what
was actually meant. When it can do so, it continues compiling from the point of error,
without displaying the “(scan suppressed)” portion of the message.

If it cannot do so, the compiler suppresses scanning until it finds a point where it can begin
again. In this case, an undermark indicates where it restarted scanning, and the informational
“Scan resumed” message is written. No source text between the undermark associated with
the “(scan suppressed)” message and the “Scan resumed” message is compiled. This may
result in data-names being undefined if the message occurs in the Data Division.

The diagnostic information described previously is always contained in the listing regardless
of the setting of the compiler options. If the L, P, and T Options are all absent (meaning that
the listing is not being written to any device), the diagnostic information is written to the
standard output device.

RM/COBOL User's Guide 185
Second Edition

Compile Command Messages

Chapter 6: Compiling

Error Threading

RM/COBOL provides error-threading facilities. By reading the “Previous diagnostic message
occurred at line” message, you can trace back through every error encountered during
compilation. This message may also appear after the summary listing, to point to the last
error in the program.

Compilation always proceeds to the end of the program regardless of the number of errors
found, unless an error causes abnormal termination. Global errors, such as undefined
paragraph names and illegal control transfers, are listed at the end of the listing file
allocation map.

Compile Command Messages

The banner appears when you first invoke the compiler:

RM/COBOL Compiler - Version 12.0n.nn for operating system
Copyright © 1985-2008 by Liant Software Corp. All rights reserved.
Configured Options: option list

Registration Number: xx-nnnn-nnnnn-nnnn

The third line of the compiler banner appears only when options have been specified in a
configuration file or in the Compile Command. Options displayed as a single character
appear first. If flagging is configured, the configured keywords appear next; long keywords
are abbreviated. If an object pathname or a listing pathname is configured, it appears in the
form O=pathname or L=pathname. If the object version level number is configured, it
appears in the form Z=nn.

A verbose banner has additional information about the product and environment in which it is
running. The verbose banner is obtained for the compiler by setting the environment variable
RM_VERBOSE BANNER to a value that begins with “Y” or “y”. The verbose banner adds
the following lines to the banner:

RM/COBOL: User user-name running on machine machine-name (system-name)
RM/COBOL: Native character set: ncs (Codepage: cp-number)

The lines in the verbose banner are not suppressed by the K Runtime Command Option (see
page 203).

You may produce a list of the support modules loaded by the RM/COBOL compiler by
defining the environment variable RM_DYNAMIC LIBRARY TRACE. The listing will
indicate which modules are present, such as the Automatic Configuration File module or the
Message Control System (MCS). This information is most helpful when attempting to
diagnose a problem with support modules. For example, on UNIX, presence of the Terminfo
Terminal Interface or Termcap Terminal Interface indicates which terminal interface is in use
by the runtime system. When the environment variable RM_VERBOSE BANNER is set to
“Y” or “y”, the list of support modules is also produced, regardless of the setting of the
RM_DYNAMIC LIBRARY_ TRACE environment variable.

186 RM/COBOL User's Guide

Second Edition

Compile Command Messages
Chapter 6: Compiling

If you enter an invalid Compile Command, you will see:

Usage: RMCOBOL name [options]

Options: [(] [A] [B] [C[=0-3] [D] [E] [F=(keyword list)] [G=cfgfilel]
[H=cfgfile2] [K] [L[=path]l] [M] [N] [O=path] [P] [Q] [R] [S] I[TI
[U[=B|D|P]] [V] [W=workspace] [X] [Y[=0-3] [Z=version] [2] [7]

[) comments]

In addition, the following messages may be displayed:

Command line error: file name is missing from command line.

Conflict error: COMPUTATIONAL-VERSION conflicts with OBJECT-VERSION.
Conflict error: option Q conflicts with Y.

Conflict error: option U conflicts with 2.

Conflict error: option V conflicts with B.

Mismatch error: options A and X require option L, P, T, or Y=3.
Mismatch error: option C requires option L, P, or T.

Mismatch error: option E requires option L, P, or T.

Syntax error: flag keyword is incorrect.

Syntax error: option characters must be followed by space or comma.
Syntax error: option characters must be preceded by hyphen.

Syntax error: option C requires option L, P, or T.

Syntax error: option C specifies an incorrect numeric value.

Syntax error: option E requires option L, P, or T.

Syntax error: option G or H requires path specification.

Syntax error: option O requires path specification.

Syntax error: option U specifies invalid type character.

Syntax error: option U describes incorrect type character.

Syntax error: option W requires numeric workspace value <= 524288.
Syntax error: option Y specifies an incorrect numeric debug level.
Syntax error: option Z requires numeric version specification.
Syntax error: symbol n is incorrect option letter.

Version error: value must be greater than 8 and less than or equal to 14.
Version error: value must be greater than n for current compiler license.
Workspace error: value must be between 32 and 524288 inclusive.

Error invoking unauthorized copy of compiler.

RM/COBOL User's Guide
Second Edition

187

Compiler Status Messages
Chapter 6: Compiling

Compiler Status Messages

The RM/COBOL compiler displays messages that tell you it has completed normally, or that
it has terminated abnormally.

One of these messages—Compilation complete—appears every time the compilation is
finished, regardless of the number of errors that appear. This message has the following form:

Compilation complete -- Programs: p, Errors: e, Warnings: w

where,

p 1s the number of programs in the source file, excluding contained programs.

E is the number of errors found.

W is the number of warnings issued.
The other messages are displayed under specific circumstances. They are listed in
Appendix B: Compiler Messages of the RM/COBOL Language Reference Manual.
If a compilation error results in an abnormal termination, a message is displayed in the
following general form:

Compiler error n: text.

where,
n is a compiler error number.

text is any of the first sentences in the following definitions.

The numbers and their definitions are listed in Table 17.

In addition to these errors, unnumbered error messages may appear as a result of
configuration or I/O errors. These unnumbered error messages are described beginning on
page 193.

188 RM/COBOL User's Guide
Second Edition

Compiler Status Messages
Chapter 6: Compiling

Table 17: Abnormal Termination Messages

Error
Number Message Text

1 Compiler limit exceeded, Tnn message.

The program has exceeded an internal compiler limit. This can be remedied by dividing
the program into a main program with multiple subprograms. The table number and
table usage are included in the message to provide additional information to help keep
the program in conformance with compiler limits. If this error continues to occur even in
a small program, it suggests an internal compiler malfunction. Provide a source copy
and the table number as it appears in this message to Liant technical support services.

The values of nn are listed as table numbers, and the values for message are listed as
table usage in the following table. Limits are provided only where meaningful and in all
cases are approximate; all compiler tables are listed since error number 2 also displays
this information.

Table

Number Table Usage Limit
T0O Source (input source records, contiguous comments) 65536
TO1 AliasID (aliased identifiers) 2100000
T02 Alter (ALTER statements) 2100000
TO3 BackPatchPsect (object back patches)
T04 Cfd (COBOL file definers) 311111
TOS5 Code (object code buffer)
TO06 Condition (condition-names) 280000
TO7 Corresponding (CORRESPONDING items for MOVE,

ADD, or SUBTRACT)
TOS CrossRef (cross reference entries) 4200000
T09 DataParameter (forward data references, for example, 280000
FILE STATUS)

TOA DataRecord (DATA RECORDS clause references)
TOB DeclarativeRefError (declarative reference errors)
TOC DeferredScript (deferred subscripting in Screen Section) | 8400000
TOD DimensionTemp (table dimensions in subscripting)
TOE Dsect (data descriptions for data references) 2800000
TOF ErrorID (identifier errors discovered after the definition)
T10 ErrorMessage (diagnostic messages for current line)
T11 ErrorProcedure (procedure errors)
T12 Error (diagnostic message entries)
T13 ErrorTemp (diagnostic message temporaries)
T14 Exit (stacked internal exit locations)
T15 External (external data items or files)
T16 Fail (stacked recovery information for parsing errors)

RM/COBOL User's Guide 189
Second Edition

Compiler Status Messages
Chapter 6: Compiling

Table 17: Abnormal Termination Messages (Cont.)

Error
Number

190 RM/COBOL User's Guide
Second Edition

Message Text

Table
Number

T17

T18
T19
T1A
T1B
T1C
T1D
T1E
T1F
T20
T21
T22
T23
T24
T25
T26
T27
T28
T29

T2A
T2B
T2C
T2D
T2E
T2F
T30
T31
T32
T33
T34
T35

Table Usage

FileArea (file areas for SAME [RECORD] AREA
clauses)

FileAreaTemp (file area temporaries)
Fsect (file references)

Global (global data items or files)

Group (group data items stack for a record)
ID (identifier definitions)

IndexTempHold (held index temporaries)
IndexTemp (index temporaries)
InspectTempHold (held INSPECT temporaries)
InspectTemp (INSPECT temporaries)
IntegerConstant (integer constants)

Jsect (procedure references)

Label (made intra-statement labels)
LiteralCharacter (literal characters)
LiteralRef (literal references)

Literal (literal descriptors)

LiteralTemp (literal temporaries)
LiteralValue (literal values)

LocalSymbol (local symbol information for object
symbol table)

NameLink (user-defined word links)

Name (user-defined words)

NextSentenceLabel (NEXT SENTENCE labels)
NumericTemp (numeric temporaries)

Operand (statement operands)

PackTemp (character packing temporaries)
ParameterText (diagnostic message parameter text)
Partial (partial segments)

Perform (PERFORM statements)

PictureTemp (PICTURE character-string temporaries)

PointerTemp (pointer temporaries stack)

PointerTempHold (pointer temporaries save)

Limit

4200000

8400000
8400000

840000

8400000
4200000
4200000
8400000
4200000
2800000

280000

840000
1400000

8400000

1680000
2100000

Compiler Status Messages
Chapter 6: Compiling

Table 17: Abnormal Termination Messages (Cont.)

Error

Number Message Text

Table
Number

T36
T37
T38

T39
T3A
T3B
T3C
T3D
T3E
T3F
T40
T41
T42
T43
T44
T45
T46

T47

T48
T49
T4A
T4B
T4C
T4D
T4E
T4F
T50
T51
T52
T53

Table Usage Limit
Polish (expression evaluation Polish)
PolishTemp (expression evaluation Polish temporary)

PrecomputeRef (precomputed subscripting or reference 4200000
modification)

Preset (initial VALUE clause values)

ProcedureRef (procedure references) 2100000
Procedure (procedure definitions) 1200000
ProgramName (program-names)

ProgramNest (contained programs)

Program (programs referenced by CALL statements) 4200000
Qualifier (qualifiers in identifiers)

QualifierTemp (qualifier temporaries)

RecordKey (record keys) 1200000

RecordKeyTemp (record key temporaries)

RefMod (reference modifiers) 2100000
ReplaceKey (REPLACE statement keys) 210000
ReplaceText (REPLACE statement text) 210000
ReplacingKey (REPLACING phrase keys in COPY 210000
statements)

ReplacingText (REPLACING phrase text in COPY 210000
statements)

SameSortArea (SAME SORT AREA list)

ScreenAttributes (Screen Section data item attributes) 933333
ScreenGroup (Screen Section groups)

ScriptPlex (subscripted reference entries) 840000
ScriptRef (subscripted references) 2800000
ScriptTemp (subscript temporaries)

Segment (Procedure Division segments) 1400000
SortMergeBlock (SORT and MERGE statements)

SourceTemp (input source character temporaries)

SpecialRegister (special register references) 2800000
Symbol (user-defined word temporaries)

SystemNames (implementor-names)

RM/COBOL User's Guide
Second Edition

191

Compiler Status Messages
Chapter 6: Compiling

Table 17: Abnormal Termination Messages (Cont.)

