
Liant Software Corporation

XML Toolkit for
RM/COBOL®

Version 1 for Windows
®

This manual is a user’s guide for Liant Software Corporation’s XML Toolkit, a system designed to
allow RM/COBOL applications to access XML documents. It is assumed that the reader has a basic
understanding of XML. It is also assumed that the reader is familiar with programming concepts
and with the COBOL language in general.

The information contained herein applies to systems running under Microsoft 32-bit Windows
operating systems.

The information in this document is subject to change without prior notice. Liant Software
Corporation assumes no responsibility for any errors that may appear in this document. Liant
reserves the right to make improvements and/or changes in the products and programs described in
this guide at any time without notice. Companies, names, and data used in examples herein are
fictitious unless otherwise noted.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopied, recorded, or otherwise, without prior
written permission of Liant Software Corporation.

The software described in this document is furnished to the user under a license for a specific
number of uses and may be copied (with inclusion of the copyright notice) only in accordance with
the terms of such license.

Copyright © 2002 by Liant Software Corporation. All rights reserved.
Printed in the United States of America.

Liant Software Corporation
8911 N. Capital of Texas Highway

Austin, TX 78759
U.S.A.

Phone (512) 343-1010
 (800) 762-6265
Fax (512) 343-9487
Web site http://www.liant.com/

Documentation History:
First Release XML Toolkit for RM/COBOL v1.0 (401217) December 2002 Rev 01/03

RM, RM/COBOL, RM/COBOL-85, Relativity, Enterprise CodeBench, RM/InfoExpress,
RM/Panels, VanGui Interface Builder, CodeWatch, CodeBridge, Cobol-WOW, InstantSQL, Liant,
and the Liant logo are trademarks or registered trademarks of Liant Software Corporation.

Microsoft, MS, MS-DOS, Windows 95, Windows 98, Windows Me, Windows NT, Windows 2000,
and Windows XP are trademarks or registered trademarks of Microsoft Corporation in the USA and
other countries.

All other products, brand, or trade names used in this publication are the trademarks or registered
trademarks of their respective trademark holders, and are used only for explanation purposes.

www.liant.com

Contents

Preface... 1
Welcome to XML Toolkit for RM/COBOL.. 1
About Your Documentation .. 1
Related Publications.. 3
Symbols and Conventions ... 3
Registration ... 5
Technical Support ... 5

Support Guidelines .. 6
Test Cases .. 6

Chapter 1: Installation and Introduction 9
Installing XML Toolkit for RM/COBOL.. 9

System Requirements... 9
XML Toolkit for RM/COBOL Package .. 10
Installation ... 11

Installing the XML Toolkit for RM/COBOL Development System.................. 12
Installing the XML Toolkit for RM/COBOL Deployment System.................... 13

Introducing XML Toolkit for RM/COBOL .. 14
What is XML? ... 15

Chapter 2: Getting Started with XML Toolkit 21
Overview ... 21
Typical Development Process Example .. 22

Design the Data Structure .. 23
Compile the Program ... 23
Run the cobtoxml Utility ... 23
Execute the COBOL Program ... 27
Deploy the Application .. 33

 XML Toolkit for RM/COBOL iii

Chapter 3: COBOL Considerations .. 35
File Management... 35

Automatic Search for Files .. 35
File Management Conventions .. 36

Data Conventions .. 38
Data Representation... 38
FILLER Data ... 39
Missing Intermediate Parent Names .. 40
Sparse COBOL Records .. 44

Copy Files ... 44
Statement Definitions... 45
Displaying Status Information ... 45
Application Termination.. 46

Limitations .. 47
Data Items (Data Structures).. 47
Edited Data Items... 48
Wide and Narrow Characters... 48
Data Item Size.. 48
OCCURS Restrictions ... 48
Reading, Writing, and the Internet... 48

Optimizations .. 49
Occurs Depending.. 49
Empty Occurrences.. 49
Cached XML Documents .. 50

Chapter 4: XML Considerations ... 51
Character Encoding ... 51
Style Sheets ... 52
Schemas... 53

Chapter 5: cobtoxml Utility Reference 55
What is the cobtoxml Utility? ... 55
Command Line Interface... 56

Command Line Options... 57
Referencing XML Model Files ... 59

Internal Style sheet... 60
Template File ... 60
Example File .. 60
Schema File.. 60

iv Contents

Chapter 6: xmlif Library Reference .. 61
What is the xmlif Library? .. 61
Document Processing Statements.. 62

XML EXPORT FILE... 62
XML EXPORT TEXT... 64
XML IMPORT FILE ... 65
XML IMPORT TEXT ... 66
XML TEST WELLFORMED-FILE.. 67
XML TEST WELLFORMED-TEXT.. 68
XML TRANSFORM FILE.. 69
XML VALIDATE FILE.. 70
XML VALIDATE TEXT .. 71

Document Management Statements .. 72
XML FREE TEXT... 72
XML GET TEXT... 73
XML PUT TEXT... 73
XML REMOVE FILE ... 74

Directory Management Statements ... 75
XML FIND FILE... 76
XML GET UNIQUEID ... 77

State Management Statements... 78
XML INITIALIZE... 80
XML TERMINATE... 80
XML DISABLE ALL-OCCURRENCES.. 81
XML ENABLE ALL-OCCURRENCES... 82
XML DISABLE ATTRIBUTES ... 82
XML ENABLE ATTRIBUTES... 83
XML DISABLE CACHE .. 83
XML ENABLE CACHE ... 84
XML FLUSH CACHE .. 84
XML GET STATUS-TEXT .. 85
XML SET FLAGS... 86

Appendix A: XML Toolkit Examples....................................... 87
Example 1: Export File and Import File... 88

Development.. 88
Batch File... 89
Program Description .. 90
Data Item ... 90
Other Definitions ... 91
Program Structure .. 91
Execution Results .. 94

 XML Toolkit for RM/COBOL v

Example 2: Export File and Import File with Style Sheets 96
Development.. 96
Batch File... 97
Program Description .. 98
Data Item ... 98
Other Definitions ... 99
Program Structure .. 99
Style Sheets.. 102
Execution Results .. 103

Example 3: Export File and Import File with OCCURS DEPENDING 105
Development.. 105
Batch File... 106
Program Description .. 107
Data Item ... 107
Other Definitions ... 108
Program Structure .. 108
Execution Results .. 111

Example 4: Export File and Import File with Sparse Arrays 113
Development.. 114
Batch File... 115
Program Description .. 116
Data Item ... 116
Other Definitions ... 117
Program Structure .. 117
Execution Results .. 121

Example 5: Export Text and Import Text... 127
Development.. 127
Batch File... 128
Program Description .. 129
Data Item ... 130
Other Definitions ... 130
Program Structure .. 131
Execution Results .. 134

Example 6: Export File and Import File with Directory Polling 135
Development.. 136
Batch File... 137
Program Description .. 138
Data Item ... 138
Other Definitions ... 139
Program Structure .. 140
Execution Results .. 143

vi Contents

Example 7: Export File, Test Well Formed File, and Validate File 146
Development.. 146
Batch File... 147
Program Description .. 148
Data Item ... 149
Other Definitions ... 149
Program Structure .. 150
Execution Results .. 152

Example 8: Export Text, Test Well Formed Text, and Validate Text.................... 154
Development.. 154
Batch File... 155
Program Description .. 156
Data Item ... 157
Other Definitions ... 157
Program Structure .. 158
Execution Results .. 161

Example 9: Export File, Transform File, and Import File 162
Development.. 162
Batch File... 163
Program Description .. 164
Data Item ... 165
Other Definitions ... 165
Program Structure .. 166
Execution Results .. 169

Example A: Well Formed and Validate Diagnostic Messages............................... 173
Development.. 173
Batch File... 174
Program Description .. 175
Data Item ... 175
Other Definitions ... 176
Program Structure .. 176
Execution Results .. 179

Example B: Import File with Missing Intermediate Parent Names........................ 181
Development.. 182
Batch File... 183
Program Description .. 184
Data Item ... 184
Other Definitions ... 185
Program Structure .. 185
Execution Results .. 188

Example Batch Files.. 190
Cleanup.bat .. 190
Example.bat ... 191
Examples.bat.. 191

 XML Toolkit for RM/COBOL vii

Appendix B: XML Toolkit Sample
 Application Programs.. 193

Using the Sample Application Programs... 193

Appendix C: XML Toolkit Error Messages........................... 195
Error Message Format ... 195

Message Text ... 195
COBOL Traceback Information .. 196
Filename or Data Item in Error .. 196
Parser Information ... 196

Summary of Error Messages ... 197

Glossary of Terms .. 203

Index .. 205

viii Contents

 XML Toolkit for RM/COBOL 1

Preface

Welcome to XML Toolkit for RM/COBOL
The XML Toolkit for RM/COBOL is Liant Software Corporation’s facility that
allows RM/COBOL applications to access XML (Extensible Markup Language)
documents. XML is the universal format for structured documents and data on
the Web.

The XML Toolkit has many capabilities. The major features support the ability
to import and export XML documents to and from COBOL working storage.
Specifically, the XML Toolkit allows data to be imported from an XML
document by converting data elements (as necessary) and storing the results into
a matching COBOL data structure. Similarly, data is exported from a COBOL
data structure by converting the COBOL data elements (as necessary) and
storing the results in an XML document.

Version 1.0 of the XML Toolkit for RM/COBOL runs on Microsoft Windows
32-bit operating systems, excluding Windows 95. A version is planned for
UNIX platforms.

About Your Documentation
The XML Toolkit for RM/COBOL documentation consists of a user’s guide,
which is distributed electronically in Portable Document Format (PDF) as part
of the XML Toolkit software distribution CD-ROM.

Note To view and print PDF files, you need to install Adobe Acrobat Reader, a
free program available from Adobe’s Web site or from the software CD-ROM.

 Welcome to XML Toolkit for RM/COBOL

2 Preface

The XML Toolkit for RM/COBOL User’s Guide is designed to allow you to
quickly locate the information you need. The following lists the topics that you
will find in the manual and provides a brief description of each.

Chapter 1: Installation and Introduction. This chapter describes the installation
process and system requirements, and provides a general overview of the XML
Toolkit for RM/COBOL.

Chapter 2: Getting Started with XML Toolkit. This chapter presents the basic
concepts used in the XML Toolkit for RM/COBOL by creating an example
XML-enabled application.

Chapter 3: COBOL Considerations. This chapter provides information specific
to using RM/COBOL when developing an XML-enabled application.

Chapter 4: XML Considerations. This chapter provides information specific to
using XML when using the XML Toolkit with RM/COBOL to develop an
XML-enabled application.

Chapter 5: cobtoxml Utility Reference. This chapter describes the cobtoxml
utility used by the XML Toolkit and the XML document files, known as model
files, that are produced when the cobtoxml utility processes the symbol table of
a previously compiled RM/COBOL object file.

Chapter 6: xmlif Library Reference. This chapter describes the xmlif dynamic
link library used by the XML Toolkit for RM/COBOL.

Appendix A: XML Toolkit Examples. This appendix contains descriptions of
programs or program fragments that illustrate how xmlif library statements are
used. These example programs are included with the development system in the
XML Toolkit examples directory, Examples.

Appendix B: XML Toolkit Sample Application Programs. This appendix
provides information about the self-contained XML Toolkit sample application
programs that are included with the development system in the XML Toolkit
samples directory, Samples. Note that the most complete and up-to-date
versions of the XML Toolkit sample programs can be found on the Liant Web
site at http://www.liant.com/xmltk/samples.

Appendix C: XML Toolkit Error Messages. This appendix lists and describes
the messages that can be generated during the use of the XML Toolkit for
RM/COBOL.

The XML Toolkit for RM/COBOL manual also includes an index.

 About Your Documentation

 XML Toolkit for RM/COBOL 3

Related Publications
For additional information, refer to the following publications:

• RM/COBOL User’s Guide

• RM/COBOL Language Reference Manual

• RM/COBOL Syntax Summary

Symbols and Conventions
The following typographic conventions are used throughout this manual to help
you understand the text material and to define syntax:

1. Words in all capital letters indicate COBOL reserved words, such as
statements, phrases, and clauses; acronyms; configuration keywords;
environment variables, and RM/COBOL Compiler and Runtime Command
line options.

2. Text that is displayed in a monospaced font indicates user input or system
output (according to context as it appears on the screen). This type style is
also used for sample command lines, program code and file listing
examples, and sample sessions.

3. Bold, lowercase letters represent filenames, directory names, programs, C
language keywords, and CodeBridge attributes.

Words you are instructed to type appear in bold. Bold type style is also
used for emphasis, generally in some types of lists.

4. Italic type identifies the titles of other books and names of chapters in this
guide, and it is also used occasionally for emphasis.

In COBOL syntax, italic text denotes a placeholder or variable for
information you supply, as described below.

 Related Publications

4 Preface

5. The symbols found in the COBOL syntax charts are used as follows:

a. italicized words indicate items for which you substitute a specific
value.

b. UPPERCASE WORDS indicate items that you enter exactly as shown
(although not necessarily in uppercase).

c. ... indicates indefinite repetition of the last item.

d. | separates alternatives (an either/or choice).

e. [] enclose optional items or parameters.

f. { } enclose a set of alternatives, one of which is required.

g. {| |} surround a set of unique alternatives, one or more of which is
required, but each alternative may be specified only once; when
multiple alternatives are specified, they may be specified in any order.

6. All punctuation must appear exactly as shown.

7. Key combinations are connected by a plus sign (+), for example, Ctrl+X.
This notation indicates that you press and hold down the first key while you
press the second key. For example, “press Ctrl+X” means to press and hold
down the Ctrl key while pressing the X key. Then release both keys.

8. The term “Windows” in this document refers to 32-bit Microsoft Windows
operating systems, excluding Windows 95.

9. RM/COBOL Compile and Runtime Command line options may be
preceded by a hyphen. If any option is preceded by a hyphen, then a
leading hyphen must precede all options. When assigning a value to an
option, the equal sign is optional if leading hyphens are used.

10. In the electronic PDF file, you may see this symbol displayed. It represents
a “post-it” note that allows you to view last-minute comments about a
specific topic on the page in which it occurs. This same information is also
contained in the readme text file under the section, Documentation
Changes.

Double-click on the note symbols to open them. You can click the note
window’s Close box after you have reviewed the contents. These notes can
be viewed in the Adobe Acrobat Reader but will not print, although you can
copy and paste the text into another application, such as Microsoft Word, if
you wish.

 Symbols and Conventions

 XML Toolkit for RM/COBOL 5

Registration
Please take a moment to fill out and mail (or fax) the registration card you
received with RM/COBOL. You can also complete this process by registering
your Liant product online at: http://www.liant.com.

Registering your product entitles you to the following benefits:

• Customer support. Free 30-day telephone support, including direct access
to support personnel and 24-hour message service.

• Special upgrades. Free media updates and upgrades within 60 days of
purchase.

• Product information. Notification of upgrades, revisions, and
enhancements as soon as they are released, as well as news about other
product developments.

You can also receive up-to-date information about Liant and all its products via
our Web site. Check back often for updated content.

Technical Support
Liant Software Corporation is dedicated to helping you achieve the highest
possible performance from the RM/COBOL family of products. The technical
support staff is committed to providing you prompt and professional service
when you have problems or questions about your Liant products.

These technical support services are subject to Liant’s prices, terms, and
conditions in place at the time the service is requested.

While it is not possible to maintain and support specific releases of all software
indefinitely, we offer priority support for the most current release of each
product. For customers who elect not to upgrade to the most current release of
the products, support is provided on a limited basis, as time and resources allow.

 Registration

www.liant.com

6 Preface

Support Guidelines
When you need assistance, you can expedite your call by having the following
information available for the technical support representative:

1. Company name and contact information.

2. Liant product serial number (found on the media label, registration card, or
product banner message).

3. Product version number.

4. Operating system and version number.

5. Hardware, related equipment, and terminal type.

6. Exact message appearing on screen.

7. Concise explanation of the problem and process involved when the problem
occurred.

Test Cases
You may be asked for an example (test case) that demonstrates the problem.
Please remember the following guidelines when submitting a test case:

• The smaller the test case is, the faster we will be able to isolate the cause of
the problem.

• Do not send full applications.

• Reduce the test case to one or two programs and as few data files as
possible.

• If you have very large data files, write a small program to read in your
current data files and to create new data files with as few records as
necessary to reproduce the problem.

• Test the test case before sending it to us to ensure that you have included all
the necessary components to recompile and run the test case. You may
need to include an RM/COBOL configuration file.

 Technical Support

 XML Toolkit for RM/COBOL 7

When submitting your test case, please include the following items:

1. README text file that explains the problems. This file must include
information regarding the hardware, operating system, and versions of all
relevant software (including the operating system and all Liant products). It
must also include step-by-step instructions to reproduce the behavior.

2. Program source files. We require source for any program that is called
during the course of the test case. Be sure to include any copy files
necessary for recompilation.

3. Data files required by the programs. These files should be as small as
possible to reproduce the problem described in the test case.

 Technical Support

8 Preface

 Technical Support

 XML Toolkit for RM/COBOL 9

Chapter 1: Installation and
Introduction

This chapter describes the system requirements and installation process, and
provides a general overview of the XML Toolkit for RM/COBOL and the
benefits it offers to the COBOL programmer.

Note You should have a basic understanding of XML in order to use the XML
Toolkit for RM/COBOL. Depending on the complexity of your application, you
may also need to know about XML style sheets.

Installing XML Toolkit for RM/COBOL
Before you install the XML Toolkit for RM/COBOL (installation instructions
begin on page 11), make sure that your computer configurations meets the
following minimum hardware and software requirements, and that your XML
Toolkit package contains the necessary items for development and deployment.

System Requirements
The XML Toolkit hardware and software requirements are the same as
RM/COBOL version 7.5 for 32-bit Windows, with the exception that
Windows 95 is not supported by the XML Toolkit. Microsoft’s XML parser
MSXML 4.0 or greater also is required. (See the RM/COBOL User’s Guide
for Windows, version 7.5 or later.)

Note Windows 95 is not supported because the underlying XML parser
(Microsoft’s MSXML 4.0) is not supported on Windows 95.

The XML Toolkit may also be used in conjunction with Terminal Server.

 Installing XML Toolkit for RM/COBOL

10 Chapter 1: Installation and Introduction

It is highly recommended that you use Microsoft’s Internet Explorer, version 6.0
or greater, as a convenient tool for viewing XML documents. (See the XML
Toolkit README file for further details.)

For development, both the XML Toolkit development system and Liant’s
RM/COBOL 7.5 development system are required. For deployment, both the
XML Toolkit deployment system and the RM/COBOL 7.5 runtime system
are required.

XML Toolkit for RM/COBOL Package
The XML Toolkit package contains the following items for development and
deployment.

Development
The XML Toolkit development system includes the following files:

• Deployment files. These files are listed in the next section.

• cobtoxml command line utility (cobtoxml.exe). See Chapter 5: cobtoxml
Utility Reference, for more information.

• XML documents used by the cobtoxml utility (toxdr.xsl, toxdrb.xsl,
toxsd.xsl, and toxsl.xsl).

• Copy files (lixmlall.cpy, lixmldef.cpy, lixmldsp.cpy, lixmlrpl.cpy, and
lixmltrm.cpy).

• Example files. These programs or program fragments illustrate how xmlif
library statements are used. (For further information, see Appendix A:
XML Toolkit Examples. The example programs can be found in the XML
Toolkit example directory, Examples.)

• Sample files. These self-contained, working application programs, which
include the complete source, can be used in your own applications by
modifying or customizing them, as necessary. (See Appendix B: XML
Toolkit Sample Application Programs, for more details. The sample
application programs can be found in the XML Toolkit sample directory
Samples.)

Note The most complete and up-to-date versions of the XML Toolkit
sample programs can be found on the Liant Web site at
http://www.liant.com/xmltk/samples.

 Installing XML Toolkit for RM/COBOL

 XML Toolkit for RM/COBOL 11

Deployment
The XML Toolkit deployment system consists of the following files:

• xmlif COBOL-callable subprogram library (xmlif.dll). See Chapter 6:
xmlif Library Reference, for more information.

• MSXML 4.0, the Microsoft XML parser (msxml4.dll, msxml4a.dll, and
msxml4r.dll).

For deploying COBOL applications that use the XML Toolkit, install the XML
Toolkit deployment system on each platform that runs the application. You may
do this using the XML Toolkit installation disk.

The developer should deploy the model files that were generated by the
cobtoxml utility along with the COBOL program files. Normally these files are
stored in the same location as the COBOL program files. For more information,
see “Model Files” onpage 24.

Installation
Note The XML Toolkit for RM/COBOL is available as a development system
and a deployment system. The development system is designed to operate in
conjunction with an RM/COBOL development system. The deployment system
is designed to operate in conjunction with an RM/COBOL runtime system.

The following sections describe how to install the XML Toolkit for
RM/COBOL development and deployment systems.

 Installing XML Toolkit for RM/COBOL

12 Chapter 1: Installation and Introduction

Installing the XML Toolkit for RM/COBOL Development
System
To install the XML Toolkit development system for Windows
(XMLTK10R.EXE):

1. Restart Windows, and do not start any other applications.

2. Insert the XML Toolkit for RM/COBOL Installation CD into your
CD drive.

The installation program starts automatically.

3. Click I Agree to accept the license agreement.

4. In the Installation Options dialog box, select XML Examples (if desired),
and click Next to continue.

5. In the Installation Directory dialog box, accept the location presented or
click Browse to select another location.

Note The installation automatically locates the RM/COBOL development
system and selects this directory as the default location for the XML Toolkit
development system installation.

6. Click Install to continue.

7. When the Liant License File dialog box opens, insert the license diskette
that accompanied the installation CD in the diskette drive in your computer.

8. Enter the file name for the Liant license file. The default name is
A:\LIANT.LIC.

Note If you are using a drive other than A, be sure to correct the location
of the license file in the Liant License File dialog box. If necessary, the
LIANT.LIC file can be copied to a location on a hard drive and that
location can be specified during installation.

9. Click Next to continue.

10. When the installation completes, the Completion dialog box is displayed.
Click Close to dismiss this dialog box.

11. At the “Setup has completed. View readme file now?” prompt, do one of
the following:

• Select Yes to view the README file.

• Select No to open the Liant XML Toolkit window.

 Installing XML Toolkit for RM/COBOL

 XML Toolkit for RM/COBOL 13

Installing the XML Toolkit for RM/COBOL Deployment
System
The XML Toolkit for RM/COBOL deployment system, named
XMLTK10R.EXE, is provided as a self-extracting executable that installs
the deployment system components of the XML Toolkit.

The XML Toolkit deployment system is delivered on the XML Toolkit
Development Installation CD as redist\XMLTK10R.EXE and is also available
on the Liant Web site at http://www.liant.com/xmltk/redist/.

Note Your license for this product does not allow you to redistribute the entire
XML Toolkit development system with your application. You may only
redistribute the deployment system.

Provide the file, XMLTK10R.EXE, to your end-users along with your
application. Either package this file in an installation process so that it is
executed on the target platform or instruct your end-users to execute the file
once on their system to install the necessary components as part of setting up
the application.

When the XMLTK10R.EXE file is executed, the Installation Directory dialog
box is displayed. Follow these steps:

1. In the Installation Directory dialog box, accept the location presented or
click Browse to select another location.

The installation program automatically locates and selects the RM/COBOL
runtime system directory as the default location for the XML Toolkit
deployment system installation.

2. Click Install to continue.

3. When the installation completes, the Completion dialog box is displayed.
Click Close to dismiss this dialog box.

 Installing XML Toolkit for RM/COBOL

14 Chapter 1: Installation and Introduction

Introducing XML Toolkit for RM/COBOL
The XML Toolkit for RM/COBOL allows RM/COBOL applications to
interoperate freely and easily with other applications that use the eXtensible
Markup Language (XML) standard. To accomplish this, XML Toolkit
leverages the similarities between the COBOL data model and the XML data
model in order to turn RM/COBOL into an “XML Engine.” Of primary
importance to this goal is the ability to import and export XML documents to
and from standard COBOL data structures.

Note A COBOL data structure is a COBOL data item. In general, it is a group
data item, but in some cases, it may be a single elementary data item. The
cobtoxml utility, a component of the XML Toolkit (see Chapter 5: cobtoxml
Utility Reference), captures the COBOL data structure, including transformed
data-names of the data items and subordinate data items, if any, so that a
mapping between the COBOL data structure itself and an XML representation
of the COBOL data structure can be accomplished in either direction at runtime.

By allowing standard COBOL data structures to be imported from and exported
to XML documents, the XML Toolkit enables the direct processing and
manipulation of XML-based electronic documents by the RM/COBOL
application programmer. Furthermore, the XML Toolkit does this without
requiring the application programmer to become thoroughly familiar with the
numerous XML-related specifications and the extremely tedious process
required to emit and consume well-formed XML.

Specifically, an XML document may be imported into a COBOL data structure
under COBOL program control using a single, simple COBOL statement, and,
similarly, the contents of a COBOL data structure may be used to generate an
XML document with equal simplicity. The XML Toolkit approach handles both
simple and extremely complex structures with ease. Individual data elements
are automatically converted as needed between their COBOL internal data types
and the external coding used by XML. Not only can the transition to and from
XML take place when this happens, but powerful transforms coded using the
XML Style Sheet Language for Transformation (XSLT) can be applied at the
same time. This powerful mechanism gives the XML Toolkit the capabilities
needed to be useful in a wide range of e-commerce and web applications.

In order to add this powerful document-handling capability to an application, the
programmer need only describe the information to be received or transmitted to
the external components as COBOL data definitions. In many cases, this
description will simply be the already-existing data area defined in the
application. Once the “document” content is described in this way, a simple
command-line utility program (cobtoxml.exe), referenced throughout this
document as the cobtoxml utility, is run, specifying the data structures to be
“opened” to the XML world. This utility captures all the information needed in

 Introducing XML Toolkit for RM/COBOL

 XML Toolkit for RM/COBOL 15

a set of XML documents. At application execution time, a COBOL statement
(accessed via a library of statements defined in copy files supplied with the
XML Toolkit) is used to call a subprogram (xmlif.dll), referenced throughout
this document as the xmlif library, which implements the complete runtime
functionality of the XML Toolkit. For more information, see Chapter 5:
cobtoxml Utility Reference, and Chapter 6: xmlif Library Reference.

What is XML?
In this document, XML refers to the entire set of specifications and products
related to a particular approach to representing structured information in
text-based form. Specifically, the World-Wide Web Consortium has specified a
markup-based language called XML. As a close cousin of HTML, it was
designed to build on what had been learned with that, now ten-year-old,
technology. Among other things, XML was designed to be much more
generally useful than HTML, while exhibiting the simplest possible expression.
Since XML’s definition, a constellation of XML-related specifications has been
produced and is in progress to leverage the power of this new form of
information expression.

For the COBOL programmer, it is best to view XML not as a markup language
for text documents (which is probably not why the COBOL programmer cares
about it), but rather as a text-based encoding of a general abstract data model. It
is this data model, and its similarity to COBOL’s data model, that yields its
power as an adjunct to new and legacy COBOL applications needing to interact
with other applications and systems in the most modern way possible.

Most of all, XML should be viewed as extremely important to the COBOL
programmer for two key reasons. First, it is rapidly becoming the standard way
of exchanging information on the web, and second, the nearly perfect alignment
of the COBOL way of manipulating data and the XML information model
results in COBOL being arguably the best possible language for expressing
business data processing functions in an XML-connected world.

 Introducing XML Toolkit for RM/COBOL

16 Chapter 1: Installation and Introduction

COBOL as XML
What does XML look like? Start with the assumption that it is a textual
encoding of COBOL data (although this is not quite accurate, it is sufficient
for now). Suppose you have the following COBOL definition in the
Working-Storage Section:

01 contact.
 10 firstname pic x(10) value "John".
 10 lastname pic x(10) value "Doe".
 10 address.
 20 streetaddress pic x(20) value "1234 Elm Street".
 20 city pic x(20) value "Smallville".
 20 state pic x(2) value "TX".
 20 postalcode pic 9(5) value "78759".
 10 email pic x(20) value "jd@aol.com".

What does this information look like if you simply WRITE it out to a text file?
It looks like this:

John Doe 1234 Elm Street Smallville TX78759jd@aol.com

You can see that all the “data” is here, but the “information” is not. If you
received this, or tried to read the file and make sense out of it, you must know
more about the data. Specifically, you would have to know how it is structured,
and what the sizes of the fields are. It would be helpful to know how the author
named the various fields as well, since that would probably give you a clue as to
the content.

This is not a new problem; it is one that COBOL programmers (as well as other
application programmers) have had to deal with on an ad hoc basis since the
beginning of the computer age. But now, XML gives us a way to encode all of
the information in a generally understandable way.

Here is how this information would be displayed in an XML document:

 <contact>
 <firstname>John</firstname>
 <lastname>Doe</lastname>
 <address>
 <streetaddress>1234 Elm Street</streetaddress>
 <city>Smallville</city>
 <state>TX</state>
 <postalcode>78759</postalcode>
 <email>jd@aol.com</email>
</contact>

 Introducing XML Toolkit for RM/COBOL

 XML Toolkit for RM/COBOL 17

In XML, the COBOL group-level item is coded as what is called an “element.”
Elements have names, and they contain both text and other elements. As you
can see, an XML element corresponds to a COBOL data item. In this case, the
01-level item “contact” becomes the <contact> element, coded as a beginning
“tag” (the “<contact>”) and an ending tag (the “</contact>”) with everything in
between representing its “content.” In this case, the <contact> element has as its
content the elements <firstname>, <lastname>, <address>, and <email>. This
corresponds precisely to the COBOL Data Division declaration for “contact.”
Similarly, the 10-level group item, “address”, becomes the element <address>,
made up of the elements <streetaddress>, <city>, <state>, and <postalcode>.
Each of the COBOL elementary items is coded with text content alone. Notice
that in the XML form, much of the semantic information is missing from the
raw COBOL output form of the data. As a bonus, you no longer have the
extraneous trailing spaces in the COBOL elementary items, so they are
removed. In other words, the XML version of this record contains both the data
itself and the structure of the data.

Now, what if the COBOL data had looked like the following:

01 contact.
 10 firstname pic x(10).
 10 lastname pic x(10).
 10 address.
 20 streetaddresslines pic 9.
 20 streetaddresses.
 30 streetaddress occurs 1 to 9 times
 depending on streetaddresslines pic x(20).
 20 city pic x(20).
 20 state pic x(2).
 20 postalcode pic 9(5).
 10 email pic x(20).

 Introducing XML Toolkit for RM/COBOL

18 Chapter 1: Installation and Introduction

Two things have changed in this example: the initial values have been removed
and there can now be up to nine “streetaddress” items. This is more like what
you might expect in a real application. After the application code sets the values
of the various items from the Procedure Division, the XML coding of the result
might look like this:

 <contact>
 <firstname>Betty</firstname>
 <lastname>Smith</lastname>
 <address>
 <streetaddresslines>3</streetaddresslines>
 <streetaddresses>
 <streetaddress>Knox College</streetaddress>
 <streetaddress>Campus Box 9999</streetaddress>
 <streetaddress>2 E. South St.</streetaddress>
 </streetaddresses>
 <city>Galesburg</city>
 <state>IL</state>
 <postalcode>61401</postalcode>
 <email>bs@aol.com</email>
</contact>

Notice the repeating item “streetaddress” has become three <streetaddress>
elements. In this example, COBOL acts as an XML programming language,
providing both the structure (schema) of the data and the data itself.

Even though these examples are very simple, they illustrate how powerful the
compatibility between the COBOL data model and the XML information model
can be. COBOL structures of arbitrary complexity have a straightforward XML
representation. There are, it turns out, some things that you can specify in a
COBOL data definition that cannot be coded as XML, but these can easily be
avoided if you are programming your application for XML.

 Introducing XML Toolkit for RM/COBOL

 XML Toolkit for RM/COBOL 19

XML as COBOL
In the previous cases, you saw how structured COBOL data could be coded as
an XML document. In this section, you will examine how an arbitrary XML
document can be represented as a COBOL structure. This requires that you look
at some other aspects of the XML information model that are not needed to
represent COBOL structures, but might be present in XML nonetheless.

So far, you have seen that XML has elements and text. Although, these are the
primary means of representing data in XML documents, there are some other
ways of representing and structuring data in XML. Suppose you have the
following XML document:

 <contact type="student">
 <firstname>Betty</firstname>
 <lastname>Smith</lastname>
 <address form="US">
 <streetaddresses>
 <streetaddress>Knox College</streetaddress>
 <streetaddress>Campus Box 9999</streetaddress>
 <streetaddress>2 E. South St.</streetaddress>
 </streetaddresses>
 <city>Galesburg</city>
 <state>IL</state>
 <postalcode zipplus4="N">61401</postalcode>
 <email>bs@aol.com</email>
</contact>

There is now a new kind of data, known as an “attribute” in XML. Notice that
the <contact> element tag has what appears to be some kind of parameter called
“type.” This is, in fact, an attribute whose value is set to the text string
“student.” In XML, attributes are another way of coding element content, but
in a way that does not affect the text content of the element itself. In other
words, attributes are “out-of-band” data associated with an element. This
concept has no parallel in standard COBOL. In COBOL, all data associated
with a data item is part of the record contents. This means that if you are to
capture all of the content of an XML document, you must have a way to capture
and store attributes.

You do this with help of an important XML tool called a “style sheet.” For now,
assume that a style sheet can transform an XML document into any desired
alternative XML document. If this is true (and it is), you must code the
incoming attributes as something that has a direct COBOL counterpart. This
would be as a data item.

 Introducing XML Toolkit for RM/COBOL

20 Chapter 1: Installation and Introduction

The example document, after style sheet transformation, might look like this:

<contact>
 <attr-type>student</attr-type>
 <firstname>Betty</firstname>
 <lastname>Smith</lastname>
 <address>
 <attr-form>US</attr-form>
 <streetaddresslines>3</streetaddresslines>
 <streetaddresses>
 <streetaddress>Knox College</streetaddress>
 <streetaddress>Campus Box 9999</streetaddress>
 <streetaddress>2 E. South St.</streetaddress>
 </streetaddresses>
 <city>Galesburg</city>
 <state>IL</state>
 <postalcodegroup zipplus4="N">
 <attr-zipplus4>N</attr-zipplus4>
 <postalcode>61401</postalcode>
 </postalcodegroup>
 <email>bs@aol.com</email>
</contact>

Several things have been changed. The attributes have been turned into
elements, but with a special name prefixed by “attr-“ and a new element,
<streetaddresslines> has been added containing a count of the number of
<streetaddress> elements. In the case of <postalcode>, a new element has been
added to “wrap” both the real <postalcode> value, and the new attribute. All of
these changes are very easy to make using a simple style sheet, and you now
have a document with a direct equivalent in COBOL:

01 contact.
 10 attr-type pic x(7).
 10 firstname pic x(10).
 10 lastname pic x(10).
 10 address.
 20 attr-form pic xx.
 20 streetaddresslines pic 9.
 20 streetaddresses.
 30 streetaddress occurs 1 to 9 times
 depending on streetaddresslines pic x(20).
 20 city pic x(20).
 20 state pic x(2).
 20 postalcodegroup
 30 attr-zipplus4 pic x.
 30 postalcode pic 9(5).
 10 email pic x(20).

 Introducing XML Toolkit for RM/COBOL

 XML Toolkit for RM/COBOL 21

Chapter 2: Getting Started
with XML Toolkit

This chapter presents the basic concepts used in the XML Toolkit for
RM/COBOL by creating an example XML-enabled application.

Overview
Because the COBOL information model can largely be expressed by the XML
information model, there is a natural relationship between XML documents
and COBOL data structures. Both present similar views of the data; that is,
the entire data is visible. You may view the contents of a COBOL data record
and you may view the text of an XML document. In XML, markup is used
both to name and to describe the text elements of a document. In COBOL, the
data structure itself provides names and descriptions of the elements within
a document.

