
IONA Technologies PLC
September 2000

Orbix Programmer�s Guide 
Java Edition



Orbix is a Registered Trademark of IONA Technologies PLC.
While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of any kind 
to this material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. 
IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or consequential damages in 
connection with the furnishing, performance or use of this material.
Java is a trademark of Sun Microsystems, Inc.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, 
photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third party intellectual 
property right liability is assumed with respect to the use of the information contained herein. IONA Technologies PLC 
assumes no responsibility for errors or omissions contained in this book. This publication and features described herein are 
subject to change without notice.

Copyright © 1991-2000 IONA Technologies PLC. All rights reserved. 

All products or services mentioned in this manual are covered by the trademarks, service marks, or product names as 
designated by the companies who market those products.

M 2 4 7 1



Contents
Orbix Programmer�s Guide Java Edition

 Preface 15
Audience 15
Organization of the Orbix Java Edition Documentation 15
Organization of this Guide 16
Document Conventions 18

Part 1

Getting Started

Chapter 1   Introduction to CORBA and Orbix Java 1
CORBA and Distributed Object Programming 1

The Role of an Object Request Broker 2
The Structure of a CORBA Application 3
The Structure of a Dynamic CORBA Application 4
Interoperability between Object Request Brokers 6

The Object Management Architecture 7
The CORBAservices 8
The CORBAfacilities 8

How Orbix Java Implements CORBA 9

Chapter 2   Getting Started with Orbix Java 11
Prerequisites 11
Setting ORB Properties for the Orbix ORB 12

Using the orb.properties File 12
Using Java Interpreter Arguments 13

Hello World Example 13
Development from the Command Line 15
3



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Steps to Implement the Hello World! Application 15
Step 1�Define the IDL Interface 15
Step 2�Generate Starting Point Code. 16
Step 3�Complete the Server Program 17
Step 4�Complete the Client Program 17
Step 5�Build and Run the Demonstration 18

Chapter 3   Developing Applications with Orbix Java 23
Developing a Distributed Application with Orbix Java 24
Defining IDL Interfaces 24
Compiling IDL Interfaces 26

Checking your Configuration 26
Running the IDL Compiler 26
Implementing IDL Interfaces 27

Writing an Orbix Java Server Application 31
Initializing the ORB 31
Creating an Implementation Object 32
Registering an Object with the Naming Service 32
Error Handling for Server Applications 35

Writing the Client Application 36
Initializing the ORB 36
Getting a Reference to an Object 36
Invoking IDL Attributes and Operations 38

Compiling the Client and Server 41
Compiling the Server Application 41
Compiling the Client Application 42

Registering the Server 43
Running the Orbix Java Daemon 43
Using Putitj 43

Running the Client Application 44
Summary of the Programming Steps 46
Orbix Java IDL Compilation 47

Examining the Generated Interfaces and Classes 50

Chapter 4   Developing Applets with Orbix Java 53
Review of Orbix Java Programming Steps 53
Providing a Server 54
Writing a Client Applet 54
 4



Con t e n t s
Creating the User Interface 55
Adding Orbix Java Client Functionality 58

Getting a Reference to an Object 60
Invoking IDL Attributes and Operations 62
Handling Exceptions in Orbix Java Client Applets 64
Creating the Applet 65
Initializing the ORB 66

Adding the Applet to a HTML File 67
Compiling the Client Applet 68
Running the Client Applet 69

Security Issues for Java Applets 69
Learning more about Orbix Java 70

Part II

CORBA Programming with Orbix Java

Chapter 5   Introduction to CORBA IDL 75
IDL Modules and Scoping 76
Defining IDL Interfaces 76

IDL Attributes 77
IDL Operations 78
Inheritance of IDL Interfaces 81
Forward Declaration of IDL Interfaces 84

Overview of the IDL Data Types 85
IDL Basic Types 85
IDL Constructed Types 86
IDL Template Types 88
Arrays 90
Fixed Types 91
IDL Pseudo-Object Types 92
Defining Aliases and Constants 93

Chapter 6   IDL to Java Mapping 95
Overview of IDL to Java Mapping 96
5



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Mapping for Basic Data Types 98
Mapping for Modules 100

Scoped Names 100
The CORBA Module 101

Mapping for Interfaces 101
Client Mapping 102
Helper Classes for Type Manipulation 104
Holder Classes and Parameter Passing 106
Server Implementation Mapping 111
Approaches to Interface Implementation 112
Object References 117
Mapping for Derived Interfaces 118

Mapping for Constructed Types 124
Enums 124
Structs 125
Unions 127

Mapping for Strings 130
Mapping for Sequences 131
Mapping for Arrays 133
Mapping for Fixed Types 134
Mapping for Constants 135
Mapping for Typedefs 136
Mapping for Exception Types 137

System Exceptions 137
User-Defined Exceptions 137

Naming Conventions 140
Parameter Passing Modes and Return Types 141

Chapter 7   Using and Implementing IDL Interfaces 143
Overview of an Example Application 143
Overview of the Programming Steps 144
Defining IDL Interfaces to Application Objects 144
Compiling IDL Interfaces 145
Implementing the IDL Interfaces 146

The TIE Approach to Implementing Interfaces 146
The ImplBase Approach to Implementing Interfaces 148

Developing the Server Application 150
Implementing the Bank Interface 150
Implementing the Account Interface 153
 6



Con t e n t s
Writing the Server 155
Object Initialization and Connection 157
Comparison of Methods for Connecting to the ORB 160

Developing the Client Application 161
Obtaining a Reference to a Bank Object 162
Alternatives to the Naming Service 164
Making Remote Invocations 165

Registration and Activation 166
Execution Trace 168
Comparison of the ImplBase and TIE Approaches 172

Providing Different Implementations of the Same Interface 173
Providing Different Interfaces to the Same Implementation 173

Chapter 8   Making Objects Available in Orbix Java 175
Identifying CORBA Objects 176

Interoperable Object References 176
Orbix Java Object References 177
Accessing Object References 177
Assigning Markers to Orbix Java Objects 178

Using the CORBA Naming Service 181
The Interface to the Naming Service 182
Format of Names within the Naming Service 184
Making Contact with the Naming Service 185
Associating Names with Objects 186
Using Names to Find Objects 186
Associating a Compound Name with an Object 187
Federation of Name Spaces 188

Binding to Objects in Orbix Java Servers 189
The bind() Method 190
Example Calls to bind() 192
Binding and Exceptions 192

Using Object Reference Strings to Create Proxy Objects 193

Chapter 9   Exception Handling 197
User-Defined Exceptions 198

The IDL Definitions 198
The Generated Java Code 199

System Exceptions 201
7



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Obtaining Information from System Exceptions 202
Example of Server-Side Exception Handling 203
Example of Client-Side Exception Handling 205

Handling Specific System Exceptions 206

Chapter 10   Using Inheritance of IDL Interfaces 209
Single Inheritance of IDL Interfaces 209

The IDL Interfaces 210
The Client-Side Generated Types 211

Using Inheritance in a Client 214
Using Inheritance in a Server 215

The TIE Approach 215
The ImplBase Approach 217

Multiple Inheritance of IDL Interfaces 218
Implementing Multiple Inheritance 220

Chapter 11   Callbacks from Servers to Clients 221
Implementing Callbacks in Orbix Java 221

Defining the IDL Interfaces 222
Writing a Client 222
Writing a Server 225

Callbacks and Bidirectional Connections 227
Avoiding Deadlock in a Callback Model 227

Using Non-Blocking Operation Invocations 228
Using Multiple Threads of Execution 230

An Example Callback Application 231
The IDL Specification 233
The Client Application 234
The Central Server Application 240

Specifying the Ports to Use for Callbacks 245
 8



Con t e n t s
Part III

Running Orbix Java Programs

Chapter 12   Running Orbix Java Clients 249
Running Client Applications 249
Running Orbix Java Client Applets 250

Loading a Client Applet from a File 251
Loading a Client Applet from a Web Server 252
Security Issues for Client Applets 252

Debugging Orbix Java Clients 253
Possible Platform Dependencies in Orbix Java Clients 254
Using the Orbix Java Wrapper Utilities 254

Using owjava as a Front End to the Java Interpreter 255
Using owjavac as a Front End to the Java Compiler 255
Using the Interpreter and Compiler without the Wrapper Utilities 256

Chapter 13   Registration and Activation of Servers 257
The Implementation Repository 258
Activation Modes 259

Primary Activation Modes 259
Secondary Activation Modes 260
Persistent Server Mode 261
Implementation Repository Entries 262

The Orbix Java Putitj Utility for Server Registration 263
Examples of Using Putitj 265

Additional Registration Commands 266
Activation and Pattern Matching 267
Persistent Servers 267
Unregistered Servers 269
Activation Issues Specific to IIOP Servers 269
Security Issues for Orbix Java Servers 270

Identity of the Caller of an Operation 270
Server Security 270

Activation and Concurrency 272
Activation Information for Servers 273
9



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
IDL Interface to the Implementation Repository 274
Using the Server Manager 275
About the Java Daemon (orbixdj) 275

Chapter 14   Using the Orbix Java Daemon 277
Overview of the Java Daemon 278

Features of the Java Daemon 278
Using the Java Daemon 279

Starting the Java Daemon 279
Configuring the Java Daemon 280
Viewing Output with the Graphical Console 282

In-Process Activation of Servers 284
Guidelines for Developing In-Process Servers 284

Scope of the Java Daemon 287
Activation 287
Java Version 287
IT_daemon Interface 287
Utilities 288
Markers and the Implementation Repository 288
Security 288
Server Names 289
In-Process Servers 289

Chapter 15   ORB Interoperability 291
Overview of GIOP 292

Coding 292
Message Formats 292

Internet Inter-ORB Protocol (IIOP) 295
IIOP in Orbix Java 295
Example using IIOP in a Platform-Independent Application 296
Configuring an IIOP Port Number for an Orbix Java Server 302

Interoperability between Orbix and Orbix Java 303

Chapter 16   Orbix Java Diagnostics 305
Setting Diagnostics 305

Diagnostics Levels 306
Alternative Approaches to Setting Diagnostics 307
 10



Con t e n t s
Part IV

Advanced CORBA Programming

Chapter 17   Type any 313
Constructing an Any Object 314
Inserting Values into an Any Object 314
Extracting Values from an Any Object 316
Any as a Parameter or Return Value 319
Additional Methods 319

Chapter 18   Dynamic Invocation Interface 321
Using the DII 322

Programming Steps for Using the DII 323
Examples of Clients Using the DII 324

The CORBA Approach to Using the DII 325
Creating a Request 326
Setting up a Request Using _request() 327
Alternative approach 328
Setting up a Request Using _create_request() 331
Invoking a Request 333
Using the DII with the Interface Repository 333
Setting up a Request to Read or Write an IDL Attribute 334
Operation Results 334
Interrogating a Request 335
Resetting a Request Object for Reuse 335

Deferred Synchronous Invocations 336
Using Filters with the DII 338

Chapter 19   Dynamic Skeleton Interface 339
Uses of the DSI 340
Using the DSI 341

Creating DynamicImplementation Objects 341
Example of Using the DSI 343
11



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Chapter 20   The Interface Repository 347
Configuring the Interface Repository 348
Runtime Information about IDL Definitions 348
Using the Interface Repository 349

Installing the Interface Repository 349
Structure of the Interface Repository Data 350

Simple Types 354
Abstract Interfaces in the Interface Repository 355

Class Hierarchy and Abstract Base Interfaces 355
Interface IRObject 356

Containment in the Interface Repository 358
The Contained Interface 359
The Container Interface 361
Containment Descriptions 362

Type Interfaces in the Interface Repository 366
Named Types 367
Unnamed Types 368

Retrieving Information from the Interface Repository 369
Example of Using the Interface Repository 373

Repository IDs 374
OMG IDL Format 375
Pragma Directives 376

Chapter 21   Service Contexts 379
The Orbix Java Service Context API 380

Service Context Handlers 380
Service Context Lists 381
ORB Interfaces 381

Using Service Contexts in Orbix Java Applications 383
ServiceContext Per Request Model 383
ServiceContext Per-Object Model 387
Service Context Main Components 388

Service Context Handlers and Filter Points 390
 12



Con t e n t s
Part V

Advanced Orbix Java Programming

Chapter 22   Filters 395
Introduction to Per-Process Filters 397

Pre-Marshalling Filter Points 397
Post-Marshalling Filter Points 398
Failure Points 398

Introduction to Per-Object Filters 401
Using Per-Process Filters 402

An Example Per-Process Filter 404
Installing a Per-Process Filter 407
How to Create a System Exception 407
Piggybacking Extra Data to the Request Buffer 409
Retrieving the Size of a Request Buffer 412
Defining an Authentication Filter 412

Using Per-Object Filters 413
IDL Compiler Switch to Enable Object Filtering 415

Thread Filters 416
Multi-Threaded Clients and Servers 416
Thread Programming in Orbix Java 418
Models of Threading 419
Implementing Threads in Orbix Java 420

Chapter 23   Smart Proxies 423
Proxy Classes and Smart Proxy Classes 424

Proxy Classes 424
Smart Proxy Classes 424
Requirements for Smart Proxies 424
Creating a Smart Proxy 425
Benefits of Using Smart Proxies 427

Using Smart Proxies 428
Creating a Smart Proxy 428
A Sample Client 432
13



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Chapter 24   Loaders 435
Overview of Creating a Loader 436
Specifying a Loader for an Object 437
Connection between Loaders and Object Naming 438

Loading Objects 440
Saving Objects 441
Writing a Loader 442
Example Loader 442

Coding the Loader 447
Polymorphism 450
Approaches to Providing Persistent Objects 451
Disabling the Loaders 453

Chapter 25   Opaque Types 455
Using Opaque Types 457

IDL Definition 457
Compiling the IDL Definition 457
Mapping of Opaque Types to Java 458
Implementing the Opaque Type 458
The Helper Class 459
The Holder Class 460

Chapter 26   Transforming Requests 461
Transforming Request Data 462

The IE.Iona.OrbixWeb.Features.IT_reqTransformer Class 462
Registering a Transformer 463

An Example Transformer 465

Appendix A   
IDL Compiler Switches 469

 Index 473
 14



Preface
Orbix Java Edition is an implementation of the Common Object Request Broker 
Architecture (CORBA) from the Object Management Group (OMG). Orbix Java 
maps CORBA functionality to the Java programming language. It combines a 
powerful standards-based approach to distributed application development with 
the flexibility of the Java environment.

Orbix documentation is periodically updated. New versions between releases 
are available at this site:

http://www.iona.com/docs/orbix/orbix33.html

If you need assistance with Orbix or any other IONA products, contact IONA 
at support@iona.com. Comments on IONA documentation can be sent to 
doc-feedback@iona.com.

Audience
The Orbix Programmer�s Guide Java Edition  and the Orbix Programmer�s 
Reference Java Edition  are intended for use by application programmers and 
designers wishing to familiarize themselves with CORBA distributed 
programming and its application in the Java environment. The Orbix 
Administrator�s Guide Java Edition describes how to use various command line 
and GUI tools during Orbix Java operation. These guides assume that you are 
familiar with the Java programming language.

Organization of the Orbix Java Edition 
Documentation

The complete Orbix Java Edition documentation set includes the following 
manuals:

� The Orbix Programmer�s Guide Java Edition  provides a complete guide 
to Orbix Java programming.
15



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
� The Orbix Programmer�s Reference Java Edition  provides an exhaustive 
reference for the Orbix Java application programming interface(API).

� The Orbix Administrator�s Guide Java Edition  explains how to configure 
and manage the components of the Orbix Java environment using the 
command line and Orbix Java GUI tools.

Organization of this Guide
The Orbix Programmer�s Guide Java Edition  is divided into the following five 
parts:

Part I Getting Started

This part of the guide introduces basic CORBA concepts, and introduces Orbix 
Java by describing a simple programming example. It works through the steps 
required to write client and server Java applications. This also provides an 
example of integrating client functionality with Java applets.

Many of the concepts that form the basis of Part II are introduced in this part. 

Part II CORBA Programming with Orbix Java

Part II provides a more complete description of developing CORBA programs in 
Java using Orbix Java. 

This part of the guide provides an outline of the CORBA Interface Definition 
Language (IDL) and the standard Object Management Group (OMG) mapping 
from IDL to Java. It shows how to program a simple application and provides 
information on various aspects of programming a distributed application, 
including the use of the Naming Service to identify objects in the system.

Part III Running Orbix Java Programs

This part describes the issues involved in running Orbix Java programs. An 
important aspect of this description is a complete introduction to the Orbix Java 
Implementation Repository. The Java daemon, orbixdj, is also introduced.
 16



P r e f a c e
Part IV Advanced CORBA Programming

This part of the guide explains more advanced features of Orbix Java as specified 
by the CORBA standard. In particular, it provides the information needed to use 
the Dynamic Invocation Interface that allows a client to issue requests on objects 
whose interfaces may not have been defined at the time the application was 
compiled.

Part V Advanced Orbix Java Programming

Orbix Java provides a number of interfaces to allow you to influence runtime 
behaviour for particular deployment scenarios. Part V explains how you can 
replace different components of Orbix Java, and the circumstances where the 
use of these Orbix Java specific features is advantageous.
17



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Document Conventions
This guide uses the following typographical conventions:

This guide may use the following keying conventions:

Constant width Constant width (courier font) in normal text represents 
portions of code and literal names of items such as 
classes, functions, variables, and data structures. For 
example, text might refer to the CORBA::Object class.

Constant width paragraphs represent code examples or 
information a system displays on the screen. For example:

#include <stdio.h>

Italic Italic words in normal text represent emphasis and new 
terms.

Italic words or characters in code and commands 
represent variable values you must supply, such as 
arguments to commands or path names for your 
particular system. For example:

% cd /users/your_name

Note: some command examples may use angle brackets 
to represent variable values you must supply. 

No prompt When a command�s format is the same for multiple 
platforms, no prompt is used.

% A percent sign represents the UNIX command shell 
prompt for a command that does not require root 
privileges.

# A number sign represents the UNIX command shell 
prompt for a command that requires root privileges.

> The notation > represents the DOS, Windows NT, or 
Windows 95 command prompt.

...... 

Horizontal or vertical ellipses in format and syntax 
descriptions indicate that material has been eliminated 
to simplify a discussion.
 18



P r e f a c e
[ ] Brackets enclose optional items in format and syntax 
descriptions.

{ } Braces enclose a list from which you must choose an 
item in format and syntax descriptions.

| A vertical bar separates items in a list of choices 
enclosed in { } (braces) in format and syntax 
descriptions.
19



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
 20



Part 1
Getting Started





 1
Introduction to CORBA and Orbix 
Java 

Orbix Java is a software environment that allows you to build and 
integrate distributed applications. Orbix Java is a full implementation 
of the Object Management Group�s (OMG) Common Object Request 
Broker Architecture (CORBA) specification. This chapter introduces 
CORBA and describes how Orbix Java implements this specification.

CORBA and Distributed Object Programming
The diversity of modern networks makes the task of network programming very 
difficult. Distributed applications often consist of several communicating 
programs written in different programming languages and running on different 
operating systems. Network programmers must consider all of these factors 
when developing applications.

The Common Object Request Broker Architecture (CORBA) defines a 
framework for developing object-oriented, distributed applications. This 
architecture makes network programming much easier by allowing you to 
create distributed applications that interact as though they were implemented in 
a single programming language on one computer. 

CORBA also brings the advantages of object-oriented techniques to a 
distributed environment. It allows you to design a distributed application as a set 
of cooperating objects and to reuse existing objects in new applications.
1



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
The Role of an Object Request Broker

CORBA defines a standard architecture for Object Request Brokers (ORBs). An 
ORB is a software component that mediates the transfer of messages from a 
program to an object located on a remote network host. The role of the ORB is 
to hide the underlying complexity of network communications from the 
programmer.

An ORB allows you to create standard software objects whose methods can be 
invoked by client programs located anywhere in your network. A program that 
contains instances of CORBA objects is often known as a server.

When a client invokes a member method on a CORBA object, the ORB 
intercepts the method call. As shown in Figure 1.1, the ORB redirects the 
method call across the network to the target object. The ORB then collects 
results from the method call and returns these to the client.

Figure 1.1: The Object Request Broker

Object

Object Request Broker

Client

Client Host Server Host

Function
Call

 Method
 Call
 2



I n t r odu c t i o n  t o  CORBA  a nd  O r b i x  J a v a
The Nature of Objects in CORBA

CORBA objects are standard software objects implemented in any supported 
programming language. CORBA supports several languages, including Java, C++ 
and Smalltalk.

With a few calls to an ORB�s application programming interface (API), you can 
make CORBA objects available to client programs in your network. Clients can 
be written in any supported programming language and can invoke the member 
methods of a CORBA object using the normal programming language syntax.

Although CORBA objects are implemented using standard programming 
languages, each CORBA object has a clearly-defined interface, specified in the 
CORBA Interface Definition Language (IDL). The interface definition specifies 
what member methods are available to a client, without making any assumptions 
about the implementation of the object. 

To invoke member methods on a CORBA object, a client needs only the 
object�s IDL definition. The client does not need to know details such as the 
programming language used to implement the object, the location of the object 
in the network, or the operating system on which the object runs.

The separation between an object�s interface and its implementation has several 
advantages. For example, it allows you to change the programming language in 
which an object is implemented without changing clients that access the object. 
It also allows you to make existing objects available across a network.

The Structure of a CORBA Application

The first step in developing a CORBA application is to define the interfaces to 
objects in your system, using CORBA IDL. You then compile these interfaces 
using an IDL compiler.

An IDL compiler generates Java from IDL definitions. This Java includes client 
stub code, which allows you to develop client programs, and server skeleton 
code, which allows you to implement CORBA objects.

As shown in Figure 1.2 on page 4, when a client calls a member method on a 
CORBA object, the call is transferred through the client stub code to the ORB. 
If the client has not accessed the object before, the ORB refers to a database, 
3



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
known as the Implementation Repository, to determine exactly which object 
should receive the method call. The ORB then passes the method call through 
the server skeleton code to the target object.

The Structure of a Dynamic CORBA Application

One difficulty with normal CORBA programming is that you have to compile the 
IDL associated with your objects and use the generated Java code in your 
applications. This means that your client programs can only invoke member 
methods on objects whose interfaces are known at compile-time. If a client 
wishes to obtain information about an object�s IDL interface at runtime, it needs 
an alternative, dynamic approach to CORBA programming.

The CORBA Interface Repository is a database that stores information about the 
IDL interfaces implemented by objects in your network. A client program can 
query this database at runtime to get information about those interfaces. The 
client can then call member methods on objects using a component of the ORB 
called the Dynamic call Interface (DII), as shown in Figure 1.3 on page 5.

Figure 1.2: Invoking on a CORBA Object

Object

Function
Call

Object Request Broker

Client Host Server Host

Client

Client
Stub
Code

Object
Skeleton

Code

 Method
 Call
 4



I n t r odu c t i o n  t o  CORBA  a nd  O r b i x  J a v a
CORBA also supports dynamic server programming. A CORBA program can 
receive method calls through IDL interfaces for which no CORBA object exists. 
Using an ORB component called the Dynamic Skeleton Interface (DSI), the 
server can then examine the structure of these method calls and implement 
them at runtime. Figure 1.4 on page 6 shows a dynamic client program 
communicating with a dynamic server implementation.

Note: The implementation of Java interfaces in client-side generated code 
supplies proxy functionality to client applications. This must not be 
confused with the implementation of IDL interfaces in Orbix Java servers. 

Figure 1.3: Client Invoking a Method Using the DII

Object

Function
Call

Object Request Broker

Client Host Server Host

Client

D11
Object

Skeleton
Code

 Method
 Call
5



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Figure 1.4: Method Call Using the DII and DSI

Interoperability between Object Request Brokers

The components of an ORB make the distribution of programs transparent to 
network programmers. To achieve this, the ORB components must 
communicate with each other across the network.

In many networks, several ORB implementations coexist and programs 
developed with one ORB implementation must communicate with those 
developed with another. To ensure that this happens, CORBA specifies that 
ORB components must communicate using a standard network protocol called 
the Internet Inter-ORB Protocol (IIOP).

Object

Function
Call

Object Request Broker

Client Host Server Host

Client

D11 DS1

 Method
 Call
 6



I n t r odu c t i o n  t o  CORBA  a nd  O r b i x  J a v a
The Object Management Architecture
An ORB is one component of the OMG�s Object Management Architecture 
(OMA). This architecture defines a framework for communications between 
distributed objects. As shown in Figure 1.5, the OMA includes four elements:

� Application objects.

� The ORB.

� The CORBAservices.

� The CORBAfacilities.

Application objects are objects that implement programmer-defined IDL 
interfaces. These objects communicate with each other, and with the 
CORBAservices and CORBAfacilities, through the ORB. The CORBAservices 
and CORBAfacilities are sets of objects that implement IDL interfaces defined by 
CORBA and provide useful services for some distributed applications.

Figure 1.5: The Object Management Architecture

Application Objects

CORBAservices CORBAfacilities

Object Request Broker
7



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
When writing Orbix Java applications, you might require one or more 
CORBAservices or CORBAfacilities. This section provides a brief overview of 
these components of the OMA.

The CORBAservices

The CORBAservices define a set of low-level services that allow application 
objects to communicate in a standard way. These services include the following:

� The Naming Service. Before using a CORBA object, a client program 
must get an identifier for the object, known as an object reference. This 
service allows a client to locate object references based on abstract, 
programmer-defined object names.

� The Trading Service. This service allows a client to locate object 
references based on the desired properties of an object.

� The Object Transaction Service. This service allows CORBA programs to 
interact using transactional processing models.

� The Security Service. This service allows CORBA programs to interact 
using secure communications.

� The Event Service. This service allows objects to communicate using 
decoupled, event-based semantics, instead of the basic CORBA function-
call semantics.

IONA Technologies implements several CORBAservices including all the 
services listed.

The CORBAfacilities

The CORBAfacilities define a set of high-level services that applications 
frequently require when manipulating distributed objects. The CORBAfacilities 
are divided into two categories:

� The horizontal CORBAfacilities.

� The vertical CORBAfacilities.
 8



I n t r odu c t i o n  t o  CORBA  a nd  O r b i x  J a v a
The horizontal CORBAfacilities consist of user interface, information 
management, systems management, and task management facilities. The vertical 
CORBAfacilities standardize IDL specifications for market sectors such as 
healthcare and telecommunications.

How Orbix Java Implements CORBA
Orbix Java is an ORB that fully implements the CORBA 2.0 specification. By 
default, all Orbix Java components and applications communicate using the 
CORBA standard IIOP protocol.

The components of Orbix Java are as follows:

� The IDL compiler parses IDL definitions and produces Java code that 
allows you to develop client and server programs.

� The Orbix Java runtime is called by every Orbix Java program and 
implements several components of the ORB, including the DII, the DSI, 
and the core ORB functionality.

� The Orbix Java daemon is a process that runs on each server host and 
implements several ORB components, including the Implementation 
Repository. An all-Java counterpart to the daemon process is also 
included. This daemon process is known as the Java Daemon, also 
referred to as orbixdj.

� The Interface Repository server is a process that implements the Interface 
Repository.

Orbix Java also includes several programming features that extend the 
capabilities of the ORB. These features are described in Part IV, �Advanced 
CORBA Programming�.

The Orbix Java GUI Tools and the Orbix Java command-line utilities allow you to 
manage and configure the components of Orbix Java.
9



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
 10



 2
Getting Started with Orbix Java

You can use the Orbix Code Generation Toolkit to develop an Orbix 
application quickly.

Given a user-defined IDL interface, the toolkit generates the bulk of the client 
and server application code, including makefiles. You then complete the 
distributed application by filling in the missing business logic.

Prerequisites
Before proceeding with the demonstration in this chapter you need to ensure:

� The Orbix developer�s kit is installed on your host.

� Orbix is configured to run on your host platform.

� Your Java development kit (JDK) is configured to use the Orbix ORB 
runtime (see �Setting ORB Properties for the Orbix ORB� on page 12).

The Orbix Administrator�s Guide Java Edition contains more information on 
Orbix configuration, and details of Orbix command line utilities.
11



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Setting ORB Properties for the Orbix ORB
Sun Microsystem�s Java development kit (JDK) comes with a built-in ORB 
runtime that is used by default. However, you cannot use Sun�s ORB runtime 
with Orbix applications. You must configure the JDK to use the Orbix ORB 
runtime instead by setting system properties org.omg.CORBA.ORBClass and 
org.omg.CORBA.ORBSingletonClass to the appropriate values. You can set the 
ORB properties in one of the following ways:

� Using the orb.properties file.

� Using Java interpreter arguments.

Using the orb.properties File

Setting the org.omg.CORBA.ORBClass and 
org.omg.CORBA.ORBSingletonClass system properties in the orb.properties 
file is the preferred way to configure your JDK to use the Orbix ORB runtime.

Location of the orb.properties File.

The orb.properties file is located in the JDKHome/jre/lib directory, where 
JDKHome is the JDK root directory.

Contents of the orb.properties File.

The orb.properties file should contain the following two lines of text:

org.omg.CORBA.ORBClass=IE.Iona.OrbixWeb.CORBA.ORB
org.omg.CORBA.ORBSingletonClass=IE.Iona.OrbixWeb.CORBA.singletonO
RB

The first line sets org.omg.CORBA.ORBClass to the name of a class that 
implements org.omg.CORBA.ORB.

The second line sets org.omg.CORBA.ORBSingletonClass to the name of a 
class that implements the static ORB instance returned from 
org.omg.CORBA.ORB.init() (taking no arguments).
 12



Ge t t i n g  S t a r t e d  w i t h  O r b i x  J a v a
Note: By setting system properties org.omg.CORBA.ORBClass and 
org.omg.CORBA.ORBSingletonClass in the orb.properties file, as 
detailed above, you effectively specify the Orbix ORB classes as the ORB 
runtime for the JDK. This might affect other applications that use the 
same JDK but want to use different ORB classes�if this is the case, you 
should consider using the alternative mechanism for setting ORB 
properties, given in the following sub-section.

Using Java Interpreter Arguments

You can use the -Dproperty_name=property_value option on the Java Interpreter 
to specify the org.omg.CORBA.ORBClass and 
org.omg.CORBA.ORBSingletonClass properties. For example, to set the ORB 
properties for an orbix_app Orbix application:

java -Dorg.omg.CORBA.ORB=IE.Iona.OrbixWeb.CORBA.ORB  
-Dorg.omg.CORBA.ORBSingletonClass=IE.Iona.OrbixWeb.CORBA.sin
gletonORB orbix_app

Hello World Example
This chapter shows how to create, build and run a complete client/server 
demonstration with the help of the Orbix Code Generation Toolkit. The 
architecture of this example system is shown in Figure 2.1.

The client and server applications communicate with each other using the 
Internet Inter-ORB Protocol (IIOP), which sits on top of TCP/IP. When a client 
invokes a remote operation a request message is sent from the client to the 
13



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
server the operation has completed, a reply message containing the return 
values from the operation is sent back to the client. This completes a single 
remote CORBA invocation.

All interaction between the client and server is mediated via a set of IDL 
declarations. The IDL for the Hello World! application is:

//IDL
interface Hello {
    string getGreeting();
};

The IDL declares a single Hello interface, which exposes a single operation 
getGreeting(). This declaration provides a language neutral interface to 
CORBA objects of type Hello.

The concrete implementation of the Hello CORBA object is written in Java and 
is provided by the server application. The server could create multiple instances 
of Hello objects if required. However, the generated code generates only one 
Hello object.

The client application has to locate the Hello object�it does this by reading a 
stringified object reference from the file Hello.ior. There is one operation 
getGreeting() defined on the Hello interface. The client invokes this 
operation and exits.

Figure 2.1: Client Making a Single Operation Call on a Server

Client Machine

Client Application

IDL Interface

Server Application

Server Machine

ORB ORB

Code Code

Operation Call

Result

CORBA
Object
 14



Ge t t i n g  S t a r t e d  w i t h  O r b i x  J a v a
Development from the Command Line
Starting point code for Orbix client and server applications can be generated 
using the idlgen command line utility.

The idlgen utility can be used on Windows and UNIX platforms.

Steps to Implement the Hello World! Application

Implement the Hello World! application with the following steps:

1. Define the IDL interface, Hello.

2. Generate starting point code.

3. Complete the server program.

Implement the single IDL getGreeting() operation.

4. Complete the client program.

Insert a line of code to invoke the getGreeting() operation.

5. Build and run the demonstration.

Step 1�Define the IDL Interface

Create the IDL file for the Hello World! application. First of all, make a directory 
to hold the example code:

Windows

> mkdir C:\OCGT\HelloExample

UNIX

% mkdir -p OCGT/HelloExample

Create an IDL file C:\OCGT\HelloExample\hello.idl (Windows) or 
OCGT/HelloExample/hello.idl (UNIX) using a text editor.
15



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Enter the following text into the file hello.idl:

//IDL
interface Hello {
    string getGreeting();
};

This interface mediates the interaction between the client and the server halves 
of the distributed application.

Step 2�Generate Starting Point Code.

Generate files for the server and client application using the Orbix Code 
Generation Toolkit.

In the directory C:\OCGT\HelloExample (Windows) or OCGT/HelloExample 
(UNIX) enter the following command:

idlgen java_genie.tcl -client -server -interface -antfile 
-jP HelloExample hello.idl

This command logs the following output to the screen while it is generating the 
files:

hello.idl:
java_genie.tcl: creating idlgen/PrintFuncs.java
java_genie.tcl: creating idlgen/HelloExample/PrintHello.java
java_genie.tcl: creating idlgen/RandomFuncs.java
java_genie.tcl: creating idlgen/HelloExample/RandomHello.java
java_genie.tcl: creating idlgen/RandomHelloExample.java
java_genie.tcl: creating HelloExample/HelloCaller.java
java_genie.tcl: creating HelloExample/HelloImpl.java
java_genie.tcl: creating client.java
java_genie.tcl: creating server.java
java_genie.tcl: creating build.xml
Type "client" compile the generated code.

The files you can edit to customize the client and server applications are:     

Client Files Server Files

client.java server.java
HelloExample/HelloImpl.java

Table: 2.2: Main Java source files for the Hello World! application
 16



Ge t t i n g  S t a r t e d  w i t h  O r b i x  J a v a
Step 3�Complete the Server Program

Complete the implementation class, HelloImpl, by providing the definition of 
the HelloImpl.getGreeting() method. This Java method provides the 
concrete realization of the Hello::getGreeting() IDL operation.

Edit the HelloImpl.java file.

Delete most of the generated boilerplate code occupying the body of the  
HelloImpl.getGreeting method and replace it with the line of code highlighted 
in bold font below:

//Java
//File �HelloImpl.java�
...
    public java.lang.String getGreeting()
    throws org.omg.CORBA.SystemException
    {
        java.lang.String                _result;

        _result = "Hello World!";

        return _result;
    }
...

Step 4�Complete the Client Program

Complete the implementation of the client main() function in the  client.java 
file. You must add a couple of lines of code to make a remote invocation of the 
getGreeting() operation on the Hello object.

Edit the  client.java file.
17



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Search for the line where the HelloExample.HelloCaller.getGreeting() 
method is called. Delete this line and replace it with the line of code highlighted 
in bold font below:

//Java
//File: �client.java�
...
    try 
    {
       //---------------------------------------------------------
       // Invoke all the operations,attributes defined in Hello
       // including all derived operations,attributes
       //---------------------------------------------------------
       System.out.println("Greeting is: " + obj1.getGreeting());
    }
    catch(Exception ex)
    {
        System.out.println("Remote call failed\n");
        ex.printStackTrace();
    }
...

The obj1 object reference refers to an instance of a Hello object in the server 
application. It is already initialized for you.

A remote invocation is made by invoking getGreeting() on the obj1 object 
reference. The ORB automatically establishes a network connection and sends 
packets across the network to invoke the HelloImpl.getGreeting() method 
in the server application.

Step 5�Build and Run the Demonstration

The build.xml file generated by the code generation toolkit has a complete set 
of rules for building both the client and server applications. To build the client 
and server:
 18



Ge t t i n g  S t a r t e d  w i t h  O r b i x  J a v a
Windows

At a command-line prompt, from the C:\OCGT\HelloExample directory enter:

> itant

UNIX

At a command-line prompt, from the OCGT/HelloExample directory enter:

% itant

Run the Demonstration

Run the application as follows:

1. Run the Orbix daemon.

The Orbix daemon is responsible for bootstrapping connections between 
CORBA clients and servers and can, if necessary, activate dormant 
servers on demand. Information about CORBA servers is stored in the 
the Implementation Repository, a database of CORBA servers maintained 
by the Orbix daemon. Exactly one Orbix daemon runs on each server 
host.

Open a new MS-DOS prompt, or xterm window (UNIX).

Windows
> orbixd

UNIX
% orbixd

The Orbix daemon runs in the foreground and logs its activities to this 
window.

2. Register the server with the daemon.

Every Orbix server must be registered with the Orbix daemon before it 
runs for the first time. Registration only needs to be performed once per 
server.

Open a new MS-DOS prompt, or xterm window (UNIX).
19



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Windows

At a command-line prompt, from the C:\OCGT\HelloExample directory 
enter:

> itant putit

UNIX

At a command-line prompt, from the OCGT/HelloExample directory 
enter:

% itant putit

This script outputs the following lines to the screen:

Registering server persistently in Implementation 
Repository
        putit genieSrv -persistent
[255:New Connection 
(foobar.iona.ie,IT_daemon,*,userid,pid=310,optimised) ]
        chmodit l+all genieSrv
[321:New Connection 
(foobar.iona.ie,IT_daemon,*,userid,pid=310,optimised) ]
        chmodit i+all genieSrv
[354:New Connection 
(foobar.iona.ie,IT_daemon,*,userid,pid=310,optimised) ]

The antfile uses the Orbix putit utility to register the server�see the 
Orbix Administrator�s Guide C++ Edition for details.

3. Run the server program.

Open a new MS-DOS prompt, or xterm window (UNIX). Enter the 
following command:

Windows
> itant runserver

UNIX 
% itant runserver

The server outputs the following lines to the screen:

Starting server...
*******************************************************
Start Date : Aug 15, 2000 5:32:57 PM ;
Calling impl_is_ready(genieSrv,0)
[ New Connection (localhost,IT_daemon, *,,pid=310) ]
Creating object obj1 = HelloExample.HelloImpl
created
 20



Ge t t i n g  S t a r t e d  w i t h  O r b i x  J a v a
Object to serialize: 
HelloExample._tie_Hello:IOR[type="IDL:Hello:1.0" 
IOPProfile
[IIOP1.0 host=foobar.iona.ie port=1570 
:\foobar.iona.ie:genieSrv
:Hello-1::IFR:Hello ]] with object to string 
:IOR:000000000000000e49444c3a48656c6c6f3a312e3000000000
000001000000000000005d0001000000000017636861726c69652e6
475626c696e2e696f6e612e6965000006220000000000353a5c6368
61726c69652e6475626c696e2e696f6e612e69653a67656e6965537
2763a48656c6c6f2d313a3a4946523a48656c6c6f00 to the Outp
utStream: java.io.ObjectOutputStream@60bc08
Calling impl_is_ready (genieSrv, -1)

The server performs the following steps when it is launched:

♦ It instantiates and activates a single Hello CORBA object.

♦ The stringified object reference for the Hello object is written to the  
Hello.ref file.

♦ The server opens an IP port and begins listening on the port for 
connection attempts by CORBA clients.

4. Run the client program.

Open a new MS-DOS prompt, or xterm window (UNIX). Enter the 
following command:

Windows 

> itant runclient

UNIX 

% itant runclient

The client outputs the following lines to the screen:

*******************************************************
Start Date : Aug 15, 2000 5:36:59 PM ;
Using IOR References...
Read object reference for Hello
Hello Object Reference read by client: 
IOR[type="IDL:Hello:1.0" IOPProfile[IIOP1.0 
host=foobar.iona.ie 
port=1570:\foobar.iona.ie:genieSrv:Hello-1::IFR:Hello 
]]
[ New IIOP Connection (foobar.iona.ie,genieSrv, 
null,,pid=0) ]
21



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
[ New IIOP Connection (foobar.iona.ie,genieSrv, 
null,,pid=0) ]
Greeting is: Hello World!

The client performs the following steps when it runs:

♦ It reads the stringified object reference for the Hello object from the 
Hello.ref file.

♦ It converts the stringified object reference into an object reference.

♦ It calls the remote Hello::getGreeting() operation by invoking on 
the object reference. This causes a connection to be established with 
the server and the remote invocation to be performed.

5. When you are finished, terminate all processes.

Shut down the server by typing Ctrl-C in the window where it is running.

The passing of the object reference from the server to the client in this way is 
suitable only for simple demonstrations. Realistic server applications use the 
CORBA naming service to export their object references instead (see �Using 
the CORBA Naming Service� on page 181).
 22



 3
Developing Applications with 
Orbix Java

This chapter introduces Orbix Java with a step-by-step description of 
how to create a simple banking application. These steps include 
defining an Interface Definition Language (IDL) interface, 
implementing this interface in Java, and developing a standalone 
client application. The Orbix Java IDL compiler and the files it 
generates are also introduced at the end of this chapter. 

This chapter illustrates the programming steps using a banking example. In this 
example, an Orbix Java server program implements two types of objects: a single 
object implementing the Bank interface, and multiple objects implementing the 
Account interface. A client program uses these clearly defined object interfaces 
to create and find accounts, and to deposit and withdraw money.

The source code for the example described in this chapter is available in the 
demos\BankSimpleTie directory of your Orbix Java installation. 
23



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Developing a Distributed Application with 
Orbix Java 

To create a distributed client-server application in Java using Orbix Java, you 
must perform the following programming steps:

6. Define the IDL interfaces.

7. Compile the IDL interfaces.

8. Implement the IDL interfaces.

9. Write the server application.

10. Write the client application.

11. Compile the client and server.

12. Register the server in the Implementation Repository.

13. Run the client.

This chapter outlines these programming steps in detail, using a banking example.

Defining IDL Interfaces
Defining IDL interfaces to your objects is the most important step in developing 
an Orbix Java application. These interfaces define how clients access objects, 
regardless of the location of those objects on the network.

An interface definition contains attributes and operations. Attributes allow clients 
to read and write to values on an object. Operations are functions that clients 
can call on an object. 

For example, the following IDL from the banking example defines two interfaces 
for objects that represent a bank application. These interfaces are defined within 
an IDL module to prevent clashes with similarly named interfaces defined in 
subsequent examples. 
 24



Dev e l op i n g  App l i c a t i o n s  w i t h  O r b i x  J a v a
The IDL interfaces to the banking example are defined as follows:

// IDL
// In file Banksimple.idl

1 module BankSimpleTie {
typedef float CashAmount; 

2 interface Account;

3 interface Bank {
Account create_account (in string name); 
Account find_account (in string name); 

};

4 interface Account {
readonly attribute string name;
readonly attribute CashAmount balance; 

5 void deposit (in CashAmount amount); 
void withdraw (in CashAmount amount);

};
};

This code is explained as follows:

1. An IDL module is a container construct that groups IDL definitions into a 
common namespace. Using a module is not mandatory, but it is good 
practice. 

2. This is a forward declaration to the Account interface. This allows you to 
refer to Account in the Bank interface, before actually defining Account.

3. The Bank interface contains two operations: create_account() and 
find_account(), allowing a client to create and search for an account. 

4. The Account interface contains two readonly attributes: name and 
balance. Clients can read a balance or name, but cannot write to them. If 
the readonly keyword is omitted, clients can also write to these values.

5. The Account interface also contains two operations: deposit() and 
withdraw(). The deposit() operation allows a client to deposit money 
in an account. The withdraw() operation allows a client to withdraw 
money from an account. 
25



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
The parameters to these operations are labelled with the IDL keyword in. This 
means that their values are passed from the client to the object. Operation 
parameters can be labelled as in, out (passed from the object to the client) or 
inout (passed in both directions).

Compiling IDL Interfaces
You must compile IDL definitions using the Orbix Java IDL compiler. Before 
running the IDL compiler, ensure that your configuration is correct.

Checking your Configuration

To set up configuration for the IDL compiler, you should check that Orbix Java 
can find its root configuration file, iona.cfg. 

You should ensure that the environment variable IT_CONFIG_PATH is set to the 
directory in which iona.cfg resides. By default, this is the config directory of 
your installation. You should also include the config directory on your 
classpath.

Running the IDL Compiler

To compile the IDL interfaces, enter the following command at the operating 
system prompt:

idlj -jP Demos BankSimple.idl

This command generates a number of Java files that are used to communicate 
with Orbix Java. The generated files are located in the 
Demos\BankSimpleTie\java_output directory. Discussion of these files is 
deferred until, �Orbix Java IDL Compilation� on page 47.

The -jP switch passed to the IDL compiler specifies the package name into 
which all generated Java classes are placed. This helps to avoid potential name 
clashes. In the banking example, all application files are placed within a package 
called Demos.BankSimpleTie. 
 26



Dev e l op i n g  App l i c a t i o n s  w i t h  O r b i x  J a v a
Implementing IDL Interfaces 

You must implement the IDL interfaces using the code generated by the IDL 
compiler. The banking example uses the TIE approach to implement its IDL 
interfaces. You can also use the ImplBase approach. Both of these approaches 
are discussed in detail in �Implementing the IDL Interfaces� on page 146. 

Implementing the Bank Interface

Implementing the Bank IDL interface using the TIE approach involves creating an 
implementation class that implements the IDL-generated class 
_BankOperations. 

In this example, the implementation class created for the Bank IDL interface is 
BankImplementation.

// Java
// In file BankImplementation.java 

package Demos.BankSimpleTie;

import IE.Iona.OrbixWeb._OrbixWeb;
import org.omg.CORBA.ORB;
import org.omg.CORBA.SystemException;
import java.util.*;

1 public class BankImplementation 
implements _BankOperations {

// Default Constructor.
2 public BankImplementation ( org.omg.CORBA.ORB Orb ) {

   m_orb = Orb;
m_list = new Hashtable();

}

// Implementation for create_account(). 
3 public Account create_account ( String name ) {

Account m_account = null;
AccountImplementation m_account_impl = null;

// Check if account already exists.
if ( m_list.get ( name ) != null ) {
27



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
System.out.println ( "- Account for " + name 
+ " already exists, " + "finding details." );
return find_account ( name );

}

System.out.println ("Creating new account for " + name +".");

// Create a new account. 
try {

4 m_account_impl = new AccountImplementation(name, 0.0F);
m_account = new _tie_Account(m_account_impl, �Marker�);

5 m_orb.connect(m_account);
}
catch ( SystemException se ) {

System.out.println ( "[ Exception raised when creating
Account. ]" );

}

// Add account to table of accounts.
m_list.put ( name, m_account );
return m_account ;

}

// Implementation for find_account().
6 public Account find_account ( String name ) {

Account m_acc = null;
m_acc = ( Account ) m_list.get ( name );

if ( m_acc == null ) {
// Account not in table.
System.out.println ("Unable to find Account for" 

+ name + "." );
}
return m_acc;

}
...
}

 28



Dev e l op i n g  App l i c a t i o n s  w i t h  O r b i x  J a v a
This code is described as follows:

1. The implementation class must implement the IDL-generated interface 
_BankOperations. This maps the attributes and operations in the IDL 
definitions to Java methods.

2. The Orb parameter to the BankImplementation default constructor 
refers to the server�s ORB.

3. The implementation for the IDL operation create_account() takes the 
account name as a parameter and returns a reference to the newly 
created account. 

4. Using the TIE approach, you must tie together the implementation class 
and the IDL interface using the automatically generated Java TIE class.

In this example, the IDL compiler generates the TIE class _tie_Account 
for the IDL interface Account. You must then pass an object that 
implements the IDL interface as a parameter to the constructor for the 
TIE class. 

5. Connect the implementation object to the Orbix Java runtime.

6. The implementation for the IDL operation find_account() takes the 
account name as a parameter and returns a reference to the account 
searched for.