Error
Number Message Text

Table

Number Table Usage Limit
T54 TableIndex (INDEXED BY phrases of OCCURS

clauses)
TS5 TableKey (KEY phrases of OCCURS clauses) 840000
T56 Table (OCCURS clauses) 840000
T57 UndefinedProcedure (undefined procedure references)
T58 UsingID (Procedure Division header USING list) 2047
T59 PatternError (regular expression pattern errors) 65534
T5A SameAsTable (SAME AS tables) 65534
T5B Redefines (REDEFINES stack) 65534
T5C Work (compiler data stack) 65534
2 Table memory overflow, Tnn message.

The program has exceeded the available workspace when adding information to the
indicated compiler table. Increase the amount of user space available to the compiler
with the W Option, reduce the program size by dividing the program into a main
program with multiple subprograms or by using segmentation, or use shorter data-names.

The values of nn are listed as table numbers, and the values for message are listed as
table usage in the table provided above for error number 1. Note that the table listed is
not necessarily one of the tables causing the problem; it may simply be the table being
increased in size when the operating system refuses to provide more memory to the
compiler.

3 Program data or code overflow.

The program exceeded an internal compiler limit. The listing file shows whether a data
or procedure overflow occurred.

One of the object sections has run out of space. Segmenting the program or dividing it
into a main program with multiple subprograms may solve a procedure overflow.
Reducing the size of data items described in the Data Division may solve a data overflow
condition.

A program overflow can also occur if the program has too many source lines; that is, a
Procedure Division header that begins at line 65536 or higher or more than 65535 lines
of code in the Procedure Division and the object version is restricted to less than 12 and
the Q Compile Command option is not specified or configured. Object version 12 is
required to properly support debugging line numbers in excess of 65535.

4 Internal logic error, <error location information>

An internal compiler error has been encountered. If this problem arises, call Liant
technical support services for assistance. The <error location information> included in
this message may help determine the cause of this malfunction and should be recorded
for reference.

5 Fatal syntax error.

The compiler has encountered a syntax error from which it cannot recover. Fix the
syntax error in the source program and then compile the program again.

192 RM/COBOL User's Guide
Second Edition

Compiler Status Messages
Chapter 6: Compiling

Table 17: Abnormal Termination Messages (Cont.)

Error
Number Message Text

6 Object file overflow.

The object file has become too large for the compiler to produce a correct object file.
Break the program into two or more smaller programs that communicate using the CALL
statement.

7 Internal logic error, <error location information>

An internal compiler error has been encountered: an invalid compiler table number (roll)
has been referenced. If this problem arises, call Liant technical support services for
assistance. The <error location information> included in this message may help
determine the cause of this malfunction and should be recorded for reference.

8 Internal logic error, <error location information>

An internal compiler error has been encountered: an erroneous compiler table entry
number (group) has been referenced. If this problem arises, call Liant technical support
services for assistance. The <error location information> included in this message may
help determine the cause of this malfunction and should be recorded for reference.

9 Internal logic error, <error location information>

An internal compiler error has been encountered: an erroneous compiler table entry
offset (rung) has been referenced. If this problem arises, call Liant technical support
services for assistance. The <error location information> included in this message may
help determine the cause of this malfunction and should be recorded for reference.

N Unknown error number.

The value of n was not 1 through 9, inclusive. If this occurs, call Liant technical support
services for assistance.

In the unnumbered error messages described below, pathname may be one of the following: a
valid pathname, PRINTER if the P Option is used, or the standard output device if the T
Option is used.

Close error for file pathname.

This message may occur for a temporary XML symbol table file. There are a number of
reasons this message may appear, including the following:

e A file does not exist.

e A file is corrupted.

Contact Liant technical support services for further assistance.

Code point value is not allowed in an XML attribute value.

The code point represents a character that cannot appear in an XML attribute value of the
XML symbol table.

Contact Liant technical support services for further assistance.

RM/COBOL User's Guide
Second Edition

193

Compiler Status Messages
Chapter 6: Compiling

IDRef allocation error for file pathname.

This message may occur for a temporary XML symbol table file. It means that an internal
table could not be allocated for this file.

Contact Liant technical support services for further assistance.

Open error for file pathname.

This message may occur for program listings, object files, or temporary XML symbol table
files. There are a number of reasons this message may appear, including:

e A write-protected file was opened for output.
e The system is out of disk space.
e Aninvalid pathname was specified.

e A file exists, but RM/COBOL could not locate it because the directory search sequence
was not specified or was specified incorrectly.

e The system has reached its limit for the number of files that can be open at one time.

Read error for file pathname.

This message can occur for source, object, and temporary XML symbol table files.
Generally, it indicates a corrupted file. The error will also occur on source files that contain
a NULL character. Restore the file from its backup copy, or, for object files, restart the
compilation.

Remove error for file pat hname.

This message may occur for a temporary XML symbol table file. There are a number of
reasons this message may appear, including the following:

e A file does not exist.
e A fileis corrupted.

e The user does not have delete permissions for the directory containing the file.

Contact Liant technical support services for further assistance.

Unable to locate iconv library required to process code point value.

This message appears only on UNIX and only when the compiler cannot find the character
conversion library, iconv, which converts an encoding other than RM_LATIN 1 and
RM_LATIN 9 to Unicode for an XML symbol table.

Contact Liant technical support services for further assistance.

Unknown RM_ENCODING environment variable value while processing code point
value.

This message occurs only on UNIX and only when a user specifies an unknown
RM_ENCODING environment variable value when building an XML symbol table.

Contact Liant technical support services for further assistance.

194 RM/COBOL User's Guide

Second Edition

Compiler Configuration Errors
Chapter 6: Compiling

Write error for file pathname.

This message can occur for listings, object files and temporary XML symbol table files.
Generally, it means space is not available to perform the write operation.

XML symbol table compression error for file pathname.

This message may occur for a temporary XML symbol table file. The XML symbol table
failed to successfully compress into the object file. This could occur because of insufficient
memory or insufficient disk space.

Contact Liant technical support services for further assistance.

Compiler Configuration Errors
Compiler configuration errors include all errors that occur because of an error in the
configuration. The formats are as follows:
Error code at record number in location.
Error code in configuration.

where, code is one of the following:

e The compiler configuration error number listed in Table 18. See also Configuration
Errors (on page 441).

e An input/output error, as described in Input/Output Errors (on page 418).

number is the logical record in the configuration file where the error occurred. When
using number to determine which record is in error, count lines combined with their
continuation lines as one record, and do not count comment lines or blank lines.

location identifies one of the following sources of configuration records:

e Automatic configuration file

e Opverriding configuration file

e Supplemental configuration file
Automatic configuration file refers to configuration files located automatically by the
Automatic Configuration Support module on UNIX or Windows. For more information, see
Automatic Configuration Files (on page 308). Overriding configuration file refers to a

configuration file specified by the G Option (see page 158). Supplemental configuration file
refers to a configuration file specified by the H Option (see page 158).

The format with the record number and filename appears if an error is detected during the
processing of a configuration record. The text of the configuration record in error follows the
message. The other format is used if an error is detected after all configuration records have
been processed or if an error is detected without an associated record.

RM/COBOL User's Guide 195
Second Edition

Compiler Configuration Errors

Chapter 6: Compiling

Table 18: Compiler Configuration Errors

Code Description

E002 An invalid delimiter was found.

E004 A keyword has not been provided where one was expected or the keyword
is invalid.

E007 Syntax error.

E009 A value has not been provided where one was expected or the value is
invalid.

E00B A logical configuration record exceeds the maximum length.

E00C Token requested to dereserve was not found.

Compiler Initialization Errors

If the compiler encounters difficulties initializing the RM/COBOL file management system,
one of the following error messages will appear:

Error initializing file manager.
This error generally occurs because a buffer pool has been configured that is too large to be

allocated. See the BUFFER-POOL-SIZE keyword (on page 357) of the RUN-FILES-ATTR
configuration record for instructions on changing the buffer pool size.

Insufficient memory for compiler initialization.

This error indicates that the compiler could not successfully allocate memory during
initialization. Reducing the initial size of the compiler workspace specified in the

W Compiler Command Option (see page 158) or the maximum source record length with the
configuration keyword SOURCE-RECORD-MAX-LENGTH (see page 331) might resolve
this problem. Adding physical memory to the machine or modifying the OS-specified user
limits on memory allocation might also resolve this problem.

Support Module Version Errors

During initialization, the compiler locates and loads various support modules, including the
automatic configuration support module. Also, at initialization, the compiler verifies that
each support module is the correct version for the runtime system. If a support module is not
the correct version, the following message is displayed:

RM/COBOL: module-name version mismatch, expected 12.0n.nn,
found n.nn.nn.

When the previous message is displayed, the compiler terminates with the following message:

Error invoking mismatched compiler and support module.

196 RM/COBOL User's Guide

Second Edition

Compiler Exit Codes
Chapter 6: Compiling

Compiler Exit Codes

Compiler exit codes indicate the status of the compilation (either successful or unsuccessful).
These codes and their associated definitions are listed in Table 19.

Under UNIX, the exit code can be interrogated from the shell. See shell (sh) in your UNIX
documentation for details.

Under Windows, a non-zero exit code is displayed in a message box titled “Return Code”.
Selecting the OK button closes the compiler window. The message box also will contain the
COBOL error code, if one occurred. Display of the Return Code message box may be
disabled by setting the value of the Show Return Code Dialog property (see page 87) to False.

If the compiler was invoked from a COBOL program using the SYSTEM non-COBOL
subprogram (CALL “SYSTEM?”), the exit code can be retrieved by passing an exit code
variable in the USING list. For more information, see the SYSTEM (on page 621)
subprogram.

Table 19: Compiler Exit Codes

Code Description
0 Normal termination.
249 Warnings in program.
250 System initialization error.
251 Incorrect Compile Command.
252 Errors in program.
253 Reserved.
254 Compilation canceled (by pressing the CTRL and BREAK keys or the

system Interrupt key).

255 Compiler error.

RM/COBOL User's Guide 197
Second Edition

Compiler Exit Codes
Chapter 6: Compiling

198 RM/COBOL User's Guide
Second Edition

Runtime Command
Chapter 7: Running

Chapter 7: Running

One of the immediate results of compilation is the creation of the object file. Object files
contain the object version of the source program. The object version of the program can be
executed with the runtime command. To execute the object program, use the RM/COBOL
Runtime Command described in the following section.

If your program uses segmentation, the segments are loaded and executed—as they are
referenced—by the RM/COBOL runtime system. The runtime system also allocates memory
for file buffers, external data items, and called RM/COBOL and non-COBOL subprograms.