The XML Toolkit has many capabilities. The major features support the ability
to import and export XML documents to and from a COBOL program’s Data
Division. Note that data may be anywhere in the Data Division except for the
Linkage Section or externals. Specifically, the XML Toolkit allows data to be
imported from an XML document by converting data elements, as necessary,
and storing the results into a matching COBOL data structure. Similarly, data is
exported from a COBOL data structure by converting the COBOL data
elements, as necessary, and storing the results in an XML document.

The XML Toolkit consists of the following two main components:

• cobtoxml utility

• xmlif library

 Overview

22 Chapter 2: Getting Started with XML Toolkit

The cobtoxml utility, cobtoxml.exe, runs as a post-compile step. This program
creates a set of XML documents, called model files (see page 24), which
describe a selected COBOL data structure as a set of XML documents. The
xmlif library, xmlif.dll, is a COBOL-callable runtime library used to implement
a series of COBOL statements that are available to the developer for directing
the importing and exporting of COBOL data as XML.

Typical Development Process Example
This section provides an example of how to produce an XML-enabled
application. These instructions assume that both the XML Toolkit for
RM/COBOL development system and the RM/COBOL development system
(version 7.5 or later) are installed on your computer.

Note More examples and information about complete sample application
programs can be found in Appendix A: XML Toolkit Examples, Appendix B:
XML Toolkit Sample Application Programs, and in the XML Toolkit examples
and samples directories (Examples and Samples, respectively). The most
up-to-date versions of the XML Toolkit sample programs can be found on the
Liant Web site at http://www.liant.com/xmltk/samples.

There are five basic steps to developing an XML-enabled application:

1. Design the Data Structure. Develop a COBOL program, or modify an
existing one, using statements that refer to the xmlif library.

2. Compile the Program. Compile the COBOL program with the RM/COBOL
Compile Command Y Option enabled in order to place the symbol table in
the object file.

3. Run the cobtoxml Utility. Run the cobtoxml utility in order to generate a
set of XML model files that describe a data structure within the COBOL
program.

4. Execute the COBOL Program. Test the program and repeat steps 1 through
4 as necessary.

5. Deploy the Application. After stripping the symbol table information from
the COBOL object program, distribute the XML Toolkit deployable files.
These files consist of the xmlif library and the underlying XML parser that
this library uses.

The sections that follow describe each of the basic steps involved in the example
provided, and they include explanations of how more functionality is added to
the program.

 Typical Development Process Example

 XML Toolkit for RM/COBOL 23

Design the Data Structure
The first step is to design a COBOL data structure that describes the data to be
placed in a corresponding XML document. The following simple example
illustrates this step using typical mailing address information. An adequate
program skeleton has been included to allow the program to compile without
error.

Identification Division.
Program-Id. Getting-Started.
Data Division.
Working-Storage Section.
01 Customer-Address.
 02 Name Pic X(128).
 02 Address-1 Pic X(128).
 02 Address-2 Pic X(128).
 02 Address-3.
 03 City Pic X(64).
 03 State Pic X(2).
 03 Zip Pic 9(5) Binary.

This structure contains only one numeric element: the zip code. For
demonstration purposes, it is represented as binary.

Compile the Program
In step 2, you compile the program with the following command line:

rmcobol getstarted y

This compilation uses the Y Compile Command Option to provide a symbol
table in the COBOL object, which is required by the cobtoxml utility.

Run the cobtoxml Utility

The third step is to execute the cobtoxml utility from the command line by
entering:

cobtoxml getstarted customer-address

 Typical Development Process Example

24 Chapter 2: Getting Started with XML Toolkit

The first parameter, getstarted, is the name of the COBOL object file. An
extension of .cob is automatically assumed, if no extension is provided. The
second parameter is the name of the data structure that will be used by the
runtime components of the XML Toolkit.

When the cobtoxml utility is run, it generates a set of XML model files that
describe a data structure within the COBOL program. The following section
describes each of these model files and provides examples.

Model Files
The cobtoxml utility creates a set of files that are XML documents, known as
model files. Model files have the same root name as the object file. In this case,
the following files are created:

• Example file (getstarted.xml)

• Template file (getstarted.xtl)

• Schema file (getstarted.xsd)

• Style sheet (getstarted.xsl)

Example File
The XML document, getstarted.xml, is an example file created primarily for
the COBOL developer’s reference. It illustrates the form that the COBOL data
structure will take when encoded as an XML document. No actual data content
is included and the xmlif library does not use this file. You may use Microsoft’s
Internet Explorer to view this XML document, which looks like the following.
(Note that Internet Explorer will differentiate among the various syntactical
elements of XML by displaying them in different colors.)

<?xml version="1.0" encoding="UTF-8" ?>
<root>
 <customer-address>
 <name />
 <address-1 />
 <address-2 />
 <address-3>
 <city />
 <state />
 <zip />
 </address-3>
 </customer-address>
</root>

 Typical Development Process Example

 XML Toolkit for RM/COBOL 25

Even if you are not familiar with XML, it is easy to see how the XML document
is derived. XML is a markup language—a set of rules (you may also think of
them as guidelines or conventions) for designing text formats that let you
structure your data. In that way, it is similar to HTML. Markup is descriptive
information inserted in the text of a document. Like HTML, XML makes
use of tags (words bracketed by '<' and '>') and attributes (of the form
name="value").

Nesting of elements is done by using a matched set of beginning (start-tags) and
ending (end-tags) markup. In our example, <root> marks a beginning and
</root> marks an ending. The tags <customer-address> and
<address-3> have both start-tags and end-tags as well. XML also allows a
shortcut notation that may be used when a start-tag is immediately followed by
an end-tag (that is, when there is no intervening content). This is known as an
“empty element.” The end-tag may be omitted by terminating the start-tag with
the “/>” sequence. In this example, <name /> is shorthand for the
<name></name> sequence. The meaning of both forms is the same, and they
can be used interchangeably. Microsoft Internet Explorer recognizes an end-tag
immediately following a start-tag and displays the shorthand instead of the
longer version. If you use a text editor (such as Notepad) instead of Internet
Explorer to view the document, you will note that the shorthand sequence is not
used by this example.

This document contains no text, only markup, as it is intended only as a
reference for the programmer. The first line is an XML header, which is always
generated. The <root> tag also is always generated. Nested inside the root
element is the customer-address element. This was generated from the
customer-address data name in the COBOL program. Since names in
XML are case-sensitive and names in COBOL are case-insensitive, the name in
the COBOL program is converted to all lowercase for consistency.

Template File
The XML document, getstarted.xtl, is a template file that is used by the xmlif
library when exporting a document (converting from COBOL to XML). It is
similar to the example file, but it includes much more information. This
document contains XML attributes in addition to elements. The attributes
provide the additional information the xmlif library needs to encode the COBOL
data properly as XML at runtime.

Attributes are associated with an element tag and contain information that
describes the element content. If you look at markup for the tag name (<name
type="nonnumeric" kind="ANS" length="128" offset="4"
id="Q244" />), you are able to observe several attributes associated with
this element. An attribute has the form name="value". For example, the

 Typical Development Process Example

26 Chapter 2: Getting Started with XML Toolkit

type attribute for the name element has a value of "nonnumeric". This
information tells the xmlif library to obtain data from the COBOL data structure
and convert the data from COBOL data format to a text format for the XML
document.

<?xml version="1.0" encoding="UTF-8" ?>
<!-- produced by cobtoxml version 1.0d.00 for RM/COBOL version 7.50 or greater on:
 Wed Nov 20 12:34:19 2002 -->
<!-- data item "customer-address" in program "GETTING-STARTED" in file
 "C:\xmlexample\getstarted.cob" -->
<root type="nonnumeric" kind="GRP" compiledTimeStamp="2002-11-20T12:34:12"
 cobtoxmlRevision="1.0">
 <customer-address type="nonnumeric" kind="GRP" length="454" offset="4" uid="Q1">
 <name type="nonnumeric" kind="ANS" length="128" offset="4" uid="Q2" />
 <address-1 type="nonnumeric" kind="ANS" length="128" offset="132" uid="Q3" />
 <address-2 type="nonnumeric" kind="ANS" length="128" offset="260" uid="Q4" />
 <address-3 type="nonnumeric" kind="GRP" length="70" offset="388" uid="Q5">
 <city type="nonnumeric" kind="ANS" length="64" offset="388" uid="Q6" />
 <state type="nonnumeric" kind="ANS" length="2" offset="452" uid="Q7" />
 <zip type="numeric" kind="NBU" length="4" offset="454" scale="0"
 precision="5" uid="Q8" />
 </address-3>
 </customer-address>
</root>

Style Sheet File
The XML document, getstarted.xsl, is an internal style sheet. Style sheets such
as this are used to transform an XML document into some other data
representation (usually, but not necessarily, another XML document).
getstarted.xsl is used by the xmlif library when importing an XML document
(converting from XML to COBOL). This style sheet transforms the imported
XML into a new, internal XML document that contains the attributes shown in
the template file. This allows the xmlif library to convert the text in an XML
document to an internal COBOL format and store the data in the appropriate
location in the COBOL program’s memory.

This style sheet is complex and performs many additional functions. It is not
shown here since it is meaningful only to an experienced XML designer adept at
reading and writing style sheets.

 Typical Development Process Example

 XML Toolkit for RM/COBOL 27

Schema File
The XML document, getstarted.xsd, is a schema file used to validate the
contents of an XML document. A schema file is a description of how data is
structured. Schema files are about the data rather than the data itself. In XML,
the term “valid” means that a particular XML document is both well formed
(that is, it has correct XML syntax) and that it is structured and contains content
consistent with the constraints intended by the designer of the document. In this
case, the getstarted.xsd file provides a schema file that would catch errors, such
as the entry of a nonnumeric value for a zip code.

There are cases where validation by schema files is not appropriate. The
cobtoxml utility has an option to disable the generation of a schema file (see
“Schema Options” on page 59 in Chapter 5: cobtoxml Utility Reference), and
the xmlif library has options to validate or not to validate the contents of an
XML document (see the descriptions of XML VALIDATE FILE on page 70 and
XML VALIDATE TEXT on page 71 in Chapter 6: xmlif Library Reference).

The schema file is not presented here because it, too, is meaningful only to an
experienced XML designer adept at reading and writing schema files.

Note If the application wishes to use several data structures as separate XML
documents within the same COBOL application, it is necessary to run the
cobtoxml utility once for each data structure, using an optional parameter to
provide a name for the model files.

Execute the COBOL Program
In step 4, you execute and test the program.

In the following sections, you are going to build upon the preceding steps by
adding more functionality to the COBOL data structure designed in step 1 of
this example. Then, steps 2 and 3 are repeated as necessary.

First, the original program fragment is developed into a working COBOL
program that calls the xmlif library. Next, the XML EXPORT FILE statement
is used to create an XML document from the contents of the data structure.
Finally, the XML document is fully populated with data values. With each
iteration, the program is recompiled and the cobtoxml utility is executed in
order to produce the necessary model files.

 Typical Development Process Example

28 Chapter 2: Getting Started with XML Toolkit

Making a Program Skeleton
Step 1 started with a fragment of the program. It was just enough to show the
data structure and allow program compilation so that it would be possible to
examine the model files generated by the cobtoxml utility.

The xmlif library is a COBOL-callable subprogram. The interface to the library
is simplified by using some COBOL copy files that perform source text
replacement. This means that the developer may write XML commands, which
are much like COBOL statements, rather than writing CALL statements that
directly access entry points in the xmlif library. The COBOL copy files also
define program variables that are used in conjunction with the XML commands.
The copy file, lixmlall.cpy, must be copied in the Working-Storage Section of
the program in order to use the XML Toolkit.

In order to call the xmlif library, the COBOL program fragment from step 1 is
further developed by adding the following lines (shown in blue):

Identification Division.
Program-Id. Getting-Started.
Data Division.
Working-Storage Section.
01 Customer-Address.
 02 Name Pic X(128).
 02 Address-1 Pic X(128).
 02 Address-2 Pic X(128).
 02 Address-3.
 03 City Pic X(64).
 03 State Pic X(2).
 03 Zip Pic 9(5) Binary.
Copy "lixmlall.cpy".
Procedure Division.
A.
 XML INITIALIZE.
 If Not XML-OK Go To Z.

< insert COBOL PROCEDURE DIVISION logic here >

Z.
Copy "lixmltrm.cpy".
 GoBack.
Copy "lixmldsp.cpy".
End Program Getting-Started.

The COPY statement is placed in the Working-Storage Section after the
data structure.

 Typical Development Process Example

 XML Toolkit for RM/COBOL 29

The Procedure Division header is entered, followed by the paragraph-name, A..

The XML INITIALIZE statement produces a call to the xmlif library. The
XML INITIALIZE statement may be thought of as similar to a COBOL OPEN
statement.

Termination logic is placed at the end of the program. The paragraph-name, Z.,
is used as a GO TO target for error or other termination conditions.

The copy file, lixmltrm.cpy, is used to generate a correct termination sequence.
A call to XML TERMINATE (similar to a COBOL CLOSE statement) is in
this copy file. If errors are present, the logic in this copy file will perform a
procedure defined in the copy file, lixmldsp.cpy, which will display any error
messages.

The original program fragment is now a working COBOL program that calls the
xmlif library. Its only function is to open and close the interface to the library.

Note Whenever you recompile the source program, it is necessary that you run
the cobtoxml utility again, even if the data structure has not changed. This is
because the xmlif library must have access to model files that correctly describe
the COBOL data structures. In order to assure this, the xmlif library ascertains
that the model files were produced from the same object that is being run.

Compile and run the program from the command line as follows:

rmcobol getstarted y
cobtoxml getstarted customer-address
runcobol getstarted

The first parameter is the name of the COBOL object program.

If you place the xmlif library in the rmautold directory, as this action assumes,
you do not have to specify the library name on the command line.

 Typical Development Process Example

30 Chapter 2: Getting Started with XML Toolkit

Making a Program that Exports an XML Document
The next stage is to create an XML document from the contents of a COBOL
data structure. To do this, more logic is added to the original COBOL program.
The added text is shown in blue.

Identification Division.
Program-Id. Getting-Started.
Data Division.
Working-Storage Section.
01 Customer-Address.
 02 Name Pic X(128).
 02 Address-1 Pic X(128).
 02 Address-2 Pic X(128).
 02 Address-3.
 03 City Pic X(64).
 03 State Pic X(2).
 03 Zip Pic 9(5) Value 0 Binary.
Copy "lixmlall.cpy".
Procedure Division.
A.
 XML INITIALIZE.
 If Not XML-OK Go To Z.

 XML EXPORT FILE
 Customer-Address
 "Address"
 "getstarted".
 If Not XML-OK Go to Z.

Z.
Copy "lixmltrm.cpy".
 GoBack.
Copy "lixmldsp.cpy".
End Program Getting-Started.

The XML EXPORT FILE statement is used to create an XML document from
the contents of a data structure. This statement has three arguments: the data
structure name, the desired filename, and the root name of the model files.

A value of zero is added to the zip code field so that the field has a valid
numeric value.

As you would expect, the data structure name is customer-address. This
name must correspond to the name used when running the cobtoxml utility
(cobtoxml getstarted customer-address). The desired filename is
specified as address, which will cause a file (containing the XML document)
with the name of address.xml to be generated. Almost all of the XML
statements may set an unsuccessful or warning status value; that is, a status
value for which the condition-name XML-OK is false following the execution

 Typical Development Process Example

 XML Toolkit for RM/COBOL 31

of the XML statement. It is good practice to follow every XML statement with
a status test, such as, If Not XML-OK Go to Z.

The program is again compiled and run from the command line as follows:

rmcobol getstarted y
cobtoxml getstarted customer-address
runcobol getstarted

This time the program creates an XML document in the file, address.xml. You
may use Microsoft Internet Explorer to examine the document. The resulting
XML document is displayed as follows:

<?xml version="1.0" encoding="UTF-8" ?>
<root>
 <customer-address>
 <name />
 <address-1 />
 <address-2 />
 <address-3>
 <city />
 <state />
 <zip>0</zip>
 </address-3>
 </customer-address>
</root>

Since the data structure contained only spaces (with the exception of the zip
field), the generated document is almost identical to the example file that was
generated by the cobtoxml utility.

 Typical Development Process Example

32 Chapter 2: Getting Started with XML Toolkit

Populating the XML Document with Data Values
The next stage is to populate the COBOL program with data values. Changes
are shown in blue.

Identification Division.
Program-Id. Getting-Started.
Data Division.
Working-Storage Section.
01 Customer-Address.
 02 Name Pic X(128).
 02 Address-1 Pic X(128).
 02 Address-2 Pic X(128).
 02 Address-3.
 03 City Pic X(64).
 03 State Pic X(2).
 03 Zip Pic 9(5) Value 0 Binary.
Copy "lixmlall.cpy".
Procedure Division.
A.
 XML INITIALIZE.
 If Not XML-OK Go To Z.

 Move "Liant Software Corporation" to Name.
 Move "8911 Capitol of Texas Highway, North"
 to Address-1.
 Move "Suite 4300" to Address-2.
 Move "Austin" to City.
 Move "TX" to State.
 Move 78759 to Zip.

 XML EXPORT FILE
 Customer-Address
 "Address"
 "getstarted".
 If Not XML-OK Go to Z.

Z.
Copy "lixmltrm.cpy".
 GoBack.
Copy "lixmldsp.cpy".
End Program Getting-Started.

A series of simple MOVE statements are used to provide content for the data
structure.

Again, the program is compiled and run from the command line as follows:

rmcobol getstarted y
cobtoxml getstarted customer-address
runcobol getstarted

 Typical Development Process Example

 XML Toolkit for RM/COBOL 33

This time the XML document is fully populated with data values, as shown
below.

<?xml version="1.0" encoding="UTF-8" ?>
<root>
 <customer-address>
 <name>Liant Software Corporation</name>
 <address-1>8911 Capitol of Texas Highway North</address-1>
 <address-2>Suite 4300</address-2>
 <address-3>
 <city>Austin</city>
 <state>TX</state>
 <zip>78759</zip>
 </address-3>
 </customer-address>
</root>

Deploy the Application
Use the RM/COBOL Combine Program Utility, rmpgmcom, which comes with
the RM/COBOL development system, to strip symbol table information from
the COBOL object program. The rmpgmcom utility combines multiple
RM/COBOL object files into a single program file library. This utility is used
primarily to reduce the size of the deployable application.

The following DOS commands illustrate how the rmpgmcom utility may be
used to strip symbol table information:
move /y myprogram.cob tmp.cob

start /w runcobol rmpgmcom A='STRIP,myprogram.cob,tmp.cob'

del tmp.cob

The model file documents contain a time stamp that reflects the compilation date
and time of the COBOL object file. If you recompile the COBOL source to
remove the symbol table, the time stamp of the model files will not match the
compilation date and time and the xmlif library will generate an error message.

Deploy the xmlif library and the underlying XML parser that it uses along with
the model files that were generated by the cobtoxml utility. Normally these
files are stored in the same location as the COBOL program files.

For deploying COBOL applications that use the XML Toolkit, install the XML
Toolkit deployment system on each platform that runs the application. You may
do this using the XML Toolkit Installation disk.

 Typical Development Process Example

34 Chapter 2: Getting Started with XML Toolkit

 Typical Development Process Example

 XML Toolkit for RM/COBOL 35

Chapter 3: COBOL
Considerations

This chapter provides information specific to using RM/COBOL when
developing an XML-enabled application. The primary topics discussed in this
chapter include:

• File Management

• Data Conventions

• Copy Files

• Limitations

• Optimizations

File Management
The management of data files when using the XML Toolkit is similar, but not
identical, to other RM/COBOL data file management issues. The sections that
follow discuss these differences.

Automatic Search for Files
During development with the XML Toolkit, remember the following points
when searching for a file not found in the current working directory:

• The RM/COBOL runtime support for resolving leading or subsequent
names in a pathname is not provided by the XML Toolkit when the xmlif
library locates files. That is, the XML Toolkit does not honor the

 File Management

36 Chapter 3: COBOL Considerations

RESOLVE-LEADING-NAME or RESOLVE-SUBSEQUENT-NAMES
keywords of the RUN-FILES-ATTR configuration record.

• The RUNPATH environment variable is searched to locate model files and
style sheet files, as necessary.

File Management Conventions
File extensions are either used “as is” or forced to be a predetermined value.
The conventions governing particular filename extensions when using the XML
Toolkit are described in the sections that follow.

Model File Naming Conventions
Model files, the XML documents generated by the cobtoxml utility, have
predetermined extensions. The cobtoxml utility generates a set of three or four
files from a single filename with different extensions (.xml, .xsl, .xtl, and
sometimes .xsd). For more information, see “Model Files” on page 24 in
Chapter 2: Getting Started with XML Toolkit, and “Referencing XML Model
Files” on page 59 in Chapter 5: cobtoxml Utility Reference.

The xmlif library uses the model files only as input files. When the xmlif
library references a model file, the appropriate predetermined extension is
added, regardless of the presence or lack of an extension on the model file
parameter supplied by the COBOL program.

The xmlif library uses the RUNPATH environment variable to locate a model
file (with the appropriate extension added) except when:

• the model filename contains a directory separator character (such as “\” on
Windows);

• the file exists; or

• the filename is a URL (that is, the name begins with “http:”).

 File Management

 XML Toolkit for RM/COBOL 37

External Style Sheet File Naming Conventions
In addition to the style sheet that is produced as part of the model files, other
style sheets may be referenced by the xmlif library. If the filename parameter
supplied by the COBOL program does not contain an extension, the value .xsl is
added to the filename.

The xmlif library uses the RUNPATH environment variable to locate the style
sheet file (with the .xsl extension added) except when:

• the style sheet filename parameter supplied by the COBOL program
contains a directory separator character (such as “\” on Windows);

• the file exists; or

• the filename is a URL (the name begins with “http:”).

Other Input File Naming Conventions
All other input files referenced by the xmlif library will have a value of .xml
added if the filename parameter supplied by the COBOL program does not
contain an extension. No RUNPATH environment variable search is applied.

Other Output File Naming Conventions
All other output files referenced by the xmlif library will have a value of .xml
added if the filename parameter supplied by the COBOL program does not
contain an extension. No RUNPATH environment variable search is applied.

If the filename supplied by the COBOL program is a URL, then an error is
returned because it is not possible to write directly to a URL.

 File Management

38 Chapter 3: COBOL Considerations

Data Conventions
In the XML Toolkit, several suppositions were made about data transformations
between COBOL and XML, including those relating to the following items:

• Data Representation

• FILLER Data

• Missing Intermediate Parent Names

• Sparse COBOL Records

Data Representation
COBOL numeric data items are represented in XML as a numeric string. A
leading minus sign is added for negative values. Leading zeros (those appearing
to the left of the decimal point) are removed. Trailing zeros (those appearing to
the right of the decimal point) are likewise removed. If the value is an integer,
no decimal point is present.

COBOL nonnumeric data items are represented as a text string and have trailing
spaces removed (or leading spaces, if the item is described with the JUSTIFIED
phrase). In addition, any embedded XML special characters are represented by
escape sequences; the ampersand (&), less than (<), greater than (>), quote (”),
and apostrophe (‘) characters are examples of such XML special characters.

On Windows platforms, nonnumeric displayable data are encoded using
Microsoft’s OEM data format. On output, these data are converted to the
standard Unicode 8-bit transformation format, UTF-8. On input, data is
converted to the OEM data format.

 Data Conventions

 XML Toolkit for RM/COBOL 39

FILLER Data
Unnamed data description entries, referred to as FILLER data in this section,
may be used to generate XML text without starting a new XML element name.
Specifying named and unnamed elementary data items subordinate to a named
group generates XML mixed content for an element named by the group name.

Numeric FILLER data will not reliably produce well-formed XML sequences.
For this reason, FILLER data should always be nonnumeric PIC X or PIC A.

For example, the following COBOL sequence:

01 A.
 02 FILLER Value "ABC".
 02 B Pic X(5) Value "DEF".
 02 FILLER Value "GHI".

generates the following well-formed XML sequence:

<a>ABCDEFGHI

FILLER data, however, is treated differently than named data. All leading
and/or trailing spaces are preserved, so that the length of the data is the same as
the COBOL data length.

In addition, the data is treated as PCDATA. That is, embedded XML special
characters are preserved. This allows short XHTML sequences, such as “break”
to be represented as FILLER (for example,
). XHTML (Extensible
HyperText Markup Language) is based on HTML 4, but with restrictions such
that an XHTML document is also a well-formed XML document. For example,
the following COBOL sequence:

01 A.
 02 FILLER Value "
".
 02 B Pic X(5) Value "DEF".
 02 FILLER Value "GHI".

generates the following well-formed XML sequence:

<a>
DEFGHI

 Data Conventions

40 Chapter 3: COBOL Considerations

Care must be taken in placing XML special characters in FILLER data, since the
resultant XML sequence might not be well formed. For example, the following
COBOL sequence:

01 A.
 02 FILLER Value "<br".
 02 B Pic X(5) Value "DEF".
 02 FILLER Value "GHI".

generates the following syntactically malformed XML sequence:

<a><brDEFGHI

Whenever FILLER data are present in a data item that is referenced by the XML
EXPORT statement, the resulting document is validated to ensure that the
resultant XML document is well formed.

Missing Intermediate Parent Names
A capability for handling missing intermediate parent names has been included
to make programs that deal with “flattened” data items, such as web services,
less complicated.

Sometimes it is possible for the XML Toolkit to reconstruct missing
intermediate parent names in a COBOL data structure. There are two ways in
which these missing names may be generated:

• One technique is to determine whether the element name is unique. If this
is true, then the intermediate parent names are generated by the model file
style sheet.

• The other method is to determine whether the unique identifier (uid)
attributes of the element name are provided. If this is true, then the
intermediate parent names may also be generated.

The following sections illustrate the two approaches.

 Data Conventions

 XML Toolkit for RM/COBOL 41

Unique Element Names
Consider the following COBOL data structure:

01 Liant-Address.
 02 Name Pic X(64).
 02 Address-1 Pic X(64).
 02 Address-2 Pic X(64).
 02 Address-3.
 03 City Pic X(32).
 03 State Pic X(2).
 03 Zip Pic 9(5).
 02 Time-Stamp Pic 9(8).

A well-formed and valid XML document that could be imported into this
structure is shown below:

<?xml version="1.0" encoding="UTF-8" ?>
<root>
 <liant-address>
 <name>Liant Software Corporation</name>
 <address-1>8911 Capital of Texas Highway North</address-1>
 <address-2>Suite 4300</address-2>
 <address-3>
 <city>Austin</city>
 <state>TX</state>
 <zip>78759</zip>
 </address-3>
 <time-stamp>13263347</time-stamp>
 </liant-address>
</root>

A well formed (but not valid) “flattened” version of an XML document that
could also be imported into this structure is displayed here:

<?xml version="1.0" encoding="UTF-8" ?>
<root>
 <name>Wild Hair Corporation</name>
 <address-1>8911 Hair Court</address-1>
 <address-2>Sweet 4300</address-2>
 <city>Lostin</city>
 <state>TX</state>
 <zip>70707</zip>
 <time-stamp>99999999</time-stamp>
</root>

Note This last XML document may be used only if the cobtoxml utility does
not generate a schema to validate the document. To prevent the creation of a

 Data Conventions

42 Chapter 3: COBOL Considerations

schema file, you use the -sn (schema none) option on the cobtoxml utility.. You
may also delete an existing schema model file (.xsd extension).

Unique Identifier (uid)
The unique identifier (uid) attribute is generated by an XML EXPORT FILE or
XML EXPORT TEXT statement if XML attributes are enabled. Attributes may
be enabled by using the XML ENABLE ATTRIBUTES (page 83) statement
before the XML EXPORT statement.

Using the same COBOL data structure illustrated on page 41 for unique element
names, a well-formed XML document (generated by XML EXPORT), which
contains attributes—including uids, that could be imported into this structure is
shown below:

<?xml version="1.0" encoding="UTF-8" ?>
<root type="nonnumeric" kind="GRP"
 compiledTimeStamp="2002-12-04T10:57:22"
cobtoxmlRevision="1.0">
 <liant-address type="nonnumeric" kind="GRP" length="239"
offset="4"
 uid="Q1">
 <name type="nonnumeric" kind="ANS" length="64" offset="4"
 uid="Q2">Liant Software Corporation</name>
 <address-1 type="nonnumeric" kind="ANS" length="64"
offset="68"
 uid="Q3">8911 Capital of Texas Highway North</address-1>
 <address-2 type="nonnumeric" kind="ANS" length="64"
offset="132"
 uid="Q4">Suite 4300</address-2>
 <address-3 type="nonnumeric" kind="GRP" length="39"
offset="196"
 uid="Q5">
 <city type="nonnumeric" kind="ANS" length="32"
offset="196"
 uid="Q6">Austin</city>
 <state type="nonnumeric" kind="ANS" length="2"
offset="228"
 uid="Q7">TX</state>
 <zip type="numeric" kind="NSU" length="5" offset="230"
scale="0"
 precision="5" uid="Q8">78759</zip>
 </address-3>
 <time-stamp type="numeric" kind="NSU" length="8"
offset="235"
 scale="0" precision="8" uid="Q9">10572765</time-stamp>
 </liant-address>
</root>

 Data Conventions

 XML Toolkit for RM/COBOL 43

A well-formed “flattened” version of an XML document that could also be
imported into this structure is displayed here. The uid attributes were captured
from an XML document (such as the one shown previously) that was generated
by an XML EXPORT statement. These attributes may be captured by a style
sheet or other process and then added again before the XML IMPORT
statement. This is accomplished by combining the element name and the uid
attribute value to form a new element name. For example, <name uid=“Q2”>,
could be used to generate a new element name “name.Q2”.

<?xml version="1.0" encoding="UTF-8" ?>
<root>
 <name uid="Q2">>Wild Hair Corporation</name>
 <address-1 uid="Q3">>8911 Hair Court</address-1>
 <address-2 uid="Q4">>Sweet 4300</address-2>
 <city uid="Q6">Lostin</city>
 <state uid="Q7">TX</state>
 <zip uid="Q8">70707</zip>
 <time-stamp uid="Q9">99999999</time-stamp>
</root>

Note This last XML document may be used only if the cobtoxml utility does
not generate a schema to validate the document. To prevent the creation of a
schema file, you use the -sn (schema none) option on the cobtoxml utility. You
may also delete an existing schema model file (.xsd extension).

 Data Conventions

44 Chapter 3: COBOL Considerations

Sparse COBOL Records
An input XML document need not contain all data items defined in the original
structure. This applies to both scalar and array elements. In order to place array
elements correctly, a subscript must be supplied when array elements are not in
canonical order.

For example, the following XML document uses the subscript attribute to
position the array to the second element and then to the fourth element.

<?xml version="1.0" encoding="UTF-8" ?>
<root>
 <data-table>
 [
 <table-1 subscript="2">
 <x>B</x>
 <n>2</n>
 </table-1>
 <table-1 subscript="4">
 <x>D</x>
 <n>4</n>
 </table-1>
]
 </data-table>
</root>

If the input XML document might be sparse (that is, missing some elements),
then the schema generated by the cobtoxml utility will cause the document load
to fail. For this reason, if you anticipate using sparse XML documents, you
should run the cobtoxml utility with the -sn (schema none) option. You may
also delete an existing schema model file (.xsd extension).

Copy Files
Under most circumstances, you should make use of the copy files that are
provided in the XML Toolkit. This section describes the various points to
consider when using copy files with the XML Toolkit, including:

• Statement Definitions

• Displaying Status Information

• Application Termination

 Copy Files

 XML Toolkit for RM/COBOL 45

Statement Definitions
The copy file, lixmlall.cpy, is required to define the XML statements and to
define some data-items that are referenced. This copy file should be copied in
the Working-Storage Section of the program. Do not modify the contents of this
copy file or the copy files that it copies (lixmdef.cpy and lixmlrpl.cpy).

Displaying Status Information
The copy file, lixmldsp.cpy, is provided as an aid in retrieving and presenting
status information. This copy file defines the Display-Status paragraph and
contains the following text:

Display-Status.
 If Not XML-IsSuccess
 Perform With Test After Until XML-NoMore
 XML GET STATUS-TEXT
 Display XML-StatusText
 End-Perform
 End-If.

The DISPLAY statement (Display XML-StatusText) displays status
information on the terminal display. You may edit this statement as necessary
for your application.

While this logic is normally used in the application termination logic, it may be
used at any time in the program flow. For example:

 XML TRANSFORM FILE "A" "B" "C".
 PERFORM Display-Status.

 Copy Files

46 Chapter 3: COBOL Considerations

Application Termination
The copy file, lixmltrm.cpy, provides an orderly way to shut down an
application. This copy file contains the following text:

 Display "Status: " XML-Status.
 Perform Display-Status.
 XML TERMINATE.
 Perform Display-Status.

The first line may be modified or removed as you choose. The first PERFORM
statement displays any pending status messages (from a previous XML
statement). The XML TERMINATE statement shuts down the XML Toolkit
and the second PERFORM statement displays any status from the XML
TERMINATE operation.

The following logic is sufficient to successfully terminate the XML Toolkit:

Z.
Copy "lixmltrm.cpy".
 Stop Run.
Copy "lixmldsp.cpy".

The Z. paragraph-name is where the exit logic begins. The flow of execution
may reach here by falling through from the previous paragraph or as the result of
a program branch. The STOP RUN statement is used to prevent the application
from falling through to the Display-Status paragraph. An EXIT PROGRAM or
GOBACK statement also may be used, if appropriate.

 Copy Files

 XML Toolkit for RM/COBOL 47

Limitations
This section describes the limitations of the XML Toolkit and the way in which
those limitations affect the development of an XML-enabled application. The
topics discussed in this context include:

• Data Items (Data Structures)

• Edited Data Items

• Wide and Narrow Characters

• Data Item Size

• OCCURS Restrictions

• Reading, Writing, and the Internet

Data Items (Data Structures)
Data items that are passed to the XML Toolkit must be in memory that is local
to the COBOL program. Therefore, EXTERNAL data items or data items in the
Linkage Section may not be used for XML IMPORT or XML EXPORT
operations (see pages 62 through 66).

The XML IMPORT and XML EXPORT statements operate on a single COBOL
data item. This data item is the second command line parameter when using the
cobtoxml utility. As you would expect, this data item may be (and usually will
be) a group item. The COBOL program must move all necessary data to the
selected data item before using the XML EXPORT statement and retrieve data
from the data item after using the XML IMPORT statement.

The referenced data item—and any items contained within it, if it is a group
item—has the following limitations:

1. REDEFINES and RENAMES clauses are not allowed.

2. FILLER items must be nonnumeric.

 Limitations

48 Chapter 3: COBOL Considerations

Edited Data Items
Numeric edited, alphabetic edited, and alphanumeric edited data items are
allowed. The data items are represented in an XML document in the same
format as the data items would exist in COBOL internal storage. That is, no
editing or de-editing operations are performed for edited data items during
import from XML or export to XML. Leading and trailing spaces are preserved.

Wide and Narrow Characters
XML was developed to use wide (16-bit) Unicode characters as its natural
mode. RM/COBOL uses narrow (8-bit) ASCII characters. All XML data that is
generated by the XML Toolkit is represented in UTF-8 format, which is
essentially ASCII with extensions for representing 16-bit characters and is
compatible with Unicode. (UTF-8 is a form of Unicode.)

Data Item Size
By its nature, XML has no limits on data item size. COBOL does have size
limitations for its data items. Many XML documents have been standardized
and such standards include limitations on data items, but the COBOL program
must still be written to deal with data item size constraints.

OCCURS Restrictions
Although, XML has no limits on the number of occurrences of a data item,
COBOL does have such occurrence limits. As with data item size, the COBOL
program must deal with this difference.