Implementing the Account Interface

The implementation class for the Account IDL interface should inherit from the 
IDL-generated interface _AccountOperations:

// Java
// In file BankImplementation.java 

package Demos.BankSimpleTie;

public class AccountImplementation 
implements _AccountOperations {

// Constructor
public AccountImplementation(String name,float bal){

this.m_name = name;
m_balance=bal;
29



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
System.out.println ("- Creating account for " +
m_name + ". Initial " + "balance of £" + bal );

}

// Implementation for IDL name accessor.
public String name() {

return m_name;
}
// Implementation for IDL balance accessor.
public float balance() {

return m_balance;
}

// Implementation for IDL operation deposit().
public void deposit ( float amount ){

System.out.println ( "- Depositing £" + amount + "
into " + m_name + "'s account" );

m_balance += amount;
}

// Implementation for IDL operation withdraw().
public void withdraw ( float amount ) {

System.out.println ( "- Withdrawing £" + amount +
" from " + m_name + "'s account" );
m_balance -= amount;

}
...
}

The IDL attributes name and balance are implemented by corresponding Java 
accessor methods. All mapped attributes and operations are defined in the Java 
interface _AccountOperations, generated by the IDL compiler.
 30



Dev e l op i n g  App l i c a t i o n s  w i t h  O r b i x  J a v a
Writing an Orbix Java Server Application
To write a Java program that acts as an Orbix server, perform the following 
steps:

1. Initialize the server connection to the ORB.

2. Create an implementation object by creating instances of the 
implementation classes.

3. Register the implementation object in the Naming Service.

This section describes each of these programming steps in turn.

Initializing the ORB

All clients and servers must call org.omg.CORBA.ORB.init() to initialize the 
ORB. This returns a reference to the ORB object. The ORB methods defined by 
the CORBA standard can then be invoked on this instance. You should use the 
parameterized version of the init() method, defined as follows:

static public org.omg.CORBA.ORB init 
(String[] args, java.util.Properties props)

This method is passed an array of strings as command-line arguments, and a list 
of Java properties. Either of these values may be null. This version of the init() 
method returns a new fully functional ORB Java object each time it is called.

Note: Calling ORB.init() without parameters returns a singleton ORB with 
restricted functionality. 

Refer to the Orbix  Programmer�s Reference Java Edition for further details on 
the org.omg.CORBA.ORB class. 
31



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Creating an Implementation Object

To create an implementation object, you must create an instance of your 
implementation class in your server program. Typically a server program creates 
a small number of objects in its main() function, and these objects may in turn 
create further objects. In the banking example, the server creates a single Bank 
object in its main() function. This bank object then creates accounts when 
create_account() is called by the client.

For example, to create an instance of the Bank IDL interface in your server 
main() function, using the TIE approach, do the following:

Bank m_bank = new _tie_Bank(new BankImplementation(m_orb),
�myBankMarker�);

This creates a new server implementation object, passing a reference to the 
server ORB.

Registering an Object with the Naming Service

You must register your implementation objects with the CORBA Naming 
Service. This provides a flexible CORBA-defined way to locate objects. The 
Naming Service allows a name to be bound to an object, and allows that object 
to be found subsequently by resolving that name within the Naming Service. 

CORBA Object References

A CORBA object reference identifies an object in your system. A server that 
holds an object reference can register it with the Naming Service, giving it a 
name that can be used by other components of the system to find the object.

The Naming Service maintains a database of bindings between names and object 
references. A binding is an association between a name and an object reference. 
Clients can call the Naming Service to resolve a name, and this returns the 
object reference bound to that name. 

The Naming Service provides operations to resolve a name, to create new 
bindings, to delete existing bindings, and to list the bound names. A name is 
always resolved within a given naming context. 
 32



Dev e l op i n g  App l i c a t i o n s  w i t h  O r b i x  J a v a
The following server program initializes the ORB, creates a 
BankImplementation object, and registers this object in the Naming Service:

// Java
// In file Server.java.

package Demos.BankSimpleTie;

1 import Demos.IT_DemoLib.*;
import IE.Iona.OrbixWeb.Features.Config;
import IE.Iona.OrbixWeb._OrbixWeb;
import org.omg.CORBA.*;

public class Server {

public static void main ( String args[] ) {

// Initalize the ORB
2 org.omg.CORBA.ORB Orb = ORB.init ( args, null );

// Create a new bank Server
new Server (Orb);

}

// Server constructor.
3 public Server ( org.omg.CORBA.ORB Orb ) {

m_orb = Orb;
System.out.println( "Server started on port "
 + Config.getConfigItem ("IT_IIOP_LISTEN_PORT") );

// Create a new Naming Service wrapper.    
try {

4 m_ns_wrapper = new IT_NS_Wrapper(m_orb,
m_demo_context_name);

m_ns_wrapper.initialise();
}
catch ( org.omg.CORBA.UserException userEx ) {

System.out.println ( "[ Exception raised during
creation of naming "+ "service wrapper.]" );    

}

33



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
String serverName = new String ("IT_Demo/
BankSimple/Bank"); 

5 m_bank = new _tie_Bank ( new BankImplementation 
(m_orb));

try { 
6 m_ns_wrapper.registerObject ("Bank", m_bank );

} 
catch ( org.omg.CORBA.UserException userEx ) {

System.out.println( "[Exception registering 
 Bank in " + "NamingService.]");

}

// Wait for client connections.
try {

7 _OrbixWeb.ORB (m_orb).processEvents 
( 10000 * 60 );

}
catch ( SystemException se ) {

System.out.println("[ Exception during creation
of implementation : " + se.toString() + " ]" );
System.exit(1);

}
}
...
private final String m_demo_context_name =

�IT_Demo.BankSimple";
}

This code is described as follows:

1. To simplify the use of the Naming Service, a Naming Service wrapper is 
provided. This hides the low-level detail of the CORBA Naming Service. 

2. Initialize the ORB for an Orbix Java application using the parameterized 
version of ORB.init().

3. The Server() constructor creates the bank implementation object and 
adds an entry for it to the Naming Service. If the entry already exists, it is 
replaced. The Orb parameter refers to the server�s ORB.

4. Create a Naming Service wrapper object. The banking example uses 
Naming Service wrapper methods to simplify the use of the Naming 
Service.
 34



Dev e l op i n g  App l i c a t i o n s  w i t h  O r b i x  J a v a
5. Create a new server implementation object, and pass a reference to the 
server ORB.

6. Register the bank object in the Naming Service using the wrapper 
method registerObject(). This object is now known as Bank in the 
Naming Service.

7. Start the server listening for incoming invocations.

For details of different methods for connecting the implementation objects to 
the Orbix Java runtime, refer to �Object Initialization and Connection� on 
page 157.

Error Handling for Server Applications

If an error occurs during an Orbix Java method call, the method may raise a Java 
exception to indicate this. To handle these exceptions, you must enclose Orbix 
Java calls in try statements. Exceptions thrown by Orbix Java calls can then be 
handled by subsequent Java catch clauses. All Orbix Java system exceptions 
inherit from the class org.omg.CORBA.SystemException.

In the banking example, the code in the catch clause displays details of possible 
system exceptions raised by Orbix Java. It does this by printing the result of the 
SystemException.toString() method to the Java System.out print stream. 

The constructor for the IDL-generated _BankOperations type may raise a 
system exception, so the instantiation of this object must be enclosed in a try 
statement. Refer to �Exception Handling� on page 197 for more details.
35



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Writing the Client Application
Writing client applications involves writing Java clients that access 
implementation objects through IDL interfaces. You must perform the following 
steps:

1. Initialize the client connection to the ORB.

2. Get a reference to an object.

3. Invoke attributes and operations defined in the object�s IDL interface.

This section describes each of these steps in turn.

Initializing the ORB

All clients and servers must call org.omg.CORBA.ORB.init() to initialize the 
ORB. This returns a reference to the ORB object. The ORB methods defined by 
the standard can then be invoked on this instance. You should use the 
parameterized version of the init() method, defined as follows:

static public org.omg.CORBA.ORB init 
(String[] args, ava.util.Properties props)

In the banking example, the client initializes the ORB, and passes it as a 
parameter to the client constructor, as follows:

// Java 
// In file Client.java

// Initilize the ORB
org.omg.CORBA.ORB Orb = ORB.init ( args,null );

// Create a new client
new Client (Orb);

Getting a Reference to an Object

The CORBA-defined way to get a reference to an object is to use the Naming 
Service. When an object reference enters a client address space, Orbix Java 
creates a proxy object that acts as a local representative for the remote 
implementation object. Orbix Java forwards operation invocations on the proxy 
object to corresponding methods in the implementation object. 
 36



Dev e l op i n g  App l i c a t i o n s  w i t h  O r b i x  J a v a
The following sample code shows how the client uses Naming Service wrapper 
methods to obtain an object reference:

// Java
// In file Client.java
...

public void connectToBank {
// Get the hostname from the user interface.

1 String host = m_client_frame.Get_HostName();

_OrbixWeb.ORB(m_orb).setConfigItem
("IT_NAMES_SERVER_HOST",host 

);

try {
2 m_ns_wrapper = new IT_NS_Wrapper ( m_orb,

m_demo_context_name);
}
catch ( org.omg.CORBA.UserException userEx ) {

m_client_frame.printToMessageWindow ("[ Exception
raised during creation of naming" + "service
wrapper.]" );    

} 
try {

3 org.omg.CORBA.Object obj = m_ns_wrapper.resolveName
("Bank");

4 m_bank = BankHelper.narrow ( obj );
m_client_frame.printToMessageWindow("Connection

succeeded." );
}   
catch ( org.omg.CORBA.UserException userEx ) {

m_client_frame.printToMessageWindow ( "[ Exception
raised getting Bank reference " + userEx + "]" );

}
}

This code is described as follows:

1. Set the Naming Service hostname to the hostname input by the user.

2. Create a new Naming Service wrapper object. 
37



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
3. The method m_ns_wrapper.resolveName() retrieves the object 
reference from the Naming Service placed there by the server. The 
parameter is the name of the object to resolve. This must match the 
name used by the server when it called registerObject(). 

4. The return type from resolveName() is of type org.omg.CORBA.Object. 
You must call BankHelper.narrow() to cast from this base class to the 
Bank IDL class, before you can make invocations on remote Bank objects. 
The client stub code generated for every IDL class contains the 
BankHelper.narrow() method definition for that class.

Invoking IDL Attributes and Operations

To access an attribute or an operation associated with an object, call the 
appropriate Java method on the object reference. The client-side proxy 
redirects this call across the network to the appropriate Java method for the 
implementation object. 

Orbix Java enables you to invoke IDL operations using normal Java method calls. 
The following code extract shows the code called when you choose to create an 
account, using the interactive GUI shown in Figure 3.1 on page 39:

// Create a user account.
public void createNewAccount() {

Account new_account = null;
String current_name = m_client_frame.Get_UserName();
try {

// Call the IDL-defined method create_account().
new_account = m_bank.create_account(current_name);
m_client_frame.Set_Balance(0f);
m_client_frame.printToMessageWindow("Created

account for " + current_name + "." );
}
catch ( SystemException se ) {

m_client_frame.printToMessageWindow ( "[ Exception
raised during account creation. " + se + " ] ");

}
}

 38



Dev e l op i n g  App l i c a t i o n s  w i t h  O r b i x  J a v a
Figure 3.1: Creating an Account using the Bank GUI
39



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Similarly, the following Java code is called when you choose to find an account:

// Java.
// In file Client.java.
...
// Find a user account.
private Account getCurrentUserAccount() {

try {
// Call the IDL-defined method find_account().
return m_bank.find_account 

(m_client_frame.Get_UserName() );
}
catch ( SystemException ex ) {

m_client_frame.printToMessageWindow 
( "[ Exception raised finding account for "

+ m_client_frame.Get_UserName()+ "]");    
}
return null;

}

The following code extract shows the Java called when the user chooses to 
make a deposit into an account:

// Java.
// In file ClientGUIFrame.java.

public void DepositButton_mouseClicked() {
Account user_account =

m_client.getCurrentUserAccount();
    

if ( user_account != null ) {
try {

user_account.deposit
(Get_Transaction_Amount() );

m_client.updateCurrentUserBalance();
}
catch ( SystemException se ) {

printToMessageWindow ( "[ Exception raised
during account deposit. ]" );        

}
}

}

 40



Dev e l op i n g  App l i c a t i o n s  w i t h  O r b i x  J a v a
Compiling the Client and Server
Details of compiling the client and server are specific to the Java development 
environment used. However, it is possible to describe general requirements. 
These are illustrated here using the Sun Java Developer�s Kit (JDK)1. This is the 
development environment used by the Orbix Java demonstration makefiles.

To compile an Orbix Java application, you must ensure that the Java compiler 
can access the following:

� The Java API classes located in the rt.jar file in the jre/lib directory of 
your JDK installation.

� The Orbix Java API classes located in the OrbixWeb.jar file in the lib 
directory of your Orbix Java installation. 

� The config directory of your Orbix Java installation.

� Any other classes required by the application.

Compiling the Server Application

To compile the server application, you must invoke the Java compiler on the 
user-generated source files, and on files generated by the IDL compiler. In the 
banking server example, the user-generated source files are as follows:

� Server.java

� BankImplementation.java

� AccountImplementation.java

The IDL-generated files are as follows:

� _BankSkeleton.java

� _BankOperations.java

� _tie_Bank.java

� _BankStub.java 

� Bank.java

1.   The JDK version number must be 1.1.x or higher.
41



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
� _AccountSkeleton.java

� _AccountOperations.java

� _tie_Account.java

� _AccountStub.java

� Account.java

The IDL-generated files are located in the demos\BankSimpleTie\java 
directory. Discussion of the IDL-generated files is deferred until �Orbix Java 
IDL Compilation� on page 47.

Compiling the Client Application

To compile the client application, invoke the Java compiler on the client source 
file and on the files generated by the IDL compiler. In this example, the source 
file is Client.java, and the generated files are as follows:

� _BankStub.java 

� Bank.java

� _AccountStub.java

� Account.java

Using Orbix Java Utilities

You can use the standard Java command line to compile all the required Java 
source files. Alternatively, Orbix Java provides a convenience tool called 
owjavac.pl that acts as a front end to your chosen Java compiler. This tool 
passes the default classpath and classes directories to the compiler, avoiding 
the need to set environment variables. 

The Orbix Java demos\BankSimpleTie directory provides a script that calls 
owjavac.pl as required. To compile the Java source files, enter the appropriate 
command from the BankSimpleTie\java directory:

UNIX % make

Windows > compile
 42



Dev e l op i n g  App l i c a t i o n s  w i t h  O r b i x  J a v a
You can use these commands for all the Orbix Java demonstrations from the 
appropriate demos directory. These commands run the IDL compiler and 
compile the Java source files.

For details on the use of the owjava.pl and owjavac.pl wrapper utilities, refer 
to �Using the Orbix Java Wrapper Utilities� on page 254.

Registering the Server
Registering the server in the Implementation Repository allows the server to be 
launched automatically. The Implementation Repository is a server database that 
maintains a mapping from the server name to the name of the Java class that 
implements the server. If the server is registered, it is automatically run through 
the Java interpreter when a client binds to the Bank object.

Running the Orbix Java Daemon

Before registering the server, you should ensure that an Orbix Java daemon 
process (orbixd or orbixdj) is running on the server machine.

To run the Orbix Java daemon, enter the orbixdj command from the bin 
directory of your Orbix Java installation. To run the Orbix Java daemon, enter 
the orbixd command.

On Windows, you can also start a daemon process by clicking on the 
appropriate menu item from the Orbix Java folder.

Using Putitj

Once an Orbix Java daemon process is running, you can register the server. To 
register the Bank server, use the putitj command as follows:

putitj -j Bank Demos.BankSimpleTie.Server

The -j switch indicates that the specified server should be launched via the Java 
Interpreter. The second parameter to putitj is the server name, Bank in this 
example. The third parameter is the name of the class that contains the server�s 
main() method (Demos.BankSimpleTie.Server in this example). This is the 
class that should be run through the Java interpreter. 
43



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
The server registration step is automated by a script in the 
demos\BankSimpleTie directory that executes the putitj command. Refer to 
the Orbix Administrator�s Guide Java Edition  for more details on the putitj 
command.

Running the Client Application
To run the client application you must run the Java interpreter on the bytecode 
(.class files) produced by the Java compiler. When running an Orbix Java client 
application, you must ensure that the interpreter can access the following:

� The Java API classes located in the rt.jar file in the jre/lib directory of 
your JDK installation.

� The Orbix Java API classes located in the OrbixWeb.jar file in the lib 
directory of your Orbix Java installation. 

� The config directory of your Orbix Java installation.

� Any other classes required by the application.

Using Orbix Java Utilities

You can use the owjava.pl tool as an alternative to the standard Java command 
line. This is a wrapper utility that acts as a front end to your chosen Java 
interpreter. The owjava.pl tool passes the default classpath to the 
interpreter, avoiding the need to set up environment variables. Refer to �Using 
the Orbix Java Wrapper Utilities� on page 254 for more details on this 
convenience tool.

A script named Client in the demos\BankSimpleTie\java directory 
implements this step. To run the client application, use the following command:

Client server_host

The Bank GUI then appears as shown in Figure 3.2 on page 45. 
 44



Dev e l op i n g  App l i c a t i o n s  w i t h  O r b i x  J a v a
Figure 3.2: The Bank GUI.
45



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Summary of the Programming Steps
The steps involved in creating a distributed client-server application using Orbix 
Java are as follows:

1. Define the interfaces to objects used by the application, using CORBA 
standard IDL.

2. Compile the IDL to generate the Java code.

3. Implement the IDL interface using the generated code.

4. Write a server, using the generated code as follows:

i. Initialize the server connection to the ORB.

ii. Create an implementation object by creating instances of the 
implementation classes.

iii. Register the implementation object in the Naming Service.

5. Write a client application to use the CORBA objects located in the 
server as follows:

iv. Initialize the client connection to the ORB.

v. Get a reference to an object.

vi. Invoke attributes and operations defined in the object�s IDL interface.

6. Compile the client and server applications.

7. Register the server in the Orbix Java Implementation Repository.

8. Run the client application.
 46



Dev e l op i n g  App l i c a t i o n s  w i t h  O r b i x  J a v a
Orbix Java IDL Compilation
This section examines the Orbix Java IDL compilation process, focusing on the 
Java classes and interfaces generated by the IDL compiler.

The Orbix Java IDL compiler produces Java code corresponding to the IDL 
definitions. For example, the mapped Java code consists of code that allows a 
client to access an object through the Bank interface, and code that allows a 
Bank object to be implemented in a server. 

The IDL compilation produces Java constructs (six classes and two interfaces) 
from the IDL interface Bank. Each public Java class or interface is located in a 
single source file with a .java suffix. Each source file is located in a directory 
that follows the Java mapping for package names to directory structures.

By default, the Orbix Java IDL compiler creates a local java directory into which 
the generated Java directory structure is placed. You can specify an alternative 
target directory using the compiler switch -jO.2

Each generated file contains a Java class or interface that serves a specific role in 
an application. For example, the following files are generated for the Bank IDL 
interface:

2.   Refer to �IDL Compiler Switches� on page 469 for a full description.

Client-Side Mapping Description

Bank A Java interface whose methods define the 
Java client view of the IDL interface.

_BankStub A Java class that implements the methods 
defined in the Bank interface. This class 
provides functionality that allows client 
method calls to be forwarded to a server.

Server-Side Mapping Description

_BankSkeleton A Java class used internally by Orbix Java to 
forward incoming server requests to 
implementation objects. You do not need 
to know the details of this class.
47



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
_BankImplBase An abstract Java class that allows server-
side developers to implement the Bank 
interface using the ImplBase approach.

_tie_Bank A Java class that allows server-side 
developers to implement the Bank interface 
using delegation. This approach to interface 
implementation is called the TIE approach.

The TIE approach is an Orbix Java -specific 
feature, and is not defined by the CORBA 
specification. It is the recommended 
approach for Orbix Java due to the 
restriction to single inheritance in Java.

_BankOperations A Java interface, used in the TIE approach 
only, that maps the attributes and 
operations of the IDL definition to Java 
methods. These methods must be 
implemented by a class in the server, using 
the TIE approach. 

Client and Server-Side 
Mapping

Description

BankHelper A Java class that allows you to manipulate 
IDL user-defined types in various ways.

BankHolder A Java class defining a Holder type for class 
Bank. This is required for passing Bank 
objects as inout or out parameters to and 
from IDL operations. Refer to �Holder 
Classes� on page 95.

BankPackage A Java package used to contain any IDL 
types nested within the Bank interface; for 
example, structures or unions. 
 48



Dev e l op i n g  App l i c a t i o n s  w i t h  O r b i x  J a v a
Figure 3.3: Overview of the Compiling the Bank IDL Interface

BankSimple.idl

BankSimple
Client

Application

BankSimple
Object

Application

_BankSkeleton_BankStub
Generated 

Classes and
Interfaces

IDL Compiler

Java Compiler

Client
ByteCode

Server
ByteCode
49



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Examining the Generated Interfaces and Classes

The relationships between the Java types produced by the IDL compiler can be 
illustrated by a brief examination of the generated source code. 

Client-Side Mapping

The Java files Bank.java and _BankStub.java support the client-side mapping. 
The Bank.java file maps the operations and attributes in BankSimple.idl to 
Java methods as follows: 

// Generated by the Orbix Java IDL compiler 

package Demos.BankSimpleTie;

public interface Bank extends org.omg.CORBA.Object {
    public Demos.BankSimpleTie.Account create_account

(String name) ;
    public Demos.BankSimpleTie.Account find_account

(String name) ;
    public java.lang.Object _deref() ;
}

This Java interface defines an Orbix Java client view of the IDL interface defined 
in BankSimple.idl. The Java interface is implemented by the Java class 
_BankStub in the file _BankStub.java as follows:

// Generated by the Orbix Java IDL compiler 

package Demos.BankSimpleTie;

public class _BankStub
extends org.omg.CORBA.portable.ObjectImpl
implements Demos.BankSimpleTie.Bank {

    
public _BankStub () {}

public Demos.BankSimpleTie.Account
create_account(String name) {

...
}

 50



Dev e l op i n g  App l i c a t i o n s  w i t h  O r b i x  J a v a
public Demos.BankSimpleTie.Account 
find_account(String name) {

...
}

public static final String _interfaces[] = 
{"IDL:BankSimple/Bank:1.0"};

public String[] _ids() {return _interfaces;}

public java.lang.Object _deref() {return null;}

}

The primary role of the _BankStub Java class is to transparently forward client 
invocations on Bank operations to the appropriate implementation object in the 
server. The IDL is mapped to the Java interface Bank to allow for multiple 
inheritance. The implementation is then supplied by the corresponding 
_BankStub. 

The create_account() and find_account() IDL operations are mapped to 
corresponding Java methods. The parameters, which are IDL basic types in the 
IDL definition, are mapped to equivalent Java basic types. For example, the IDL 
type long (a 32-bit integer type) maps to the Java type int (also a 32-bit integer 
type). For IDL types that have no exact Java equivalent, an approximating class or 
basic type is used. Refer to �IDL to Java Mapping� on page 91 for a complete 
description.

Server-Side Mapping

Orbix Java provides support for two approaches to implementing an IDL 
interface:

� The TIE approach, which uses delegation.

The generated Java constructs used in the TIE approach are the interface 
_BankOperations and the class _tie_Bank.

The TIE approach is used in this chapter to implement the BankSimple 
IDL interfaces.

� The ImplBase approach, which uses inheritance.

The generated Java class used in the ImplBase approach is 
_BankImplBase.
51



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
The use of the TIE and ImplBase approaches is discussed in detail in 
�Implementing the IDL Interfaces� on page 146. The TIE approach, which uses 
delegation, is preferred for many Java applications and applets. 

After the IDL interface has been implemented, a server creates an instance of 
the implementation class. This server then connects the created object to the 
ORB runtime, which passes incoming invocations to the implementation object.
 52



 4
Developing Applets with Orbix 
Java

This chapter extends the banking example from Chapter 3,, 
�Developing Applications with Orbix Java�. It explains how to use 
Orbix Java to create a downloadable client applet that communicates 
with a back-end server. The programming steps differ on the client 
side only. You should be familiar with the material covered in 
Chapter 3 before continuing with this chapter.

Review of Orbix Java Programming Steps
Recall the programming steps typically required to create a distributed client-
server application using Orbix Java:

1. Define the interfaces to objects used by the application, 
using CORBA IDL.

2. Generate Java code from the IDL using the IDL compiler.

3. Implement the IDL interface, using the generated code.

4. Write a server that creates instances of the generated classes and 
informs Orbix Java when initialization is complete.

5. Write a client application that connects to the server and uses server 
objects.

6. Compile the client and server applications.
53



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
7. Register the server in the Implementation Repository.

8. Run the client application.

This chapter uses the banking IDL interface outlined in �Defining IDL Interfaces� 
on page 24. The sample code described in this chapter is available in the demos/
BankSimpleApplet directory of your Orbix Java installation. 

Providing a Server
This chapter illustrates a distributed architecture in which a downloadable client 
applet communicates with an Orbix Java server through an IDL interface. This 
client-server architecture is a common requirement in the Java environment 
where small, dynamic client applets are downloaded to communicate with large, 
powerful back-end service applications. Architectures in which full Orbix Java 
servers are coded as downloadable applets are less common, and are not 
described here.

The example server used in this chapter is developed in �Writing an Orbix Java 
Server Application� on page 31. The Orbix Java programming steps for writing 
servers are identical for Java applications and Java applets. The main differences 
between programming for Java applications and Java applets occur when writing 
the client. 

Writing a Client Applet
This section develops a simple Java applet, providing a graphical user interface to 
the banking IDL interface. The example used builds upon the concepts already 
introduced in �Writing the Client Application� on page 36. 

Writing the client applet can be broken down into four sub-steps, each 
corresponding to a particular demonstration source file, as follows:

Programming Step Source File

1. Creating the user interface BankPanel.java

2. Adding Orbix Java client functionality BankEvents.java

3. Creating the applet BankApplet.java

4. Adding the client to a HTML file Index.html
 54



Dev e l o p i n g  App l e t s  w i t h  O r b i x  J a v a
These files are located in the demos\BankSimpleApplet\java directory of your 
Orbix Java installation. The package name for the Java classes in this example is 
Demos.BankSimpleApplet. This example assumes that the file BankSimple.idl 
is compiled with the following command:

idlj -jP Demos BankSimple.idl

Developing an Orbix Java client can be completely decoupled from developing 
the server. For this reason, when compiling the IDL file, the package name 
chosen for the client can differ from the package name for the server.

Creating the User Interface
The GUI source code in BankPanel.java uses the Java Abstract Windowing 
Toolkit package (java.awt) to create and arrange each of the elements within a 
java.awt.Panel container. You should refer to your Java documentation for 
details of the AWT. 

The BankSimpleApplet GUI shown in Figure 4.1 on page 57 consists of three 
tabs: 

The following code sample names the individual GUI components, such as 
buttons and text fields. The details of how the GUI is implemented are not 
discussed:

// Java
// In file BankPanel.java.

package Demos.BankSimpleApplet;
import java.awt.*;

public class BankPanel extends Panel {

Bank Location Used to specify a Naming Service host and get a 
reference to a Bank object.

Accounts Used to create, find and update specified 
accounts.

Transactions Used to make withdrawals and deposits for 
specified accounts.
55



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
// Button String constants
final String m_connect_string = "Connect";
final String m_disconnect_string = "Disconnect";
final String m_withdraw_string = "Withdraw";
final String m_deposit_string = "Deposit";
final String m_create_string = "Create New Account";
final String m_update_string = "Update";

// Labels
Label m_user_label = new Label ("Username");
Label m_balance_label = new Label ("Acount Balance");
Label m_transaction_label = new Label

("Transaction Amount");
Label m_hostname_label = new Label ("Host");
// Buttons
Button m_connect_button;
Button m_disconnect_button;
Button m_withdraw_button;
Button m_deposit_button;
Button m_create_button;
Button m_update_button;

// Text fields
TextField m_transaction_field;
TextField m_user_field;
TextField m_balance_field;
TextField m_hostname_field;

// Sub panels
Panel m_top_panel = new Panel();
Panel m_bottom_panel = new Panel();
// Constructor
public BankPanel() {
...
}

...
}

 56



Dev e l o p i n g  App l e t s  w i t h  O r b i x  J a v a
Figure 4.1: The Banking Graphical User Interface
57



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Adding Orbix Java Client Functionality
In the banking applet example, all Orbix Java client functions are initiated by GUI 
button clicks. For the purposes of illustration, the applet maps GUI button clicks 
directly to individual operations on a Bank object. Operation parameter values 
and results are sent and returned using text boxes. This allows the client to 
receive notification of a button click event, and to determine which button 
received the event. The client can then react by calling the appropriate operation 
on a Bank or Account proxy object. 

A subclass of BankPanel named BankEvents acts as the container for the 
various buttons and text fields. The following is an outline of the source code for 
the class BankEvents. The button implementation methods defined here are 
expanded on later in this section:

// Java
// In file BankEvents.java.

package Demos.BankSimpleApplet;

import java.awt.*;
import Demos.IT_DemoLib.*;
import org.omg.CORBA.ORB;
import org.omg.CORBA.SystemException;
import IE.Iona.OrbixWeb._OrbixWeb;
import IE.Iona.OrbixWeb._CORBA;

public class BankEvents extends BankPanel {

  // Constructor.
public BankEvents(){

    super();
    org.omg.CORBA.ORB Orb = ORB.init(this,null);
    m_orb = Orb;
  }

// Notify appropriate method for action event.
  public boolean action (Event event, Object arg) {
    if ( m_connect_string.equals(arg)){
      connect();
    }
 58



Dev e l o p i n g  App l e t s  w i t h  O r b i x  J a v a
else if ( m_disconnect_string.equals(arg)){
disconnect();

}
else if ( m_withdraw_string.equals(arg)){

withdraw();
}
else if ( m_deposit_string.equals(arg)) {

deposit();
}
else if (m_create_string.equals(arg)) {

create();
}
else if (m_update_string.equals(arg)) {

update();
}
return true;

}
// Connect button implementation.
public void connect() {

// Details later in this section.
}

// Exit button implementation.
public void disconnect() {

m_bank = null;
}

public void update() {
updateCurrentUserBalance();

}

// Deposit button implementation.
public void deposit() {

// Details later in this section.
}

// Withdraw button implementation.
public void withdraw() {

...
}

59



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
// Create button implementation.
public void create() {
// Details later in this section.
}

// Update button implementation.
private void updateCurrentUserBalance() {

...
}

// Find button implementation.
private Account getCurrentUserAccount() {
// Details later in this section.
}

private void displayMsg (String msg) {
// Details later in this section.
}
... 

}

The BankEvents class provides methods to handle the client functionality 
required for the GUI buttons shown in Figure 4.1 on page 57. The following 
sections explain the button implementations in detail. 

Getting a Reference to an Object

The CORBA-defined way to get a reference to an object is to use the Naming 
Service. When an object reference enters a client address space, Orbix Java 
creates a proxy object that acts as a local representative for the remote 
implementation object. Orbix Java forwards operation invocations on the proxy 
object to corresponding methods in the implementation object. 

The Connect button on the Bank Location tab is implemented by the 
Connect() method. This uses Naming Service wrapper functions to obtain a 
Bank object reference:

public void connect() {
String hostname;

// Get hostname from the text field.
hostname = m_hostname_field.getText();
 60



Dev e l o p i n g  App l e t s  w i t h  O r b i x  J a v a
try {
//Set the naming service hostname

1 _OrbixWeb.ORB (m_orb).setConfigItem
("IT_NAMES_SERVER_HOST", hostname);

}
catch(Exception ex){

displayMsg("First exception caught:
"+ex.toString());

}

// Create a new Naming Service wrapper
try {

2 m_ns_wrapper = new IT_NS_Wrapper 
(m_orb, m_demo_context_name);

}
catch (org.omg.CORBA.UserException user_ex) {

displayMsg("Exception raised during creation of
naming service wrapper: " + user_ex.toString());

}
try {

org.omg.CORBA.Object m_obj = 
3 m_ns_wrapper.resolveName("Bank");

displayMsg("After resolving name");

4 m_bank = BankHelper.narrow(m_obj);
displayMsg("Connect succeeded!");

}
catch(org.omg.CORBA.UserException user_ex) {

displayMsg("Exception raised getting bank
reference: "+user_ex.toString());

}
catch (Exception ex) {

displayMsg("Exception caught: "+ex.toString());
}

}
}

This code is described as follows:

1. Set the Naming Service hostname to that input by the user.

2. Create a new Naming Service wrapper object. 
61



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
3. The method nsWrapper.resolveName() retrieves the object reference 
from the Naming Service placed there by the server. The parameter is 
the name of the object to resolve, in this case Bank.This must match the 
name used by the server when it called registerObject(). 

4. The return type from resolveName() is of type org.omg.CORBA.Object. 
You must call BankHelper.narrow() to cast from this base class to the 
Bank IDL class, before you can make invocations on remote Bank objects. 
The client stub code generated for every IDL class contains the 
BankHelper.narrow() function definition for that class.

Disconnecting from a Server 

The Exit button functionality is implemented as follows:

public void disconnect() {
m_bank = null;

}

This destroys a previously created proxy object by assigning it a Java null value. 
This does not actually close the connection; to do this, you must call the 
following:

m_orb.closeConnection(m_bank);

Invoking IDL Attributes and Operations

To access an attribute or an operation associated with an object, call the 
appropriate Java method on the object reference. The client-side proxy 
redirects this call across the network to the appropriate Java method for the 
implementation object. 

Orbix Java enables you to invoke IDL operations using normal Java method calls. 
The following code extracts show the code called when you select the 
appropriate GUI button.

Creating an Account

The Create button functionality is implemented as follows:

// Create button implementation.
public void create() {

Account new_account = null;
 62



Dev e l o p i n g  App l e t s  w i t h  O r b i x  J a v a
String current_name = m_user_field.getText();
try{

new_account = m_bank.create_account
(current_name);

m_balance_field.setText
(String.valueOf((float)0));

displayMsg("Created an account for "+
current_name);

}
catch (SystemException se) {

displayMsg("Exception raised during creation
of account "+se.toString());

}
}

The create() method enables the IDL-defined method create_account() to 
be called on the proxy object m_bank.

Finding an Account

The Find button functionality is implemented as follows:

// Find button implementation.
private Account getCurrentUserAccount() {

try {
return m_bank.find_account

(m_user_field.getText());
}
catch(SystemException se){

displayMsg("Exception raised finding account
for "+ m_user_field.getText());

}
return null;

}

This enables the IDL-defined method find_account() to be called on the 
m_bank proxy object. 
63



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Making a Deposit

The Deposit button functionality is implemented as follows:

public void deposit() {
Account user_account = getCurrentUserAccount();
float amount = Float.valueOf

(m_transaction_field.getText()).floatValue();

if (user_account != null) {
try {

user_account.deposit(amount);
updateCurrentUserBalance();

}

catch (SystemException se) {
displayMsg("Exception raised while

attempting a deposit "+se.toString());
}

}
}

This allows the IDL-defined deposit() method to be called on proxy objects 
located via the find_account() method. The Withdraw button functionality is 
implemented in a similar way.

Handling Exceptions in Orbix Java Client Applets

In the example described in �Writing the Client Application� on page 36, Orbix 
Java system exceptions are handled in catch clauses by displaying the exception 
toString() output in the System.out print stream. This information is helpful 
when you are debugging Orbix Java clients. In a client applet, however, it may 
not be practical to output the information to a print stream. In this example, 
exception strings are displayed in information dialog boxes. The file 
MsgDialog.java implements a generic dialog class for this purpose:

// In file MsgDialog.java.
package Demos.BankSimpleApplet;

import java.awt.*;
 64



Dev e l o p i n g  App l e t s  w i t h  O r b i x  J a v a
public class MsgDialog extends Frame {
    protected Button button;
    protected Msg label;

public MsgDialog(String title, String message){
// Details omitted.
}

// Other class details omitted.
}

The details of this class implementation is not important. Orbix Java error-
handling can be added to the BankEvents class by defining a display method as 
follows:

private void displayMsg (String msg) {
Demos.SimpleBankApplet.MsgDialog m_msg_dialog = 

new Demos.SimpleBankApplet.MsgDialog
("Bank Operation Result", msg);

m_msg_dialog.resize(380,200);
m_msg_dialog.show();

}

This allows any string, including system exception strings, to be displayed in a 
dialog box.

Creating the Applet

To create the BankSimple client applet, define a subclass of 
java.applet.Applet and add a BankEvents object to this class:

// Java
// In file BankApplet.java.
package Demos.BankSimpleApplet;

import org.omg.CORBA.SystemException;
import org.omg.CORBA.INITIALIZE;
import java.applet.*;
import java.awt.*;
import org.omg.CORBA.ORB;
65



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
public class BankApplet extends Applet {

// Main display panel
BankEvents m_bank_events;

public void init () {
try {

ORB.init(this, null);
} 
catch (INITIALIZE ex) {

System.err.println ("failed to initialize: "+ex);
}

// Create new panel.
m_bank_events = new BankEvents ();

// Add panel to applet.
this.add (m_bank_events);
}

}

Initializing the ORB 

Because Orbix Java uses the standard OMG IDL to Java mapping, all client and 
server applets must call org.omg.CORBA.ORB.init() to initialize the ORB. This 
returns a reference to the ORB object. You can then invoke the ORB methods 
defined by the standard on this instance. 

The example applet, BankApplet.java, uses the following version of 
org.omg.CORBA.ORB.init():

ORB.init(Applet app, java.util.Properties props)

You must use this version of init() for applet initialization. In the example, the 
client applet passes a reference to itself using the this parameter. The props 
parameter, used to set configuration properties, is set to null. This means that 
the default system properties are used instead. 

This version of the init() method returns a new fully functional ORB Java 
object each time it is called. Refer to the Orbix  Programmer�s Reference Java 
Edition for further information on class org.omg.CORBA.ORB and ORB.init().
 66



Dev e l o p i n g  App l e t s  w i t h  O r b i x  J a v a
Adding the Applet to a HTML File
In HTML terms, an Orbix Java applet client behaves exactly like a standard Java 
applet. It can be included in a HTML file using the standard <APPLET> tag, as 
shown in the file Index.html:

// HTML
// In file Index.html

<HTML>
<HEAD>

<TITLE>Orbix Java BankSimpleApplet demo</TITLE>
</HEAD>

<BODY>
<H1>Bank Client</H1>

<APPLET CODE="Demos/BankSimpleApplet/
BankSimpleApplet.class" 

1 CODEBASE="../../classes/"
archive=�OrbixWeb.jar�
WIDTH=390 HEIGHT=560>

<PARAM NAME=�org.omg.CORBA.ORBClass�
2 VALUE=�IE.Iona.OrbixWeb.CORBA.ORB>

<PARAM NAME=�org.omg.CORBA.ORBSingletonClass�
VALUE=�IE.Iona.OrbixWeb.CORBA.singletonORB>

</APPLET>
</BODY>
</HTML>

This HTML is described as follows:

1. The CODEBASE attribute of the HTML <APPLET> tag indicates the location 
of the additional classes required by the applet.

2. Pass the parameter value IE.Iona.OrbixWeb.CORBA.ORB to enable 
use of the Orbix Java ORB implementation. This means that Orbix Java -
specific methods such as bind() can be used. 
67



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Compiling the Client Applet
The instructions for compiling an Orbix Java applet are identical to those for a 
standard Orbix Java application, as described in �Compiling the Client and 
Server� on page 41.

You must ensure that the Java compiler can access the Java API packages 
(including java.awt for this sample code), the Orbix Java 
IE.Iona.OrbixWeb.CORBA package, and any applet-specific classes. Invoke the 
compiler on all the Java source files for the application. 

The following files are required for the banking example:

� _BankStub.java

� Bank.java

� _AccountStub.java

� Account.java

� BankPanel.java 

� BankEvents.java 

� BankApplet.java 

� MsgDialog.java 

� Msg.java

The Orbix Java demos/BankSimpleApplet directory provides a script that 
invokes the owjavac.pl wrapper utility as required. To compile the client 
applet, enter the appropriate command at the operating system prompt:

UNIX % make

Windows > compile
 68



Dev e l o p i n g  App l e t s  w i t h  O r b i x  J a v a
Running the Client Applet
When running the client applet, you must use a Web browser or an applet 
viewer to view the HTML file. For example, you can use the JDK appletviewer 
as follows:

appletviewer Index.html

Java applets differ slightly from standalone Java applications in their requirements 
for accessing class directories. Before running the viewer, you can specify the 
locations of required classes in the CLASSPATH environment variable. The classes 
required are identical to those for an Orbix Java client application:

� The Java API classes located in the rt.jar file in the jre/lib directory of 
your JDK installation.

� The Orbix Java API classes located in the OrbixWeb.jar file in the lib 
directory of your Orbix Java installation. 

� The config directory of your Orbix Java installation.

� Any other classes required by the application.

An alternative approach is to provide access to all the classes the applet requires 
in a single directory. Instead of setting environment variables, you can use the 
CODEBASE attribute of the HTML <APPLET> tag to indicate the location of the 
required classes. This approach is recommended, and is the approach used in 
�Creating the Applet� on page 65. The Orbix Java configuration files are loaded 
from the location specified by the CODEBASE attribute of the <APPLET> tag. If you 
do not specify the CODEBASE attribute, the directory containing HTML file is used 
as the default location. 

Refer to the Orbix Administrator�s Guide Java Edition  for more details on the 
Orbix Java configuration files.

Security Issues for Java Applets

Java applets are subject to important security restrictions that are imposed by 
the Java environment and Web browsers. The severity of these restrictions is 
often dependent on browser technology. Refer to the Orbix Administrator�s 
Guide Java Edition  for details about using Orbix Java on the Internet.
69



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Learning more about Orbix Java 
Parts II and III of this guide describe Orbix Java features in more detail and 
expand on the information presented in Part 1. Specifically, Parts II and III include 
the following:

� An overview of the structure of distributed applications.

� An introduction to IDL and the corresponding mapping of IDL to the Java 
programming language. Both client and server programmers must be 
familiar with this mapping.

� Further examples of using Orbix Java to define an interface to a system 
component and write client and server programs.

� How to make objects available in Orbix Java, using the CORBA-defined 
Naming Service and the Orbix Java -specific bind() method.

� The use of inheritance when defining IDL interfaces, allowing an interface 
to be defined by extending others.

� More details on compiling IDL definitions, and registering Orbix Java 
servers in the Implementation Repository.

� Details on enabling communication between independently developed 
implementations of the CORBA standard, using IIOP (Inter-ORB 
Interoperability Protocol).

Parts IV and V of this guide discuss advanced features that extend the power of 
Orbix Java, for example:

� Filters can be installed in your system to allow programs to monitor or 
control incoming or outgoing requests.

� A proxy is a local representative or stand-in for a remote object. A smart 
proxy is an intelligent stand-in. You can write Smart proxies to optimize 
the performance of a component as perceived by a client.

� To facilitate applications such as browsers, the interface of an object can 
be examined at runtime, using the Interface Repository.
 70



Dev e l o p i n g  App l e t s  w i t h  O r b i x  J a v a
� If Orbix Java fails to find an object being sought by a client or server, it 
informs loader objects, which can load the object from some persistent 
store. Interfacing Orbix Java to a persistent store, therefore, involves 
writing a loader object and installing this within programs that directly use 
that persistent store. As a result, Orbix Java is not tied to using any 
specific persistent store from a particular vendor.

� Orbix Java has an inbuilt mechanism for searching the distributed system 
for a server. If this mechanism is not appropriate or if it needs to be 
augmented, you can write a locator object and install this.

� Some applications, such as browsers, must be able to use all of the 
interfaces defined in a system�even those interfaces that did not exist 
when the browser was compiled. Orbix Java supports such applications 
via its Dynamic Invocation Interface. 

A full description of the API to Orbix Java is supplied in the Orbix  Programmer�s 
Reference Java Edition.
71



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
 72



Part II
CORBA Programming
with Orbix Java





 5
Introduction to CORBA IDL

The CORBA Interface Definition Language (IDL) is used to define 
interfaces to objects in your network. This chapter introduces the 
features of CORBA IDL and illustrates the syntax used to describe 
interfaces.

The first step in developing a CORBA application is to define the interfaces to 
the objects required in your distributed system. To define these interfaces, you 
use CORBA IDL.

IDL allows you to define interfaces to objects without specifying the 
implementation of those interfaces. To implement an IDL interface you must:

1. Define a Java class that can be accessed through the IDL interface. 

2. Create objects of that class within an Orbix Java server application.

You can implement IDL interfaces using any programming language for which an 
IDL mapping is available. An IDL mapping specifies how an interface defined in 
IDL corresponds to an implementation defined in a programming language. 
CORBA applications written in different programming languages are fully 
interoperable.

CORBA defines standard mappings from IDL to several programming languages, 
including C++, Java, and Smalltalk. The Orbix Java IDL compiler converts IDL 
definitions to corresponding Java definitions, in accordance with the standard 
IDL to Java mapping.
75



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
IDL Modules and Scoping
An IDL module defines a naming scope for a set of IDL definitions. Modules 
allow you to group interface and other IDL type definitions into logical name 
spaces. When writing IDL definitions, always use modules to avoid possible 
name clashes.

The following example illustrates the use of modules in IDL:

// IDL
module finance {

interface account {
...

};
};

The interface account is scoped within the module finance. IDL definitions are 
available directly within the scope in which they are defined. In other naming 
scopes, you must use the scoping operator :: to access these definitions. For 
example, the fully scoped name of interface account is finance::account.

IDL modules can be reopened. For example, a module declaration can appear 
several times in a single IDL specification if each declaration contains different 
data types. In most IDL specifications, this feature of modules is not required.

Defining IDL Interfaces
An IDL interface describes the functions that an object supports in a distributed 
application. Interface definitions provide all the information that clients need to 
access the object across a network. 

Consider the example of an interface that describes objects that implement bank 
accounts in a distributed application. 
 76



I n t r o du c t i o n  t o  CORBA  I D L
The IDL interface definition is as follows:

//IDL
module finance {

interface account {
// The account owner and balance.
readonly attribute string owner;
readonly attribute float balance;

// Operations available on the account.
void makeLodgement(in float amount, 

out float newBalance);
void makeWithdrawal(in float amount, 

out float newBalance);
};

};

The definition of interface account includes both attributes and operations. 
These are the main elements of any IDL interface definition.

IDL Attributes 

Conceptually, IDL attributes correspond to variables that an object implements. 
Attributes indicate that these variables are available in an object and that clients 
can read or write their values.

In general, each attribute maps to a pair of functions in the programming 
language used to implement the object. These functions allow client applications 
to read or write the attribute values. However, if an attribute is preceded by the 
keyword readonly, clients can only read the attribute value.

For example, the account interface defines the attributes balance and owner. 
These attributes represent information about the account which the object 
implementation can set, but which client applications can only read.
77



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
IDL Operations 

IDL operations define the format of functions, methods, or operations that 
clients use to access the functionality of an object. An IDL operation can take 
parameters and return a value, using any of the available IDL data types.

For example, the account interface defines the operations makeLodgement() 
and makeWithdrawal() as follows:

//IDL
module finance {

interface account {
// Operations available on the account.
void makeLodgement(in float amount, 

out float newBalance);
void makeWithdrawal(in float amount, 

out float newBalance);
...

};
};

Each operation takes two parameters and has a void return type. The 
parameter definitions must specify the direction in which the parameter value is 
passed. The possible parameter-passing modes are as follows:

Parameter-passing modes clarify operation definitions and allow an IDL compiler 
to map operations accurately to a target programming language.

in The parameter is passed from the caller of the 
operation to the object.

out The parameter is passed from the object to the caller.

inout The parameter is passed in both directions.
 78



I n t r o du c t i o n  t o  CORBA  I D L
Raising Exceptions in IDL Operations

IDL operations can raise exceptions to indicate the occurrence of an error. 
CORBA defines two types of exceptions:

� System exceptions
These are a set of standard exceptions defined by CORBA.