This chapter contains information on the RM/COBOL Runtime Command, runcobol, and its
options, examples of valid and invalid runtime commands, runtime messages, and program
exit codes.

Runtime Command

The RM/COBOL Runtime Command (runcobol) loads and executes RM/COBOL programs.

Under UNIX, the Runtime Command is entered at a shell prompt. After typing the desired
command and options, press Enter to begin execution.

Under Windows, the Runtime Command can be entered in the Command line text box of the
Create Shortcut dialog box. For instructions on creating a shortcut, see Creating a Windows
Shortcut (on page 63). Choose the RUNCOBOL icon to begin execution. Programs also may
be executed by dragging the .cob object file to the RUNCOBOL object or by double-clicking
on the object file.

The format of the Runtime Command is as follows:

runcobol filename [option]

filename is the name of the main program of the run unit. If the L Option (described in
the next paragraph) is not specified, filename must be a valid pathname to an object file
that contains exactly one program. In this case, if a filename extension is not specified,
RM/COBOL uses first .cob, and then .COB unless configured otherwise with the
OBIJECT keyword (see page 344) of the EXTENSION-NAMES configuration record.
Note that when the configuration includes the MAIN-PROGRAM keyword (see

page 368) of the RUN-OPTION configuration record, the filename specified is ignored,
and, if options are specified with a leading hyphen, may even be omitted.

RM/COBOL User's Guide 199
Second Edition

Runtime Command
Chapter 7: Running

The L Option allows you to invoke execution of a program contained in a library by
entering the name of the main program within a library. See the discussion of libraries
(on page 150). The rules for invocation of programs within libraries are as follows:

1. If the main program is not in a library, you may enter the appropriately qualified
pathname for filename or you may treat the object program as a library as described
in item 2 even though it is a library containing one program.

2. If the main program is in a library, you must enter the L Option and the library name
containing the main program. The main program-name specified by filename must
have been specified in the PROGRAM-ID paragraph of the program.

option specifies the available RM/COBOL Runtime Command options, described in the
next section. Spaces or commas must separate options. Options may be entered in
uppercase or lowercase letters. Each option may be preceded by a hyphen. If any option
is preceded by a hyphen, then a leading hyphen must precede all options. When a value
is assigned to an option, the equal sign is optional if leading hyphens are used. In
general, command-line options are processed from left to right and, for most options, the
last value encountered is the one used.

Note More than one L Option may be specified without one overriding the other. See
the description of the L Option (see page 207) for more information.

In addition, the RM/COBOL for Windows runtime system also supports the following
command-line options, which do not follow the command format described earlier in this
section:

200 RM/COBOL User's Guide
Second Edition

Three OLE server registration commands. These options are described in Runtime
Registration (see page 60).

runcobol /regserver
runcobol /unregserver
runcobol /showserver

Three character-set commands. These options are described in Character Set
Considerations for Windows (see page 104).

runcobol /cs_ansi
runcobol /cs_oem
runcobol /showcharset

Runtime Command
Chapter 7: Running

Runtime Command Options

Runtime Command options can be specified in the following three ways:

1. They can be placed into the registry (on Windows) or the resource files (on UNIX). In
the registry, the Command Line Options property (see page 78) provides command-line
options for the runtime when Runtime is selected on the Select File tab of the
RM/COBOL Properties dialog box. In resource files, the Options keyword, which is
described in Command Line Options (on page 27), provides command-line options for
the runtime in the global resource file /etc/default/runcobolre and the local resource file
~/.runcobolre.

2. They can be specified in the Runtime Command itself.

3. They can be placed into a configuration file, which is processed by the RM/COBOL
runtime when the configuration file is automatically located or specified with a
configuration command-line option. For information on configuration files, see
Automatic Configuration Files (on page 308) or Configuration Runtime Command
Options (on page 203). For a discussion of the runtime options that can be configured,
see the RUN-OPTION configuration record (on page 365) and the RUN-SORT
configuration record (on page 371).

Options are processed in the order given above, but options specified in the configuration do
not override options specified in the resultant set of command-line options as determined from
items 1 and 2 above. This means that options specified in a Runtime Command will take
precedence over conflicting or contradictory options specified by the Windows registry or
UNIX resource files (step 1) or configuration (step 3).

For quick reference, Table 20 (see page 202) summarizes the Runtime Command options in
alphabetical order. The Runtime Command options, however, are grouped into four
categories and are explained more fully in these sections:

1. Configuration (see page 203)

2. Debug and Test (see page 204)
3. Environment (see page 204)
4

Program (see page 206)

RM/COBOL User's Guide 201
Second Edition

Runtime Command

Chapter 7: Running

Table 20: RM/COBOL Runtime Command Options

Option
A=[delim] [string] [delim]
(see page 206)
B=n
(see page 204)

C=pathname
(see page 203)

D
(see page 204)

F=fillchar
(see page 205)

1

(see page 204)
K

(see page 203)

L=pathname
(see page 207)

M
(on page 205)

Q=[delim] [string] [delim]
(see page 208)

(see page 205)
T=n
(see page 205)

v
(see page 203)

X=pathname
(see page 204)

202 RM/COBOL User's Guide

Second Edition

Description

Passes an argument to the main program. The delimiter
characters are optional if string does not contain spaces.

Specifies a maximum buffer size for use with the ACCEPT
and DISPLAY statements.

Designates a file to be used as the primary runtime
configuration file.

Invokes the RM/COBOL Interactive Debugger.

Uses fillchar instead of space to preset read-write memory
upon program load.

Collects RM/COBOL program instrumentation data.

Suppresses the banner message and the STOP RUN message.

Designates RM/COBOL non-COBOL subprogram libraries.

Directs that level 2 ANSI semantics are to be used for
Format 1 ACCEPT and DISPLAY statements.

Specifies the value used to initialize the SYMBOLIC
QUEUE, SYMBOLIC SUB-QUEUE-1, SYMBOLIC
SUB-QUEUE-2, and SYMBOLIC SUB-QUEUE-3 area in
a CD FOR INITIAL INPUT record area or the SYMBOLIC
TERMINAL area in a CD FOR INITIAL I-O record area.
The delimiter characters are optional if string does not
contain spaces.

Sets (or resets) the initial value of switches in the
RM/COBOL program.

Specifies the amount of memory (n bytes) to be used for a
sort operation.

Directs that a trace of support modules loaded by the
RM/COBOL runtime system be displayed.

Designates a file as a supplement to the runtime
configuration.

Runtime Command
Chapter 7: Running

Configuration Runtime Command Options

The following options designate a file to be used as the complete runtime configuration or as
a supplement to it and allow suppression of the banner and STOP RUN messages.

C

Use the C Option to designate a file to be used as the runtime configuration. If
the C Option is specified, any automatic configuration is ignored (that is, not
processed). The C Option has the following format:

C=pathname

See also the discussion of the runtime X Option (on page 204).

The default is to use the default configuration options. The contents of a
configuration file are described in Chapter 10: Configuration (on page 307).

Use the K Option to suppress the banner message and the STOP RUN message.
This option is most useful when running under batch command files or shell
scripts.

The default is to display the banner and STOP RUN messages. The default can be
configured with the RUN-OPTION configuration record keyword K (see page 367).

Use the V Option to display a verbose banner, including a list of the support
modules (shared objects on UNIX and dynamic link libraries on Windows)
loaded by the RM/COBOL runtime system. For UNIX, this list will indicate
which Terminal Interface support module is being used and which other optional
modules are present, if any. For both UNIX and Windows, the list will include
any non-COBOL modules loaded because of the L Runtime Command Option
(see page 207). The list indicates the full pathname of the support module, so
the location of the loaded file can be determined by examining the list. This
option is most useful when attempting to diagnose a problem with support
modules. For more information, see Appendix D: Support Modules (Non-
COBOL Add-Ons) on page 475 in this user’s guide and the CodeBridge User's
Guide.

Alternatively, the RM_DYNAMIC LIBRARY_ TRACE environment variable may
be defined (with any value) or the V keyword (see page 368) of the RUN-OPTION
configuration record may be set to DISPLAY if you wish to see just the list of
support modules. The RM_VERBOSE BANNER environment variable may be

defined with a value that begins with “Y” or “y” to obtain the complete verbose
banner, including the list of support modules.

The default is not to display the verbose banner or the list of support modules loaded.
The default can be configured with the V keyword of the RUN-OPTION
configuration record.

RM/COBOL User's Guide
Second Edition

203

Runtime Command
Chapter 7: Running

Use the X Option to designate a file as a supplement to the runtime
configuration. The specified file is processed after any automatic configuration
and after any file specified in the C Option, but before any other command-line
options are processed. The X Option has the following format:

X=pathname

If no configuration exists (either automatic or specified with the C Option, described
earlier in this section), the specified file serves as the complete configuration. The
default is to use the default configuration options. The contents of a configuration
file are described in Chapter 10: Configuration (on page 307).

Debug and Test Runtime Command Options

The following options invoke the RM/COBOL Interactive Debugger and collect program
instrumentation data.

D

Use the D Option to invoke the RM/COBOL Interactive Debugger (called
Debug). Complete details on program debugging are contained in Chapter 9:

Debugging (on page 271).

By default, the Interactive Debugger is not invoked. There is no corresponding
configuration for this command-line option.

Note The Interactive Debugger may also be started during execution of an ACCEPT
terminal I/O statement by specifying ENTER-DEBUGGER (see page 382) as the
semantic action value of the ACTION keyword (see page 378) in the TERM-INPUT
configuration record.

Use the I Option to collect RM/COBOL program instrumentation data.
Complete details on program instrumentation are contained in Chapter 11:
Instrumentation (on page 399).

By default, instrumentation data is not collected. There is no corresponding
configuration for this command-line option.

Environment Runtime Command Options

The following options specify the runtime environment.

B

204 RM/COBOL User's Guide
Second Edition

Use the B Option to specify a maximum buffer size for use with ACCEPT and
DISPLAY statements. The B Option has the following format:

B=n
The maximum buffer size is 65280 characters. The default size is 264 characters.

The default can be configured with the RUN-OPTION configuration record
keyword B (see page 365).

For more information, see Maximum Size of a Screen Field (on page 211).

The ACCEPT and DISPLAY buffer size also affects redirection of ACCEPT and
DISPLAY operations for RM/COBOL on UNIX. For information on input and
output redirection, see Standard Input (on page 42) and Standard Output (on
page 44).

Runtime Command
Chapter 7: Running

Use the F Option to specify a fill character value. The fill character value is
used to initialize read-write memory allocated for the run unit. Working-Storage
data items that do not specify a VALUE clause in their data description entry
will be filled with this character value at program load time. The F Option has
the following format:

F=<fill-char>

where, <fill-char> can be a single character, a decimal number from 00 to 255, or a
hexadecimal number from 0x00 to OxFF. The single character digits O through 9
represent the ASCII digit characters (“0” — “9”, 0x30 — 0x39, or decimal 48 — 57), so
if they are meant as numeric code points, a leading 0 is required to make them more
than a single character. Quoting the fill character value is allowed, but has no effect
on whether the value is interpreted as a number or a character.