Reading, Writing, and the Internet
It is possible to read any XML document (including XML model files) from the
Internet via a URL. However, it is not possible to directly write or export an
XML document to the Internet via a URL.

 Limitations

 XML Toolkit for RM/COBOL 49

Optimizations
Some optimizations have been added to the xmlif library to improve
performance and reduce the size of the generated documents.

Occurs Depending
As expected, on output, the XML EXPORT statement will limit the number of
occurrences of a group to the value of the DEPENDING variable. Additional
occurrences may be omitted if they contain no data (see “Empty Occurrences”).

On input, the XML IMPORT statement will store the value of the DEPENDING
variable. The XML IMPORT statement will also store all occurrences in the
document (up to the maximum occurrence limit), regardless of the value of the
DEPENDING variable. However, if a schema is generated by the cobtoxml
utility, then the schema will report an error if not all of the elements specified by
the DEPENDING variable are present.

Empty Occurrences
On output, the XML EXPORT statement recognizes occurrences within a
group that contain no information. Specifically, an empty data item is a string
that contains either all spaces or zero characters, or a number that contains a
zero value.

If all of the elementary data items in an occurrence of a group are empty and if
the occurrence is not the first occurrence, then no data is generated for that
occurrence. This prevents the repetition of occurrences that contain no
information.

On input (XML IMPORT), a schema may detect an error if not all expected
occurrences of an item are present. In order to prevent this, you may enable all
occurrences (use the XML DISABLE ALL-OCCURRENCES statement,
described on page 81) when generating the document with XML EXPORT.

 Optimizations

50 Chapter 3: COBOL Considerations

Cached XML Documents
Since XML style sheets and template files are largely invariant, performance can
usually be improved by caching previously loaded style sheets and templates in
memory.

For some applications, it may be useful to disable caching. If style sheets and
template files are generated or replaced in real time, then the cached files would
need to be replaced as well.

If system resource availability becomes critical because a large number of
documents are occupying virtual memory, then caching may cause system
degradation.

The XML ENABLE CACHE, XML DISABLE CACHE, and XML FLUSH
CACHE statements may be used to enable or disable document caching. By
default, caching is enabled. For more information on these XML statements, see
pages 83 and 84 in Chapter 6: xmlif Library Reference.

 Optimizations

 XML Toolkit for RM/COBOL 51

Chapter 4: XML
Considerations

This chapter provides information specific to using XML when using the XML
Toolkit with RM/COBOL to develop an XML-enabled application. The
primary topics discussed in this chapter include:

• Character Encoding

• Style Sheets

• Schemas

Character Encoding
XML documents use the Unicode character encoding standard internally.
Unicode represents characters as 16-bit items. For external representation, most
XML documents are encoded using the standard Unicode transformation
formats, UTF-8 or UTF-16. XML documents created by the XML Toolkit are
always encoded for external presentation using the UTF-8 representation. UTF-
8 is a method of encoding Unicode where most displayable characters are
represented in 8-bits. Characters in the range of 0x20 to 0x7e (the normal
displayable character set) are indistinguishable from standard ASCII.

 Character Encoding

52 Chapter 4: XML Considerations

Style Sheets
Style sheets are used to transform an XML document into another document
(not necessarily XML format, such as HTML, PDF, RTF, and so forth). A style
sheet is itself an XML document. The xmlif library has a specific statement for
performing style sheet transformations (XML TRANSFORM FILE). In
addition, the XML IMPORT and XML EXPORT statements allow a style sheet
to be specified as a parameter, making it possible to transform a document while
importing or exporting XML documents. For more information on these XML
statements, see Chapter 6: xmlif Library Reference.

The format of XML documents generated by the XML Toolkit matches the form
of the specified COBOL data structure. Often the COBOL developer must
process XML documents that are defined by an external source. It is likely that
the format of the COBOL-generated XML document will not conform to the
document format that meets the external requirements.

The recommended course of action is to use an XML style sheet to transform
between the COBOL-generated XML document format and the expected
document format. XML style sheets are extremely powerful. You may wish to
use a style sheet editing tool to design your style sheets (for example,
Microsoft’s BizTalk Mapper, which is part of BizTalk Server 2000).

Keep in mind that style sheets are unidirectional. Therefore, it is possible that
you will have to design two style sheets for each COBOL data structure: one for
input, which converts the required document format to COBOL format, and one
for output, which converts COBOL format to the required format.

 Style Sheets

 XML Toolkit for RM/COBOL 53

Schemas
Schema files are used to assure that the data within an XML document conforms
to expected values. For example, an element that contains a zip code may be
restricted to a numeric integer. Schema files can also limit the length or number
of occurrences of an element as well as guarantee that elements occur in the
expected order.

A schema file may be applied to an XML document in any of the following
three ways:

• The entire schema file may reside within the document (this situation is
rare);

• A link to the schema file may be placed in the document (this technique is
more common); or

• A process that loads a given XML document may also load a schema file
that controls the document.

The third approach is used by the xmlif library. The cobtoxml utility optionally
generates a schema file as one of the model files. This schema file is used to
validate XML documents that are loaded by the XML IMPORT FILE or XML
IMPORT TEXT statements. This validation can be skipped by not having the
cobtoxml utility generate a schema file by specifying the -sn (schema none)
option or by simply deleting the schema file.

 Schemas

54 Chapter 4: XML Considerations

 Schemas

 XML Toolkit for RM/COBOL 55

Chapter 5: cobtoxml Utility
Reference

This chapter describes the cobtoxml utility used by the XML Toolkit and the
XML document files, known as model files, that are produced when the
cobtoxml utility processes the symbol table of a previously compiled
RM/COBOL object file.

What is the cobtoxml Utility?
The cobtoxml utility is a 32-bit console application. It processes the symbol
table of a previously compiled RM/COBOL object file and produces a set of
XML documents. These documents are often called XML model files and are
described in the “Referencing XML Model Files” topic that begins on page 59.
(See also “Model Files” on page 24 in Chapter 2: Getting Started with XML
Toolkit.)

To use the cobtoxml utility, you specify (at a minimum) the name of a COBOL
object file and the name of a COBOL data item within that file. You may use
the cobtoxml utility multiple times against the same object file to process
different data items.

The cobtoxml utility requires that the COBOL object program be compiled with
the RM/COBOL Compile Command Y Option enabled in order to place symbol
table information in the object file. However, since there are no runtime
requirements for the symbol table, the symbol table may be removed once
applications are ready to be deployed.

 What is the cobtoxml Utility?

56 Chapter 5: cobtoxml Utility Reference

Command Line Interface
The cobtoxml utility is executed with the following command:

cobtoxml cob-file-name data-item-name [xml-file-name] [options]

cob-file-name, the first positional parameter, is the name of the RM/COBOL
object file. The RM/COBOL source program must have been compiled with the
symbol table option specified by the RM/COBOL Compile Command Y Option.
The value of this name is treated as case-sensitive. If this parameter contains an
extension, it will be used as entered. If the extension is omitted, .cob will be
added. No directory search (on the PATH or RMPATH environment variables)
is performed.

data-item-name, the second positional parameter, is the name of the selected
data item within a COBOL program. While the most common use may be as the
name of a group, the data item need not be a record name (01 level). The value
entered is not case-sensitive. The data-name must be defined exactly once in the
program file. In the case of program libraries, all programs are searched.

xml-file-name, the optional third parameter, is the base name used to create a set
of XML documents, called model files, having a single filename with different,
predetermined extensions (.xml, .xsl, .xtl, and .xsd). The value of this name is
treated as case-sensitive. If this parameter already contains an extension, it will
be ignored.

options represents command line options, which are described beginning on
page 57. Although this parameter is shown as the last parameter, it may occur
anywhere after cobtoxml on the command line. Additionally, options may be
specified multiple times. Option letters are case-insensitive; that is, the
following combinations are equivalent: “-bc”, “-bC”, “-Bc” and “-BC”. The
options parameter is divided into three categories: banner, name, and schema.

Note When no command line parameters are entered, the following cobtoxml
usage message is displayed (including the error) as follows:

Error: 33[0] - parameter - COBOL object file name missing

RM/COBOL cobtoxml utility - Version 1.00.00 for 32-Bit Windows.
Copyright (c) 2001-2002 by Liant Software Corp. All rights reserved.

Usage: cobtoxml cob-file-name data-item-name xml-file-name
 cob-file-name: case-sensitive name of the RM/COBOL object file
 data-item-name: case-insensitive name of the COBOL data item
 xml-file-name: optional case-sensitive name for the XML file(s)
 options: a sequence of option letters preceded by a hyphen

 Command Line Interface

 XML Toolkit for RM/COBOL 57

Command Line Options
The following options are available on the cobtoxml command line.

Banner Options
Banner options control the amount of information displayed during the
execution of the cobtoxml utility and are created by entering a hyphen character
followed by the letter “b” and then either the letter “c”, “n”, or “v”.

The following table lists several examples of supported banner option
combinations:

Option Description
-bc Displays the Liant copyright message only (this is the default).
-bn Displays no banner information.
-bv Displays verbose banner.

Banner options do not affect the display of any error or status messages.

Name Options
Name options control the format of tag names in XML documents. An XML
tag is generated for each data-name in the specified COBOL data structure.
Since COBOL data-names are case-insensitive and XML tag names are case-
sensitive, it is necessary to have rules for generating XML tag names. By
default, the cobtoxml utility generates XML tag names in lowercase.

Name options are generated by entering a hyphen character (-) followed by the
letter “n” and then one or more of the following letters (in any order): “a”, “f”,
“h”, “l”, “m”, “p”, and “u”.

 Command Line Interface

58 Chapter 5: cobtoxml Utility Reference

Option letters that follow after “-n” have the following meaning:

Option Description
a (After parent) This option is used to ensure that each tag name is

unique. If a COBOL data-name within the specified
group item is not unique in the COBOL program file, the
tag name is formed by recursively adding the sequence
“.of.” and the parent name after the data-name. This is
done until the tag name becomes unique.

f (First) The first letter of the tag name is capitalized.
h (Hyphen out) Hyphen characters in the COBOL data-name are

removed from the tag name.
l (Lowercase) Unless overridden by the options “f” or “m”, all

characters in the tag name are lowercase.
m (Mixed case) The first letter after a hyphen character in the COBOL

data-name is represented as uppercase in the generated
tag name.

p (Prefix out) All characters in the COBOL data-name up to and
including the first hyphen are removed. This option is
useful where all data items in a structure begin with the
same sequence. However, this option should be used
with care. If the item name contains no hyphen
characters then the generated tag name will be empty.

u (Uppercase) All characters in the COBOL data-name are represented
as uppercase in the generated tag name.

 Command Line Interface

 XML Toolkit for RM/COBOL 59

Schema Options
By default, a schema file is generated that will be used to validate an XML
document. The schema file has the same base name as the other XML model
files and has an extension of .xsd. Four formats of schema files are defined:
XDR (BizTalk), XDR, Schema, and None.

Schema options are generated by entering a hyphen character followed by one of
the following letters: “b”, “d”, “s”, or “n”.

Supported schema options include the following:

Option Description
-sb The generated schema file complies with the older XDR (XML

Data Reduced) schema format, with additions that make it
compatible with BizTalk Mapper.

-sd The generated schema file complies with the older XDR (XML
Data Reduced) schema format.

-ss The generated schema file complies with the current schema
definition (this is the default).

-sn No schema file is generated.

Referencing XML Model Files
XML model files may be referenced by the COBOL application via a traditional
path name or by an Internet address. More information about model files can
be found in the section, “Model Files” in Chapter 2: Getting Started with XML
Toolkit. Examples of references to XML model files are shown in the
following table:

Filename Type of Referencing
c:\myfiles\myapp.xml Simple pathname.
\\mysystem\myfiles\myapp.xml UNC. Universal Naming Convention.
http://myserver/myfiles/myapp.xml URL. Universal Resource Locator.

The cobtoxml utility generates up to four XML documents for each data
structure that is specified. These XML documents are the internal style sheet,
the template file, the example file, and the schema file. The example file is
generated as a reference for the developer. The internal style sheet, the template
file, and the optional schema file are used internally by the COBOL application.

 Referencing XML Model Files

http://myserver/myfiles/myapp.xml

60 Chapter 5: cobtoxml Utility Reference

Internal Style sheet
The internal style sheet (a file having the .xsl extension) is an XML style sheet.
It adds COBOL-like attributes to an existing XML document. The xmlif library
uses the internal style sheet when importing an XML document.

Template File
The template file (a file having the .xtl extension) is an XML document that
does not contain any text values. Each element contains several COBOL-like
attributes that describe the data. The xmlif library uses the template file to
generate an XML document.

Example File
The example file (a file having the .xml extension) is an XML document that
does not contain any text values. It is identical to the template file, except that
the COBOL attributes have been removed. The xmlif library does not use the
example file. The example file is provided as a reference to assist the developer
in designing any style sheets that may be needed.

Schema File
The xmlif library uses the schema file (a file having the .xsd extension) if
present, to validate the content of an imported XML data document. If the
schema file is absent, no validation is performed.

 Referencing XML Model Files

 XML Toolkit for RM/COBOL 61

Chapter 6: xmlif Library
Reference

This chapter describes the xmlif dynamic link library, which is used by the
XML Toolkit for RM/COBOL at runtime.

What is the xmlif Library?
The xmlif library (xmlif.dll) is a 32-bit dynamic link library that is callable from
RM/COBOL object programs and provides facilities to process, manipulate and
validate XML documents.

The xmlif library uses the Microsoft MSXML 4.0 parser.

The following sections describe the various types of statements used by the
xmlif library:

• Document Processing Statements (see page 62). These statements are used
to process, manipulate, or validate XML documents.

• Document Management Statements (see page 72). These statements are
used to copy an XML document from an external file to an internal text
string and vice versa.

• Directory Management Statements (see page 75). These statements are
useful when implementing directory-polling schemes.

• State Management Statements (see page 78). These statements are used to
control the state or condition of the xmlif library.

Note Each statement contains zero or more positional parameters. These
parameters are used to specify such items as the source or destination data item,
source or destination XML document, model files produced by the cobtoxml
utility, and flags. In some statements, trailing positional parameters are optional
and may be omitted, as specified in the statement descriptions in this chapter.

 What is the xmlif Library?

62 Chapter 6: xmlif Library Reference

Document Processing Statements
Several types of statements are used to process, manipulate, or validate XML
documents:

• Export statements (XML EXPORT FILE and XML EXPORT TEXT) are
available to convert the content of a COBOL data item to an XML
document that may be represented as an external file or an internal text
string.

• Import statements (XML IMPORT FILE and XML IMPORT TEXT) are
available to convert the content of an XML document—either an external
file or an internal text string—to a COBOL data item.

• Test and validation statements (XML TEST WELLFORMED-FILE,
XML TEST WELLFORMED-TEXT, XML VALIDATE FILE, and
XML VALIDATE TEXT) are available to verify that an XML document—
either an external file or an internal text string—is well formed or valid.

• In addition, the XML TRANSFORM FILE statement is provided to create
an XML document (as an external file) using a style sheet (also an external
file). This statement also may be used to generate files that are not XML
documents, such as HTML, PDF, RTF files, and so forth.

XML EXPORT FILE
This statement has the following parameters:

Parameter Description
DataItem The name of a COBOL data item that contains data to be

exported.
DocumentName The name of a file that will receive the exported XML

document.
ModelFileName The name of the set of XML files produced by the

cobtoxml utility that describe the COBOL data item. For
more information, see “Model Files” on page 24 in
Chapter 2: Getting Started with XML Toolkit.

[StyleSheetName] Optional. The name of a style sheet that will be used to
transform the generated XML document before it is
stored.

 Document Processing Statements

 XML Toolkit for RM/COBOL 63

Description
The XML EXPORT FILE statement exports the content of the COBOL data
item indicated by the DataItem parameter. The content of the data item is
converted to an XML document using one or more files indicated by the
ModelFileName parameter and then output to the file specified by the
DocumentName parameter. If the optional StyleSheetName parameter is present,
the style sheet is used to transform the document after it has been generated but
before it is stored in the data file.

A status value is returned in the XML-data-group data item, which is
defined in the copy file, lixmldef.cpy.

Examples
Without a Style Sheet:

XML EXPORT FILE
 MY-DATA-ITEM
 "MY-DOCUMENT"
 "MY-MODEL-FILE".
IF NOT XML-OK GO TO Z.

With a Style Sheet:

XML EXPORT FILE
 MY-DATA-ITEM
 "MY-DOCUMENT.XML"
 "MY-MODEL-FILE"
 "MY-STYLE-SHEET"
IF NOT XML-OK GO TO Z.

 Document Processing Statements

64 Chapter 6: xmlif Library Reference

XML EXPORT TEXT
This statement has the following parameters:

Parameter Description
DataItem The name of the COBOL data item that contains data to

be exported.
DocumentPointer The name of a COBOL pointer data item that will point

to the generated XML document as a text string after
successful completion of the statement.

ModelFileName The name of the set of XML files produced by the
cobtoxml utility that describe the COBOL data item. For
more information, see “Model Files” on page 24 in
Chapter 2: Getting Started with XML Toolkit.

[StyleSheetName] Optional. The name of a style sheet that will be used to
transform the generated XML document before it is
stored.

Description
The XML EXPORT TEXT statement exports the content of the COBOL data
item indicated by the DataItem parameter. The content of the data item is
converted to an XML document using one or more files indicated by the
ModelFileName parameter and then output as a text string. The address of the
text string is placed in the COBOL pointer data item parameter specified by
DocumentPointer. If the optional StyleSheetName parameter is present, the style
sheet is used to transform the document after it has been generated but before it
is stored as a text string.

A block of memory is allocated to hold the generated XML document. The
descriptor of this memory block overrides any existing address descriptor in the
COBOL pointer data item. The COBOL application is responsible for releasing
this memory when it is no longer needed by using the XML FREE TEXT
statement (see page 72).

A status value is returned in the XML-data-group data item, which is
defined in the copy file, lixmldef.cpy.

 Document Processing Statements

 XML Toolkit for RM/COBOL 65

Examples
Without a Style Sheet:

XML EXPORT TEXT
 MY-DATA-ITEM
 MY-DOCUMENT-POINTER
 "MY-MODEL-FILE".
IF NOT XML-OK GO TO Z.

With a Style Sheet:

XML EXPORT TEXT
 MY-DATA-ITEM
 MY-DOCUMENT-POINTER
 "MY-MODEL-FILE"
 "MY-STYLE-SHEET"
IF NOT XML-OK GO TO Z.

XML IMPORT FILE
This statement has the following parameters:%

Parameter Description
DataItem The name of the COBOL data item that is to receive the

imported data.
DocumentName The name of the file that contains the XML document to

be imported.
ModelFileName The name of the set of XML files produced by the

cobtoxml utility that describe the COBOL data item. For
more information, see “Model Files” on page 24 in
Chapter 2: Getting Started with XML Toolkit.

[StyleSheetName] Optional. The name of a style sheet that will be used to
transform the imported XML document before it is stored
in the data item.

Description
The XML IMPORT FILE statement imports the content of the file indicated by
the DocumentName parameter. If the optional StyleSheetName is present, the
style sheet is first used to transform the document. The content of the XML
document is converted to COBOL format using one or more files specified by
the ModelFileName parameter and stored in the data item specified by the
DataItem parameter.

 Document Processing Statements

66 Chapter 6: xmlif Library Reference

A status value is returned in the XML-data-group data item, which is
defined in the copy file, lixmldef.cpy.

Examples
Without a Style Sheet:

XML IMPORT FILE
 MY-DATA-ITEM
 "MY-DOCUMENT"
 "MY-MODEL-FILE".
IF NOT XML-OK GO TO Z.

With a Style Sheet:

XML IMPORT FILE
 MY-DATA-ITEM
 "MY-DOCUMENT.XML"
 "MY-MODEL-FILE"
 "MY-STYLE-SHEET"
IF NOT XML-OK GO TO Z.

XML IMPORT TEXT
This statement has the following parameters:

Parameter Description
DataItem The name of the COBOL data item that is to receive the

imported data.
DocumentPointer The name of a COBOL pointer data item that points to an

XML document that is stored in memory as a text string.
ModelFileName The name of the set of XML files produced by the

cobtoxml utility that describe the COBOL data item. For
more information, see “Model Files” on page 24 in
Chapter 2: Getting Started with XML Toolkit.

[StyleSheetName] Optional. The name of a style sheet that will be used to
transform the imported XML document before it is stored
in the data item.

 Document Processing Statements

 XML Toolkit for RM/COBOL 67

Description
The XML IMPORT TEXT statement imports the content of the text string
indicated by the DocumentPointer parameter. If the optional StyleSheetName is
present, the style sheet is used to transform the document before being converted
to COBOL data format. The content of the XML document is converted to
COBOL format using one or more files specified by the ModelFileName
parameter and stored in the data item specified by the DataItem parameter.

A status value is returned in the data item XML-data-group, which is
defined in the copy file, lixmldef.cpy.

Examples
Without a Style Sheet:

XML IMPORT TEXT
 MY-DATA-ITEM
 MY-DOCUMENT-POINTER
 "MY-MODEL-FILE".
IF NOT XML-OK GO TO Z.

With a Style Sheet:

XML IMPORT TEXT
 MY-DATA-ITEM
 MY-DOCUMENT-POINTER
 "MY-MODEL-FILE"
 "MY-STYLE-SHEET"
IF NOT XML-OK GO TO Z.

XML TEST WELLFORMED-FILE
This statement has the following parameters:

Parameter Description
DocumentName The name of the file that contains the XML document to

be tested.

 Document Processing Statements

68 Chapter 6: xmlif Library Reference

Description
The XML TEST WELLFORMED-FILE statement tests the XML document
specified by the DocumentName parameter to see if it is well formed. However,
the content of the document may or may not be valid.

A well-formed XML document is one that conforms to XML syntax rules. A
valid XML document has content that conforms to rules specified by an XML
schema file.

A status value is returned in the XML-data-group data item, which is
defined in the copy file, lixmldef.cpy.

Example

XML TEST WELLFORMED-FILE
 "MY-DOCUMENT".
IF NOT XML-OK GO TO Z.

XML TEST WELLFORMED-TEXT
This statement has the following parameters:

Parameter Description
DocumentPointer The name of a COBOL pointer data item that points to an

XML document that is stored in memory as a text string.

Description
The XML TEST WELLFORMED-TEXT statement tests the XML document
specified by the DocumentPointer parameter to see if it is well formed.
However, the content of the document may or may not be valid.

A well-formed XML document is one that conforms to XML syntax rules. A
valid XML document has content that conforms to rules specified by an XML
schema file.

A status value is returned in the XML-data-group data item, which is
defined in the copy file, lixmldef.cpy.

 Document Processing Statements

 XML Toolkit for RM/COBOL 69

Example

XML TEST WELLFORMED-TEXT
 "MY-DOCUMENT".
IF NOT XML-OK GO TO Z.

XML TRANSFORM FILE
This statement has the following parameters:

Parameter Description
InputDocumentName The filename of the document to transform (the input

document).
StyleSheetName The filename of the style sheet used for the

transformation.
OutputDocumentName The filename of the transformed document (the output

document).

Description
The XML TRANSFORM FILE statement transforms the XML document
specified by the InputDocumentName parameter using the style sheet specified
by the StyleSheetName parameter into a new document specified by the
OutputDocumentName parameter. The new document may or may not be an
XML document depending on the style sheet.

A status value is returned in the XML-data-group data item, which is
defined in the copy file, lixmldef.cpy.

Example

XML TRANSFORM FILE
 "MY-IN-DOCUMENT"
 "MY-STYLESHEET"
 "MY-OUT-DOCUMENT.
IF NOT XML-OK GO TO Z.

 Document Processing Statements

70 Chapter 6: xmlif Library Reference

XML VALIDATE FILE
This statement has the following parameters:

Parameter Description
DocumentName The name of the file that contains the XML document to

be tested.
SchemaName The name of the schema file that will be used to validate

the XML document specified in DocumentName.

Description
The XML VALIDATE FILE statement tests the XML document specified by
the DocumentName parameter to see if it is well formed and valid.

A well-formed XML document is one that conforms to XML syntax rules. A
valid XML document has content that conforms to rules specified by an XML
schema file.

A status value is returned in the XML-data-group data item, which is
defined in the copy file, lixmldef.cpy.

Example

XML VALIDATE FILE
 "MY-DOCUMENT"
 "MY-SCHEMA".
IF NOT XML-OK GO TO Z.

 Document Processing Statements

 XML Toolkit for RM/COBOL 71

XML VALIDATE TEXT
This statement has the following parameters:

Parameter Description
DocumentPointer The name of a COBOL pointer data item that points to an

XML document that is stored in memory as a text string.
SchemaName The name of the schema file that will be used to validate

the XML document specified in DocumentPointer.

Description
The XML VALIDATE TEXT statement tests the XML document specified by
the DocumentPointer parameter to see if it is well formed and valid.

A well-formed XML document is one that conforms to XML syntax rules. A
valid XML document has content that conforms to rules specified by an XML
schema.

A status value is returned in the XML-data-group data item, which is
defined in the copy file, lixmldef.cpy.

Example

XML VALIDATE TEXT
 "MY-DOCUMENT"
 "MY-SCHEMA".
IF NOT XML-OK GO TO Z.

 Document Processing Statements

72 Chapter 6: xmlif Library Reference

Document Management Statements
A number of statements are available to copy an XML document from an
external file to an internal text string and vice versa. These statements
include XML FREE TEXT, XML GET TEXT, XML PUT TEXT, and XML
REMOVE FILE.

XML FREE TEXT
This statement has the following parameter:

Parameter Description
DocumentPointer The name of a COBOL pointer data item that points to an

XML document.

Description
The XML FREE TEXT statement releases the COBOL memory referred to by
the COBOL pointer data item specified by the DocumentPointer parameter.

Example

XML FREE TEXT
 MY-POINTER
IF NOT XML-OK GO TO Z.

 Document Management Statements

 XML Toolkit for RM/COBOL 73

XML GET TEXT
This statement has the following parameters:

Parameter Description
DocumentPointer The COBOL pointer data item that will point to the in-

memory text after successful completion of the
statement.

DocumentName The filename of XML document containing the text to
load into memory.

Description
The XML GET TEXT statement copies the content of an XML document from
the file specified by the DocumentName parameter to COBOL memory. A
block of memory is allocated to contain the document. The address and size of
the memory block are returned in the DocumentPointer parameter.

When the program has finished using the in-memory document, a call to XML
FREE TEXT (see page 72) should be made to release the allocated memory.

A status value is returned in the XML-data-group data item, which is
defined in the copy file, lixmldef.cpy.

Example

XML GET TEXT
 MY-POINTER
 "MY-DOCUMENT".
IF NOT XML-OK GO TO Z.

XML PUT TEXT
This statement has the following parameters:

Parameter Description
DocumentPointer The COBOL pointer data item that points to the in-

memory text.
DocumentName The filename that will contain the XML document upon

successful completion of the statement.

 Document Management Statements

74 Chapter 6: xmlif Library Reference

Description
The XML PUT TEXT statement copies the content of the in-memory XML
document specified by the DocumentPointer parameter to the external file
specified by the DocumentName parameter.

A status value is returned in the XML-data-group data item, which is
defined in the copy file, lixmldef.cpy.

Example

XML PUT TEXT
 MY-POINTER
 "MY-DOCUMENT".
IF NOT XML-OK GO TO Z.

XML REMOVE FILE
This statement has the following parameter.

Parameter Description
FileName The name of file to be removed.

Description
The XML REMOVE FILE statement deletes the file specified by the FileName
parameter. If the specified filename does not contain an extension, then .xml is
appended to the name. If the file does not exist, no error is returned.

A status value is returned in the XML-data-group data item, which is
defined in the copy file, lixmldef.cpy.

Example

XML REMOVE FILE
 MY-FILE-NAME.
IF NOT XML-OK GO TO Z.

 Document Management Statements

 XML Toolkit for RM/COBOL 75

Directory Management Statements
This section describes the statements that are useful when implementing
directory-polling schemes: XML FIND FILE and XML GET UNIQUEID.

Directory polling (as related to XML documents) is a technique that two or
more independent processes can use to pass XML documents between
processes. One or more writer processes may place XML documents in a well-
known directory (a well-known directory is a directory name that is known to all
of the interested processes). Each XML document must be given a unique
name. A reader process finds, processes and removes XML documents from the
same well-known directory.

Directory polling is a technique that may be used to communicate with
Microsoft’s BizTalk server and other message-driven communications systems.
It is a technique that also may be used between various RM/COBOL
applications.

The RM/COBOL runtime is not scalable in the traditional sense; however,
scalability can be achieved by using multiple RM/COBOL runtime systems
(preferably running on separate hardware platforms) on the same local area
network (LAN). Each of these separate runtime systems can use directory
polling (to a directory that is available on the network) as a means of improving
throughput.

It is not feasible to use multiple reader processes on the same directory because
the XML FIND FILE statement, invoked from separate processes, could find the
same file. A sample C language program (DirSplit) is provided that will poll a
single directory and distribute files to subdirectories as they arrive. This will
allow separate COBOL programs each to process a separate subdirectory.

Note Problems have been encountered on Windows systems running the older
FAT32 file system. These systems include Windows 98 and Windows Me.

When a program is adding XML document files to a directory
concurrently with another program that is moving XML document files to
different directory using the C library function rename or the Windows API
function MoveFile, it is possible for the wrong file to be moved or for the file to
be moved to the wrong location. This failure can occur without the participation
of the XML Toolkit.

When a large number of XML document files are written to a directory
by the XML Toolkit (using the XML EXPORT FILE statement described on
page 62), it is possible that files will not be placed in the directory and no error
will be returned by the operating system either to the XML Toolkit or to the
program issuing the statement. It appears that the FAT32 file system may be

 Directory Management Statements

76 Chapter 6: xmlif Library Reference

limited to 65,535 files per directory (at least under certain conditions).
Furthermore, if long filenames are used, multiple directory entries may be
needed for each filename, further reducing the number of files per directory.

For these reasons, Liant recommends that directory polling be used only
on Windows NT-based systems (that is, those running NTFS). These NT-based
systems include Windows NT, Windows 2000, and Windows XP. However,
these NT-based systems also could be configured to run the older FAT32 file
system.

XML FIND FILE
This statement has the following parameters:

Parameter Description
DirectoryName The name of the directory to check for XML documents

(files ending with the .xml extension).
FileName The name of one XML document (file ending with the

.xml extension) that was found in the specified directory.

Description
The XML FIND FILE statement looks in the directory specified by the
DirectoryName parameter for an XML document (a file with the .xml
extension). If there are one or more XML documents in the specified directory,
the name of one of the files will be returned in the filename parameter.

If the statement succeeds (the condition XML-IsSuccess is true), the XML
document specified by the FileName parameter may be processed by using the
XML IMPORT FILE statement (see page 65).

Before calling the XML FIND FILE statement again (to process the next file),
the statement XML REMOVE FILE (see page 74) should be called to delete the
XML document that was just processed. Otherwise, the next call to the XML
FIND FILE statement may return the same file.

A status value is returned in the XML-data-group data item, which
is defined in the copy file, lixmldef.cpy. The condition XML-
IsDirectoryEmpty will be true if the directory is empty.

 Directory Management Statements

 XML Toolkit for RM/COBOL 77

Example

FIND-DOCUMENT.
 PERFORM WITH TEST AFTER UNTIL 0 > 1
 XML FIND FILE
 "MY-DIRECTORY"
 MY-FILE-NAME
 IF XML-IsSuccess
 EXIT PERFORM
 END-IF
 IF XML-IsDirectoryEmpty
 CALL "C$DELAY" USING 0.1
 END-IF
 IF NOT XML-OK GO TO Z.
 END-PERFORM
*> Process found document

XML GET UNIQUEID
This statement has the following parameter:

Parameter Description
UniqueID The unique value returned by this statement is a string

representation of a UUID (Universal Unique Identifier).
The string is a series of hexadecimal digits with
embedded hyphen characters. The string is enclosed in
brace characters ({ and }). The entire string is 38
characters in length.

Description
The XML GET UNIQUEID statement generates a unique identifier that may be
used to form a unique filename. Please note that the return value might not
contain any alphabetic characters. Therefore, it would be a good programming
practice to add an alphabetic character to the name for those systems where
filenames require at least one alphabetic character (see the following example).

This statement may be used in conjunction with the COBOL STRING statement
to generate a unique filename.

A status value is returned in the XML-data-group data item, which is
defined in the copy file, lixmldef.cpy.

 Directory Management Statements

78 Chapter 6: xmlif Library Reference

Example

MOVE SPACES TO MY-FILE-NAME.
XML GET UNIQUEID
 MY-UNIQUEID.
IF NOT XML-OK GO TO Z.
STRING "mydir\a" DELIMITED BY SIZE
 MY-UNIQUEID DELIMITED BY SPACE
 ".xml" DELIMITED BY SIZE
 INTO MY-FILE-NAME.

State Management Statements
Several states or conditions of the xmlif library are controlled by calls to the
following XML statements:

• Initialization and termination. Before issuing a call to any other xmlif
library statement, the XML INITIALIZE statement (see page 80) must be
called. Similarly, the XML TERMINATE statement (see page 80) must be
called when the COBOL application is finished using the xmlif library.

• Empty array occurrences. As an optimization, trailing “empty” occurrences
of arrays are normally not generated by the statements, XML EXPORT
FILE or XML EXPORT TEXT (see pages 62 and 64, respectively).

An empty occurrence of an array is defined to be one where the numeric
items have a zero value and the nonnumeric items have a value equivalent
to all spaces. This is the default state and is equivalent to calling the XML
DISABLE ALL-OCCURRENCES statement (see page 81). It is possible
to force all occurrences to be output by calling the XML ENABLE ALL-
OCCURRENCES statement (see page 82).

• COBOL attributes. For each element generated by the statements, XML
EXPORT FILE or XML EXPORT TEXT (see pages 62 and 64,
respectively), there is a series of COBOL attributes that describe that
element.

The default state is not to output these attributes. However, it is sometimes
necessary for a following activity (such as a style sheet transformation) to
have access to these attributes (specifically, length and subscript are often
interesting to a follow-on activity). Using the XML DISABLE
ATTRIBUTES statement (see page 82) does not allow attributes to be
written (this is the default). Using the XML ENABLE ATTRIBUTES
statement (see page 83) forces these attributes to be written.

 State Management Statements

 XML Toolkit for RM/COBOL 79

• Document caching. Some XML documents such as style sheets and the
model files (the XML template file, internal style sheet, and schema files)
are normally considered to be static. That is, they are generated when the
application is developed and are not modified until the application is
modified.

As a performance optimization, when the xmlif library loads a style sheet or
model file it is cached (retained in memory) for an indefinite period of time.
This is the default behavior. Files in the cache may be flushed from
memory if the cache is full and an additional style sheet or model file is
required for the current operation.

If style sheets are being generated dynamically, caching may be selectively
enabled or disabled. Executing the XML ENABLE CACHE statement
(see page 84), which is the default behavior, enables caching of style sheets
and model files. Executing the XML DISABLE CACHE statement (see
page 83) forces style sheets and model files to be loaded each time they are
referenced. Executing the XML FLUSH CACHE statement (see page 84)
flushes all style sheets and model files from memory without changing the
state of caching (that is, if caching was enabled it remains enabled).
Executing any of the following statements causes the contents of the cache
to be flushed: XML INITIALIZE, XML ENABLE CACHE, XML
DISABLE CACHE, XML FLUSH CACHE, and XML TERMINATE.

• CodeBridge flags. The data conversions performed by the statements,
XML EXPORT FILE, XML EXPORT TEXT, XML IMPORT FILE, and
XML IMPORT TEXT (see pages 62 through 66), use the CodeBridge
library (which is built into the RM/COBOL runtime) to perform these
conversions. By default, the following CodeBridge flags are set:
PF_TRAILING_SPACES, PF_LEADING_SPACES,
PF_LEADING_MINUS, and PF_ROUNDED.