� User-defined exceptions 
These are exceptions that you define in your IDL specification.

All IDL operations can implicitly raise any of the CORBA system exceptions. No 
reference to system exceptions appears in an IDL specification. Refer to the 
Orbix Administrator�s Guide Java Edition  appendices for a complete list of the 
CORBA system exceptions.

To specify that an operation can raise a user-defined exception, first define the 
exception structure and then add an IDL raises clause to the operation 
definition. For example, the operation makeWithdrawal() in interface account 
could raise an exception to indicate that the withdrawal has failed, as follows:

// IDL
module finance {

interface account {
exception WithdrawalFailure {

string reason;
};

void makeWithdrawal(in float amount, 
out float newBalance)
raises(WithdrawalFailure);

...
};

};

An IDL exception is a data structure that contains member fields. In this 
example, the exception WithdrawalFailure includes a single member of type 
string. 

The raises clause follows the definition of operation makeWithdrawal() to 
indicate that this operation can raise exception WithdrawalFailure. If an 
operation can raise more then one type of user-defined exception, include each 
exception identifier in the raises clause and separate the identifiers using 
commas.
79



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Invocation Semantics for IDL Operations

By default, IDL operation calls are synchronous. This means that a client calls an 
operation and blocks until the object has processed the operation call and 
returned a value. The IDL keyword oneway allows you to modify these 
invocation semantics.

If you precede an operation definition with the keyword oneway, a client that 
calls the operation will not block while the object processes the call. For 
example, you could add a oneway operation to interface account that sends a 
notice to an account object, as follows:

module finance {
interface account {

oneway void notice(in string text);
...

};
};

Orbix Java does not guarantee that a oneway operation call will succeed. Thus, if 
a oneway operation fails, a client may never know. There is only one 
circumstance in which Orbix Java indicates failure of a oneway operation. If a 
oneway operation call fails before Orbix Java transmits the call from the client 
address space, Orbix Java raises a system exception.

Note: A oneway operation cannot have any out or inout parameters and 
cannot return a value. In addition, a oneway operation cannot have an 
associated raises clause.

Passing Context Information to IDL Operations

CORBA context objects allow a client to map a set of identifiers to a set of 
string values. When defining an IDL operation, you can specify that the operation 
should receive the client mapping for particular identifiers as an implicit part of 
the operation call. To do this, add a context clause to the operation definition.

Consider the example of an account object, where each client maintains a set of 
identifiers, such as sys_time and sys_location, that map to information that 
the operation makeLodgement() logs for each lodgement received. 
 80



I n t r o du c t i o n  t o  CORBA  I D L
To ensure that this information is passed with every operation call, extend the 
definition of makeLodgement() as follows:

// IDL
module finance {

interface account {
void makeLodgement(in float amount, 

out float newBalance)
context("sys_time", "sys_location");

...
};

};

A context clause includes the identifiers for which the operation expects to 
receive mappings. IDL contexts are rarely used in practice.

Inheritance of IDL Interfaces

IDL supports inheritance of interfaces. An IDL interface can inherit all the 
elements of one or more other interfaces. 

For example, the following IDL definition illustrates two interfaces called 
checkingAccount and savingsAccount. Both of these inherit from an interface 
named account:

// IDL
module finance {

interface account {
...

};

interface checkingAccount : account {
readonly attribute overdraftLimit;
boolean orderChequeBook ();

};

interface savingsAccount : account {
float calculateInterest ();

};
};

Interfaces checkingAccount and savingsAccount implicitly include all elements 
of interface account.
81



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
An object that implements checkingAccount can accept calls on any of the 
attributes and operations of this interface, and also on any of the elements of 
interface account. However, a checkingAccount object may provide different 
implementations of the elements of interface account to an object that 
implements account only.

The following IDL definition shows how to define an interface that inherits both 
checkingAccount and savingsAccount:

// IDL
module finance {

interface account {
...

};

interface checkingAccount : account {
...

};

interface savingsAccount : account {
...

};

interface premiumAccount : 
checkingAccount, savingsAccount {

};
};

Interface premiumAccount is an example of multiple inheritance in IDL. 
Figure 5.1 on page 83 illustrates the inheritance hierarchy for this interface.

If you define an interface that inherits from other interfaces containing a 
constant, type, or exception definition of the same name, you must fully scope 
that name when using the constant, type, or exception. 

Note: An interface cannot inherit from other interfaces that include operations 
or attributes that have the same name.
 82



I n t r o du c t i o n  t o  CORBA  I D L
The Object Interface Type

IDL includes the pre-defined interface Object, which all user-defined interfaces 
inherit implicitly. The operations defined in this interface are described in the 
Orbix  Programmer�s Reference Java Edition. While interface Object is never 
defined explicitly in your IDL specification, the operations of this interface are 
available through all your interface types. In addition, you can use Object as an 
attribute or operation parameter type to indicate that the attribute or operation 
accepts any interface type, for example:

// IDL
interface ObjectLocator {

void getAnyObject (out Object obj);
};

It is not legal IDL syntax to explicitly inherit interface Object.

Figure 5.1: Multiple Inheritance of IDL Interfaces

account

savingsAccountcheckingAccount

premiumAccount
83



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Forward Declaration of IDL Interfaces

In IDL, you must declare an IDL interface before you reference it. A forward 
declaration declares the name of an interface without defining it. This feature of 
IDL allows you to define interfaces that mutually reference each other.

For example, IDL interface account could include an attribute of IDL interface 
type bank, to indicate that an account stores a reference to a bank object. If the 
definition of interface bank follows the definition of interface account, you 
would make a forward declaration for the bank interface as follows:

// IDL
module finance {

// Forward declaration of bank.
interface bank;
interface account {

readonly attribute bank branch;
...

};

// Full definition of bank.
interface bank {

...
};

};

The syntax for a forward declaration is the keyword interface followed by the 
interface identifier.

Note: It is not possible to inherit from a forwardly declared interface. You can 
only inherit from an interface that has been fully specified. 

The following IDL definition, for example, is not permitted:

//IDL
module finance{

//Forward declaration of bank.
interface bank;

interface account Bigbank:bank{
...

}

 84



I n t r o du c t i o n  t o  CORBA  I D L
Overview of the IDL Data Types
In addition to IDL module, interface, and exception types, there are four main 
categories of data type in IDL:

� Basic types

� Constructed types

� Template types

� Pseudo object types

This section examines each IDL data type in turn, and describes how you can 
define new data type names, arrays, and constants in IDL.

IDL Basic Types

Table 5.2 lists the basic types supported in IDL. 

IDL Type Range of Values

short -215...215-1 (16-bit)

unsigned short 0...216-1 (16-bit) 

long �231...231-1 (32-bit)

unsigned long 0...232-1 (32-bit) 

long long �263...263-1 (64-bit)

unsigned long long 0...263-1 (64-bit) 

float IEEE single-precision floating point numbers.

double IEEE double-precision floating point numbers.

char An 8-bit value.

wchar A 16-bit value.

boolean TRUE or FALSE.

Table: 5.2: The IDL Basic Types
85



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
The any data type allows you to specify that an attribute value, an operation 
parameter, or an operation return value can contain an arbitrary type of value to 
be determined at runtime. Refer to �Type any� on page 313 for more details. 

IDL Constructed Types

IDL provides three constructed data types: 

� enum

� struct

� union

Enum

An enumerated type allows you to assign identifiers to the members of a set of 
values, for example:

// IDL
module finance {

enum currency {pound, dollar, yen, franc};

interface account {
readonly attribute float balance;
readonly attribute currency balanceCurrency;
...

};
};

In this example, attribute balanceCurrency in interface account can take any 
one of the values pound, dollar, yen, or franc to indicate the currency 
associated with the attribute balance.

octet An 8-bit value that is guaranteed not to undergo 
any conversion during transmission.

any The any type allows the specification of values 
that can express an arbitrary IDL type.

IDL Type Range of Values

Table: 5.2: The IDL Basic Types
 86



I n t r o du c t i o n  t o  CORBA  I D L
Struct

A struct data type allows you to package a set of named members of various 
types, for example:

// IDL
module finance {

struct customerDetails {
string name;
short age;

};

interface bank {
customerDetails getCustomerDetails(

in string name);
...

};
};

In this example, the struct customerDetails has two members: name and age. 
The operation getCustomerDetails() returns a struct of type 
customerDetails that includes values for the customer name and age.

Union

A union data type allows you to define a structure that can contain only one of 
several alternative members at any given time. A union saves memory space, 
because the amount of storage required for a union is the amount necessary to 
store its largest member.

All IDL unions are discriminated. This means that they associate a label value 
with each member. The value of the label indicates which member of the union 
currently stores a value.
87



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
For example, consider the following IDL union definition:

// IDL
struct DateStructure {

short Day;
short Month;
short Year;

};

union Date switch (short) {
case 1: string stringFormat;;
case 2: long digitalFormat;
default: DateStructure structFormat;

};

The union type Date is discriminated by a short value. For example, if this short 
value is 1, the union member stringFormat stores a date value as an IDL string. 
The default label associated with the member structFormat indicates that if the 
short value is not 1 or 2, the structFormat member stores a date value as an 
IDL struct.

The type specified in parentheses after the switch keyword must be an 
integer, char, boolean or enum type and the value of each case label must be 
compatible with this type.

IDL Template Types

IDL provides two template types: 

� string 

� sequence

String

An IDL string represents a character string, where each character can take any 
value of the char basic type. 

If the maximum length of an IDL string is specified in the string declaration, the 
string is bounded. Otherwise, the string is unbounded.
 88



I n t r o du c t i o n  t o  CORBA  I D L
The following example shows how to declare bounded and unbounded strings:

// IDL
module finance {

interface bank {
// A bounded string with maximum length 10.
attribute string sortCode<10>;
// An unbounded string.
attribute string address; 
...

};
};

Sequence

In IDL, you can declare a sequence of any IDL data type or user-defined data 
type. An IDL sequence is similar to a one-dimensional array of elements.

An IDL sequence does not have a fixed length. If the sequence has a fixed 
maximum length, the sequence is bounded. Otherwise, the sequence is 
unbounded.

For example, the following code shows how to declare bounded and unbounded 
sequences as members of an IDL struct:

// IDL
module finance {

interface account {
...

};

struct limitedAccounts {
string bankSortCode<10>;
// Maximum length of sequence is 50.
sequence<account, 50> accounts;

};

struct unlimitedAccounts {
string bankSortCode<10>;
// No maximum length of sequence.
sequence<account> accounts;

};
};
89



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
A sequence must be named by an IDL typedef declaration (described in 
�Defining Aliases and Constants� on page 93) before it can be used as the type 
of an IDL attribute or operation parameter. This is illustrated by the following 
code:

// IDL
module finance {

typedef sequence<string> customerSeq;

interface bank {
void getCustomerList(out customerSeq names);
...

};
};

Arrays

In IDL, you can declare an array of any IDL data type. IDL arrays can be 
multidimensional and always have a fixed size. For example, you can define an 
IDL struct with an array member as follows:

// IDL
module finance {

interface account {
...

};

struct customerAccountInfo {
string name;
account accounts[3];

};

interface bank {
getCustomerAccountInfo (in string name,

out customerAccountInfo accounts);
...

};
};

In this example, struct customerAccountInfo provides access to an array of 
account objects for a bank customer, where each customer can have a 
maximum of three accounts.
 90



I n t r o du c t i o n  t o  CORBA  I D L
As with sequences, an array must be named by an IDL typedef declaration 
before it can be used as the type of an IDL attribute or operation parameter. 
The following code illustrates this:

// IDL
module finance {

interface account {
...

};
typedef account accountArray[100];

interface bank {
readonly attribute accountArray accounts;
...

};
};

Note: Arrays are a less flexible data type than an IDL sequence, because an 
array always has a fixed length. An IDL sequence always has a variable 
length, although it may have an associated maximum length value.

Fixed Types

The fixed data type allows you to represent a number in two parts: a digit and a 
scale. The digit represents the length of the number, and the scale is a non-
negative integer that represents the position of the decimal point in the number, 
relative to the rightmost digit.

module finance {
typedef fixed<10,4> ExchangeRate;

struct Rates {
ExchangeRate USRate;
ExchangeRate UKRate;
ExchangeRate IRRate;

};
};

In this case, the ExchangeRate type has a digit of size 10, and a scale of 4. This 
means that it can represent numbers up to (+/-)999999.9999.
91



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
The maximum value for the digits is 31, and scale cannot be greater than digits. 
The maximum value that a fixed type can hold is equal to the maximum value of 
a double. 

Scale can also be a negative number. This means that the decimal point is moved 
scale digits in a rightward direction, causing trailing zeros to be added to the 
value of the fixed. For example, fixed <3,-4> with a numeric value of 123 
actually represents the number 1230000. This provides a mechanism for storing 
numbers with trailing zeros in an efficient manner. 

Note: Fixed <3, -4> can also be represented as fixed <7, 0>.

Constant fixed types can also be declared in IDL. The digits and scale are 
automatically calculated from the constant value. For example:

module Circle {
const fixed pi = 3.142857;

};

This yields a fixed type with a digits value of 7, and a scale value of 6.

IDL Pseudo-Object Types

CORBA defines a set of pseudo-object types that ORB implementations use 
when mapping IDL to some programming languages. These object types have 
interfaces defined in IDL, but do not have to follow the normal IDL mapping for 
interfaces, and are not generally available in your IDL specifications.

You can use only the following pseudo-object types as attribute or operation 
parameter types in an IDL specification:

� NamedValue

� Principal

� TypeCode
 92



I n t r o du c t i o n  t o  CORBA  I D L
To use any of these three types in an IDL specification, include the file orb.idl 
in the IDL file as follows:

// IDL
#include <orb.idl>
...

This statement indicates to the IDL compiler that types NamedValue, Principal, 
and TypeCode may be used. The file orb.idl does not actually exist in your 
system. Do not name any of your IDL files orb.idl.

For more information on these types, refer to �IDL to Java Mapping� on page 91, 
and to the Orbix  Programmer�s Reference Java Edition.

Defining Aliases and Constants

IDL allows you to define aliases (new data type names) and constants. This 
section describes how to use these IDL features.

Using Typedef to Create Aliases

The typedef keyword allows you define a more meaningful or simple name for 
an IDL type. The following IDL provides a simple example of using this keyword:

// IDL
module finance {

interface account {
...

};

typedef account standardAccount;
};

The identifier standardAccount can act as an alias for type account in 
subsequent IDL definitions. CORBA does not specify whether the identifiers 
account and standardAccount represent distinct IDL data types in this 
example.
93



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Constants

IDL allows you to specify constant data values using one of several basic data 
types. Refer to the IDL Reference in the Orbix  Programmer�s Reference Java 
Edition indicates which data types you can use to define constants.

To declare a constant, use the IDL keyword const, for example:

// IDL
module finance {

interface bank {
const long MaxAccounts = 10000;
const float factor = (10.0 - 6.5) * 3.91;
...

};
};

The value of an IDL constant cannot change. You can define a constant at any 
level of scope in your IDL specification.
 94



 6
IDL to Java Mapping

This chapter describes Orbix Java's mapping of IDL to Java, using 
the Orbix Java IDL to Java compiler. Orbix Java's implementation of 
the IDL to Java mapping conforms with version 1.1 of the standard 
OMG IDL/Java Language Mapping specification.1 This chapter 
explains the rules used to convert IDL definitions into Java source 
code, as well as how to use the generated Java constructs.

An IDL definition is used to specify the interface for an object. This interface 
must then be implemented using an appropriate programming language. To allow 
implementation of interfaces in Orbix Java, the IDL specified interfaces are 
mapped to Java, using the Orbix Java IDL to Java compiler. This compilation 
produces a set of classes that allow the client to invoke operations on a remote 
object as if it were located on the same machine. 

This chapter is designed to illustrate the fundamentals of the IDL to Java 
mapping, and to serve as a reference for more detailed technical information 
required when writing applications.

1.   The IDL/Java Language Mapping specification is available from the OMG web site at 
http://www.omg.org
95



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Overview of IDL to Java Mapping
The principal elements of the IDL to Java mapping are outlined as follows:

Basic Types

Basic types in IDL are mapped to the most closely corresponding Java type. All 
mapped basic types have holder classes that support parameter passing modes. 
Refer to �Mapping for Basic Data Types� on page 98.

Mapping for Modules

An IDL module is mapped to a Java package of the same name. Scoped names are 
used for types defined in interfaces within a module. Refer to �Mapping for 
Modules� on page 100 for details.

Mapping for Interfaces and Operation Parameters

IDL interfaces are mapped to Java interfaces and classes that provide client-side 
and server-side support. Provision is made for two approaches to interface 
implementation: the TIE and Implbase approaches.

Attributes within IDL interfaces are mapped to a pair of overloaded methods 
allowing the attribute value to be set and retrieved. 

Operations within IDL interfaces are mapped to Java methods of the same name 
in the corresponding Java interface. 

Helper classes are generated by the IDL compiler. These contain a number of 
static methods for type manipulation. Refer to �Helper Classes for Type 
Manipulation� on page 104.

Holder classes are generated by the IDL compiler for all user-defined types to 
implement parameter-passing modes in Java. Holder classes are needed because 
IDL inout and out parameters do not map directly into the Java parameter- 
passing mechanism. Holder classes for the basic types are available in the 
org.omg.CORBA package. Refer to �Holder Classes and Parameter Passing� on 
page 106. 
 96



I D L  t o  J a v a  Mapp i n g
Mapping for Constructed Types

Constructed types map to a Java final class, containing methods and data 
members appropriate to the mapped type. For a full description of mapping for 
enum, struct, and union types, refer to �Mapping for Constructed Types� on 
page 124.

Mapping for Strings 

IDL strings, both bounded and unbounded, map to the Java type String. Orbix 
Java performs bounds checking for String parameter values passed as bounded 
strings to IDL operations. Refer to �Mapping for Strings� on page 130.

Mapping for Sequences and Arrays

IDL sequences, both bounded and unbounded, map to Java arrays of the same 
name. Orbix Java performs bounds checking for bounded sequences. Helper and 
holder classes are generated for mapped IDL sequences. Refer to �Mapping for 
Sequences� on page 131.

IDL arrays map directly to Java arrays of the same name. Orbix Java performs 
the bounds checking, because Java arrays are not bounded. Refer to �Mapping 
for Arrays� on page 133. 

Mapping for Fixed Types

IDL fixed types map to the Java java.math.BigDecimal class. Refer to �Mapping 
for Fixed Types� on page 134.

Mapping for Constants

Constants map to public static final fields in a corresponding Java interface. 
If the constant is not defined in an interface, the mapping first generates a public 
interface with the same name as the constant. Refer to �Mapping for Constants� 
on page 135.
97



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Mapping for Typedefs

Typedefs are mapped to the corresponding Java mapping for the original IDL 
type. A helper class is generated for the declared type. The IDL to Java mapping 
for constants and typedefs is described in �Mapping for Typedefs� on page 136.

Mapping for Exceptions

IDL standard system exceptions are mapped to Java final classes that extend 
org.omg.CORBA.SystemException and provide access to IDL exception code. 
IDL user-defined exception types map to a final class that derives from 
org.omg.CORBA.UserException. User-defined exceptions have helper and 
holder classes generated. Refer to �Mapping for Exception Types� on page 137.

Mapping for Basic Data Types
The IDL basic data types are mapped to corresponding Java types as shown in 
Table 6.1.

IDL JAVA Exceptions

short short

long int

unsigned short short

unsigned long int

long long long

unsigned long long long

float float

double double

char char CORBA::DATA_CONVERSION

wchar char CORBA::DATA_CONVERSION

Table: 6.1: Mapping for Basic Types
 98



I D L  t o  J a v a  Mapp i n g
You should note the following features of the IDL to Java mapping for basic 
types: 

� Holder Classes for Parameter Passing

All IDL basic types have holder classes available in the org.omg.CORBA 
package to provide support for the out and inout parameter-passing 
modes. For more details on holder classes refer to �Holder Classes and 
Parameter Passing� on page 106.

� IDL Long Maps to Java Int

The 32-bit IDL long is mapped to the 32-bit Java int.

� IDL Unsigned Types Map to Signed Java Types

Java does not support unsigned data types. All unsigned IDL types are 
mapped to the corresponding signed Java types. You should ensure that 
large unsigned IDL type values are handled correctly as negative integers 
in Java.

� IDL Chars and Java Chars

IDL chars are based on the 8-bit character set for ISO 8859.1. Java chars 
come from the 16-bit UNICODE character set. Consequently, IDL chars 
only represent a small subset of Java chars. On marshalling, if a char has 
a value outside the range defined by the character set, a 
CORBA::DATA_CONVERSION exception is thrown. The 16-bit IDL wchar 
represents the full range of Java chars, and maps to the Java primitive 
type char.

string java.lang.String CORBA::MARSHAL
CORBA::DATA_CONVERSION

wstring java.lang.String CORBA::MARSHAL
CORBA::DATA_CONVERSION

boolean boolean

octet byte

any org.omg.CORBA.Any

IDL JAVA Exceptions

Table: 6.1: Mapping for Basic Types
99



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
� IDL Strings

IDL string types map to the Java type String. On marshalling, range 
checking for characters and bounds checking of the string is performed. 
Character range violations raise a CORBA::DATA_CONVERSION exception; 
bounds violations raise a CORBA::MARSHAL exception. IDL wstring types, 
both bounded and unbounded, also map to the Java type String. 

� Booleans

The IDL boolean type constants TRUE and FALSE map to the Java 
boolean type literals true and false. 

� Type any

The mapping for type any is described in full in �Type any� on page 313.

Mapping for Modules
An IDL module is mapped to a Java package of the same name. All IDL type 
declarations within the module are mapped to a corresponding Java class or 
interface declaration within the generated package. IDL declarations not 
enclosed in any modules are mapped into the Java global scope. The use of 
modules is recommended.

Scoped Names

All types defined within an IDL module are mapped within a Java package with 
the same name as that module. For example, if an interface named bank is 
defined inside the module IDLDemo, then the Java interface for bank is scoped as 
IDLDemo.bank.

Similarly, any type defined inside an interface is scoped first by the module name, 
if defined, and then by a package named <type>Package, where <type> is the 
interface name. Therefore, if bank defines a structure called Details, the 
corresponding class is scoped as IDLDemo.bankPackage.Details.

IDL types which are not defined inside either a module or an interface are not 
included in a Java package. This creates the potential for naming collisions with 
other globally defined Java types. To avoid the generation of such naming 
collisions, always define your IDL within modules. Alternatively, use the -jP 
 100



I D L  t o  J a v a  Mapp i n g
compiler option, which specifies a package prefix that is added to generated 
types. This makes it possible to use globally defined IDL types within a package 
scope. 

Refer to the Orbix Administrator�s Guide Java Edition  for more details on the 
use of compiler options. 

The CORBA Module

The objects and data types pre-defined in CORBA are logically defined within an 
IDL module called CORBA. IDL maps the CORBA module to a Java package called 
org.omg.CORBA. In line with this mapping, the OMG keyword Object maps to 
org.omg.CORBA.Object. 

In Orbix Java, the org.omg.CORBA set of classes represents the OMG standard 
abstract runtime. The actual implementation of the Orbix Java ORB resides in 
the IE.Iona.OrbixWeb package. 

Mapping for Interfaces
An IDL interface maps to a public Java interface of the same name, and a number 
of other generated Java constructs. This discussion focuses on the client-side and 
server-side mapping, and on helper and holder classes. These classes have roles 
on both the client side and the server side.

IDL interface definitions are compiled by the IDL to Java compiler. The following 
Java constructs are generated, where <type> represents a user-defined interface 
name: 

 

Generated Files Description Side

<type>.java Java Reference interface client

_<type>Stub.java Java Stub class client

_<type>Skeleton.java Java Skeleton class server

_<type>ImplBase.java ImplBase class server

_tie_<type>.java TIE class server
101



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Note: The classes _tie_<type>.java and _<type>Operations.java are 
specific to Orbix Java. To generate files defined by CORBA only, use the 
-jOMG IDL compiler switch.

This section uses the IDL interface account to show how an IDL interface is 
mapped to Java:

// IDL
module bank_demo{
interface account {

readonly attribute float balance;

void makeLodgement(in float sum);
void makeWithdrawal(in float sum);

};
};

Client Mapping

The Orbix Java client provides proxy functionality for the IDL interface. The IDL 
compiler generates the following client-side Java constructs for each IDL 
interface: 

� Java Reference interface

� Java Stub class

� Java Helper class

� Java Holder class

_<type>Operations.java Java interface 
(used with TIE class)

server

<type>Helper.java Java Helper class client/server

<type>Holder.java Java Holder class client/server

<type>Package Java package. client/server
 102



I D L  t o  J a v a  Mapp i n g
Java Reference Interface

A Java Reference Interface type has the naming format <type>.java. It defines 
the client view of the IDL interface, listing the methods that a client can call on 
objects that implement the IDL type. The interface extends the base 
org.omg.CORBA.Object interface.

The following Java Reference interface for the IDL interface account illustrates 
the Java mapping for IDL attributes and operations:

// Java generated by the Orbix Java IDL compiler

package bank_demo;
public interface account 

extends org.omg.CORBA.Object {
public float balance();
public void makeLodgement(float sum);
public void makeWithdrawal(float sum);

}

The read-only attribute balance maps to a single Java method, because there is 
no requirement for setting its value. 

The IDL operations makeLodgement and makeWithdrawal map to methods of 
the same name in the corresponding Java interface.

Java Stub Class

The Java Stub class generated by the IDL compiler implements the Java interface 
and provides the functionality to allow client invocations to be forwarded to the 
server.This class has a naming format of _<type>Stub.java. This generated 
class is used internally by Orbix Java and you do not need to understand how it 
works.

Java Helper classes and Java Holder classes are discussed in the following two 
sections.
103



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Helper Classes for Type Manipulation

A Java Helper class is also generated by the Java mapping. Helper classes contain 
methods that allow IDL types to be manipulated in various ways. The IDL-to-Java 
compiler generates helper classes for all IDL user-defined types. The naming 
format for helper classes is <type>Helper, where <type> is the name of an IDL 
user-defined type.

Helper classes include methods that support insertion and extraction of the 
account object into and from Java Any types. Interface Helper classes also have 
static class methods for narrow() and bind(). The narrow() method takes an 
org.omg.CORBA.Object type as an argument, and returns an object reference of 
the same type as the class. The bind()2 method may be used to create a proxy 
for an object that implements the IDL interface. A proxy object is a client-side 
representative for a remote object. Operations invoked on the proxy result in 
requests being sent to the target object. 

The following code illustrates the Java Helper class generated from the IDL 
account interface: 

// in file accountHelper.java
// Java generated by the Orbix Java IDL compiler 
//
import org.omg.CORBA.Any;
import org.omg.CORBA.Object;
import org.omg.CORBA.TypeCode;
import org.omg.CORBA.portable.OutputStream;
import org.omg.CORBA.portable.InputStream;

public class accountHelper {

1 public static void insert (Any any, account value) {
...

 }
public static account extract (org.omg.CORAny any) {

...   
}

2.   bind() is a feature specific to Orbix Java. If you wish to use only those features defined in the 
CORBA specification, you should compile your IDL using the -jOMG switch.
 104



I D L  t o  J a v a  Mapp i n g
2 public static TypeCode type () {
...

}
3 public static String id () {

...
}

4 public static account read (InputStream _stream) {
...

}
public static void write (OutputStream _stream, account value){

...
   }
   public static final account bind(String markerServer) {
   ...

}
public static final account bind 

(String markerServer, String host){
...

   }

public static final account bind 
(String markerServer, org.omg.CORBA.ORB orb){
...

   }
public static final account bind 

(String markerServer, String host, org.omg.CORBA.ORB orb){
...

   }
5    public static account narrow (Object _obj) {

...
}

}

These methods provided by helper classes are described as follows:

1. The insert() and extract() methods allow for IDL interface types to 
be passed as a parameter of IDL type any. Refer to �Type any� on 
page 313 for more details.

2. The type() method returns a TypeCode for a specified interface.

TypeCodes allow runtime querying of type information for an Any type. 
They can also be used for interrogating the Interface Repository. 
105



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
3.  The id() method is used to retrieve the Repository ID for the object.

4. The read() and write() methods allow the type to be written to and 
from a stream.

5. The bind() method provides an alternative to using the Naming Service, 
and is a feature specific to Orbix Java.

The Naming Service is the preferred method for locating objects in 
servers.

Using the Bind Method

A client wishing to use the IDL interface should bind an object of the Java 
class type to the target implementation object in the server, assigning the 
result to the Java Reference interface type. 

For example, a client could bind to an account implementation object by 
calling the bind() static method on the Java accountHelper class as 
follows:

// Java
account aRef;
aRef = accountHelper.bind
(�accMarker:serverName�, hostname);

This returns a proxy object that can be accessed using the methods 
defined in the account interface. 

6. The narrow() method allows an interface to be safely cast to a derived 
interface. For example, it allows an org.omg.CORBA.Object to be narrowed to 
the object reference of a more specific type. For IDL-defined objects, you must 
use narrow() rather than the normal Java cast operation. Failure of the 
method raises a CORBA::BAD_PARAM exception. 

Refer to �Mapping for Derived Interfaces� on page 118 for further 
information on narrowing object references.

Holder Classes and Parameter Passing

IDL in parameters always map directly to the corresponding Java type. This 
mapping is possible because in parameters are always passed by value, and Java 
supports by-value passing of all types. Similarly, IDL return values always map 
directly to the corresponding Java type. 
 106



I D L  t o  J a v a  Mapp i n g
IDL inout and out parameters, however, must be passed by reference, because 
they may be modified during an operation call, and do not map directly into the 
Java parameter passing mechanism. In the IDL to Java mapping, IDL inout and 
out parameters are mapped to Java Holder classes. Holder classes simulate 
passing by reference. The client supplies an instance of the appropriate Java 
holder class passed by value, for each IDL out or inout parameter. The 
contents of the holder instance are modified by the call, and the client uses the 
contents when the call returns. 

There are two categories of holder classes:

� Holders for basic types. 

� Holders for user-defined types.

Holders for Basic Types

Holder classes for basic Java types and the Java string type, are available in the 
package org.omg.CORBA.The name format used is <type>Holder, where 
<type> is the name of a basic Java type, with initial capital letter; for example, 
IntHolder.

An example of the implementation for IntHolder follows:

// Java
package org.omg.CORBA;
public class IntHolder {

1 public int value;
public IntHolder () {} 

2 public IntHolder (int value) {
this.value = value;

}
}

1. The holder class stores an int value as a member variable. 

2. The value can be initialized by the constructor and accessed directly. The 
holder class simulates passing by reference to method invocations and so 
facilitates the modification of an int, which would not be possible if the 
int were passed directly. 
107



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Holders for User-Defined Types

Holder classes for user-defined types, including IDL interface types, are 
generated by the Java mapping. The name format is <type>Holder.For example, 
given an IDL interface account, the following Holder class is generated:

// in file accountHolder.java
// Java generated by the Orbix Java IDL compiler 
//
public final class accountHolder {

1 public account value;
public accountHolder() {};
public accountHolder(account value) {

   this.value = value;
}
...

}
1. The holder class stores an account value as a member variable, which can 

be initialized by the constructor and accessed directly.

Invoking an Operation using Holder Classes

When using holder classes to pass inout and out parameters, the following 
rules apply:

� The client programmer must supply an instance of the appropriate holder 
Java class that is passed, by value, for each IDL out or inout parameter. 

The contents of the holder instance are modified by the call, and the 
client then uses the contents after the call returns. 

� For the inout parameter, the client must initialize the holder with a valid 
value. The operation can examine the value supplied by the client and may 
change the value if it wishes. The final value at the end of the operation 
(changed or not) is returned to the client.

� For the out parameter, the client does not need to initialize the holder 
with a value, because any value in the holder is ignored. The operation 
should not use the initial value in the holder and must supply a valid value 
to be returned to the client.
 108



I D L  t o  J a v a  Mapp i n g
To illustrate the use of holder types, consider the following IDL definition:

// IDL

void newAccount 
(in string name, out account acc, out string accID) 

The IDL compiler maps this operation to a method of Java interface bank as 
follows:

// In package bank_demo.bank,

public void newAccount(String name, bank_demo.accountHolder acc,
org.omg.CORBA.StringHolder accID);

This method returns an object reference to the interface account and a string 
value of a variable accID, which is an account number automatically generated by 
the server object. Holder classes are generated for the out return values to 
allow the server to pass back new values to the client.

The holder class accountHolder stores a value member variable of type 
Account, which may be modified during the operation call. 

// Java generated by the Orbix Java IDL compiler 
// accountHolder.java
package bank_demo
public final class accountHolder {

1 public bank_demo.account value;
public accountHolder() {}

2 public accountHolder(bank_demo.account value) {
...

}

}

1. The value variable is of type account.

2. value can be initialized by a constructor and accessed directly. The 
holder class simulates passing by reference to method calls and so allows 
value to be changed. This would not be possible if value was passed 
directly.

A client application can be coded as follows:

// Java
// In file javaclient1.java.
109



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
import org.omg.CORBA.SystemException;

public class javaclient1{
public static void main (String args[]) {

bank bRef = null;
account aRef = null;
accountHolder aHolder = new accountHolder ();
float f = (float) 0.0;

try {
// Bind to any bank object 
// in BankSrv server.
bRef = bankHelper.bind ("BankMarker:BankSrv");

// Obtain a new bank account.
bRef.newAccount ("Joe", aHolder);

}
catch (SystemException se) {

System.out.println (
"Unexpected exception on bind");

System.out.println (se.toString ());
System.exit(1);

}

// Retrieve value from Holder object.
aRef = aHolder.value;

try {
// Invoke operations on account.
aRef.makeLodgement ((float)56.90);
f = aRef.balance();
System.out.println ("Current balance is + f);

}
catch (SystemException se) {

System.out.println (
"Unexpected exception"
+ " on makeLodgement or balance");

System.out.println (se.toString ());
System.exit(1);

}
}

 110



I D L  t o  J a v a  Mapp i n g
In the server, the implementation of method newAccount() receives the Holder 
object for type account and may manipulate the value field as required. For 
example, in this case the newAccount() method can instantiate a new account 
implementation object as follows:

// Java
// In class bankImplementation.
public void newAccount 

(String name,bank_demo.accountHolder acc) {
accountImplementation accImpl =

new accountImplementation (0, name);

acc.value = new _tie_account 
(accImpl, �Marker�);

...
}

Note: If the account parameter is labelled inout in the IDL definition, the 
value member of the Holder class must be instantiated before calling the 
newAccount() operation.

Server Implementation Mapping

The Java mapping generates four classes to support server implementation in 
Orbix Java. The following files are generated:

� A Java Skeleton class, with the name format _<type>Skeleton.java, 
used internally by Orbix Java to dispatch incoming server requests to 
implementation objects. You do not need to know the details of this 
class.

� An abstract Java ImplBase class, with the name format 
_<type>ImplBase.java, that allows server-side developers to 
implement interfaces using the ImplBase approach. 

�  A Java TIE class, with the name format _tie_<type>.java, that allows 
server-side developers to implement interfaces using delegation (the TIE 

approach3).
111



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
� A Java Operations interface, with the name format _<type>Operations, 
that is used in the TIE approach to map the attributes and operations of 
the IDL definition to Java methods. This class is specific to Orbix Java, and 
is used to support implementation using the TIE approach.

Approaches to Interface Implementation

Orbix Java supports two approaches to the implementation of IDL interfaces in 
Java applications: 

� The ImplBase approach.

� The TIE approach. 

This section discusses the Java types generated to enable each implementation 
method.

Both approaches to interface implementation share the common requirement 
that you must create a Java implementation class. This class must fully implement 
methods corresponding to the attributes and operations of the IDL interface. 

The ImplBase Approach

To support the ImplBase approach, the IDL compiler generates an abstract Java 
class from each IDL interface definition. This abstract class is named by adding 
ImplBase to the IDL interface name, prefixed by an underscore. For example, 
the compiler generates class _accountImplBase from the definition of interface 
account.

To implement an IDL interface using the ImplBase approach, you must create a 
Java class that extends the corresponding ImplBase class and implements the 
abstract methods. 

For example, given the IDL definition for interface account, the compiler 
generates the abstract class _accountImplBase as follows4:

// Java generated by the Orbix Java IDL compiler 
//  _accountImplBase.java
//
import IE.Iona.OrbixWeb.Features.LoaderClass; 

3.   The TIE Approach is specific to Orbix Java. If you wish to use only those features defined in the 
CORBA specification, you should compile the IDL using the -jOMG switch.
 112



I D L  t o  J a v a  Mapp i n g
public abstract class _accountImplBase
extends _accountSkeleton implements account {

public _accountImplBase() {
...

}
public _accountImplBase(String marker) {

...
}
public _accountImplBase (LoaderClass loader){

...
}
public _accountImplBase(String marker, 

LoaderClass loader) {
...

}
}

A sample class, that implements the IDL interface account could contain code 
similar to the following:

// Java Implementation Class

class accountImplementation 
extends _accountImplBase {

public accountImplementation(){
...

}
public float balance() {

...
   }

public String get_name()
...

}
public void makeLodgement(float sum){

...

4.   In this code example, imports such as the marker and loader constructors 
are specific to Orbix Java. To generate code that uses only those features 
defined in the CORBA specification, compile the IDL using the -jOMG switch.
113



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
}

public void makeWithdrawal(float sum){
...

   }
...

}

Once the IDL interface has been implemented using the ImplBase approach, the 
server application should simply instantiate one or more objects of the 
implementation class. These objects can then handle client requests through the 
IDL interface in question.

The TIE Approach

The IDL compiler generates a Java interface that defines the minimum set of 
methods that you must supply in order to implement an IDL interface using the 
TIE approach. The TIE approach is specific to Orbix Java. To use only those 
features defined in the CORBA specification, compile your IDL with the -jOMG 
switch. 

The name of this Java interface has the following format:

_<type>Operations

For example, given the IDL definition of type account, the IDL compiler 
generates the Java interface _accountOperations as follows:

// Java generated by the Orbix Java IDL compiler 

public interface _accountOperations {
public float balance();
public void makeLodgement(float sum);
public void makeWithdrawal(float sum)

}

To support the TIE approach to implementation, the IDL compiler generates a 
non-abstract Java class from each IDL interface definition. This class is named by 
appending the IDL interface name to the string _tie_. For example, the compiler 
generates class _tie_account from the definition of interface account:

// Java generated by the Orbix Java IDL compiler
// in file _tie_account.java
import IE.Iona.OrbixWeb._OrbixWeb;
 114



I D L  t o  J a v a  Mapp i n g
import IE.Iona.OrbixWeb.Features.LoaderClass;

public class _tie_account extends _accountSkeleton
   implements account {

public _tie_account(_accountOperations impl) {
...

}
public _tie_account

(_accountOperations impl, String marker) {
...

}
public _tie_account

(_accountOperations impl, LoaderClass loader) {
...

}
public _tie_account

(_accountOperations impl, String marker, 
LoaderClass loader) {

...
}
public float balance(){

...
}
public String get_name()

...
}
public void makeLodgement(float sum) {

...
}
public void makeWithdrawal(float sum) {

...
}
public java.lang.Object _deref() {

...
}

...  
} 

}

When implementing an IDL interface using the TIE approach, the Java 
implementation class must directly implement the Operations interface. Unlike 
the ImplBase approach, the implementation class is not required to inherit from 
any other Java class. The TIE approach is therefore the recommended approach 
115



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
for Java programming, because of Java�s restriction to single inheritance. Refer to 
�Using and Implementing IDL Interfaces� on page 143 for a detailed discussion of 
the TIE and ImplBase approaches.

The class accountImplementation could be outlined using the TIE approach as 
follows:

// Java generated by the Orbix Java IDL compiler
// in file accountImplementation.java
class accountImplementation implements _accountOperations {

public accountImplementation() {}
public float balance() {

...
}

public float get_name() {
...

} 

public void makeLodgement(float sum) {
...

   }
public void makeWithdrawal(float sum) {

...
}

}

When you have created an implementation class that implements the required 
Operations interface, the server application should instantiate one or more 
objects of this type. For each implementation object, the server should also 
instantiate an object of the corresponding TIE class, passing the implementation 
object as a parameter to the TIE constructor, as in the following example:

accountImpl = new accountImplementation(�Marker�);
account x = new _tie_account

 (accountImpl, �Marker�);

Each TIE object stores a reference to a single implementation object. Client 
operation invocations through the IDL interface are routed to the appropriate 
TIE object, which then delegates the call to the appropriate method in its 
implementation object.
 116



I D L  t o  J a v a  Mapp i n g
Object References

When an interface type is used in IDL, this denotes an object reference. For 
example, consider the IDL operation newAccount() defined as follows:

// IDL
interface account;
interface bank {

account newAccount(in string name);
};

The return type of newAccount() is an object reference. An object reference 
maps to a Java interface of the same name. This interface allows IDL operations 
to be invoked on the object reference with normal Java method invocation 
syntax. For example, the newAccount() operation could be invoked as follows:

// Java
...
bank b;
account a;
...
b = bankHelper.bind 
(�BankMarker:bankServer, 

 hostname);
a = b.newAccount ("Chris");
a.makeLodgement ((float) 10.0);
...

The server implementation of operation newAccount() creates an account 
implementation object, stores a reference to this object, and returns the object 
reference to the client. For example, using the ImplBase approach and an 
implementation class named accountImplementation, you could do the 
following:

class bankImplementation 
extends _bankImplBase {

public account m_acc;

public bankImplementation () {
m_acc=null;

}
public account newAccount(String name) {

account a = null;
117



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
try {
a = new accountImplementation(0,name);

}
... 
m_acc = a;
return a;

}
}

Similarly, you could use the TIE approach as follows:

class bankImplementation 
implements _bankOperations {

public account m_acc;
public bankImplementation () { 

m_acc=null;
}
public account newAccount(String name) {

account a = null;
try {

a = new _tie_account(
new accountImplementation
(0,name), �Marker�);

}
... 
m_acc = a;
return a;

}
}

If the operation newAccount() returned the account object reference as an 
inout or out parameter value, you must pass the generated class 
accountHolder to the newAccount() Java method. accountHolder is a class 
that can contain an account object reference value. 

Mapping for Derived Interfaces

This section describes the mapping for interfaces that inherit from other 
interfaces. Additional details of this mapping are provided in �Using Inheritance 
of IDL Interfaces� on page 209.
 118



I D L  t o  J a v a  Mapp i n g
IDL interfaces support both single and multiple inheritance. On the client side, 
the Orbix Java IDL compiler maps IDL interfaces to Java interfaces, which also 
support single and multiple inheritance, and generates Java classes that 
implement proxy functionality for these interfaces. Inherited interfaces in IDL 
are mapped to extended interfaces in Java; the inheritance hierarchy of the Java 
interfaces matches that of the original IDL interfaces.

Consider the following example:

// IDL
interface account {

readonly attribute float balance;
attribute String name;

void makeLodgement(in float sum);
void makeWithdrawal(in float sum);

};

interface checkingAccount : account {
void overdraftLimit(in float limit);

};

The corresponding Java interface for type checkingAccount is:

// Java generated by the Orbix Java IDL compiler 
//
public interface checkingAccount extends account {

public void setOverdraftLimit(float limit) ;
}

The corresponding Java stub class implements all methods for both account and 
checkingAccount. The generated class is as follows:

// Java generated by the Orbix Java IDL compiler 

import org.omg.CORBA.portable.ObjectImpl;

public class _checkingAccountStub
extends ObjectImpl implements checkingAccount {

public _checkingAccountStub () {}

public void overdraftLimit(float limit){
...

}
public float balance() {
119



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
...
}
public float get_name() {

...
} 

public void makeLodgement(float sum) {
... 

}
public void makeWithdrawal(float sum) {

...
}
public String[] _ids() {

...
}

}

As expected, Java code that you write that uses the checkingAccount interface 
can call the inherited makeLodgement() method:

// Java
checkingAccount checkingAc;

// Code for binding checkingAc {
...

checkingAc.makeLodgement((float)90.97);
...

}

Assignments from a derived to a base class object reference are allowed, for 
example:

// Java
account ac = checkingAc;

Normal or cast assignments in the opposite direction�from a base class object 
reference to a derived class object reference�are not generally allowed. Use 
the narrow() method to bypass this restriction where it is safe to do so, as 
described in �Narrowing Object References� on page 123.
 120



I D L  t o  J a v a  Mapp i n g
On the server side, the IDL compiler generates a Java Operations interface for 
each IDL interface. The generated Java interface defines the minimum set of 
implementation methods required for the IDL interface when using the TIE 
approach to implementation. The inheritance hierarchy of generated 
Operations interfaces matches that of the original IDL interfaces.

To implement an IDL interface that derives from another, define an 
implementation class that extends the ImplBase class for the required interface 
and implements all the methods defined in the ImplBase class.

For example, given the IDL definition of account and checkingAccount, a 
checkingAccount implementation class appears as follows:

// Java
// In file checkingAccountImplementation.java. 

...
import org.omg.CORBA.FloatHolder;

public class checkingAccountImplementation
extends _checkingAccountImplBase {

public checkingAccountImplementation() {
...

}
public float balance() {

...
}
public float get_name() {

...
} 
public void makeLodgement(float sum) {

...
}
public void makeWithdrawal(float sum) {

...
}

public void overdraftLimit(float limit) {
...

}
}

121



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Using the TIE approach, the implementation class should implement the 
generated Operations interface for the relevant IDL type. The implementation 
class must implement each method defined in the Operations interface and all 
interfaces from which it inherits. However, you can achieve this using an 
inheritance hierarchy of implementation classes, because the TIE approach, 
unlike the ImplBase approach, imposes no implicit inheritance requirements on 
such classes.

For example, if the IDL type account is implemented by class 
accountImplementation, using the TIE approach, you can implement IDL 
interface checkingAccount with type checkingAccountImplementation as 
follows:

// Java
// In file checkingAccountImplementation.java
...
public class checkingAccountImplementation

extends accountImplementation,
implements _checkingAccountOperations {

public checkingAccountImplementation() {}

public void overdraftLimit (float limit) {
...

}
} 
 122



I D L  t o  J a v a  Mapp i n g
Narrowing Object References

In the checkingAccount example, if you know that a reference of type account 
actually references an object that implements interface checkingAccount, you 
can narrow the object reference to a checkingAccount reference. 

To narrow an object reference, use the narrow() method, defined as a static 
method in each generated Interface helper class.

// Java Generated by Orbix Java IDL Compiler 

import org.omg.CORBA.Object;

public class checkingAccountHelper {
...
public static final checkingAccount narrow(Object 

src) {
...

}
...

}

You can call the narrowed object reference as follows:

// Java
account a;
...
a = getCheckingAccountObject(); 
...
checkingAccount c;

// Narrow a to be a checkingAccount.
c = checkingAccountHelper.narrow(a);

If the parameter passed to THelper.narrow() is not of class T or one of its 
derived classes, T.narrow() raises the CORBA.BAD_PARAM exception.
123



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Mapping for Constructed Types
The following sections describe the IDL to Java mapping for the enum, struct 
and union constructed types.

Enums

An enum declaration creates a correspondence between a set of integer values 
and a set of named values.

The following IDL definition illustrates an enum construct:

//IDL
enum Fruit { apple, orange}; 

An enum is mapped to Java according to the rules described for the mapping of 
the enum Fruit in the following example.

// Java generated by the Orbix Java IDL compiler 

1 public final class Fruit {
2 public static final int _apple = 0;
3 public static final Fruit apple = new Fruit(_apple);

public static final int _orange = 1;
public static final Fruit orange = new Fruit(_orange);

4 public int value () {
      ... 

}
5 public static Fruit from_int (int value) {

      ...
}

}

1. The IDL enum called Fruit maps to a Java final class of the same name. 

2. The enum values map to a static final member variable, prefixed by an 
underscore (_), for example, _apple = 0; these underscored values can 
be used in switch statements and also to represent enums as integers. 