The default is to use a space character to fill read-write memory allocated for the run
unit. The default can be configured with the RUN-OPTION configuration record
keyword FILL-CHARACTER (on page 367).

Use the M Option to direct that level 2 ANSI semantics are to be used for
Format 1 ACCEPT and DISPLAY statements.

The default is to use level 1 ANSI semantics in these situations (see the discussion
that begins on page 43). The default can be configured with the RUN-OPTION
configuration record keyword M (see page 368).

Use the S Option to set (or reset) the initial state of switches in the RM/COBOL
run unit. The S Option has the following format:

S=n ... n

Switch initial states are specified left to right from switch 1 to switch 8. Each n
indicates a switch state value: 0 indicates OFF and 1 indicates ON. Fewer than eight
initial switch state values may be specified, in which case the remaining switches are
initialized to OFF. Specifying more than 8 initial switch state values is not allowed;
an option not valid error will occur and the run unit will not be started.

The default is to initialize all switches to OFF at the start of the run unit. There is no
corresponding configuration for this command-line option.

Use the T Option to specify the amount of memory (7 bytes) to be used for a
sort operation. The T Option has the following format:

T=n
There are a number of reasons to use the T Option in association with a sort
operation:

e To increase the amount of memory available for the sort operation, thereby
increasing the efficiency of the sort operation.

e To reduce the default memory allocation. This provides more room for loading
other data or called subprograms into memory during an input procedure.

If no SORT or MERGE statement is used in the run unit, using a value of 0 will
allow the runtime system to allocate the memory generally used to contain the
sort-merge logic for other purposes.

RM/COBOL User's Guide
Second Edition

205

Runtime Command
Chapter 7: Running

The default is 256000 bytes. The maximum allowed value is 2147483647 bytes.
The default can be configured with the RUN-SORT configuration record keyword
MEMORY-SIZE (see page 371).

Program Runtime Command Options

The following options define an argument to be passed to the main program and the object
libraries to be used for the run unit.

A

206 RM/COBOL User's Guide
Second Edition

Use the A Option to pass an argument to the main program. The A Option has
the following format:

A=[delim] string[delim]

where, string is an alphanumeric series of characters.
The delimiter character specified for del/im may be either ' or ".

The delimiter character chosen as the opening delimiter must be used as the closing
delimiter as well. The closing delimiter must be followed by a space or comma if
another option follows the A Option. The delimiter character used cannot appear as
part of string.

If string contains no spaces, delimiter characters are not required.

Under UNIX, it is safer to delimit string using single quotation marks '...' because
characters in the argument might otherwise be meaningful to the shell (sh) command
interpreter.

To use the string assigned to the A option, you must have a Linkage Section for the
main program with the following form:

01 MAIN-PARAMETER.
02 PARAMETER-LENGTH PIC S9(4) BINARY (2).
02 PARAMETER-TEXT.
03 PARAMETER-CHAR PIC X OCCURS 0 TO 2048 TIMES
DEPENDING ON PARAMETER-LENGTH.

The Procedure Division header should have the following form:

PROCEDURE DIVISION USING MAIN-PARAMETER.

The variable PARAMETER-LENGTH contains the number of characters between
delimiter characters. PARAMETER-TEXT contains a copy of the characters
between the delimiter characters. If no parameter is passed with the A Option and
the main program describes a parameter as shown above, the value of
PARAMETER-LENGTH will be zero. When this is the case, PARAMETER-TEXT
should not be referenced. In all cases, no part of MAIN-PARAMETER should be
modified.

The number of characters between the delimiter characters cannot exceed 2048.

Note Starting in version 10 of the RM/COBOL runtime system, the maximum A
Runtime Command Option value length is 2048 characters; previous versions
supported a maximum length of 100 characters. A COBOL program may specify a
lower value in the OCCURS clause. In particular, existing programs that specify the
previous limit of 100 for the maximum are still valid and do not need to be modified.
COBOL programs that specify a lower value can even access up to the current

Runtime Command
Chapter 7: Running

maximum 2048 characters if reference modification is used, as in MAIN-
PARAMETER(3:).

The following is an example program using the A Option.

IDENTIFICATION DIVISION.
PROGRAM-ID. CPASS.
To see a command-line argument string passed to a
COBOL main program, run this program as follows:
* runcobol cpass A="string"
DATA DIVISION.
LINKAGE SECTION.

01 APARAM.
02 APARAM-SIZE PIC S9(4) BINARY (2).
02 APARAM-STRING.
03 FILLER PIC X OCCURS 0 TO 2048 TIMES

DEPENDING ON APARAM-SIZE.
PROCEDURE DIVISION USING APARAM.
0010-BEGIN.
DISPLAY APARAM-STRING(1l:) LINE 22 ERASE.
STOP RUN.
END PROGRAM CPASS.

The default main program argument is an empty string; that is, a string where
APARAM-SIZE is zero. There is no corresponding configuration for this command-
line option.

Use the L Option to designate RM/COBOL object or non-COBOL subprogram
libraries. The L Option has the following format:

L=pathname

These libraries allow more than one program to be contained within a file.
RM/COBOL imposes no limitation on the number of times the L Option may appear
in a single Runtime Command. Multiple uses of the L Option are processed
cumulatively from left to right as they are encountered on the command line. For
additional information on how the libraries specified by the L Option are searched,
see the discussion of Subprogram Loading (on page 240). Further information on
RM/COBOL libraries may be found in the topic Libraries (see page 150). You can
also learn more about non-COBOL libraries in the appropriate appendixes in the
CodeBridge User's Guide on the non-COBOL subprogram internals for Windows
and UNIX.

See also the RUN-OPTION configuration record keyword L (on page 367).

RM/COBOL User's Guide 207
Second Edition

Sample Runtime Commands
Chapter 7: Running

Use the Q Option to indicate that the program is being scheduled by the
Message Control System (MCS) to process a message. The Q Option has the
following format:

Q=[delim] stringl[delim]

where, string is an alphanumeric series of characters.

delim may be either of the delimiter characters double quote (") or single quote (').
The delimiter character chosen as the opening delimiter must be used as the closing
delimiter as well. The closing delimiter must be followed by a space or comma if
another option follows the Q Option. The delimiter character cannot appear as part
of string. If string contains no spaces, delimiter characters are not required. Under
UNIX, it is safer to delimit string using the single quotation (') delimiter because
characters in the argument might otherwise be meaningful to the shell (sh) command
interpreter.

The value of string is moved into the SYMBOLIC QUEUE, SYMBOLIC SUB-
QUEUE-1, SYMBOLIC SUB-QUEUE-2, and SYMBOLIC SUB-QUEUE-3 fields
(4 * 12 characters each = 48 characters total) of a CD FOR INITIAL INPUT or in
the SYMBOLIC TERMINAL field (12 characters) of a CD FOR INITIAL I-O.
When the indicated fields in the CD FOR INITIAL record area are not spaces, it
indicates that the program was scheduled by the MCS to process a message. Thus,
the Q option is intended for use in a script used by the MCS to schedule a run unit to
process a message.

When the main program does not contain a CD FOR INITIAL, the Q Option, if
specified, is ignored.

When the Q Option is omitted and the main program contains a CD FOR INITIAL,
the specified fields of the initial CD contain spaces. This indicates that the program
was not scheduled by the MCS to process a message.

There is no corresponding configuration for this command-line option.

Sample Runtime Commands

Following are examples of valid and invalid RM/COBOL Runtime Commands.

Valid Runtime Commands

runcobol payroll B=500,K

This command executes the program named payroll.cob. It establishes a maximum buffer
size of 500 bytes for ACCEPT and DISPLAY statements (the B Option) and suppresses
banner and STOP RUN messages (the K Option).

runcobol FIRSTPRG L=libl\library.cob,D

This command executes the program FIRSTPRG contained in the RM/COBOL library named
libl\library.cob.

It informs the runtime system of the name of the library (the L Option) that contains the
programs, and invokes the Interactive Debugger (the D Option).

208 RM/COBOL User's Guide
Second Edition

Runtime Messages
Chapter 7: Running

Invalid Runtime Commands

runcobol payroll.sal A='PRINT-RUN"

Here, the A Option is invalid, since the opening and closing delimiters are not identical.
runcobol libl\library D T

In this example, the library used in the valid example cannot be executed by this command,

assuming the library contains more than one program. Also, the T Option is specified without
an associated value.

Runtime Messages

Messages of different classes may appear on the screen during program execution. The
message types are defined in the following paragraphs.

Diagnostic Messages

Diagnostic messages indicate either that an internal RM/COBOL error occurred or that an I/O
error occurred that was not handled by an appropriate USE procedure (see the description of
the USE statement in Chapter 5: Procedure Division of the RM/COBOL Language Reference
Manual). 1f the D Option (see page 204) was entered in the Runtime Command and one of
these errors occurs, the Interactive Debugger will be entered to allow examination of program
data values. Otherwise, control will return to the operating system.

Execution Messages

Execution messages report the status of the runtime system, or problems within the
RM/COBOL program that prevent successful execution.

These messages result from normal program termination including execution of a STOP RUN
statement, the execution of a temporary STOP statement, or an incorrectly entered command-
line option.

Diagnostic and execution error messages are detailed in Appendix A: Runtime Messages (on
page 407).

RM/COBOL User's Guide 209
Second Edition

Program Exit Codes
Chapter 7: Running

Program Exit Codes

An appropriate exit code is returned to the operating system when program execution ends.
The exit code may indicate that execution was successful or unsuccessful. Users may move
(or otherwise assign) any exit code value in the range 0 through 255 to the implicitly defined
RETURN-CODE special register. The program exit codes are listed and defined in Table 21.

Under UNIX, the exit code can be interrogated from the shell. See shell (sh) in your UNIX
documentation for details.

Under Windows, a non-zero exit code is displayed in a message box titled “Return Code”.
Choosing the OK button closes the runtime window. The message box also will contain the
COBOL error code, if one occurred. Display of the Return Code message box (see page 118)
may be disabled by setting the value of the Show Return Code Dialog property (see page 87)
to False.

Note The exit code is not available for testing with ERRORLEVEL on Windows because
the program is run in a separate window from the window that starts the program with a
Runtime Command.

If the runtime system was invoked from a COBOL program using the SYSTEM non-COBOL
subprogram (CALL “SYSTEM?”), the exit code can be retrieved by passing an exit code
variable in the USING list. For more information, see the SYSTEM subprogram (on

page 621).

Note User-defined exit codes (those exit codes set by using the RETURN-CODE special
register) in the range 249 — 255 will be ambiguous if a runtime system error occurs.

Table 21: Program Exit Codes

Code Description
0 Normal termination.

249 Internal library subprogram called with incorrect parameters.

250 System initialization error.

251 Incorrect Runtime Command.

252 Program load failure.

253 Program error.

254 Run unit canceled (by pressing the Ctrl and Break keys or the system
Interrupt key).

255 /O error.