The XML SET FLAGS statement (see page 86) is available to alter these
defaults. Refer to the CodeBridge manual for a more complete presentation
of the CodeBridge conversion library.

 State Management Statements

80 Chapter 6: xmlif Library Reference

XML INITIALIZE
This statement has no parameters.

Description
The XML INITIALIZE statement opens a session with the xmlif library. It
ensures that the RM/COBOL runtime is the required version (7.5 or greater) and
retrieves required information from the runtime system. RM/COBOL runtime
version 7.5 or greater is required because information needed by the xmlif
library is not available in prior runtime versions. The underlying XML parser is
initialized.

A status value is returned in the data item XML-data-group, which is
defined in the copy file, lixmldef.cpy. Errors can occur if the library is already
initialized, the RM/COBOL runtime version is not 7.5 or greater, or the
underlying XML parser initialization fails.

Example

XML INITIALIZE.
IF NOT XML-OK GO TO Z.

XML TERMINATE
This statement has no parameters.

Description
The XML TERMINATE statement closes a session with the xmlif library. The
interface to the underlying XML parser is closed. Any memory blocks that were
allocated by the xmlif library are freed.

A status value is returned in the data item XML-data-group, which is
defined in the copy file, lixmldef.cpy. Errors can occur if the library is not
currently initialized, the calls to free memory fail, or the underlying XML parser
termination fails.

 State Management Statements

 XML Toolkit for RM/COBOL 81

Example

XML TERMINATE.
IF NOT XML-OK GO TO Z.

XML DISABLE ALL-OCCURRENCES
This statement has no parameters.

Description
The XML DISABLE ALL-OCCURRENCES statement causes unnecessary
empty array occurrences not to be generated by the statements, XML EXPORT
FILE and XML EXPORT TEXT (see pages 62 and 64, respectively). An empty
array is one in which all numeric elements have a zero value and all nonnumeric
elements have a value of all spaces.

There is some interoperation with the statements, XML DISABLE
ATTRIBUTES and XML ENABLE ATTRIBUTES (see pages 82 and 83,
respectively). If attributes are enabled (XML ENABLE ATTRIBUTES has
been called), then all empty occurrences are not generated. If attributes are
disabled (the default state or if the XML DISABLE ATTRIBUTES statement
has been used), then all trailing empty occurrences are not generated. If
attributes are enabled, then the subscript is present and so leading, or
intermediate, empty occurrences are not needed as placeholders to ensure that
the correct subscript is calculated.

A status value is returned in the data item XML-data-group, which is
defined in the copy file, lixmldef.cpy.

Example

XML DISABLE ALL-OCCURRENCES.
IF NOT XML-OK GO TO Z.

 State Management Statements

82 Chapter 6: xmlif Library Reference

XML ENABLE ALL-OCCURRENCES
This statement has no parameters.

Description
The XML ENABLE ALL-OCCURRENCES statement causes all occurrence of
an array to be generated by the statements, XML EXPORT FILE and XML
EXPORT TEXT (see pages 62 and 64, respectively), regardless of the content of
the array.

All occurrences of an array are generated regardless of whether attributes are
enabled or disabled.

A status value is returned in the data item XML-data-group, which is
defined in the copy file, lixmldef.cpy.

Example

XML ENABLE ALL-OCCURRENCES.
IF NOT XML-OK GO TO Z.

XML DISABLE ATTRIBUTES
This statement has no parameters.

Description
The XML DISABLE ATTRIBUTES statement causes the COBOL attributes of
an XML element to be omitted from an exported XML document. This is the
default state.

A status value is returned in the data item XML-data-group, which is
defined in the copy file, lixmldef.cpy.

Example

XML DISABLE ATTRIBUTES.
IF NOT XML-OK GO TO Z.

 State Management Statements

 XML Toolkit for RM/COBOL 83

XML ENABLE ATTRIBUTES
This statement has no parameters.

Description
The XML ENABLE ATTRIBUTES statement causes the COBOL attributes of
an XML element to be generated in an exported XML document

Some of the COBOL attributes (such as length and subscript) may be useful to
an external style sheet.

A status value is returned in the data item XML-data-group, which is
defined in the copy file, lixmldef.cpy.

Example

XML ENABLE ATTRIBUTES.
IF NOT XML-OK GO TO Z.

XML DISABLE CACHE
This statement has no parameters.

Description
The XML DISABLE CACHE statement disables the caching of XML style
sheets and model files.

A status value is returned in the data item XML-data-group, which is
defined in the copy file, lixmldef.cpy.

Example

XML DISABLE CACHE.
IF NOT XML-OK GO TO Z.

 State Management Statements

84 Chapter 6: xmlif Library Reference

XML ENABLE CACHE
This statement has no parameters.

Description
The XML ENABLE CACHE statement enables the caching of XML style
sheets and model files.

A status value is returned in the data item XML-data-group, which is
defined in the copy file, lixmldef.cpy.

Example

XML ENABLE CACHE.
IF NOT XML-OK GO TO Z.

XML FLUSH CACHE
This statement has no parameters.

Description
The XML FLUSH CACHE statement flushes the cache of XML style sheets and
model files.

A status value is returned in the data item XML-data-group, which is
defined in the copy file, lixmldef.cpy.

Example

XML FLUSH CACHE.
IF NOT XML-OK GO TO Z.

 State Management Statements

 XML Toolkit for RM/COBOL 85

XML GET STATUS-TEXT
This statement has no named parameters.

Description
A non-successful termination of an XML statement may cause one or more lines
of descriptive text to be placed in a queue. The XML GET STATUS TEXT
statement fetches the next line of descriptive text.

A status value is returned in the data item XML-data-group, which is
defined in the copy file, lixmldef.cpy. The following condition names are also
described in this copy file:

• XML-IsSuccess. A successful completion occurred (no informative,
warning, or error messages).

• XML-OK. An OK (or satisfactory) completion occurred, including
informative or warning messages.

• XML-IsDirectoryEmpty. An informative status indicating that the
XML FIND FILE statement found no XML documents in the indicated
directory.

An example of processing the status information in this item is found below and
in the copy file, lixmldsp.cpy.

Example

Display-Status.
 If Not XML-IsSuccess
 Perform With Test After Until XML-NoMore
 XML GET STATUS-TEXT
 Display XML-StatusText
 End-Perform
 End-If.

 State Management Statements

86 Chapter 6: xmlif Library Reference

XML SET FLAGS
The statement has the following parameter:

Parameter Description
Flags A numeric value that represents one or more flags.

These flags are a subset of the flags defined for
CodeBridge.

Description
The XML SET FLAGS statement sets some flag values that are used for internal
data conversion. Valid flag values are specified in the copy file, lixmldef.cpy.
The default flag setting is the OR of the following values: PF-Leading-Spaces,
PF-Trailing-Spaces, PF-Leading-Minus and PF-Rounded.

A status value is returned in the data item XML-data-group, which is
defined in the copy file, lixmldef.cpy.

Example

XML SET FLAGS
 MY-FLAGS.
IF NOT XML-OK GO TO Z.

 State Management Statements

 XML Toolkit for RM/COBOL 87

Appendix A: XML Toolkit
Examples

This appendix contains a collection of programs or program fragments that
illustrate how xmlif library statements are used. These examples are tutorial in
nature and offer useful techniques to help you become familiar with the basics
of using the XML Toolkit for RM/COBOL. More examples can be found in the
XML Toolkit examples directory (Examples).

Note You will find it instructive to examine these examples first before
referring to Appendix B: XML Toolkit Sample Application Programs, which
describes how to use and access the more complete sample application programs
that are included with the XML Toolkit development system.

The following example programs are provided in this appendix. Additionally,
three batch files are provided to facilitate use of the example programs (see
page 190).

• Example 1: Export File and Import File

• Example 2: Export File and Import File with Style Sheets

• Example 3: Export File and Import File with OCCURS DEPENDING

• Example 4: Export File and Import File with Sparse Arrays

• Example 5: Export Text and Import Text

• Example 6: Export File and Import File with Directory Polling

• Example 7: Export File, Test Well Formed File, and Validate File

• Example 8: Export Text, Test Well Formed Text, and Validate Text

• Example 9: Export File, Transform File, and Import File

• Example A: Well Formed and Validate Diagnostic Messages

• Example B: Import File with Missing Intermediate Parent Names

 State Management Statements

88 Appendix A: XML Toolkit Examples

Example 1: Export File and Import File
This program first writes (or exports) an XML document file from the contents
of a COBOL data item. Then the program reads (or imports) the same XML
document and places the contents in the same COBOL data item.

This example uses the following XML statements (for more information about
the xmlif library, see Chapter 6: xmlif Library Reference):

• XML INITIALIZE (page 80). The XML INITIALIZE statement initializes
or opens a session with the xmlif library.

• XML EXPORT FILE (page 62). The XML EXPORT FILE statement
constructs an XML document (as a file) from the contents of a COBOL data
item.

• XML IMPORT FILE(page 65). The XML IMPORT FILE statement reads
an XML document (from a file) into a COBOL data item.

• XML TERMINATE (page 80). The XML TERMINATE statement
terminates or closes the session with the xmlif library.

Development
The COBOL program must be compiled with the RM/COBOL compiler, and the
output symbol table option (Y Compile Command Option) must be enabled.

After each successful compilation, it is necessary to run the cobtoxml utility
program to generate a set of model files that are used by the XML IMPORT and
XML EXPORT statements. For more information on model files, see “Model
Files” in Chapter 2: Getting Started with XML Toolkit. For more information
on the cobtoxml utility, see Chapter 5: cobtoxml Utility Reference.

After the successful execution of the cobtoxml utility, you may then execute the
COBOL program. The xmlif library may be specified either by entering it on
the command line (for example, runcobol myprog l=“some\path\xmlif”) or by
placing the xmlif library in the rmautold directory (this is normally a
subdirectory of the RM/COBOL installation directory).

Once the program is tested, you may choose to delete the symbol table
information from the COBOL object file by using the RM/COBOL Combine
Program Utility, rmpgmcom.

 Example 1: Export File and Import File

 XML Toolkit for RM/COBOL 89

Batch File
The following DOS commands may be entered into a batch file. These
commands build and execute example1.cob.

Line Statement
1 rmcobol example1 y

2 cobtoxml example1 Liant-Address

3 move /y example1.cob tmp.cob

4 start /w runcobol rmpgmcom A='STRIP,example1.cob,tmp.cob'

5 del tmp.cob

6 start /w runcobol example1 k

Line 1 compiles the example1.cbl source file with the symbol table option (Y)
enabled.

Line 2 builds the XML model files from the symbol table information in the
symbol table. By default, the model filenames are the same as the object
filename with different extensions (in this instance, the example 1 object
filename is example1.cob, and the model filenames are example1.xml,
example1.xtl, example1.xsl, and example1.xsd).

Lines 3, 4, and 5 are optional. They strip the symbol table from the example 1
object file, example1.cob. In order to reduce the size of the deployed object
files, developers may chose to remove the symbol table from the COBOL object
file before distributing their applications. The RM/COBOL Combine Program
Utility, rmpgmcom, which is shipped with the RM/COBOL development
system, is used for this purpose.

Line 6 executes example1.cob. The K Option “kills” the runtime banner. On
line 6, the start /w sequence is included only as good programming
practice.

Note On Windows, the RM/COBOL runtime (runcobol) is a Windows
application that opens a separate window when executed from DOS. The
start /w part of the DOS command in line 4 instructs Windows to start the
runtime and then wait (the /w Option) for its completion. If this step were
omitted, line 5 could execute before the runtime completed, which could cause
the input file (tmp.cob) passed to rmpgmcom to be deleted before it had been
completely read.

 Example 1: Export File and Import File

90 Appendix A: XML Toolkit Examples

Program Description
This COBOL program illustrates how an XML document is generated from a
COBOL data item, and then how the contents of an XML document may be
converted into COBOL data format and stored in a COBOL data item.

Before any other XML statement may be executed, the XML INITIALIZE
statement must be successfully executed. It is possible for XML INITIALIZE to
fail; therefore, the return status must be checked before continuing.

Data is exported from the data item Liant-Address (as defined in the copy
file, liant.cpy) to an XML document with the filename of liant1.xml using the
XML EXPORT FILE statement.

Next, the contents of the XML document are imported from the file, liant1.xml,
and placed in the same data item using the XML IMPORT FILE statement.

Finally, the XML interface is terminated with the XML TERMINATE
statement.

If any of the statements terminate unsuccessfully, the XML GET STATUS-
TEXT statement is called.

Data Item
The contents of the data item defined in the copy file, liant.cpy, are as follows:

01 Liant-Address.
 02 Name Pic X(64) Value "Liant Software Corporation".
 02 Address-1 Pic X(64) Value "8911 Capital of Texas Highway North".
 02 Address-2 Pic X(64) Value "Suite 4300".
 02 Address-3.
 03 City Pic X(32) Value "Austin".
 03 State Pic X(2) Value "TX".
 03 Zip Pic 9(5) Value 78759.
 02 Time-Stamp Pic 9(8).

This data item stores company address information (in this case, Liant’s). The
last field of the item is a time stamp containing the time that the program was
executed. This item is included to assure the person observing the execution of
the example that the results are current. The time element in the generated XML
document should change each time the example is run and should also contain
the current time.

 Example 1: Export File and Import File

 XML Toolkit for RM/COBOL 91

Other Definitions
The copy file, lixmlall.cpy, should be included in the Working-Storage Section
of the program.

The copy file, lixmldef.cpy, which is copied in by lixmlall.cpy, defines a data
item named XML-data-group. The contents of this data item are as follows:

01 XML-data-group.
 03 XML-Status PIC 9(4).
 88 XML-IsSuccess VALUE XML-Success.
 88 XML-OK VALUE XML-Success
 THROUGH XML-StatusNonFatal.
 88 XML-IsDirectoryEmpty
 VALUE XML-InformDirectoryEmpty.
 03 XML-StatusText PIC X(80).
 03 XML-MoreFlag PIC 9 BINARY(1).
 88 XML-NoMore VALUE 0.
 03 XML-UniqueID PIC X(40).
 03 XML-Flags PIC 9(10) BINARY(4).

Various XML statements may access one of more fields of this item.
For example, the XML EXPORT FILE statement returns a value in the
XML-Status field. The XML GET STATUS-TEXT statement accesses
the XML-StatusText and XML-MoreFlag fields.

Program Structure
The following tables show COBOL statements that relate to performing XML
Toolkit statements. Some COBOL statements (mostly the DISPLAY
statements) have been omitted. The source of this example is in the file,
example1.cbl.

 Example 1: Export File and Import File

92 Appendix A: XML Toolkit Examples

Initialization

COBOL Statement Description

XML INITIALIZE. Execute the XML INITIALIZE statement (no parameters).
If Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the

termination logic.

Exporting an XML Document

COBOL Statement Description

Accept Time-Stamp From Time. Populate the Time-Stamp field.
XML EXPORT FILE
 Liant-Address
 "Liant1"
 "Example1".

Execute the XML EXPORT FILE statement specifying:
 the data item address,
 the XML document filename,
 and the model filename.

If Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the
termination logic.

Importing an XML Document

COBOL Statement Description

Move Spaces to Liant-Address. Ensure that the Liant-Address item contains no data.
XML IMPORT FILE
 Liant-Address
 "Liant1"
 "Example1".

Execute the XML IMPORT FILE statement specifying:
 the data item address,
 the XML document filename,
 and the model filename.

If Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the
termination logic.

 Example 1: Export File and Import File

 XML Toolkit for RM/COBOL 93

Program Exit Logic

COBOL Statement Description

Z. Paragraph-name that is a target of error condition GO TO
statements.

 Copy "lixmltrm.cpy". Copy in the termination test logic (see the “Termination Test
Logic” table).

 Stop Run. Terminate the COBOL program.
 Copy "lixmldsp.cpy". Copy in the status display logic (see the “Status Display

Logic” table).

Termination Test Logic
This code is found in the copy file, lixmltrm.cpy.

This code occurs after the paragraph-name Z, so that any error condition is
obtained here via a GO TO statement. If there are no errors, execution “falls
through” to these statements.

COBOL Statement Description

Display "Status: " XML-Status. Display the most recent return status value (if there are no
errors, this should display zero).

Perform Display-Status. Perform the Display-Status paragraph to display any error
messages.

XML TERMINATE. Terminate the XML interface.
Perform Display-Status. Perform the Display-Status paragraph again to display any

error encountered by the XML TERMINATE statement.

 Example 1: Export File and Import File

94 Appendix A: XML Toolkit Examples

Status Display Logic
This code is found in the copy file, lixmldsp.cpy.

This code is called twice by the termination test logic: the first time to report
any error condition that exists, and the second time to report an error (if one
occurs) from the XML TERMINATE statement. If there are no errors (the
condition XML-IsSuccess is true), this paragraph displays no information.

COBOL Statement Description

Display-Status. This is the paragraph-name.
 If Not XML-IsSuccess Do nothing if XML-IsSuccess is true.
 Perform
 With Test After
 Until XML-NoMore

Perform as long as there are status lines available to be
displayed (until XML-NoMore is true).

 XML GET STATUS-TEXT Get the next line of status information from the XML
interface.

 Display XML-StatusText Display the line that was just obtained.

 End-Perform End of the perform loop.
 End-If. End of the If statement and the paragraph.

Execution Results
The following sections display the output of the COBOL program that is run and
the XML document that is generated.

 Example 1: Export File and Import File

 XML Toolkit for RM/COBOL 95

COBOL Display
Running the program (runcobol example1) produces the following display.
Note that pressing a key will terminate the program.

Example-1 - Illustrate EXPORT FILE and IMPORT FILE
Liant1.xml exported by XML EXPORT FILE
Liant Software Corporation
8911 Capital of Texas Highway North
Suite 4300
Austin TX78759
16273191
Liant1.xml imported by XML IMPORT FILE
Liant Software Corporation
8911 Capital of Texas Highway North
Suite 4300
Austin TX78759
16273191

You may use IE to inspect 'Liant1.xml'

Status: 0000
Press a key to terminate:

XML Document
Microsoft Internet Explorer may be used to view the generated XML document,
liant1.xml. The contents of this document should appear as follows. (Note that
Internet Explorer will differentiate among the various syntactical elements of
XML by displaying them in different colors.)

<?xml version="1.0" encoding="UTF-8" ?>
<root>
 <liant-address>
 <name>Liant Software Corporation</name>
 <address-1>8911 Capital of Texas Highway North</address-1>
 <address-2>Suite 4300</address-2>
 <address-3>
 <city>Austin</city>
 <state>TX</state>
 <zip>78759</zip>
 </address-3>
 <time-stamp>16273191</time-stamp>
 </liant-address>
</root>

 Example 1: Export File and Import File

96 Appendix A: XML Toolkit Examples

Example 2: Export File and Import File with
Style Sheets

This program first writes (or exports) an XML document file from the contents
of a COBOL data item. Then the program reads (or imports) the same XML
document and places the contents in the same COBOL data item.

This example is almost identical to “Example 1: Export File and Import File”
(see page 88). However, an XSLT style sheet is used to transform the exported
document into a different format. Similarly, when the document is imported, a
different style sheet is used to reformat the document into the form that is
expected by COBOL. (See page 102 for more information on style sheets.)

This example uses the following XML statements:

• XML INITIALIZE (page 80). The XML INITIALIZE statement initializes
or opens a session with the xmlif library.

• XML EXPORT FILE (page 62). The XML EXPORT FILE statement
constructs an XML document (as a file) from the contents of a COBOL data
item.

• XML IMPORT FILE (page 65). The XML IMPORT FILE statement reads
an XML document (from a file) into a COBOL data item.

• XML TERMINATE (page 80). The XML TERMINATE statement
terminates or closes the session with the xmlif library.

Note The XML EXPORT FILE and XML IMPORT FILE statements each
contain an additional parameter: the name of the style sheet being used for the
transform.

Development
The COBOL program must be compiled with the RM/COBOL compiler, and the
output symbol table option (Y Compile Command Option) must be enabled.

After each successful compilation, it is necessary to run the cobtoxml utility
program to generate a set of model files that are used by the XML IMPORT and
XML EXPORT statements.

After the successful execution of the cobtoxml utility, you may then execute the
COBOL program. The xmlif library may be specified either by entering it on
the command line (for example, runcobol myprog l=“some\path\xmlif”) or by
placing the xmlif library in the rmautold directory (this is normally a
subdirectory of the RM/COBOL installation directory).

 Example 2: Export File and Import File with Style Sheets

 XML Toolkit for RM/COBOL 97

Once the program is tested, you may choose to delete the symbol table
information from the COBOL object file by using the RM/COBOL Combine
Program Utility, rmpgmcom.

Batch File
The following DOS commands may be entered into a batch file. These
commands build and execute example2.cob.

Line Statement
1 rmcobol example2 y

2 cobtoxml example2 Liant-Address

3 move /y example2.cob tmp.cob

4 start /w runcobol rmpgmcom A='STRIP,example2.cob,tmp.cob'

5 del tmp.cob

6 start /w runcobol example2 k

Line 1 compiles the example2.cbl source file with the symbol table option (Y)
enabled.

Line 2 builds the XML model files from the symbol table information in the
symbol table. By default, the model filenames are the same as the object
filename with different extensions (in this instance, the example 2 object
filename is example2.cob, and the model filenames are example2.xml,
example2.xtl, example2.xsl and example2.xsd).

Lines 3, 4, and 5 are optional. They strip the symbol table from the example 2
object file, example2.cob. In order to reduce the size of the deployed object
files, developers may chose to remove the symbol table from the COBOL object
file before distributing their applications. The RM/COBOL Combine Program
Utility, rmpgmcom, which is shipped with the RM/COBOL development
system, is used for this purpose.

Line 6 executes example2.cob. The K Option “kills” the runtime banner. On
line 6, the start /w sequence is included only as good programming
practice.

Note On Windows, the RM/COBOL runtime (runcobol) is a Windows
application that opens a separate window when executed from DOS. The
start /w part of the DOS command instructs Windows to start the runtime
and then wait (the /w Option) for its completion. This step is necessary in line 4.
If this step were omitted, line 5 could execute before the runtime completed,

 Example 2: Export File and Import File with Style Sheets

98 Appendix A: XML Toolkit Examples

which would cause the input file (tmp.cob) passed to rmpgmcom to be deleted
before it had been completely read.

Program Description
This COBOL program illustrates how an XML document is generated from a
COBOL data item, and then how the contents of an XML document may be
converted into COBOL data format and stored in a COBOL data item.

Before any other XML statement may be executed, the XML INITIALIZE
statement must be successfully executed. It is possible for XML INITIALIZE to
fail; therefore, the return status must be checked before continuing.

Data is exported from the data item Liant-Address (as defined in the copy
file, liant.cpy) to an XML document with the filename of liant2.xml using the
XML EXPORT FILE statement.

Next, the contents of the XML document are imported from the file, liant2.xml,
and placed in the same data item using the XML IMPORT FILE statement.

Finally, the XML interface is terminated with the XML TERMINATE
statement.

If any of the statements terminate unsuccessfully, the XML GET STATUS-
TEXT statement is called.

Data Item
The contents of the data item defined in the copy file, liant.cpy, are as follows:

01 Liant-Address.
 02 Name Pic X(64) Value "Liant Software Corporation".
 02 Address-1 Pic X(64) Value "8911 Capital of Texas Highway North".
 02 Address-2 Pic X(64) Value "Suite 4300".
 02 Address-3.
 03 City Pic X(32) Value "Austin".
 03 State Pic X(2) Value "TX".
 03 Zip Pic 9(5) Value 78759.
 02 Time-Stamp Pic 9(8).

This data item stores company address information (in this case, Liant’s). The
last field of the structure is a time stamp containing the time that the program
was executed. This item is included to assure the person observing the
execution of the example that the results are current. The time element in the

 Example 2: Export File and Import File with Style Sheets

 XML Toolkit for RM/COBOL 99

generated XML document should change each time the example is run and
should also contain the current time.

Other Definitions
The copy file, lixmlall.cpy, should be included in the Working-Storage Section
of the program.

The copy file, lixmldef.cpy, which is copied in by lixmlall.cpy, defines a data
item named XML-data-group. The contents of this data item are as follows:

01 XML-data-group.
 03 XML-Status PIC 9(4).
 88 XML-IsSuccess VALUE XML-Success.
 88 XML-OK VALUE XML-Success
 THROUGH XML-StatusNonFatal.
 88 XML-IsDirectoryEmpty
 VALUE XML-InformDirectoryEmpty.
 03 XML-StatusText PIC X(80).
 03 XML-MoreFlag PIC 9 BINARY(1).
 88 XML-NoMore VALUE 0.
 03 XML-UniqueID PIC X(40).
 03 XML-Flags PIC 9(10) BINARY(4).

Various XML statements may access one of more fields of this item.
For example, the XML EXPORT FILE statement returns a value in the
XML-Status field. The XML GET STATUS-TEXT statement accesses
the XML-StatusText and XML-MoreFlag fields.

Program Structure
The following tables show COBOL statements that relate to performing XML
Toolkit statements. Some COBOL statements (mostly the DISPLAY
statements) have been omitted. The source of this example is in the file,
example2.cbl.

Initialization

COBOL Statement Description

XML INITIALIZE. Execute the XML INITIALIZE statement (no parameters).
If Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the

termination logic.

 Example 2: Export File and Import File with Style Sheets

100 Appendix A: XML Toolkit Examples

Exporting an XML Document

COBOL Statement Description

Accept Time-Stamp From Time. Populate the Time-Stamp field.
XML EXPORT FILE
 Liant-Address
 "Liant2"
 "Example2"
 toExt.

Execute the XML EXPORT FILE statement specifying:
 the data item address,
 the XML document filename,
 the model filename,
 and the style sheet name.

If Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the
termination logic.

Importing an XML Document

COBOL Statement Description

Move Spaces to Liant-Address. Ensure that the Liant-Address structure contains no data.
XML IMPORT FILE
 Liant-Address
 "Liant2"
 "Example2"
 toInt.

Execute the XML IMPORT FILE statement specifying:
 the data item address,
 the XML document filename,
 the model filename,
 and the style sheet name.

If Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the
termination logic.

Program Exit Logic

COBOL Statement Description

Z. Paragraph-name that is a target of error condition GO TO
statements.

 Copy "lixmltrm.cpy". Copy in the termination test logic (see the “Termination Test
Logic” table).

 Stop Run. Terminate the COBOL program.
 Copy "lixmldsp.cpy". Copy in the status display logic (see the “Status Display

Logic” table).

 Example 2: Export File and Import File with Style Sheets

 XML Toolkit for RM/COBOL 101

Termination Test Logic
This code is found in the copy file, lixmltrm.cpy.

This code occurs after the paragraph-name Z, so that any error condition is
obtained here via a GO TO statement. If there are no errors, execution “falls
through” to these statements.

COBOL Statement Description

Display "Status: " XML-Status.

Display the most recent return status value (if there are no
errors, this should display zero).

Perform Display-Status. Perform the Display-Status paragraph to display any error
messages.

XML TERMINATE. Terminate the XML interface.
Perform Display-Status. Perform the Display-Status paragraph again to display any

error encountered by the XML TERMINATE statement.

Status Display Logic
This code is found in the copy file, lixmldsp.cpy.

This code is called twice by the termination test logic: the first time to report
any error condition that exists, and the second time to report an error (if one
occurs) from the XML TERMINATE statement. If there are no errors (the
condition XML-IsSuccess is true), this paragraph displays no information.

COBOL Statement Description

Display-Status. This is the paragraph-name.
 If Not XML-IsSuccess Do nothing if XML-IsSuccess is true.
 Perform
 With Test After
 Until XML-NoMore

Perform as long as there are status lines available to be
displayed (until XML-NoMore is true).

 XML GET STATUS-TEXT Get the next line of status information from the XML
interface.

 Display XML-StatusText

Display the line that was just obtained.

 End-Perform End of the perform loop.
 End-If. End of the If statement and the paragraph.

 Example 2: Export File and Import File with Style Sheets

102 Appendix A: XML Toolkit Examples

Style Sheets
The two style sheets used in this example are for reference only (a tutorial on
style sheet development is outside the scope of this document). The first is
contained in the file, toExt.xsl. It is used by the XML EXPORT FILE statement
to transform the generated XML document to an external format. The second is
contained in the file, toInt.xsl, and is used by the XML IMPORT FILE
statement to transform the input XML document to the COBOL internal format.

These style sheets are manually generated using a text editor program. Other
tools, such as Microsoft’s BizTalk Mapper, may be used to generate style sheets.

toExt.xsl

<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output method="xml" encoding="UTF-8" />
 <xsl:template match="/">
 <xsl:apply-templates select="root/liant-address" />
 </xsl:template>
 <xsl:template match="liant-address">
 <LiantAddress>
 <Information>
 <xsl:attribute name="Name">
 <xsl:value-of select="name/text()" />
 </xsl:attribute>
 <xsl:attribute name="Address1">
 <xsl:value-of select="address-1/text()" />
 </xsl:attribute>
 <xsl:attribute name="Address2">
 <xsl:value-of select="address-2/text()" />
 </xsl:attribute>
 <xsl:attribute name="City">
 <xsl:value-of select="address-3/city/text()" />
 </xsl:attribute>
 <xsl:attribute name="State">
 <xsl:value-of select="address-3/state/text()" />
 </xsl:attribute>
 <xsl:attribute name="Zip">
 <xsl:value-of select="address-3/zip/text()" />
 </xsl:attribute>
 </Information>
 <TimeStamp>
 <xsl:attribute name="Value">
 <xsl:value-of select="time-stamp/text()" />
 </xsl:attribute>
 </TimeStamp>
 </LiantAddress>
 </xsl:template>
</xsl:stylesheet>

 Example 2: Export File and Import File with Style Sheets

 XML Toolkit for RM/COBOL 103

toInt.xsl

<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output method="xml" encoding="UTF-8" />
 <xsl:template match="/">
 <xsl:apply-templates select="LiantAddress" />
 </xsl:template>
 <xsl:template match="LiantAddress">
 <root>
 <liant-address>
 <name>
 <xsl:value-of select="Information/@Name" />
 </name>
 <address-1>
 <xsl:value-of select="Information/@Address1" />
 </address-1>
 <address-2>
 <xsl:value-of select="Information/@Address2" />
 </address-2>
 <address-3>
 <city>
 <xsl:value-of select="Information/@City" />
 </city>
 <state>
 <xsl:value-of select="Information/@State" />
 </state>
 <zip>
 <xsl:value-of select="Information/@Zip" />
 </zip>
 </address-3>
 <time-stamp>
 <xsl:value-of select="TimeStamp/@Value" />
 </time-stamp>
 </liant-address>
 </root>
 </xsl:template>
</xsl:stylesheet>

Execution Results
The following sections display the output of the COBOL program that is run and
the XML document that is generated.

 Example 2: Export File and Import File with Style Sheets

104 Appendix A: XML Toolkit Examples

COBOL Display
Running the program (runcobol example2) produces the following display.
Note that pressing a key will terminate the program.

Example-2 - Illustrate EXPORT FILE and IMPORT FILE with style sheets
Liant2.xml exported by XML EXPORT FILE
Liant Software Corporation
8911 Capital of Texas Highway North
Suite 4300
Austin TX78759
10415057
Liant2.xml imported by XML IMPORT FILE
Liant Software Corporation
8911 Capital of Texas Highway North
Suite 4300
Austin TX78759
10415057

You may use IE to inspect 'Liant2.xml'

Status: 0000
Press a key to terminate:

XML Document
Microsoft Internet Explorer may be used to view the generated XML document,
liant2.xml. The contents of this document should appear as follows. (Note that
Internet Explorer will differentiate among the various syntactical elements of
XML by displaying them in different colors.)

<?xml version="1.0" encoding="UTF-8" ?>
<LiantAddress>
 <Information Name="Liant Software Corporation" Address1="8911 Capital of
 Texas Highway North" Address2="Suite 4300" City="Austin" State="TX"
 Zip="78759" />
 <TimeStamp Value="10415057" />
</LiantAddress>

This XML document differs from the document generated in “Example 1:
Export File and Import File”. Items that were shown as individual data
elements in Example 1 are now shown as attributes of higher-level elements.
Notice that this document contains no text. All of the information is contained
in the markup.

 Example 2: Export File and Import File with Style Sheets

 XML Toolkit for RM/COBOL 105

Example 3: Export File and Import File with
OCCURS DEPENDING

This program first writes (or exports) an XML document file from the contents
of a COBOL data item. Then the program reads (or imports) the same XML
document and places the contents in the same COBOL data item.

This program is very similar to “Example 1: Export File and Import File” (see
page 88). However, the data item has been modified so that an OCCURS
DEPENDING clause is present.

This example uses the following XML statements:

• XML INITIALIZE (page 80). The XML INITIALIZE statement initializes
or opens a session with the xmlif library.

• XML EXPORT FILE (page 62). The XML EXPORT FILE statement
constructs an XML document (as a file) from the contents of a COBOL data
item.

• XML IMPORT FILE (page 65) The XML IMPORT FILE statement reads
an XML document (from a file) into a COBOL data item.

• XML TERMINATE (page 80). The XML TERMINATE statement
terminates or closes the session with the xmlif library.

Development
The COBOL program must be compiled with the RM/COBOL compiler, and the
output symbol table option (Y Compile Command Option) must be enabled.

After each successful compilation, it is necessary to run the cobtoxml utility
program to generate a set of model files that are used by the XML IMPORT and
XML EXPORT statements.

After the successful execution of the cobtoxml utility, you may then execute the
COBOL program. The xmlif library may be specified either by entering it on
the command line (for example, runcobol myprog l=“some\path\xmlif”) or by
placing the xmlif library in the rmautold directory (this is normally a
subdirectory of the RM/COBOL installation directory).

Once the program is tested, you may choose to delete the symbol table
information from the COBOL object file by using the RM/COBOL Combine
Program Utility, rmpgmcom.

 Example 3: Export File and Import File with OCCURS DEPENDING

106 Appendix A: XML Toolkit Examples

Batch File
The following DOS commands may be entered into a batch file. These
commands build and execute example3.cob.

Line Statement
1 rmcobol example3 y

2 cobtoxml example3 Liant-Address

3 move /y example3.cob tmp.cob

4 start /w runcobol rmpgmcom A='STRIP,example3.cob,tmp.cob'

5 del tmp.cob

6 start /w runcobol example3 k

Line 1 compiles the example3.cbl source file with the symbol table option (Y)
enabled.

Line 2 builds the XML model files from the symbol table information in the
symbol table. By default, the model filenames are the same as the object
filename with different extensions (in this instance, the example 3 object
filename is example3.cob, and the model filenames are example3.xml,
example3.xtl, example3.xsl, and example3.xsd).

Lines 3, 4, and 5 are optional. They strip the symbol table from the example 3
object file, example3.cob. In order to reduce the size of the deployed object
files, developers may chose to remove the symbol table from the COBOL object
file before distributing their applications. The RM/COBOL Combine Program
Utility, rmpgmcom, which is shipped with the RM/COBOL development
system, is used for this purpose.

Line 6 executes example3.cob. The K Option “kills” the runtime banner. On
line 6, the start /w sequence is included only as good programming
practice.

Note On Windows, the RM/COBOL runtime (runcobol) is a Windows
application that opens a separate window when executed from DOS. The
start /w part of the DOS command instructs Windows to start the runtime
and then wait (the /w Option) for its completion. This step is necessary in line
4. If this step were omitted, line 5 could execute before the runtime completed,
which would cause the input file (tmp.cob) passed to rmpgmcom to be deleted
before it had been completely read.

 Example 3: Export File and Import File with OCCURS DEPENDING

 XML Toolkit for RM/COBOL 107

Program Description
This COBOL program illustrates how an XML document is generated from a
COBOL data item, and then how the contents of an XML document may be
converted into COBOL data format and stored in a COBOL data item.

Before any other XML statement may be executed, the XML INITIALIZE
statement must be successfully executed. It is possible for XML INITIALIZE to
fail; therefore, the return status must be checked before continuing.