3. Each value in the enum object also maps to a public static final 
member variable with the same name as the value. 

4. The value() method retrieves the integer value associated with each 
value of the enum. The integer values are assigned sequentially, beginning 
with 0. 
 124



I D L  t o  J a v a  Mapp i n g
5. The from_int() method returns the value enum object from a specified 
integer value. 

A holder class is also generated for enums, in this case FruitHolder.

Because only a single instance of an enum value object exists, the default 
java.lang.Object implementation of equals() and hash() can be used on 
objects associated with the enum.

Structs

A struct type allows you to form an aggregate structure of variables, which may 
be of the same or different types.

Consider the struct in the following IDL definition:

// IDL
interface Clock {

struct Time {
short hour;
short minute;
short second;

};

void updateTime (in Time current);
void currentTime (out Time current);

};

The rules by which an IDL struct is mapped to Java are illustrated in the Java 
mapping for the Time struct. 

The IDL to Java compiler maps the Time structure as follows:

// Java generated by the Orbix Java IDL compiler 
// Time.java
package ClockPackage;

1 public final class Time {
2 public short hour;

public short minute;
public short second;
125



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
3 public Time () {}
4 public Time (short hour, short minute, 

 short second) {
...

}  
}

1. The IDL struct called Time maps to a final Java class of the same 
name.

2. The Time class contains one instance variable for each field 
(hour,minute,second) in the structure. 

3. There are two constructors (in this case, Time) for the structure class: 
the first, Time(), takes no arguments, and initializes all fields in the 
structure to null or zero.

4. The second constructor takes the fields in the structure as arguments 
Time(short hour, short minute, short second), and initializes the 
structure.

The interface Clock maps to the Java Reference interface Clock as follows:

// Java generated by the Orbix Java IDL compiler 
// Clock.java
import org.omg.CORBA.Object;
import ClockPackage.Time;

1 import ClockPackage.TimeHolder;
2 public interface Clock extends Object {
3 public void updateTime(Time current);
4 public void currentTime(TimeHolder current) ;

}

1. Holder classes are generated for all struct types, with the name format 
<type>Holder, where <type> is the name of the struct, in this case 
Time. 

2. The operations map to public Java methods of the same name, the in 
parameter mapping directly to the corresponding Java type Time. 

3. The out parameter is mapped to a TimeHolder type to allow the values 
to be passed correctly.
 126



I D L  t o  J a v a  Mapp i n g
Unions

IDL supports discriminated unions. A discriminated union consists of a 
discriminator and a value: the discriminator indicates what type the value holds.

Note: Union types do not exist in Java, you should therefore only use the union 
mapping to support legacy IDL that already makes use of unions.

Consider the following example:

//IDL for account
//example of a discriminated Union
interface account {};
interface currentAccount : account {};
interface depositAccount : account {};

1 union accountType switch (short)
{

case 1: currentAccount curAcc;
case 2: depositAccount depacc;
default: account genAcc;

};

1. Here, in the union accountType, the switch discriminator indicates 
which case label value is being held.

The IDL discriminated union defined above maps to Java as follows:

// Java generated by the Orbix Java IDL compiler 

public final class accountType {
1     public accountType() {}
2  public short discriminator() {

    ...
    }

3  public currentAccount curAcc() {
    ...
    }

4     public void curAcc(currentAccount value) {
    ...
    }
127



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
5     public void curAcc (currentAccount value, 
short discriminator){

    ...
    }
    public depositAccount depacc() {
    ...
    }
    public void depacc(depositAccount value) {
    ...
    }
    public void depacc (depositAccount value, 

short discriminator) {
    ...
    }

 public account genAcc() {
    ...
    }
    public void genAcc(account value) {
    ...
    }
    public void genAcc(account value, short discriminator) {
    ...
    }
}

1. The union accountType maps to a public final class of the same name, 
with a corresponding default constructor, accountType().

2. The value returned by the discriminator() method indicates which 
variable in the union currently stores a value. You should check the value 
returned by this method to determine which accessor method should be 
used.

3. For each variable in the union, there is a corresponding accessor method 
of the same name (curAcc(),depAcc and the default genAcc) that 
retrieves the value held in the variable. The accessor method used in the 
application code is determined by the value returned by the 
discriminator() method.

4. The modifier methods for each variable in the union are used to 
automatically set the value for the discriminator() method.

5. An additional modifier method is available to set the value of variables for 
use in situations where more than one case label is used. Only one case 
label is used in this example, so this method is not relevant here.
 128



I D L  t o  J a v a  Mapp i n g
In rare cases, where a variable has more than one corresponding case label, the 
simple modifier method for that variable sets the discriminator to the value of 
the first case label. The secondary modifier method allows an explicit 
discriminator value to be passed, which may be necessary if a variable has more 
than one case label. When the value of a variable corresponds to the default 
case label, the modifier method sets the discriminant to a unique value, distinct 
from other case label values.

Note: If you pass a bad discriminator value, the secondary modifier throws an 
exception.

The following code shows how to assign a depositAccount:

// Java

1 depositAccount dep;
2 accountType accType = new accountType();

...

3 accType.depAcc (dep, (short)2);

// Java
currentAccount cur;
depositAccount dep;
account acc;
...

4 switch (accType.discriminator ()) {
case 1: cur = accType.curAcc ();
break;
case 2: dep = accType.depAcc ();
break;
default: acc = accType.genAcc ();

}

1. Create a new depositAccount object.

2. Create an instance of the union type.

3. Pass the value for depositAccount using the modifier method.

4. Invoke the discriminator() method to retrieve the active value in the 
union.
129



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Mapping for Strings
IDL bounded and unbounded strings map to the Java type java.lang.String. 
As a Java String is fundamentally unbounded, Orbix Java checks the range of 
String parameter values passed as bounded strings to IDL operations. If the 
actual string length is greater than the bound value, the 
org.omg.CORBA.MARSHAL exception is thrown. 

The IDL type wstring, which can represent the full range of UNICODE 
characters, also maps to the Java type String.Range violations for the IDL 
string types raise CORBA::DATA_CONVERSION and CORBA::MARSHAL exceptions.

IDL string parameters defined as inout or out map to Java method parameters 
of type org.omg.CORBA.StringHolder. This Holder class contains a Java 
String value, which you can update during the operation invocation.

Consider the following IDL definition:

// IDL
interface Customer {

void setCustomerName (in string name);
void getCustomerName (out string name);

};

This maps to the following Java Reference interface:

// Java generated by the Orbix Java IDL compiler 
import org.omg.CORBA.Object;
import org.omg.CORBA.StringHolder;

public interface Customer extends Object {
1 public void setCustomerName(String name) ;
2 public void getCustomerName(StringHolder name) ; 

};

1. IDL operations are mapped to Java methods of the same name.

2. IDL out parameters are mapped to StringHolder types to allow 
parameter passing.

The StringHolder class available in the org.omg.CORBA package is as follows:

// Java
package org.omg.CORBA;
 130



I D L  t o  J a v a  Mapp i n g
public class StringHolder {
public String value;

public StringHolder () {}

public StringHolder (String value) {
this.value = value;

}
}

The following code demonstrates how a client application could invoke the IDL 
operations defined in the Customer interface:

// Java
Customer cRef;
String inName = "Chris";
String outName;
StringHolder outNameHolder = new StringHolder();

// Here, cRef is set to reference a 
// Customer (code omitted).

cRef.setCustomerName (inName);
cRef.getCustomerName (outNameHolder);
outName = outNameHolder.value;

The server programmer receives the StringHolder variable as a parameter to 
the implementation method and simply assigns the required string to the value 
field.

Mapping for Sequences
IDL bounded and unbounded sequences are mapped to Java arrays of the same 
name. In the case of bounded sequences, Orbix Java performs bounds checking 
on the mapped array during any operation invocations. This check ensures that 
the array length is less than the maximum length specified for the bounded 
sequence. A CORBA::MARSHAL exception is raised when the length of a bounded 
sequence is greater than the maximum length specified in the IDL definition. 

Both holder and helper classes are generated for each of these sequence types.
131



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
The following IDL definition provides an example of declaring IDL sequences:

// IDL
module finance {

interface account {
attribute string Name;
attribute float AccNumber;

};

struct limitedAccounts {
string bankSortCode<10>;
// Maximum length of sequence is 50.
sequence<account,50> accounts;

};

struct unlimitedAccounts {
string bankSortCode<10>;
// No maximum length of sequence.
sequence<account> accounts;

};
};

Given the preceding example, the IDL compiler produces the following 
generated classes; one for the bounded sequence, and another for the 
unbounded sequence:

// Java generated by the Orbix Java IDL compiler 
// Bounded sequence
package Finance;

1 public final class limitedAccounts {
2 public String bankSortCode;
3 public account[] accounts;
4 public limitedAccounts() {}
5 public limitedAccounts (String bankSortCode,

account[] accounts) {
...

   }
... 

}

1. An IDL struct maps to a Java public final class of the same name (in 
this case, limitedAccounts). 
 132



I D L  t o  J a v a  Mapp i n g
2. The string type is mapped to a Java member variable of type String.

3. The bounded sequence account is mapped to a Java array of the same 
name.

4. The struct has two constructors; the first of which is a null constructor.

5. The second constructor initializes the public member variables, 
bankSortCode and the account array. 

Unbounded sequences are mapped in the same way as bounded sequences. 
However, bounds checking is not performed on the mapped array during 
operation invocations.

Mapping for Arrays
IDL arrays map directly to Java arrays. However, Java arrays are not bounded; 
therefore, Orbix Java explicitly checks the bound of an array when an operation 
is called with the array as an argument. 

Arrays are fixed-length objects, so a CORBA::MARSHAL exception is thrown if the 
length of an array is not equal to the length specified in the IDL file. The length of 
the array can be made available in Java by bounding the array with an IDL 
constant, which is mapped according to the rules specified for constants.

A holder class for the array is also generated, with the format <array 
name>Holder.

As a simple example, consider the following IDL definition for an array:

// IDL
typedef short BankCode[3];

interface Branch {
attribute string location;
attribute BankCode code;

};

This maps to:

// Java generated by the Orbix Java IDL compiler 
// in file Branch.java
import org.omg.CORBA.Object;
133



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
public interface Branch extends Object {
    public String location();
    public void location(String value);
    public short[] code();
    public void code(short[] value);
}

Mapping for Fixed Types
The IDL fixed type maps to the Java class java.math.BigDecimal. The way IDL 
fixed types map to Java depends on whether or not they are declared within an 
IDL interface.

Fixed Types Declared outside an IDL Interface

The following sample IDL shows a fixed type declared outside an IDL interface:

// IDL 
const fixed myFixed = 9999.99;
typedef fixed<6, 2> fixedIn;

The const myFixed is mapped to a single Java file called myFixed.java. This 
creates a java.math.BigDecimal called value, which is initialized to 9999.99

The typedef fixedIn is mapped to a <name>Helper file and a <name>Holder 
file, as is normal for other typedef types.

Fixed Types Declared within an IDL Interface

The following sample IDL shows a fixed type declared within an IDL interface:

// IDL 
interface exchangeRate{
  const fixed myFixed = 9999.99;
  typedef fixed<6, 2> fixedIn;
};
 134



I D L  t o  J a v a  Mapp i n g
The const myFixed is handled in a file named exchangeRate.java (the 
<interface name>.java file). The typedef Helper and Holder files are in a Java 
package directory as usual.

Refer to �Fixed Types� on page 91 for more details of this IDL type.

Mapping for Constants
The way IDL constants map to Java depends on whether or not they are 
declared within an IDL interface.

Constants Defined within an IDL Interface

An IDL constant defined within an interface maps to a public static final 
member of the corresponding Java Reference interface generated by the IDL to 
Java compiler.

For example, consider the following IDL:

// IDL
interface ConstDefIntf {

const short MaxLen = 4;
};

This maps to the following Java class:

// Java generated by the Orbix Java IDL compiler 
// in file ConstDefInt.java
import org.omg.CORBA.Object;

public interface ConstDefIntf extends Object {
    public static final short MaxLen = 4;
}

You can then access the constant by scoping with the Java class name, for 
example:

// Java
short len = ConstDefIntf.MaxLen;
135



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Constants Declared outside an IDL Interface

Those constants that are declared outside an IDL interface are mapped to a 
public interface with the same name as the constant and containing a public 
static final field named value. The value field holds the value of the 
constant. Because these Java classes are only required at compile time, the Java 
compiler normally inlines the value when the classes are used in other Java code.

Consider the following IDL:

// IDL
module ExampleModule {

const short MaxLen = 4;
};

This maps to the following Java class:

// Java generated by the Orbix Java IDL compiler 
package ExampleModule;

public interface MaxLen {
    public static final short value = 4;
}

You can then access the constant by scoping with the Java interface name, for 
example:

// Java
short len = ExampleModule.MaxLen.value;

Mapping for Typedefs
Java has no language construct equivalent to the IDL typedef statement. The 
Java mapping resolves the typedef to the corresponding base IDL type, and 
maps this base type according to the IDL Java mapping. A Helper class for the 
declared type is also produced. If the type is a sequence or array, Holder classes 
are also generated for the declared types.

All distinct IDL types, including those declared as typedefs, require a unique 
Repository ID within the Interface Repository. For this reason, Helper classes 
for the types declared as typedefs are automatically generated with the format:

<declared Type>Helper
 136



I D L  t o  J a v a  Mapp i n g
For example, consider the following typedef declaration:

// IDL
struct CustomerDetails {

string Name;
string Address;

};
typedef CustomerDetails BankCustomer;

The CustomerDetails structure maps to a Java class as described in �Mapping 
for Constants� on page 135. The typedef statement results in an additional 
BankCustomerHelper class.

Mapping for Exception Types
CORBA defines two categories of exception type:

� IDL standard system exceptions. 

� IDL user-defined exceptions.

System Exceptions

IDL standard system exceptions are mapped to final Java classes that extend 
org.omg.CORBA.SystemException. These classes provide access to the IDL 
major and minor exception code, as well as a string describing the reason for the 
exception. IDL system exceptions are unchecked exceptions. This is because the 
class org.omg.CORBA.SystemException is derived from 
java.lang.Runtime.Exception.

For further information on the mapping of IDL System Exceptions to Java, refer 
to the Orbix  Programmer�s Reference Java Edition.

User-Defined Exceptions

An IDL user-defined exception type maps to a final Java class that derives from 
org.omg.CORBA.UserException, which in turn derives from 
java.lang.Exception. Helper and Holder classes are also generated. IDL user-
defined exceptions are checked exceptions. 
137



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
If the exception is defined within an IDL interface, its Java class name is defined 
within the interface package called <interface name>Package. Where a 
module has been defined, the Java class name is defined within the scope of the 
Java package corresponding to the IDL module enclosing the exception.

Consider the following IDL user-defined exception:

//IDL
module Exceptions {

interface Illegal {
exception reject {

string reason;
short s;

};
};

};

The reject exception maps as follows:

// Java generated by the Orbix Java IDL compiler 
// in file reject.java
import org.omg.CORBA.UserException;

public final class reject extends UserException {
    public String reason;
    public short s;
    public reject() {
        ...
    }
public reject(String reason, short s) {
        ...
    }
    ...
}

The mapping of the reject exception illustrates the rules used by the IDL-to- 
Java compiler when mapping exception types. The reject exception maps to 
the final class reject, which extends org.omg.CORBA.UserException. 
Instance variables for the fields reason and s, defined in the exception, are also 
provided. There are two constructors in the mapped exception: reject() is the 
default constructor and the reject(String reason, short s) constructor 
initializes each exception member to the given value.
 138



I D L  t o  J a v a  Mapp i n g
Now consider an interface with an operation that can raise a reject IDL 
exception:

// IDL
interface bank {

exception reject {
...

};

account newAccount() raises (reject);
};

A server can throw a bankPackage.reject exception in exactly the same way 
as a standard Java exception.

An Orbix Java client can test for such an exception when invoking the 
newAccount() operation as follows:

// Java
bank b;
account a;

...

try {
a = b.newAccount ();

}
catch (bankPackage.reject rejectEx) {

system.out.println ("newAccount() failed");
system.out.println ("reason for failure = " +

rejectEx.reason);
...

}

Orbix Java exception handling is described in detail in �Exception Handling� on 
page 197.
139



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Naming Conventions
IDL identifiers are mapped to an identifier of the same name in Java. There are, 
however, certain names that are reserved by the Java mapping. When these 
occur within IDL definitions, the mapping uses a prefixed underscore (_) to 
distinguish the mapped identifier from a reserved name.

Reserved names in Java include the following:

� Java keywords.

If an IDL definition contains an identifier that exactly matches a Java 
keyword, the identifier is mapped to the name of the identifier preceded 
by �_� as follows:
_<keyword> 

Refer to the Java Language Specification for more details about Java 
keywords.

� The Java class <type>Helper, where <type> is the name of an IDL user-
defined type.

� The Java class <type>Holder, where <type> is the name of an IDL user-
defined type. 

When a typedef alias is used, the resulting Java class has the format 
<alias>Holder. 

� The Java classes <basicJavaType>Holder, where <basicJavaType> 
represents a Java basic type to which an IDL basic type is mapped. 

Refer to Table 6.1 on page 98 for details of these types.

� The Java package name <interface>Package, where <interface> is the 
name of an already-defined IDL interface. 
 140



I D L  t o  J a v a  Mapp i n g
Parameter Passing Modes and Return Types
Table 6.2 shows the mapping for the IDL parameter passing modes and return 
types. Refer to �Holder Classes and Parameter Passing� on page 106 for more 
details. All type that are not user-defined Holders are in org.omg.CORBA. 

IDL Type In Inout Out Return

Basic Types

short short ShortHolder ShortHolder short

long int IntHolder IntHolder int

unsigned short short ShortHolder ShortHolder short

unsigned long int IntHolder IntHolder int

long long long LongHolder LongHolder long

unsigned long 
long

long LongHolder LongHolder long

float float FloatHolder FloatHolder float

double double DoubleHolder DoubleHolder double

boolean boolean BooleanHolder BooleanHolder boolean

char char CharHolder CharHolder char

wchar char WcharHolder WcharHolder char

octet byte ByteHolder ByteHolder byte

any Any AnyHolder AnyHolder Any

IDL User-Defined Types

enum <type> <type>Holder <type>Holder <type>

struct <type> <type>Holder <type>Holder <type>

union <type> <type>Holder <type>Holder <type>

Table: 6.2: Mapping for Parameters and Return Values 
141



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
string String StringHolder StringHolder String

wstring String WstringHolder WstringHolder String

sequence array <type>Holder <type>Holder array

array array <type>Holder <type>Holder array

Pseudo-IDL Types

NamedValue NamedValue NamedValueHolder NamedValueHolder NamedValue

TypeCode TypeCode TypeCodeHolder TypeCodeHolder TypeCode

object reference <type> <type>Holder <type>Holder <type>

IDL Type In Inout Out Return

Table: 6.2: Mapping for Parameters and Return Values 
 142



 7
Using and Implementing IDL 
Interfaces

This chapter describes how servers can create objects that 
implement IDL interfaces, and explains how clients can access these 
objects through IDL interfaces. It shows how to use and implement 
CORBA objects through a detailed description of the banking 
application introduced in Chapter 3, �Developing Applications with 
Orbix Java�.

Overview of an Example Application
In the banking example, an Orbix Java server creates a single distributed object 
that represents a bank. This object manages other distributed objects that 
represent customer accounts at the bank.

A client contacts the server by getting a reference to the bank object. This client 
then calls operations on the bank object, instructing the bank to create new 
accounts for specified customers. The bank object creates account objects in 
response to these requests and returns them to the client. The client can then 
call operations on these new account objects.

This application design, where one type of distributed object acts as a factory for 
creating another type of distributed object, is very common in CORBA.
143



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
The source code for the example described in this chapter is available in the 
demos\BankSimpleTie directory of your Orbix Java installation. 

Overview of the Programming Steps
The programming steps are outlined as follows:

1. Define the IDL interfaces to the application objects. 

2. Compile the IDL using the IDL-to-Java compiler.

3. Implement the IDL interfaces.

4. Write a server application that creates implementation objects.

5. Write a client application that accesses implementation objects.

6. Run an Orbix Java daemon process.

7. Register the server in the Implementation Repository.

8. Run the client.

Subsequent chapters add further functionality to the IDL interfaces defined in 
this chapter; for example, user-defined exceptions and inheritance. At this stage, 
the basic interfaces are sufficient to illustrate the main points. 

Defining IDL Interfaces to Application Objects
This example uses two IDL interfaces: an interface for the bank object created 
by the server, and an interface that allows clients to access the account objects 
created by the bank.

The IDL interfaces are defined as follows:

// IDL
// In BankSimple.idl

module BankSimpleTie {

typedef float CashAmount;
interface Account; // forward reference
 144



U s i n g  a nd  Imp l emen t i n g  I D L  I n t e r f a c e s
// A factory for Bank accounts.
interface Bank { 

// Create new account with specified name.
Account create_account(in string name);
// Find the specified account.
Account find_account(in string name);

};

interface Account {
readonly attribute string name;
readonly attribute CashAmount balance;

void deposit(in CashAmount amount);
void withdraw(in CashAmount amount);

};
};

In this example, the server creates a Bank object that accepts operation calls 
such as create_account() from clients. The operation create_account() 
instructs the Bank object to create a new Account object in the server. The 
operation find_account() instructs the Bank object to find an existing Account 
object.

All of the objects (both Bank and Account objects) are created in a single server 
process. A real system could use several different servers and many server 
processes. 

Compiling IDL Interfaces
It is assumed that the BankSimple.idl source file is compiled using the 
following IDL compiler command:

idlj -jP Demos BankSimple.idl

Refer to �IDL to Java Mapping� on page 91 for more details on the classes 
generated by the IDL to Java compiler.
145



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Implementing the IDL Interfaces
Orbix Java supports two mechanisms for relating an implementation class to its 
IDL interface: 

� The ImplBase approach 

� The TIE approach

The TIE approach is preferred for the majority of implementations in Java. This is 
due to the restriction of single inheritance of classes in Java, which limits the 
ImplBase approach. However, both approaches can be used in the same server, 
if required. 

This section briefly describes how you can implement an interface using both of 
these approaches. Refer to �Comparison of the ImplBase and TIE Approaches� 
on page 172 for more details.

Note: The choice of implementation method in an Orbix Java server does not 
affect the coding of client applications.

The TIE Approach to Implementing Interfaces

The TIE approach to defining an implementation class is shown in Figure 7.1 on 
page 147.

Using the TIE approach, you can implement the IDL operations and attributes in 
a class that does not inherit from the automatically generated ImplBase class. 
Instead, use the automatically generated Java TIE class to tie together the 
implementation class and the IDL interface.

The IDL compiler generates a Java TIE class for each IDL interface. The name of 
the Java TIE class takes the form of _tie_ prefixed to the name of the interface. 
For example, the IDL compiler generates the TIE class _tie_Account for the 
IDL interface type Account. An object that implements the IDL interface is 
passed as a parameter to the TIE class constructor. 
 146



U s i n g  a nd  Imp l emen t i n g  I D L  I n t e r f a c e s
To use the TIE approach you must define a new class, AccountImplementation, 
which implements the operations and attributes defined in the IDL interface. 
This class need not inherit from any automatically generated class; however, it 
must implement the Java interface _AccountOperations.

Figure 7.1: The TIE Approach to Defining an Implementation Class

Account (IDL interface)

Account

IDL Compiler _AccountOperations

(Java interface
that defines 
implementation)

_tie_Account

(Java class that you write to 
implement interface Account)

AccountImplementation

(Java class)

references

implements implements

(Java interface)
147



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Instantiating TIE Objects

To instantiate an object of type _tie_Account, pass an object of type 
AccountImplementation to the TIE class constructor; in this case, 
_tie_Account(). 

A TIE object is thus created that delegates incoming operation invocations to the 
methods of your AccountImplementation object. 

Interface _AccountOperations generated by the IDL compiler is as follows:

// Java generated by the Orbix Java IDL compiler.

package Demos.BankSimpleTie;

public interface _AccountOperations  {
public String name();
public float balance();
public void deposit(float amount) ;
public void withdraw(float amount) ;

}

The ImplBase Approach to Implementing Interfaces

For each IDL interface, Orbix Java also generates an abstract Java class named 
_<type>ImplBase, where <type> represents the name of a user-defined IDL 
interface. For example, the class _AccountImplBase is generated for the IDL 
interface Account. To indicate that a Java class implements a given IDL interface, 
that class should inherit from the corresponding ImplBase class. This approach is 
termed the ImplBase Approach, and is the implementation method defined by 
the CORBA specification.

Because each ImplBase class is the Java equivalent of an IDL interface, a class that 
inherits from this implements the operations of the corresponding IDL interface. 
To support the use of the ImplBase approach, the Orbix Java IDL compiler 
produces the Java interface Account and the Java class _AccountImplBase.
 148



U s i n g  a nd  Imp l emen t i n g  I D L  I n t e r f a c e s
Figure 7.2 shows the ImplBase approach to implementing IDL interfaces for the 
Account interface.

Figure 7.2: The ImplBase Approach to Defining an Implementation Class

This chapter gives an overview of the ImplBase approach. Throughout the rest 
of this guide, the TIE approach to implementing IDL interfaces is used. The TIE 
approach is the method of choice for the majority of Java applications.

IDL Compiler

Account (IDL interface)

Account (Java Interface)

_AccountImplBase

(Java class that you write to 
implement the interface Account)

AccountImplementation 

(Java class)

implements

implements
149



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Developing the Server Application
In this section, the banking example is used to illustrate both the TIE and 
ImplBase approaches. The error handling necessary for a full banking application 
has been omitted; for example, checking if the account is overdrawn. Refer to 
�Exception Handling� on page 197 for details. 

The following Java classes are used to implement the Bank and Account IDL 
interfaces: 

Implementing the Bank Interface

This section implements the Bank IDL interface using both the TIE and ImplBase 
approaches.

Using the TIE Approach

With the TIE approach, an implementation class does not have to inherit from 
any particular base class. Instead, the implementation class must implement the 
Java Operations interface generated by the IDL compiler. 

You must notify Orbix Java that this class implements the IDL interface by 
creating an object of the TIE class, which is also generated by the IDL compiler.

Using the TIE approach, you can write the code for the Bank implementation 
class as follows:

// Java
// In file BankImplementation.java.
package Demos.BankSimpleTie;

import IE.Iona.OrbixWeb._OrbixWeb;
import org.omg.CORBA.ORB;
import org.omg.CORBA.SystemException;
import java.util.*;

public class BankImplementation 
implements _BankOperations {

AccountImplementation  Implements the Account IDL interface.

BankImplementation  Implements the Bank IDL interface.
 150



U s i n g  a nd  Imp l emen t i n g  I D L  I n t e r f a c e s
// Constructor for Bank implementation object.
public BankImplementation (org.omg.CORBA.ORB Orb) {

m_orb = Orb;
m_list = new Hashtable();

}

// Implementation for IDL operation create_account()
public Account create_account (String name) {

Account m_account = null;
AccountImplementation m_account_impl = null;

if ( m_list.get ( name ) != null ) {
System.out.println ( "- Account for " + name + "

already exists, " + "finding details." );
return find_account ( name );

     }

System.out.println ( "- Creating new account for "
+ name + "." );

     
// Create a new account. 
try {

m_account_impl =  new AccountImplementation 
(name, 0.0F);

m_account = new _tie_Account
 (m_account_impl, �Marker�);

m_orb.connect ( m_account );
}

catch ( SystemException se ) {
System.out.println ( "[ Exception raised when

 creating Account. ]" );
}

// Add account to table
m_list.put ( name, m_account );
return m_account;

}

// Implementation for IDL operation find_account().
public Account find_account (String name) {

Account m_acc = null;
m_acc = (Account) m_list.get (name);
151



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
if ( m_acc == null ) {
// account not in table.
System.out.println ("- Unable to find Account

for " + name + ".");
}
return m_acc;

}

// Reference to the ORB.
private org.omg.CORBA.ORB m_orb = null;

// Table of accounts.
private Hashtable m_list; 

}

The BankImplementation class implements the _BankOperations Java interface 
generated by the IDL compiler.

The IDL-defined method create_account() creates an 
AccountImplementation object and then passes this object to the TIE class 
constructor, _tie_Account(). The create_account() method returns an 
object that implements Java interface Account. This IDL-generated type defines 
the client view of the IDL interface Account. 

Using the ImplBase Approach

Using this approach, you must indicate that a Java class implements a specific IDL 
interface by inheriting from the corresponding ImplBase class generated by the 
IDL compiler. You can write the ImplBase code for the Bank implementation 
class as follows:

// Java
// In file BankImplementation.java.

package Demos.BankSimpleImplBase;

import IE.Iona.OrbixWeb._OrbixWeb;
...

public class BankImplementation 
extends _BankImplBase {

  
 152



U s i n g  a nd  Imp l emen t i n g  I D L  I n t e r f a c e s
// Constructor for Bank implementation object.
public BankImplementation (ORB Orb) {

// Same as for the TIE approach.
}

// Implementation for IDL operation create_account().
public Account create_account (String name){

Account m_account = null;
...
// Create a new account 
try { 

m_account =  new AccountImplementation
(name, 0.0F);

m_orb.connect ( m_account );
}
catch ( SystemException se ) {

System.out.println ( "[ Exception raised when
creating Account. ]" );

} 
...

}

The BankImplementation class inherits the _BankImplBase Java class 
generated by the IDL compiler.

The IDL-defined method create_account() creates an 
AccountImplementation object and returns an object that implements Java 
interface Account. 

Implementing the Account Interface

This section implements the Account IDL interface using both TIE and ImplBase 
examples.

Using the TIE Approach

When using the TIE approach, your account class implementation must 
implement the _AccountOperations interface generated by the IDL compiler. 
153



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
The AccountImplementation class is coded as follows:

// Java
// In file AccountImplementation.java.
package Demos.BankSimpleTie;

public class AccountImplementation 
implements _AccountOperations {

public AccountImplementation(String name,float bal){
this.m_name = name;
m_balance=bal;
System.out.println ("- Creating account for " +

m_name + ". Initial " + "balance of £" + bal );
}

// Implementation for IDL name attribute.
public String name(){

return m_name;
}

// Implementation for IDL balance attribute.
public float balance() {

return m_balance;
  }

// Implementation for IDL operation deposit().
public void deposit (float amount) {

System.out.println ( "- Depositing £" + amount + "
into " + m_name + "'s account" );

m_balance += amount;
}

// implementation for IDL operation withdraw().
public void withdraw(float amount) {

System.out.println("- Withdrawing £" + amount + "
from " + m_name + "'s account" );

m_balance -= amount;
}

// Account user's name.  
private String m_name = null;
 154



U s i n g  a nd  Imp l emen t i n g  I D L  I n t e r f a c e s
// Account user's balance
private float m_balance = 0.0F;

}

Using the ImplBase Approach

When using the TIE approach, your account class implementation must inherit 
the _AccountImplBase class generated by the IDL compiler. The 
AccountImplementation class is coded as follows:

// Java
// In file AccountImplementation.java.

package Demos.BankSimpleImplBase;

public class AccountImplementation 
extends _AccountImplBase {
...

}

This class is identical, in every other respect, to the AccountImplementation 
class used for the TIE approach.

Writing the Server

This section shows the code for the banking server, using both TIE and ImplBase 
examples.

Using the TIE Approach

To create a bank implementation object, the server must pass the constructor 
for the bank implementation class to the TIE constructor, _tie_Bank(). You can 
implement the server using the TIE approach as follows:

// Java
// In file Server.java

package Demos.BankSimpleTie;

// Import Naming Service wrapper methods.
import Demos.IT_DemoLib.*;
import IE.Iona.OrbixWeb.Features.Config;
155



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
import IE.Iona.OrbixWeb._OrbixWeb;
import org.omg.CORBA.*;

public class Server {
public static void main ( String args[] ) {

// Initalize the ORB.
org.omg.CORBA.ORB Orb = ORB.init (args, null);
// Create a new bank Server
new Server ( Orb );

}

// Server constructor.
public Server ( org.omg.CORBA.ORB Orb ) {

m_orb = Orb;
...
// Create a new Naming Service wrapper.    
try {

m_ns_wrapper = new IT_NS_Wrapper ( m_orb,
m_demo_context_name );

m_ns_wrapper.initialise();
}
catch ( org.omg.CORBA.UserException userEx ) {

...
}
String serverName = new String ( "IT_Demo

/BankSimple" );

// Create a new server implementation object.
m_bank = new _tie_Bank 

(new BankImplementation(m_orb));
try {

m_ns_wrapper.registerObject ( "Bank", m_bank );
}    
catch ( org.omg.CORBA.UserException userEx ) {

...
}

// Wait for client connections.
try {

_OrbixWeb.ORB ( m_orb ).processEvents
(10000 * 60 );

}
catch ( SystemException se ) {
 156



U s i n g  a nd  Imp l emen t i n g  I D L  I n t e r f a c e s
...
}

}
...
}

Using the ImplBase Approach

Using the ImplBase approach, the server must create a new bank implementation 
object by passing a reference to the server ORB to the constructor for the 
BankImplementation class:

// Java
// In file Server.java

package Demos.BankSimpleImplBase;

public class Server {
...

// Create a new server implementation object.
m_bank = new BankImplementation ( m_orb );

...
}

This class is identical, in every other respect, to the Server class used for the 
TIE approach.

Object Initialization and Connection

An implementation object must be connected to the Orbix Java runtime before 
it can handle incoming operation invocations.

There are two ways to connect implementation objects to the Orbix Java 
runtimes:

� Using ORB.connect() and ORB.disconnect(). 

These methods are the CORBA-defined way of connecting an 
implementation to the runtime.

� Using BOA.impl_is_ready().

This is an Orbix Java -specific way of connecting implementation objects 
to the runtime.
157



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Using ORB.connect() and ORB.disconnect()

The OMG standard way of connecting an implementation to the runtime is to 
use org.omg.CORBA.ORB.connect(). The Orbix Java runtime can continue to 
make invocations on the implementation until it is disconnected using 
org.omg.CORBA.ORB.disconnect(). Refer to the API Reference on interface 
BOA in the Orbix  Programmer�s Reference Java Edition for more details. 

As an example, consider the following code, that instantiates a Bank 
implementation object and connects it to the runtime. The implementation 
object is disconnected at a later stage.

import org.omg.CORBA.ORB;

ORB orb = ORB.init(args,null);

Bank mybank = 
new _tie_Bank(new BankImplementation(orb)); 

orb.connect(mybank);
...
orb.disconnect(mybank);

Note: ORB.connect() is automatically called when you instantiate an Orbix Java  
object. However, for strict CORBA compliance, you should explicitly call 
ORB.connect() in your application code.

Using BOA.impl_is_ready()

A server is normally coded so that it initializes itself and creates an initial set of 
objects. It then calls impl_is_ready() to indicate that it has completed its 
initialization and is ready to receive operation requests on its objects. The 
impl_is_ready() method normally does not return immediately. It blocks the 
server until an event occurs, handles the event, and then re-blocks the server to 
wait for another event.

The impl_is_ready() method consists of four overloaded methods, as follows:

// Java
// In package IE.Iona.OrbixWeb.CORBA
// in interface BOA.
 158



U s i n g  a nd  Imp l emen t i n g  I D L  I n t e r f a c e s
public void impl_is_ready ();

public void impl_is_ready (String serverName);

public void impl_is_ready (int timeout);

public void impl_is_ready
(String serverName, int timeout);

The Server Name Parameter

The serverName parameter to impl_is_ready() is the name of a server as 
registered in the Implementation Repository. 

When a server is launched by the Orbix Java daemon process, the server name 
is already known to Orbix Java and therefore does not need to be passed to 
impl_is_ready(). However, when a server is launched manually, the server 
name must be communicated to Orbix Java. The normal way to do this is using 
the first parameter to impl_is_ready(). To allow a server to be launched 
either automatically or manually, you should specify the serverName parameter.

By default, Orbix Java servers must be registered in the Implementation 
Repository, using the putitj command. Therefore, if an unknown server name 
is passed to impl_is_ready(), the call is rejected. However, the Orbix Java 
daemon can be configured to allow unregistered servers to be run manually. 
Refer to �Registration and Activation of Servers� on page 257 for more details 
on the Orbix Java daemon and the putitj command. 

The Timeout Parameter

The impl_is_ready() method returns only when a timeout occurs or an 
exception occurs while processing an event. The timeout parameter indicates 
the number of milliseconds to wait between events. A timeout occurs if Orbix 
Java has to wait longer than the specified timeout for the next event. A timeout 
of zero causes impl_is_ready() to process an event, if one is immediately 
available, and then return. 

A server can time out either because it has no clients for the timeout duration, 
or because none of its clients use it for that period. The system can also be 
instructed to make the timeout active only when the server has no current 
clients. The server should remain running as long as there are current clients. 
159



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
This is supported by the method setNoHangup(), defined in interface BOA. Refer 
to the Orbix  Programmer�s Reference Java Edition for more details on interface 
BOA.

You can explicitly pass the default timeout as _CORBA.IT_DEFAULT_TIMEOUT. 
The default value of the _CORBA.IT_DEFAULT_TIMEOUT parameter is one 
minute. You can specify an infinite timeout by passing 
_CORBA.IT_INFINITE_TIMEOUT.

Comparison of Methods for Connecting to the ORB

This section outlines some of the merits and drawbacks of the 
impl_is_ready() and ORB.connect() / ORB.disconnect() methods for 
connecting to the ORB.

The primary advantage of using impl_is_ready() is that it allows server 
registration and event processing to be decoupled. This gives the programmer 
who implements the server more control over event processing. This is the 
BOA approach familiar to users of previous versions of Orbix Java. 

The ORB.connect() / ORB.disconnect() approach complies with the CORBA 
specification defined in the OMG IDL to Java mapping. Using this approach, 
Orbix Java implicitly connects an implementation object to the runtime when the 
object is instantiated. By default, when ORB.connect() is first called in a server, 
a background thread that processes events is created, and the server makes 
itself known to the Orbix Java daemon.

Correspondingly, calling ORB.disconnect() on the last registered object stops 
all event processing. You can disable this behaviour by setting the configurable 
item IT_IMPL_READY_IF_CONNECTED to false.

When this approach is used in servers launched persistently, the server has no 
means of specifying a server name. The server name must be specified using 
setServerName() or by passing it on the command line to the Java VM using 
-DOrbixWeb.server_name. 

By default, even if the target object has been disconnected, the server continues 
to process requests until the last object has been disconnected. This can result, 
for example, in an INV_OBJREF exception to a client in response to an incoming 
request for a disconnected object. It is important, therefore, to explicitly 
 160



U s i n g  a nd  Imp l emen t i n g  I D L  I n t e r f a c e s
disconnect all objects when you want your server to exit. It is also important to 
disconnect all objects so that they can call their loaders, if any exist, in order to 
save themselves. Refer to �Loaders� on page 435 for more details.

In the case of out-of-process servers, where each launched server has its own 
system process, you can disconnect all objects using the following call:

_OrbixWeb.ORB(orb).shutdown(true);

In the case of in-process servers, this method has no effect. Refer to the Orbix 
Administrator�s Guide Java Edition  for details on in-process servers. By default, 
servers are activated out-of-process.

You can combine the two approaches used for connecting to the ORB. In fact, if 
you call BOA event-processing operations, a combined approach is used. 
ORB.connect()is implicitly called when the implementation object is 
instantiated. Also, in Orbix Java, several threads can concurrently call 
processEvents(). 

Note: Disconnecting the last object by default causes all BOA event-processing 
calls to exit.

Developing the Client Application
From the point of view of the client, the functionality provided by the banking 
application is defined by the IDL interface definitions. A typical client program 
locates a remote object, obtains a reference to the object, and then invokes 
operations on the object. These are important concepts in distributed systems. 

This section discusses developing the client application in terms of these three 
concepts.

� Object location involves searching for an object among the available 
servers on available nodes. The CORBA-defined way to do this is to use 
the Naming Service.

� Obtaining a reference involves establishing the facilities required to make 
remote invocations possible. This involves setting up a proxy. A reference 
to the proxy can then be returned to the client. Obtaining a reference is 
also termed binding to an object.
161



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
� Remote invocations in Orbix Java occur when normal Java method calls 
are made on proxies.

Obtaining a Reference to a Bank Object

The banking client uses Naming Service wrapper methods to find and obtain a 
reference to a Bank object. Remote function invocations can then be made on 
the object. These concepts are illustrated in the following code extracts from 
the client application:

// Java 
// In file Client.java

package Demos.BankSimpleTie;

import Demos.IT_DemoLib.*;
import Demos.BankInterface.BankGUIFrame;
import IE.Iona.OrbixWeb._OrbixWeb;
import IE.Iona.OrbixWeb._CORBA;
import org.omg.CORBA.ORB;
...

public class Client {
public static void main ( String args[] ) {

// Initilize the ORB
org.omg.CORBA.ORB Orb = ORB.init ( args,null );
// Create a new client
new Client ( Orb );

}

// Client constructor.
public Client (org.omg.CORBA.ORB Orb){

super ( Orb, m_account_types );
m_orb = Orb;
m_client_frame = new ClientGUIFrame(this, m_orb);

}

 162



U s i n g  a nd  Imp l emen t i n g  I D L  I n t e r f a c e s
// Connects to the bank
public void connectToBank() {

// Get the host name from the user interface.
String host = m_client_frame.Get_HostName();
m_client_frame.printToMessageWindow 

("Hostname got "+host);
    

// Set the naming service host name.
_OrbixWeb.ORB ( m_orb ).setConfigItem(

"IT_NAMES_SERVER_HOST", host );

// Create a new naming service wrapper.    
try {

m_ns_wrapper = new IT_NS_Wrapper ( m_orb,
m_demo_context_name );

}
catch ( org.omg.CORBA.UserException userEx ) {

m_client_frame.printToMessageWindow ( "[ Exception
raised during creation of naming" +
"service wrapper.]" );    

} 
try {

org.omg.CORBA.Object obj =
m_ns_wrapper.resolveName ("Bank") ;

m_bank = BankHelper.narrow (obj);
      

m_client_frame.printToMessageWindow("Connection
succeeded." );

}   
catch ( org.omg.CORBA.UserException userEx ) {

m_client_frame.printToMessageWindow ( "[ Exception
raised getting Bank reference " + userEx + "]" );

} 
...

}

163



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Alternatives to the Naming Service 

Using the Naming Service is the CORBA-defined way to establish 
communications with a particular object. There are two other ways that a client 
can obtain a reference to an object that it needs to communicate with:

� Using a return value or an out parameter to an IDL operation call. 

� Using the Orbix Java -specific bind() mechanism. 

Using a Return Value or an Out Parameter

A client can also receive an object reference as a return value or as an out 
parameter to an IDL operation call. This results in the creation of a proxy in the 
client�s address space. Operation create_account(), for example, returns a 
reference to an Account object, and a client that calls this operation can then 
make operation calls on the new object. 

Using the Orbix Java -Specific Bind Method

The following code sample shows how a client could obtain a reference to a 
Bank object using the Orbix Java -specific bind() operation: 

// Search for an object offering the bank
// server and construct a proxy.
try {

System.out.println
("Attempting to bind to :bank on "+hostname);
mybank = BankHelper.bind 

("BankMarker:Bank", hostname);
}
catch (org.omg.CORBA.SystemException ex) {

System.out.println
("Exception during bind : " + ex.toString());

}
System.out.println

("Connection to " + hostname + " succeeded.\n");

The bind mechanism is implemented by the static member method bind() of 
the BankHelper class generated by the IDL compiler. This method takes a 
parameter that specifies the location of the required implementation object in 
the system. Orbix Java can choose any Bank object within the named server. 
 164



U s i n g  a nd  Imp l emen t i n g  I D L  I n t e r f a c e s
The value returned by BankHelper.bind() is a proxy object reference.

Making Remote Invocations

The proxy object reference returned by the Naming Service provides access to 
remote Bank operations using the Java methods defined on interface Bank. The 
client can invoke these operations by calling the equivalent Java methods on the 
proxy object. The proxy is responsible for forwarding the invocation requests to 
the target server implementation object and returning results to the client.

The Java interfaces Account and Bank are generated by the IDL compiler. These 
interfaces define the Java client view of the IDL Account and Bank interfaces.

The generated code for interface Account is as follows:

// Java generated by the IDL compiler

package Demos.BankSimpleTie;

public interface Account
extends org.omg.CORBA.Object {

    
public String name();

public float balance();

public void deposit(float amount) ;

public void withdraw(float amount) ;

public java.lang.Object _deref() ;
}

165



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
The generated code for interface Bank is as follows:

// Java generated by the IDL compiler 

package Demos.BankSimpleTie;
public interface Bank

extends org.omg.CORBA.Object {

public Demos.BankSimpleTie Account
create_account(String name) ;

public Demos.BankSimpleTie Account
find_account(String name) ;

public java.lang.Object _deref() ;
}

Both Java types inherit from the Java interface org.omg.CORBA.Object. This is 
an Orbix Java interface that defines functionality common to all IDL object 
reference types. Refer to the API Reference in the Orbix  Programmer�s 
Reference Java Edition on org.omg.CORBA.Object for further information on 
this extra functionality.

Registration and Activation
The last step in developing and installing the banking application is to register the 
Bank server in the Implementation Repository.

Running the Orbix Java Daemon

Before registering the server, you should ensure that an Orbix Java daemon 
process (orbixd or orbixdj) is running on the server machine.

To run the Orbix Java daemon, enter the orbixdj command from the bin 
directory of your Orbix Java installation. To run the Orbix Java daemon, enter 
the orbixd command.

On Windows, you can also start a daemon process by clicking on the 
appropriate menu item from the Orbix Java menu.
 166



U s i n g  a nd  Imp l emen t i n g  I D L  I n t e r f a c e s
The Implementation Repository

The Orbix Java Implementation Repository records the server name and the 
details of the Java class that should be interpreted in order to launch the server. 
Implementation Repository entries consist of the class name, the class path, and 
any command-line arguments that the class expects. 

Every node in a network that runs servers must have access to an 
Implementation Repository. Implementation repositories can be shared using a 
network file system.

You can register a server in the Implementation Repository using the putitj 
command, which takes the following simplified form:

putitj putitj switches -java server name 
-classpath classpath class name
command-line arguments for server

For example, you could register the Bank server as follows:

putitj -java Bank Demos.BankSimpleTie.Server 

The class Demos.BankSimpleTie.Server is then registered as the 
implementation code for the server Bank at the current host. 

The putitj command does not cause the specified server class to be 
interpreted. The Java interpreter can be explicitly invoked on the class, or the 
Orbix Java daemon can cause the class to be interpreted in response to an 
incoming operation invocation. It uses the Orbix Java configurable 
IT_DEFAULT_CLASSPATH as its classpath when searching for the class. You can 
specify an alternative classpath using the putitj utility. Refer to the Orbix 
Administrator�s Guide Java Edition  for more details.
167



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Execution Trace
This section examines the events that occur when the Bank server and client are 
run. The TIE approach is used to show the initial trace, and the ImplBase 
approach is then discussed. This is followed by a comparison between the TIE 
approach and the ImplBase approach.

Server Side

First, a server with name Bank is registered in the Implementation Repository. 
When an invocation arrives from a client, the Orbix Java daemon launches the 
server by invoking the Java interpreter on the specified class. The server 
application creates a new TIE object, of type _tie_Bank, for an object of class 
BankImplementation:

// Java
// In file Server.java

public Server (org.omg.CORBA.ORB Orb) {
m_orb = Orb;
...
// Create a new server implementation object.
m_bank = new _tie_Bank 

(new BankImplementation(m_orb), �Marker�);
...

}

Client Side

The client first obtains a reference to the Bank object, using the Naming Service, 
for example:

// Java
// In file Client.java.

public class Client {
...
public void connectToBank() {

...
org.omg.CORBA.Object obj =

m_ns_wrapper.resolveName ("Bank") ;
 168



U s i n g  a nd  Imp l emen t i n g  I D L  I n t e r f a c e s
m_bank = BankHelper.narrow (obj);
...