210 RM/COBOL User's Guide

Second Edition

ACCEPT and DISPLAY Statements
Chapter 8: RM/COBOL Features

Chapter 8: RM/COBOL Features

This chapter offers operating system-specific information on the use of RM/COBOL
statements and on RM/COBOL file types and structure. It is assumed the reader is familiar
with RM/COBOL statements.

ACCEPT and DISPLAY Statements

Specific characteristics of your operating system affect the following aspects of RM/COBOL
ACCEPT and DISPLAY statement usage:

e The maximum size of a screen field.

e The initial contents of a screen field.

e The use of defined field edit and field termination keys with the ACCEPT statement.
e The use of phrases with ACCEPT and DISPLAY statements.

e Redirection and piping of standard input and standard output. For more information, see
Chapter 2: Installation and System Considerations for UNIX (on page 13).

Maximum Size of a Screen Field

The maximum size of a screen field is limited to the size of the ACCEPT and DISPLAY
buffer. The default size for the ACCEPT and DISPLAY buffer is 264 characters. However,
the B Runtime Command Option (see page 204), or its equivalent B keyword (see page 365)
in the RUN-OPTION configuration record, may be specified to change the size of this buffer
up to a maximum of 65280 characters. Operands with a length larger than the buffer size are
space padded on the right when accepted because the input field size is limited to the
ACCEPT buffer size and are truncated on the right when displayed because the output field
size is limited to the DISPLAY buffer size.

RM/COBOL User's Guide 211
Second Edition

ACCEPT and DISPLAY Statements
Chapter 8: RM/COBOL Features

Initial Contents of a Screen Field

Depending on the current configuration and the phrases specified in the ACCEPT statement,
the initial contents of a screen field may be the following:

e Unchanged but treated as if the field contained all spaces. This is the default if neither
the PROMPT nor UPDATE phrase is specified, and if the ACCEPT-FIELD-FROM-
SCREEN keyword (see page 351) of the RUN-ATTR record is not specified or is set to
NO in the configuration file.

e Unchanged if neither the PROMPT nor UPDATE phrase is specified and the ACCEPT-
FIELD-FROM-SCREEN keyword of the RUN-ATTR record is set to YES in the
configuration file.

e Filled with prompt characters if the PROMPT phrase is specified in the ACCEPT
statement.

e Filled with the current value of the associated ACCEPT operand if the UPDATE phrase
is specified in the ACCEPT statement.

o Filled with the literal characters specified with the MASK keyword of the CONTROL
phrase, if that CONTROL phrase is specified. If UPDATE is also specified, or the
ACCEPT-FIELD-FROM-SCREEN keyword of the RUN-ATTR configuration record is
set to YES, then the input character positions specified in the mask are replaced by the
contents of the ACCEPT operand or the current contents of the screen field, respectively.

You can then modify the contents of the screen field. Except for literal characters specified
with the MASK keyword of the CONTROL phrase, all positions of that field can be modified
until a field termination key is pressed. This modification of displayed data is called field
editing.

Defined Keys

The following sections list and explain the specially defined screen field editing keys (that is,
keys with editing actions) and the field termination keys that terminate field input and
generate ACCEPT exception status values, which provide information on the cause of input
termination.

Before these keys can function as described under UNIX, the key must be associated with the
definition in the termcap or terminfo database, as described in Terminal Input and Output on
UNIX (on page 30), and detailed in TERM-INPUT Configuration Record (on page 377) and
the examples provided in Default Configuration Files (on page 390). For example, the Left
Arrow key might be associated with the k1 termcap capability name or keub1 terminfo
capability name. Similarly, under Windows, the key must be associated with the input
character sequence generated for the key, as described in Keyboard Input Character
Sequences (on page 34). A default configuration exists to make these associations. Keys can
be redefined from their default configuration by providing TERM-INPUT configuration
records.

212 RM/COBOL User's Guide

Second Edition

Field Edit Keys

ACCEPT and DISPLAY Statements
Chapter 8: RM/COBOL Features

Table 22 describes the keys used to manipulate the cursor during field editing.

Table 22: Edit Keys

CONTROL
Key Phrase
Default
Left Arrow
MASK
Default
Right Arrow
MASK
Default
Backspace
MASK
Default
Delete Character
MASK
Default
Erase Entire
MASK

Action

Moves the cursor left one character without affecting
any input characters. If the cursor is already at the
leftmost character in the screen field, a beep sounds.

Same as above; however, the cursor skips over literal
characters that were specified in the mask.

Moves the cursor right one character without affecting
any input characters. If the cursor is already at the
rightmost character in the screen field, a beep sounds.

Same as above; however, the cursor skips over literal
characters that were specified in the mask.

Moves the cursor left one character, and deletes the
input character in that position. All characters to the
right of the deleted characters are shifted to the left.
The prompt character (or a space if the PROMPT
phrase was not specified) is used to pad the screen field
on the right. If the cursor is already at the leftmost
character in the screen field, a beep sounds.

Same as above; however, if the character to the left of
the cursor is a literal character, the cursor is moved left
until another input character is encountered, and that
character is deleted without altering any subsequent
input characters.

Deletes the input character at the cursor position. All
screen field characters to the right of the cursor are
shifted to the left. The cursor remains stationary. The
prompt character (either as specified in the PROMPT
phrase, or spaces if the PROMPT phrase was not
specified) is used to pad the screen field on the right. If
the cursor is positioned at the right margin when this
key is pressed, and no characters are deleted, a beep
sounds.

Same as above; however, only input characters up
to the next literal character to the right are shifted to
the left.

Places the cursor at the leftmost field position, and fills
all input positions with the prompt character, or spaces

if the PROMPT phrase was not specified. Note that the
Erase Entire key is not a field terminator.

Same as above; however, literal characters in the mask
are not overwritten.

RM/COBOL User's Guide
Second Edition

213

ACCEPT and DISPLAY Statements
Chapter 8: RM/COBOL Features

Table 22: Edit Keys (Cont.)

CONTROL
Key Phrase

Default
Erase Remainder

MASK

Default
Insert Character

MASK

214 RM/COBOL User's Guide
Second Edition

Action

Without moving the cursor, fills all input positions from
the current cursor position to the rightmost position of
the screen field with the prompt character, or spaces if
the PROMPT phrase was not specified. Note that the
Erase Remainder key is also a field termination key.

Same as above; however, literal characters in the mask
are not overwritten.

Initializes insert mode. Subsequent keystrokes insert
characters at the cursor position. Screen field
characters to the right of the cursor are shifted further to
the right to accommodate the inserted characters. If an
attempt is made to shift any character except for a space
or a prompt character (if the PROMPT phrase was
specified) beyond the rightmost input position of the
screen field, a beep sounds.

Insert mode is canceled when you press a field
termination key or any screen field editing key other
than Insert Character.

Same as above; however, an attempt to shift an input
character past a literal character specified in the mask is
rejected and results in a beep.

ACCEPT and DISPLAY Statements
Chapter 8: RM/COBOL Features

Table 23 lists the default editing semantic actions that the runtime system performs for input
sequences on Windows and for the two terminal interfaces on UNIX.

Table 23: Default Editing Semantic Actions

Semantic Action Windows Sequence Terminfo Name Termcap Name
Backspace NUL BS kbs [Ctrl+H] kb [Ctrl+H]
Delete Character NUL WDEL kdchl kD
Erase Entire ' kelr kC
Erase Remainder * WSFT WCNT E kel kE
Erase Remainder WSFT WCNT K
Left Arrow NUL WLFT kcubl kl
Right Arrow NUL WRGT kcufl kr
Screen Escape NUL ESC 0x1b 0x1b
Screen Home NUL WHOM khome kh
Screen Previous Field NUL WUP kcuul ku

NUL WF1 k1 kfl
NUL WF2 k2 kf2
NUL WF3 k3 kf3
NUL WF4 k4 kf4
NUL WF5 kS kfs
Screen Terminate
NUL WF6 k6 kfo
NUL WF7 k7 kf7
NUL WF8 k8 kf8
NUL WF9 k9 kf9
NUL WF10 k; kf10

' The default Windows configuration does not include this semantic editing action.

2 The default configuration for this action also terminates input with an exception and generates an
exception status value 57.

3 The default Windows configuration for this action terminates input without an exception and generates
an exception status value 13. The default UNIX configuration does not include this semantic editing
action.

RM/COBOL User's Guide 215
Second Edition

ACCEPT and DISPLAY Statements
Chapter 8: RM/COBOL Features

Field Termination Keys

Table 24 lists the field termination keys and the associated default ACCEPT exception status
values for the indicated PC keyboard keys, and for the input sequences from the Windows or
UNIX terminfo and termcap interfaces. The keys may be configured to perform different
actions and return different exception status values. For information on these specifications,
see the TERM-INPUT configuration record (on page 377).

An entry in brackets ([]) next to a terminfo or termcap entry identifies an alternate actual
input sequence that will generate the same exception status value under UNIX. These
predefined input sequences are implied by the terminfo and termcap databases, as they have
no defined terminfo or termcap name.

Note Any key not covered by footnote "in Table 24 causes the ON EXCEPTION imperative
sequence.

The generic key name is described in the “ON EXCEPTION and NOT ON EXCEPTION
Phrases” section of the ACCEPT statement in Chapter 6: Procedure Division Statements of
the RM/COBOL Language Reference Manual. For more information, see Table 37:

RM/COBOL Generic Field Termination Key Names (on page 385).

Note In addition to field termination keys, input can be terminated by auto completion when
the TAB phrase is not specified (exception status 0) or by a time-out exception when the
TIME phrase is specified (exception status 99). Further, when the CONVERT phrase is
specified, an input data conversion rule violation can cause the exception status value to

be overridden with the conversion error exception status value 98. See ACCEPT Exception
Status Values (on page 230) for information on exception status values not covered in

Table 24.

216 RM/COBOL User's Guide

Second Edition

Table 24: Keys that Terminate Field Input

PC Keyboard Key
F1
F2
F3
F4
F5
F6
F7
F8
F9
F10
F11
F12
Shift+F1
Shift+F2
Shift+F3
Shift+F4
Shift+F5
Shift+F6
Shift+F7
Shift+F8
Shift+F9
Shift+F10
Ctrl+F1
Ctrl+F2
Ctrl+F3
Ctrl+F4
Ctrl+F5
Ctrl+F6
Ctrl+F7
Ctrl+F8

' Causes field termination but does not take the ON EXCEPTION imperative sequence.

Windows Sequence
NUL WF1
NUL WF2
NUL WF3
NUL WF4
NUL WF5
NUL WF6
NUL WF7
NUL WE8
NUL WF9
NUL WF10
NUL WF11
NUL WF12
NUL WSFT WF1
NUL WSFT WF2
NUL WSFT WF3
NUL WSFT WF4
NUL WSFT WF5
NUL WSFT WF6
NUL WSFT WF7
NUL WSFT WF8
NUL WSFT WF9
NUL WSFT WF10
NUL WCNT WF1
NUL WCNT WF2
NUL WCNT WF3
NUL WCNT WF4
NUL WCNT WF5
NUL WCNT WF6
NUL WCNT WF7
NUL WCNT WF8

2 . .
Performs the Erase Remainder action.