Data is exported from the data item Liant-Address (as defined in the copy
file, liant.cpy) to an XML document with the filename of liant3.xml using the
XML EXPORT FILE statement.

Next, the contents of the XML document are imported from the file, liant3.xml,
and placed in the same data structure using the XML IMPORT FILE statement.

Finally, the XML interface is terminated with the XML TERMINATE
statement.

If any of the statements terminate unsuccessfully, the XML GET STATUS-
TEXT statement is called.

Data Item
The contents of the data item defined in the copy file, liant3.cpy, are as follows:

01 Liant-Address.
 02 Time-Stamp Pic 9(8).
 02 Name Pic X(64)
 Value "Liant Software Corporation".
 02 City Pic X(32) Value "Austin".
 02 State Pic X(2) Value "TX".
 02 Zip Pic 9(5) Value 78759.
 02 Address-Lines Pic 9.
 02 Address-Line Pic X(64)
 Occurs 1 to 5 times
 Depending on Address-Lines.

This data item stores company address information (in this case, Liant’s). This
structure differs from “Example 1: Export File and Import File” (see page 88) in
that an OCCURS DEPENDING phrase has been added to the structure. Instead
of having separate data names for Address-1 and Address-2, a variable
length array named Address-Line has been defined. Since Address-Line
is variable length, it must be the last data item in the structure. A new data item

 Example 3: Export File and Import File with OCCURS DEPENDING

108 Appendix A: XML Toolkit Examples

named Address-Lines has been added just prior to the Address-Line
array. Address-Lines is the depending variable for the array Address-Line.

The first field of the structure is a time stamp containing the time that the
program was executed. This item is included to assure the person observing the
execution of the example that the results are current. The time element in the
generated XML document should change each time the example is run and
should also contain the current time.

Other Definitions
Include the copy file, lixmlall.cpy, in the Working-Storage Section of the
COBOL program.

The copy file, lixmldef.cpy, which is copied in by lixmlall.cpy, defines a data
item named XML-data-group. The contents of this data item are as follows:

01 XML-data-group.
 03 XML-Status PIC 9(4).
 88 XML-IsSuccess VALUE XML-Success.
 88 XML-OK VALUE XML-Success
 THROUGH XML-StatusNonFatal.
 88 XML-IsDirectoryEmpty
 VALUE XML-InformDirectoryEmpty.
 03 XML-StatusText PIC X(80).
 03 XML-MoreFlag PIC 9 BINARY(1).
 88 XML-NoMore VALUE 0.
 03 XML-UniqueID PIC X(40).
 03 XML-Flags PIC 9(10) BINARY(4).

Various XML statements may access one of more fields of this item.
For example, the XML EXPORT FILE statement returns a value in the
XML-Status field. The XML GET STATUS-TEXT statement accesses
the XML-StatusText and XML-MoreFlag fields.

Program Structure
The following tables show COBOL statements that relate to performing XML
Toolkit statements. Some COBOL statements (mostly the DISPLAY
statements) have been omitted. The source of this example is in the file,
example3.cbl.

 Example 3: Export File and Import File with OCCURS DEPENDING

 XML Toolkit for RM/COBOL 109

Initialization

COBOL Statement Description

XML INITIALIZE. Execute the XML INITIALIZE statement (no parameters).
If Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the

termination logic.

Exporting an XML Document

COBOL Statement Description

Accept Time-Stamp From Time. Populate the Time-Stamp field.
XML EXPORT FILE
 Liant-Address
 "Liant3"
 "Example3".

Execute the XML EXPORT FILE statement specifying:
 the data item address,
 the XML document filename,
 and the model filename.

If Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the
termination logic.

Importing an XML Document

COBOL Statement Description

Move Spaces to Liant-Address. Ensure that the Liant-Address structure contains no data.
XML IMPORT FILE
 Liant-Address
 "Liant3"
 "Example3".

Execute the XML IMPORT FILE statement specifying:
 the data item address,
 the XML document filename,
 and the model filename.

If Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the
termination logic.

 Example 3: Export File and Import File with OCCURS DEPENDING

110 Appendix A: XML Toolkit Examples

Program Exit Logic

COBOL Statement Description

Z. Paragraph-name that is a target of error condition GO TO
statements.

 Copy "lixmltrm.cpy". Copy in the termination test logic (see the “Termination Test
Logic” table).

 Stop Run. Terminate the COBOL program.
 Copy "lixmldsp.cpy". Copy in the status display logic (see the “Status Display

Logic” table).

Termination Test Logic
This code is found in the copy file, lixmltrm.cpy.

This code occurs after the paragraph-name Z, so that any error condition is
obtained here via a GO TO statement. If there are no errors, execution “falls
through” to these statements.

COBOL Statement Description

Display "Status: " XML-Status.

Display the most recent return status value (if there are no
errors, this should display zero).

Perform Display-Status. Perform the Display-Status paragraph to display any error
messages.

XML TERMINATE. Terminate the XML interface.
Perform Display-Status. Perform the Display-Status paragraph again to display any

error encountered by the XML TERMINATE statement.

 Example 3: Export File and Import File with OCCURS DEPENDING

 XML Toolkit for RM/COBOL 111

Status Display Logic
This code is found in the copy file, lixmldsp.cpy.

This code is called twice by the termination test logic: the first time to report
any error condition that exists, and the second time to report an error (if one
occurs) from the XML TERMINATE statement. If there are no errors (the
condition XML-IsSuccess is true), this paragraph displays no information.

COBOL Statement Description

Display-Status. This is the paragraph-name.
 If Not XML-IsSuccess Do nothing if XML-IsSuccess is true.
 Perform
 With Test After
 Until XML-NoMore

Perform as long as there are status lines available to be
displayed (until XML-NoMore is true).

 XML GET STATUS-TEXT Get the next line of status information from the XML
interface.

 Display XML-StatusText Display the line that was just obtained.

 End-Perform End of the perform loop.
 End-If. End of the If statement and the paragraph.

Execution Results
The following sections display the output of the COBOL program that is run and
the XML document that is generated.

 Example 3: Export File and Import File with OCCURS DEPENDING

112 Appendix A: XML Toolkit Examples

COBOL Display
Running the program (runcobol example3) produces the following display.
Note that pressing a key will terminate the program.

Example-3 - Illustrate EXPORT FILE and IMPORT FILE with OCCURS DEPENDING
Liant3.xml exported by XML EXPORT FILE
Liant Software Corporation
8911 Capital of Texas Highway North
Suite 4300
Austin TX78759
13313414
Liant3.xml imported by XML IMPORT FILE
Liant Software Corporation
8911 Capital of Texas Highway North
Suite 4300
Austin TX78759
13313414

You may use IE to inspect 'Liant3.xml'

Status: 0000
Press a key to terminate:

XML Document
Microsoft Internet Explorer may be used to view the generated XML document,
Liant3.xml. The contents of this document should appear as follows. (Note
that Internet Explorer will differentiate among the various syntactical elements
of XML by displaying them in different colors.)

<?xml version="1.0" encoding="UTF-8" ?>
<root>
 <liant-address>
 <time-stamp>13313414</time-stamp>
 <name>Liant Software Corporation</name>
 <city>Austin</city>
 <state>TX</state>
 <zip>78759</zip>
 <address-lines>2</address-lines>
 <address-line>8911 Capital of Texas Highway
North</address-line>
 <address-line>Suite 4300</address-line>
 </liant-address>
</root>

 Example 3: Export File and Import File with OCCURS DEPENDING

 XML Toolkit for RM/COBOL 113

Example 4: Export File and Import File with
Sparse Arrays

This example illustrates how the xmlif library may work with sparse arrays.
The xmlif library distinguishes between an empty occurrence and a non-empty
occurrence. An occurrence is an empty occurrence when all of its numeric
elementary data items have a zero value and all of its nonnumeric elementary
data items contain spaces; otherwise, the occurrence is a non-empty occurrence.
A sparse array is an array that contains a combination of empty and non-empty
occurrences. Empty occurrences need not be exported unless they are needed to
locate (determine the subscript) of a subsequent non-empty occurrence.
Normally, this means that trailing empty occurrences, that is, a contiguous series
of empty occurrences at the end of the array, are not exported. Sparse arrays
may also be imported.

The program first writes (or exports) several XML document files from the
contents of a COBOL data item (using various combinations of the XML
ENABLE ATTRIBUTES, XML DISABLE ATTRIBUTES, XML ENABLE
ALL-OCCURRENCES, and XML DISABLE ALL-OCCURRENCES
statements). Then the program reads (or imports) the same XML documents
(plus a couple of pre-existing documents) and places the contents in the same
COBOL data item.

This example uses the following XML statements:

• XML INITIALIZE (page 80). The XML INITIALIZE statement initializes
or opens a session with the xmlif library.

• XML EXPORT FILE (page 62). The XML EXPORT FILE statement
constructs an XML document (as a file) from the contents of a COBOL data
item.

• XML IMPORT FILE (page 65). The XML IMPORT FILE statement reads
an XML document (from a file) into a COBOL data item.

• XML ENABLE ATTRIBUTES (page 83). The XML ENABLE
ATTRIBUTES statement causes exported XML document to contain
descriptive (COBOL-oriented) attributes.

Note Although the default is not to add descriptive attributes to an XML
document (see XML DISABLE ATTRIBUTES below), among the
attributes that may be added is the “subscript” attribute. This attribute
contains the one-relative index of the occurrence within the array. When an
XML document is imported, this subscript attribute is used (if present) to
place the occurrence correctly within the array. If the subscript attribute is
not present, then occurrences are assumed to occur sequentially.

 Example 4: Export File and Import File with Sparse Arrays

114 Appendix A: XML Toolkit Examples

• XML DISABLE ATTRIBUTES (page 82). The XML DISABLE
ATTRIBUTES causes exported XML documents not to contain descriptive
attributes.

Note The default is not to add descriptive attributes to an XML document.

• XML ENABLE ALL-OCCURRENCES (page 82). The XML ENABLE
ALL-OCCURRENCES statement causes all occurrences of a data item to
be exported to an XML document.

• XML DISABLE ALL-OCCURRENCES (page 81). The XML DISABLE
ALL-OCCURRENCES statement causes only certain occurrences to be
exported to the XML document.

Note The default is to export only certain occurrences to the XML
document.

• XML TERMINATE (page 80). The XML TERMINATE statement
terminates or closes the session with the xmlif library.

Development
The COBOL program must be compiled with the RM/COBOL compiler, and the
output symbol table option (Y Compile Command Option) must be enabled.

After each successful compilation, it is necessary to run the cobtoxml utility
program to generate a set of model files that are used by the XML IMPORT and
XML EXPORT statements.

After the successful execution of the cobtoxml utility, you may then execute the
COBOL program. The xmlif library may be specified either by entering it on
the command line (for example, runcobol myprog l=“some\path\xmlif”) or by
placing the xmlif library in the rmautold directory (this is normally a
subdirectory of the RM/COBOL installation directory).

Once the program is tested, you may choose to delete the symbol table
information from the COBOL object file by using the RM/COBOL Combine
Program Utility, rmpgmcom.

 Example 4: Export File and Import File with Sparse Arrays

 XML Toolkit for RM/COBOL 115

Batch File
The following DOS commands may be entered into a batch file. These
commands build and execute example4.cob.

Line Statement
1 rmcobol example4 y

2 cobtoxml example4 Data-Table -sn

3 move /y example4.cob tmp.cob

4 start /w runcobol rmpgmcom A='STRIP,example4.cob,tmp.cob'

5 del tmp.cob

6 start /w runcobol example4 k

Line 1 compiles the example4.cbl source file with the symbol table option (Y)
enabled.

Line 2 builds the XML model files from the symbol table information in the
symbol table. By default, the model filenames are the same as the object
filename with different extensions (in this instance, the example 4 object
filename is example4.cob, and the model filenames are example4.xml,
example4.xtl, and example4.xsl). The -sn (schema none) option on the
cobtoxml utility disables the generation of a schema file, which is normally
used to validate the content of an XML document.

Lines 3, 4, and 5 are optional. They strip the symbol table from the example 4
object file, example4.cob. In order to reduce the size of the deployed object
files, developers may chose to remove the symbol table from the COBOL object
file before distributing their applications. The RM/COBOL Combine Program
Utility, rmpgmcom, which is shipped with the RM/COBOL development
system, is used for this purpose.

Line 6 executes example4.cob. The K Option “kills” the runtime banner. On
line 6, the start /w sequence is included only as good programming
practice.

Note On Windows, the RM/COBOL runtime (runcobol) is a Windows
application and opens a separate window when executed from DOS. The
start /w part of the DOS command instructs Windows to start the runtime
and then wait (the /w Option) for its completion. This step is necessary in line 4.
If this step were omitted, line 5 could execute before the runtime completed,
which would cause the input file (tmp.cob) passed to rmpgmcom to be deleted
before it had been completely read.

 Example 4: Export File and Import File with Sparse Arrays

116 Appendix A: XML Toolkit Examples

Program Description
This COBOL program illustrates how several similar XML documents are
generated from a single COBOL data item. It also illustrates how the contents
of several similar XML documents may be converted into COBOL data format
and stored in a COBOL data item.

Before any other XML statement may be executed, the XML INITIALIZE
statement must be successfully executed. It is possible for XML INITIALIZE to
fail; therefore, the return status must be checked before continuing.

Data is exported from the data item Data-Table to several XML documents
with the filenames of table1.xml, table2.xml, table3.xml, and table4.xml using
the XML EXPORT FILE statement. Various combinations of the XML
ENABLE ATTRIBUTES, XML DISABLE ATTRIBUTES, XML ENABLE
ALL-OCCURRENCES, and XML DISABLE ALL-OCCURRENCES
statements are used to alter the content of the generated XML documents.

Next, the contents of these four XML documents (plus two additional “pre-
created” XML documents, table5.xml and table6.xml) are imported and placed
in the same data item using the XML IMPORT FILE statement. This example
does not use a schema file to validate the input because the array is fixed size
and not all of the XML documents that will be input contain all of the
occurrences of the array. These XML documents and their contents are
described beginning on page 121.

Finally, the XML interface is terminated with the XML TERMINATE
statement.

If any of the statements terminate unsuccessfully, the XML GET STATUS-
TEXT statement is called.

Data Item
The contents of the data item defined in the copy file, liant.cpy, are as follows:

01 Data-Table.
 02 Value "[".
 02 Table-1 Occurs 6.
 03 X Pic X.
 03 N Pic 9.
 02 Value "]".

This data item contains an array with six occurrences. Each occurrence consists
of a one-character, nonnumeric data item followed by a one-digit numeric data
item. Note that the structure also contains two filler data items: the left brace

 Example 4: Export File and Import File with Sparse Arrays

 XML Toolkit for RM/COBOL 117

([) character at the beginning and the right brace(]) character at the end. The
values of the filler items are output as text in the XML document without
associated tags.

Other Definitions
The copy file, lixmlall.cpy, should be included in the Working-Storage Section
of the program.

The copy file lixmldef.cpy, which is copied in by lixmlall.cpy, defines a data
item named XML-data-group. The contents of this data item are as follows:

01 XML-data-group.
 03 XML-Status PIC 9(4).
 88 XML-IsSuccess VALUE XML-Success.
 88 XML-OK VALUE XML-Success
 THROUGH XML-StatusNonFatal.
 88 XML-IsDirectoryEmpty
 VALUE XML-InformDirectoryEmpty.
 03 XML-StatusText PIC X(80).
 03 XML-MoreFlag PIC 9 BINARY(1).
 88 XML-NoMore VALUE 0.
 03 XML-UniqueID PIC X(40).
 03 XML-Flags PIC 9(10) BINARY(4).

Various XML statements may access one of more fields of this item.
For example, the XML EXPORT FILE statement returns a value in the
XML-Status field. The XML GET STATUS-TEXT statement accesses
the XML-StatusText and XML-MoreFlag fields.

Program Structure
The following tables show COBOL statements that relate to performing XML
Toolkit statements. Some COBOL statements (mostly the DISPLAY
statements) have been omitted. The source of this example is in the file,
example4.cbl.

 Example 4: Export File and Import File with Sparse Arrays

118 Appendix A: XML Toolkit Examples

Initialization

COBOL Statement Description

XML INITIALIZE. Execute the XML INITIALIZE statement (no parameters).
If Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the

termination logic.

Exporting an XML Document

COBOL Statement Description

XML ENABLE ATTRIBUTES
If Not XML-OK Go to Z.
XML ENABLE All-OCCURRENCES
If Not XML-OK Go to Z.

Selectively ENABLE or DISABLE ATTRIBUTES and
ALL-OCCURRENCES.

Initialize Data-Table.
Move "B" to X (2).
Move 2 to N (2).
Move "D" to X (4).
Move 4 to N (4).

Initialize the Data-Table structure to the preferred values.

XML EXPORT FILE
 Data-Table
 "Table1"
 "Example4".

Execute the XML EXPORT FILE statement specifying:
 the data item address,
 the XML document filename (Table1 – Table4),
 and the model filename.

If Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the
termination logic.

Importing an XML Document

COBOL Statement Description

Initialize Data-Table. Ensure that the data item contains no data.
XML IMPORT FILE
 Data-Table
 "Table1"
 "Example4".

Execute the XML IMPORT FILE statement specifying:
 the data item address,
 the XML document filename (Table1 – Table6),
 and the model filename.

If Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the
termination logic.

 Example 4: Export File and Import File with Sparse Arrays

 XML Toolkit for RM/COBOL 119

Program Exit Logic

COBOL Statement Description

Z. Paragraph-name that is a target of error condition GO TO
statements.

 Copy "lixmltrm.cpy". Copy in the termination test logic (see the “Termination Test
Logic” table).

 Stop Run. Terminate the COBOL program.
 Copy "lixmldsp.cpy". Copy in the status display logic (see the “Status Display

Logic” table).

Termination Test Logic
This code is found in the copy file, lixmltrm.cpy.

This code occurs after the paragraph-name Z, so that any error condition is
obtained here via a GO TO statement. If there are no errors, execution “falls
through” to these statements.

COBOL Statement Description

Display "Status: " XML-Status. Display the most recent return status value (if there are no
errors, this should display zero).

Perform Display-Status. Perform the Display-Status paragraph to display any error
messages.

XML TERMINATE. Terminate the XML interface.
Perform Display-Status. Perform the Display-Status paragraph again to display any

error encountered by the XML TERMINATE statement.

 Example 4: Export File and Import File with Sparse Arrays

120 Appendix A: XML Toolkit Examples

Status Display Logic
This code is found in the copy file, lixmldsp.cpy.

This code is called twice by the termination test logic: the first time to report
any error condition that exists, and the second time to report an error (if one
occurs) from the XML TERMINATE statement. If there are no errors (the
condition XML-IsSuccess is true), this paragraph displays no information.

COBOL Statement Description

Display-Status. This is the paragraph-name.
 If Not XML-IsSuccess Do nothing if XML-IsSuccess is true.
 Perform
 With Test After
 Until XML-NoMore

Perform as long as there are status lines available to be
displayed (until XML-NoMore is true).

 XML GET STATUS-TEXT Get the next line of status information from the XML
interface.

 Display XML-StatusText Display the line that was just obtained.

 End-Perform End of the perform loop.
 End-If. End of the If statement and the paragraph.

 Example 4: Export File and Import File with Sparse Arrays

 XML Toolkit for RM/COBOL 121

Execution Results
The following sections display the output of the COBOL program that is run and
the XML document that is generated.

COBOL Display
Running the program (runcobol example4) produces the following display.
Note that pressing a key will terminate the program.

Example-4 - Illustrate EXPORT FILE and IMPORT FILE with sparse arrays
Table1.xml exported by XML EXPORT FILE: [0B2 0D4 0 0]
Table2.xml exported by XML EXPORT FILE: [0B2 0D4 0 0]
Table3.xml exported by XML EXPORT FILE: [0B2 0D4 0 0]
Table4.xml exported by XML EXPORT FILE: [0B2 0D4 0 0]
Table1.xml imported by XML IMPORT FILE: [0B2 0D4 0 0]
Table2.xml imported by XML IMPORT FILE: [0B2 0D4 0 0]
Table3.xml imported by XML IMPORT FILE: [0B2 0D4 0 0]
Table4.xml imported by XML IMPORT FILE: [0B2 0D4 0 0]
Table5.xml imported by XML IMPORT FILE: [0B2 0D4 0 0]
Table6.xml imported by XML IMPORT FILE: [0B2 0D4 0 0]

You may use IE to inspect 'Table1.xml' - 'Table6.xml'

Status: 0000
Press a key to terminate:

XML Documents
Microsoft Internet Explorer may be used to view the XML documents that are
associated with this example. (Note that Internet Explorer will differentiate
among the various syntactical elements of XML by displaying them in different
colors.)

The files table1.xml, table2.xml, table3.xml, and table4.xml are generated
with XML EXPORT FILE statements. All of these documents were generated
from the same COBOL content. The files table5.xml and table6.xml are
supplied with the example, and they also describe the same COBOL content.

The only non-empty occurrences are for the second and fourth elements of the
array. The contents of the six files should appear as follows.

Table1.xml
The XML DISABLE ATTRIBUTES and XML DISABLE ALL-
OCCURRENCES statements are used to determine the contents of this file.

 Example 4: Export File and Import File with Sparse Arrays

122 Appendix A: XML Toolkit Examples

Trailing empty occurrences are deleted. However, some empty occurrences
were generated so that the two non-empty occurrences are positioned correctly.

This example also uses filler data. The left brace ([) and right brace(])
characters were defined within the data item as filler. The text associated with
the filler is placed in the XML document without any tags.

<?xml version="1.0" encoding="UTF-8" ?>
<root>
 <data-table>
 [
 <table-1>
 <x />
 <n>0</n>
 </table-1>
 <table-1>
 <x>B</x>
 <n>2</n>
 </table-1>
 <table-1>
 <x />
 <n>0</n>
 </table-1>
 <table-1>
 <x>D</x>
 <n>4</n>
 </table-1>
]
 </data-table>
</root>

 Example 4: Export File and Import File with Sparse Arrays

 XML Toolkit for RM/COBOL 123

Table2.xml
The XML ENABLE ATTRIBUTES and XML DISABLE ALL-
OCCURRENCES statements are used to determine the contents of this file.
Since each non-empty occurrence now contains a subscript attribute, none of the
empty occurrences are generated.

<?xml version="1.0" encoding="UTF-8" ?>
<root type="nonnumeric" kind="GRP">
 <data-table type="nonnumeric" kind="GRP" length="14" offset="4" id="1514">
 [
 <table-1 type="nonnumeric" kind="GRP" length="2" offset="5" minOccurs="6"
 maxOccurs="6" span="2" subscript="2" id="1558">
 <x type="nonnumeric" kind="ANS" length="1" offset="5" subscript="2"
 id="1580">B</x>
 <n type="numeric" kind="NSU" length="1" offset="6" scale="0"
 precision="1" subscript="2" id="1602">2</n>
 </table-1>
 <table-1 type="nonnumeric" kind="GRP" length="2" offset="5" minOccurs="6"
 maxOccurs="6" span="2" subscript="4" id="1558">
 <x type="nonnumeric" kind="ANS" length="1" offset="5" subscript="4"
 id="1580">D</x>
 <n type="numeric" kind="NSU" length="1" offset="6" scale="0"
 precision="1" subscript="4" id="1602">4</n>
 </table-1>
]
 </data-table>
</root>

 Example 4: Export File and Import File with Sparse Arrays

124 Appendix A: XML Toolkit Examples

Table3.xml
The XML DISABLE ATTRIBUTES and XML ENABLE ALL-
OCCURRENCES statements are used to determine the contents of this file.
These statements cause all occurrences, whether empty or non-empty, to be
generated.

<?xml version="1.0" encoding="UTF-8" ?>
<root>
 <data-table>
 [
 <table-1>
 <x />
 <n>0</n>
 </table-1>
 <table-1>
 <x>B</x>
 <n>2</n>
 </table-1>
 <table-1>
 <x />
 <n>0</n>
 </table-1>
 <table-1>
 <x>D</x>
 <n>4</n>
 </table-1>
 <table-1>
 <x />
 <n>0</n>
 </table-1>
 <table-1>
 <x />
 <n>0</n>
 </table-1>
]
 </data-table>
</root>

Table4.xml
The XML ENABLE ATTRIBUTES and XML ENABLE ALL-
OCCURRENCES statements are used to determine the contents of this file.
These statements produce the most verbose listing of occurrences possible.
Every occurrence is listed with its attributes.

 Example 4: Export File and Import File with Sparse Arrays

 XML Toolkit for RM/COBOL 125

<?xml version="1.0" encoding="UTF-8" ?>
<root type="nonnumeric" kind="GRP">
 <data-table type="nonnumeric" kind="GRP" length="14" offset="4" id="1514">
 [
 <table-1 type="nonnumeric" kind="GRP" length="2" offset="5" minOccurs="6"
 maxOccurs="6" span="2" subscript="1" id="1558">
 <x type="nonnumeric" kind="ANS" length="1" offset="5" subscript="1"
 id="1580" />
 <n type="numeric" kind="NSU" length="1" offset="6" scale="0"
 precision="1" subscript="1" id="1602">0</n>
 </table-1>
 <table-1 type="nonnumeric" kind="GRP" length="2" offset="5" minOccurs="6"
 maxOccurs="6" span="2" subscript="2" id="1558">
 <x type="nonnumeric" kind="ANS" length="1" offset="5" subscript="2"
 id="1580">B</x>
 <n type="numeric" kind="NSU" length="1" offset="6" scale="0"
 precision="1" subscript="2" id="1602">2</n>
 </table-1>
 <table-1 type="nonnumeric" kind="GRP" length="2" offset="5" minOccurs="6"
 maxOccurs="6" span="2" subscript="3" id="1558">
 <x type="nonnumeric" kind="ANS" length="1" offset="5" subscript="3"
 id="1580" />
 <n type="numeric" kind="NSU" length="1" offset="6" scale="0"
 precision="1" subscript="3" id="1602">0</n>
 </table-1>
 <table-1 type="nonnumeric" kind="GRP" length="2" offset="5" minOccurs="6"
 maxOccurs="6" span="2" subscript="4" id="1558">
 <x type="nonnumeric" kind="ANS" length="1" offset="5" subscript="4"
 id="1580">D</x>
 <n type="numeric" kind="NSU" length="1" offset="6" scale="0"
 precision="1" subscript="4" id="1602">4</n>
 </table-1>
 <table-1 type="nonnumeric" kind="GRP" length="2" offset="5" minOccurs="6"
 maxOccurs="6" span="2" subscript="5" id="1558">
 <x type="nonnumeric" kind="ANS" length="1" offset="5" subscript="5"
 id="1580" />
 <n type="numeric" kind="NSU" length="1" offset="6" scale="0"
 precision="1" subscript="5" id="1602">0</n>
 </table-1>
 <table-1 type="nonnumeric" kind="GRP" length="2" offset="5" minOccurs="6"
 maxOccurs="6" span="2" subscript="6" id="1558">
 <x type="nonnumeric" kind="ANS" length="1" offset="5" subscript="6"
 id="1580" />
 <n type="numeric" kind="NSU" length="1" offset="6" scale="0"
 precision="1" subscript="6" id="1602">0</n>
 </table-1>
]
 </data-table>
</root>

 Example 4: Export File and Import File with Sparse Arrays

126 Appendix A: XML Toolkit Examples

Table5.xml
This file was manually generated using a text editor program in order to contain
the minimum amount of information possible. Of all the attributes, only the
subscript attribute is included. This allows all empty occurrences to be
suppressed. In practice, a style sheet or other software could generate this kind
of document.

<?xml version="1.0" encoding="UTF-8" ?>
<root>
 <data-table>
 [
 <table-1 subscript="2">
 <x>B</x>
 <n>2</n>
 </table-1>
 <table-1 subscript="4">
 <x>D</x>
 <n>4</n>
 </table-1>
]
 </data-table>
</root>

Table6.xml
The only difference between this file and table5.xml is that the subscript
reference has been moved from the occurrence level down to an element within
the occurrence.

<?xml version="1.0" encoding="UTF-8" ?>
<root>
 <data-table>
 [
 <table-1>
 <x subscript="2">B</x>
 <n>2</n>
 </table-1>
 <table-1>
 <x subscript="4">D</x>
 <n>4</n>
 </table-1>
]
 </data-table>
</root>

 Example 4: Export File and Import File with Sparse Arrays

 XML Toolkit for RM/COBOL 127

Example 5: Export Text and Import Text
The program first writes (or exports) an XML document as a text string from the
contents of a COBOL data item. Then the program reads (or imports) the same
XML document and places the contents in the same COBOL data item. Finally,
the text string representation of the XML document is copied to a disk file and
the memory block that it occupied is released.

This example uses the following XML statements:

• XML INITIALIZE (page 80). The XML INITIALIZE statement initializes
or opens a session with the xmlif library.

• XML EXPORT TEXT (page 64). The XML EXPORT TEXT statement
constructs an XML document (as a text string) from the contents of a
COBOL data item.

• XML IMPORT TEXT (page 66). The XML IMPORT TEXT statement
reads an XML document (from a text string) into a COBOL data item.

• XML PUT TEXT (page 73). The XML PUT TEXT statement copies an
XML document from a text string to a data file.

• XML FREE TEXT (page 72). The XML FREE TEXT statement releases
the memory that was allocated by XML EXPORT TEXT to hold the XML
document as a text string.

• XML TERMINATE (page 80). The XML TERMINATE statement
terminates or closes the session with the xmlif library.

Development
The COBOL program must be compiled with the RM/COBOL compiler, and the
output symbol table option (Y Compile Command Option) must be enabled.

After each successful compilation, it is necessary to run the cobtoxml utility
program to generate a set of model files that are used by the XML IMPORT and
XML EXPORT statements.

After the successful execution of the cobtoxml utility, you may then execute the
COBOL program. The xmlif library may be specified either by entering it on
the command line (for example, runcobol myprog l=“some\path\xmlif”) or by
placing the xmlif library in the rmautold directory (this is normally a
subdirectory of the RM/COBOL installation directory).

 Example 5: Export Text and Import Text

128 Appendix A: XML Toolkit Examples

Once the program is tested, you may choose to delete the symbol table
information from the COBOL object file by using the RM/COBOL Combine
Program Utility, rmpgmcom.

Batch File
The following DOS commands may be entered into a batch file. These
commands build and execute example5.cob.

Line Statement
1 rmcobol example5 y

2 cobtoxml example5 Liant-Address

3 move /y example5.cob tmp.cob

4 start /w runcobol rmpgmcom A='STRIP,example5.cob,tmp.cob'

5 del tmp.cob

6 start /w runcobol example5 k

Line 1 compiles the example5.cbl source file with the symbol table option (Y)
enabled.

Line 2 builds the XML model files from the symbol table information in the
symbol table. By default, the model filenames are the same as the object
filename with different extensions (in this instance, the example 5 object
filename is example5.cob, and the model filenames are example5.xml,
example5.xtl, example5.xsl, and example5.xsd).

Lines 3, 4, and 5 are optional. They strip the symbol table from the example 5
object file, example5.cob. In order to reduce the size of the deployed object
files, developers may chose to remove the symbol table from the COBOL object
file before distributing their applications. The RM/COBOL Combine Program
Utility, rmpgmcom, which is shipped with the RM/COBOL development
system, is used for this purpose.

Line 6 executes example5.cob. The K Option “kills” the runtime banner. On
line 6, the start /w sequence is included only as good programming
practice.

Note On Windows, the RM/COBOL runtime (runcobol) is a Windows
application and opens a separate window when executed from DOS. The
start /w part of the DOS command instructs Windows to start the runtime
and then wait (the /w Option) for its completion. This step is necessary in line 4.
If this step were omitted, line 5 could execute before the runtime completed,

 Example 5: Export Text and Import Text

 XML Toolkit for RM/COBOL 129

which would cause the input file (tmp.cob) passed to rmpgmcom to be deleted
before it had been completely read.

Program Description
This COBOL program illustrates how an XML document is generated from a
COBOL data item, and then how the contents of an XML document may be
converted into COBOL data format and stored in a COBOL data item. This
program is similar to “Example 1: Export File and Import File” (see page 88),
except that the XML document is stored as a text string instead of a disk file.

Before any other XML statement may be executed, the XML INITIALIZE
statement must be successfully executed. It is possible for XML INITIALIZE to
fail; therefore, the return status must be checked before continuing.

Data is exported from the data item Liant-Address (as defined in the copy
file, liant.cpy) to an XML document as defined by the variable Document-
Pointer using the XML EXPORT TEXT statement.

Next, the contents of the XML document are imported from the file, liant5.xml,
and placed in the same data item using the XML IMPORT TEXT statement.

Then, the contents of the text string are written to a disk file using the XML
PUT TEXT statement. The memory block is deallocated using the XML FREE
TEXT statement. The sole reason for using the XML PUT TEXT statement is
to make the contents of the XML document available as an external file for
viewing.

Finally, the XML interface is terminated with the XML TERMINATE
statement.

If any of the statements terminate unsuccessfully, the XML GET STATUS-
TEXT statement is called.

 Example 5: Export Text and Import Text

130 Appendix A: XML Toolkit Examples

Data Item
The contents of the data item defined in the copy file, liant.cpy, are as follows:

01 Liant-Address.
 02 Name Pic X(64) Value "Liant Software Corporation".
 02 Address-1 Pic X(64) Value "8911 Capital of Texas Highway North".
 02 Address-2 Pic X(64) Value "Suite 4300".
 02 Address-3.
 03 City Pic X(32) Value "Austin".
 03 State Pic X(2) Value "TX".
 03 Zip Pic 9(5) Value 78759.
 02 Time-Stamp Pic 9(8).

This data item stores company address information (in this case, Liant’s). The
last field of the structure is a time stamp containing the time that the program
was executed. The reason for this item is to assure the person observing the
execution of the example that the results are current. The time element in the
generated XML document should change each time the example is run and
should also contain the current time.

Other Definitions
The copy file, lixmlall.cpy, should be included in the Working-Storage Section
of the program.

The copy file lixmldef.cpy, which is copied in by lixmlall.cpy, defines a data
item named XML-data-group. The contents of this data item are as follows:

01 XML-data-group.
 03 XML-Status PIC 9(4).
 88 XML-IsSuccess VALUE XML-Success.
 88 XML-OK VALUE XML-Success
 THROUGH XML-StatusNonFatal.
 88 XML-IsDirectoryEmpty
 VALUE XML-InformDirectoryEmpty.
 03 XML-StatusText PIC X(80).
 03 XML-MoreFlag PIC 9 BINARY(1).
 88 XML-NoMore VALUE 0.
 03 XML-UniqueID PIC X(40).
 03 XML-Flags PIC 9(10) BINARY(4).

Various XML statements may access one of more fields of this item.
For example, the XML EXPORT TEXT statement returns a value in the

 Example 5: Export Text and Import Text

 XML Toolkit for RM/COBOL 131

XML-Status field. The XML GET STATUS-TEXT statement accesses
the XML-StatusText and XML-MoreFlag fields.

Program Structure
The following tables show COBOL statements that relate to performing XML
Toolkit statements. Some COBOL statements (mostly the DISPLAY
statements) have been omitted. The source of this example is in the file,
example5.cbl.

Initialization

COBOL Statement Description

XML INITIALIZE. Execute the XML INITIALIZE statement (no parameters).
If Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the

termination logic.

Exporting an XML Document

COBOL Statement Description

Accept Time-Stamp From Time. Populate the Time-Stamp field.
XML EXPORT TEXT
 Liant-Address
 "Document-Pointer"
 "Example5".

Execute the XML EXPORT TEXT statement specifying:
 the data item address,
 the XML document pointer name,
 and the model filename.

If Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the
termination logic.

Importing an XML Document

COBOL Statement Description

Move Spaces to Liant-Address. Ensure that the Liant-Address structure contains no data.
XML IMPORT TEXT
 Liant-Address
 "Document-Pointer"
 "Example5".