}
}

When the object reference has been obtained, the Orbix Java daemon launches 
an appropriate process by invoking the Java interpreter on the Server class, if 
the process is not already running.

This results in the automatic generation of a proxy object in the client. This acts 
as a stand-in for the remote BankImplementation object in the server. The 
object reference m_Bank within the client is now a remote object reference as 
shown in Figure 7.3 on page 170.

The client programmer is not aware of the TIE object. Nevertheless, all remote 
operation invocations on the BankImplementation object are via the TIE object.

The client program proceeds by asking the bank to open a new account:

// Java
// In file Client.java.
// In class Client

Account new_account = null;
String current_name = m_client_frame.Get_UserName();

    
try {

new_account = m_bank.create_account 
(current_name );

}
catch ( SystemException se ) {

...
};

When the m_bank.create_account() call is made, the method 
BankImplementation.create_account() is called (via the TIE) within the bank 
server. This generates a new AccountImplementation object and associated 
TIE object. The TIE object is added to the BankImplementation object�s list of 
existing Accounts. Finally, create_account() returns the Account reference 
back to the client. 

A new proxy is created at the client-side for the Account object. This is 
referenced by the new_account variable as shown in Figure 7.3 on page 170.
169



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
If the ImplBase approach is used, the final diagram is as shown in Figure 7.4 on 
page 171.

Figure 7.3: Client Creates Object (TIE Object)

BankImplementation
object

_tie_Bank
object

Orbix Java 

_tie_Account
object

AccountImplementation
object

Server

Bank
proxy

Account
proxy

Account

Bank

new_account

m_bank

Client

Orbix Java

manages

classesclasses
 170



U s i n g  a nd  Imp l emen t i n g  I D L  I n t e r f a c e s
Figure 7.4: Client Creates Object (ImplBase Approach)

Server

Bank
proxy

Account
proxy

account

bank

new_account

m_bank

Client

Orbix Java

BankImplementation
object

AccountImplementation
object

manages

classes classes
Orbix Java
171



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Comparison of the ImplBase and TIE 
Approaches

The TIE and ImplBase approaches to interface implementation impose similar 
overheads on the implementation programmer. However, there are two 
significant differences that may affect your choice of implementation strategy:

� The ImplBase approach requires the implementation class to extend a 
generated base class, while the TIE approach merely requires the 
implementation of a Java interface.

� The TIE approach requires the creation of an additional object for each 
implementation object instantiated in a server.

The first of these differences has important implications for the viability of the 
ImplBase approach in most applications. Java does not support multiple 
inheritance, so the inheritance requirement that the ImplBase approach imposes 
on implementation classes limits the flexibility of those classes and eliminates the 
possibility of reusing existing implementations when implementing derived 
interfaces. The TIE approach does not suffer from this restriction and, for this 
reason, is the recommended approach for Orbix Java applications.

The creation of a TIE object for each implementation object can be a significant 
decision factor in applications where a large number of implementation objects 
are created and tight restrictions on the usage of virtual memory exist. In 
addition, the delegation of client invocations by TIE objects implicitly involves an 
additional Java method invocation for each incoming request. 

Of course, it is not necessary to choose one approach exclusively; because both 
can be used within the same server.

The next two sections examine two aspects of IDL interface implementation:

� Providing different implementations of the same interface.

� Implementing different interfaces with a single implementation class.
 172



U s i n g  a nd  Imp l emen t i n g  I D L  I n t e r f a c e s
Providing Different Implementations of the Same Interface

Both the ImplBase and TIE approaches allow you to provide a number of 
different implementation classes for the same IDL interface. This is an important 
feature, especially in a large heterogeneous distributed system. An object can 
then be created as an instance of any one of the implementation classes. Client 
programmers do not need to know which implementation class is used.

Providing Different Interfaces to the Same Implementation

Using the TIE approach, you can have a Java implementation class that 
implements more than one IDL interface. This class must implement the 
generated Java Operations interfaces for all the IDL interfaces it supports. The 
class must therefore implement all the operations defined in those IDL 
interfaces. This common class is simply instantiated and passed to the 
constructor of any TIE objects created for a supported IDL interface. This is a 
way of giving different access privileges to the same object.

With the ImplBase approach, it is not possible to implement different interfaces 
in a single implementation class, because each interface requires the 
implementation class to extend an IDL-generated base class.
173



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
 174



 8
Making Objects Available in Orbix 
Java 

A central requirement in a distributed object system is that clients 
must be able to locate the objects they wish to use. This chapter 
describes how you can make objects available in servers and enable 
clients to locate these objects in clients.

Before using a CORBA object, a client must establish contact with it. To do this, 
the client must get an object reference for the required object. An object 
reference is a unique value that tells an ORB where an object is and how to 
communicate with it. 

An important issue for every CORBA application is how servers can make 
object references available to clients, and how clients can retrieve these 
references to establish contact with objects. This chapter describes three 
solutions to this issue:

� Using the CORBA Naming Service.

� Using the Orbix Java -specific bind() method.

� Using object reference strings to create proxy objects.

These solutions are presented after a brief introduction to how object 
references work in CORBA.
175



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Identifying CORBA Objects
Every CORBA object is identified by an object reference, which is a unique value 
that includes all the information an ORB requires to locate and communicate 
with the object. When a client gets an object reference, the ORB creates a 
proxy in the client�s address space. When the client calls an operation on the 
proxy, the ORB transmits the request to the target object.

Orbix supports two protocols for communications between clients and servers:

� The CORBA standard Internet Inter-ORB Protocol (IIOP). 

This is the default protocol.

� The Orbix protocol.

Each of these communication protocols has its own object reference format. 
The Orbix protocol requires an Orbix Java object reference format. IIOP 
requires the CORBA Interoperable Object Reference (IOR) format. This section 
introduces object references and shows how you may use the fields of an object 
reference.

Interoperable Object References

An object that is accessible via IIOP is identified by an interoperable object 
reference (IOR). Because an ORB�s object reference format is not prescribed by 
the OMG, the format of an IOR includes the following:

� An ORB�s internal object reference. 

� An internet host address. 

� A port number. 

An IOR is managed internally by the ORB. It is not necessary for you to know 
the structure of an IOR. However, an application may wish to publish the 
stringified form of an object�s IOR. You can obtain the stringified IOR by calling 
the method org.omg.CORBA.ORB.object_to_string() with the required 
object, or _object_to_string() on the 
IE.Iona.OrbixWeb.CORBA.ObjectRef interface of the required object.
 176



Mak i n g  Ob j e c t s  A v a i l a b l e  i n  O r b i x  J a v a
Orbix Java Object References

Every object created in an Orbix Java application has an associated Orbix Java 
object reference. This object reference includes the following information:

� An object name that is unique within its server. This is referred to as the 
object�s marker.

� The object�s server name 
This is sometimes called an implementation name in CORBA terminology.

� The server�s hostname. 

For example, the object reference for a bank account would include the object�s 
marker name, the name of the server that manages the account, and the name of 
the server�s host. The bank server could, if necessary, create and name different 
bank objects with different names, all managed by the same server.

In more detail, an Orbix Java object reference is fully specified by the following 
fields:

� Object marker.

� Server name.

� Server hostname.

� IDL interface type of the object.

� Interface Repository (IFR) server in which the definition of this interface 
is stored.

� IFR server host.

Accessing Object References

All Orbix Java objects implement the Java interface org.omg.CORBA.Object. 
This interface supplies several methods common to all object references, 
including object_to_string(), which produces a stringified form of the object 
reference. The form of the resultant string depends on the protocol being used. 
In the case of IIOP, a string representation of an IOR is produced. In the case of 
Orbix Protocol, a string of the following form is produced:

:\server_host:server_name:marker:IFR_host:
IFR_server:IDL_interface
177



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
IE.Iona.OrbixWeb.CORBA.ObjectRef also provides access to the individual 
fields of an object reference string via the following set of accessor methods:

// Java
// in package IE.Iona.OrbixWeb.CORBA,
// in interface ObjectRef.
public String _host();
public String _implementation();
public String _marker();
public String _interfaceHost();
public String _interfaceImplementation();
public String _interfaceMarker();

Orbix Java automatically assigns the server host, server name and IDL interface 
fields when an object is created. It is not generally necessary to update these 
values.

Orbix Java also assigns a marker value to each object, but you may choose 
alternative marker values in order to explicitly name Orbix Java objects. The 
assignment of marker names to objects is discussed in the following section. 

In general, the IFR host name (interfaceHost) and IFR server 
(interfaceImplementation) fields are set to default values. In the stringified 
form, these are IFR and the blank string respectively. 

Assigning Markers to Orbix Java Objects

An Orbix Java marker value allows a name (in string format) to be associated 
with an object, as part of its object reference. There are two ways to assign 
markers to Orbix Java objects:

� Assigning a marker on creation of the object.

� Renaming an object using _marker().

Assigning a Marker on Creation

You can specify a marker name at the time an object is created. If you do not 
specify a marker for a newly created object, a name is automatically chosen by 
Orbix Java. To assign a marker for an object on creation, do either of the 
following:
 178



Mak i n g  Ob j e c t s  A v a i l a b l e  i n  O r b i x  J a v a
� Pass a marker name to the second parameter (of type String) of a TIE-
class constructor.

For example:

// Java
import org.omg.CORBA.SystemException;
...
Bank b;

try {
b = new _tie_Bank 

(new BankImplementation (), "College_Green");
}
catch (SystemException se) {

...
}

� Pass a marker name to the first parameter (of type String) of an 
ImplBase class constructor. For example:

// Java
// Constructor definition in implementation class:

public class BankImplementation
extends _BankImplBase {

BankImplementation (String marker) {
super (marker);

}
}

// Usage in server class:
import org.omg.CORBA.SystemException;
...

BankImplementation BankImpl;

try {
BankImpl = new BankImplementation 

("College Green");
}

179



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
catch (SystemException se) {
...

}
}

Renaming the Object using _marker()

You can use the modifier method _marker(String) to rename an object which 
has a user-specified name or a name assigned by Orbix Java. This is defined in the 
interface ObjectRef in package IE.Iona.OrbixWeb.CORBA. For details on how 
to convert an Orbix Java object to an instance of ObjectRef, refer to the class 
_OrbixWeb.ObjectRef in the Orbix  Programmer�s Reference Java Edition.

Accessing an Object�s Marker Name

You can use the accessor method _marker() to find the marker name 
associated with an object. The following code demonstrates the use of this 
method:

// Java
import org.omg.CORBA.SystemException;
import IE.Iona.OrbixWeb._OrbixWeb;
...

account a;

try {
a = new _tie_account

(new accountImplementation ());
System.out.println ("The marker name chosen " +
"by OrbixWeb is " + _OrbixWeb.Object(a)._marker ());

}
catch (SystemException se) {

...
}

Marker Chosen by Orbix Java

The marker names chosen by Orbix Java consist of a string composed entirely of 
decimal digits. To ensure that your markers are different from those chosen by 
Orbix Java, do not use strings consisting entirely of digits. 
 180



Mak i n g  Ob j e c t s  A v a i l a b l e  i n  O r b i x  J a v a
Note: Marker names cannot contain any �:� or null characters.

An object�s interface name together with its marker name must be unique within 
a server. If a chosen marker is already in use when an object is named, Orbix 
Java assigns a different marker to the object. The object with the original marker 
is not affected. There are two ways to test for this, depending on how a marker 
is assigned to an object:

� If IE.Iona.OrbixWeb.CORBA.ObjectRef._marker(String) is used, you 
can test for a false return value. A false return value indicates a name 
clash.

� If the marker is assigned when calling a TIE-class or an ImplBase class 
constructor, you can test for a name clash by calling the accessor method 
IE.Iona.OrbixWeb.CORBA.ObjectRef.marker()on the new object and 
comparing the marker with the one the programmer tried to assign.

Using the CORBA Naming Service
The CORBA Naming Service holds a �database� of bindings between names and 
object references. A server that holds an object reference can register it with 
the Naming Service, giving it a unique name that can be used by other 
components of the system to locate that object. A name registered in the 
Naming Service is independent of any properties of the object, such as the 
objects�s interface, server or hostname.

This section outlines the features of OrbixNames, IONA�s full implementation of 
the CORBA Naming Service. The following topics are outlined:

� The interface to the Naming Service.

� Format of names within the Naming Service.

� Making initial contact with the Naming Service.

� Associating names with objects.

� Using names to find objects.

� Associating a compound name with an object.
181



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
For a complete description of using OrbixNames, refer to the OrbixNames 
Programmers and Administrator�s Guide.

The Interface to the Naming Service

The programming interface to the Naming Service is defined in IDL. A standard 
set of IDL interfaces allow you to access all the Naming Service features. 
OrbixNames, for example, is a normal Orbix Java server that contains objects 
that implement these interfaces. 

The Naming Service interfaces are defined in the IDL module CosNaming:

// IDL
module CosNaming {

typedef string Istring;

struct NameComponent {
Istring id;
Istring kind;

};

typedef sequence<NameComponent> Name;

enum BindingType {nobject, ncontext};

struct Binding {
Name          binding_name;
BindingType   binding_type;

};
typedef sequence <Binding> BindingList;

interface BindingIterator;

interface NamingContext {
enum NotFoundReason {missing_node, not_context,

not_object };
exception NotFound {

NotFoundReason   why;
Name             rest_of_name;

};
 182



Mak i n g  Ob j e c t s  A v a i l a b l e  i n  O r b i x  J a v a
exception CannotProceed {
NamingContext  cxt;
Name rest_of_name;

};
exception InvalidName {};
exception AlreadyBound {};
exception NotEmpty {};

void bind(in Name n, in Object obj)
raises (NotFound, CannotProceed,

InvalidName, AlreadyBound);
void rebind(in Name n, in Object obj)

raises (NotFound, CannotProceed,
InvalidName);

void bind_context(in Name n,
in NamingContext nc)

raises (NotFound, CannotProceed,
InvalidName, AlreadyBound);

void rebind_context(in Name n,
in NamingContext nc)

raises (NotFound, CannotProceed,
InvalidName);

Object resolve(in Name n)
raises (NotFound, CannotProceed,

InvalidName);
void unbind(in Name n)

raises (NotFound, CannotProceed,
InvalidName);

NamingContext new_context();
NamingContext bind_new_context(in Name n)

raises (NotFound, CannotProceed,
InvalidName, AlreadyBound);

void destroy() raises (NotEmpty);
void list(in unsigned long how_many,

out BindingList bl,
out BindingIterator bi);

interface BindingIterator {
boolean next_one(out Binding b);
boolean next_n(in unsigned long how_many,

out BindingList bl);
void destroy();
183



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
};
};

Format of Names within the Naming Service

A name is always resolved within a given naming context. The naming context 
objects in a system are organized into a naming graph, that may form a naming 
hierarchy, much like that of a filing system. This gives rise to the notion of a 
compound name. The first component of a compound name gives the name of a 
NamingContext, in which the second name in the compound name is looked up. 
This process continues until the last component of the compound name has 
been reached.

Compound Names

A compound name in the Naming Service takes the more abstract form of an 
IDL sequence of name components. In addition, the name components that 
make up a sequence to form a name are not simple strings. Instead, a name 
component is defined as a struct, NameComponent, that holds two strings:

// IDL
typedef string  Istring;

struct NameComponent {
Istring id;
Istring kind;

};

The id member is intended as the real name component, while the kind 
member is intended to be used by the application layer. For example, you can 
use the kind member to distinguish whether the id member should be 
interpreted as a disk name, or a directory or a folder name. Alternatively, you 
can use kind to describe the type of the object being referred to. The kind 
member is not interpreted by OrbixNames.

The type Istring is a placeholder for a future IDL internationalized string that 
may be defined by OMG. 

A name is defined as a sequence of name components as follows:

typedef sequence<NameComponent> Name;
 184



Mak i n g  Ob j e c t s  A v a i l a b l e  i n  O r b i x  J a v a
Both the id and kind members of a NameComponent are used in name 
resolution. Thus, two names, which differ only in the kind member of one 
NameComponent, are considered to be different names.

Names with no components (names of length zero) are not permitted.

Making Contact with the Naming Service

The IDL interface NamingContext, defined in module CosNaming, provides 
access to most features of the Naming Service. The first step in using the 
Naming Service is to get a reference to an object of this type.

Each Naming Service contains a special CosNaming::NamingContext object 
called the root naming context. This acts as an entry point to the service. The 
root naming context allows you to create new naming contexts, bind names to 
objects, resolve object names, and browse existing names.

An application can obtain a reference to its root naming context by passing the 
string �NameService� to the method resolve_initial_references() on an 
instance of org.omg.CORBA.ORB:

import org.omg.CORBA.ORB;
import org.omg.CORBA.Object;

ORB orb = ORB.init(args,null);
Object initRef = orb.resolve_initial_references

("NameService");

The result must be narrowed using 
CosNaming.NamingContextHelper.narrow(), to obtain a reference to the 
naming context.

You can discover which services are available by calling 
list_initial_services(). 
185



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Associating Names with Objects

Once you have a reference to the root naming context, you can begin to 
associate names with objects. The operation 
CosNaming::NamingContext::bind() enables you to bind a name to an object 
in your application. This operation is defined as:

void bind (in Name n, in Object o)
raises (NotFound, CannotProceed,
        InvalidName, AlreadyBound);

To use this operation, you first create a CosNaming::Name structure containing 
the name you want to bind to your object. You then pass this structure and the 
corresponding object reference as parameters to bind().

Using Names to Find Objects

Given an abstract name for an object, you can retrieve a reference to the object 
by calling CosNaming::NamingContext::resolve(). This operation is defined 
as:

Object resolve (in Name n)
raises (NotFound, CannotProceed, InvalidName);

When you call resolve(), the Naming Service retrieves the object reference 
associated with the specified CosNaming::Name value and returns it to your 
application.

The return type of the resolve() operation is an IDL Object. This translates to 
type org.omg.CORBA.Object in Java. This result must therefore be narrowed, 
using the appropriate narrow() method, before it can be properly used by an 
application.
 186



Mak i n g  Ob j e c t s  A v a i l a b l e  i n  O r b i x  J a v a
Associating a Compound Name with an Object

If you want to use compound names for your objects, you must first create 
naming contexts. For example, consider the compound name shown in 
Figure 8.1.

To create this compound name: 

1. Create a naming context and bind a name with identifier company (and no 
kind value) to it. 

2. Create another naming context, in the scope of the company context, and 
bind the name staff to it.

3. Bind the name james to your application object in the scope of the staff 
context. 

The operation CosNaming::NamingContext::bind_new_context() enables 
you to create naming contexts:

NamingContext bind_new_context (in Name n)
raises (NotFound, CannotProceed, 
        InvalidName, AlreadyBound);

To create a new naming context and bind a name to it, create a 
CosNaming::Name structure for the context name and pass it to 
bind_new_context(). If the call is successful, the operation returns a reference 
to your newly created naming context.

You should refer to the OrbixNames Programmers and Administrator�s Guide for 
detailed Java examples of using the Naming Service.

Figure 8.1: An Example Compound Name

james

staff

company
187



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Federation of Name Spaces

The collection of all valid names recognized by the Naming Service is called a 
name space. A name space is not necessarily located on a single name server: a 
context in one name server can be bound to a context in another name server 
on the same host or on a different host. The name space provided by a Naming 
Service is the association or federation of the name spaces of each individual 
name server that comprises the Naming Service. 

Figure 8.2 shows a Naming Service federation that comprises two name servers 
running on different hosts. In this example, names relating to the company�s 
engineering and PR divisions are located on one server and names relating to the 
company�s marketing division are located on a separate server. Client requests 
to look up names start in one name server but may continue in another name 
server�s database. Clients do not have to be aware that more than one name 
server is involved in the resolution of a name, and they do not need to know 
which server interprets which part of a compound name. 

Figure 8.2: Naming Graph Spanning Different Name Servers

marketing

company

engineering PR

Host A

Host B
 188



Mak i n g  Ob j e c t s  A v a i l a b l e  i n  O r b i x  J a v a
Binding to Objects in Orbix Java Servers

Note: This section discusses the use of the Orbix Java -specific bind() method 
to create proxy objects in clients. This should not be confused with the 
CORBA-specified bind() method for use with the Naming Service. 
Orbix Java Edition only supports fully qualified Orbix Java -specific bind. 
That is bind (�myMarker:myServer�, hostname) �.

There is a difference between binding to Orbix Java servers and binding in a 
Naming Service. Binding in a Naming Service context involves associating an 
application level name, usually a meaningful string, to an IOR. This binding is used 
at resolution time to map a name to an object through its IOR. Binding to 
servers, however, involves the creation of a proxy object in the client through 
which methods on the remote server may be activated.

The Orbix Java bind() method provides a mechanism for creating proxies for 
objects that have been created in servers. A client that uses bind() to create a 
proxy does not need to specify the entire object reference for the target object. 
Although bind() can be invoked using either the Orbix protocol or CORBA 
IIOP, it can only succeed if the target object is implemented in an Orbix or 
Orbix Java server. The bind() method cannot be used with objects that are 
implemented using other ORBs.

The creation of a proxy in a client�s address space allows you to invoke 
operations on the target object. When an operation is invoked on the proxy, 
Orbix Java automatically transmits the request to the target object. You can use 
the bind() method to specify the exact object required or, by using default 
parameters, Orbix Java is allowed some freedom when choosing the object.
189



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
The bind() Method

The bind() method is a static method automatically generated by the IDL 
compiler for each IDL Java class. The IDL compiler generates six overloaded 
bind() methods for each IDL interface. In the case of the Bank interface, these 
methods are defined as follows:

// In file BankHelper.java
// Java generated by the Orbix Java IDL compiler. 

package Demos.BankSimple;

import IE.Iona.OrbixWeb._OrbixWeb;
...

public class BankHelper {
...

public static final Bank bind
(String markerServer) {

...
}

public static final Bank bind
(String markerServer, org.omg.CORBA.ORB orb) {

...
}

public static final Bank bind
(String markerServer, String host) {

...
}
public static final Bank bind 

(String markerServer, String host,
 org.omg.CORBA.ORB orb) {

...
}

public static Bank narrow(Object _obj) {
...

}
}

}

 190



Mak i n g  Ob j e c t s  A v a i l a b l e  i n  O r b i x  J a v a
Parameters to bind()

The bind() method is overloaded and takes the following sets of parameters:

� markerServer, host

� markerServer, host, orb

� A full object reference as returned by the method 
org.omg.CORBA.ORB.object_to_string().

The orb parameter to bind() enables support for multiple ORBs. The specific 
ORB passed to the bind() method is used to build the proxy and establish a 
connection to the target server when required. The markerServer and host 
parameters are explained in turn in the following pages. 

Finally, this chapter ends with a description of methods of creating proxy objects 
from object reference information, including binding to a stringified object 
reference.

The MarkerServer Parameter to bind()

The markerServer parameter denotes both a specific server name and object 
within that server. It can be a string of the following form:

marker : server_name

The marker identifies a specific object within the specified server. The 
server_name is the name of a server, as registered in the Implementation 
Repository. It is not necessarily the name of a class or an interface although you 
can assign a server the same name as that of a class or interface. The 
Implementation Repository is described in detail in �Registration and Activation 
of Servers� on page 257.

Orbix Java will choose the name of the Java class if a null string is specified for 
the server name. You can do this either by not passing a first parameter, or by 
passing one of the following as the first parameter: a null string; a string with no 
�:�; or a string which terminates with a �:�.

If the string does not contain a �:� character, the string is understood to be a 
marker with no explicit server name. Because a colon is used as the separator, it 
is invalid for a marker or a server name to include a �:� character.
191



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
The marker must be supplied in all cases. Anonymous bind (i.e. not supplying a 
marker) is deprecated in Orbix Java Edition. However, clients built with previous 
versions of OrbixWeb can still use anonymous bind even with Orbix Java Edition 
servers.

Finally, if the markerServer parameter contains at least two �:� characters, it is 
not treated as a marker:server_name pair. However, it is assumed to be the 
string form of a full object reference. Refer to �Using Object Reference Strings to 
Create Proxy Objects� on page 193 for more details.

The Host Parameter to bind()

The host parameter to bind() specifies the Internet host name or the Internet 
address of a node on which to find the object. An Internet address is assumed to 
be a string of the form xxx.xxx.xxx.xxx, where x is a decimal digit.

Example Calls to bind()

This section shows some sample calls to bind().

1. Bind to the College_Green object at the AIB server at node beta, in the 
internet domain mc.ie. The object should implement the Bank IDL 
interface.

Bank b = BankHelper.bind 
("College_Green:AIB", "beta.mc.ie")

2. Bind to the College_Green object at the AIB server at Internet address 
123.456.789.012. The object should implement the Bank IDL interface.

Bank b = BankHelper.bind 
("College_Green:AIB", "123.456.789.012");

Binding and Exceptions

By default, bind() raises an exception if the desired object is unknown to Orbix 
Java. This requires Orbix Java to ping the desired object in order to check its 
availability The ping operation is defined by Orbix Java and has no effect on the 
target object. The pinging causes the target Orbix Java server process to be 
activated if necessary, and confirms that this server recognizes the target object.
 192



Mak i n g  Ob j e c t s  A v a i l a b l e  i n  O r b i x  J a v a
If you wish to improve efficiency by reducing the number of remote invocations, 
ping can be disabled by calling the method pingDuringBind() as follows:

// Java
import IE.Iona.OrbixWeb._CORBA;
...
_CORBA.Orbix.pingDuringBind(false);

When ping is disabled, binding to an unavailable object does not raise an 
exception at that time. Instead, an exception is raised when the proxy object is 
first used.

A program should always check for exceptions when calling bind(), whether or 
not ping is enabled. 

Using Object Reference Strings to Create Proxy 
Objects

An Orbix Java object is uniquely identified by an object reference. Given a 
stringified form of an Orbix Java object reference, an Orbix Java client can create 
a proxy for that object, by passing the string to the method 
string_to_object() on an instance of org.omg.CORBA.ORB.

For example, given an object reference string that identifies a Bank object:

// Java
import org.omg.CORBA.ORB;
import org.omg.CORBA.Object;
import org.omg.CORBA.SystemException;
import IE.Iona.OrbixWeb._CORBA;
...

//Assign to object ref string.
String bStr = ... ; 
Bank b;

ORB orb = ORB.init(args, null);

try {
Object o = orb.string_to_object ( bStr );
b = BankHelper.narrow ( o );
193



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
}
catch (SystemException se) {

...
}

Similarly, the markerServer field of the bind() method can accept a stringified 
object reference:

// Java
import org.omg.CORBA.SystemException;
...
// Assign to object reference string.
String bStr = ...; 
Bank b;

try {
b = BankHelper.bind (bStr);

}
catch (SystemException se) {

...
}

This has exactly the same functionality as calling string_to_object(), except 
you do not have to call narrow() afterwards.

The method string_to_object() on IE.Iona.OrbixWeb.CORBA.ORB is 
overloaded to allow the individual fields of a stringified object reference to be 
specified. Refer to the section on _OrbixWeb.ORB() in the Orbix  Programmer�s 
Reference Java Edition for details on how to convert an instance of 
org.omg.CORBA.ORB to an instance of IE.Iona.OrbixWeb.CORBA.ORB. 

The definition of this form of string_to_object() is as follows:

// Java
// In package IE.Iona.OrbixWeb.CORBA,
// in class ObjectRef.

public ObjectRef 
string_to_object(

String host, 
String IFR_host, 
String ServerName, 
String marker,
String IFR_server, 
String interfaceMarker);
 194



Mak i n g  Ob j e c t s  A v a i l a b l e  i n  O r b i x  J a v a
The ability to create proxy objects from object reference strings has several 
useful applications. For example, this approach to proxy creation is often used in 
conjunction with the Orbix Java Dynamic Invocation Interface (DII).
195



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
 196



 9
Exception Handling

The implementation of an IDL operation or attribute can throw an 
exception to indicate that a processing error has occurred. This 
chapter describes Orbix Java exception handling in detail, using a 
banking example. This example builds on the concepts illustrated in 
the banking example in Chapter 3, �Developing Applications with 
Orbix Java�, and Chapter 7, �Using and Implementing IDL 
Interfaces�.

There are two types of exceptions that an IDL operation can throw:

� User-defined exceptions. 

These exceptions are defined explicitly in your IDL definitions, and can 
only be thrown by operations. 

� System exceptions. 

These are pre-defined exceptions that all operations and attributes can 
throw.

This chapter describes user-defined exceptions and system exceptions, and 
shows how to throw and catch these exceptions.

Orbix Java does not require any special handling for exceptions. IDL exceptions 
are mapped to Java classes, which inherit from java.lang.Exception. 
Therefore, exceptions thrown by a server can be handled by try and catch 
statements in the normal way.
197



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
User-Defined Exceptions
This section describes how to define exceptions in IDL. It also describes the 
Orbix Java mapping for such user-defined exceptions. The source code for the 
example described in this chapter is available in the demos\BankExceptions 
directory of your Orbix Java installation. 

The IDL Definitions

In this example, the create_account() operation can raise an exception if the 
bank cannot create an Account object. The exception CannotCreate is defined 
within the Bank IDL interface. This defines a string member that indicates the 
reason why the Bank rejected the request:

// IDL
// In file bankexceptions.idl

module BankExceptions {
typedef float CashAmount; 
interface Account; 

interface Bank {
1 // User-defined exceptions.

exception CannotCreate { string reason; };
exception NoSuchAccount { string name; };

Account create_account (in string name) 
2 raises (CannotCreate);

Account find_account (in string name) 
raises (NoSuchAccount);

};

interface Account {
// User-defined exception.

3 exception InsufficientFunds { };

readonly attribute string name; 
readonly attribute CashAmount balance; 
 198



E x c ep t i o n  H and l i n g
void deposit (in CashAmount amount); 
void withdraw (in CashAmount amount) 

raises (InsufficientFunds);
};

};

This IDL is explained as follows:

1. CannotCreate and NoSuchAccount are user-defined exceptions defined 
for the Bank IDL interface.

2. Operation BankExceptions::Bank::create_account() can raise the 
BankExceptions::Bank::CannotCreate exception. It can only raise 
listed user-defined exceptions. It can raise any system-defined exception. 

3. An exception does not need to have any data members.

Note: Read or write access to any IDL attribute can also raise any 
system-defined exception.

The Generated Java Code

This chapter assumes that the IDL source file is compiled using the following 
command:

idlj -jP Demos BankExceptions.idl

The IDL compiler generates Java code within the Demos.BankExceptions 
package. For example, the following Java class is generated for the IDL definition 
for the CannotCreate exception:

// Java generated by the Orbix Java IDL compiler. 

package Demos.BankExceptions.BankPackage;

1 public final class CannotCreate 
extends org.omg.CORBA.UserException 
implements java.lang.Cloneable {

public String reason;
199



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
public CannotCreate() {
super();

}
2 public CannotCreate(String reason) {

super();
this.reason = reason;

}
...

}

1. The class CannotCreate inherits from org.omg.CORBA.UserException. 
This Orbix Java class in turn inherits from java.lang.Exception. This 
inheritance allows CannotCreate to be thrown and handled as a Java 
exception, using try...catch blocks. 

2. Because the CannotCreate exception has one member (reason, of type 
String) the generated class provides a constructor that initializes this 
member.

The generated Java interface for Bank is as follows:

// Java generated by the Orbix Java IDL compiler. 

package Demos.BankExceptions;

public interface Bank
extends org.omg.CORBA.Object {

public Account create_account(String name) 
throws CannotCreate;

public Account find_account(String name) 
throws NoSuchAccount;

...
}

 200



E x c ep t i o n  H and l i n g
System Exceptions
The CORBA specification defines a set of system exceptions to which Orbix Java 
adds a number of additional exceptions. These system exceptions can be raised 
during Orbix Java invocations. 

The standard system exceptions are implemented as a set of Java classes (in the 
package org.omg.CORBA). Each system exception is a derived class of 
org.omg.CORBA.SystemException. This in turn is a derived class of 
java.lang.RuntimeException. This means that all system exceptions can be 
caught in one single Java catch clause. The additional Orbix Java system 
exceptions are implemented in the IE.Iona.OrbixWeb.Features package. 
These exceptions also inherit from the org.omg.CORBA.SystemException class. 

A client can also handle individual system exceptions in separate catch clauses, 
as described in �Handling Specific System Exceptions� on page 206. 

Each system exception is implemented as a class of the following form:

// Java
package org.omg.CORBA;
import org.omg.CORBA.CompletionStatus;

public class <EXCEPTION TYPE>
extends org.omg.CORBA.SystemException {

public <EXCEPTION TYPE> (){
...

}

public <EXCEPTION TYPE> (int minor,
CompletionStatus compl_status) { 
...

}

public <EXCEPTION TYPE> (String reason) {
   ...

}

201



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
public <EXCEPTION TYPE> (String reason, int minor, 
CompletionStatus compl_status) { 
...

}

Refer to the Orbix Administrator�s Guide Java Edition  for a list of system 
exceptions defined by Orbix Java.

Obtaining Information from System Exceptions

Class SystemException includes a public member variable called status of type 
CompletionStatus, which may be of use in some applications. This variable 
holds an int value that indicates how far the operation or attribute call 
progresses before the exception is raised. The return value must be one of three 
values defined in the Orbix Java class CompletionStatus (in the package 
org.omg.CORBA). 

The return values are as follows:

CompletionStatus.COMPLETED_NO The system exception is raised before 
the operation or attribute call starts to 
execute.

CompletionStatus.COMPLETED_YES The system exception is raised after the 
operation or attribute call finishes its 
execution.

CompletionStatus.COMPLETED_MAYBE It is uncertain whether or not the 
operation or attribute call starts 
execution, and, if it does, whether or 
not it finishes. For example, the status is 
CompletionStatus.COMPLETED_MAYBE 
if a client�s host receives no indication 
of success or failure after transmitting a 
request to a target object on another 
host.
 202



E x c ep t i o n  H and l i n g
Example of Server-Side Exception Handling
All Orbix Java exceptions inherit from Java class java.lang.Exception. 
Consequently, the rules for throwing Orbix Java exceptions follow those for 
throwing standard Java exceptions: you must throw an object of the exception 
class. For example, you can use the following code to throw an exception of IDL 
type Bank::CannotCreate:

// Java
import Demos.BankExceptions.BankPackage;

...
throw new CannotCreate("Some reason");

This uses the automatically generated constructor of class CannotCreate to 
initialize the exception object�s reason member with the string �Some reason�.

The implementation of the create_account() operation in class 
BankImplementation can be coded as follows:

// Java
// In file BankImplementation.java,

package Demos.BankExceptions;

import Demos.BankExceptions.BankPackage.*;
import org.omg.CORBA.SystemException;
...

// Implemetation for the Bank IDL interface.
public class BankImplementation

implements _BankOperations {
...
203



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
// Implementation for IDL operation create_account(). 
public Account create_account(String name)

throws CannotCreate {

Account account_ref = null;

// Raise an exception if account already exists.
if (m_list.get(name) != null) {

System.out.println("- Account for " + name + "
already exists, " + "throwing CannotCreate

 exception." );
throw new CannotCreate("Account for " + name + "

already exists.");
}

// Raise an exception if bank is full.
if (m_account_count >= MAX_ACCOUNTS) {

throw new CannotCreate("No more space for new
accounts ");

}

System.out.println("- Creating new account for " +
   name + ".");

// Create a new account
try {

account_ref =
new _tie_Account(new AccountImplementation

(name,0F, m_currency_format),name);
m_orb.connect(account_ref);

}
catch(SystemException se){

System.out.println("[ Exception raised when
creating Account. " + se + " ]");

}
...
}

...
}

 204



E x c ep t i o n  H and l i n g
Example of Client-Side Exception Handling
A client calling an operation that raises a user exception should handle that 
exception using an appropriate catch statement. Naturally, a client should also 
provide handlers for potential system exceptions. 

The following code extract shows client-side exception handling with the 
CannotCreate user-defined exception:

// Java
// In file Client.java

package Demos.BankExceptions;

import Demos.BankExceptions.Bank;
import Demos.BankExceptions.BankPackage.*;
...

public class Client {
...
public void createAccount(String name) {

if (!"".equals(name)) {
if (m_bank_ref != null) {

try {
m_bank_ref.create_account(name);
m_client_frame.printToMessageWindow

("Created account for "+ name +"." );
}
catch(CannotCreate cc) {

m_client_frame.printToMessageWindow ("[ 
Cannot create account " + cc.reason 

+ " ]");
}
catch(SystemException se) {
m_client_frame.printToMessageWindow("[

Cannot create account " + se +" ]");
}

}
...

}
}

205



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Handling Specific System Exceptions

A client can also provide a handler for a specific system exception. For example, 
to explicitly handle a COMM_FAILURE exception, you could write the following 
code:

// Java

import org.omg.CORBA.SystemException;
import org.omg.CORBA.COMM_FAILURE;
....

public class Client {
...

try {
org.omg.CORBA.Object obj =
m_ns_wrapper.resolveName(�Bank�);
m_bank_ref = BankHelper.narrow(obj);
m_client_frame.printToMessageWindow

("Connection succeeded.");
}
catch (COMM_FAILURE cfe) {

m_client_frame.printToMessageWindow
("Unexpected communication failure

exception:" + cfe);
}
catch (SystemException se) {

m_client_frame.printToMessageWindow
("Unexpected system exception" + se );

}
...
}

}

This code is described as follows:

1. To handle individual system exceptions, you must import the required 
exceptions from the org.omg.CORBA package. Alternatively, you could 
reference the exception classes by fully scoped names.

2. The handler for a specific system exception must appear before the 
handler for SystemException. In Java, catch clauses are attempted in the 
order specified; and the first matching handler is called. A handler for 
 206



E x c ep t i o n  H and l i n g
SystemException matches all system exceptions. All system exception 
classes are derived classes of SystemException because of implicit 
casting. 

3. If you only wish to know the type of exception that occurred, the 
message output from class SystemException is sufficient. A handler for 
an individual exception is required only when specific action is to be taken 
if that exception occurs.
207



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
 208



 10
Using Inheritance of IDL Interfaces

This chapter describes how to implement inheritance of IDL 
interfaces, using a banking example. This example builds on the 
concepts illustrated in the banking examples in Chapter 7, �Using 
and Implementing IDL Interfaces� and Chapter 9, �Exception 
Handling�.

You can define a new IDL interface that uses functionality provided by an 
existing interface. The new interface inherits or derives from the base interface. 
IDL also supports multiple inheritance, allowing an interface to have several 
immediate base interfaces. This chapter shows how to use inheritance in Orbix 
Java using the banking example. 

The source code for the example described in this chapter is available in the 
demos\BankInherit directory of your Orbix Java installation.

Single Inheritance of IDL Interfaces
The IDL for this example demonstrates the use of single inheritance of IDL 
interfaces. It expands the banking example in �Exception Handling� on page 197 
to enable support for checking (current) accounts.
209



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
The IDL Interfaces

The IDL interfaces to the banking example are now defined as follows:

// IDL
// In file bankinherit.idl

#include "bankexceptions.idl"

module BankInherit {
interface CheckingAccount; // forward reference

// BetterBank manufactures checking accounts.
1 interface BetterBank : BankExceptions::Bank {

// New operation to create checking accounts.
2 CheckingAccount create_checking (in string name,

in BankExceptions::CashAmount overdraft)
raises(CannotCreate);

};

// New CheckingAccount interface.
3 interface CheckingAccount : BankExceptions::Account {

readonly attributeBankExceptions::CashAmount
overdraft;

};
};

This IDL can be explained as follows:

1. BetterBank inherits the operations of BankExceptions::Bank and adds 
a new operation to create checking accounts. You do not need to list the 
account operations from BankExceptions::Bank because these are now 
inherited.

2. The new create_checking()operation added to interface BetterBank 
manufactures CheckingAccounts.

3. The new interface CheckingAccount derived from interface 
BankExceptions::Account. CheckingAccount has an overdraft limit, 
and the implementation allows the balance to become negative.
 210



U s i n g  I n h e r i t a n c e  o f  I D L  I n t e r f a c e s
The Client-Side Generated Types

It is assumed that the IDL definition is compiled using the following command:

idlj -jP Demos bankinherit.idl

Orbix Java maps IDL interfaces to Java interfaces. The IDL interface inheritance 
hierarchy maps directly to the Java interface inheritance hierarchy, as shown in 
Figure 10.1:

IDL-Generated Java Interfaces

The IDL interface Account maps to the following Java interface:

// Java
// Automatically generated
// in file Account.java

package Demos.BankExceptions;

public interface Account
extends org.omg.CORBA.Object {

public String name();
public float balance();

Figure 10.1: IDL and Java Inheritance Hierarchies

Account

CheckingAccount

IDL interfaces

Account

CheckingAccount

Java interfaces
211



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
public void deposit(float amount);
public void withdraw(float amount) 

throws InsufficientFunds;
...

}
The IDL interface CheckingAccount maps to the following 
Java interface:
// Java
// Automatically generated
// In file CheckingAccount.java

package Demos.BankInherit;

public interface CheckingAccount
extends BankExceptions.Account {

public float overdraft();
...

}

As with the IDL interface CheckingAccount, the mapped Java interface 
CheckingAccount inherits the methods contained in interface Account.

IDL-Generated Java Classes

The IDL compiler also generates Java implementation classes for the Java 
interfaces. These Java implementation classes provide client proxy functionality 
for the IDL operations. This proxy functionality facilitates the distribution of 
objects in Orbix Java. In addition, the IDL compiler also generates a Java helper 
class that implements the static bind() and narrow() methods. Refer to �IDL to 
Java Mapping� on page 95 for a full description of the mapped Java classes.

IDL interface inheritance maps directly to the inheritance hierarchy of the 
generated Java interfaces, but it does not map to the generated Java classes for 
those interfaces. Therefore, each Java class that implements an IDL-generated 
Java interface must implement both the methods of that interface and the 
methods of all interfaces from which it inherits. Of course, this is an internal 
Orbix Java implementation detail and does not impose any additional burden on 
the programmer.

This feature facilitates the mapping of IDL multiple inheritance to Java, as 
discussed in �Multiple Inheritance of IDL Interfaces� on page 218. 
 212



U s i n g  I n h e r i t a n c e  o f  I D L  I n t e r f a c e s
The generated Java class that implements the Account interface is as follows:

// Java
// In file _AccountStub.java

package Demos.BankExceptions;

public class _AccountStub
extends org.omg.CORBA.portable.ObjectImpl
implements Account {

    
public _AccountStub () {}

public String name() {
...

}

public float balance() {
...

}

public void deposit(float amount) {
...

}
    

public void withdraw(float amount) 
 throws InsufficientFunds {
...

}
...

}

The generated Java class that implements the CheckingAccount interface is as 
follows:

// Java
// In file _CheckingAccountStub.java

package Demos.BankInherit;

public class _CheckingAccountStub
extends org.omg.CORBA.portable.ObjectImpl
implements CheckingAccount {
213



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
public _CheckingAccountStub () {}

public float overdraft() {
...

}

public String name() {
...

}
    

public float balance() {
...

}
    

public void deposit(float amount) {
...

}

public void withdraw(float amount) 
throws InsufficientFunds {
...

}
...

}

The _AccountStub and _CheckingAccountStub classes enable client method 
calls to be forwarded to the server.

Using Inheritance in a Client
You can create and manipulate instances of CheckingAccount in a similar way to 
the instances of Account in �Developing the Client Application� on page 161. 
For example, the following code extract shows how to create CheckingAccount 
objects:

// Java
// In file Client.java

package Demos.BankInherit;

public class Client {
 214



U s i n g  I n h e r i t a n c e  o f  I D L  I n t e r f a c e s
...
public void createCheckingAccount(String name,

float overdraftAmount ) {
try {

m_BankRef.create_checking(name,
overdraftAmount);

m_clientFrameReference.printToMessageWindow(
"Created checking account for " +name+ "." );

}
catch (CannotCreate ex){

...
}
catch (SystemException se) {

...
}

}
...

}

The IDL-defined create_checking() method creates a CheckingAccount 
object with the specified name and overdraft.

Using Inheritance in a Server
This section uses a banking example to describe the two approaches to server 
implementation:

� The TIE Approach

� The ImplBase Approach

The TIE approach is preferred for the majority of implementations in Java. This is 
due to the restriction of single inheritance of classes in Java, which limits the 
ImplBase approach. Refer to �Comparison of the ImplBase and TIE Approaches� 
on page 172 for a detailed discussion of both approaches.

The TIE Approach

Using the TIE approach to implementing IDL interfaces, the CheckingAccount 
implementation class simply implements Java interface 
_CheckingAccountOperations. 
215



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
This means that there is no implicit inheritance requirement imposed on the 
implementation class. This has the advantage of allowing you to inherit from any 
existing class that implements any of the required methods.

On the server side, the IDL compiler generates the Java interface 
_CheckingAccountOperations. This defines the methods that a server class 
must implement in order to support IDL interface CheckingAccount. This Java 
interface inherits from type _AccountOperations, which serves a similar 
purpose for IDL type Account. 

Because the inherited class AccountImplementation implements the methods 
defined in interface _AccountOperations, you need only implement methods 
that differ in class CheckingAccImplementation; you can reuse common 
functionality.

For example, class CheckingAccImplementation calls the constructor for 
AccountImplementation. The IDL-defined name() and balance() accessor 
methods are not re-implemented:

// Java 
// In file CheckingAccImplementation.java
package Demos.BankInherit;

import Demos.BankExceptions._AccountOperations;
import Demos.BankExceptions.AccountPackage.

InsufficientFunds;

public class CheckingAccImplementation 
extends AccountImplementation
implements _CheckingAccountOperations {

  
// Constructor.
public CheckingAccImplementation(String name,

float bal, float overdraft) {
// Calls AccountImplementation constructor.
super (name, bal);

m_Overdraft = overdraft;
m_OverdraftLimit = overdraft;

}

 216



U s i n g  I n h e r i t a n c e  o f  I D L  I n t e r f a c e s
//Implementation for deposit() now updates overdraft.
public void deposit(float amount) {

...
}
// Implementation for withdraw() updates overdraft.
public void withdraw(float amount)

throws Demos.BankExceptions.AccountPackage.
InsufficientFunds {
...

}

// Implementation for new IDL operation.
public float overdraft() {

return m_Overdraft;
}

}

Because class CheckingAccImplementation inherits from class 
AccountImplementation, all Account methods do not need to be re-
implemented. Using the TIE approach enables you to take advantage of the reuse 
characteristics of object-oriented programming.

The ImplBase Approach

The IDL compiler generates the abstract class _CheckingAccountImplBase. 
This supports the ImplBase approach to IDL interface implementation. To 
implement IDL interface CheckingAccount using the ImplBase approach, define 
a Java class that inherits from class _CheckingAccountImplBase, and then 
implement the methods defined in this class. This has important consequences 
for the reusability of implementation classes. 

Java does not support multiple inheritance of classes. So if an existing class 
implements a subset of the abstract methods defined for type CheckingAccount 
(for example, an existing class also implements IDL type Account), this class 
cannot be reused in the CheckingAccount implementation class. 

The CheckingAccount implementation class must directly implement all the 
operations of IDL interface CheckingAccount and all interfaces from which it 
inherits. This restriction severely limits the flexibility of the ImplBase approach.
217



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Using the ImplBase approach, class CheckingAccImplementation cannot inherit 
the Account implementation, so you must re-implement the existing Account 
methods before adding any new functionality.

// Java
package Demos.BankInherit;

public class CheckingAccountImplementation 
extends _CheckingAccountImplBase {
// Re-implement existing Account methods and
// add new CheckingAccount methods.

}

Refer to �Using and Implementing IDL Interfaces� on page 143 for details of 
implementing using the ImplBase approach.