3 Normal STTY configuration to terminate the runtime system under UNIX.

* Terminates the runtime system under Windows. Also, the normal STTY configuration to terminate the runtime system under UNIX.

Terminfo
Name

kfl

kf2

kf3

kf4

kf5

kfo

kf7

kf8

kf9

kf10
kf11
kf12
kfl1
kf12
kf13
kf14
kf15
kf16
kf17
kf18
kf19
kf20
kf21
kf22
kf23
kf24
kf25
kf26
kf27
kf28

Termcap
Name

kl
K2
k3
k4
K5
k6
k7
k8
k9
k;
Fl
F2
Fl
F2
F3
F4
F5
F6
F7
F8
F9
FA
FB
FC
FD
FE
FF
FG
FH
FI

ACCEPT and DISPLAY Statements
Chapter 8: RM/COBOL Features

Generic Key
Name

Function 1
Function 2
Function 3
Function 4
Function 5
Function 6
Function 7
Function 8
Function 9
Function 10
Function 11
Function 12
Function 11
Function 12
Function 13
Function 14
Function 15
Function 16
Function 17
Function 18
Function 19
Function 20
Function 21
Function 22
Function 23
Function 24
Function 25
Function 26
Function 27

Function 28

Exception
Status

01
02
03
04
05
06
07
08
09
10
11
12
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

RM/COBOL User's Guide

Second Edition

217

ACCEPT and DISPLAY Statements
Chapter 8: RM/COBOL Features

Table 24: Keys that Terminate Field Input (Cont.)

Terminfo Termcap Generic Key Exception
PC Keyboard Key Windows Sequence Name Name Name Status
Ctrl+F9 NUL WCNT WF9 k29 FJ Function 29 29
Ctrl+F10 NUL WCNT WF10 kf30 FK Function 30 30
Ctrl+Shift+F1 NUL WSFT WCNT WF1 kf31 FL Function 31 31
Ctrl+Shift+F2 NUL WSFT WCNT WF2 kf32 FM Function 32 32
Ctrl+Shift+F3 NUL WSFT WCNT WEF3 kf33 FN Function 33 33
Ctrl+Shift+F4 NUL WSFT WCNT WF4 kf34 FO Function 34 34
Ctrl+Shift+F5 NUL WSFT WCNT WEF5 kf35 FP Function 35 35
Ctrl+Shift+F6 NUL WSFT WCNT WF6 kf36 FQ Function 36 36
Ctrl+Shift+F7 NUL WSFT WCNT WE7 kf37 FR Function 37 37
Ctrl+Shift+F8 NUL WSFT WCNT WF8 kf38 FS Function 38 38
Ctrl+Shift+F9 NUL WSFT WCNT WF9 kf39 FT Function 39 39
Ctrl+Shift+F10 NUL WSFT WCNT WF10 kf40 FU Function 40 40
kf41 FV Function 41 41
kf42 FW Function 42 42
kf43 FX Function 43 43
kf44 FY Function 44 44
kf45 Fz Function 45 45
kf46 Fa Function 46 46
kf47 Fb Function 47 47
kf48 Fc Function 48 48
kf49 Fd Function 49 49
kf50 Fe Function 50 50
kf51 Ff Function 51 51
kf52 Fg Function 52 52
kf53 Fh Function 53 53
kf54 Fi Function 54 54
kf55 Fj Function 55 55
kf56 Fk Function 56 56
kf57 Fl Function 57 57
kf58 Fm Function 58 58
kf59 Fn Function 59 59
kf60 Fo Function 60 60
kfo61 Fp Function 61 61

218 RM/COBOL User's Guide
Second Edition

Table 24: Keys that Terminate Field Input (Cont.)

PC Keyboard Key

Enter [Ctrl+M]'
Ctrl+Shift+K "*
-l
Ctrl+A
Ctrl+B
Ctrl+C*
Ctrl+D
Ctrl+E
Ctrl+F
Curl+G
Ctrl+1
Ctrl+]
Ctrl+K
Ctrl+L
Ctrl+N
Ctrl+O
Ctrl+P
Ctrl+Q
Ctrl+R
Ctrl+S
Ctrl+T
Ctrl+U
Ctrl+V
Ctrl+W
Ctrl+X
Ctrl+Y
Ctrl+Z
Esc
Ctrl+[
Ctrl+\?
Ctrl+]

Windows Sequence

NUL CR

NUL WSFT WCNT K

NUL HT
NUL WCNT A
NUL WCNT B
NUL WCNT C
NUL WCNT D
NUL WCNT E
NUL WCNT F
NUL WCNT G
NUL WCNT I
NUL WCNT J
NUL WCNT K
NUL WCNT L
NUL WCNT N
NUL WCNT O
NUL WCNT P
NUL WCNT Q
NUL WCNT R
NUL WCNT S
NUL WCNT T
NUL WCNT U
NUL WCNT V
NUL WCNT W
NUL WCNT X
NUL WCNT Y
NUL WCNT Z
NUL ESC

NUL WCNT 0xDB
NUL WCNT 0xDC
NUL WCNT 0xDD

Terminfo
Name

kf62
kf63
cr [Ctrl+M]

ke3 [Ctrl+]

Termcap
Name

Fq
Fr

cr [Ctrl+M]

K5 [Ctrl+T]

ACCEPT and DISPLAY Statements
Chapter 8: RM/COBOL Features

Generic Key
Name

Function 62
Function 63

Enter

Tab Right
Function 1
Function 2
Function 3
Function 4
Function 5
Function 6
Function 7
Function 9
Function 10
Function 11
Function 12
Function 14
Function 15
Function 16
Function 17
Function 18
Function 19
Function 20
Function 21
Function 22
Function 23
Function 24
Function 25
Function 26

Escape

Exception
Status

62
63
13
13
58
01
02
03
04
05
06
07

09 (58 on UNIX)

10 (55 on UNIX)

11
12
14
15
16
17
18
19
20
21
22
23
24
25
26
27
27
28
29

RM/COBOL User's Guide

Second Edition

219

ACCEPT and DISPLAY Statements
Chapter 8: RM/COBOL Features

Table 24: Keys that Terminate Field Input (Cont.)

PC Keyboard Key

Ctrl+6

Ctrl+ —
Ctrl+Shift+C
Ctrl+Shift+A
Ctrl+Shift+P
2

A

Home
Ctrl+Shift+N
[«

Ctrl+Shift+E

Ctrl+Shift+R
Ctrl+Shift+]
Ctrl+Shift+D
Ctrl+Shift+S
Ctrl+«
Ctrl+—
PgUp

PgDn
Ctrl+PgUp
Ctrl+PgDn
Ctrl+Shift+1
Ctrl+Shift+2
Ctrl+Shift+3
Ctrl+Shift+4
Ctrl+Shift+5
Ctrl+Shift+6
Ctrl+Shift+7
Ctrl+Shift+8
Ctrl+Shift+9
Ctrl+Shift+0

Ctrl+Home

Windows Sequence
NUL WCNT 6
NUL WCNT 0xBD
NUL WSFT WCNT C
NUL WSFT WCNT A
NUL WSFT WCNT P
NUL WUP
NUL WDWN
NUL WHOM
NUL WSFT WCNT N
NUL WSFT HT
NUL WSFT WCNT E

NUL WSFT WCNT R
NUL WSFT WCNT I
NUL WSFT WCNT D
NUL WSFT WCNT S
NUL WCNT WLFT
NUL WCNT WRGT
NUL WPGU

NUL WPGD

NUL WCNT WPGU
NUL WCNT WPGD
NUL WSFT WCNT 1
NUL WSFT WCNT 2
NUL WSFT WCNT 3
NUL WSFT WCNT 4
NUL WSFT WCNT 5
NUL WSFT WCNT 6
NUL WSFT WCNT 7
NUL WSFT WCNT 8
NUL WSFT WCNT 9
NUL WSFT WCNT 0
NUL WCNT WHOM

220 RM/COBOL User's Guide

Second Edition

Terminfo
Name

kf0

ka3

10

kcuul
kcudl
khome

nel [Ctrl+]]
kel

kel

ke3
kill
kdll
kb2

kpp
knp

Termcap
Name

kO

K3

10

ku

kd

kh

nw [Ctrl+]]
K4

kE

kS

kA
kL
K2

kP
kN

Generic Key
Name

Command
Attention
Print

Up Arrow
Down Arrow
Home

New Line
Tab Left

Erase
Remainder

Tab Right
Insert Line
Delete Line

Send

Page Up

Page Down

Exception
Status

30
31
40
41
49
52
53
54
55
56
57

58
59
61
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

ACCEPT and DISPLAY Statements
Chapter 8: RM/COBOL Features

Table 24: Keys that Terminate Field Input (Cont.)

Terminfo Termcap Generic Key Exception
PC Keyboard Key Windows Sequence Name Name Name Status
End NUL WEND kal K1 End 82
Ctrl+End NUL WCNT WEND khlp %1 Help 83
N/A krdo %0 Redo 84
Ctrl+Shift+ — NUL WSFT WCNT — 85
Ctrl+Shift+= NUL WSFT WCNT = 87

ACCEPT and DISPLAY Phrases

The CONTROL, ERASE, HIGH, LOW, OFF, and REVERSE phrases affect the use of color
attributes with the ACCEPT and DISPLAY statements. The SIZE phrase used with the
ACCEPT and DISPLAY statements affects the size of the screen field. The TIME phrase is
used to “time-out” the execution of a pending ACCEPT statement. These phrases are defined
in the following paragraphs.

CONTROL Phrase

Some of the system dependencies that apply to the CONTROL phrase value concern color-
capable terminals. Systems with monochrome terminals ignore color information contained
in the CONTROL phrase value. (See the appropriate manufacturer’s manual for information
on configuring your system with color capability.)

Under UNIX, color requests are processed only if the terminal does not require an attribute
byte and if one of the following conditions is met:

1. The terminfo database contains the set foreground and set background string sequences.
(The back color_erase and orig_pairs string sequences are not required.) The termcap
database contains the Sb (set current background color) and St (set current foreground
color) sequences.

2. A configuration record is present to force the use of ISO Set Graphics Rendition (SGR)
sequences when the terminfo information is not available.

The method a terminal uses to process SGR color sequences will vary from one manufacturer
to another. When color sequences are sent to monochrome terminals, they are ignored,
processed as shades of gray, or represented as characters on the screen. Color sequences sent
to color-capable terminals may or may not conflict with other attributes sent to the terminal.
For example, sending a color sequence followed by a blink sequence may result in the loss of
the color request. RM/COBOL always sends color sequences after all other requested
attributes. This prevents areas of the terminal screen from appearing without the desired
color. You will need to refer to the terminal manufacturer and the UNIX terminfo
documentation in order to determine the sequences necessary to access color capabilities. For
information on the color options, see the TERM-ATTR configuration record (on page 372).

RM/COBOL User's Guide 221
Second Edition

ACCEPT and DISPLAY Statements
Chapter 8: RM/COBOL Features

RM/COBOL provides eight system-dependent keywords in the CONTROL phrase that affect
an ACCEPT or DISPLAY field: FCOLOR, BCOLOR, GRAPHICS, MASK ', PASS-THRU',
PROMPT, REPAINT-SCREEN', and SCREEN-COLUMNS".