Execute the XML IMPORT TEXT statement specifying:
 the data item address,
 the XML document pointer name,
 and the model filename.

If Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the
termination logic.

 Example 5: Export Text and Import Text

132 Appendix A: XML Toolkit Examples

Copying an XML Document to a File

COBOL Statement Description

XML PUT TEXT
 Document-Pointer
 "Liant5".

Execute the XML PUT TEXT statement specifying:
 the XML document pointer name
 and the XML document filename.

If Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the
termination logic.

Releasing the XML Document Memory

COBOL Statement Description

XML FREE TEXT
 Document-Pointer.

Execute the XML FREE TEXT statement specifying
the XML document pointer name.

If Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the
termination logic.

Program Exit Logic

COBOL Statement Description

Z. Paragraph-name that is a target of error condition GO TO
statements.

 Copy "lixmltrm.cpy". Copy in the termination test logic (see the “Termination Test
Logic” table).

 Stop Run. Terminate the COBOL program.
 Copy "lixmldsp.cpy". Copy in the status display logic (see the “Status Display

Logic” table).

 Example 5: Export Text and Import Text

 XML Toolkit for RM/COBOL 133

Termination Test Logic
This code is found in the copy file, lixmltrm.cpy.

This code occurs after the paragraph-name Z, so that any error condition is
obtained here via a GO TO statement. If there are no errors, execution “falls
through” to these statements.

COBOL Statement Description

Display "Status: " XML-Status. Display the most recent return status value (if there are no
errors, this should display zero).

Perform Display-Status. Perform the Display-Status paragraph to display any error
messages.

XML TERMINATE. Terminate the XML interface.
Perform Display-Status. Perform the Display-Status paragraph again to display any

error encountered by the XML TERMINATE statement.

Status Display Logic
This code is found in the copy file, lixmldsp.cpy.

This code is called twice by the termination test logic: the first time to report
any error condition that exists, and the second time to report an error (if one
occurs) from the XML TERMINATE statement. If there are no errors (the
condition XML-IsSuccess is true), this paragraph displays no information.

COBOL Statement Description

Display-Status. This is the paragraph-name.
 If Not XML-IsSuccess Do nothing if XML-IsSuccess is true.
 Perform
 With Test After
 Until XML-NoMore

Perform as long as there are status lines available to be
displayed (until XML-NoMore is true).

 XML GET STATUS-TEXT Get the next line of status information from the XML
interface.

 Display XML-StatusText

Display the line that was just obtained.

 End-Perform End of the perform loop.
 End-If. End of the If statement and the paragraph.

 Example 5: Export Text and Import Text

134 Appendix A: XML Toolkit Examples

Execution Results
The following sections display the output of the COBOL program that is run and
the XML document that is generated.

COBOL Display
Running the program (runcobol example5) produces the following display.
Note that pressing a key will terminate the program.

Example-5 - Illustrate EXPORT TEXT and IMPORT TEXT
Document exported by XML EXPORT TEXT
Liant Software Corporation
8911 Capital of Texas Highway North
Suite 4300
Austin TX78759
11232232
Document imported by XML IMPORT TEXT
Liant Software Corporation
8911 Capital of Texas Highway North
Suite 4300
Austin TX78759
11232232
Document memory written by XML PUT TEXT
Document memory released by XML FREE TEXT

You may use IE to inspect 'Liant5.xml'

Status: 0000
Press a key to terminate:

 Example 5: Export Text and Import Text

 XML Toolkit for RM/COBOL 135

XML Document
Microsoft Internet Explorer may be used to view the generated XML document,
liant5.xml. The contents of this document should appear as follows. (Note that
Internet Explorer will differentiate among the various syntactical elements of
XML by displaying them in different colors.)

<?xml version="1.0" encoding="UTF-8" ?>
<root>
 <liant-address>
 <name>Liant Software Corporation</name>
 <address-1>8911 Capital of Texas Highway North</address-1>
 <address-2>Suite 4300</address-2>
 <address-3>
 <city>Austin</city>
 <state>TX</state>
 <zip>78759</zip>
 </address-3>
 <time-stamp>11232232</time-stamp>
 </liant-address>
</root>

Example 6: Export File and Import File with
Directory Polling

This COBOL program illustrates how a series of XML documents may be
placed in a specific directory and how directory polling may be used to process
XML documents as they arrive in that specified directory.

The program first writes (or exports) five XML document files from the contents
of a COBOL data item. Each document has a unique name and is written to the
same directory. Then the program polls the directory looking for an XML
document. When one is found, the program reads (or imports) each XML
document and places the contents in the COBOL data item.

This example uses the following XML statements:

• XML INITIALIZE (page 80). The XML INITIALIZE statement initializes
or opens a session with the xmlif library.

• XML EXPORT FILE (page 62). The XML EXPORT FILE statement
constructs an XML document (as a file) from the contents of a COBOL data
item.

• XML IMPORT FILE (page 65). The XML IMPORT FILE statement reads
an XML document (from a file) into a COBOL data item.

 Example 6: Export File and Import File with Directory Polling

136 Appendix A: XML Toolkit Examples

• XML TERMINATE (page 80). The XML TERMINATE statement
terminates or closes the session with the xmlif library.

• XML GET UNIQUEID (page 77). The XML GET-UNIQUEID statement
is used to generate a unique identifier that can be used to form a filename.

• XML FIND FILE (page 76). The XML FIND FILE statement finds a XML
document file in the specified directory (if one is available).

• XML REMOVE FILE (page 74). The XML REMOVE FILE statement
deletes a file.

Development
The COBOL program must be compiled with the RM/COBOL compiler, and the
output symbol table option (Y Compile Command Option) must be enabled.

After each successful compilation, it is necessary to run the cobtoxml utility
program to generate a set of model files that are used by the XML IMPORT and
XML EXPORT statements.

After the successful execution of the cobtoxml utility, you may then execute the
COBOL program. The xmlif library may be specified either by entering it on
the command line (for example, runcobol myprog l=“some\path\xmlif”) or by
placing the xmlif library in the rmautold directory (this is normally a
subdirectory of the RM/COBOL installation directory).

Once the program is tested, you may choose to delete the symbol table
information from the COBOL object file by using the RM/COBOL Combine
Program Utility, rmpgmcom.

 Example 6: Export File and Import File with Directory Polling

 XML Toolkit for RM/COBOL 137

Batch File
The following DOS commands may be entered into a batch file. These
commands build and execute example6.cob.

Line Statement
1 rmcobol example6 y

2 cobtoxml example6 Time-Stamp

3 move /y example6.cob tmp.cob

4 start /w runcobol rmpgmcom A='STRIP,example6.cob,tmp.cob'

5 del tmp.cob

6 start /w runcobol example6 k

Line 1 compiles the example6.cbl source file with the symbol table option (Y)
enabled.

Line 2 builds the XML model files from the symbol table information in the
symbol table. By default, the model filenames are the same as the object
filename with different extensions (in this instance, the example 6 object
filename is example6.cob, and the model filenames are example6.xml,
example6.xtl, example6.xsl, and example6.xsd).

Lines 3, 4, and 5 are optional. They strip the symbol table from the example 6
object file, example6.cob. In order to reduce the size of the deployed object
files, developers may chose to remove the symbol table from the COBOL object
file before distributing their applications. The RM/COBOL Combine Program
Utility, rmpgmcom, which is shipped with the RM/COBOL development
system, is used for this purpose.

Line 6 executes example6.cob. The K Option “kills” the runtime banner. On
line 6, the start /w sequence is included only as good programming
practice.

Note On Windows, the RM/COBOL runtime (runcobol) is a Windows
application and opens a separate window when executed from DOS. The
start /w part of the DOS command instructs Windows to start the runtime
and then wait (the /w Option) for its completion. This step is necessary in line 4.
If this step were omitted, line 5 could execute before the runtime completed,
which would cause the input file (tmp.cob) passed to rmpgmcom to be deleted
before it had been completely read.

 Example 6: Export File and Import File with Directory Polling

138 Appendix A: XML Toolkit Examples

Program Description
Before any other XML statement may be executed, the XML INITIALIZE
statement must be successfully executed. It is possible for XML INITIALIZE to
fail; therefore, the return status must be checked before continuing.

The current time, which will become the contents of an XML document, is
recorded in a COBOL data item. Note that for this example, an elementary data
item is used instead of a data item.

Because the name of each file within a directory must be unique, a unique
filename is generated using the XML GET UNIQUEID statement. The returned
value is combined with other text strings to form a pathname using the STRING
statement. The current time is placed in the Time-Stamp data item using the
ACCEPT FROM TIME statement. The XML EXPORT FILE statement is used
to output the data item as an XML document. This sequence is repeated until
five XML documents have been placed in the specified directory.

Next, the program goes into a loop polling the specified directory. The XML
FIND FILE statement is used. If the return status is XML-IsSuccess, then a
file has been found and the program proceeds to process the file. If the return
status is XML-IsDirectoryEmpty, then the directory is empty and the
program issues a slight delay and then re-issues the XML FIND FILE statement.
Any other status indicates an error.

Finally, the XML interface is terminated with the XML TERMINATE
statement.

If any of the statements terminate unsuccessfully, the XML GET STATUS-
TEXT statement is called.

Data Item
The contents of the data item defined in the example, which in this case, is a
single data item, is as follows:

01 Time-Stamp Pic 9(8).

This data item stores a time stamp acquired by using the ACCEPT FROM
TIME statement.

 Example 6: Export File and Import File with Directory Polling

 XML Toolkit for RM/COBOL 139

Other Definitions
The copy file, lixmlall.cpy, should be included in the Working-Storage Section
of the program.

The copy file, lixmldef.cpy, which is copied in by lixmlall.cpy, defines a data
item named XML-data-group. The contents of this data item are as follows:

01 XML-data-group.
 03 XML-Status PIC 9(4).
 88 XML-IsSuccess VALUE XML-Success.
 88 XML-OK VALUE XML-Success
 THROUGH XML-StatusNonFatal.
 88 XML-IsDirectoryEmpty
 VALUE XML-InformDirectoryEmpty.
 03 XML-StatusText PIC X(80).
 03 XML-MoreFlag PIC 9 BINARY(1).
 88 XML-NoMore VALUE 0.
 03 XML-UniqueID PIC X(40).
 03 XML-Flags PIC 9(10) BINARY(4).

Various XML statements may access one of more fields of this item.
For example, the XML EXPORT FILE statement returns a value in the
XML-Status field. The XML GET STATUS-TEXT statement accesses
the XML-StatusText and XML-MoreFlag fields.

 Example 6: Export File and Import File with Directory Polling

140 Appendix A: XML Toolkit Examples

Program Structure
The following tables show COBOL statements that relate to performing XML
Toolkit statements. Some COBOL statements (mostly the DISPLAY
statements) have been omitted. The source of this example is in the file,
example6.cbl.

Initialization

COBOL Statement Description

XML INITIALIZE. Execute the XML INITIALIZE statement (no parameters).
If Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the

termination logic.

Exporting XML Documents with Unique Names

COBOL Statement Description

XML GET UNIQUEID
 Unique-Name
If Not XML-OK Go to Z.

Generate a unique identifier.

If the statement terminates unsuccessfully, go to the
termination logic.

Move Spaces to Unique-File-Name
String "Stamp\A" delimited by size

 Unique-Name delimited by SPACE

 ".xml" delimited by size
 into Unique-File-Name.

Convert the unique identifier into a pathname.

Accept Time-Stamp From Time. Populate the Time-Stamp field.
XML EXPORT FILE
 Liant-Address
 "Liant6"
 "Example6".

Execute the XML EXPORT FILE statement specifying:
 the data item address,
 the XML document filename,
 and the model filename.

If Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the
termination logic.

 Example 6: Export File and Import File with Directory Polling

 XML Toolkit for RM/COBOL 141

Importing XML Documents by Directory Polling

COBOL Statement Description

Perform Until 0 > 1 Outer perform loop. Iterate until Exit Perform.
 Perform Compute-Curr-Time

 Compute Stop-Time
 = Curr-Time + 100

The paragraph Compute-Curr-Time ACCEPTs the current
time and converts it to an integer value.
Compute Stop-Time to be 1 second after current time.

 Perform Until 0 > 1
 XML FIND FILE
 "Stamp"
 Unique-File-Name
 If XML-IsSuccess
 Exit Perform
 End-If
 If XML-IsDirectoryEmpty
 Perform Compute-Curr-
Time
 If Curr-Time > Stop-
Time
 Exit Perform
 End-If
 Call "C$DELAY" Using
0.1
 End-If
 If Not XML-OK
 Go to Z
 End-If
 End-Perform

Inner perform loop. Iterate until Exit Perform
Execute XML FIND FILE parameters:
 directory name
 and filename
If the statement returned success,
exit the paragraph
If the statement returns directory empty,
compute new current time, and
if the current-time is greater than the stop time,
exit the perform.

Otherwise, do a short time delay.
If the statement terminates unsuccessfully,
go to the termination logic.

The end of the inner perform loop.

 If Curr-Time > Stop-Time
 Exit Perform
 End-If

Check to see if the outer perform loop should terminate.

 XML IMPORT FILE
 Time-Stamp
 Unique-File-Name
 "Example6"
 If Not XML-OK Go to Z End-
If

Import the file that was found using:
 the data item,
 the filename,
 and the model filename.
If the statement terminates unsuccessfully, go to the
termination logic.

 XML REMOVE FILE
 Unique-File-Name
 If Not XML-OK Go to Z End-
If

Remove the file that has just been processed;
otherwise, find it again.
If the statement terminates unsuccessfully, go to the
termination logic.

End-Perform The end of the outer perform loop.

 Example 6: Export File and Import File with Directory Polling

142 Appendix A: XML Toolkit Examples

Program Exit Logic

COBOL Statement Description

Z. Paragraph-name that is a target of error condition GO TO
statements.

 Copy "lixmltrm.cpy". Copy in the termination test logic (see the “Termination Test
Logic” table).

 Stop Run. Terminate the COBOL program.
 Copy "lixmldsp.cpy". Copy in the status display logic (see the “Status Display

Logic” table).

Termination Test Logic
This code is found in the copy file, lixmltrm.cpy.

This code occurs after the paragraph-name Z, so that any error condition is
obtained here via a GO TO statement. If there are no errors, execution “falls
through” to these statements.

COBOL Statement Description

Display "Status: " XML-Status. Display the most recent return status value (if there are no
errors, this should display zero).

Perform Display-Status. Perform the Display-Status paragraph to display any error
messages.

XML TERMINATE. Terminate the XML interface.
Perform Display-Status. Perform the Display-Status paragraph again to display any

error encountered by the XML TERMINATE statement.

 Example 6: Export File and Import File with Directory Polling

 XML Toolkit for RM/COBOL 143

Status Display Logic
This code is found in the copy file, lixmldsp.cpy.

This code is called twice by the termination test logic: the first time to report
any error condition that exists, and the second time to report an error (if one
occurs) from the XML TERMINATE statement. If there are no errors (the
condition XML-IsSuccess is true), this paragraph displays no information.

COBOL Statement Description

Display-Status. This is the paragraph-name.
 If Not XML-IsSuccess Do nothing if XML-IsSuccess is true.
 Perform
 With Test After
 Until XML-NoMore

Perform as long as there are status lines available to be
displayed (until XML-NoMore is true).

 XML GET STATUS-TEXT Get the next line of status information from the XML
interface.

 Display XML-StatusText Display the line that was just obtained.

 End-Perform End of the perform loop.
 End-If. End of the If statement and the paragraph.

Execution Results
The following sections display the output of the COBOL program that is run and
the XML document that is generated.

COBOL Display
Running the program (runcobol example6) produces two displays. The first is
after exporting five documents to the Stamp directory. The second display is
after polling the Stamp directory and importing the five documents.

 Example 6: Export File and Import File with Directory Polling

144 Appendix A: XML Toolkit Examples

First Display
Note that pressing a key will cause the program to continue.

Example-6 - Illustrate EXPORT FILE and IMPORT FILE with directory polling
Stamp\A{b8a405c0-d552-11d6-adbf-00a0cc274748}.xml exported by XMLExport
Contents: 15303258
Stamp\A{b8a405c2-d552-11d6-adbf-00a0cc274748}.xml exported by XMLExport
Contents: 15303264
Stamp\A{b8a405c4-d552-11d6-adbf-00a0cc274748}.xml exported by XMLExport
Contents: 15303264
Stamp\A{b8a405c6-d552-11d6-adbf-00a0cc274748}.xml exported by XMLExport
Contents: 15303264
Stamp\A{b8a405c8-d552-11d6-adbf-00a0cc274748}.xml exported by XMLExport
Contents: 15303264

You may use IE to display the 'Stamp' directory

Press a key to continue:

Second Display
Note that pressing a key will terminate the program.

E:\xmlexample\Stamp\A{b8a405c0-d552-11d6-adbf-00a0cc274748}.xml imported
by XMLImport
Contents: 15303258
 E:\xmlexample\Stamp\A{b8a405c2-d552-11d6-adbf-00a0cc274748}.xml imported
by XMLImport
Contents: 15303264
 E:\xmlexample\Stamp\A{b8a405c4-d552-11d6-adbf-00a0cc274748}.xml imported
by XMLImport
Contents: 15303264
 E:\xmlexample\Stamp\A{b8a405c6-d552-11d6-adbf-00a0cc274748}.xml imported
by XMLImport
Contents: 15303264
 E:\xmlexample\Stamp\A{b8a405c8-d552-11d6-adbf-00a0cc274748}.xml imported
by XMLImport
Contents: 15303264

You may now use IE to verify that the 'Stamp' directory has been emptied

Status: 0001
Informative: 1[0] - indicated directory contains no documents
Called from line 426 in EXAMPLE6(E:\xmlexample\EXAMPLE6.COB), compiled
2002/10/\
01 15:26:04.
E:\xmlexample\Stamp*.xml
Press a key to terminate.

 Example 6: Export File and Import File with Directory Polling

 XML Toolkit for RM/COBOL 145

XML Document
Microsoft Internet Explorer (or Windows Explorer) may be used to view the
Stamp directory that contains the five generated XML documents. You can
click on any document to see its contents.

After continuing the program, the Stamp directory should empty out as shown.

 Example 6: Export File and Import File with Directory Polling

146 Appendix A: XML Toolkit Examples

Example 7: Export File, Test Well Formed
File, and Validate File

This COBOL program illustrates how an XML document is generated from a
COBOL data item and then how the syntax and contents of an XML document
may be verified.

The program first writes (or exports) an XML document file from the contents
of a COBOL data item. Then the program verifies that the generated document
is well formed. Finally, the program verifies that the contents of the document
conform to the schema file that was generated by the cobtoxml utility.

This example uses the following XML statements:

• XML INITIALIZE (page 80). The XML INITIALIZE statement initializes
or opens a session with the xmlif library.

• XML EXPORT FILE (page 62). The XML EXPORT FILE statement
constructs an XML document (as a file) from the contents of a COBOL data
item.

• XML TEST WELLFORMED-FILE (page 67). The XML TEST
WELLFORMED-FILE statement verifies that an XML document conforms
to XML syntax rules.

• XML VALIDATE FILE (page 70). The XML VALIDATE FILE statement
verifies that the content of an XML document conforms to rules specified
by an XML schema file.

• XML TERMINATE (page 80). The XML TERMINATE statement
terminates or closes the session with the xmlif library.

Development
The COBOL program must be compiled with the RM/COBOL compiler, and the
output symbol table option (Y Compile Command Option) must be enabled.

After each successful compilation, it is necessary to run the cobtoxml utility
program to generate a set of model files that are used by the XML IMPORT and
XML EXPORT statements.

After the successful execution of the cobtoxml utility, you may then execute the
COBOL program. The xmlif library may be specified either by entering it on
the command line (for example, runcobol myprog l=“some\path\xmlif”) or by
placing the xmlif library in the rmautold directory (this is normally a
subdirectory of the RM/COBOL installation directory).

 Example 7: Export File, Test Well Formed File, and Validate File

 XML Toolkit for RM/COBOL 147

Once the program is tested, you may choose to delete the symbol table
information from the COBOL object file by using the RM/COBOL Combine
Program Utility, rmpgmcom.

Batch File
The following DOS commands may be entered into a batch file. These
commands build and execute example7.cob.

Line Statement
1 rmcobol example7 y

2 cobtoxml example7 Liant-Address

3 move /y example7.cob tmp.cob

4 start /w runcobol rmpgmcom A='STRIP,example7.cob,tmp.cob'

5 del tmp.cob

6 start /w runcobol example7 k

Line 1 compiles the example7.cbl source file with the symbol table option (Y)
enabled.

Line 2 builds the XML model files from the symbol table information in the
symbol table. By default, the model filenames are the same as the object
filename with different extensions (in this instance, the example 7 object
filename is example7.cob, and the model filenames are example7.xml,
example7.xtl, example7.xsl, and example7.xsd).

Lines 3, 4, and 5 are optional. They strip the symbol table from the example 7
object file, example7.cob. In order to reduce the size of the deployed object
files, developers may chose to remove the symbol table from the COBOL object
file before distributing their applications. The RM/COBOL Combine Program
Utility, rmpgmcom, which is shipped with the RM/COBOL development
system, is used for this purpose.

Line 6 executes example7.cob. The K Option “kills” the runtime banner. On
line 6, the start /w sequence is included only as good programming
practice.

Note On Windows, the RM/COBOL runtime (runcobol) is a Windows
application and opens a separate window when executed from DOS. The
start /w part of the DOS command instructs Windows to start the runtime
and then wait (the /w Option) for its completion. This step is necessary in line 4.
If this step were omitted, line 5 could execute before the runtime completed,

 Example 7: Export File, Test Well Formed File, and Validate File

148 Appendix A: XML Toolkit Examples

which would cause the input file (tmp.cob) passed to rmpgmcom to be deleted
before it had been completely read.

Program Description
Before any other XML statement may be executed, the XML INITIALIZE
statement must be successfully executed. It is possible for XML INITIALIZE to
fail; therefore, the return status must be checked before continuing.

Data is exported from the data item Liant-Address (as defined in the copy
file, liant.cpy) to an XML document with the filename of liant7.xml using the
XML EXPORT FILE statement.

Next, the syntax of liant7.xml is verified using the XML TEST
WELLFORMED-FILE statement.

Following this, the contents of liant7.xml are verified using the XML
VALIDATE FILE statement.

Finally, the XML interface is terminated with the XML TERMINATE
statement.

If any of the statements terminate unsuccessfully, the XML GET STATUS-
TEXT statement is called.

For the purposes of this example, both the XML TEST WELLFORMED-FILE
and XML VALIDATE FILE statements were used. However, the XML
VALIDATE FILE statement also tests an XML document for well-formed
syntax.

 Example 7: Export File, Test Well Formed File, and Validate File

 XML Toolkit for RM/COBOL 149

Data Item
The contents of the data item defined in the copy file, liant.cpy, are as follows:

01 Liant-Address.
 02 Name Pic X(64) Value "Liant Software Corporation".
 02 Address-1 Pic X(64) Value "8911 Capital of Texas Highway North".
 02 Address-2 Pic X(64) Value "Suite 4300".
 02 Address-3.
 03 City Pic X(32) Value "Austin".
 03 State Pic X(2) Value "TX".
 03 Zip Pic 9(5) Value 78759.
 02 Time-Stamp Pic 9(8).

This data item stores company address information (in this case, Liant’s). The
last field of the item is a time stamp containing the time that the program was
executed. The reason for this item is to assure the person observing the
execution of the example that the results are current. The time element in the
generated XML document should change each time the example is run and
should also contain the current time.

Other Definitions
The copy file, lixmlall.cpy, should be included in the Working-Storage Section
of the program.

The copy file, lixmldef.cpy, which is copied in by lixmlall.cpy, defines a data
item named XML-data-group. The contents of this data item are as follows:

01 XML-data-group.
 03 XML-Status PIC 9(4).
 88 XML-IsSuccess VALUE XML-Success.
 88 XML-OK VALUE XML-Success
 THROUGH XML-StatusNonFatal.
 88 XML-IsDirectoryEmpty
 VALUE XML-InformDirectoryEmpty.
 03 XML-StatusText PIC X(80).
 03 XML-MoreFlag PIC 9 BINARY(1).
 88 XML-NoMore VALUE 0.
 03 XML-UniqueID PIC X(40).
 03 XML-Flags PIC 9(10) BINARY(4).

Various XML statements may access one of more fields of this item.
For example, the XML EXPORT FILE statement returns a value in the

 Example 7: Export File, Test Well Formed File, and Validate File

150 Appendix A: XML Toolkit Examples

XML-Status field. The XML GET STATUS-TEXT statement accesses
the XML-StatusText and XML-MoreFlag fields.

Program Structure
The following tables show COBOL statements that relate to performing XML
Toolkit statements. Some COBOL statements (mostly the DISPLAY
statements) have been omitted. The source of this example is in the file,
example7.cbl.

Initialization

COBOL Statement Description

XML INITIALIZE. Execute the XML INITIALIZE statement (no parameters).
If Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the

termination logic.

Exporting an XML Document

COBOL Statement Description

Accept Time-Stamp From Time. Populate the Time-Stamp field.
XML EXPORT FILE
 Liant-Address
 "Liant7"
 "Example7".

Execute the XML EXPORT FILE statement specifying:
 the data item address,
 the XML document filename,
 and the model filename.

If Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the
termination logic.

Verifying Syntax

COBOL Statement Description

XML TEST WELLFORMED-FILE
 "Liant7".

Execute the XML TEST WELLFORMED-FILE statement
specifying the XML document filename.

If Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the
termination logic.

 Example 7: Export File, Test Well Formed File, and Validate File

 XML Toolkit for RM/COBOL 151

Verifying Content

COBOL Statement Description

XML VALIDATE FILE
 "Liant7"
 "Example7".

Execute the XML VALIDATE FILE statement specifying:
 the XML document filename
 and the model filename

If Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the
termination logic.

Program Exit Logic

COBOL Statement Description

Z. Paragraph-name that is a target of error condition GO TO
statements.

 Copy "lixmltrm.cpy". Copy in the termination test logic (see the “Termination Test
Logic” table).

 Stop Run. Terminate the COBOL program.
 Copy "lixmldsp.cpy". Copy in the status display logic (see the “Status Display

Logic” table).

Termination Test Logic
This code is found in the copy file, lixmltrm.cpy.

This code occurs after the paragraph-name Z, so that any error condition is
obtained here via a GO TO statement. If there are no errors, execution “falls
through” to these statements.

COBOL Statement Description

Display "Status: " XML-Status. Display the most recent return status value (if there are no
errors, this should display zero).

Perform Display-Status. Perform the Display-Status paragraph to display any error
messages.

XML TERMINATE. Terminate the XML interface.
Perform Display-Status. Perform the Display-Status paragraph again to display any

error encountered by the XML TERMINATE statement.

 Example 7: Export File, Test Well Formed File, and Validate File

152 Appendix A: XML Toolkit Examples

Status Display Logic
This code is found in the copy file, lixmldsp.cpy.

This code is called twice by the termination test logic: the first time to report
any error condition that exists, and the second time to report an error (if one
occurs) from the XML TERMINATE statement. If there are no errors (the
condition XML-IsSuccess is true), this paragraph displays no information.

COBOL Statement Description

Display-Status. This is the paragraph-name.
 If Not XML-IsSuccess Do nothing if XML-IsSuccess is true.
 Perform
 With Test After
 Until XML-NoMore

Perform as long as there are status lines available to be
displayed (until XML-NoMore is true).

 XML GET STATUS-TEXT Get the next line of status information from the XML
interface.

 Display XML-StatusText Display the line that was just obtained.

 End-Perform End of the perform loop.
 End-If. End of the If statement and the paragraph.

Execution Results
The following sections display the output of the COBOL program that is run and
the XML document that is generated.

 Example 7: Export File, Test Well Formed File, and Validate File

 XML Toolkit for RM/COBOL 153

COBOL Display
Running the program (runcobol example7) produces the following display.
Note that pressing a key will terminate the program.

Example-7 - Illustrate TEST WELLFORMED-FILE and VALIDATE FILE
Liant7.xml exported by XML EXPORT FILE
Liant Software Corporation
8911 Capital of Texas Highway North
Suite 4300
Austin TX78759
11205270
Liant7.xml checked by XML TEST WELLFORMED-FILE
Liant7.xml validated by XML VALIDATE FILE

You may use IE to inspect 'Liant7.xml'

Status: 0000
Press a key to terminate:

XML Document
Microsoft Internet Explorer may be used to view the generated XML document,
liant7.xml. The contents of this document should appear as follows. (Note that
Internet Explorer will differentiate among the various syntactical elements of
XML by displaying them in different colors.)

<?xml version="1.0" encoding="UTF-8" ?>
<root>
 <liant-address>
 <name>Liant Software Corporation</name>
 <address-1>8911 Capital of Texas Highway North</address-1>
 <address-2>Suite 4300</address-2>
 <address-3>
 <city>Austin</city>
 <state>TX</state>
 <zip>78759</zip>
 </address-3>
 <time-stamp>11205270</time-stamp>
 </liant-address>
</root>

 Example 7: Export File, Test Well Formed File, and Validate File

154 Appendix A: XML Toolkit Examples

Example 8: Export Text, Test Well Formed
Text, and Validate Text

This COBOL program illustrates how an XML document is generated from a
COBOL data item and then how the syntax and contents of an XML document
may be verified. Next, the program verifies that the generated document is well
formed. Finally, the program verifies that the contents of the document conform
to the schema file that was generated by the cobtoxml utility.

This example uses the following XML statements:

• XML INITIALIZE (page 80). The XML INITIALIZE statement initializes
or opens a session with the xmlif library.

• XML EXPORT TEXT (page 64). The XML EXPORT TEXT statement
constructs an XML document (as a text string) from the contents of a
COBOL data item.

• XML TEST WELLFORMED-TEXT (page 68). The XML TEST
WELLFORMED-TEXT statement verifies that an XML document
conforms to XML syntax rules.

• XML VALIDATE TEXT (page 71). The XML VALIDATE TEXT
statement verifies that the content of an XML document conforms to rules
specified by an XML schema file.

• XML PUT TEXT (page 73). The XML PUT TEXT statement copies an
XML document from a text string to a data file.

• XML FREE TEXT (page 72). The XML FREE TEXT statement releases
the memory that was allocated by XML EXPORT TEXT to hold the XML
document as a text string.

• XML TERMINATE (page 80). The XML TERMINATE statement
terminates or closes the session with the xmlif library.

Development
The COBOL program must be compiled with the RM/COBOL compiler, and the
output symbol table option (Y Compile Command Option) must be enabled.

After each successful compilation, it is necessary to run the cobtoxml utility
program to generate a set of model files that are used by the XML IMPORT and
XML EXPORT statements.

 Example 8: Export Text, Test Well Formed Text, and Validate Text

 XML Toolkit for RM/COBOL 155

After the successful execution of the cobtoxml utility, you may then execute the
COBOL program. The xmlif library may be specified either by entering it on
the command line (for example, runcobol myprog l=“some\path\xmlif”) or by
placing the xmlif library in the rmautold directory (this is normally a
subdirectory of the RM/COBOL installation directory).

Once the program is tested, you may choose to delete the symbol table
information from the COBOL object file by using the RM/COBOL Combine
Program Utility, rmpgmcom.

Batch File
The following DOS commands may be entered into a batch file. These
commands build and execute example8.cob.

Line Statement
1 rmcobol example8 y

2 cobtoxml example8 Liant-Address

3 move /y example8.cob tmp.cob

4 start /w runcobol rmpgmcom A='STRIP,example8.cob,tmp.cob'

5 del tmp.cob

6 start /w runcobol example8 k

Line 1 compiles the example8.cbl source file with the symbol table option (Y)
enabled.

Line 2 builds the XML model files from the symbol table information in the
symbol table. By default, the model filenames are the same as the object
filename with different extensions (in this instance, the example 8 object
filename is example8.cob, and the model filenames are example8.xml,
example8.xtl, example8.xsl, and example8.xsd).

Lines 3, 4, and 5 are optional. They strip the symbol table from the example 8
object file, example8.cob. In order to reduce the size of the deployed object
files, developers may chose to remove the symbol table from the COBOL object
file before distributing their applications. The RM/COBOL Combine Program
Utility, rmpgmcom, which is shipped with the RM/COBOL development
system, is used for this purpose.

Line 6 executes example8.cob. The K Option “kills” the runtime banner.
On line 6, the start /w sequence is included only as good programming
practice.

 Example 8: Export Text, Test Well Formed Text, and Validate Text

156 Appendix A: XML Toolkit Examples

Note On Windows, the RM/COBOL runtime (runcobol) is a Windows
application and opens a separate window when executed from DOS. The
start /w part of the DOS command instructs Windows to start the runtime
and then wait (the /w Option) for its completion. This step is necessary in line 4.
If this step were omitted, line 5 could execute before the runtime completed,
which would cause the input file (tmp.cob) passed to rmpgmcom to be deleted
before it had been completely read.

Program Description
Before any other XML statement may be executed, the XML INITIALIZE
statement must be successfully executed. It is possible for XML INITIALIZE to
fail; therefore, the return status must be checked before continuing.

Data is exported from the data item Liant-Address (as defined in the copy
file, liant.cpy) to an XML document as defined by the variable, Document-
Pointer, using the XML EXPORT TEXT statement.

Next, the syntax of the generated XML document is verified using the XML
TEST WELLFORMED-TEXT statement.

Following this, the contents of the generated XML document are verified using
the XML VALIDATE TEXT statement.

Next, the contents of the text string are written to a disk file using the XML PUT
TEXT statement. The memory block is deallocated using the XML FREE
TEXT statement. The sole reason for using the XML PUT TEXT statement is
to make the contents of the XML document available as an external file for
viewing.

Finally, the XML interface is terminated with the XML TERMINATE
statement.

If any of the statements terminate unsuccessfully, the XML GET STATUS-
TEXT statement is called.

For the purposes of this example, both the XML TEST WELLFORMED-TEXT
and XML VALIDATE TEXT statements were used. However, the XML
VALIDATE TEXT statement also tests an XML document for well-formed
syntax.

 Example 8: Export Text, Test Well Formed Text, and Validate Text

 XML Toolkit for RM/COBOL 157

Data Item
The contents of the data item defined in the copy file, liant.cpy, are as follows:

01 Liant-Address.
 02 Name Pic X(64) Value "Liant Software Corporation".
 02 Address-1 Pic X(64) Value "8911 Capital of Texas Highway North".
 02 Address-2 Pic X(64) Value "Suite 4300".
 02 Address-3.
 03 City Pic X(32) Value "Austin".
 03 State Pic X(2) Value "TX".
 03 Zip Pic 9(5) Value 78759.
 02 Time-Stamp Pic 9(8).

This data item stores company address information (in this case, Liant’s). The
last field of the item is a time stamp containing the time that the program was
executed. The reason for this item is to assure the person observing the
execution of the example that the results are current. The time element in the
generated XML document should change each time the example is run and
should also contain the current time.

Other Definitions
The copy file, lixmlall.cpy, should be included in the Working-Storage Section
of the program.

The copy file, lixmldef.cpy, which is copied in by lixmlall.cpy, defines a data
item named XML-data-group. The contents of this data item are as follows:

01 XML-data-group.
 03 XML-Status PIC 9(4).
 88 XML-IsSuccess VALUE XML-Success.
 88 XML-OK VALUE XML-Success
 THROUGH XML-StatusNonFatal.
 88 XML-IsDirectoryEmpty
 VALUE XML-InformDirectoryEmpty.
 03 XML-StatusText PIC X(80).
 03 XML-MoreFlag PIC 9 BINARY(1).
 88 XML-NoMore VALUE 0.
 03 XML-UniqueID PIC X(40).
 03 XML-Flags PIC 9(10) BINARY(4).