Multiple Inheritance of IDL Interfaces
IDL supports multiple inheritance of interfaces. The following serves as an 
example: 

// IDL
interface Account {

readonly attribute string name;
readonly attribute CashAmount balance; 

void deposit (in CashAmount amount); 
void withdraw (in CashAmount amount);

};

// Derived from interface Account.
interface CheckingAccount : Account {

readonly attribute float overdraft;
};

// Derived from interface Account.
interface SavingsAccount : Account {
};

// Indirectly derived from interface Account.
interface PremiumAccount : 

CheckingAccount, SavingsAccount {
 218



U s i n g  I n h e r i t a n c e  o f  I D L  I n t e r f a c e s
};

Java also supports multiple inheritance of interfaces, but does not support 
multiple inheritance of classes. As in the case of single inheritance, the 
inheritance hierarchy of IDL interfaces maps directly to an identical inheritance 
hierarchy of Java interfaces that define client-side functionality. For example, the 
interface hierarchy in the preceding definition maps as shown in Figure 10.2.

Figure 10.2: Multiple Inheritance of IDL Interfaces

The inheritance hierarchy does not map to the Java classes that implement the 
generated Java interfaces. Consequently, each generated Java class implements 
the methods of the corresponding Java interface and of all interfaces from which 
it inherits. In this way, a client that holds a PremiumAccount object reference can 
invoke all inherited operations (from Account, CheckingAccount, and 
DepositAccount) directly on that reference.

CheckingAccount SavingsAccount

Account

PremiumAccount
219



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Implementing Multiple Inheritance

On the server side, the implementation class requirements are identical to those 
for single inheritance. You can implement multiple inheritance in your sever 
using either the TIE approach or the ImplBase approach.

Using The TIE Approach

Using the TIE approach, the implementation class must implement Java interface 
_PremiumAccountOperations, but can also inherit implementation methods 
from an existing class. However, the absence of support for multiple inheritance 
of classes in Java implies that a multiple inheritance hierarchy of IDL interfaces 
can never map directly to the implementation classes for those interfaces.

IDL avoids any ambiguity due to name clashes of operations and attributes, when 
two or more direct base interfaces are combined. This means that an IDL 
interface cannot inherit from two or more interfaces with the same operation or 
attribute name. It is permitted, however, to inherit two or more constants, types 
or exceptions with the same name from more than one interface. However, you 
must qualify every use of these with the name of the interface, by using the full 
IDL scoped name.

Using The ImplBase Approach

Using the ImplBase approach, when implementing type PremiumAccount you 
must inherit from class _PremiumAccountImplBase and directly implement all 
methods for interface PremiumAccount and all types from which it inherits.
 220



 11
Callbacks from Servers to Clients

Orbix Java clients usually invoke operations on objects in Orbix Java 
servers. However, Orbix Java clients can implement some of the 
functionality associated with servers, and all servers can act as clients. 
This flexibility increases the range of client-server architectures you 
can implement with Orbix Java. This chapter describes a common 
approach to implementing callbacks in an Orbix Java application and 
this is illustrated by an example.

A callback is an operation invocation made from a server to an object that is 
implemented in a client. Callbacks allow servers to send information to clients 
without forcing clients to explicitly request the information.

Implementing Callbacks in Orbix Java 
This section introduces a simple model for implementing callbacks in a 
distributed system. The following steps are described:

� Defining the IDL interfaces for the system.

� Writing a client.

� Writing a server.
221



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Defining the IDL Interfaces

In the example system, clients invoke operations on servers and servers invoke 
operations on clients. Consequently, our IDL definitions must define the 
interfaces through which each type of application can access the other. In the 
simplest case, this involves two interfaces, for example:

// IDL
interface ClientOps {

...
};

interface ServerOps {
...

};

In this model the client application supplies an implementation of type 
ClientOps, while the server implements ServerOps. 

It is important to note that clients are not registered in the Implementation 
Repository and therefore the server in this example cannot bind to the client�s 
implementation object. Instead, our IDL definition supplies an operation that 
allows the client to explicitly pass an implementation object reference to the 
server. For example, the IDL for the example system can be defined as follows:

// IDL
interface ClientOps {

void callBackToClient (in String message);
};
interface ServerOps {

void sendObjRef (in ClientOps objRef);
};

�An Example Callback Application� describes a more realistic application, and 
outlines the factors which you must consider when modifying this definition.

Writing a Client

The first step in writing a client is to implement the interface for the client 
objects, in this case type ClientOps. You can use the TIE or ImplBase approach, 
as if the client were an Orbix Java server. In this example, it is assumed that the 
implementation is named ClientOpsImplementation. 
 222



C a l l b a c k s  f r om  S e r v e r s  t o  C l i e n t s
The client main() method is as follows:

// Java

import org.omg.CORBA.ORB;
import org.omg.CORBA.SystemException;

public class Client {
public static void main(String args[]) {

// Initialize the ORB.
ORB orb = ORB.init(args,null);
// TIE approach.
ClientOps clientImpl; 
ServerOps serverRef;

try {
// Instantiate implementation and proxy.
clientImpl = new _tie_ClientOps

(new ClientImplementation ());

//Start a background event-processing thread
//and connect to the runtime.
orb.connect(clientImpl);
ServerRef = ServerOpsHelper.bind 
(opsMarker:opsServer�, hostname);

// Send object reference to server.
serverRef.sendObjRef (clientImpl);

}
// Process requests for 2 mins.
try {

Thread.sleep(1000*60*2);
}
catch (Exception ex){}
orb.disconnect(clientImpl)

catch (SystemException se) {
System.out.println(

"Unexpected exception:\n"
+ se.toString());

return;
}

}

223



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
The client creates an implementation object of type ClientOpsImplementation. 
It then binds to an object of type ServerOps in the server. At this point, the 
client holds an implementation object of type ClientOps and a proxy for an 
object of type ServerOps, as shown in Figure 11.1. 

To allow the server to invoke operations on the ClientOps implementation 
object, the client must pass this object reference to the server. Consequently, 
the client now calls the operation sendObjRef() on the ServerOps proxy 
object, as shown in Figure 11.1. 

The ORB.connect() method explicitly connects object implementations to the 
ORB. This method starts an event-processing thread in the background, if there 
is no such thread running already, the client calls ORB.connect() after the TIE 
or ImplBase object has been created. Refer to Orbix  Programmer�s Reference 
Java Edition for more details on the connect() method.

Finally, the client�s main thread must either sleep or do other processing to 
avoid exiting, until it wishes to disconnect its implementation object. 

Figure 11.1: Client Objects

Orbix Java Client

Implementation
object for type
ClientOps

Proxy of type 
ServerOps
 224



C a l l b a c k s  f r om  S e r v e r s  t o  C l i e n t s
Writing a Server

You can code the server application as a normal Orbix Java server. Specifically, 
you should define an implementation class for type ServerOps, and create one 
or more implementation objects.

The implementation of the method sendObjRef() for type ServerOps requires 
special attention. This method receives an object reference from the client. 
When this object reference enters the server address space, a proxy for the 
client�s ClientOps object is created. The server will use this proxy to call back 
to the client. The implementation of sendObjRef() should store the reference 
to the proxy for later use. 

For example, the implementation of type ServerOps might look as follows:

// Java
// (TIE approach).

public class ServerOpsImplementation
implements _ServerOpsOperations {
// Member variable to store proxy.
ClientOps m_objRef;
// Constructor.

Figure 11.2: Client Passes Implementation Object Reference to Server

Orbix Java Client Orbix Java Server

Implementation
object for type
ClientOps

Proxy of type 
ServerOps

Implementation
object for type
ServerOps

Proxy of type 
ClientOps

(clientImpl)

return

sendObjRef
225



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
public ServerOpsImplementation () {
clientObjRef = null;

}

// Operation implementation.
public void sendObjRef (ClientOps objRef) {

m_objRef = objRef;
}

}

Once the server creates the proxy in its address space, it may invoke the 
operation callBackToClient(). For example, the server might initiate this call 
in response to an incoming event or after impl_is_ready() returns. The 
method invocation on the ClientOps proxy is routed to the client 
implementation object as shown in Figure 11.3.

The transmission of requests from server to client is possible because Orbix Java 
maintains an open communications channel between client and server while 
both processes remain alive. The server can send the callback invocation directly 
to the client and does not need to route it through an Orbix Java daemon. 
Therefore, the client can process the callback event without being registered in 
the Implementation Repository and without being given a server name. 

Figure 11.3: Server Invokes Operation on Client�s Callback Object

Orbix Java Client Orbix Java Server

Implementation
for type
ClientOps

Proxy of type 
ServerOps

Implementation
for type
ServerOps

Proxy of type 
ClientOps

callBackToClient()
routed to client

implementation 

return

object
 226



C a l l b a c k s  f r om  S e r v e r s  t o  C l i e n t s
Callbacks and Bidirectional Connections
If you use the Orbix protocol, the server sends its callbacks on the same 
connection that the client initiated and used to make requests on the server. 
This means that the client does not need to accept an incoming connection.

Standard IIOP, on the other hand, requires that the client accept a connection 
from the server to allow the callbacks to be sent. Many firewalls do not allow an 
application inside the firewall to receive connections from outside. As result a 
client applet downloaded behind such a firewall cannot use standard IIOP to 
receive callbacks from a server outside the firewall.

Orbix Java introduces an optional extension to IIOP to allow the protocol to use 
bidirectional connections. Bidirectional connections allow clients to receive 
requests from servers on the connection that the client originated to the server. 
This gets around the problem of downloading client applets behind a firewall. To 
configure your client to use bidirectional connections set the Orbix Java 
configuration parameter IT_USE_BIDIR_IIOP to true. If you set this to true, 
and your server supports this feature, you can also set IT_ACCEPT_CONNECTIONS 
to false. This ensures that your client does not open a listening port for 
accepting connections. If the server does not support the feature, it attempts to 
open a connection back to the client according to the standard IIOP model.

Avoiding Deadlock in a Callback Model

Note: The potential for deadlock is specific to use of the Orbix Java class BOA (in 
package IE.Iona.OrbixWeb.CORBA). Deadlock does not occur when the 
class ORB is used; specifically, the methods ORB.connect() and 
ORB.disconnect().

When an application invokes an IDL operation on an Orbix Java object, by 
default, the caller is blocked until the operation has returned. In a system where 
several applications have the potential to both invoke and implement operations, 
deadlocks may arise. 

For example, in the application already described in this chapter, a simple 
deadlock may arise if the server attempts to call back to the client in the 
implementation of the method sendObjRef(). In this case, the client is blocked 
227



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
on the call to sendObjRef() when the server invokes callBackToClient(). 
The callBackToClient() call blocks the server until the client reaches an event 
processing call and handles the server request. Each application is blocked, 
pending the return of the other, as shown in Figure 11.4.

Unfortunately, it is not always possible to design a callback architecture in which 
simultaneous invocations between groups of processes are guaranteed never to 
occur. However, there are alternative methods to avoid deadlock in an Orbix 
Java system. The two primary approaches are:

� Using non-blocking operation invocations.

� Using a multi-threaded event processing model.

These approaches are discussed in the two subsections which follow.

Using Non-Blocking Operation Invocations

There are two ways to invoke an IDL operation in an Orbix Java application 
without blocking the caller: the first is to declare the operation as oneway in the 
IDL definition; the second is to invoke the operation using the deferred 
synchronous approach supported by the Orbix Java Dynamic Invocation 
Interface (DII).

Figure 11.4: Deadlock in a Simple Callback Model

Orbix Java Client Orbix Java Server

Implementation
for type
ClientOps

Proxy of type 
ServerOps

Implementation
for type
ServerOps

Proxy of type 
ClientOps

1.) client blocked pending
return of
sendObjRef()

 2.) server blocked
in sendObjRef()
pending return of
callBackToClient()
 228



C a l l b a c k s  f r om  S e r v e r s  t o  C l i e n t s
You can declare an IDL operation oneway only if it has no return value, out, or 
inout parameters. A oneway operation can only raise an exception if a local 
error occurs before a call is transmitted. Consequently, the delivery semantics 
for a oneway request are �best-effort� only. This means that a caller can invoke a 
oneway request and continue processing immediately, but is not guaranteed that 
the request arrives at the server.

You can avoid deadlock, as shown in Figure 11.4 on page 228, by declaring either 
sendObjRef() or callBackToClient() as a oneway operation, for example:

// IDL
interface ClientOps {

void callBackToClient (in String message);
};

interface ServerOps {
oneway void sendObjRef (in ClientOps objRef);

};

In this case, the client�s call to sendObjRef() returns immediately, without 
waiting for the server�s implementation method call to return. This allows the 
client to enter the Orbix Java event processing call. At this point, the callback 
invocation from the server is processed and routed to the client�s 
implementation of callBackToClient(). When this method call returns, the 
server no longer blocks and both applications again wait for incoming events.

You can achieve a similar functionality by using the Orbix Java DII deferred 
synchronous approach to invoking operations. As described in Chapter 18, 
�Dynamic Invocation Interface�, the DII allows an application to dynamically 
construct a method invocation at runtime, by creating a Request object. You can 
then send the invocation to the target object using one of a set of methods 
supported by the DII.

�Deferred Synchronous Invocations� describes how to call the following 
methods on the _CORBA.Orbix object to invoke an operation without blocking 
the caller.

Request.send_deferred()
Request.send_oneway()
ORB.send_multiple_ requests_deferred()
ORB.send_multiple _requests_oneway() 
229



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
If any of these methods are used, the caller can continue to process in parallel 
with the target implementation method. Operation results can be retrieved at a 
later point in the caller�s processing, and avoid deadlock as if the operation call 
was a oneway invocation.

Using Multiple Threads of Execution

Note: org.omg.CORBA.ORB.connect() which connects an implementation to 
the runtime, by default also causes the ORB to launch a background 
event-processing thread. This means that a separate event-processing 
thread is not necessary. Use of the methods processEvents() and 
processNextEvent() outlined in this section is optional. 

An Orbix Java application may create multiple threads of execution. To avoid 
deadlock, it may be useful to create a separate thread dedicated to handling 
Orbix Java events. For example, an Orbix Java application could instantiate an 
object as follows:

// Java
// In file EventProcessor.java.

import IE.Iona.OrbixWeb._CORBA;
import org.omg.CORBA.SystemException;

public class EventProcessor extends Thread {
public void run () {

try {
_CORBA.Orbix.processEvents

(_CORBA.IT.INFINITE TIMEOUT)
}
catch (SystemException se) {

System.out.println 
("Unexpected exception: " + se.toString());

}
}

}

Invoking run() on an object of this type starts the execution of a thread that 
processes incoming Orbix Java events. 
 230



C a l l b a c k s  f r om  S e r v e r s  t o  C l i e n t s
If another thread in this application becomes blocked while invoking an 
operation on a remote object, the event processing continues in parallel. So, in 
the example, the remote operation can safely call back to the multi-threaded 
application without causing deadlock.

Event Processing Methods

Orbix Java applications can use event processing methods that do not implicitly 
initialize the application server name. The client can safely call either the method 
processEvents() or the method processNextEvent() on the ORB object.

These event processing methods are defined on Orbix Java class BOA (in package 
IE.Iona.OrbixWeb.CORBA). If the client is to receive callbacks, the client�s ORB 
object must be initialized as type BOA. The client call, for example, to, 
processEvents() blocks while waiting for incoming Orbix Java events. If the 
server invokes an operation on the ClientOps object reference forwarded by 
the client, this call is processed by processEvents() and routed to the correct 
method in the client's implementation object.

An Example Callback Application 
The example described in this section is based on a distributed chat group 
application. The source code for this application is available in the demos/
orbixjava/WebChat directory of your Orbix Java installation.

Users join a chat group by downloading an Orbix Java callback-enabled client. 
Using this client, the user can send text messages to a central server. The server 
then forwards these messages to other clients which have joined the same 
group.

The client provides an interface that allows each user to select a current chat 
group, to view messages sent to that group and to send messages to other group 
members. For example, if user �brian� runs the client, this user is added to the 
group �General� by default. At this point, the client interface appears as shown 
in Figure 11.5 on page 232.
231



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Figure 11.5: WebChat Client Interface

The Groups drop-down box allows the user to select a chat group. The user 
receives all messages sent to the current group and can only join one group at 
any given time. 

The main text area displays all messages sent to the current group. These 
messages include messages from other group members and system messages 
indicating that other members have joined or left the group.

Finally, a text field and Send button allow users to send messages to the group.
 232



C a l l b a c k s  f r om  S e r v e r s  t o  C l i e n t s
The central server manages all messages sent to all chat groups. It receives the 
messages from client applications and forwards these messages to other clients 
appropriately. The server does not require any direct user interaction and can 
run without a user interface. However, in this example a server monitor is 
provided�the WebChat Administrator Server. This displays statistical 
information about the messages in the system. This interface includes 
information about the number of users, the members of each group, the total 
number of messages sent through the system and the total number of messages 
sent to each group. A Message Peek button also allows you to view each 
message sent through the system. This information is available because all 
messages are routed through this central server.

The IDL Specification

The IDL specification for this application includes two interface definitions: a 
CallBack interface implemented by clients and a Chat interface implemented by 
the server. The source code for this IDL is as follows:

// IDL
// In file "WebChat.idl".

// Interface definition for callbacks from
// server to client. This interface is
// implemented by clients.

interface CallBack {
// Operation which allows the server to forward
// a chat message to a client.
oneway void NewMessage (in string Message);

};

// Interface which allows clients to register
// with central server. This interface is
// implemented by the server.

interface Chat {
// Join a chat group.
oneway void registerClient (in CallBack obj, in string Name);

// Leave a chat group.
oneway void RemoveClient (in CallBack obj, in string name);
233



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
// Send a message to all group members.
oneway void SendMessage (in string Mess);

};

Each client implements a single CallBack object. This object allows the client to 
receive notification from the server when new messages are sent to the client�s 
current chat group.

The server implements a set of Chat objects; one object for each available chat 
group. A client invokes the operation RegisterClient() on a Chat object to 
join the chat group supported by that object. Similarly, a client application calls 
RemoveClient() to leave a chat group. A client that is registered with a chat 
group calls the operation SendMessage() to send a text message to other 
members of the same group.

The Client Application

You can run the WebChatGUI client as an applet, using the ClientStart applet, 
or as an application, using the client�s main() method. The source code for the 
client application consists of the following Java classes:

� Class local_implementation implements the IDL interface CallBack.

� Class WebChatGUI initializes the client application and implements the 
client main() method.

� Class Process_Events supports the creation of a thread to handle 
incoming Orbix Java events, such as callbacks from the server.

Callback Implementation

The class local_implementation allows a server to forward a chat message to 
a client. The implementation of operation NewMessage() displays the incoming 
message in the main text area of the client user interface:

// Java
// In file WebChatGUI.java.

package WebChat;

...
 234



C a l l b a c k s  f r om  S e r v e r s  t o  C l i e n t s
// Callback object implementation class.
class local_implementation extends _CallBackImplBase {

WebChatGUI bkChat;
// Callback objects hold a WebChatGUI object. 
public local_implementation(WebChatGUI bkChat) {

super();
this.bkChat = bkChat;

}

// Called by the server when a new message has been 
// sent to the current group.
public void NewMessage(String s) {

System.out.println 
("Executing local_implementation::NewMessage("+s+")\n");

try{
bkChat.ChatEdit.appendText(s+"\n");

}
catch(Exception se){

System.out.println
("Exception in NewMessage " + se.toString());

System.exit(1);
     }
  }
}

Implementing the Constructor and main() Method

The constructor of class WebChatGUI and the main() method implement the 
initial flow of control for the client application. The code for the WebChatGUI 
class is outlined as follows:

package WebChat;

import IE.Iona.OrbixWeb._CORBA;
import IE.Iona.OrbixWeb._OrbixWeb;
import IE.Iona.OrbixWeb.Features.Config;
import org.omg.CORBA.SystemException;
import org.omg.CORBA.ORB;
import java.awt.*;

// The WebChat client class.
public class WebChatGUI extends Frame {
235



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
// WebChat constructor
public WebChatGUI(String host, String name) {

super("WebChatGUI window");
// Set up WebChatGUI client window 
...

Host = new String(host);
Name = new String(name);

// Create the Orbix Java callback object
try {

CallObj = new local_implementation(this);
}
catch (SystemException ex) {

displayMsg ("Exception creating local implementation 
\n"+ ex.toString());

System.exit(1);
}

// Bind to "General" group Chat object.
try{

TALK = ChatHelper.bind("General:WebChat",Host);
}
catch(SystemException se){

displayMsg ("Exception during Bind to WebChat\n" +
 se.toString());

return;
}

// Register the Client with the General group server object
try {

TALK.RegisterClient(CallObj,Name);
TALK.SendMessage("-----> " +Name+" : has joined group "

+ GroupLabel.getText());
}
catch (SystemException ex) {

displayMsg("FAIL\tException during Register,
SendMessage \n"+ex.toString());

System.exit(1);
}

 236



C a l l b a c k s  f r om  S e r v e r s  t o  C l i e n t s
// Enter the Orbix Java event loop and wait for callbacks.
Process_Events EventLoop = new Process_Events();
EventLoop.start();
show();

}

// WebChat client mainline used when running the client 
// as an application.
public static void main(String args[]) { 

ORB.init(args,null); 
String hostname, username;

// Initialize host and name from command-line
// arguments 
...

// set the Orbix Java user name
_CORBA.Orbix.set_principal(username);

new WebChatGUI(hostname, username);
}
...

}

Method RegisterClient() invokes operation RegisterClient() on the 
server Chat object, passing the client�s CallBackImplementation object 
reference as a parameter.

Method Process_Events() creates a thread in which incoming Orbix Java 
events are processed, including server callback invocations. This class is defined 
as follows:

// Java
// In package WebChat, 
// in class WebChatGUI.

// Orbix Java event handler thread.
class Process_Events extends Thread {

public Process_Events(){}

public void run() {
try {
237



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
_CORBA.Orbix.processEvents
(_CORBA.IT_INFINITE_TIMEOUT);  

// one second timeout
}
catch (SystemException ex) {

...
return;

}
}

The definition of class Process_Events is as described in �Using Multiple 
Threads of Execution�.

The static main() method begins by retrieving command-line arguments and 
then instantiates an object of type WebChatGUI. 

Implementing the Event-Handling Methods

When the client�s initialization is complete, it enters the Java event-processing 
loop and responds to user interface events through the method handleEvent() 
and a set of subsidiary methods. Each of the subsidiary methods handles an event 
for a specific user interface component. Figure 11.5 on page 232 shows the Web 
Chat client user interface.

The Send button implementation sends a new message to the server object as 
follows:

// Java
// In package WebChat,
// in class WebChatGUI.

public void clickedSendButton() {
String buff;
buff = Name + " : " +  SendEdit.getText();
try {

synchronized(TALK) {
TALK.SendMessage(buff);

}
catch(SystemException se){

displayMsg
("Exception during SendMessage \n "+se.toString());

System.exit(1);
}

 238



C a l l b a c k s  f r om  S e r v e r s  t o  C l i e n t s
SendEdit.setText("");
}

The Clear button implementation sets both the message and main chat group 
text boxes to null.

public void clickedClearButton() {
SendEdit.setText("");
ChatEdit.setText("");

}

The Groups drop-down box implementation changes groups by binding to a 
new server group object.

public void selectedGroupChoice() {
String NewGroup = null;
try{

TALK.SendMessage("-----> " +Name+" : has left group "
+ GroupLabel.getText());

NewGroup = new String(GroupChoice.getSelectedItem());
GroupLabel.setText(NewGroup);

// Remove client from current group.
TALK.RemoveClient(CallObj,Name);

// Bind to server object for new group.
TALK = ChatHelper.bind(NewGroup+":WebChat",Host);

// Register client with new group.
TALK.RegisterClient(CallObj,Name);
TALK.SendMessage("-----> " +Name+" : has joined group "

 + NewGroup);
}
catch(SystemException se) {

displayMsg("Exception during SendMessage /n" 
+ se.toString());

System.exit(1);
}

}

The Quit button implementation is as follows:

public void clickedQuitButton() {
if (TALK!=null) {

synchronized(TALK){
239



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
try{
TALK.SendMessage("-----> " +Name+" : has left

WebChat");
TALK.RemoveClient(CallObj,Name);

}
catch(SystemException se){

this.hide();
this.dispose();
System.exit(1);

}
TALK=null;

}
}

The Central Server Application

The server application maintains a single Chat implementation object for each 
chat group. Each Chat implementation object stores a list of CallBack proxy 
objects, where each proxy is associated with a single client. In this way, each 
server object is aware of every client which has joined that object�s chat group, 
and can forward incoming chat messages to those group members.

The main functionality of the server is implemented in the following Java classes:

� Class ChatImplementation implements the IDL interface Chat. Each 
ChatImplementation object implements a single chat group and 
maintains a linked list of clients who have joined that group.

� Class ObjectCacheEntry implements a single entry for a linked list of 
client objects. Class ChatImplementation uses this class to store a list of 
CallBack proxy objects.

� Class ServerGUI initializes the server application and implements the 
server main() method.

The class ChatImplementation allows a client to register with a server object 
that implements a chat group. The source code for this class is as follows:

// Java
// In file ServerGUI.java.

package WebChat;
 240



C a l l b a c k s  f r om  S e r v e r s  t o  C l i e n t s
...

// Server-side Chat implementation class.
class ChatImplementation extends _ChatImplBase {

// First linked list entry.
ObjectCacheEntry firstObj;

// Group name for current object.
String m;

int NoOfUsers = 0;
static int NoMess=0;

// Marker is implemented as group name in this example.
ChatImplementation(String marker){

super(marker);
m = new String(marker);

}

public void SendMessage(String Mess) {
...
// Update message count
NoMess++;

// Loop through list of registered clients.
ObjectCacheEntry ptr = firstObj;

while(ptr != null) {
try{

obj = CallBackHelper.narrow(ptr.oref);
obj.NewMessage(Mess);

}
catch(SystemException se) {
...
}
ptr = ptr.next;

}
}

241



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
public void RegisterClient(CallBack obj, String Name) {
// Add message to server display to indicate a new 
// group memember
...
if (firstObj == null) {

firstObj = new ObjectCacheEntry(obj);
return;

}

ObjectCacheEntry ptr = firstObj;
while(ptr.next!=null) ptr = ptr.next;
ptr.next = new ObjectCacheEntry(obj);
ptr.next.prev = ptr;

}

public void RemoveClient(CallBack obj, String Name) {
// Update main display
...
// Remve callback object from list.
if (firstObj == null) {

...
return;

}
ObjectCacheEntry ptr = firstObj;
CallBack tmp;

while (ptr != null) {
try {

tmp =  CallBackHelper.narrow(ptr.oref);
if ((_OrbixWeb.Object(tmp)._object_to_string()).equals

(_OrbixWeb.Object(obj)._object_to_string())) {
// Update linked list of objects.
...
break;

}
}
catch(SystemException se) {

...
}
ptr = ptr.next;

}
}

}

 242



C a l l b a c k s  f r om  S e r v e r s  t o  C l i e n t s
A ChatImplementation object maintains an ObjectCacheEntry object as a 
member variable. This variable represents the head of a linked list of CallBack 
proxy objects, where each object is associated with a client that has joined the 
current chat group. The linked list is initially empty.

A client joins the ChatImplementation object�s chat group by calling 
RegisterClient(). The implementation of this operation adds the client�s 
CallBack object reference to the linked list. A client leaves a chat group by 
calling RemoveClient(). This removes the client�s CallBack object reference 
from the linked list.

The operation SendMessage() allows a client to send a text message to all 
clients in the same chat group. The implementation of this operation accepts the 
message as a string parameter. It then cycles through the linked list of client 
object references, making a callback operation invocation on each, with the 
string value as a parameter. In this way, the server object redistributes text 
messages to all clients in a chat group.

The class ObjectCacheEntry, is a simple linked list node structure which stores 
an object reference value. The source code for this is as follows:

// Java
// In file ServerGUI.java.

package WebChat;

import org.omg.CORBA.*;
...

class ObjectCacheEntry {
public ObjectCacheEntry (Object oref) {

this.oref = oref;
}
// Linked list next
public ObjectCacheEntry next; 
// Linked list previous
public ObjectCacheEntry prev; 
public Object oref;

}

243



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
The class ServerGUI implements the flow control for the server application. The 
source code for this class is outlined below:

// Java
// In file ServerGUI.java.

package WebChat;
import IE.Iona.OrbixWeb._CORBA;
...

public class ServerGUI extends Frame {

public static void main(String args[]) { 

ORB.init(args,null); 

mainGUI = new ServerGUI();

// Initialize the server and enter the Orbix Java event loop
try {

_CORBA.Orbix.impl_is_ready
("WebChat",_CORBA.IT_INFINITE_TIMEOUT);

}
catch(SystemException se){

mainGUI.displayMsg
("Exception during impl_is_ready : " + se.toString());

System.exit(1);
}
...

}

// Group implementation objects.
ChatImplementation Chat_General = null;
ChatImplementation Chat_Engineering = null;
ChatImplementation Chat_Marcom = null;
ChatImplementation Chat_Sales = null;
ChatImplementation Chat_Prof = null;
ChatImplementation Chat_Bus = null;

public ServerGUI() {
super("WebChat Administrator Server");
// Set up ServerGUI window. 
...
 244



C a l l b a c k s  f r om  S e r v e r s  t o  C l i e n t s
// Create the 6 server objects 
try{

Chat_General = new ChatImplementation("General");
Chat_Engineering = new ChatImplementation("Engineering");
Chat_Marcom = new ChatImplementation("Marcom");
Chat_Sales = new ChatImplementation("Sales");
Chat_Prof = new ChatImplementation("Prof Services");
Chat_Bus = new ChatImplementation("BusDev");

}
catch(SystemException se) {

displayMsg("Exception : " + se.toString());
}
...

}
...

}

The server main() method first instantiates an object of type ServerGUI. The 
constructor for this object initializes the server display and creates a set of 
ChatImplementation objects. Each ChatImplementation object implements a 
single chat group, where the group name is implemented as the object marker.

When the ServerGUI object has been created and the server implementation 
objects are available, the server main() method invokes impl_is_ready() on 
the _CORBA.Orbix object and awaits incoming requests from clients.

Specifying the Ports to Use for Callbacks
You can use the following configuration variables to specify a callback port:

� OrbixWeb.IT_CALLBACK_PORT_BASE 

� OrbixWeb.IT_CALLBACK_PORT_RANGE 

The OrbixWeb.IT_CALLBACK_PORT_BASE configuration variable specifies the first 
port to be assigned, and the OrbixWeb.IT_CALLBACK_PORT_RANGE configuration 
variable specifies the number of ports to be assigned. For example, if you specify 
a value of �5000� and �2� for these configuration variables respectively, port 
5000 and 5001 are allocated for callbacks.
245



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
If another client tries to connect with base and range after these two ports are 
assigned, an exception about setting the range to a larger size will be thrown, 
and the specified client will quit. 

These configuration variables can be specified in any of the following ways:

� In the OrbixWeb3.cfg configuration file.

� Programatically through the code. For example:

IE.Iona.OrbixWeb._CORBA..Orbix.SetConfigItem("OrbixWeb.
IT_CALLBACK_PORT_BASE", "5000"); 
IE.Iona.OrbixWeb._CORBA..Orbix.SetConfigItem("OrbixWeb.
IT_CALLBACK_PORT_RANGE", "10"); 

� By passing them as system properties to the VM when running the client. 
For example:

-DOrbixWeb.IT_CALLBACK_PORT_BASE=5000 
-DOrbixWeb.IT_CALLBACK_PORT_RANGE=10
 246



Part III
Running Orbix Java
Programs





 12
Running Orbix Java Clients

This chapter deals with running Orbix Java client applications and 
applets, and provides information on some general runtime issues 
for clients.

Running Client Applications
The procedure for running an Orbix Java client application is similar to the 
procedure for running any standalone Java application. In general, you must fulfil 
three requirements: 

� Obtain access to the Java bytecode for the application. 

� Make this code available to the Java bytecode interpreter.

� Run the interpreter on the class that contains the main() method for the 
application.

The only runtime difference between an Orbix Java application and a standard 
Java application lies in the first of these requirements. An Orbix Java application 
must be able to access the classes stored in the IE.Iona.OrbixWeb and 
org.omg.CORBA packages. It also requires access to the classes produced by 
compiling the IDL definitions referenced by the application. The 
IE.Iona.OrbixWeb and org.omg.CORBA packages are located in the 
OrbixWeb.jar file in the lib directory of your Orbix Java installation. The 
org.omg.CORBA classes are portable and may already be installed in the runtime 
environment.
249



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
How you make class location information available to the Java interpreter is 
dependent on the Java development environment you use. However, you should 
indicate the location of the following: 

� The Orbix Java packages. 

� The Java API classes.

� The IDL compiler output classes.

� The application-specific classes. 

For example, if you are using the java interpreter from Sun Microsystems JDK, 
you should add the location of each to the CLASSPATH environment variable or 
specify this information in the -classpath switch.

You must also ensure that the path to your Orbix Java config directory is 
included on the list of directories specified after the -classpath switch.

Orbix Java offers a set of convenience tools called wrapper utilities. These make 
information about defaults automatically available to the Java interpreter and the 
Java compiler. The wrapper utilities, owjava.pl and owjavac.pl, are described 
in the section �Using the Orbix Java Wrapper Utilities� on page 254.

Similarly, how you run the application through the interpreter may differ 
between development environments. Again, if you are using the JDK java 
interpreter, you can pass the name of the class that contains the application 
main() method to the interpreter command, as follows:

java class name

Running Orbix Java Client Applets
The requirements for running an Orbix Java client applet are slightly more 
complex than those for an application. To display a Java applet, you should 
reference the applet class in a HTML file using the HTML <APPLET> tag, and then 
load this file into an applet viewer or a Java-enabled web browser. The runtime 
requirements for the applet depend on whether it is loaded directly from a 
HTML file or downloaded from a web server.
 250



Runn i n g  O r b i x  J a v a  C l i e n t s
Loading a Client Applet from a File

When you load an Orbix Java client applet from a file, the runtime requirements 
are similar to those for running a client application. You should do the following:

� Obtain access to the Java bytecode for the applet.

� Make this code available to the Java bytecode interpreter embedded in 
the browser.

� Load the HTML file that references the applet into the browser.

The second of these requirements often translates to setting the CLASSPATH 
environment variable appropriately before running the viewer or browser and 
loading the applet. This variable should usually include the location of the 
following: 

� The Orbix Java package classes.

� The Java API classes.

� The IDL compiler output classes.

� The other applet-specific classes. 

If you use a Java-enabled browser, the location of the Java API classes is generally 
not required. In some cases, the location of the org.omg.CORBA package is also 
not required.

When loading an Orbix Java client applet from a file, you can specify a codebase 
attribute in the HTML <APPLET> tag to specify the location of the required class 
files. The next section describes how you can do this. 

Note: When loading an Orbix Java applet from a file, you should use a recent 
browser version. There are some browser-based URL restrictions 
associated with early browser versions.
251



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Loading a Client Applet from a Web Server

If an Orbix Java applet is loaded into a browser from a Web server, you cannot 
specify access paths for the required Java classes at runtime. In this case, you 
should provide access to all the classes the applet requires in a single directory. 
Then, instead of setting an environment variable, you can use the codebase 
attribute of the HTML tag <APPLET> to indicate the location of the applet 
bytecode. 

For example:

<APPLET codebase=applet class directory
code=applet class file
ARCHIVE=OrbixWeb.jar>
...

</APPLET>

If you use a Java-enabled Web browser to view an applet, you do not need to 
provide access to the Java API classes, because these are already available.

Security Issues for Client Applets

The necessity of strict security restrictions in Java applets is well documented. 
There are two primary security restrictions on applets: 

� No access to local file systems.

� Limited network access. 

Both of these restrictions are imposed by the browser sandbox, and apply to all 
applets, regardless of how they are loaded.

Applets do not have access to the file system of the host on which they execute. 
They cannot save files to the system or read files from it. Any Orbix Java client 
implemented as a Java applet must obey this restriction.

In order to prevent the violation of system integrity, Web browsers often limit 
the network connectivity of applets that are downloaded from a Web server. 
Such applets can only communicate with the host from which they were 
downloaded. 
 252



Runn i n g  O r b i x  J a v a  C l i e n t s
This limitation has obvious implications for Orbix Java client applets downloaded 
from Web servers. In particular, such clients can only communicate directly with 
Orbix Java servers located on the host from which the clients themselves were 
downloaded. If this restriction applies to an Orbix Java client applet, attempts by 
that client to bind to a server on an inaccessible host raises a system exception 
of type org.omg.CORBA.COMM_FAILURE.

Note: Using Wonderwall allows Orbix Java client applets to be granted access 
to servers on hosts other than those from which they were downloaded. 
Refer to the Orbix Wonderwall Administrator�s Guide for more details.

The exact details of applet security are dependent on the browser 
implementation and may exceed the restrictions described here. Newer 
browsers allow security to be configured for signed applets. Consult your 
browser documentation for further information.

Debugging Orbix Java Clients
An Orbix Java client application or applet has the same fundamental 
characteristics as any other Java program. You can debug Orbix Java clients with 
any available Java debugging tool, for example, the JDK jdb debugger. 

When debugging Orbix Java clients, it is especially important to be aware of Java 
exceptions thrown during Orbix Java method invocations. Orbix Java provides a 
set of system exceptions indicating various categories of execution errors. These 
represent vital information for locating the source of invocation failures in a 
distributed application. You can handle these exceptions in client code by using 
Java try...catch statements. Similarly, they can be handled like standard Java 
exceptions when using a Java debugger.

For more details on Orbix Java integration with Java exceptions, refer to 
�Exception Handling� on page 197.
253



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Possible Platform Dependencies in Orbix Java 
Clients

In general, Orbix Java clients are only dependent on the availability of a Java 
interpreter on the target execution platform. However, you should also be 
aware that using the bind() method can affect the platform-independence of an 
Orbix Java system.

Using bind()

If a client uses the Orbix Java bind() method to create a proxy for a server 
object, the bind() call fails unless an Orbix Java daemon is available at the server 
host. Consequently, a client using bind() does not execute successfully unless 
the target server is restricted to running on a host where an Orbix Java daemon 
is available.

Using the Orbix Java Wrapper Utilities
The Orbix Java Wrapper Utilities, owjava.pl and owjavac.pl, are convenience 
tools designed to act as a front end to the Java interpreter and Java compiler 
respectively. This section outlines the use of these tools, and also describes the 
standard Java command-line equivalent. 

Consider the following standard command-line entry to invoke the Java 
interpreter:

> c:\JDK\bin\java -classpath c:\iona\demos\classes; 
c:\iona\lib\OrbixWeb.jar; c:\iona\config; 
c:\JDK\jre\lib\rt.jar myPackage.myClass

Using the owjava.pl wrapper utility, you can reduce the standard command-line 
entry to the following:

perl owjava.pl myPackage.myClass

The owjava.pl and owjavac.pl wrappers use Perl scripts. Orbix Java ships 
with Perl provided in the contrib directory of your installation. The examples 
shown in this chapter apply to both UNIX and Windows, apart from obvious 
differences in paths.
 254



Runn i n g  O r b i x  J a v a  C l i e n t s
Using owjava as a Front End to the Java Interpreter

The owjava.pl wrapper is a front end for the Java interpreter you are using, 
designed for use with Orbix Java. It takes all the same arguments as your chosen 
Java interpreter and passes them on, together with some other defaults.

owjava.pl uses the ORBIX_HOME environment variable to find the Orbix Java 
configuration files. From there it reads the full path of the Java interpreter, the 
default classpath and the name of the switch the Java interpreter uses to specify 
its class path. For example, Microsoft J++ uses -c; whereas all other Java 
Development Kits use -classpath.

By default, owjava.pl passes the default classpath and a variable containing the 
path of the configuration files to the Java interpreter. So, for example, if Orbix 
Java is installed in C:\iona and the JDK is installed in C:\JDK, calling owjava.pl 
as follows:

perl owjava.pl myPackage.myClass

executes the following command: 

> c:\JDK\bin\java -classpath c:\iona\demos\classes; 
c:\iona\lib\OrbixWeb.jar; c:\iona\config;
c:\JDK\jre\lib\rt.jar myPackage.myClass

You can override this standard behaviour by using the Orbix Java Configuration 
Explorer to change the settings. Refer to the Orbix Administrator�s Guide Java 
Edition  for details of the Configuration Explorer.

Using owjavac as a Front End to the Java Compiler

This tool acts as a front end to your chosen Java compiler, and is designed for 
use with Orbix Java. Its behaviour is similar to the owjava.pl tool described 
previously, but the defaults are different. By default, owjavac.pl passes the 
default CLASSPATH and the classes directories to the compiler. 

So, for example, if Orbix Java s installed in c:\iona and the JDK is installed in 
c:\JDK, calling owjavac.pl as follows:

perl owjavac.pl 
-d c:\iona\demos\classes\myClass.java
255



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
executes the following command: 

>c:\JDK\bin\javac -classpath c:\iona\demos\classes;
c:\iona\lib\OrbixWeb.jar; c:\iona\config; 
c:\JDK\jre\lib\rt.jar 
-d c:\iona\demos\classes\myClass.java

You can override this standard behaviour by using the Orbix Java Configuration 
Explorer to change the settings. Refer to the Orbix Administrator�s Guide Java 
Edition  for details of the Configuration Explorer.

Using the Interpreter and Compiler without the Wrapper 
Utilities

You do not need to use the Wrapper Utilities. These are provided as 
convenience tools only. You can use the standard Java command line format for 
java and javac, by using the formats specified as follows:

Using the javac Command
> c:\JDK\bin\javac -classpath c:\iona\OrbixWeb\classes; 
c:\iona\lib\OrbixWeb.jar; c:\iona\config; c:\JDK\lib\classes.zip 
-d c:\iona\OrbixWeb\classes\myClass.java

Using the java Command
> c:\JDK\bin\java -classpath c:\iona\OrbixWeb\classes; 
c:\iona\lib\OrbixWeb.jar; c:\iona\config; c:\JDK\jre\lib\rt.jar
myPackage.myClass

JDK 1.2 Support

If you are using Sun Microsystem�s JDK 1.2 (Java 2 Platform), you should also 
pass the following when using the java command.

-Dorg.omg.CORBA.ORBClass = IE.Iona.OrbixWeb.CORBA.ORB
-Dorg.omg.CORBA.ORBSingletonClass =

 IE.Iona.OrbixWeb.CORBA.singletonORB

For detailed information on the full range of Orbix Java utilities, refer to the 
Orbix Administrator�s Guide Java Edition . 
 256



 13
Registration and Activation of 
Servers

This chapter describes the Implementation Repository. This is the 
component of Orbix Java that maintains registration information 
about servers and controls their activation. The Implementation 
Repository is effectively a database of server activation information, 
implemented in the Orbix Java daemon. The Orbix Java daemon and 
utilities provide a superset of the functionality supported by a 
standard, non-Java Orbix installation.

This chapter outlines the full functionality supported by the Implementation 
Repository. It also discusses aspects of registration and activation that affect 
servers communicating over the CORBA Internet Inter-ORB Protocol (IIOP) or 
the Orbix protocol. Aspects of server activation that are specific to IIOP servers 
are also described. IIOP servers only need to be registered in the 
Implementation Repository under certain circumstances, and this can be 
advantageous in a Java environment.
257



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
The Implementation Repository
The Implementation Repository maintains a mapping from a server�s name to 
the Java program which implements that server. A server must be registered 
with the Implementation Repository to make use of this mapping. 

If the server is not running, it is launched automatically by Orbix Java when a 
client binds to one of the server�s objects, or when a client invokes an operation 
on an object reference which names that server. The Orbix Java daemon 
launches a Java server by invoking the Java interpreter on the class specified in an 
Implementation Repository entry.

To allow the daemon to correctly locate and invoke the Java interpreter, it is 
important that the values IT_JAVA_INTERPRETER and IT_DEFAULT_CLASSPATH 
are correctly configured. The configuration of these values is described in the 
Orbix Java Edition Administrator�s Guide.

When a client first communicates with an object, Orbix Java uses the 
Implementation Repository to identify an appropriate server to handle the 
connection. This search can occur in the following circumstances:

� During a call to bind(), if pinging is enabled, otherwise, on the first 
invocation on an object reference returned by bind(). 

You can call the method ORB.pingDuringBind() (in package 
IE.Iona.OrbixWeb.CORBA) on the _CORBA.Orbix object to configure 
this. If this is set to true, pinging is enabled. If this is false, the server is 
not launched automatically when a bind occurs.

� During a call to the method ORB.string_to_object().

� When an object is used for the first time after being received as a 
parameter or return value via an intermediate server. 

If a suitable entry cannot be found in the Implementation Repository during a 
search for a server, a system exception is returned to the caller.
 258



Re g i s t r a t i o n  a nd  A c t i v a t i o n  o f  S e r v e r s
Activation Modes
Orbix Java provides a number of different mechanisms, or modes, for launching 
servers, giving you control over how servers are implemented as processes by 
the underlying operating system. The mode of a server is specified when it is 
being registered.

Note: The availability of a given activation mode depends on which Orbix Java 
daemon (orbixd or orbixdj) is used. The default activation modes are 
available to both orbixd and orbixdj, and are sufficient for most 
applications. Refer to the Orbix Administrator�s Guide Java Edition  for 
further information on orbixdj.

Primary Activation Modes

The following primary activation modes are supported.

Shared Activation Mode (Default)

This mode is supported by orbixd and orbixdj.

In this mode, all of the objects with the same server name on a given 
machine are managed by the same process on that machine. This is the 
most commonly used activation mode.

If the process is already launched when an operation invocation arrives 
for one of its objects, Orbix Java routes the invocation to that process. 
Otherwise, Orbix Java launches the process, using the Implementation 
Repository�s mapping from server name to class name and class path.
259



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Unshared Activation Mode

This mode is supported by orbixd only.

In this mode, individual objects of a server are registered with the 
Implementation Repository. All invocations for an individual object are 
handled by a single process. This server process is activated by the first 
invocation of that object. Thus, one process is created for each active 
registered object. Each object managed by a server can be registered with 
a different Java class, or any number of them can share the same class. 

Per-Method Activation Mode

This mode is supported by orbixd only.

In this mode, individual operation names are registered with the 
Implementation Repository. You can make inter-process calls to these 
operations, and each invocation results in the creation of an individual 
process. A process is created to handle each individual operation call, and 
the process is destroyed once the operation has completed. You can 
specify a different Java class for each operation, or any number of them 
can share the same class.

Secondary Activation Modes

For each primary activation mode, a server can also be launched in one of the 
following secondary activation modes.

Multiple-Client (Default)

This mode is supported by orbixd and orbixdj.

In this mode, activations of the same server by different users or 
principals will share the same process, in accordance with whichever 
fundamental activation mode is selected. 
 260



Re g i s t r a t i o n  a nd  A c t i v a t i o n  o f  S e r v e r s
Per-Client

This mode is supported by orbixd only.

In this mode, activations of the same server by different users will cause a 
different process to be created for each user.

Per-Client-Process

This mode is supported by orbixd only.

In this mode, activations of the same server by different client processes 
causes a different process to be created for each client process.

Persistent Server Mode

If a server is registered in the shared mode, it can be launched manually prior to 
any invocations on its objects. Subsequent invocations are passed to the process. 
CORBA uses the term persistent server to refer to a process launched manually 
in this way. The OMG CORBA term �persistent server� is not ideal, because it 
can be confused with the notion of persistent (long lived, on disk) objects. It may 
be more useful to view a �persistent� server as a manually launched server.

Launching persistent servers is useful for a number of reasons. Some servers 
take considerable time to initialize, and therefore it makes sense to launch these 
servers before clients wish to use them. Also, during development, it may be 
clearer to launch a server in its own window, allowing its diagnostic messages to 
be more easily seen. You can launch a server in a debugger during the 
development stage to allow debugging.

Because Orbix Java uses the standard OMG IDL-to-Java mapping, all clients and 
servers must call org.omg.CORBA.ORB.init() to initialize the ORB. A reference 
to the ORB object is returned. You can invoke the ORB methods defined by the 
standard on this instance. Refer to the description of org.omg.CORBA.ORB in the 
Orbix  Programmer�s Reference Java Edition for more details on this topic.