1. FCOLOR = color-name

When FCOLOR is present, color-name specifies the foreground color of the ACCEPT or
DISPLAY field. This name is then used as the default value for subsequent ACCEPT
and DISPLAY statements in the program.

See the discussion of the HIGH, LOW and OFF phrases in the following section for
information concerning high-intensity colors.

The initial default for color-name is white.

Note Under Windows, the default colors are determined by the Use Windows Colors
property (on page 90).

2. BCOLOR = color-name

When BCOLOR is present, color-name specifies the background color of the ACCEPT
or DISPLAY field. This value is then used as the default value for subsequent ACCEPT
and DISPLAY statements in the program.

The initial default for color-name is black.

Table 25 contains a list of all the possible names for color-name. The left column
contains the valid color name. The right column shows the color that appears when high
intensity is specified (the default intensity).

Note Under Windows, the default colors are determined by the Use Windows Colors
property (see page 90).

Table 25: Valid COBOL Color Names

Valid Color Names High-Intensity Color Values (Defaults)
Black Gray
Blue Light Blue
Green Light Green
Cyan Light Cyan
Red Light Red
Magenta Light Magenta
Brown Yellow
White High-Intensity White

" These keywords are supported only on RM/COBOL for UNIX.

222 RM/COBOL User's Guide

Second Edition

ACCEPT and DISPLAY Statements
Chapter 8: RM/COBOL Features

GRAPHICS

The GRAPHICS keyword causes the characters in Table 26 to be translated to portable,
system-specific line draw characters. Characters that are not listed in the following table
are output unchanged.

Table 26: System-Specific Line Draw Characters

Description Single-Line Character Double-Line Character
lower-right corner i) Jd)
upper-right corner k(7) K@)
upper-left corner I(p) L(p
lower-left corner m(L) M(L
plus) NEb)
horizontal line q(-) Q=)
left tee (P T(P
right tee u{) ud)
bottom tee v(d) VA
top tee w(T) W(p)
vertical line x(]) X(h

If the requested line draw characters are not available, the runtime system uses the best
available characters. If double-line characters are requested and only single-line
characters are available, they are used. If no line draw characters are available, then plus-
characters, vertical bars, and dashes are used.

For details, see the discussion of how the runtime system, under UNIX, determines
whether line draw characters are available for a given terminal (on page 41).

Here is a sample program that demonstrates how boxes are drawn:

IDENTIFICATION DIVISION.
PROGRAM-ID. GRAPHXMP.
PROCEDURE DIVISION.
GRAPHXMP.
DISPLAY " ", LINE 5 POSITION 1 ERASE.
* Single-line graphics
DISPLAY "lggggwggggk", CONTROL "HIGH, GRAPHICS".

DISPLAY "x X x", CONTROL "HIGH, GRAPHICS".
DISPLAY "tggggngggqu", CONTROL "HIGH, GRAPHICS".
DISPLAY "x X x", CONTROL "HIGH, GRAPHICS".
DISPLAY "mgggqgvgggqgj", CONTROL "HIGH, GRAPHICS".
DISPLAY " ".

* Double-line graphics
DISPLAY "LQOQOOWQOQQK"™, CONTROL "HIGH, GRAPHICS".

DISPLAY "X X X", CONTROL "HIGH, GRAPHICS".
DISPLAY "TQQOQONQQQQU", CONTROL "HIGH, GRAPHICS".
DISPLAY "X X X", CONTROL "HIGH, GRAPHICS".

DISPLAY "MQQQOVQQQQJ", CONTROL "HIGH, GRAPHICS".
END PROGRAM GRAPHXMP.

RM/COBOL User's Guide 223
Second Edition

ACCEPT and DISPLAY Statements
Chapter 8: RM/COBOL Features

4, MASK'

A new keyword, MASK, has been added to the CONTROL phrase in ACCEPT and
DISPLAY statements. Use the following format:

MASK = mask

Note The MASK keyword is ignored when standard input or standard output is
redirected. This keyword is supported only under UNIX.

The MASK keyword in the CONTROL phrase causes a literal mask to be edited into the
ACCEPT or DISPLAY screen field. Literal mask characters are inserted into the operand
as it is transferred to the screen field if UPDATE is specified, or overlaid onto the screen
field if ACCEPT-FIELD-FROM-SCREEN is in effect.

In all cases, the size of the mask determines the size of the actual ACCEPT or DISPLAY
screen field. The optional SIZE phrase, or the size of the actual operand, is used only to
limit the number of data characters that may be edited and entered into the ACCEPT
screen field, or edited into the DISPLAY screen field prior to the screen operation.

The mask is specified in the CONTROL phrase as a literal string with no embedded
spaces. If the mask specifies more input positions than are contained in the
ACCEPT/DISPLAY operand, then excess mask input positions are replaced by literal
spaces. The mask is limited to a total of 80 characters, including escape characters.
When a screen field is edited, literal characters specified with the MASK keyword cannot
be modified.

Table 27 lists the characters and character sequences that have special meanings in the
MASK keyword in a CONTROL phrase string. All other characters are treated as literal
characters.

Table 27: Characters Used with the MASK Keyword of a CONTROL Phrase

Character Meaning

X Specifies an input/output position. Characters will be accepted wherever
an uppercase “X” appears in the mask. DBCS characters can be entered
only into two, adjacent input positions.

Specifies a literal space.

\ Forces the following character to be treated as a literal character. The
backslash character is the escape character.

\X Specifies a literal “X”.

\ Specifies a literal underscore.

\, Specifies a literal comma.

\= Specifies a literal equal sign.

\\ Specifies a literal backslash.
Notes

e The preceding characters are case-sensitive. For example, “x” is not the same as
4‘X5’

e Ifa mask character overlays part of a double-byte (DBCS) character, the entire
character is replaced by blanks.

224 RM/COBOL User's Guide
Second Edition

ACCEPT and DISPLAY Statements
Chapter 8: RM/COBOL Features

When an ACCEPT operation that specifies the MASK keyword in a CONTROL phrase
is processed, the RM/COBOL runtime takes the following actions:

a.

If the operation is ACCEPT with UPDATE, characters from the operand are copied
(from left to right) into mask input positions. Mask literal characters are skipped. If
the operand is exhausted while there are still remaining input positions, such
positions are changed to literal spaces. If the mask is exhausted before the operand,
the remainder of the operand is ignored. The SIZE phrase, if specified, limits the
size of the operand, not the size of the mask.

The size of the screen field is then set to the size of the mask, including trailing
literal characters.

If PROMPT is also specified, trailing input positions that are initialized with spaces
are replaced with the prompt character.

If ACCEPT without UPDATE is specified, and ACCEPT-FIELD-FROM-SCREEN
is not in effect, mask input positions are initialized with spaces or with the prompt
character, if PROMPT is specified. The number of mask input positions is still
restricted, based on the SIZE phrase or the size of the operand.

If ACCEPT without UPDATE is specified, and ACCEPT-FIELD-FROM-SCREEN
is in effect, mask input positions are initialized from the current screen field. In this
case, there is a one-for-one correspondence between mask characters and screen
characters; that is, the mask is overlaid rather than inserted into the screen field. If
PROMPT is specified, trailing input positions that are initialized with spaces are
replaced with the prompt character.

When the ACCEPT is terminated, the input field is scanned from left to right. Characters
appearing in input positions only are copied into the ACCEPT operand. The operand is
then processed by the CONVERT and UPPER phrases as if a regular ACCEPT operation
had been performed.

Table 28 lists keywords and phrases that, when specified in ACCEPT and/or DISPLAY
statements, have an effect on masked input processing.

RM/COBOL User's Guide 225
Second Edition

ACCEPT and DISPLAY Statements
Chapter 8: RM/COBOL Features

Table 28: Effect of Certain Keywords and Phrases on Masked Input Processing

Keyword or Phrase Effect

CURSOR The CURSOR phrase in an ACCEPT statement specifies the input

position, rather than the field position where the cursor is placed. It
returns the input position occupied by the cursor when the ACCEPT
statement is terminated.

GRAPHICS The GRAPHICS keyword in the CONTROL phrase of an ACCEPT
or a DISPLAY statement translates mask characters and input
characters.

HIGH, LOW, The presence of these phrases in an ACCEPT or a DISPLAY

HIGHLIGHT, statement causes literal mask characters and input characters to be

LOWLIGHT displayed at the specified intensity.

OFF, SECURE When the OFF (SECURE) phrase is specified in an ACCEPT

statement, literal mask characters are displayed, while input
characters are not displayed.

PROMPT When the PROMPT phrase is specified in an ACCEPT statement,

trailing input positions are filled with the specified prompt character.

SIZE When the SIZE phrase is specified in an ACCEPT or a DISPLAY

statement, the size of the ACCEPT and DISPLAY operand is limited,
but there is no effect on the screen field size.

TAB If the TAB keyword is not specified in the CONTROL phrase of an

226 RM/COBOL User's Guide
Second Edition

ACCEPT statement (or the TAB phrase is not specified in an
ACCEPT statement), field termination occurs when the cursor leaves
the last input position, which may be followed by literal characters.

PASS-THRU!

The ability to write escape sequences (such as pass-through printing) to the terminal with
DISPLAY statements requires an additional keyword in the CONTROL phrase. The
keyword, PASS-THRU, indicates that all data specified in the corresponding DISPLAY
statement is to be written directly to the unit and not recorded in the in-memory image of
the screen. Thus, if the DISPLAY statement causes the screen to change, the runtime
system will have no knowledge of the change, and subsequent DISPLAY statements may
cause confusion for the terminal operator.

This ability also can be used automatically by specifying a PASS-THRU-ESCAPE

keyword (see page 375) in the TERM-ATTR configuration file record. If used, any
DISPLAY statements beginning with one of the escape characters will behave as if
PASS-THRU were specified in the statement.

Note This keyword is supported only under UNIX.

ACCEPT and DISPLAY Statements
Chapter 8: RM/COBOL Features

PROMPT = prompt-char

The PROMPT keyword causes ACCEPT statements to accept data with fill characters in
positions from which data is to be accepted. Optionally, the PROMPT keyword may
specify prompt-char, which causes the ACCEPT operation to use a prompt character that
is different from the system default. prompt¢-char must be a single, literal character.

For example:
ACCEPT FOO CONTROL "PROMPT=*, TAB".
where, asterisk (*) is the prompt-char.

REPAINT-SCREEN !

The REPAINT-SCREEN keyword causes the entire screen to be refreshed from the
runtime system’s in-memory screen image. Any characters that were written directly to
the screen, such as from C routines or DISPLAY statements with the PASS-THRU
keyword (which are not recorded in the in-memory screen image), are replaced by the
last value written to that location by regular DISPLAY statements. This provides the
ability to clean up the screen without manually having to redraw the entire display.
REPAINT-SCREEN may be used in both ACCEPT and DISPLAY statements. It is also
callable from C subprograms contained in optional support modules. See the “Runtime
Functions for Support Modules” topic in Appendix H: Non-COBOL Subprogram
Internals for UNLX in the CodeBridge User's Guide.