Various XML statements may access one of more fields of this item.
For example, the XML EXPORT TEXT statement returns a value in the

 Example 8: Export Text, Test Well Formed Text, and Validate Text

158 Appendix A: XML Toolkit Examples

XML-Status field. The XML GET STATUS-TEXT statement accesses
the XML-StatusText and XML-MoreFlag fields.

Program Structure
The following tables show COBOL statements that relate to performing XML
Toolkit statements. Some COBOL statements (mostly the DISPLAY
statements) have been omitted. The source of this example is in the file,
example8.cbl.

Initialization

COBOL Statement Description

XML INITIALIZE. Execute the XML INITIALIZE statement (no parameters).
If Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the

termination logic.

Exporting an XML Document

COBOL Statement Description

Accept Time-Stamp From Time. Populate the Time-Stamp field.
XML EXPORT TEXT
 Liant-Address
 "Document-Pointer"
 "Example8".

Execute the XML EXPORT TEXT statement specifying:
 the data item address,
 the XML document text name,
 and the model filename.

If Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the
termination logic.

Verifying Syntax

COBOL Statement Description

XML TEST WELLFORMED-TEXT
 "Document-Pointer".

Execute the XML TEST WELLFORMED-TEXT statement
specifying the XML document text name.

If Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the
termination logic.

 Example 8: Export Text, Test Well Formed Text, and Validate Text

 XML Toolkit for RM/COBOL 159

Verifying Content

COBOL Statement Description

XML VALIDATE TEXT
 "Document-Pointer"
 "Example8".

Execute the XML VALIDATE TEXT statement specifying:
 the XML document text name
 and the model filename.

If Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the
termination logic.

Copying an XML Document to a File

COBOL Statement Description

XML PUT TEXT
 "Document-Pointer"
 "Liant8".

Execute the XML PUT TEXT statement specifying:
 the XML document text name
 and the document filename.

If Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the
termination logic.

Releasing the XML Document Memory

COBOL Statement Description

XML FREE TEXT
 "Document-Pointer".

Execute the XML FREE TEXT statement specifying
the XML document text name.

If Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the
termination logic.

Program Exit Logic

COBOL Statement Description

Z. Paragraph-name that is a target of error condition GO TO
statements.

 Copy "lixmltrm.cpy". Copy in the termination test logic (see the “Termination Test
Logic” table).

 Stop Run. Terminate the COBOL program.
 Copy "lixmldsp.cpy". Copy in the status display logic (see the “Status Display

Logic” table).

 Example 8: Export Text, Test Well Formed Text, and Validate Text

160 Appendix A: XML Toolkit Examples

Termination Test Logic
This code is found in the copy file, lixmltrm.cpy.

This code occurs after the paragraph-name Z, so that any error condition is
obtained here via a GO TO statement. If there are no errors, execution “falls
through” to these statements.

COBOL Statement Description

Display "Status: " XML-Status. Display the most recent return status value (if there are no
errors, this should display zero).

Perform Display-Status. Perform the Display-Status paragraph to display any error
messages.

XML TERMINATE. Terminate the XML interface.
Perform Display-Status. Perform the Display-Status paragraph again to display any

error encountered by the XML TERMINATE statement.

Status Display Logic
This code is found in the copy file, lixmldsp.cpy.

This code is called twice by the termination test logic: the first time to report
any error condition that exists, and the second time to report an error (if one
occurs) from the XML TERMINATE statement. If there are no errors (the
condition XML-IsSuccess is true), this paragraph displays no information.

COBOL Statement Description

Display-Status. This is the paragraph-name.
 If Not XML-IsSuccess Do nothing if XML-IsSuccess is true.
 Perform
 With Test After
 Until XML-NoMore

Perform as long as there are status lines available to be
displayed (until XML-NoMore is true).

 XML GET STATUS-TEXT Get the next line of status information from the XML
interface.

 Display XML-StatusText Display the line that was just obtained.

 End-Perform End of the perform loop.
 End-If. End of the If statement and the paragraph.

 Example 8: Export Text, Test Well Formed Text, and Validate Text

 XML Toolkit for RM/COBOL 161

Execution Results
The following sections display the output of the COBOL program that is run and
the XML document that is generated.

COBOL Display
Running the program (runcobol example8) produces the following display.
Note that pressing a key will terminate the program.

Example-8 - Illustrate TEST-WELLFORMED TEXT and VALIDATE TEXT
Document exported by XML EXPORT TEXT
Liant Software Corporation
8911 Capital of Texas Highway North
Suite 4300
Austin TX78759
12545201
Document checked by XML TEST WELLFORMED-TEXT
Document validated by XML VALIDATE TEXT
Document memory written by XML PUT TEXT
Document memory released by XML FREE TEXT

You may use IE to inspect 'Liant8.xml'

Status: 0000
Press a key to terminate:

XML Document
Microsoft Internet Explorer may be used to view the generated XML document,
liant8.xml. The contents of this document should appear as follows. (Note that
Internet Explorer will differentiate among the various syntactical elements of
XML by displaying them in different colors.)

<?xml version="1.0" encoding="UTF-8" ?>
<root>
 <liant-address>
 <name>Liant Software Corporation</name>
 <address-1>8911 Capital of Texas Highway North</address-1>
 <address-2>Suite 4300</address-2>
 <address-3>
 <city>Austin</city>
 <state>TX</state>
 <zip>78759</zip>
 </address-3>
 <time-stamp>12545201</time-stamp>
 </liant-address>
</root>

 Example 8: Export Text, Test Well Formed Text, and Validate Text

162 Appendix A: XML Toolkit Examples

Example 9: Export File, Transform File, and
Import File

This COBOL program illustrates how an XML document is generated from a
COBOL data item, and then how the contents of an XML document may be
converted into COBOL data format and stored in a COBOL data item.

The program first writes (or exports) an XML document file from the contents
of a COBOL data item. Next, the document is transformed into another format
(the same format as in “Example 2: Export File and Import File with Style
Sheets” described on page 96) and then transformed back into the original
output format. Then the program reads (or imports) the same XML document
and places the contents in the same COBOL data item. One additional
transform is applied to add in the COBOL attributes to the input document.

This example uses the following XML statements:

• XML INITIALIZE (page 80). The XML INITIALIZE statement initializes
or opens a session with the xmlif library.

• XML EXPORT FILE (page 62). The XML EXPORT FILE statement
constructs an XML document (as a file) from the contents of a COBOL data
item.

• XML IMPORT FILE (page 65). The XML IMPORT FILE statement reads
an XML document (from a file) into a COBOL data item.

• XML TRANSFORM FILE (page 69). The XML TRANSFORM FILE
statement uses a style sheet to modify (transform) an XML document into
another format.

• XML TERMINATE (page 80). The XML TERMINATE statement
terminates or closes the session with the xmlif library.

Development
The COBOL program must be compiled with the RM/COBOL compiler, and the
output symbol table option (Y Compile Command Option) must be enabled.

After each successful compilation, it is necessary to run the cobtoxml utility
program to generate a set of model files that are used by the XML IMPORT and
XML EXPORT statements.

After the successful execution of the cobtoxml utility, you may then execute the
COBOL program. The xmlif library may be specified either by entering it on
the command line (for example, runcobol myprog l=“some\path\xmlif”) or by

 Example 9: Export File, Transform File, and Import File

 XML Toolkit for RM/COBOL 163

placing the xmlif library in the rmautold directory (this is normally a
subdirectory of the RM/COBOL installation directory).

Once the program is tested, you may choose to delete the symbol table
information from the COBOL object file by using the RM/COBOL Combine
Program Utility, rmpgmcom.

Batch File
The following DOS commands may be entered into a batch file. These
commands build and execute example9.cob.

Line Statement
1 rmcobol example9 y

2 cobtoxml example9 Liant-Address

3 move /y example9.cob tmp.cob

4 start /w runcobol rmpgmcom A='STRIP,example9.cob,tmp.cob'

5 del tmp.cob

6 start /w runcobol example9 k

Line 1 compiles the example9.cbl source file with the symbol table option (Y)
enabled.

Line 2 builds the XML model files from the symbol table information in the
symbol table. By default, the model filenames are the same as the object
filename with different extensions (in this instance, the example 9 object
filename is example9.cob, and the model filenames are example9.xml,
example9.xtl, example9.xsl, and example9.xsd).

Lines 3, 4, and 5 are optional. They strip the symbol table from the example 9
object file, example9.cob. In order to reduce the size of the deployed object
files, developers may chose to remove the symbol table from the COBOL object
file before distributing their applications. The RM/COBOL Combine Program
Utility, rmpgmcom, which is shipped with the RM/COBOL development
system, is used for this purpose.

Line 6 executes example9.cob. The K Option “kills” the runtime banner. On
line 6, the start /w sequence is included only as good programming
practice.

Note On Windows, the RM/COBOL runtime (runcobol) is a Windows
application and opens a separate window when executed from DOS. The
start /w part of the DOS command instructs Windows to start the runtime
and then wait (the /w Option) for its completion. This step is necessary in line 4.

 Example 9: Export File, Transform File, and Import File

164 Appendix A: XML Toolkit Examples

If this step were omitted, line 5 could execute before the runtime completed,
which would cause the input file (tmp.cob) passed to rmpgmcom to be deleted
before it had been completely read.

Program Description
Before any other XML statement may be executed, the XML INITIALIZE
statement must be successfully executed. It is possible for XML INITIALIZE to
fail; therefore, the return status must be checked before continuing.

Data is exported from the data item Liant-Address (as defined in the copy
file, liant.cpy) to an XML document with the filename of liant9a.xml using the
XML EXPORT FILE statement.

Next, the contents of the XML document are transformed from the format that
was used in Example 2 with an XML TRANSFORM FILE statement producing
the file, Liant9b.xml, and then transformed back into the original output format.

Next, the contents of the XML document are imported from the file,
liant9c.xml, and placed in the same data item using the XML IMPORT FILE
statement.

Subsequently, the contents of the XML document, liant9c.xml, are transformed
using the style sheet from the set of model files creating the file, liant9d.xml.
This adds all of the COBOL attributes to liant9d.xml.

Finally, the XML interface is terminated with the XML TERMINATE
statement.

If any of the statements terminate unsuccessfully, the XML GET STATUS-
TEXT statement is called.

 Example 9: Export File, Transform File, and Import File

 XML Toolkit for RM/COBOL 165

Data Item
The contents of the data item defined in the copy file, liant.cpy, are as follows:

01 Liant-Address.
 02 Name Pic X(64) Value "Liant Software Corporation".
 02 Address-1 Pic X(64) Value "8911 Capital of Texas Highway North".
 02 Address-2 Pic X(64) Value "Suite 4300".
 02 Address-3.
 03 City Pic X(32) Value "Austin".
 03 State Pic X(2) Value "TX".
 03 Zip Pic 9(5) Value 78759.
 02 Time-Stamp Pic 9(8).

This data item stores company address information (in this case, Liant’s). The
last field of the item is a time stamp containing the time that the program was
executed. The reason for this item is to assure the person observing the
execution of the example that the results are current. The time element in the
generated XML document should change each time the example is run and
should also contain the current time.

Other Definitions
The copy file, lixmlall.cpy, should be included in the Working-Storage Section
of the program.

The copy file lixmldef.cpy, which is copied in by lixmlall.cpy, defines a data
item named XML-data-group. The contents of this data item are as follows:

01 XML-data-group.
 03 XML-Status PIC 9(4).
 88 XML-IsSuccess VALUE XML-Success.
 88 XML-OK VALUE XML-Success
 THROUGH XML-StatusNonFatal.
 88 XML-IsDirectoryEmpty
 VALUE XML-InformDirectoryEmpty.
 03 XML-StatusText PIC X(80).
 03 XML-MoreFlag PIC 9 BINARY(1).
 88 XML-NoMore VALUE 0.
 03 XML-UniqueID PIC X(40).
 03 XML-Flags PIC 9(10) BINARY(4).

Various XML statements may access one of more fields of this item.
For example, the XML EXPORT FILE statement returns a value in the

 Example 9: Export File, Transform File, and Import File

166 Appendix A: XML Toolkit Examples

XML-Status field. The XML GET STATUS-TEXT statement accesses
the XML-StatusText and XML-MoreFlag fields.

Program Structure
The following tables show COBOL statements that relate to performing XML
Toolkit statements. Some COBOL statements (mostly the DISPLAY
statements) have been omitted. The source of this example is in the file,
example9.cbl.

Initialization

COBOL Statement Description

XML INITIALIZE. Execute the XML INITIALIZE statement (no parameters).
If Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the

termination logic.

Exporting an XML Document

COBOL Statement Description

Accept Time-Stamp From Time. Populate the Time-Stamp field
XML EXPORT FILE
 Liant-Address
 "Liant9a"
 "Example9".

Execute the XML EXPORT FILE statement specifying:
 the data item address,
 the XML document filename,
 and the model filename.

If Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the
termination logic.

Transforming to External XML Format

COBOL Statement Description

XML TRANSFORM FILE
 "Liant9a"
 "toExt"
 "Liant9b".

Execute the XML TRANSFORM FILE statement specifying:
 the input XML document filename
 the style sheet filename,
 and the output XML document filename.

If Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the
termination logic.

 Example 9: Export File, Transform File, and Import File

 XML Toolkit for RM/COBOL 167

Transforming to Internal XML Format

COBOL Statement Description

XML TRANSFORM FILE
 "Liant9b"
 "toInt"
 "Liant9c".

Execute the XML TRANSFORM FILE statement specifying:
 the input XML document filename,
 the style sheet filename,
 and the output XML document filename.

If Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the
termination logic.

Importing an XML Document

COBOL Statement Description

Move Spaces to Liant-Address. Ensure that the Liant-Address item contains no data.
XML IMPORT FILE
 Liant-Address
 "Liant9c"
 "Example9".

Execute the XML IMPORT FILE statement specifying:
 the data item address,
 the XML document filename,
 and the model filename.

If Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the
termination logic.

Transforming to Include COBOL Attributes

COBOL Statement Description

XML TRANSFORM FILE
 "Liant9c"
 "Example9"
 "Liant9df".

Execute the XML TRANSFORM FILE statement
specifying:
 the input XML document filename,
 the style sheet filename,
 and the output XML document filename.

If Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the
termination logic.

 Example 9: Export File, Transform File, and Import File

168 Appendix A: XML Toolkit Examples

Program Exit Logic

COBOL Statement Description

Z. Paragraph-name that is a target of error condition GO TO
statements.

 Copy "lixmltrm.cpy". Copy in the termination test logic (see the “Termination Test
Logic” table).

 Stop Run. Terminate the COBOL program.
 Copy "lixmldsp.cpy". Copy in the status display logic (see the “Status Display

Logic” table).

Termination Test Logic
This code is found in the copy file, lixmltrm.cpy.

This code occurs after the paragraph-name Z, so that any error condition is
obtained here via a GO TO statement. If there are no errors, execution “falls
through” to these statements.

COBOL Statement Description

Display "Status: " XML-Status. Display the most recent return status value (if there are no
errors, this should display zero).

Perform Display-Status. Perform the Display-Status paragraph to display any error
messages.

XML TERMINATE. Terminate the XML interface.
Perform Display-Status. Perform the Display-Status paragraph again to display any

error encountered by the XML TERMINATE statement.

 Example 9: Export File, Transform File, and Import File

 XML Toolkit for RM/COBOL 169

Status Display Logic
This code is found in the copy file, lixmldsp.cpy.

This code is called twice by the termination test logic: the first time to report
any error condition that exists, and the second time to report an error (if one
occurs) from the XML TERMINATE statement. If there are no errors (the
condition XML-IsSuccess is true), this paragraph displays no information.

COBOL Statement Description

Display-Status. This is the paragraph-name.
 If Not XML-IsSuccess Do nothing if XML-IsSuccess is true.
 Perform
 With Test After
 Until XML-NoMore

Perform as long as there are status lines available to be
displayed (until XML-NoMore is true).

 XML GET STATUS-TEXT Get the next line of status information from the XML
interface.

 Display XML-StatusText Display the line that was just obtained.

 End-Perform End of the perform loop.
 End-If. End of the If statement and the paragraph.

Execution Results
The following sections display the output of the COBOL program that is run and
the XML document that is generated.

 Example 9: Export File, Transform File, and Import File

170 Appendix A: XML Toolkit Examples

COBOL Display
Running the program (runcobol example9) produces the following display.
Note that pressing a key will terminate the program.

Example-9 - Illustrate TRANSFORM FILE
Liant9a.xml exported by XML EXPORT FILE
Liant Software Corporation
8911 Capital of Texas Highway North
Suite 4300
Austin TX78759
14103001
Liant9a.xml transformed into Liant9b.xml by XML TRANSFORM FILE
Liant9b.xml transformed into Liant9c.xml by XML TRANSFORM FILE
Liant9c.xml imported by XML IMPORT FILE
Liant Software Corporation
8911 Capital of Texas Highway North
Suite 4300
Austin TX78759
14103001
Liant9c.xml transformed into Liant9d.xml by XML TRANSFORM FILE

You may use IE to inspect 'Liant9a.xml' - 'Liant9d.xml'

Status: 0000
Press a key to terminate:

XML Documents
Microsoft Internet Explorer may be used to view the generated XML
documents, liant9a.xml, liant9b.xml, liant9c.xml, and liant9d.xml. Their
contents of these documents should appear as follows. (Note that Internet
Explorer will differentiate among the various syntactical elements of XML by
displaying them in different colors.)

 Example 9: Export File, Transform File, and Import File

 XML Toolkit for RM/COBOL 171

Liant9a.xml – Internal Format (similar to Liant1.xml)

<?xml version="1.0" encoding="UTF-8" ?>
<root>
 <liant-address>
 <name>Liant Software Corporation</name>
 <address-1>8911 Capital of Texas Highway North</address-1>
 <address-2>Suite 4300</address-2>
 <address-3>
 <city>Austin</city>
 <state>TX</state>
 <zip>78759</zip>
 </address-3>
 <time-stamp>14103001</time-stamp>
 </liant-address>
</root>

Liant9b.xml – External Format (similar to Liant2.xml)

<?xml version="1.0" encoding="UTF-8" ?>
<LiantAddress>
 <Information Name="Liant Software Corporation"
 Address1="8911 Capital of Texas Highway North"
 Address2="Suite 4300" City="Austin" State="TX" Zip="78759" />
 <TimeStamp Value="14103001" />
</LiantAddress>

Liant9c.xml – Internal Format Restored

<?xml version="1.0" encoding="UTF-8" ?>
<root>
 <liant-address>
 <name>Liant Software Corporation</name>
 <address-1>8911 Capital of Texas Highway North</address-1>
 <address-2>Suite 4300</address-2>
 <address-3>
 <city>Austin</city>
 <state>TX</state>
 <zip>78759</zip>
 </address-3>
 <time-stamp>14103001</time-stamp>
 </liant-address>
</root>

 Example 9: Export File, Transform File, and Import File

172 Appendix A: XML Toolkit Examples

Liant9d.xml – Internal Format plus COBOL Attributes

<?xml version="1.0" encoding="UTF-8" ?>
<root type="nonnumeric" kind="GRP" dateTime="2002-10-07T14:10:24">
 <liant-address type="nonnumeric" kind="GRP" length="239" offset="4"
 id="Q1568">
 <name type="nonnumeric" kind="ANS" length="64" offset="4"
 id="Q1590">Liant Software Corporation</name>
 <address-1 type="nonnumeric" kind="ANS" length="64" offset="68"
 id="Q1612">8911 Capital of Texas Highway North</address-1>
 <address-2 type="nonnumeric" kind="ANS" length="64" offset="132"
 id="Q1634">Suite 4300</address-2>
 <address-3 type="nonnumeric" kind="GRP" length="39" offset="196"
 id="Q1656">
 <city type="nonnumeric" kind="ANS" length="32" offset="196"
 id="Q1678">Austin</city>
 <state type="nonnumeric" kind="ANS" length="2" offset="228"
 id="Q1700">TX</state>
 <zip type="numeric" kind="NSU" length="5" offset="230" scale="0"
 precision="5" id="Q1722">78759</zip>
 </address-3>
 <time-stamp type="numeric" kind="NSU" length="8" offset="235" scale="0"
 precision="8" id="Q1744">14103001</time-stamp>
 </liant-address>
</root>

 Example 9: Export File, Transform File, and Import File

 XML Toolkit for RM/COBOL 173

Example A: Well Formed and Validate
Diagnostic Messages

This program illustrates the diagnostic messages that may be displayed for XML
documents that are not well formed or valid. The program used the XML TEST
WELLFORMED-FILE and XML VALIDATE FILE statements to test and
validate a series of XML documents.

This example uses the following XML statements:

• XML INITIALIZE (page 80). The XML INITIALIZE statement initializes
or opens a session with the xmlif library.

• XML TEST WELLFORMED-FILE (page 67). The XML TEST
WELLFORMED-FILE statement verifies that an XML document conforms
to XML syntax rules.

• XML VALIDATE FILE (page 70). The XML VALIDATE FILE statement
verifies that the content of an XML document conforms to rules specified
by an XML schema file.

• XML TERMINATE (page 80). The XML TERMINATE statement
terminates or closes the session with the xmlif library.

Development
The COBOL program must be compiled with the RM/COBOL compiler, and the
output symbol table option (Y Compile Command Option) must be enabled.

After each successful compilation, it is necessary to run the cobtoxml utility
program to generate a set of model files that are used by the XML IMPORT and
XML EXPORT statements.

After the successful execution of the cobtoxml utility, you may then execute the
COBOL program. The xmlif library may be specified either by entering it on
the command line (for example, runcobol myprog l=“some\path\xmlif”) or by
placing the xmlif library in the rmautold directory (this is normally a
subdirectory of the RM/COBOL installation directory).

Once the program is tested, you may choose to delete the symbol table
information from the COBOL object file by using the RM/COBOL Combine
Program Utility, rmpgmcom.

 Example A: Well Formed and Validate Diagnostic Messages

174 Appendix A: XML Toolkit Examples

Batch File
The following DOS commands may be entered into a batch file. These
commands build and execute exampleA.cob.

Line Statement
1 rmcobol exampleA y

2 cobtoxml exampleA Liant-Address

3 move /y exampleA.cob tmp.cob

4 start /w runcobol rmpgmcom A='STRIP,exampleA.cob,tmp.cob'

5 del tmp.cob

6 start /w runcobol exampleA k

Line 1 compiles the exampleA.cbl source file with the symbol table option (Y)
enabled.

Line 2 builds the XML model files from the symbol table information in the
symbol table. By default, the model filenames are the same as the object
filename with different extensions (in this instance, the example A object
filename is exampleA.cob, and the model filenames are exampleA.xml,
exampleA.xtl, exampleA.xsl, and exampleA.xsd).

Lines 3, 4, and 5 are optional. They strip the symbol table from the example A
object file, exampleA.cob. In order to reduce the size of the deployed object
files, developers may chose to remove the symbol table from the COBOL object
file before distributing their applications. The RM/COBOL Combine Program
Utility, rmpgmcom, which is shipped with the RM/COBOL development
system, is used for this purpose.

Line 6 executes exampleA.cob. The K Option “kills” the runtime banner. On
line 6, the start /w sequence is included only as good programming
practice.

Note On Windows, the RM/COBOL runtime (runcobol) is a Windows
application and opens a separate window when executed from DOS. The
start /w part of the DOS command instructs Windows to start the runtime
and then wait (the /w Option) for its completion. This step is necessary in line 4.
If this step were omitted, line 5 could execute before the runtime completed,
which would cause the input file (tmp.cob) passed to rmpgmcom to be deleted
before it had been completely read.

 Example A: Well Formed and Validate Diagnostic Messages

 XML Toolkit for RM/COBOL 175

Program Description
Before any other XML statement may be executed, the XML INITIALIZE
statement must be successfully executed. It is possible for XML INITIALIZE to
fail; therefore, the return status must be checked before continuing.

Three different predefined XML documents are processed:

• The XLiantA1.xml file is not well formed and will cause the XML TEST
WELLFORMED-FILE statement to return with an error status. Since this
function fails, the XML VALIDATE FILE statement is not used to process
this file.

• The XLiantA2.xml file is well formed but not valid. The XML TEST
WELLFORMED-FILE statement will return success. The XML
VALIDATE FILE statement will return with an error status.

• The XLiantA3.xml file is both well formed and valid. Both the XML
TEST-WELLFORMED-FILE statement and the XML VALIDATE FILE
statement will return a successful status.

Finally, the XML interface is terminated with the XML TERMINATE
statement.

If any of the statements terminate unsuccessfully, the XML GET STATUS-
TEXT statement is called.

Data Item
The contents of the data item defined in the copy file, liant.cpy, are as follows:

01 Liant-Address.
 02 Name Pic X(64) Value "Liant Software Corporation".
 02 Address-1 Pic X(64) Value "8911 Capital of Texas Highway North".
 02 Address-2 Pic X(64) Value "Suite 4300".
 02 Address-3.
 03 City Pic X(32) Value "Austin".
 03 State Pic X(2) Value "TX".
 03 Zip Pic 9(5) Value 78759.
 02 Time-Stamp Pic 9(8).

This data item stores company address information (in this case, Liant’s). The
last field of the item is a time stamp containing the time that the program was
executed. The reason for this item is to assure the person observing the
execution of the example that the results are current. The time element in the

 Example A: Well Formed and Validate Diagnostic Messages

176 Appendix A: XML Toolkit Examples

generated XML document should change each time the example is run and
should also contain the current time.

Other Definitions
The copy file, lixmlall.cpy, should be included in the Working-Storage Section
of the program.

The copy file, lixmldef.cpy, which is copied in by lixmlall.cpy, defines a data
item named XML-data-group. The contents of this data item are as follows:

01 XML-data-group.
 03 XML-Status PIC 9(4).
 88 XML-IsSuccess VALUE XML-Success.
 88 XML-OK VALUE XML-Success
 THROUGH XML-StatusNonFatal.
 88 XML-IsDirectoryEmpty
 VALUE XML-InformDirectoryEmpty.
 03 XML-StatusText PIC X(80).
 03 XML-MoreFlag PIC 9 BINARY(1).
 88 XML-NoMore VALUE 0.
 03 XML-UniqueID PIC X(40).
 03 XML-Flags PIC 9(10) BINARY(4).

Various XML statements may access one of more fields of this item.
For example, the XML EXPORT FILE statement returns a value in the
XML-Status field. The XML GET STATUS-TEXT statement accesses
the XML-StatusText and XML-MoreFlag fields.

Program Structure
The following tables show COBOL statements that relate to performing XML
Toolkit statements. Some COBOL statements (mostly the DISPLAY
statements) have been omitted. The source of this example is in the file,
exampleA.cbl.

Initialization

COBOL Statement Description

XML INITIALIZE. Execute the XML INITIALIZE statement (no parameters).
If Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the

termination logic.

 Example A: Well Formed and Validate Diagnostic Messages

 XML Toolkit for RM/COBOL 177

Testing for a Well-Formed Document

COBOL Statement Description

XML TEST WELLFORMED-FILE
 "Xliant1".

Execute the XML TEST WELLFORMED-FILE statement
specifying the XML document filename.

If Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the
termination logic.

Testing for a Valid Document

COBOL Statement Description

XML VALIDATE FILE
 "XLiantA2"
 "ExampleA".

Execute the XML VALIDATE FILE statement specifying:
 the XML document filename
 and the model filename.

If Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the
termination logic.

Program Exit Logic

COBOL Statement Description

Z. Paragraph-name that is a target of error condition GO TO
statements.

 Copy "lixmltrm.cpy". Copy in the termination test logic (see the “Termination Test
Logic” table).

 Stop Run. Terminate the COBOL program.
 Copy "lixmldsp.cpy". Copy in the status display logic (see the “Status Display

Logic” table).

 Example A: Well Formed and Validate Diagnostic Messages

178 Appendix A: XML Toolkit Examples

Termination Test Logic
This code is found in the copy file, lixmltrm.cpy.

This code occurs after the paragraph-name Z, so that any error condition is
obtained here via a GO TO statement. If there are no errors, execution “falls
through” to these statements.

COBOL Statement Description

Display "Status: " XML-Status. Display the most recent return status value (if there are no
errors, this should display zero).

Perform Display-Status. Perform the Display-Status paragraph to display any error
messages.

XML TERMINATE. Terminate the XML interface.
Perform Display-Status. Perform the Display-Status paragraph again to display any

error encountered by the XML TERMINATE statement.

Status Display Logic
This code is found in the copy file, lixmldsp.cpy.

This code is called twice by the termination test logic: the first time to report
any error condition that exists, and the second time to report an error (if one
occurs) from the XML TERMINATE statement. If there are no errors (the
condition XML-IsSuccess is true), this paragraph displays no information.

COBOL Statement Description

Display-Status. This is the paragraph-name.
 If Not XML-IsSuccess Do nothing if XML-IsSuccess is true.
 Perform
 With Test After
 Until XML-NoMore

Perform as long as there are status lines available to be
displayed (until XML-NoMore is true).

 XML GET STATUS-TEXT Get the next line of status information from the XML
interface.

 Display XML-StatusText Display the line that was just obtained.

 End-Perform End of the perform loop.
 End-If. End of the If statement and the paragraph.

 Example A: Well Formed and Validate Diagnostic Messages

 XML Toolkit for RM/COBOL 179

Execution Results
The following sections display the output of the COBOL program that is run and
the XML document that is generated.

COBOL Display
Running the program (runcobol exampleA) produces three displays: the first is
after the first diagnostic message, the second is after the second diagnostic
message, and the third is after some successful tests.

First Display
Note that pressing a key will cause the program to continue.

Example-A - Illustrate diagnostics for invalid documents and documents that are
 not well formed
XML TEST WELLFORMED-FILE - not well formed
Error: 28[10] - in function: LoadDocument
Called from line 398 in EXAMPLEA(E:\xmlexample\EXAMPLEA.COB), compiled 2002/10/\
 08 13:05:56.
E:\xmlexample\XLiantA1.xml
End tag 'rm-address' does not match the start tag 'liant-address'.
line 2, position 262
<root><liant-address><name>Liant Software Corporation</name><address-1>8911 Cap\
ital of Texas Highway North</address-1><address-2>Suite 4300</address-
2><address\
s-3><city>Austin</city><state>TX</state><zip>78759</zip></address-3><time-stamp\
>14525751</time-stamp></rm-address></root>
---\
---\
---\
------------------------|
Press a key to continue:

 Example A: Well Formed and Validate Diagnostic Messages

180 Appendix A: XML Toolkit Examples

Second Display
Note that pressing a key will cause the program to continue.

XML TEST WELLFORMED-FILE - well-formed – invalid
XML VALIDATE FILE - well-formed – invalid
Error: 28[10] - in function: LoadDocument
Called from line 411 in EXAMPLEA(E:\xmlexample\EXAMPLEA.COB), compiled 2002/10/\
08 13:05:56.
E:\xmlexample\XLiantA2.xml
The value of 'ABCDE' is invalid according to its data type. The element: 'zip'\
 has an invalid value according to its data type.
line 2, position 211
<root><liant-address><name>Liant Software Corporation</name><address-1>8911 Cap\
ital of Texas Highway North</address-1><address-2>Suite 4300</address-
2><address\
s-3><city>Austin</city><state>TX</state><zip>ABCDE</zip></address-3><time-stamp\
>14525751</time-stamp></liant-address></root>
---\
---\
--|
Press a key to continue:

Third Display
Note that pressing a key will terminate the program.

XML TEST WELLFORMED-FILE - well-formed – valid
XML VALIDATE FILE - well-formed – valid
Status: 0000
Press a key to terminate:

 Example A: Well Formed and Validate Diagnostic Messages

 XML Toolkit for RM/COBOL 181

Example B: Import File with Missing
Intermediate Parent Names

This COBOL program illustrates how an XML document with some missing
intermediate parent names may be converted into COBOL data format and
stored in a COBOL data item. A COBOL program and an XML document file
may contain the same elementary items, but may not have the identical structure.
The XML Toolkit offers a way to handle such cases where there is not a one-to-
one match between the COBOL data item and the XML document structure.
Consider the following situation, in which the COBOL program imports a
predefined XML document that has some missing intermediate parent names.
(This capability of handling missing intermediate parent names has been
included to make programs that deal with “flattened” data items, such as web
services, less complicated.)

A missing intermediate parent name is an XML element name that corresponds
to an intermediate-level COBOL group name. For example, in the following
COBOL data item, the XML element name, address-3, is an intermediate
parent name.

01 MY-ADDRESS.
 02 ADDRESS-1 PIC X(64) VALUE "101 Main St.".
 02 ADDRESS-2 PIC X(64) VALUE "Apt 2B".
 02 ADDRESS-3.
 03 CITY PIC X(32) VALUE "Smallville".
 03 STATE PIC X(2) VALUE "KS".

The structure of the corresponding XML document would be:

<root>
 <my-address>
 <address-1>101 Main St.</address-1>
 <address-2>Apt 2B</address-2>
 <address-3>
 <city>Smallville</city>
 <state>KS</state>
 </address-3>
 <my-address>
<root>

In cases where the intermediate parent name is not needed to resolve ambiguity,
the XML Toolkit will attempt to reconstruct the document structure on input .
For example, if the input XML document contained the following information,
then the intermediate parent names of address-3 and my-address

 Example B: Import File with Missing Intermediate Parent Names

182 Appendix A: XML Toolkit Examples

would be added to produce an XML document compatible with the above
document.

<root>
 <address-1>101 Main St.</address-1>
 <address-2>Apt 2B</address-2>
 <city>Smallville</city>
 <state>KS</state>
<root>

Example B illustrates this situation more fully.

This example uses the following XML statements:

• XML INITIALIZE (page 80). The XML INITIALIZE statement initializes
or opens a session with the xmlif library.

• XML EXPORT FILE (page 62). The XML EXPORT FILE statement
constructs an XML document (as a file) from the contents of a COBOL
data item.

• XML IMPORT FILE (page 65). The XML IMPORT FILE statement reads
an XML document (from a file) into a COBOL data item.

• XML TERMINATE (page 80). The XML TERMINATE statement
terminates or closes the session with the xmlif library.

Development
The COBOL program must be compiled with the RM/COBOL compiler, and the
output symbol table option (Y Compile Command Option) must be enabled.

After each successful compilation, it is necessary to run the cobtoxml utility
program to generate a set of model files that are used by the XML IMPORT and
XML EXPORT statements.

After the successful execution of the cobtoxml utility, you may then execute the
COBOL program. The xmlif library may be specified either by entering it on
the command line (for example, runcobol myprog l=“some\path\xmlif”) or by
placing the xmlif library in the rmautold directory (this is normally a
subdirectory of the RM/COBOL installation directory).

Once the program is tested, you may choose to delete the symbol table
information from the COBOL object file by using the RM/COBOL Combine
Program Utility, rmpgmcom.

 Example B: Import File with Missing Intermediate Parent Names

 XML Toolkit for RM/COBOL 183

Batch File
The following DOS commands may be entered into a batch file. These
commands build and execute exampleB.cob.

Line Statement
1 rmcobol exampleB y

2 cobtoxml exampleB Liant-Address -sn

3 move /y exampleB.cob tmp.cob

4 start /w runcobol rmpgmcom A='STRIP,exampleB.cob,tmp.cob'

5 del tmp.cob

6 start /w runcobol exampleB k

Line 1 compiles the exampleB.cbl source file with the symbol table option (Y)
enabled.

Line 2 builds the XML model files from the symbol table information in the
symbol table. By default, the model filenames are the same as the object
filename with different extensions (in this instance, the example B object
filename is exampleB.cob, and the model filenames are exampleB.xml,
exampleB.xtl, and exampleB.xsl). The -sn (schema none) option on the
cobtoxml utility disables the generation of a schema file, which is normally
used to validate the content of an XML document.

Lines 3, 4, and 5 are optional. They strip the symbol table from the example B
object file, exampleB.cob. In order to reduce the size of the deployed object
files, developers may chose to remove the symbol table from the COBOL object
file before distributing their applications. The RM/COBOL Combine Program
Utility, rmpgmcom, which is shipped with the RM/COBOL development
system, is used for this purpose.