Manually launched servers, once they have called impl_is_ready(), behave in a 
similar way to shared activation mode servers. If a server is registered as 
unshared or per-method, impl_is_ready() fails if the server is launched 
manually. Refer to �Persistent Servers� on page 267 for more details.
261



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Note: If you are using orbixd, a shared server may be registered so that it may 
only be launched manually. This means that Orbix Java does not launch 
the server when an operation invocation arrives for one of its objects. 
This is explained in �Unregistered Servers� on page 269. 

Usually, clients are not concerned with the activation details of a server or 
aware of what server processes are launched. To a client, an object in a server is 
viewed as a stand alone unit; an object in a server can be bound to and 
communicated with without considering activation mode details.

Although servers are registered in the Implementation Repository, you do not 
need to register individual objects; only those objects for which Orbix Java 
should launch a process. 

Implementation Repository Entries

An entry for a server in an Implementation Repository includes the following 
information:

� The server name. 
Server names may be hierarchical, so the Implementation Repository 
supports nested directories.

� The primary activation mode (shared, unshared, or per-method).

� The secondary activation mode (per-client, per-client-process or 
multiple-client).

� Whether the server is a persistent-only server�it can only be launched 
manually.

� The server owner�the user who registered the server.

� Permissions specifying which users have the right to launch the server, 
and which users have the right to invoke operations on objects in the 
server.

� A set of activation orders specifying a marker or method and a launch 
command for that marker or method. For the shared or unshared 
activation modes, a number of activation orders may exist for different 
markers. For the per-method activation mode, a number of activation 
orders may exist for different methods.
 262



Re g i s t r a t i o n  a nd  A c t i v a t i o n  o f  S e r v e r s
Putitj

The putitj command creates an Implementation Repository entry, if no entry 
exists, for the specified server. If an Implementation Repository entry already 
exists for the server, the putitj command creates or modifies an activation 
order within the existing entry. In the latter case, the putitj command must 
specify the same fundamental activation mode (shared, unshared or per-
method) as that already registered for the server. 

Catitj

The catitj command displays the information on a server in an Implementation 
Repository entry. Alternatively, you can use the Server Manager tool. Refer to 
the Orbix Administrator�s Guide Java Edition  for details of how to use this tool.

The Orbix Java Putitj Utility for Server 
Registration

The putitj utility registers servers with the Implementation Repository. This 
section outlines some examples of common uses of putitj. A full description 
of putitj and its switches is given in the Orbix Administrator�s Guide Java Edition 

The putitj command is used most often in either of the following forms:

putitj serverName -java 
-classpath <full classPath> className 

putitj serverName -java
-addpath <partial ClassPath> className

The first command form indicates that the server is to be registered with the 
specified complete class path, independent of any configuration settings, with the 
specified class name.

The second command form indicates that the specified class path should be 
appended to the value of IT_DEFAULT_CLASSPATH in the common.cfg 
configuration file, when the daemon attempts to launch the server.

The -java switch is an extension of the standard Orbix putitj command This 
indicates that the specified server should be launched by the Java interpreter. 
You can truncate this switch to -j.
263



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
By default, putitj uses the shared activation mode. Therefore, on any given 
host, all objects with the specified server name are controlled by the same 
process. Also by default, putitj registers a server in the multiple-client 
activation mode. This means that all client processes bind to the same server 
process. For example:

putitj Bank -java -addpath 
/usr/users/chris/banker bank_demo.BankServer

In this example, the class bank_demo.BankServer is registered as the 
implementation code of the server called BankSrv at the current host. A partial 
class path of /usr/users/chris/banker is also specified. The putitj 
command does not launch the server. You can do this explicitly from the shell or 
otherwise. Alternatively, Orbix Java may automatically launch the server in 
shared mode in response to an incoming operation invocation.

Server names may be hierarchically structured, in the same way as UNIX file 
names. For example:

putitj banks/BankSrv -java -addpath
/usr/users/chris/banker bank_demo.BankServer 

Hierarchical server names are useful in structuring the name spaces of servers in 
Implementation Repositories. You can create the hierarchical structure using the 
mkdirit command. Alternatively, you can use the Orbix Java Server Manager 
tool. Refer to the Orbix Administrator�s Guide Java Edition  for details on both of 
these methods. 
 264



Re g i s t r a t i o n  a nd  A c t i v a t i o n  o f  S e r v e r s
Examples of Using Putitj

The following examples illustrate some further switches to putit.

-unshared 

If you are using the orbixd as your daemon process, you can use the 
-unshared switch to register a server in the unshared activation mode:

putitj -unshared NationalTrust -java -classpath
/classes:/jdk/classes:/tmp/bank bankPackage.BankServer

This command registers an unshared server called �NationalTrust� on the 
local host, with the class name and full class path. Each activation for an object 
goes to a unique server process for that particular object. All users accessing a 
particular object share the same server process.

-marker

You can specify a marker to the putitj command to identify an object to which 
putitj applies:

putitj -h alpha -marker Boston NationalBank -java -addpath
/bank/classes:/local/classes bankPackage.BankServer

This command registers a shared server called �NationalBank�, with the 
specified class name and partial class path. However, activation only occurs for 
the object whose marker matches �Boston�. There is at most one server 
process resulting from this registration request. Other -marker registrations 
can be issued for server NationalBank for other objects in the server. All users 
accessing the �Boston� object share the same server process.

The -h switch specifies the host name on which to execute the putitj 
command.
265



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Additional Registration Commands
Implementation Repository entries created by putitj can be managed using the 
following commands: 

Execute any of these commands without arguments to obtain a summary of its 
switches. Refer to the Orbix Administrator�s Guide Java Edition  for a complete 
description of each command.

catitj Outputs full details of a given Implementation 
Repository entry.

chmoditj Allows launch and invoke rights on a server to be 
granted to users other than the server owner.

chownitj Allows the ownership of Implementation Repository 
entries and directories to be changed.

killitj Kills a running server process.

lsitj Lists a specific entry or all entries.

mkdiritj Creates a new registration directory. 
You can structure the Implementation Repository 
hierarchically like UNIX file names.

pingitj Pings the Orbix Java daemon to determine whether it is 
alive.

psitj Outputs a list of server processes known to the Orbix 
Java daemon.

rmdiritj Removes a registration directory.

rmitj Removes an Implementation Repository entry or 
modifies an entry.
 266



Re g i s t r a t i o n  a nd  A c t i v a t i o n  o f  S e r v e r s
Activation and Pattern Matching
A server programmer can choose the marker names for objects, as described in 
�Making Objects Available in Orbix Java� on page 175. Alternatively, they can be 
assigned automatically by Orbix Java.

Pattern Matching using Orbixd

Pattern matching functionality for markers is supported by orbixd only. 
Because objects can be named, the various activation policies can be instructed 
to use pattern matching when seeking to identify which server process to 
communicate with. In particular, when a server is registered, you can specify that 
it should be launched if any of a set of its objects are invoked. You can specify 
this set of objects by registering a marker pattern that uses wild card characters. 
If no pattern is specified, invoking on any of a server�s objects causes the server 
to be launched, if it has not already been launched.

You can also specify patterns for methods so that operation names matching a 
particular pattern cause a particular server to be launched. 

Pattern matching functionality for markers is not currently supported by 
orbixdj.

Persistent Servers
Persistent servers refer to those that are launched manually. You should ensure 
that the persistent server name is correctly set before it has any interaction with 
Orbix Java. For example, a persistent server should not pass out an object 
reference for one of its objects (as a parameter or return value, or even by 
printing its object reference string) until the server name has been set. 

The following methods provide two approaches in Orbix Java to launching 
servers manually: 

� BOA.impl_is_ready()

� ORB.connect()
267



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
BOA.impl_is_ready()

The implementation of impl_is_ready() inserts the correct server name into 
the object names of the server�s objects. This is not done for any object 
references that have already been passed out of the address space.

Normally, you set the server name by calling impl_is_ready(). Alternatively, 
you can set the server name using the method ORB.setServerName(). 

Other interactions with Orbix Java such as calling an operation on a remote 
object also cause difficulties if they occur in a persistent server before 
impl_is_ready() is called.

Persistent servers, once they have called impl_is_ready(), behave as shared 
activation mode servers. In line with the CORBA specification, if a server is 
registered as unshared or per-method, impl_is_ready() fails if the server is 
launched manually.

ORB.connect()

The OMG standard approach to launching a persistent server is to use 
org.omg.CORBA.ORB.connect(). 

Because this approach provides no way of specifying the server name, 
you must use one of the following to specify the server name:

� Before you connect, use ORB.setServername()

or

� Add the following to the java or owjava.pl command line:

-DOrbixWeb.server_name
 268



Re g i s t r a t i o n  a nd  A c t i v a t i o n  o f  S e r v e r s
Unregistered Servers
In some circumstances, it may be useful not to register servers with the 
Implementation Repository. To support this, you can configure the Orbix Java 
daemon to allow unregistered servers by using the -u switch. Any server 
process can then be started manually. When the server calls impl_is_ready(), 
it can pass any string as its server name. The daemon does not check if this is a 
server name known to it. Refer to the Orbix Administrator�s Guide Java Edition  
for details of the -u switch.

A disadvantage of this approach is that an unregistered server is not known to 
the daemon. This means that the daemon cannot automatically invoke the Java 
interpreter on the server bytecode when a client binds to, or invokes an 
operation on, one of its objects. If a client invocation is to succeed, the server 
must be launched in advance of the invocation.

In a Java context, a more significant disadvantage of this approach is that the 
Orbix Java daemon is involved in initial communications between the client and 
server, even though the server is not registered in the Implementation 
Repository. This restriction applies to all Orbix Java servers that communicate 
over the standard Orbix communications protocol, and limits such servers to 
running on hosts where an Orbix or Orbix Java daemon process is available.

Activation Issues Specific to IIOP Servers
You do not need to register Orbix Java servers that communicate over IIOP in 
the Implementation Repository. An IIOP server can publish Interoperable 
Object References (IORs) for the implementation objects it creates, and then 
await incoming client requests on those objects without contacting an Orbix Java 
daemon.

Unregistered IIOP servers are important in a Java domain. This is because they 
can be completely independent of any supporting processes that may be 
platform-specific. In particular, any server that relies on the orbixd daemon to 
establish initial connections depends on the availability of the daemon on specific 
platforms. However, you can overcome this problem by using the Java daemon, 
orbixdj, which is platform-independent. An Orbix Java unregistered IIOP server 
is completely self-contained and platform independent.
269



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
However, an IIOP server does suffer from an important disadvantage. 
The TCP/IP port number on which a server communicates is embedded in each 
IOR that a server creates. If the port is dynamically allocated to a server process 
on start-up, the port may differ between different processes for a single server. 
This may invalidate IORs created by a server if, for example, the server is killed 
and relaunched. Orbix Java addresses this problem by allowing you to assign a 
well-known IIOP port number to the server. 

These issues are discussed in detail in �ORB Interoperability� on page 291.

Security Issues for Orbix Java Servers
This section covers issues concerned with security for Orbix Java servers. The 
method for addressing security issues will depend, in some cases, on which 
Orbix Java daemon process you are using.

Identity of the Caller of an Operation

A server object can obtain the user name of the process that made the current 
operation call by using the method get_principal() on the ORB object. This 
method is listed in class ORB as follows:

// Java
// In package org.omg.CORBA
// in class ORB.

public org.omg.CORBA.Principal get_principal();

Server Security

Note: The Java daemon (orbixdj) does not support access rights for user 
groups. An exception to this is the pseudo user group all. 
 270



Re g i s t r a t i o n  a nd  A c t i v a t i o n  o f  S e r v e r s
You must actively grant access control rights to ensure server security. Orbix 
Java maintains two access control lists for each Implementation Repository 
entry, as follows:

The entries in the access control list can be either user names or group names. 
There is also a pseudo group name called all, which can be used to implicitly 
add all users to an access control list. The owner of an Implementation 
Repository entry is always allowed to launch it and invoke operations on its 
objects.

The group system is determined by the underlying operating system. For 
example, on UNIX, a user�s group membership is determined using the user�s 
primary group along with the user�s supplementary groups, as specified in the
/etc/group file.

You can use the chmoditj command to modify the two access control lists. 
However, only the owner of an Implementation Repository entry can call the 
chmoditj command on it. The original owner is the user who calls the putitj 
command. Subsequently, you can change the ownership using the chownitj 
command.

Launch The users or groups that can launch the associated server. 
Users on this list, and users in groups on this list, can cause 
the server to be launched by invoking on one of its objects. 
Only these users and groups can call impl_is_ready() 
with the Implementation Repository entry�s server name.

Invoke The users and groups that can invoke operations on any 
object controlled by the associated server.
271



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Effective Uid/Gid of Launched Servers 

Note: This section does not apply to orbixdj.

On UNIX, the effective uid and gid of a server process launched by the Orbix 
Java daemon are determined as follows: 

1. If orbixd is not running as the root (super-) user, the uid and gid of 
every activated server process is that of orbixd itself.

2. If orbixd is run as root, it attempts to activate a server with the uid and 
gid of the principal attempting to activate the server. 

If the principal is unknown (not a registered user) at the local machine 
on which orbixd is running, orbixd attempts to run the new server with 
uid and gid of a standard user �orbixusr�. 

3. If there is no such standard user orbixusr, orbixd attempts to run the 
new server with uid and gid of a user �nobody�.

4. If there is no such user �nobody�, the activation fails and an exception is 
returned to the caller.

You should not run orbixd as root. This would allow a client running as root on 
a remote machine to launch a server with root privileges on a different machine. 
You can avoid this security risk by setting the set-uid bit of the orbixd 
executable and giving ownership of the executable to a user called, for example, 
orbixusr who does not have root privileges. Then orbixd, and any server 
launched by the daemon, does not have root privileges. Any servers that must 
be run with different privileges can have the set-uid bit set on the executable 
file.

Activation and Concurrency
In the per-method activation mode, or when the secondary activation modes 
per-client and per-client-process are used, there is no inbuilt concurrency 
control between the different processes created to handle operation invocations 
on a given object. Each resulting process must coordinate its actions as required.
 272



Re g i s t r a t i o n  a nd  A c t i v a t i o n  o f  S e r v e r s
Activation Information for Servers
A server can determine a number of details about how and why it was launched: 

� The activation mode (shared, unshared, per-method or persistent). 

� The marker name of the object that caused the server to be launched. 

� The name of the method called on that object. 

� The server name.

You can determine this information in a server by invoking the relevant method 
(defined in interface BOA) on the ORB object as follows:

Activation Mode

Use the following method to find the activation mode under which the server is 
registered:

// Server Activation Modes
// (defined in interface IE.Iona.OrbixWeb.CORBA.BOA).
static final short perMethodActivationMode  = 0;
static final short unsharedActivationMode   = 1;
static final short persistentActivationMode = 2;
static final short sharedActivationMode     = 3;
static final short unknownActivationMode    = 4;

public short myActivationMode ()
throws SystemException;

Marker Name

Use the following method to find the marker name of the activation object that 
caused this server to be launched:

public String myMarkerName ()
throws SystemException;

The marker name for a persistent server is null.
273



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Marker Pattern

Use the following method to find the marker pattern that caused this server to 
be launched:

public String myMarkerPattern ()
throws SystemException;

Method Name

Use the following method to find the method name used to launch this server: 

public String myMethodName ()
throws SystemException;

The method name for a persistent server is null.

Server Name

Use the following method to find the server�s name: 

public String myImplementationName ()
throws SystemException;

For a persistent server this is some unspecified string until impl_is_ready() is 
called.

Each of these methods raises an exception if called by a client.

IDL Interface to the Implementation Repository
The interface to the Implementation Repository, called IT_daemon, is defined in 
IDL and implemented by orbixd, which is one of the two daemon processes 
available in Orbix Java. The Java daemon, or orbixdj, currently implements a 
subset of the IT_daemon interface. Differences in implementation between 
orbixd and orbixdj are explained in the Orbix Administrator�s Guide Java 
Edition 

The UNIX utilities, such as putitj, catitj, and the Orbix Java Server Manager 
are implemented in terms of the daemon�s IDL interface. 
 274



Re g i s t r a t i o n  a nd  A c t i v a t i o n  o f  S e r v e r s
You should refer to the Orbix  Programmer�s Reference Java Edition for a full 
description of the interface to the Implementation Repository.

Using the Server Manager
The Server Manager is a graphical user interface that provides much of the 
functionality of the Orbix Java utilities. The Server Manager facilitates 
Implementation Repository management, offering functionality similar to putitj, 
rmitj, mkdiritj and other command utilities. It also supports the activation and 
deactivation of servers. Refer to the Orbix Administrator�s Guide Java Edition  for 
a description of how to use this tool.

About the Java Daemon (orbixdj)
The Java daemon (orbixdj) is a Java implementation of a subset of the 
IT_daemon interface.

The functionality provided by orbixdj should be sufficient for the majority of 
applications. In cases where particular features are not supported by the Java 
daemon, the orbixd daemon process may be used as an alternative.

Additional Java Daemon Functionality 

The Java daemon offers the great advantage of platform independence, with a 
significant subset of the functionality available to orbixd.

In addition, it offers the following:

� An in-process activation mode, which is more efficient in terms of 
resources, and quicker to start.

� A GUI console.
275



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Limitations of the Java Daemon

The main restriction on the use of the orbixdj is that is supports only the 
shared (multiple client) activation mode.

Refer to the Orbix Administrator�s Guide Java Edition  for more details on the 
features supported by the Java daemon.
 276



 14
Using the Orbix Java Daemon

The Orbix Java daemon (orbixdj) is a Java implementation of the 
IT_daemon interface. The Java daemon administers the 
Implementation Repository and is responsible for activating servers 
automatically. 

The Implementation Repository is an important component of CORBA. This 
stores information that can be used by the ORB to activate servers on demand 
from clients. In previous versions of Orbix Java, the executable orbixd was 
required to manage this repository and to activate servers. This version of 
Orbix Java provides both orbixd and orbixdj executables.

A limitation of the orbixd executable is that it must be run on the platform for 
which it was built, so automatic activation of servers on other platforms is not 
possible. The Java daemon fulfils the same role as the orbixd executable, but as 
it is written in Java it can be deployed on any Java platform. This extends 
considerably the flexibility of the server-side ORB. The executable for the Java 
daemon is called orbixdj.

Note: The terms Java daemon and orbixdj are used interchangeably 
throughout the Orbix Java documentation. References to daemon apply 
to functionality supported by both orbixd and orbixdj.
277



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Overview of the Java Daemon
The Java daemon is responsible for transparently activating Orbix Java servers, 
and reactivating servers that have exited. It is a separate process that is intended 
to be always active. Clients can contact the Java daemon as follows:

� Using the bind() call. 

� Calling an operation on an object obtained using string_to_object on 
an IOR that contains the Java daemon�s address. 

The Java daemon activates the server if it is not already active, and provides 
details of the activated server to the client. The client can then use these details 
to contact the server directly. 

When a server exits and the client detects the broken connection, the client can 
transparently request the Java daemon to reactivate the server. When the Java 
daemon reactivates the server, the client can resume making requests of the 
server. 

Servers can also be launched manually and register themselves with the Java 
daemon. In this case, the Java daemon only provides details of the server's 
location to clients, because the server does not require activation.

Features of the Java Daemon

The following are the main features of the Java daemon (orbixdj):

� Cross platform operation.

� Orbix Java server activation.

� Orbix (C++) server activation.

� In-process and out-of-process activation.

� Graphical console.

� IIOP and Orbix protocol support.

� Compatibility with orbixd (both for Orbix and Orbix Java) and IONA's 
GUI tools.

� Compatibility with the OrbixWeb 2 and OrbixWeb 3 Implementation 
Repository format.
 278



U s i n g  t h e  O r b i x  J a v a  D a emon
Using the Java Daemon
The following sections discuss how to start and configure the Java daemon, 
orbixdj.

Starting the Java Daemon

You can launch the Java daemon from the Orbix Java menu in the Windows 
Start menu.

To launch the Java daemon from the command line, use the following command:

orbixdj [-inProcess] [-textConsole] [-noProcessRedirect]
 [-u][-V] [-v] [-help|-?]

The purpose of each switch is as follows: 

Switch Effect

-inProcess By default, the Java daemon activates servers 
in a separate process. This is termed out-of- 
process activation. 

If this switch is set, the Java daemon starts 
servers in a separate thread. This is termed in- 
process activation.

-textConsole By default, the Java daemon launches a GUI 
console.

Adding this switch causes the Java daemon to 
use the invoking terminal as the console.

-noProcessRedirect By default, the stdout and stderr streams 
of servers activated in a separate process are 
redirected to the Java daemon console. 

Specifying this switch causes the output 
streams to be hidden.
279



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Configuring the Java Daemon

Use the Orbix Java Configuration Explorer GUI tool to customize the settings 
for the Java daemon. The following outlines the configuration settings that 
concern the Java daemon. It also indicates how these settings should be changed 
using the Orbix Java Configuration Explorer.

For more details on the Configuration Explorer, refer to the Orbix 
Administrator�s Guide Java Edition .

-u This allows the use of unregistered, 
persistently launched servers.

-V This prints a detailed description of the 
configuration the Java daemon uses on 
start-up. The Java daemon then exits.

-v Causes the Java daemon to print a summary 
of the configuration it runs with. The Java 
daemon then exits.

-help
-?

Displays the switches to orbixdj.
 280



U s i n g  t h e  O r b i x  J a v a  D a emon
Settings Effect

IT_IMPL_IS_READY_TIMEOUT When an in-process server is launched, the Java 
daemon waits to be informed that the server is 
active before allowing the causative client request to 
proceed. Refer to �Guidelines for Developing In-
Process Servers� on page 284 for further details.

The Java daemon waits a maximum of this amount 
of time, specified in milliseconds. The default is 
30,000 milliseconds, or 30 seconds.

IT_IMP_REP_PATH This is the absolute path to the Implementation 
Repository.

IT_ORBIXD_IIOP_PORT This is a second port on which the daemon can 
listen for incoming connections. This port is 
provided to support legacy daemons that require a 
separate port for each protocol. 

IT_DAEMON_SERVER_BASE Servers that are launched in separate processes 
listen on their own port. This is the value of the first 
port, and subsequently-allocated ports increment by 
1, until the IT_DAEMON_SERVER_RANGE is exceeded. 
At this point, the port allocation wraps, starts at 
IT_DAEMON_SERVER_BASE, and looks for a free 
port.

If a port cannot be allocated, a COMM_FAILURE 
exception is thrown. The default is 2000.

IT_DAEMON_SERVER_RANGE Refer to IT_DAEMON_SERVER_BASE. The default is 
2000.

IT_JAVA_INTERPRETER This is the absolute path to the Java interpreter.

IT_DEFAULT_CLASSPATH This is the classpath the Java daemon will use to find 
Java servers when launching them. 

You can supplement this on a per-server basis using 
the -addpath parameter to putit. The Orbix Java 
classes must be in the CLASSPATH.

There is no default.
281



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Viewing Output with the Graphical Console

The Java daemon launches a simple graphical console that displays output text 
streams (stdout and stderr) from the Java daemon and launched servers. The 
menu items are outlined as follows: 

Menu Item Effect

File->Exit Causes the Java daemon to exit. If there are 
active servers, a prompt to exit is 
displayed.

Edit->Clear Clears the content of the console window.

Tools->Threads Outputs information about the current 
thread to the console window, as shown in 
Figure 14.1 on page 283.

Tools->Garbage 
Collection

Causes the Java Virtual Machine to run the 
garbage collector synchronously, and may 
free up more memory.

Diagnostics->Off Sets the level of diagnostics to none. 
Equivalent to calling setDiagnostics (0) 
on the ORB.

Diagnostics->Low Sets the level of diagnostics output to the 
console to LO. Equivalent to calling 
ORB.setDiagnostics (1).

Diagnostics->High Sets the level of diagnostics output to the 
console to HI. Equivalent to calling 
ORB.setDiagnostics (2).

Diagnostics->ORB Sets the level of diagnostics output to the 
console to ORB. Equivalent to calling 
ORB.setDiagnostics (4).

Diagnostics->BOA Sets the level of diagnostics output to the 
console to BOA. Equivalent to calling 
ORB.setDiagnostics (8).

Diagnostics->Proxy Sets the level of diagnostics output to the 
console to PROXY. Equivalent to calling 
ORB.setDiagnostics (16).
 282



U s i n g  t h e  O r b i x  J a v a  D a emon
Figure 14.1: Sample Output from Tools ->Threads Menu Option

Setting Diagnostics Levels

As with other Orbix Java servers, you can also use the command line to specify a 
diagnostics level for the Java daemon. To specify the diagnostics level on which 
orbixdj runs, use the following command:

-DOrbixWeb.setDiagnostics=value

where value is in the range 0-255.

Refer to �Orbix Java Diagnostics� on page 305 for more details.

Diagnostics->Request Sets the level of diagnostics output to the 
console to REQUEST. Equivalent to calling: 
ORB.setDiagnostics (32).

Help->About Displays the About dialog box.
283



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
In-Process Activation of Servers
In-process server activation means that each launched server runs as a separate 
thread of execution in the daemon process. Out-of-process server activation 
means that each launched server has its own system process. The Java daemon 
supports both in-process and out-of-process server activation. By default, 
servers are activated out-of-process.

Running servers in-process rather than in a separate process brings significant 
benefits, particularly scalability in terms of performance and resource 
consumption. These benefits include:

� Bind time is reduced. 

� Connections are shared.

� Much less memory is required for multiple servers. 

Guidelines for Developing In-Process Servers

To use in-process servers, your server should initialize the ORB using:

        IE.Iona.OrbixWeb.CORBA.ORB.init()

In in-process mode, this always returns the default ORB (_CORBA.Orbix). 
Currently, in-process servers do not support multiple ORBs. After the first in-
process server is created, calls to org.omg.CORBA.ORB.init() return a 
_CORBA.Orbix object. 

By their nature, in-process servers are not as isolated from each other as 
separate processes. Specifically, they share all global and static variables, such as 
the ORB itself and its object table. To prevent unintended interference between 
servers (including the Java daemon itself) you need to be aware of some 
additional issues regarding programming of servers activated in-process. 
 284



U s i n g  t h e  O r b i x  J a v a  D a emon
The main issues are described in the following sections:

ORB Configuration

Orbix Java configuration applies to the entire ORB. In general, you should not 
set configuration values in server code because this affects all servers in the 
Virtual Machine, including the Java daemon. The capability to alter configuration 
values can be useful in certain situations; for example, when a different 
diagnostics level may be required.

Other ORB/BOA Operations

Most ORB operations apply to the entire ORB, and should be used with caution. 

Exceptions to this rule for in-process activated servers are as follows:

� The operations on the Orbix Java OrbCurrent object.

You should use OrbCurrent to discover information about the this 
invocation.

Refer to the description of IE.Iona.OrbixWeb.CORBA.OrbCurrent in 
the Orbix  Programmer�s Reference Java Edition for more details.

� The results returned by _OrbixWeb.ORB(ORB.init()).myServer() and 
_OrbixWeb.ORB(ORB.init()).myMarkerName(). 

The results of these operations depend on the thread they are called from 
(either the main server thread or the thread that has dispatched a server 
operation). 

Other Global Objects

Orbix Java -specific features such as filters, loaders and transformers are 
configured for the entire ORB. Therefore, if you install a per-process filter in 
your server, it is applied to all requests for all servers in the process. 

The Java daemon installs a loader and filter for its own purpose. These should 
not be removed. 
285



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Object Table

All servers share the same object table. This object table is keyed by marker and 
interface type, so different servers should not create objects with identical 
marker and interface type. 

Markers should generally be assigned by the server programmer. 

Server Object Life Cycle

The Java daemon starts up each activated server in a separate thread that calls 
the main operation of the server class. It monitors the status of this thread to 
determine whether the server is active or not, as indicated by the psit utility. 

The server becomes active when the thread calls ORB.connect()on instantiating 
a server object. It becomes inactive when the thread exits or calls 
deactivate_impl(). 

Note: You must ensure that any clean-up operations required, such as 
disconnecting all server objects, are performed before the thread exits. 
The Java daemon does not clean up objects after the server. 

The impl_is_ready() method is redundant for in-process servers because the 
Java daemon controls event processing on behalf of the server. Refer to the 
Orbix Programmer�s Guide Java Edition  to see how impl_is_ready() can 
control event processing for out-of-process servers. 

The Java daemon security manager throws a security exception if 
System.exit() is called in a server. 
 286



U s i n g  t h e  O r b i x  J a v a  D a emon
Scope of the Java Daemon
The Java daemon implements a subset of the IT_daemon interface. The scope of 
the implementation imposes some restrictions on the Java daemon. This section 
discusses these restrictions and outlines those that no longer apply. 

Activation

The Java daemon currently only supports shared server activation mode.

Java Version

The Java daemon requires Java version 1.1 or higher

IT_daemon Interface

The Java daemon currently implements a large subset of IONA�s daemon IDL, 
IT_daemon. The following is a list of the methods that are not supported:

� addMarker()

� addMethod()

� changeOwnerDir()

� newPerMethodServer()

� newUnSharedServer()

� removeMarker()

� removeMethod()

� removeSharedMarker()

� removeUnsharedMarker()
287



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Utilities

The Java daemon now supports the following utilities:

� chmodit 

� chownit 

� mkdirit 

� rmdirit 

However, because the Java daemon only supports shared activation modes, it 
does not support the following switches to putit:

� -per -client

� -per -client -pid

� -unshared

� -per -method

� -port

� -n

� -persistent

� -method

Markers and the Implementation Repository

The only marker pattern in the Implementation Repository supported by the 
Java daemon is �*�. However, this does not prohibit the use of named markers 
in calls to bind(). 

Security

The Java daemon now supports invoke and launch access rights for users. 
However, access rights for user groups are not supported. An exception to this 
is for the pseudo group all. 

You can use the Orbix Java Server Manager tool and the chmodit command-line 
utility to set access rights. 
 288



U s i n g  t h e  O r b i x  J a v a  D a emon
Server Names

Because the Java daemon now supports Implementation Repository directory 
utilities, it can also now support server names containing directory separator 
characters. 

In-Process Servers

In-process servers are launched using the Java Reflection API. This requires that 
the target class be public. If a server fails to launch when the Java daemon is in 
�in-process� mode, you should ensure that the server class is public.
289



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
 290



 15
ORB Interoperability

ORB Interoperability allows communication between independently 
developed implementations of the CORBA standard. ORB 
interoperability enables a client of one ORB to invoke operations on 
an object in a different ORB via an agreed protocol. Thus, invocations 
between client and server objects are independent of whether they 
are on the same or different ORBs. The OMG has specified two 
standard protocols to allow ORB interoperability, GIOP and IIOP. This 
chapter discusses the use of these protocols.

The OMG-agreed protocol for ORB interoperability is called the General Inter-
ORB Protocol (GIOP). GIOP defines the on-the-wire data representation and 
message formats. It assumes that the transport layer is connection-oriented. The 
GIOP specification aims to allow different ORB implementations to 
communicate without restricting ORB implementation flexibility.

The Internet Inter-ORB Protocol (IIOP) is an OMG defined specialization of 
GIOP that uses TCP/IP as the transport layer. Specialized protocols for different 
transports (for example, OSI, Netware, IPX) or for new features, such as 
security, are expected to be defined by the OMG in due course. 

There are many reasons why interoperability between the products of different 
ORB vendors is desirable. The core CORBA specification defines a standard for 
making invocations on an object via an ORB. A natural extension of this standard 
is that conforming implementations should allow invocations on objects from 
other conforming implementations. Within an organization different ORBs may 
291



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
coexist reflecting separate development effort or different ORB requirements by 
different parts of the organization and at some point, these ORBs may need to 
communicate.

An overview of the GIOP and IIOP specifications is provided in this chapter. The 
example on page 296 shows how IIOP can be used in Orbix Java.

Overview of GIOP
This section provides an overview of the elements of the GIOP specification. It is 
provided primarily as background information.

For full details of the GIOP specification, contact the OMG at the following Web 
site:
http://www.omg.org.

Coding 

The GIOP defines a transfer syntax known as Common Data Representation 
(CDR). CDR defines a coding for all IDL data types: basic types, structured types 
(including exceptions), object references and pseudo-objects such as TypeCodes. 

All basic types are aligned on their natural boundaries. The architecture of the 
message sender determines whether the byte ordering is big-endian or little-
endian. It is then the responsibility of the receiver to decode the message 
according to the byte ordering. Thus machines with common byte ordering may 
exchange messages without unnecessary byte swapping.

Message Formats 

GIOP1 defines eight message types. All messages include a common message 
header which includes the following information:

� The message size. 

� A version number indicating the version of GIOP being used.

� The byte ordering. 

1.   These GIOP message formats are intended for internal use only.
 292



ORB  I n t e r op e r a b i l i t y
� The message type. 

Messages are exchanged between clients and servers. In this context, a client is 
an agent that opens connections and originates requests. A server is an agent 
that accepts connections and receives requests. The seven GIOP message types 
are as follows:

Request 

A Request message is sent by a client to a server. It encodes an operation 
invocation which includes the identity of the target object, and an identifier used 
to match a Reply message to a Request. A Request may encode a get or set 
operation for an attribute. 

Reply 

A Reply message is sent by a server to a client. A Reply message encodes an 
operation invocation response, including inout and out parameters and 
exceptions. 

A server receiving a Request message may not be able to provide direct access 
to the target object. This may be because the target object has moved or 
because the server receiving the Request message provides a location service. 
To indicate this, a Reply may contain a LOCATION_FORWARD status and an 
indication of the new location. 

CancelRequest 

A CancelRequest message may be sent from a client to a server to notify the 
server that a reply to a particular pending Request or LocateRequest message 
is no longer expected.

LocateRequest 

A LocateRequest message may be used to probe for the location of a remote 
object. This might be appropriate where an operation�s parameters are too large 
to transmit in a Request message that might return a LOCATION_FORWARD status. 
A LocateRequest message determines whether the target object reference is 
293



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
valid, whether the server can handle requests for that object or, if it returns a 
LOCATION_FORWARD status, indicates the location to which invocation on the 
reference should be sent.

LocateReply

A LocateReply message is sent by a server to a client in response to a 
LocateRequest message. It may contain a new IOR.

CloseConnection

A CloseConnection message is sent by a server to inform clients that it intends 
to close the connection. Any messages for which clients have not received a 
reply may be reissued on another connection.

MessageError

A MessageError message may be sent by a client or a server in response to any 
message whose message type or version number is unknown to the receiver of 
the message or whose message header is not properly formed.

The way in which these messages are used by an implementation of GIOP is 
transparent to the application. For example, a particular implementation may 
respond to a LOCATE_FORWARD status in a Reply message by transparently 
reissuing the call. Similarly, use of the LocateRequest message is an optional 
optimization.

Fragment 

A Fragment message allows you to send a large message efficiently by 
transmitting the message as a sequence of fragments. Any Request or Reply 
message may be transmitted as fragments. The initial message is a Request or 
Reply message with a value in the GIOP header set to indicate that more 
fragments should be expected. The subsequent messages are then Fragment 
messages. Fragment messages are sent in the order in which they should be 
assembled.
 294



ORB  I n t e r op e r a b i l i t y
Internet Inter-ORB Protocol (IIOP)
The mapping of GIOP message transfer to TCP/IP connections is called the 
Internet Inter-ORB Protocol (IIOP). 

An object accessible via IIOP is identified by an Interoperable Object Reference 
(IOR). Since the format of normal object reference is not prescribed by the 
OMG, the format of an IOR includes an ORB�s internal object reference as well 
as an internet host address and a port number. An IOR is managed internally by 
the interoperating ORBs. Refer to �Interoperability between Orbix and Orbix 
Java� on page 303 for more details on IORs.

IIOP in Orbix Java 

Orbix Java supports IIOP and the native Orbix protocol as alternative protocols. 
IIOP is the default protocol. Support for the Orbix protocol is provided 
primarily for backward compatibility. 

You can indicate during compilation of an IDL definition which protocol should 
be used in the generated Java code for that definition. A client program can then 
make invocations on this definition and Orbix Java automatically uses the chosen 
protocol. At this point, the chosen protocol is largely transparent at the 
application level.

Selection of Protocols

By default, code generated by the IDL compiler supports both IIOP and the 
Orbix protocol. When compiling IDL definitions, use the -m option with the 
following value to support the IIOP protocol only:

idlj -m IIOPOnly

As described in Chapter 8 �Making Objects Available in Orbix Java� on page 175, 
there are several ways in which a server can publish an object reference or IOR 
for retrieval by clients. IORs are required when using IIOP. Orbix Java object 
references are required if using the Orbix Protocol. The protocol used does not 
affect the options available to application programmers.
295



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Comparison of IIOP and the Orbix Protocol

IIOP has two important advantages over the Orbix protocol. The first is 
interoperability with other ORBs. The second is the availability of servers which 
have no platform-specific requirement, especially important in the Java domain. 

Note: All servers that communicate using the Orbix protocol require an Orbix 
Java daemon to run on the server host. This limits these servers to 
platforms where an Orbix Java daemon is available. However, using IIOP, 
you can design client and server applications that have no external 
dependencies and are platform-independent.

For example, the following application pair would interoperate across ORBs, and 
also be platform-independent:

� A server which is not registered in the Implementation Repository, which 
creates and publishes IORs (for instance, using the Naming Service), and 
which calls the methods ORB.connect() and ORB.disconnect() instead 
of impl_is_ready() on the ORB object. 

� A client which retrieves the IORs published by the server without calling 
the Orbix Java bind() method.

Refer to Chapter 13, �Registration and Activation of Servers� on page 257 for 
details on how Orbix Java servers can be run in a distributed system and their 
requirements in this context. 

Example using IIOP in a Platform-Independent Application

This section illustrates the use of IIOP in Orbix Java to create an interoperable 
application which does not rely on the availability of an Orbix Java daemon 
process. The application developed here consists of a client and server as 
described in the example above. The server creates an IOR which it publishes 
using OrbixNames and then invokes processEvents() to handle client 
invocations on that IOR. The client retrieves the IOR using OrbixNames and 
invokes operations on the server object.

The example is based on the following IDL interface representing a two-
dimensional grid.
 296



ORB  I n t e r op e r a b i l i t y
// IDL
interface grid {

readonly attribute short height; 
readonly attribute short width; 
void set(in short row, in short col,in long value);
long get(in short row, in short col);

};

Compiling the IDL Definition

The marshalling protocol uses IIOP by default. It is not necessary to specify the -
m switch in order to use IIOP. 

You can compile an IDL definition as normal:

idlj -jP gridDemo grid.idl

Programming the Server

This section outlines the server code. It is assumed that an implementation of 
the Naming Service, such as OrbixNames is available and correctly installed. 
Following the convention used elsewhere in this guide, it is also assumed that 
class gridImplementation implements interface grid.

// Java
// Server main() method.

import CosNaming.*;

import org.omg.CORBA.SystemException;
import org.omg.CORBA.UserException;
import org.omg.CORBA.Object;

class gridserver {
public static void main(String args[]) {

// Assume TIE approach.
grid gridImpl;
ORB orb;

// Declare Naming service types.
Object initRef;
NamingContext initContext; 
NamingContext objectsContext; 
297



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
NamingContext mathContext;
NameComponent[] name;

try {
// Create implementation object.
gridImpl = 

new _tie_grid (new gridImplementation
(100,100), �gridmarker�);

}
catch (SystemException se) {

// Details omitted.
}

try {
// Find initial naming context.
orb = ORB.init(args,null);
initRef = 

orb.resolve_initial_references
("NameService");

initContext = NamingContextHelper.narrow 
(initRef);

// A CosNaming.Name is simply a sequence 
// of structs.
name = new NameComponent[1];
name[0] = 

new NameComponent("objects","");

// (In one step) create a new context, 
// and bind it relative to the 
// initial context:
objectsContext = 

initContext.bind_new_context (name);

//reuse the NameComponent that has 
//already been created
name[0].id = new String ("math");
name[0].kind = new String ("");
 298



ORB  I n t e r op e r a b i l i t y
// (In one step) create a new context, 
// and bind it relative to the 
// objects context:
mathContext =

objectsContext.bind_new_context (name);

name[0].id = new String ("grid");
name[0].kind = new String ("");

// Bind name to object gridImpl in context
// objects.math:
mathContext.bind (name, gridImpl);

}
catch (SystemException se) {

// Details omitted.
}
catch (UserException ue) {

// Use the exceptions defined in the 
// COSNaming IDL

}
// Call ORB.connect() to process
// client invocations.

orb.connect(gridImpl);
try {

Thread.sleep(1000*60*3);
}
catch (InterruptedException ex) {

// Details omitted.
}

}
} 

This server instantiates a TIE object for interface grid. By default, Orbix Java 
automatically identifies this object using an IOR. The server then resolves the 
initial context in the OrbixNames and associates the compound name 
objects.math.grid with the IOR, as described in Chapter 8 �Making Objects 
Available in Orbix Java�. Finally, the server enters an Orbix Java event processing 
loop by calling processEvents().
299



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Programming the Client

This client program resolves the name objects.math.grid to locate the object 
reference published by the server using the Naming Service. The interoperable 
IOR retrieved from the Naming Service must be narrowed to an object 
reference of the appropriate interface before you can invoke operations in the 
normal way.

The source code for the client is as follows:

// Java
// Client application code.
// In file Client.java.

import CosNaming.*;
import IE.Iona.OrbixWeb._CORBA;

import org.omg.CORBA.SystemException;
import org.omg.CORBA.UserException;
import org.omg.CORBA.Object;

public class Client {
public static void main (String args[]) {

NamingContext initContext;
NameComponent[] name;
ORB orb;

Object initRef, objRef;
grid gRef;

try {
// Find initial naming context.
orb = ORB.init(args,null);
initRef = 

orb.resolve_initial_references
("NameService");

initContext = NamingContext.narrow 
(initRef);

// Set up name and contexts.
name = new NameComponent[3];
name[0] = 

new NameComponent ("objects","");
 300



ORB  I n t e r op e r a b i l i t y
name[1] = new NameComponent ("math","");
name[2] = new NameComponent ("grid","");

// Resolve the name.
objRef = initContext.resolve (name);
gRef = grid.narrow (objRef);

}
catch (SystemException se) {

// Details omitted.
}
catch (UserException ue) {

// Use exceptions defined in the COSNaming 
// IDL

}
try {

w = gRef.width();
h = gRef.height();

} 
catch (SystemException se) {

// Details omitted.
}

System.out.println("height is " + h);
System.out.println("width is " + w);

try {
gRef.set((short)2,(short)4,123);
v = gRef.get((short)2,(short)4);

} 
catch (SystemException se) {

// Details omitted.
}

System.out.println(
"value at grid position (2,4) is " + v);

}
}

301



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Configuring an IIOP Port Number for an Orbix Java Server

Using IIOP, an Orbix Java server must listen for client connection requests on a 
fixed TCP/IP port. The port number for each server is assigned by Orbix Java on 
start-up.

In most cases this is done by the Orbix Java daemon. Refer to the descriptions of 
IT_DAEMON_SERVER_BASE and IT_DAEMON_SERVER_RANGE in the Orbix 
Administrator�s Guide Java Edition  for more details.

When this approach is used, the port number assigned to a server subsequently 
becomes embedded in the contents of any IORs which that server creates. This 
approach has the drawback that a server which exits and is relaunched may no 
longer be able to recreate objects with IORs which exactly match those created 
in an earlier process. For this reason, Orbix Java allows you to select a well-
known IIOP port for each server program.

By default, the Orbix Java daemon manages a well-known port for a server. This 
feature can be disabled by setting IT_IIOP_USE_LOCATOR to false in the server, 
as follows:

// Java
import IE.Iona.OrbixWeb.CORBA.ORB;
...

ORB.setConfigItem("IT_IIOP_USE_LOCATOR",""+ false);

This setting must be applied before any IORs are created in the server.

When registering a server in the Implementation Repository, you can specify a 
well-known port for a server using the putitj -port switch, for example:

putitj serverName -java -port portNumber ...

Note: The -port switch is supported by orbixd only.

If you set IT_IIOP_USE_LOCATOR to true and specify a port number for the 
server in this manner, the Orbix Java daemon attempts to assign the required 
IIOP port to the server. If that port is not available and you are using orbixd, an 
attempt to create an IOR in the server raises a system exception.
 302



ORB  I n t e r op e r a b i l i t y
If you set IT_IIOP_USE_LOCATOR to true, and do not specify a port number in a 
putitj command, the Orbix Java daemon assigns a default well-known port to 
the server.

A server which does not depend on the availability of an Orbix Java daemon 
process should set IT_IIOP_USE_LOCATOR to false. In this case, an alternative 
mechanism is required to allow the server to establish a well-known IIOP port 
number. You can achieve this as follows:

// Server listen port for IIOP protocol.
ORB.setConfigItem("IT_IIOP_LISTEN_PORT",10,000);

This approach is only effective if the new value is assigned before the creation of 
any IORs in the server. The value of the IT_IIOP_LISTEN_PORT setting has no 
significance if IT_IIOP_USE_LOCATOR is set to true.

If you set IT_IIOP_LISTEN_PORT to zero, the server is not associated with a 
well-known port number. This means that an IIOP port is not dynamically 
assigned to the server on start-up.

Interoperability between Orbix and Orbix Java 
The default protocol for the Orbix Java runtime is IIOP. IIOP is also the default 
protocol for versions of Orbix 2.3 and above. 

Earlier versions of Orbix use the Orbix protocol by default. If you are using code 
generated by older versions of Orbix, you must select one protocol. If you 
choose IIOP, the C++ server must be linked with the IIOP library. An example 
of this is provided in the GRID_IIOP demonstration supplied with Orbix. 

If you choose the Orbix protocol, the Java client must include the line: 

ORB.setConfigItem("IT_BIND_USING_IIOP",""+false);
303



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
 304



 16
Orbix Java Diagnostics

Orbix Java provides comprehensive diagnostics log output.
This functionality is supplied by the 
IE.Iona.OrbixWeb.Features.DiagnosticsLog API. This chapter 
explains how to set diagnostics levels in Orbix Java, and outlines the 
output from each diagnostics level. 

Setting Diagnostics
The setDiagnostics() method controls the level of diagnostics messages 
output by Orbix Java. This method is defined in class 
IE.Iona.OrbixWeb.CORBA.ORB, as follows:

public int setDiagnostics(int level)
throws org.omg.CORBA.SystemException;

To set diagnostics, specify the required level as a parameter to 
setDiagnostics().The value of this parameter must be in the range 0-255.

The setDiagnostics() method returns the previous diagnostics level. 
305



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Diagnostics Levels

Orbix Java provides diagnostics for specific components, each associated with a 
particular level, as follows:

Note: The values LO and HI correspond to the diagnostics levels 1 and 2 from 
earlier versions of Orbix Java, and are included for backwards 
compatibility.

The DETAILED diagnostics component is of special significance. This controls the 
amount of diagnostics produced by the components. Setting the level to 
DETAILED (128) means that all diagnostics from the selected components are 
output. 

Combining Diagnostics Levels

To obtain diagnostics output from particular components, add the values 
associated with the required components. 

For example, consider obtaining detailed diagnostics associated with the BOA and 
REQUEST components. This involves the following steps:

1. Sum the levels associated with the BOA (8), REQUEST (32) and DETAILED 
components (128):

8 + 32 + 128 =168

2. Pass the total as the level parameter to setDiagnostics(). 

level Diagnostics Component

0 No diagnostics

1 LO

2 HI

4 ORB

8 BOA

16 PROXY

32 REQUEST

64 CONNECTION

128 DETAILED
 306



Orb i x  J a v a  D i a g no s t i c s
You can obtain full diagnostics output by setting the value to 255, the result of 
adding all the diagnostics components together. This produces very 
comprehensive output, including full buffer dumps of messages. 