Note This keyword is supported only under UNIX.

SCREEN-COLUMNS' = screen-width

The SCREEN-COLUMNS keyword instructs the runtime system to change the current
display state of the user’s terminal to accommodate the requested screen size. Screen-
width values of 80 and 132 are currently supported.

Changing the terminal state produces a new, blank screen of the requested screen width.
All characters and windows on the original display are erased. In order to maintain valid
user-defined window control blocks, programs using pop-up windows must close all pop-
up windows before changing the screen size.

Most terminals support varying screen dimensions through normal and wide terminfo and
termcap entries. These normally correspond to 80 and 132 columns, respectively. When
a screen dimension change is requested, the runtime system switches the TERM
environment variable to the appropriate value and then sends reset or initialization strings
that change the terminal’s state. For terminfo, the strings are defined with the capabilities
rsl, rs2, and rs3. For termcap, the strings are defined with the capabilities r1, r2, and r3.
If these termcap capabilities are not defined, the runtime system attempts to use the
capability is. If these strings are not set correctly, the terminal may be changed to an
unpredictable state.

Most UNIX systems append a “—w” to terminal descriptions to indicate a terminal’s wide
screen mode. For example, the wyse60 terminal description for wide displays is
normally referred to as wyse60—w. Because not all UNIX systems follow this standard,
the COBOL runtime allows users to use the RMTERMS80 and RMTERM132
environment variables. If both variables are set, the runtime system changes the TERM
environment variable to the appropriate name, as specified in RMTERMS80 or
RMTERM132. For example, some systems append “w” to wide terminal descriptions.
RMTERM132 can be used to ensure proper behavior by setting it as
RMTERM132=wyse60w.

Note This keyword is supported only under UNIX.

RM/COBOL User's Guide
Second Edition

227

ACCEPT and DISPLAY Statements
Chapter 8: RM/COBOL Features

ERASE Phrase

All valid ERASE options (that is, ERASE, ERASE EOL, and ERASE EOS) erase the screen
with the specified background color, if possible. Under UNIX, if the back color_erase
termcap or terminfo capability is set to false, or the appropriate termcap or terminfo capability
to perform the specified ERASE operation is not available, blanks will be used to perform the
operation.

HIGH Phrase

HIGH specifies that the foreground color be the corresponding high-intensity color listed in
Table 25 on page 222.

Under UNIX, when the HIGH phrase is present, the termcap capabilities used to set the
attributes of the terminal are nM, nB, nR or nS. The terminfo capabilities are sgr0, blink,
rev, or sgr. The capability used is determined by the BLINK and REVERSE phrases, and by
the definition of termcap or terminfo capabilities in the terminal database.

When used with a color monitor under UNIX, the HIGH phrase specifies that the foreground
color be the high-intensity color from Table 25 that corresponds to the foreground color name.
If the REVERSE phrase is also present in the statement, it takes precedence over the HIGH
phrase. That is, any reversal of colors takes place before the intensity is determined.

LOW Phrase

LOW specifies that the foreground color be the default foreground color unless overridden
with the FCOLOR keyword.

When the LOW phrase is present under UNIX, the termcap capabilities used to set the
attributes of the terminal are aL., aB, aR, or aS. The terminfo capabilities are dim or sgr.
The capability used is determined by the BLINK and REVERSE phrases, and by the
definition of termcap or terminfo capabilities in the terminal database. The BLINK and
REVERSE phrases are not supported by a terminfo runtime system unless the sgr capability
is available.

If the REVERSE phrase is also present in the statement, it takes precedence over the LOW
phrase; that is, any reversal of colors takes place before the intensity is determined.

OFF Phrase

OFF specifies that the background color be used for the foreground color. During field
editing for ACCEPT operations, the cursor is moved as specified, but without character
echoing.

If the REVERSE phrase is also present in the statement, it takes precedence over the OFF
phrase; that is, any reversal of colors takes place before the background color is determined.

SECURE is a synonym for OFF.

228 RM/COBOL User's Guide

Second Edition

ACCEPT and DISPLAY Statements
Chapter 8: RM/COBOL Features

REVERSE Phrase

When the REVERSE phrase is present, the specified (or default) foreground color is used as
the background color, and the background color is used as the foreground color. The
REVERSE phrase is processed before the HIGH, LOW, and OFF phrases.

SIZE Phrase

The SIZE phrase is used to specify the size of an ACCEPT or DISPLAY field. The runtime
system imposes the following restrictions and limitations on the value of the SIZE phrase:

1. The size of an ACCEPT or DISPLAY field must not exceed the number of characters
that can appear on the screen at one time, minus the column of the first character of the
data item.

2. The ACCEPT or DISPLAY field must not exceed the size of the associated buffer: the
default is 264. See the discussion of the B Runtime Command Option (on page 204).

3. Fields that extend beyond the physical right margin of the screen wrap around to the next
line.

4. Fields that extend beyond the last line of the screen cause the screen to scroll one line.

TIME Phrase

The BEFORE TIME phrase is used to “time-out” the execution of a pending ACCEPT
statement. The value of literal-8 or identifier-8 in the BEFORE TIME phrase represents the
time-out value in hundredths of seconds. The time-out value is limited to 23 hours, 59
minutes, 59.99 seconds (or 8,639,999). A value greater than 8,639,999 and less than or equal
to 4,294,967,295 (2*2 — 1) is set to 8,639,999.

A time-out value of 0 indicates that the ACCEPT operation should terminate immediately if
there is no character waiting. A time-out value greater than 4,294,967,295 (a PIC 9(10) data
item set to a value of 9999999999 is recommended) indicates that the BEFORE TIME phrase
is being overridden and the ACCEPT statement will behave as if the BEFORE TIME phrase
were not specified.

When the ACCEPT statement is executed, a target time is calculated as the sum of the current
time and the time-out value. The time-out operation runs until the target time is reached or a
key is pressed. Once a key has been pressed, the time-out function is disabled.

If the target time is reached before a key has been pressed, the ACCEPT statement is
terminated. An exception status value of 99 is returned in identifier-9 if the ON EXCEPTION
phrase is specified.

The BEFORE TIME phrase is intended for terminal input. The phrase is not available if input
is redirected.

Under UNIX, if the CHARACTER-TIMEOUT keyword (see page 373) of the TERM-ATTR
configuration record has a value, it will affect the BEFORE TIME phrase of the ACCEPT
statement. The actual time-out value will be the first integral multiple of the CHARACTER-
TIMEOUT value that is greater than or equal to the value specified in the ACCEPT BEFORE
TIME phrase.

RM/COBOL User's Guide
Second Edition

229

Pop-Up Windows

Chapter 8: RM/COBOL Features

ACCEPT Exception Status Values

Field termination keys generate exception status values, as described in Field Termination
Keys (on page 216). In addition to exception status values set by field termination keys, the
following special exception status values are returned.

Value Meaning
0 Auto completion (no TAB phrase).
98 Conversion error (CONVERT phrase); overrides any

other exception status value.

99 Time out before data entry (TIME phrase).

Pop-Up Windows

A COBOL program can create one or more pop-up windows on the terminal output device. A
pop-up window (referred to hereinafter as a window) is a temporary subscreen within the
terminal screen to which all terminal output is directed. The rules concerning placement of
data and default video attributes that apply to full screen input/output also apply to the
window (including wrapping and scrolling). Thus, the window performs just like a full
screen, except that a window is usually smaller.

A window is used for terminal input/output from the time it is created until the window is
removed by the COBOL program or another window is created. When a window is removed,
the contents that occupied the window area before it was created are restored, and the
previous window again becomes the active subscreen. All current defaults that are associated
with the newly restored window, such as the current video attributes, the current line, and the
current position, are restored.

Note Only information written to the screen by the RM/COBOL runtime system can be
restored to the screen in the event that it is covered by a window that is later removed.

For examples on using the RM/COBOL Pop-Up Window Manager, see your installation
directory and examine the following programs:

e wintest.cbl e winreltv.cbl
e winattrb.cbl e winstat.cbl
e winbordr.cbl e wintitle.cbl

e wincolor.cbl

Creating Pop-Up Windows

A window is created by a Format 2 DISPLAY statement containing the WINDOW-CREATE
keyword in its CONTROL phrase. See the description of the DISPLAY statement (terminal
I-O) in Chapter 6: Procedure Division Statements of the RM/COBOL Language Reference
Manual. The general format of a DISPLAY statement used to create a window is shown
below.

Note The format shown is a subset of the Format 2 DISPLAY Terminal I-O statement
because some options of the complete statement are not applicable to window creation.

230 RM/COBOL User's Guide

Second Edition

DISPLAY identifier-1 {UNIT {

Pop-Up Windows
Chapter 8: RM/COBOL Features

BEEP
oes)
BLINK
CONTROL {identiﬁer—4}
- |literal-4
ERASE
_ HIGH .
HIGHLIGHT
Low
LOWLIGHT

WITH LINE {identiﬁerd}

literal-2

identiﬁer-ZH
literal-5
AT COLUMN
COoL
POSITION
AT{ identifier-7 }
— | literal-7
MODE IS BLOCK
REVERSE
REVERSED
REVERSE - VIDEO

literal-3

{identiﬁerd}

identifier-1 specifies the window control block for the window creation. For more
information, see CONTROL Phrase (on page 232) and Pop-Up Window Control Block (on
page 234).

BEEP Phrase

The presence of the BEEP phrase in the DISPLAY statement causes the audio alarm signal to
occur at the creation of the window. If the BEEP phrase is omitted, no signal is given.

BELL is a synonym for BEEP.

BLINK Phrase

The presence of the BLINK phrase causes the border, title, and fill characters of the window
to appear in a blinking mode. If the BLINK phrase is not specified, the border, title, and fill
characters appear in a nonblinking mode.

Note The blinking attribute is not available under Windows.

RM/COBOL User's Guide
Second Edition

231

Pop-Up Windows

Chapter 8: RM/COBOL Features

CONTROL Phrase

A DISPLAY statement with a CONTROL phrase containing the WINDOW-CREATE
keyword (see discussion of the CONTROL phrase of the DISPLAY statement in Chapter 6:
Procedure Division Statements of the RM/COBOL Language Reference Manual) causes
identifier-1 to be treated as a window control block, and this data item must have the structure
described in Pop-Up Window Control Block (see page 234). The window is created
according to the specifications given in the window control block. The window control block
provided must not be that of an active window.

The FCOLOR and BCOLOR keywords can be used to set the colors of the border characters,
title characters, and fill characters of the window being created. FCOLOR specifies the
foreground color of each character, and BCOLOR defines the background color. FCOLOR
and BCOLOR also establish the initial default colors for ACCEPT and DISPLAY statements
performed while the window is active. See Table 25 on page 222 for valid color names. If
FCOLOR and BCOLOR are not specified when creating a window, the default colors (if any)
in effect when the window creation is requested are carried over to the new window.

Additional keywords that may be specified in the CONTROL phrase and that affect the
creation of the window include: HIGH, LOW, BLI