Line 6 executes exampleB.cob. The K Option “kills” the runtime banner. On
line 6, the start /w sequence is included only as good programming
practice.

Note On Windows, the RM/COBOL runtime (runcobol) is a Windows
application and opens a separate window when executed from DOS. The
start /w part of the DOS command instructs Windows to start the runtime
and then wait (the /w Option) for its completion. This step is necessary in line 4.
If this step were omitted, line 5 could execute before the runtime completed,
which would cause the input file (tmp.cob) passed to rmpgmcom to be deleted
before it had been completely read.

 Example B: Import File with Missing Intermediate Parent Names

184 Appendix A: XML Toolkit Examples

Program Description
This COBOL program illustrates how an XML document with some missing
intermediate parent names may be converted into COBOL data format and
stored in a COBOL data item.

Before any other XML statement may be executed, the XML INITIALIZE
statement must be successfully executed. It is possible for XML INITIALIZE to
fail; therefore, the return status must be checked before continuing.

Data is exported from the data item Liant-Address (as defined in the copy
file, liant.cpy) to an XML document with the filename of LiantB.xml using the
XML EXPORT FILE statement.

Next, the contents of the XML document are imported from the file,
LiantB.xml, and placed in the same data item using the XML IMPORT FILE
statement.

Additionally, the contents of the predefined XML document named
XLiantB.xml, which has some missing intermediate parent names, is also
imported using the XML IMPORT FILE statement.

Finally, the XML interface is terminated with the XML TERMINATE
statement.

If any of the statements terminate unsuccessfully, the XML GET STATUS-
TEXT statement is called.

Data Item
The contents of the data item defined in the copy file, liant.cpy, are as follows:

01 Liant-Address.
 02 Name Pic X(64) Value "Liant Software Corporation".
 02 Address-1 Pic X(64) Value "8911 Capital of Texas Highway North".
 02 Address-2 Pic X(64) Value "Suite 4300".
 02 Address-3.
 03 City Pic X(32) Value "Austin".
 03 State Pic X(2) Value "TX".
 03 Zip Pic 9(5) Value 78759.
 02 Time-Stamp Pic 9(8).

This data item stores company address information (in this case, Liant’s). The
last field of the item is a time stamp containing the time that the program was
executed. The reason for this item is to assure the person observing the
execution of the example that the results are current. The time element in the

 Example B: Import File with Missing Intermediate Parent Names

 XML Toolkit for RM/COBOL 185

generated XML document should change each time the example is run and
should also contain the current time.

Other Definitions
The copy file, lixmlall.cpy, should be included in the Working-Storage Section
of the program.

The copy file, lixmldef.cpy, which is copied in by lixmlall.cpy, defines a data
item named XML-data-group. The contents of this data item are as follows:

01 XML-data-group.
 03 XML-Status PIC 9(4).
 88 XML-IsSuccess VALUE XML-Success.
 88 XML-OK VALUE XML-Success
 THROUGH XML-StatusNonFatal.
 88 XML-IsDirectoryEmpty
 VALUE XML-InformDirectoryEmpty.
 03 XML-StatusText PIC X(80).
 03 XML-MoreFlag PIC 9 BINARY(1).
 88 XML-NoMore VALUE 0.
 03 XML-UniqueID PIC X(40).
 03 XML-Flags PIC 9(10) BINARY(4).

Various XML statements may access one of more fields of this item.
For example, the XML EXPORT FILE statement returns a value in the
XML-Status field. The XML GET STATUS-TEXT statement accesses
the XML-StatusText and XML-MoreFlag fields.

Program Structure
The following tables show COBOL statements that relate to performing XML
Toolkit statements. Some COBOL statements (mostly the DISPLAY
statements) have been omitted. The source of this example is in the file,
exampleB.cbl.

Initialization

COBOL Statement Description

XML INITIALIZE. Execute the XML INITIALIZE statement (no parameters).
If Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the

termination logic.

 Example B: Import File with Missing Intermediate Parent Names

186 Appendix A: XML Toolkit Examples

Exporting an XML Document

COBOL Statement Description

Accept Time-Stamp From Time. Populate the Time-Stamp field.
XML EXPORT FILE
 Liant-Address
 "LiantB"
 "ExampleB".

Execute the XML EXPORT FILE statement specifying:
 the data item address,
 the XML document filename,
 and the model filename.

If Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the
termination logic.

Importing an XML Document

COBOL Statement Description

Move Spaces to Liant-Address. Ensure that the Liant-Address item contains no data.
XML IMPORT FILE
 Liant-Address
 "LiantB"
 "ExampleB".

Execute the XML IMPORT FILE statement specifying:
 the data item address,
 the XML document filename,
 and the model filename.

If Not XML-OK Go to Z. If the statement terminates unsuccessfully, go to the
termination logic.

Program Exit Logic

COBOL Statement Description

Z. Paragraph-name that is a target of error condition GO TO
statements.

 Copy "lixmltrm.cpy". Copy in the termination test logic (see the “Termination Test
Logic” table).

 Stop Run. Terminate the COBOL program.
 Copy "lixmldsp.cpy". Copy in the status display logic (see the “Status Display

Logic” table).

 Example B: Import File with Missing Intermediate Parent Names

 XML Toolkit for RM/COBOL 187

Termination Test Logic
This code is found in the copy file, lixmltrm.cpy.

This code occurs after the paragraph-name Z, so that any error condition is
obtained here via a GO TO statement. If there are no errors, execution “falls
through” to these statements.

COBOL Statement Description

Display "Status: " XML-Status. Display the most recent return status value (if there are no
errors, this should display zero).

Perform Display-Status. Perform the Display-Status paragraph to display any error
messages.

XML TERMINATE. Terminate the XML interface.
Perform Display-Status. Perform the Display-Status paragraph again to display any

error encountered by the XML TERMINATE statement.

Status Display Logic
This code is found in the copy file, lixmldsp.cpy.

This code is called twice by the termination test logic: the first time to report
any error condition that exists, and the second time to report an error (if one
occurs) from the XML TERMINATE statement. If there are no errors (the
condition XML-IsSuccess is true), this paragraph displays no information.

COBOL Statement Description

Display-Status. This is the paragraph-name.
 If Not XML-IsSuccess Do nothing if XML-IsSuccess is true.
 Perform
 With Test After
 Until XML-NoMore

Perform as long as there are status lines available to be
displayed (until XML-NoMore is true).

 XML GET STATUS-TEXT Get the next line of status information from the XML
interface.

 Display XML-StatusText Display the line that was just obtained.

 End-Perform End of the perform loop.
 End-If. End of the If statement and the paragraph.

 Example B: Import File with Missing Intermediate Parent Names

188 Appendix A: XML Toolkit Examples

Execution Results
The following sections display the output of the COBOL program that is run and
the XML document that is generated.

COBOL Display
Running the program (runcobol exampleB) produces the following display.
Note that pressing a key will terminate the program.

Example-B - Illustrate IMPORT with missing intermediate names
LiantB.xml exported by XML EXPORT FILE
Liant Software Corporation
8911 Capital of Texas Highway North
Suite 4300
Austin TX78759
16480895
LiantB.xml imported by XML IMPORT FILE:
Liant Software Corporation
8911 Capital of Texas Highway North
Suite 4300
Austin TX78759
16480895
XLiantB.xml imported by XML IMPORT FILE:
Wild Hair Corporation
8911 Hair Court
Sweet 4300
Lostin TX70707
99999999
You may use IE to inspect 'LiantB.xml' and 'XLiantB.xml'

Status: 0000
Press a key to terminate:

 Example B: Import File with Missing Intermediate Parent Names

 XML Toolkit for RM/COBOL 189

XML Document
Microsoft Internet Explorer may be used to view the generated XML document,
LiantB.xml, and the predefined XML document, XLiantB.xml. (Note that
Internet Explorer will differentiate among the various syntactical elements of
XML by displaying them in different colors.)

LiantB.xml

<?xml version="1.0" encoding="UTF-8" ?>
<root>
 <liant-address>
 <name>Liant Software Corporation</name>
 <address-1>8911 Capital of Texas Highway North</address-1>
 <address-2>Suite 4300</address-2>
 <address-3>
 <city>Austin</city>
 <state>TX</state>
 <zip>78759</zip>
 </address-3>
 <time-stamp>16480895</time-stamp>
 </liant-address>
</root>

XLiantB.xml

<?xml version="1.0" encoding="UTF-8" ?>
<root>
 <name>Wild Hair Corporation</name>
 <address-1>8911 Hair Court</address-1>
 <address-2>Sweet 4300</address-2>
 <city>Lostin</city>
 <state>TX</state>
 <zip>70707</zip>
 <time-stamp>0</time-stamp>
</root>

 Example B: Import File with Missing Intermediate Parent Names

190 Appendix A: XML Toolkit Examples

Example Batch Files
Three batch files are provided to facilitate use of the example programs:
cleanup.bat, example.bat, and examples.bat.

Cleanup.bat
This batch file will remove various files that were created by executing the
example programs. This file contains a series of delete file commands similar to
the following:

@echo off
@echo cleanup
if exist liant*.xml del liant*.xml
if exist table1.xml del table1.xml
if exist table2.xml del table2.xml
if exist table3.xml del table3.xml
if exist table4.xml del table4.xml
if exist example*.cob del example*.cob
if exist tmp.cob del tmp.cob
if exist *.lst del *.lst
if exist example*.x* del example*.x*
if exist Stamp*.xml del Stamp*.xml
if exist Stamp rmdir Stamp

This batch file has no parameters. Run it by entering the following on the
command line:

Cleanup

 Example Batch Files

 XML Toolkit for RM/COBOL 191

Example.bat
This batch file will compile a COBOL source program, run the cobtoxml utility
against the compiled object code, delete the symbol table from the object code,
and, finally, execute the COBOL program. The contents of this file are as
follows:

 rmcobol %1 y k
 cobtoxml %1 %2 %3 –bn
 if exist tmp.cob del tmp.cob
 rename %1.cob tmp.cob
start /w runcobol rmpgmcom A='STRIP,%1.cob,tmp.cob'
start /w runcobol %1 k

This batch file uses parameters that are specified by the caller of the batch file.
The first parameter is the filename of the COBOL program (without the .cbl
extension). The second parameter is the name of a data-item within the COBOL
program, from which the cobtoxml utility will construct model files. The third
parameter is used for passing options to the cobtoxml utility.

To build and run “Example 1: Export File and Import File” (see page 88) using
this batch file, enter the following on the command line:

example Example1 Liant-Address

Examples.bat
This batch file will clean up files that were created from a previous run and
then compile and run each example. The contents of this file are similar to
the following:

 Example Batch Files

192 Appendix A: XML Toolkit Examples

@echo off
call cleanup

@echo Example1 - Export / Import File.
call example example1 Liant-Address

@echo Example2 - Export / Import with style sheets.
call example example2 Liant-Address

@echo Example3 - Export / Import with Occurs Depending.
call example example3 Liant-Address

@echo Example4 - Export / Import with sparse arrays.
call example example4 Data-Table –sn

@echo Example5 - Export / Import Text.
call example example5 Liant-Address

@echo Example6 - Export / Import with directory polling.
mkdir Stamp
call example example6 Time-Stamp

@echo Example7 - Export / Well-Formed File / Validate
File.
call example example7 Liant-Address

@echo Example8 - Export / Well-Formed Text / Validate
Text.
call example example8 Liant-Address

@echo Example9 - Export / Transform / Import.
call example example9 Liant-Address

@echo ExampleA - Well-Formed / Validate diagnostics.
call example exampleA Liant-Address

@echo ExampleB - Import with missing intermediate names.
call example exampleB Liant-Address -sn

This batch file has no parameters. Run it by entering the following on the
command line:

Examples

 Example Batch Files

 XML Toolkit for RM/COBOL 193

Appendix B: XML Toolkit
Sample Application
Programs

The XML Toolkit for RM/COBOL provides several complete and useful sample
application programs. The purpose of these self-contained programs is to
demonstrate and explain how to perform typical application-building tasks in the
XML Toolkit within a realistic context so that you can better see how to
integrate them into your own applications. This appendix describes how to use
and access these sample application programs.

Using the Sample Application Programs
The sample application programs are included in the XML Toolkit samples
directory, Samples. As shipped from Liant, this directory contains only a single
HTML file. Viewing this file with your Web browser will direct you to an XML
Toolkit samples page on the Liant Web site at:

http://www.liant.com/xmltk/samples

This page contains a list of links to the various sample applications. Selecting a
sample will cause that sample to be downloaded and installed on your computer.
For example, selecting the Directory Split (DirSplit) sample will download this
application in the DirSplit subdirectory of the Samples directory.

Note The most complete and up-to-date versions of the XML Toolkit
sample programs can be found on the Liant Web site shown above.

 Using the Sample Application Programs

194 Appendix B: XML Toolkit Sample Application Programs

 Using the Sample Application Programs

 XML Toolkit for RM/COBOL 195

Appendix C: XML Toolkit
Error Messages

This appendix lists and describes the messages that can be generated during the
use of the XML Toolkit for RM/COBOL.

Error Message Format
XML Toolkit error messages may be several lines long. The general format of
an error message includes the text of the message, and, if available, the COBOL
traceback information, the name of the file or data item, and the parser
information.

Note A table listing the error messages begins on page 197.

Message Text
The first line of the error message has the following format:

<severity> - <message number> <message text>

severity indicates the gravity and type of message: Informative, Warning,
or Error.

message number is the documented message number followed by an internal
message number in bracket characters. The internal number provides
information for Liant Technical Support to use in diagnosing problems.

message text is a brief explanation for the cause of the error.

 Error Message Format

196 Appendix C: XML Toolkit Error Messages

The following illustrates an example of the first line of an error message:

Error: 28[12] - in function: LoadDocument

COBOL Traceback Information
The second line of the error message, present if the information is available,
contains COBOL traceback information such as the following:

Called from line 421 in TEST15.COB(C:\DEV\TEST15.COB),
compiled 2002/08/29 09:42:06.

The error-reporting facility will try to break up lines that are too long for the
line buffer provided in the COBOL program. This prevents long lines from
being truncated. A backward slash character (\) is placed in the last position
of the buffer and the line is continued on the subsequent line. For example,
the traceback line shown above may be broken up as follows:

Called from line 421 in TEST15.COB(C:\DEV\TEST15.COB), co\
mpiled 2002/08/29 09:42:06.

Filename or Data Item in Error
The third line of the error message, present if the information is available,
normally contains the name of the file or data item in error being referenced.

Parser Information
Additional lines may be present that contain parser or schema diagnostics from
the underlying XML parser, such as:

Error parsing 'a9' as number datatype.
line 5, position 16
<ItemCount>a9</ItemCount>
---------------|

The first line of parser or schema diagnostic information contains an error
message. The second line contains the line number and column position within
the XML document. The third line contains the line of XML text in error. The
fourth line contains an indicator that draws attention to the column position.

 Error Message Format

 XML Toolkit for RM/COBOL 197

Summary of Error Messages
Table1: XML Toolkit for RM/COBOL Error Messages

Message
Number

Message Text

Description

 0 Success A normal completion occurred, no informative
message, warning or error was detected.

 1 Informative- indicated
directory contains no
documents

An XML FIND FILE statement did not find any
XML documents (files with a .xml extension) in
the specified directory.

 2 Informative- document file -
no data

An XML EXPORT FILE or XML EXPORT
TEXT statement generated a document that
contained no element values.

 3 Warning - internal logic -
memory not deallocated

During process cleanup, memory blocks that
should have already been deallocated were still
allocated.

 4 Warning - invalid option -
ignored

The cobtoxml utility has detected an invalid
command line option. The option is ignored and
processing continues.

 5 Error - COBOL object file -
invalid Format

The cobtoxml utility has detected that the
specified COBOL object file is not valid. This
usually means that the header checksum is
invalid.

 6 Error - COBOL object file -
open failure

The cobtoxml utility detected an error while
attempting to open the specified COBOL object
file.

 7 Error - COBOL object file -
read failure

The cobtoxml utility detected an error while
attempting to read data from the specified
COBOL object file.

 8 Error - COBOL object file -
seek failure

The cobtoxml utility detected an error while
attempting to seek to a location within the
specified COBOL object file.

 9 Error - in function:
CreateDocument

The underlying XML parser detected an error
while trying to create an XML document. This
error may occur in the cobtoxml utility or the
xmlif library.

 Summary of Error Messages

198 Appendix C: XML Toolkit Error Messages

Table 1: XML Toolkit for RM/COBOL Error Messages (Cont.)

Message
Number

Message Text

Description

10 Error - cannot create URL The Xmlif library detected that a URL (a string
beginning with the sequence "http://") was used
as an output document name.

11 Error – data item – duplicate
found

The cobtoxml utility has detected that there is
more than one occurrence of the specified data
item name in the COBOL object file or library.

12 Error – data item – not found The cobtoxml utility has detected that there are
no occurrences of the specified data item name in
the COBOL object file or library.

13 Error – document file –
create failure

An attempt to create an XML document file has
failed. This error may occur in the Xmlif library
or the cobtoxml utility.

14 Error – document file – file
open failure

The Xmlif library detected an error while
attempting to open an XML document file.

15 Error – extraneous element The Xmlif library has detected an extra
occurrence of a scalar data element.

16 Error – example file – create
failure

The cobtoxml utility detected an error while
attempting to create an example file.

17 Error – in function:
GetFirstChild

The xmlif library detected an error in the
function GetFirstChild while parsing an XML
document.

18 Error – in function:
GetNextSibling

The xmlif library detected an error in the
function GetNextSibling while parsing an XML
document.

19 Error – in function:
GetNodeData

The xmlif library detected an error in the
function GetNodeData while parsing an XML
document.

20 Error – in function:
GetRootNode

The xmlif library detected an error in the
function GetRootNode while parsing an XML
document.

21 Error – internal logic –
memory allocation

An attempt to allocate a block of memory failed.
This error may occur in either the cobtoxml
utility or the xmlif library.

22 Error – internal logic –
memory corruption

An attempt to deallocate (free) a block of
memory failed either because the block header or
trailer was corrupted or because the free memory
call returned an error. This error may occur in
either the cobtoxml utility or the xmlif library.

 Summary of Error Messages

 XML Toolkit for RM/COBOL 199

Table 1: XML Toolkit for RM/COBOL Error Messages (Cont.)

Message
Number

Message Text

Description

23 Error – internal logic – node
not found

The xmlif library has detected an inconsistency
in its internal tables. Specifically an expected
entry in the Document Object Model is missing.

24 Error – in function:
Initialization

Either an XML statement (other than XML
INITIALIZE) was executed without first
executing the XML INITIALIZE statement or
the XML INITIALIZE statement failed. This
error may occur in the xmlif library. In addition,
improper installation of the underlying XML
parser could cause the cobtoxml utility to fail
with this error while attempting to generate a
style sheet or schema.

25 Error – invalid data address The xmlif library has detected that the data
structure address specified in an XML IMPORT
or XML EXPORT statement does not match the
data address specified in the template file. This
normally means that the COBOL program has
been re-compiled but that the cobtoxml utility
was not re-executed to regenerate the model files.

26 Error – invalid object time
stamp

The xmlif library while attempting to execute an
XML IMPORT OR XML EXPORT statement
has detected that the time stamp of the COBOL
object used in generating the model files does not
match the time stamp of the COBOL object
being executed. This normally means that the
COBOL program has been re-compiled but that
the cobtoxml utility was not re-executed to
regenerate the model files.

27 Error – license management The license verification logic in the cobtoxml
utility detected an error.

28 Error – in function:
LoadDocument

An error was detected while trying to load an
XML document. This normally means that there
was a problem locating the document (either the
document does not exist or there is a problem
with permissions). This error may occur in either
the xmlif library or the cobtoxml utility.

 Summary of Error Messages

200 Appendix C: XML Toolkit Error Messages

Table 1: XML Toolkit for RM/COBOL Error Messages (Cont.)

Message
Number

Message Text

Description

29 Error – in function:
LoadSchema

An error was detected while trying to load an
XML schema file. This normally means that
there was a problem locating the document
(either the document does not exist or there is a
problem with permissions). This error may occur
in either the xmlif library or the cobtoxml utility.

30 Error - in function:
LoadStyleSheet

An error was detected while trying to load an
XML style sheet. This normally means that there
was a problem locating the document (either the
document does not exist or there is a problem
with permissions). This error may occur in either
the xmlif library or the cobtoxml utility.

31 Error - in function:
LoadStyleSheetFromText

An error was detected while trying to load an
XML style sheet. This normally means that there
was a problem locating the document (either the
document does not exist or there is a problem
with permissions). This error may occur in the
cobtoxml utility.

32 Error - in function:
LoadTemplate

An error was detected while trying to load an
XML template file. This normally means that
there was a problem locating the document
(either the document does not exist or there is a
problem with permissions). This error may occur
in the xmlif library.

33 Error - parameter - COBOL
object file name missing

The cobtoxml utility has detected that the
COBOL object file name command-line
parameter is missing.

34 Error - parameter - data item
name missing

The cobtoxml utility has detected that the data
name command-line parameter is missing.

35 Error - subscript out of range The xmlif library while executing an XML
IMPORT statement has detected that a subscript
reference is out of range (the subscript value is
greater than the maximum for the array). This
may occur either when the subscript is explicitly
supplied in an attribute or when the subscript is
generated implicitly (when an extra occurrence is
present).

 Summary of Error Messages

 XML Toolkit for RM/COBOL 201

Table 1: XML Toolkit for RM/COBOL Error Messages (Cont.)

Message
Number

Message Text

Description

36 Error - temporary file access
error

The xmlif library uncounted error while
attempting to access a temporary intermediate
file. This error can occur during the XML
IMPORT TEXT, XML EXPORT TEXT, XML
VALIDATE TEXT, or XML TEST
WELLFORMED-TEXT statements.

37 Error - in function:
TransformDOM

An unexpected error occurred while performing
an XSLT transform of an XML document. This
is most likely an internal error. This error may
occur in either the xmlif library or the cobtoxml
utility.

38 Error - in function:
TransformText

An error occurred while performing an XSLT
transform of an XML document using an external
(user-supplied) style sheet. This error may occur
in the xmlif library.

39 Error - symbol table - not
found

This cobtoxml utility could not find the symbol
table information in the COBOL object. This
normally indicates that the COBOL program
needs to be recompiled using the Y option.

41 Error - old runtime version The cobtoxml utility has detected that the current
COBOL runtime version is not supported. An
RM/COBOL version 7.5 or newer runtime is
required.

42 Error - in function:
WriteDocument

An error occurred while attempting to write an
XML document from the internal Document
Object Model representation. This error may
occur in either the xmlif library or the cobtoxml
utility.

43 Wrong COBOL object
version

The cobtoxml utility has determined that the
COBOL object version being used is newer than
was available when this XML Toolkit version
was released and, therefore, may contain features
that are not supported by the XML Toolkit.
Check with Liant Software for updates to the
XML Toolkit.

44 Wrong cobtoxml revision The xmlif library has determined that the format
of the model files may be incompatible with the
xmlif library. This normally indicates that a new
version of the XML Toolkit is being used but that
the model files were generated with an older
cobtoxml utility.

 Summary of Error Messages

202 Appendix C: XML Toolkit Error Messages

 Summary of Error Messages

 XML Toolkit for RM/COBOL 203

Glossary of Terms

COBOL data structure. A COBOL data structure is a COBOL data item. In
general, it is a group data item, but in some cases, it may be a single elementary
data item. The cobtoxml utility, a component of the XML Toolkit, captures the
COBOL data structure, including transformed data-names of the data items and
subordinate data items, if any, so that a mapping between the COBOL data
structure itself and an XML representation of the COBOL data structure can be
accomplished in either direction at runtime.

XHTML. Extensible HyperText Markup Language.

Schema valid XML document. An XML document that conforms to a
particular XML schema.

UNC. Universal Naming Convention.

URL. Universal Resource Locator.

Valid XML document. See Schema valid XML document.

Well-formed XML document. An XML document that conforms to the syntax
requirements of XML. A well-formed XML document may or may not be a
valid document with respect to a particular XML schema.

XML. Extensible Markup Language.

XML schema. An XML document that specifies the structure and allowed
content for another XML document.

XSLT. XML Style Sheet Language for Transformation.

204 Glossary of Terms

Copy files, 10, 15
display status information, 45
statement definitions, 45
terminate application, 46

Index D
Data conventions

data representation, 38
FILLER data, 39
intermediate parent names, 40
sparse COBOL records, 44

Data items, 47
A edited, 48

OCCURS restrictions, 48 All caps, as a document convention, 3 size, 48 Arrays, sparse, 113 wide and narrow characters, 48 ASCII characters, 48, 51 DEPENDING variable, 49 Attributes, 19 Directory polling example, 135 unique identifier (uid), 42 Display status, 45
Documentation overview, 2

B
E Banner options (cobtoxml utility), 57

Bold type, use of as a document convention, 3 Elements, 17 Brackets ([]), use of in COBOL syntax, 4 unique names, 41
Error messages, 195

C list of, 197
Example files, 24, 60 Caching XML documents, 50, 83–84
Examples, 10, 87 Character encoding, 51

batch files, 190 COBOL
development process, typical, 22 and XML, 16
export file and import file, 88 considerations
export file and import file with directory

polling, 135
copy files, 44
data conventions, 38

export file and import file with OCCURS
DEPENDING, 105

file management, 35
limitations, 47

export file and import file with sparse arrays,
113

optimizations, 49
data structure, defined, 14, 203

export file and import file with style sheets, 96 importing from and exporting to XML
documents, 14 export file, test well formed file, and validate

file, 146 symbol table information, 22, 33
export file, test well formed text, and validate

text, 154
cobtoxml utility, 10, 21, 55

command line interface, 56
export file, transform file, and import file, 162 command line options, 57
export text and import text, 127 described, 10, 21, 55
import file with missing intermediate parent

names, 181
model files, 24, 59

Conventions and symbols, 3
well formed and validate diagnostic messages,

173

 XML Toolkit for RM/COBOL 205

F O
File management Occurrences

automatic search for files, 35 empty, 49
filename conventions, 36 limiting, 49

Filenames, conventions for, 3 OCCURS restrictions, 48
Flags, 86 Online services, 5

CodeBridge, 79 Organization of this manual, 2
Output and input files

file naming conventions, 37 G
Glossary definitions, 203 P

Parent names. See Intermediate parent names H
PATH environment variable, 56

Hyphen (-), use of, optional, RM/COBOL
compilation and runtime options, 4 R

Registration, 5 I
Related publications, 3

Input and output files RMPATH environment variable, 56
file naming conventions, 37 rmpgmcom utility, 33

Installing RUNPATH environment variable, 35–37
system requirements, 9
deployment system, 13 S
development system, 12

Sample programs, 10, 193 Intermediate parent names, 40, 58
Schema files, 27, 53, 60 example, 181
Schema options (cobtoxml utility), 59 Italic, use of as a document convention, 3
Schema valid XML document, 27, 203
Sparse arrays, 113 K
Statements, xmlif library, 61

Key combinations, document convention for, 4 XML DISABLE ALL-OCCURRENCES, 49,
81

XML DISABLE ATTRIBUTES, 82 M
XML DISABLE CACHE, 83

Messages, 195 XML ENABLE ALL-OCCURRENCES, 82
list of, 197 XML ENABLE ATTRIBUTES, 83

Model files, 24 XML ENABLE CACHE, 84
example, 24, 60 XML EXPORT FILE, 62
file naming conventions, 36 XML EXPORT TEXT, 64
referencing, 59 XML FIND FILE, 76
schema, 27, 60 XML FLUSH CACHE, 84
style sheet, 26, 60 XML FREE TEXT, 72
template, 25, 60 XML GET STATUS-TEXT, 85

MSXML parser, 11, 61 XML GET TEXT, 73
XML GET UNIQUEID, 77
XML IMPORT FILE, 65 N
XML IMPORT TEXT, 66

Name options (cobtoxml utility), 57 XML INITIALIZE, 80

206 Index

X XML PUT TEXT, 73
XML REMOVE FILE, 74

XML XML SET FLAGS, 86
and COBOL, 19 XML TERMINATE, 80
considerations, 51 XML TEST WELLFORMED-FILE, 67

character encoding, 51 XML TEST WELLFORMED-TEXT, 68
schema files, 53 XML TRANSFORM FILE, 69
style sheets, 52 XML VALIDATE FILE, 70

defined, 15, 203 XML VALIDATE TEXT, 71
style sheets, 19 Status information display, 45
validating, 27 Style sheets, 19, 26, 52, 60
well-formed XML document, 27, 203 example program, 96

XML Toolkit external, file naming conventions, 37
COBOL considerations, 35 Support services, technical, 5
cobtoxml utility, 55 Symbol table information, 22, 33
deployment, 11 Symbols and conventions, 3
development, 10 System requirements, 9
error messages, 195
example, development process, 22 T examples, 87
getting started, 21 Tags, 17, 25, 57
model files, 24, 59 Technical support services, 5
overview, 14 Template files, 25, 60
sample programs, 193
system requirements, 9 U XML considerations, 51
xmlif library, 61 Unicode characters, 48, 51

xmlif library, 11, 21, 61 Unique identifier (uid), 42
copy files, 15, 44 UTF-8 format, 48, 51
described, 11, 21, 61
examples, 87 V schema files, 53
statements, 61 Validating, 27

XML DISABLE ALL-OCCURRENCES,
49, 81 W XML DISABLE ATTRIBUTES, 82

XML DISABLE CACHE, 83 Web site, Liant, 5
XML ENABLE ALL-OCCURRENCES, 82 Well-formed XML document, 27, 203
XML ENABLE ATTRIBUTES, 83
XML ENABLE CACHE, 84
XML EXPORT FILE, 62
XML EXPORT TEXT, 64 XML FIND FILE, 76 XML FLUSH CACHE, 84

 XML FREE TEXT, 72
 XML GET STATUS-TEXT, 85
 XML GET TEXT, 73
 XML GET UNIQUEID, 77

XML IMPORT FILE, 65
XML IMPORT TEXT, 66

 XML Toolkit for RM/COBOL 207

208 Index

XML INITIALIZE, 80
XML PUT TEXT, 73
XML REMOVE FILE, 74
XML SET FLAGS, 86
XML TERMINATE, 80
XML TEST WELLFORMED-FILE, 67
XML TEST WELLFORMED-TEXT, 68
XML TRANSFORM FILE, 69
XML VALIDATE FILE, 70
XML VALIDATE TEXT, 71

style sheet files, 26
template files, 25

	XML Toolkit for RM/COBOL v1 for Windows
	Copyright
	Contents
	Preface
	Welcome to XML Toolkit for RM/COBOL
	About Your Documentation
	Related Publications
	Symbols and Conventions
	Registration
	Technical Support
	Support Guidelines
	Test Cases

	Chapter 1: Installation and Introduction
	Installing XML Toolkit for RM/COBOL
	System Requirements
	XML Toolkit for RM/COBOL Package
	Development
	Deployment

	Installation
	Installing the XML Toolkit for RM/COBOL Development System
	Installing the XML Toolkit for RM/COBOL Deployment System

	Introducing XML Toolkit for RM/COBOL
	What is XML?
	COBOL as XML
	XML as COBOL

	Chapter 2: Getting Started with XML Toolkit
	Overview
	Typical Development Process Example
	Design the Data Structure
	Compile the Program
	Run the cobtoxml Utility
	Model Files

	Execute the COBOL Program
	Making a Program Skeleton
	Making a Program that Exports an XML Document
	Populating the XML Document with Data Values

	Deploy the Application

	Chapter 3: COBOL Considerations
	File Management
	Automatic Search for Files
	File Management Conventions
	Model File Naming Conventions
	External Style Sheet File Naming Conventions
	Other Input File Naming Conventions
	Other Output File Naming Conventions

	Data Conventions
	Data Representation
	FILLER Data
	Missing Intermediate Parent Names
	Unique Element Names
	Unique Identifier (uid)

	Sparse COBOL Records

	Copy Files
	Statement Definitions
	Displaying Status Information
	Application Termination

	Limitations
	Data Items (Data Structures)
	Edited Data Items
	Wide and Narrow Characters
	Data Item Size
	OCCURS Restrictions
	Reading, Writing, and the Internet

	Optimizations
	Occurs Depending
	Empty Occurrences
	Cached XML Documents

	Chapter 4: XML Considerations
	Character Encoding
	Style Sheets
	Schemas

	Chapter 5: cobtoxml Utility Reference
	What is the cobtoxml Utility?
	Command Line Interface
	Command Line Options
	Banner Options
	Name Options
	Schema Options

	Referencing XML Model Files
	Internal Style sheet
	Template File
	Example File
	Schema File

	Chapter 6: xmlif Library Reference
	What is the xmlif Library?
	Document Processing Statements
	XML EXPORT FILE
	XML EXPORT TEXT
	XML IMPORT FILE
	XML IMPORT TEXT
	XML TEST WELLFORMED-FILE
	XML TEST WELLFORMED-TEXT
	XML TRANSFORM FILE
	XML VALIDATE FILE
	XML VALIDATE TEXT

	Document Management Statements
	XML FREE TEXT
	XML GET TEXT
	XML PUT TEXT
	XML REMOVE FILE

	Directory Management Statements
	XML FIND FILE
	XML GET UNIQUEID

	State Management Statements
	XML INITIALIZE
	XML TERMINATE
	XML DISABLE ALL-OCCURRENCES
	XML ENABLE ALL-OCCURRENCES
	XML DISABLE ATTRIBUTES
	XML ENABLE ATTRIBUTES
	XML DISABLE CACHE
	XML ENABLE CACHE
	XML FLUSH CACHE
	XML GET STATUS-TEXT
	XML SET FLAGS

	Appendix A: XML Toolkit Examples
	Example 1: Export File and Import File
	Development
	Batch File
	Program Description
	Data Item
	Other Definitions
	Program Structure
	Execution Results

	Example 2: Export File and Import File with Style Sheets
	Development
	Batch File
	Program Description
	Data Item
	Other Definitions
	Program Structure
	Style Sheets
	Execution Results

	Example 3: Export File and Import File with OCCURS DEPENDING
	Development
	Batch File
	Program Description
	Data Item
	Other Definitions
	Program Structure
	Execution Results

	Example 4: Export File and Import File with Sparse Arrays
	Development
	Batch File
	Program Description
	Data Item
	Other Definitions
	Program Structure
	Execution Results

	Example 5: Export Text and Import Text
	Development
	Batch File
	Program Description
	Data Item
	Other Definitions
	Program Structure
	Execution Results

	Example 6: Export File and Import File with Directory Polling
	Development
	Batch File
	Program Description
	Data Item
	Other Definitions
	Program Structure
	Execution Results

	Example 7: Export File, Test Well Formed File, and Validate File
	Development
	Batch File
	Program Description
	Data Item
	Other Definitions
	Program Structure
	Execution Results

	Example 8: Export Text, Test Well Formed Text, and Validate Text
	Development
	Batch File
	Program Description
	Data Item
	Other Definitions
	Program Structure
	Execution Results

	Example 9: Export File, Transform File, and Import File
	Development
	Batch File
	Program Description
	Data Item
	Other Definitions
	Program Structure
	Execution Results

	Example A: Well Formed and Validate Diagnostic Messages
	Development
	Batch File
	Program Description
	Data Item
	Other Definitions
	Program Structure
	Execution Results

	Example B: Import File with Missing Intermediate Parent Names
	Development
	Batch File
	Program Description
	Data Item
	Other Definitions
	Program Structure
	Execution Results

	Example Batch Files
	Cleanup.bat
	Example.bat
	Examples.bat

	Appendix B: XML Toolkit Sample Application Programs
	Using the Sample Application Programs

	Appendix C: XML Toolkit Error Messages
	Error Message Format
	Message Text
	COBOL Traceback Information
	Filename or Data Item in Error
	Parser Information

	Summary of Error Messages

	Glossary of Terms
	Index