Overriding the Diagnostics Log

It is possible for an application to override the diagnostics log, for example, to 
redirect diagnostics to a file. You can override the diagnostics log by overriding 
the entry() operation implemented in 
IE.Iona.OrbixWeb.Features.DiagnosticsLog:

entry (ORB orb, int current_diag, int component_diag,
 Stringable component, String message,
 boolean isADetail)

The default entry() operation checks the diagnostics level, and then outputs the 
message to System.out. This message is preceded by a short string that 
describes the component producing the diagnostics. 

To set the new diagnostics log on the ORB, use the following call:

myORB.setDiagnosticsLog(DiagnosticsLog l);

Alternative Approaches to Setting Diagnostics

You can also set the level of diagnostics output by Orbix Java to stdout by:

� Using the command line.

� Using the Java Daemon graphical console.

� Using the Orbix Java Configuration Explorer. 

Refer to the Orbix Administrator�s Guide Java Edition  for details.

Using the Command Line

You can use the command line to specify a diagnostic level that outputs to 
stdout; for example, by using a system parameter on start-up. To specify the 
diagnostics level, use the following command:

-DOrbixWeb.setDiagnostics=value

where value is in the range 0-255. 
307



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
The diagnostics levels in this range are explained in �Setting Diagnostics� on 
page 305. Using the command line enables full diagnostics log support.

Using the Java Daemon Graphical Console

The Java Daemon launches a simple graphical console that displays output text 
streams (stdout and stderr) from the Java Daemon and launched servers. This 
console provides diagnostics output for each diagnostics level. 

The Diagnostics menu item has the following options: 

Menu Item Effect

Diagnostics
<~Symbol>Æ
Off

Sets the level of diagnostics to none. Equivalent 
to calling ORB.setDiagnostics (0).

Diagnostics
<~Symbol>ÆL
ow

Sets the level of diagnostics output to the 
console to LO. Equivalent to calling 
ORB.setDiagnostics (1).

Diagnostics
<~Symbol>Æ
High

Sets the level of diagnostics output to the 
console to HI. Equivalent to calling 
ORB.setDiagnostics (2).

Diagnostics
<~Symbol>Æ
ORB

Sets the level of diagnostics output to the 
console to ORB. Equivalent to calling 
ORB.setDiagnostics (4).

Diagnostics
<~Symbol>ÆB
OA

Sets the level of diagnostics output to the 
console to BOA. Equivalent to calling 
ORB.setDiagnostics (8).

Diagnostics
<~Symbol>ÆP
roxy

Sets the level of diagnostics output to the 
console to PROXY. Equivalent to calling 
ORB.setDiagnostics (16).

Diagnostics
<~Symbol>ÆR
equest

Sets the diagnostics output to the console to 
REQUEST. Equivalent to calling 
ORB.setDiagnostics (32).

Diagnostics
<~Symbol>Æ
Connection

Sets the diagnostics output to the console to 
CONNECTION. Equivalent to calling 
ORB.setDiagnostics (64).
 308



Orb i x  J a v a  D i a g no s t i c s
Figure 16.1: The Orbixdj Graphical Console

Combining Diagnostics Levels

You can also use the Java Daemon graphical console to combine diagnostics 
levels as shown in Figure 16.1 on page 309. 

For example, if you select the LOW, ORB, BOA and Proxy menu items, the 
orbixdj console produces a combined output for these diagnostics 
components.

Diagnostics
<~Symbol>Æ
Detailed

Sets the diagnostics output to the console to 
DETAILED. Equivalent to calling 
ORB.setDiagnostics (128).
309



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
 310



Part IV
Advanced CORBA
Programming





 17
Type any

This chapter gives details of the IDL type any, and the corresponding 
Java class Any (defined in package org.omg.CORBA), which is used 
to indicate that a value of an arbitrary type can be passed as a 
parameter or a return value.

Consider the following interface:

// IDL
interface Test {

void op (in any a);
};

A client can construct an any to contain any type of value that can be specified in 
IDL. The client can then pass the any in a call to operation op(). An application 
receiving an any must determine what type of value it stores and then extract 
the value.

The IDL type any maps to the Java class org.omg.CORBA.Any. Refer to the 
Orbix  Programmer�s Reference Java Edition for more details. Conceptually, this 
class contains the following two instance variables:

� type 

� value 

The type is a TypeCode object that provides full type information for the value 
contained in the any. The Java Any class provides a type() method to return the 
TypeCode object. The value is the internal representation used to store Any 
values. The value object is accessible via the OMG standard insertion and 
extraction methods. These methods are described in full in this chapter.
313



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Constructing an Any Object
You must use the ORB class (in package org.omg.CORBA) to construct Any 
objects. This is illustrated by the following example:

// Java

import org.omg.CORBA.*

Any a = ORB.init().create_any();

Inserting Values into an Any Object
The Java class Any contains a number of insertion methods that you can use to 
insert any of the pre-defined IDL types into an Any object. The pre-defined IDL 
types are as follows:

short
unsigned short
long
unsigned long
long long
unsigned long long
float 
double 
boolean
char
wchar
octet
any
Object
string 
wstring
TypeCode
Principal

The insertion methods for these types are named insert_short, 
insert_ushort, insert_long, and so on.

A single-element insertion method simply takes the element value as a 
parameter. 
 314



T yp e  a n y
For example, the signature of Any.insert_long() is as follows:

public void insert_long(int l);

Helper classes for user-defined types provide insert() methods to support the 
insertion of user-defined types into an any. The signature for insert() can be 
defined as:

public void insert(org.omg.CORBA.Any a,
<user-def type> value);

Consider the following IDL definition:

// IDL
struct Foo {

string bar;
float number;

};

interface Flexible {
void doit (in any a);

};

Assume that a client programmer wishes to pass an any containing an IDL short 
as the parameter to the doit() operation. The following insertion method, 
which is a member of class Any, may be used:

public void insert_short(short s); 

The client programmer can then write the following code:

// Java
// Client.java

import org.omg.CORBA.*;
Flexible fRef;
Any param = ORB.init().create_any();
short toPass = 26;
try {

fRef = FlexibleHelper.bind
(�anyMarker:anySave�, hostname);

param.insert_short (toPass);

fRef.doit (param);
}
catch (SystemException se) {
315



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
...
}

If the client wishes to pass a more complex user-defined type, such as the struct 
Foo defined above, the appropriate helper class insert() methods can be used. 
For example, the client programmer can write the following:

// Java
// Client.java,

import org.omg.CORBA.*;

Flexible fRef;
Any param = ORB.init().create_any();
Foo toPass = new Foo();

toPass.bar = "Bar";
toPass.number = (float) 34.5;

try {
fRef = FlexibleHelper.bind(�anyMarker:anyServer�, hostname);

fooHelper.insert (param, toPass);

fref.doit (param);
}
catch (SystemException se) {

...
}

These insertion methods provide a type-safe mechanism for insertion into an 
any. Both the type and value of the Any are assigned at insertion. If an attempt is 
made to insert a value which has no corresponding IDL type, this results in a 
compile-time error. 

Extracting Values from an Any Object
The Any Java class contains a number of methods for extracting pre-defined IDL 
types from an Any object. These extraction methods are named 
extract_long(), extract_ulong(), extract_float(), and so on. Each 
extraction method simply returns a value of the appropriate type.
 316



T yp e  a n y
User-defined type helper classes provide extract() methods, which support 
the extraction of user-defined types from an any. 

The signature of this method is as follows:

public <user-def type> 
extract(org.omg.CORBA.Any a);

The following example IDL can be used to illustrate the use of extraction 
methods:

// IDL
typedef sequence<long, 10> longSeq;

interface Versatile {
any getit();

};

You can extract a simple type from an any as follows:

// Java
// Client.java

import org.omg.CORBA.*;

Versatile vRef;
Any rv;
short toReceive;

try {
vRef = VersatileHelper.bind(�anymarker:anyServer�, hostname);

rv = vRef.getit();

// extract a short value
if ((rv.type()).kind() == TCKind.tk_short) {

toReceive = rv.extract_short();
}

}
catch (SystemException se) {

...
}

317



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
You can extract a sequence of type longSeq from an any as follows:

// Java
// Client.java

Versatile vRef;
org.omg.CORBA.Any rv;
long[] toReceive;

try {
vRef = VersatileHelper.bind(�anyMarker:anyServer�, hostname);

rv = vRef.getit();

// extract a sequence of longs
if ((rv.type()).equal(longSeqHelper.type())) {

toReceive = longSeqHelper.extract (rv);
}

}
catch (SystemException se) {

...
}

Orbix Java does not destroy the value of an any after extraction. You can 
therefore extract the value of an any more than once. 

Note: The Orbix Java -specific operations on any to extract or insert arrays are 
no longer supported. To insert or extract arrays, define array types in 
IDL and use the generated Helper class insert and extract operations.
 318



T yp e  a n y
Any as a Parameter or Return Value
The mapping for IDL any operation parameters and return values are illustrated 
by the following IDL operation:

// IDL
any op1 (in any a1, out any a2, inout any a3);

This IDL operation maps to the following Java method:

// Java
import org.omg.CORBA.Any;
import org.omg.CORBA.AnyHolder;

public Any op1 (Any a1, AnyHolder a2, AnyHolder a3);

Both inout and out parameters map to type AnyHolder as explained in �Details 
of Parameter Type Mappings� on page 133.

Additional Methods
In addition to the standard Any interface described in the org.omg.CORBA.Any 
abstract class, there are some additional methods on the actual implementation 
class IE.Iona.OrbixWeb.CORBA.Any:

� A toString() method.

� A fromString() method.

� A constructor Any(java.lang.String).

� A reset() method 

� A copy() method.

� A clone() method.

� An equals() method.

� A containsType() method.

� A value() accessor method.

You can use the methods toString() and fromString(), and the constructor 
that takes a string as an argument to maintain persistent any values. 
319



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
To convert from a standard org.omg.CORBA.Any object to the actual 
implementation class IE.Iona.OrbixWeb.CORBA.Any, use the following casting 
operation:

IE.Iona.OrbixWeb._OrbixWeb.Any(org.omg.CORBA.Any a)

Note: The additional methods on the implementation class 
IE.Iona.OrbixWeb.CORBA.Any may not be supported in a future release 
of Orbix Java.
 320



 18
Dynamic Invocation Interface

In a normal Orbix Java client program, the IDL interfaces that the 
client can access are determined when the client is compiled. The 
Dynamic Invocation Interface (DII) allows a client to call operations 
on IDL interfaces that were unknown when the client was compiled.

IDL is used to describe interfaces to CORBA objects and the Orbix Java IDL 
compiler generates the necessary support to allow clients to make calls to 
remote objects. Specifically, the IDL compiler automatically builds the 
appropriate code to manage proxies, to dispatch incoming requests within a 
server, and to manage the underlying Orbix Java services.

Using this approach, the IDL interfaces that a client program can use are 
determined when the client program is compiled. Unfortunately, this is too 
limiting for a small but important subset of applications. These application 
programs and tools need to use an indeterminate range of interfaces: interfaces 
that perhaps were not even conceived at the time the applications were 
developed. Examples include browsers, gateways, management support tools 
and distributed debuggers.

Orbix Java supports the CORBA Dynamic Invocation Interface (DII). This allows 
an application to issue requests for any interface, even if that interface was 
unknown at the time the application was compiled.

The DII allows invocations to be constructed by specifying, at runtime, the 
target object reference, the operation or attribute name and the parameters to 
be passed. A server receiving an incoming invocation request does not know 
whether the client that sent the request used the normal, static approach or the 
dynamic approach to compose the request.
321



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Using the DII
This chapter uses a bank example to demonstrate the use of the DII. The IDL 
definitions are as follows:

// IDL

// A bank account.
interface account {

readonly attribute float balance;
attribute long accountNumber;

        
void makeLodgement(in float sum);
void makeWithdrawal(in float sum,

out float newBalance);
};

// A factory for bank accounts.
interface bank {

exception reject { string reason; };

// Create an account.
account newAccount(in string owner, 

inout float initialBalance) raises (Reject);

// Delete an account.
void deleteAccount(in account a);

};

You can make dynamic invocations by constructing a Request object and then 
invoking an operation on the Request object to make the request. Class 
Request is defined in the org.omg.CORBA package.

In the examples that follow, a request for the operation newAccount() is 
created, to dynamically invoke an operation whose static equivalent is:

// Java
bank b = bankHelper.bind
(�bankMarker:bankServer�, hostname);
account a;
a = b.newAccount("Chris", (float)1000.00);
 322



Dynam i c  I n v o c a t i o n  I n t e r f a c e
Programming Steps for Using the DII

This chapter explains how a client can make dynamic invocations. To do so, the 
following steps are required:

1. Obtain an object reference.

2. Create a Request object using the object reference.

3. Populate the Request object with the parameters to the operation. 

4. Invoke the request.

5. Obtain the result, if necessary.

The following code illustrates some of the programming steps using the standard 
org.omg.CORBA.Request operations:

// Java
// in class Client
import org.omg.CORBA.Request;
import org.omg.CORBA.Any;
...

// Initialize using either the Naming Service
// or ORB.string_to_object() details omitted
org.omg.CORBA.Object aBankObject = ....

// Create a Request
Request r = aBankObject._request("newAccount");

// Prepare the inout parameter
float ioVal = (float) 1000;

// Add the in string
r.add_in_arg().insert_string("Chris");

// Add the inout float 
Any valAny =r.add_inout_arg().insert_float(ioVal);

// Add the Streamable for return value
accountHolder accountHdr = new accountHolder();
r.return_value().insert_Streamable(accountHdr); 
323



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
// Invoke the Request
r.invoke ();

// Extract the inout argument
ioVal = valAny.extract_float();

// The account object ref. is now in the value member of 
// the accountHdr variable.

To improve clarity, exception handling code is not included in this example or in 
most of the remaining examples in this chapter. However, developers should 
note that this sample code will not compile without the inclusion of Orbix Java 
exception handling. Refer to Chapter 9 �Exception Handling� on page 197 for 
details of how to handle exceptions in Orbix Java.

This example assumes that the name of the operation (newAccount) is known. In 
practice, this information is obtained in some other way; for example, from the 
Interface Repository.

The programming steps are described in detail later in this chapter.

Examples of Clients Using the DII

There are two common types of client program that use the DII:

� A client interacts with the Interface Repository to determine a target 
object�s interface, including the name and parameters of one or all of its 
operations and then uses this information to construct DII requests.

� A client, such as a gateway, receives the details of a request to be made. 
In the case of a gateway, this may arrive as part of a network package. 
The gateway can then translate this into a DII call, without checking the 
details with the Interface Repository. If there is any mismatch, the 
gateway receives an exception from Orbix Java, and can report an error 
to the caller.

Some client programs also use the DII to call an operation with deferred 
synchronous semantics, which is not possible using normal static operation calls. 
Deferred synchronous calls are described in �Deferred Synchronous 
Invocations� on page 336.
 324



Dynam i c  I n v o c a t i o n  I n t e r f a c e
The CORBA Approach to Using the DII
This section demonstrates how to use the DII using the Orbix Java 
implementation of the classes and operations defined in the CORBA 
specification. A number of alternative approaches to setting up a Request are 
illustrated, all of which are CORBA-compliant.

Obtaining an Object Reference

Assume that there is already some server containing a number of objects that 
implement the interfaces in �Using the DII� on page 322. The first step in using 
the DII is to obtain an object reference of interface type Object (defined in 
package org.omg.CORBA) that references the target object. 

If the full object reference of the target object is known in character string 
format, an object reference, of a type that implements org.omg.CORBA.Object, 
can be constructed to facilitate making a dynamic invocation on it. For example, 
you can invoke the method string_to_object() on the org.omg.CORBA.ORB 
object as follows:

// Java
import org.omg.CORBA.Object;
import org.omg.CORBA.ORB;

ORB orb = ORB.init(args, null);
Object o = orb.string_to_object (refStr);

In the above example, the variable refStr is a stringified object reference for the 
target object, perhaps retrieved from a file, a mail message, or an IDL operation 
call. Object references can also be obtained from the Naming Service. Refer to 
�Making Objects Available in Orbix Java� on page 175 for further information on 
this topic.

Note: In previous versions of Orbix Java, when using the DII, object references 
were associated with the default ORB (_CORBA.Orbix). Now, the object 
references are associated with the ORB in context. The enables multiple 
ORB support.
325



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Creating a Request

CORBA specifies two ways to construct a Request object. These are 
implemented in Orbix Java using the _request() and _create_request() 
methods:

_request()

The method _request() is defined in interface org.omg.CORBA.Object It is 
declared as:

// Java
// in package org.omg.CORBA,
// in interface Object

import org.omg.CORBA.Request;

public Request _request(String operation);

This method takes a single parameter which specifies the name of the operation 
to be invoked on the target object. 

_create_request()

There is also a _create_request() methods defined in interface Object. It is 
declared as:

// Java
// in package org.omg.CORBA,
// in interface Object

import org.omg.CORBA.Request;
import org.omg.CORBA.Context;
import org.omg.CORBA.NamedValue;
import org.omg.CORBA.NVList; 

Request _create_request(Context ctx, String operation, 
 NVList arg_list,NamedValue result);

The use of these methods is described in the next two sections. An alternative 
approach to request construction is explained in �Resetting a Request Object 
for Reuse� on page 335.
 326



Dynam i c  I n v o c a t i o n  I n t e r f a c e
Setting up a Request Using _request()

You can set up a request by invoking _request() on the target object, and 
specifying the name of the operation that is to be dynamically invoked. In the 
first attempt at constructing the request, the code is written in a verbose fashion 
so that the individual steps can be explained easily. A simpler, more compact, 
version of the same code is then shown. 

The following steps are required in setting up a Request using the _request() 
method:

1. Obtain an object reference to the target object. The stringified object 
reference obtained earlier is used:

// Java
import org.omg.CORBA.Object;
import org.omg.CORBA.ORB;
import org.omg.CORBA.Request;

ORB orb = ORB.init(args, null);
Object o = orb.string_to_object (refStr);

2. Construct a Request object by calling _request() on the target object, 
as follows:

Request request = o._request("newAccount"); 

3. Populate the Request. The most efficient and straightforward approach 
to populating a DII Request is the one used by the Orbix Java IDL 
generated stubs. This approach takes advantage of the following methods 
in the org.omg.CORBA.Request class:

import org.omg.CORBA.Any;
import org.omg.CORBA.TypeCode;
...
Any add_in_arg();
Any add_inout_arg();
Any add_out_arg();
void set_return_type(TypeCode tc); 
Any return_value();

It also uses the following insertion method in the org.omg.CORBA.Any 
class:

import org.omg.CORBA.portable.Streamable;
327



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
...
void insert_Streamable(Streamable s);

The example code using this approach appears as follows:

Request request = oRef._request("newAccount");

// Insert the in parameter into the Request
request.add_in_arg().insert_string ("Chris");

// Insert the inout parameter:
float ioVal = 1000.00);
request.add_inout_arg().insert_float(ioVal);

// Add the Streamable for return value
accountHolder accountHdr = new accountHolder();
request.return_value().insert_Streamable(accountHdr); 

// Invoke the Request
request.invoke ();

// Extract the inout argument
ioVal = valAny.extract_float();

// The account object ref. is now in the value member of 
// the accountHdr variable.

All non-primitive inout and out parameters are inserted as Streamable objects 
(those that implement org.omg.CORBA.portable.Streamable). All primitive 
inout and out parameters must be explicitly inserted and extracted using the 
various Any primitive insert and extract methods. Refer to Chapter 17, �Type 
any� on page 313, for more details on these methods.

Alternative approach

The following method provides an alternative approach to setting up a request.

1. First obtain an empty NVList, and build it to contain the parameters to 
the operation request. 

To create an operation list whose length is specified in the first 
parameter, invoke the method create_list() on the 
org.omg.CORBA.ORB object.
 328



Dynam i c  I n v o c a t i o n  I n t e r f a c e
Note: If the IFR has been set up, an easier approach is to call 
create_operation_list() on org.omg.CORBA.ORB. 
See �Using the DII with the Interface Repository� on page 333.

An NVList is a list of NamedValue elements. A NamedValue contains a 
name and a value, where the value is of type Any and is used in the DII to 
describe the arguments to a request. To obtain the Any, use the value() 
method defined on class NamedValue. 

2. Using the following code as a guideline, create the NVList and add the 
NamedValues:

import org.omg.CORBA.NamedValue;
import org.omg.CORBA.NVList;
import org.omg.CORBA.Any;

import org.omg.CORBA.ARG_IN;
import org.omg.CORBA.ARG_INOUT;
...

NVList argList = ORB.init().create_list(2);
NamedValue owner = argList.add(ARG_IN.value);
owner.value().insert_string ( �Chris� );
NamedValue initBal = argList.add(ARG_INOUT.value);
initBal.value().insert_float ( 56.50 );

// Fill in name of operation and parameter values

The method NVList.add()1creates a NamedValue and adds it to the 
NVList. It returns a NamedValue pseudo object reference for the newly 
created NamedValue. 

1.   Class NVList also provides a method add_value() that takes three parameters: 
the name of the NamedValue (the formal parameter in the IDL operation); the value (of type Any) 
of the NamedValue; and a flag indicating the mode of the parameter. For example:

NamedValue owner = argList.add_value 
("owner",ownerAny, ARG_IN.value);

NamedValue initBal = argList.add_value 
("initialBalance", balAny, ARG_INOUT.value));
329



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
The parameter to NVList.add() can be a Flags object initialized with 
one of the following:

You must choose the appropriate parameter that matches the 
corresponding formal argument.

The NamedValues added to the NVList correspond, in order, to the 
parameters of the operation. They must be inserted in the correct order.

3. To fully populate the request, update the Any contained in each 
NamedValue element of the argument list with the value that is to be 
passed in the operation request.

// Insert the parameter values into the 
// NamedValues

owner.value().insert_string ("Chris");
balance.value.insert_float((float)100.00);

Compact Syntax

You can write the code in the last section in a more compact way by making use 
of the return values and the method Request.arguments() which returns the 
argument list (of type NVList):

// Java
import org.omg.CORBA.Object;
import org.omg.CORBA.ORB;
import org.omg.CORBA.Request;
import org.omg.CORBA.ARG_IN;
import org.omg.CORBA.ARG_INOUT;
...

// Obtain an object reference from 
// string refStr
ORB orb = ORB.init(args, null);
Object o = orb.string_to_object (refStr);

ARG_IN.value Input parameters (IDL in).

ARG_OUT.value Output parameters (IDL out).

ARG_INOUT.value Input/output parameters (IDL inout).
 330



Dynam i c  I n v o c a t i o n  I n t e r f a c e
// Create a Request object
Request request = oRef._request("newAccount");

// Insert the first parameter into the Request
(request.arguments().add (ARG_IN.value)).value())
.insert_string ("Chris"); 

// Insert the second parameter:
(request.arguments().add (ARG_INOUT.value)).value())
.insert_float ((float) 1000.00); 

Setting up a Request Using _create_request()

This section shows how to use the CORBA defined method 
Request._create_request() to create a request:

// Java
// in package org.omg.CORBA,
// in interface Object
public org.omg.CORBA.Request _create_request(

org.omg.CORBA.Context ctx,
String operation, 
org.omg.CORBA.NVList arg_list,
org.omg.CORBA.NamedValue result);

The parameters of this method are as follows:

� Context object to be sent in the request.

� The name of the operation.

� The parameters to the operation (of type NVList).

� Location for the return value (of type NamedValue).

� The return value is a Request object which contains the new Request 
object.

The following example constructs a Request for operation newAccount().The 
parameters �Chris� and 1000.00 are passed as before. The argument list is 
created as in �Setting up a Request Using _request()� on page 327 using 
org.omg.CORBA.ORB.create_list(). 
331



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
The compact syntax is used to add the arguments to argList (of type NVList):

// Java
// As before allocate space for an 
// NVList of length 2
import org.omg.CORBA.*;
ORB orb = ORB.init(args, null);

NVList argList = ORB.init().create_list(2);

(argList.add(ARG_IN.value)).value())
.insert_string ("Chris"); 

// The second parameter to newAccount()

(argList.add(ARG_INOUT.value)).value()) 
.insert_float ((float) 1000.00); 

// Construct a Request object with 
// this information
Any a = ORB.init().create_any();
a.type(ORB.init().create_interface_tc(

�IDL:account:1.0�,�account�));
NamedValue result = ORB.init().create_named_value

("", a, 0);
Context ctx = ORB.init().get_default_context();

Object o = orb.string_to_object (refStr);
Request request = o._create_request(

ctx,
"newAccount",
argList,
result)) {

...
} 
 332



Dynam i c  I n v o c a t i o n  I n t e r f a c e
Invoking a Request

Once the parameters are inserted, you can invoke the request as follows:

// Java
// Send Request and get the outcome
import org.omg.CORBA.SystemException;
...
try {

request.invoke ();
if ( request.env().exception() != null )

throw request.env().exception();
}
catch (SystemException ex) {

...
}
catch ( java.lang.Exception ex ){

...
}

Note: A Request invocation can raise both Orbix Java system exceptions and 
user-defined exceptions. To retrieve an exception raised in this manner, 
use request.env().exception(), as shown above.

Using the DII with the Interface Repository

If the programmer has obtained a description of the operation (of type 
org.omg.CORBA.OperationDef) from the Interface Repository, an alternative 
way to create an NVList is to call the operation create_operation_list() on 
the org.omg.CORBA.ORB object. This method fills in the elements of the NVList. 
If you use org.omg.CORBA.ORB.create_list() instead, you must fill the 
NVList. 

The prototype of create_operation_list() is shown below:

// Java
// in package org.omg.CORBA,
// in class ORB
public NVList create_operation_list (

org.omg.CORBA.OperationDef oper);
333



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
This method returns an NVList, initialized with the argument descriptions for 
the operation specified in operation. The returned NVList is of the correct 
length, with one element per argument. Each NamedValue element of the list has 
a valid name and valid flags which denote the argument passing mode. The value 
(of type Any) of the NamedValue has a valid type which denotes the type of the 
argument. The value of the argument is left blank. However it should be pointed 
out that this method performs more work than create_list() on 
org.omg.CORBA.ORB.

Setting up a Request to Read or Write an IDL Attribute

The DII can also be used to read and write attributes. To read the attribute 
balance, for example, the operation name should be set to "_get_balance". 
For example:

// Create a Request to read attribute balance
Request r = target._request ("_get_balance");
r.set_return_type(

org.omg.CORBA.ORB.init().
get_primitive_tc(
org.omg.CORBA.TCKind.tk_float));

r.invoke();
float balance = r.return_value().extract_float();

In general, for attribute A, the operation name should be set to one of the 
following:

Operation Results

A request can be invoked as described in �Invoking a Request� on page 333. 
Once the invocation has been made, the return value and output parameters can 
be examined. If there are any out or inout parameters, then these parameters 
would be modified by the call, and no special action is required to access their 
values. Their values are contained in the NVList argument list which can be 
accessed using the method Request.arguments().

_get_A This reads the attribute.

_set_A This writes the attribute.
 334



Dynam i c  I n v o c a t i o n  I n t e r f a c e
The operation�s return value (if it is not void) can be accessed using the method 
Request.result() which returns a NamedValue.

Results can also be retrieved by using Streamables and the 
Any.return_value() operation. See the return value in the code in�The 
following code illustrates some of the programming steps using the standard 
org.omg.CORBA.Request operations:� on page 323 for details.

Interrogating a Request

The operation name and the target object�s object reference of a Request can 
be determined using the methods operation() and target(), respectively.

Resetting a Request Object for Reuse

In an Orbix Java client that uses the DII, it is often necessary to make several 
operation invocations. You can do this by declaring and instantiating individual 
Request objects for each invocation. However, Orbix Java provides the method 
reset(), which allows you to reuse a Request variable.

The method reset() is called on the Request object and clears all of the 
Request fields, including its target object and operation name. For example, you 
can reuse the Request variable r in the example for an invocation of operation 
makeLodgement() as follows:

// Java
org.omg.CORBA.Request r =...
...
IE.Iona.OrbixWeb.CORBA.Request req 

= IE.Iona.OrbixWeb._OrbixWeb.Request(r);

req.reset ();
req.setTarget (oRef);
req.setOperation ("makeLodgement");

or as follows:

// Java
req.reset (oRef, "makeLodgement");
335



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Deferred Synchronous Invocations
In addition to using the invoke() operation on a Request, Orbix Java supports a 
deferred synchronous invocation mode. This allows clients to invoke on a target 
object and to continue processing in parallel with the invoked operation. At a 
later point, the client can check to see if a response is available, and if so can 
obtain the response. This may be useful to improve the throughput of a client, 
particularly in the case of long-running invocations. 

Note: It is often more straightforward to start a thread that makes a normal 
CORBA call concurrently than to use deferred synchronous calls. They 
are defined by the OMG mainly for environments where threads are not 
available.

To use this invocation mode, call one of the following methods on the Request:

� send_deferred() 

� send_oneway

send_deferred()

When calling method send_deferred() on the Request, the caller continues in 
parallel with the processing of the call by the target object. The caller can use the 
method poll_response() on the Request to determine whether the operation 
has completed and get_response() to determine the result. Consider the 
following code segment, which invokes a deferred request:

try {
r.send_deferred();

}
catch(SystemException ex) {
// error handling
}
// Execute here in parallel with the call

The caller can perform a blocking wait for the response as follows:

try {
   r.get_response();
   // Extract result, etc
 336



Dynam i c  I n v o c a t i o n  I n t e r f a c e
} catch(SystemException ex) {
// get_response throws an exception on 
// failure/timeout

}

Alternatively, the caller can poll for the response as follows:

try {
   while(r.poll_response() == false){

// Execute other code
   }

// Extract result, etc
} catch(SystemException ex) { . . . . }

send_oneway()

You can call method send_oneway() can on any Request, however you must 
use this method for a oneway operation. The caller continues in parallel with the 
processing of the call by the target object. 

Usage of send_oneway() is similar to send_deferred(), except that there is no 
response.

Multiple requests are also supported. There are two methods provided for this 
that can be called on an ORB. These are as follows:

� ORB.send_multiple_requests_oneway()

� ORB.send_multiple_requests_deferred()

The relevant prototypes are as follows:

// Java
// In class org.omg.CORBA.ORB
public void send_multiple_requests_oneway

(Request[]  requests);
public void send_multiple_requests_deferred

(Request[] requests);
337



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
The caller can perform a blocking wait for a response using the following code:

try {
Request r = orb.get_next_response();
   // Extract result, etc
} catch(SystemException ex) {

......
}

Alternatively the caller can call get_response() or poll_response() on an 
individual Request instance.

Using Filters with the DII
Orbix Java allows a you to implement methods which are invoked at specified 
filter points in the invocation of a request, as described in �Filters� on page 395. 
All filter points that you implement are called during the invocation of a dynamic 
request.
 338



 19
Dynamic Skeleton Interface 

The Dynamic Skeleton Interface (DSI) is the server-side equivalent 
of the DII. It allows a server to receive an operation or attribute 
invocation on any object, even one with an IDL interface unknown 
at compile time. The server does not need to be linked with the 
skeleton code for an interface to accept operation invocations on 
that interface. 

Instead, a server can define a method that is informed of an incoming operation 
or attribute invocation. This method determines the identity of the object being 
invoked. The operation name and the types and values of each argument must 
be provided by the user. The method can then perform the task being requested 
by the client, and construct and return the result.

Just as the use of the DII is less common than the use of normal static 
invocations, the use of the DSI is less common than use of the static interface 
implementations. Also, clients are not aware that a server is in fact implemented 
using the DSI, clients simply makes IDL calls as normal.
339



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Uses of the DSI
The DSI is explicitly designed to help you write gateways. Using the DSI, a 
gateway can accept operation or attribute invocations on any specified set of 
interfaces and pass them to another system. A gateway can be written to 
interface between CORBA and some non-CORBA system. The gateway needs 
to know the protocol rules of non-CORBA system. However, it is the only part 
of the CORBA system which requires this knowledge. The rest of the CORBA 
system continues to make IDL calls as usual.

The IIOP protocol allows an object in one ORB to invoke on an object in 
another ORB. Non-CORBA systems do not have to support this protocol. One 
way to interface CORBA to such systems is to construct a gateway using the 
DSI. This gateway appears as a CORBA server containing many CORBA objects. 
The server uses the DSI to trap the incoming invocations and translate them into 
calls to the non-CORBA system. A combination of the DSI and DII allows a 
process to be a bi-directional gateway. The process can receive messages from 
the non-CORBA system and use the DII to make CORBA calls. It can use the 
DSI to receive requests from the CORBA system and translate these into 
messages in the non-CORBA system.

Another example of the use of the DSI is a server that contains a large number 
of non-CORBA objects that it wishes to make available to its clients. One way to 
achieve this is to provide an individual CORBA object to act as a front-end for 
each non-CORBA object. However, in some cases this multiplicity of objects 
may cause too much overhead. 

Another way is to provide a single front-end object that can be used to invoke 
on any of the objects, probably by adding a parameter to each call that specifies 
which non-CORBA object is to be manipulated. This changes the client�s view 
because the client would cannot invoke on each object individually, treating it as 
a proper CORBA object.

You can use the DSI to achieve the same space saving as that achieved when 
using a single front-end object. You can give clients a view that there is one 
CORBA object for each underlying object. The server indicates that it wishes to 
accept invocations on the IDL interface using the DSI, and when informed of 
such an invocation, it identifies the target object, the operation or attribute being 
called, and the parameters. It then makes the call on the underlying non-CORBA 
object, receives the result, and returns it to the calling client.
 340



Dynam i c  S k e l e t o n  I n t e r f a c e
Using the DSI
To use the DSI you must perform the following steps in your server program: 

1. Implement a class that extends the class 
org.omg.CORBA.DynamicImplementation.

2. Implement the invoke() and _ids() operations.

The ids() operation is contained in the package 
org.omg.CORBA.portable.ObjectImpl which 
DynamicImplementation extends.

3. Create an object of this class and call ORB.connect() to connect the 
object to the ORB.

Creating DynamicImplementation Objects

The class org.omg.CORBA.DynamicImplementation is defined as follows:

public abstract class DynamicImplementation
extends org.omg.CORBA.portable.ObjectImpl {

public abstract void invoke
(org.omg.CORBA.ServerRequest request)

throws SystemException;
}

The invoke() method is informed of incoming operation and attribute requests. 
This method can use the ServerRequest parameter to do the following:

� Determine what operation or attribute is being invoked and on what 
object.

� Obtain in and inout parameters.

� Return out and inout parameters and the return value to the caller. 

� Return an exception to the caller.

An implementation of the invoke() method is known as a Dynamic 
Implementation Routine (DIR).
341



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
The class DynamicImplementation is not visible to clients. Specifically, the 
interfaces used by clients do not inherit from class DynamicImplementation. If 
clients inherit from DynamicImplementation, the fact that the DSI is used at the 
server-side is not transparent to clients.

The ServerRequest Data Type

The ServerRequest object which is passed to 
DynamicImplementation.invoke() is created by Orbix Java once it receives an 
incoming request and recognizes it as a request to be handled by the DSI. 

The ServerRequest type is defined in IDL as follows:

// Pesudo IDL
// In module CORBA.

pseudo interface ServerRequest {
String op_name();
Context ctx();
void params(NVList parms);
any result(Any a);
void except(Any a)

};

Instances of the ServerRequest interface are pseudo-objects. This means that 
references to these instances cannot be transmitted through IDL interfaces.

The attributes and operations of ServerRequest are described as follows:

op_name() Gives the name of the operation being invoked.

ctx() Returns the context associated with the call.

params() Allows the invoke() operation to specify the types of incoming 
arguments.

result() Allows the invoke() operation to return the result of an 
operation or attribute call to the caller. 

except() Allows the invoke() operation to return an exception to the 
caller.
 342



Dynam i c  S k e l e t o n  I n t e r f a c e
Example of Using the DSI
To implement the Dynamic Implementation Routine (DIR), you must define a 
class that extends org.omg.CORBA.DynamicImplementation.

For example: 

// Java
// In file javaserver1.java.
// Implementation of Dynamic Implementation Routine

package grid_dsi;

class grid_i extends org.omg.CORBA.DynamicImplementation {

public void invoke(org.omg.CORBA.ServerRequest _req) {
// Implementation of the invoke() method

} 
public String[] _ids() {

// Implementation of the _ids() method
}
...

};

Your DSI class must contain the following methods: 

� _ids()

� invoke() 

_ids() 

The _ids() method should return a list of all interfaces supported by the 
Dynamic Implementation Routine, as shown in the following sample code: 

// Java
// In file javaserver1.java.
// Implementation of ids() method

public String[] _ids() {
String[] tmp = {"IDL:grid:1.0"};
return tmp;

}

343



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
invoke() 

The following is an example of the DSI invoke() method: 

// Java
// In file javaserver1.java.
// Implementation of invoke() method

// Simulates the operations on the grid interface using the DSI.
public void invoke(org.omg.CORBA.ServerRequest _req) {

String _opName = _req.op_name() ;
org.omg.CORBA.Any _ret = org.omg.CORBA.ORB.init().create_any();
org.omg.CORBA.NVList _nvl = null;

if(_opName.equals("set")) {
_nvl = org.omg.CORBA.ORB.init().create_list(3);

// Create a new any.
org.omg.CORBA.Any n = org.omg.CORBA.ORB.init().create_any();

// Insert the TypeCode(tk_short) into the new Any.
n.type(org.omg.CORBA.ORB.init().get_primitive_tc

(org.omg.CORBA.TCKind.tk_short)) ;

// Insert this Any into the NVList and set the flag to IN.
_nvl.add_value(null, n, org.omg.CORBA.ARG_IN.value);

// Create new Any, set Typecode to short, insert into NVList.
org.omg.CORBA.Any m = org.omg.CORBA.ORB.init().create_any();
m.type(org.omg.CORBA.ORB.init().get_primitive_tc

(org.omg.CORBA.TCKind.tk_short));
_nvl.add_value(null, m, org.omg.CORBA.ARG_IN.value);

// Create new Any, set Typecode to long, insert into NVList.
org.omg.CORBA.Any value 

= org.omg.CORBA.ORB.init().create_any();
value.type(org.omg.CORBA.ORB.init().get_primitive_tc

(org.omg.CORBA.TCKind.tk_long));
_nvl.add_value(null, value, org.omg.CORBA.ARG_IN.value);
 344



Dynam i c  S k e l e t o n  I n t e r f a c e
// Use params() method to marshal data into _nvl.
_req.params(_nvl);

// Get the value of row, col from Any row, col 
// and set this element in the array to the value.
m_a[n.extract_short()][m.extract_short()] =

value.extract_long() ;
return;

}

if(_opName.equals("get")) {
_ret = org.omg.CORBA.ORB.init().create_any();
_nvl = org.omg.CORBA.ORB.init().create_list(2);

org.omg.CORBA.Any n = org.omg.CORBA.ORB.init().create_any();
ntype(org.omg.CORBA.ORB.init().get_primitive_tc

(org.omg.CORBA.TCKind.tk_short));
_nvl.add_value(null, n, org.omg.CORBA.ARG_IN.value);

org.omg.CORBA.Any m = org.omg.CORBA.ORB.init().create_any();
m.type(org.omg.CORBA.ORB.init().get_primitive_tc

(org.omg.CORBA.TCKind.tk_short));
_nvl.add_value(null, m, org.omg.CORBA.ARG_IN.value);
_req.params(_nvl);
int t = m_a[n.extract_short()][m.extract_short()] ;
_ret.insert_long(t);
_req.result(_ret);
return;

}

if (_opName.equals("_get_height")) {
_ret = org.omg.CORBA.ORB.init().create_any();
_req.params(_nvl);
_ret.insert_short(m_height);
_req.result(_ret);
return;

}

345



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
if (_opName.equals("_get_width")) {
_ret = org.omg.CORBA.ORB.init().create_any();
_req.params(_nvl);
_ret.insert_short(m_width);
_req.result(_ret);
return;

}

}

The complete code for this example is available in the demos/orbixjava/
grid_dsi directory of your Orbix Java installation. 
 346



 20
The Interface Repository

This chapter describes the Interface Repository (IFR). This is the 
Orbix Java component that provides persistent storage of IDL 
interfaces, modules, and other IDL types. Orbix Java programs can 
query the Interface Repository at runtime to obtain information about 
IDL definitions.

The Interface Repository (IFR) enables persistent storage of IDL modules, 
interfaces and other IDL types. A program can browse through or list the 
contents of the Interface Repository. A client can also add and remove 
definitions from the Interface Repository using its IDL interface. Alternatively, 
given an object reference, an object�s type and full details about that type can be 
determined at runtime by calling functions defined by the Interface Repository. 
These facilities are important for tools such as the following:

� Browsers that allow you to determine the types that have been defined in 
the system, and to list the details of chosen types.

� CASE tools that aid software design, writing and debugging.

� Application level code that uses the Dynamic Invocation Interface (DII) to 
invoke on objects whose types were not known to it at compile time. 
This code may need to determine the details of the object being invoked 
to construct the request using the DII.

� Gateways that require runtime type information about the type of 
objects being invoked.
347



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Orbix Java provides the putidl utility to enter definitions defined in an IDL file 
into the Interface Repository. This utility provides the simplest and safest way to 
populate the Interface Repository. 

The Interface Repository also defines IDL operations to update its definitions 
and to enter new definitions. However, while you can write client code that 
populates the IFR interface database, this is complicated and requires a lot of 
consistency checking by the client application. It is possible to use the update 
operations to define interfaces and types which do not make sense. While the 
Interface Repository checks for such updates, it cannot prevent all incorrect 
updates.

Configuring the Interface Repository
The Interface Repository stores its data in the file system. You can configure the 
path name of its root directory using the IT_INT_REP_PATH entry in the Orbix 
Java configuration file; or by setting the IT_INT_REP_PATH environment variable. 
The environment variable takes precedence.

An application can find the path name of its Interface Repository store by calling 
the following function on the _CORBA.Orbix object:

import IE.Iona.OrbixWeb._CORBA;
...
String s = _CORBA.Orbix.myIntRepPath();

Runtime Information about IDL Definitions
The Interface Repository maintains full details of the IDL definitions that are 
passed to it. A program can use the Interface Repository to browse through the 
set of modules and interfaces, determining the name of each module, the name 
of each interface and the full definition of that interface. Given a name of 
particular IDL definition, a program can find its full definition.
 348



Th e  I n t e r f a c e  R epo s i t o r y
For example, given any object reference a program can use the Interface 
Repository to determine the following information about that interface: 

� The module in which the interface was defined, if any.

� The interface name.

� The attributes of the interface, and their definitions.

� The operations of the interface, and their full definitions, including 
parameter, context and exception definitions.

� The base interfaces of the interface.

There is also a short example at the end of this chapter which demonstrates the 
use of the Interface Repository.

Using the Interface Repository
The Interface Repository is located in the bin directory of your Orbix Java 
installation. The overall requirements for using the Interface Repository are as 
follows:

� You must set the IT_INT_REP_PATH in the Orbix Java configuration file, 
or the IT_INT_REP_PATH environment variable; and the corresponding 
directory must exist.

� The Interface Repository must be installed as explained in �Installing the 
Interface Repository� on page 349.

� An application must import relevant Java classes.

Installing the Interface Repository

The Interface Repository is itself an Orbix Java server. The interfaces to its 
objects are defined in IDL and it must be registered with the Implementation 
Repository. The Interface Repository can then be activated by the Orbix Java 
daemon, or manually launched.
349



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
The executable file of the Interface Repository is ifr. This takes the following 
switches: 

You can explicitly run the Interface Repository executable as a background 
process. This has the advantage that the Interface Repository can initialize itself 
before any other processes need to use it, especially if you specify the -L switch.

The registration record in the Implementation Repository should be named 
�IFR� as follows: 

putitj IFR <absolute path name and switches>

To terminate the Interface Repository process, use the killit utility. 
Alternatively you can use the Windows Server Manager GUI utility or send the 
SIGINT signal (^C), as appropriate.

You can use the putidl, readifr and rmidl utility commands to access the 
Interface Repository, Refer to the Orbix Administrator�s Guide Java Edition  for 
details.

Structure of the Interface Repository Data
The data in the Interface Repository is best viewed as a set of CORBA objects 
where, for each IDL type definition, one object is stored in the repository. 
Objects in the Interface Repository support one of the following IDL interface 
types, reflecting the IDL constructs they describe:

-L Immediately load data from the IFR directory. The default is to 
load data on demand at runtime as it is required.

-v Print version information about the Interface Repository.

-h Print summary of switches.

-t <time> Specifies the timeout in seconds for the Interface Repository 
server. The default is infinity.

Repository The type of the repository itself, in which all of its 
other objects are nested.

ModuleDef The interface for a ModuleDef definition. Each 
module has a name and can contain definitions of 
any type (except Repository).
 350



Th e  I n t e r f a c e  R epo s i t o r y
InterfaceDef The interface for an InterfaceDef definition. Each 
interface has a name, a possible inheritance 
declaration, and can contain definitions of type 
attribute, operation, exception, typedef and 
constant.

AttributeDef The interface for an AttributeDef definition. Each 
attribute has a name and a type, and a mode that 
determines whether or not it is readonly.

OperationDef The interface for an OperationDef definition. Each 
operation has a name, a return value, a set of 
parameters and, optionally, raises and context 
clauses.

ConstantDef The interface for a ConstantDef definition. Each 
constant has a name, a type and a value.

ExceptionDef The interface for an ExceptionDef definition. Each 
exception has a name and a set of member 
definitions.

StructDef The interface for a StructDef definition. Each 
struct has a name, and also holds the definition of 
each of its members.

UnionDef The interface for a UnionDef definition. Each union 
has a name, and also holds a discriminator type and 
the definition of each of its members.

EmumDef The interface for an EnumDef definition. Each enum 
has a name, and also holds its list of member 
identifiers.

AliasDef The interface for a typedef statement in IDL. Each 
alias has a name and a type that it maps to. 

PrimitiveDef The interface for primitive IDL types. Objects of 
this type correspond to a type such as short and 
long, and are pre-defined within the Interface 
Repository. 
351



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
In addition, the following abstract types (those without direct instances) are 
defined:

IRObject
IDLType
TypedefDef
Contained
Container

Understanding these types is the key to understanding how to use the Interface 
Repository. Refer to �Abstract Interfaces in the Interface Repository� on 
page 355 for more details. 

Any object of an IDL interface type can be interrogated to determine its 
definitions. Interface types are organized in a logical manner according to the 
IDL interface. For example, each InterfaceDef object is said to contain objects 
representing the interface�s constant, type, exceptions, attribute and operation 
definitions. The outermost object is of type Repository.

StringDef The interface for a string type. Each string type 
records its bound. Objects of this type do not have 
a name. If they have been defined using an IDL 
typedef statement, they have an associated 
AliasDef object. Objects of this type correspond 
to bounded strings.

SequenceDef The interface for a sequence type. Each sequence 
type records its bound (a value of zero indicates an 
unbounded sequence type) and its element type. 
Objects of this type do not have a name. If they are 
defined using an IDL typedef statement, they have 
an associated AliasDef object.

ArrayDef The interface for an array type. Each array type 
records its length and its element type. Objects of 
this type do not have a name. If they are defined 
using an IDL typedef statement, they have an 
associated AliasDef object. Each ArrayDef object 
represents one dimension. Multiple ArrayDef 
objects are required to represent a multi-
dimensional array type.
 352



Th e  I n t e r f a c e  R epo s i t o r y
The containment relationships between the Interface Repository types are as 
follows:

A Repository can contain:

ConstantDef
TypedefDef
ExceptionDef
InterfaceDef
ModuleDef

 A ModuleDef can contain:

ConstantDef
TypedefDef
ExceptionDef
ModuleDef
InterfaceDef

An InterfaceDef can contain:

ConstantDef
TypedefDef
ExceptionDef
AttributeDef
OperationDef

Objects of type ModuleDef, InterfaceDef, ConstantDef, ExceptionDef and 
TypedefDef can appear outside of any module, directly within a repository. 

Given an object of any of the Interface Repository types, you can determine full 
details of that definition. For example, InterfaceDef defines operations or 
attributes to determine an interface�s name, its inheritance hierarchy, and the 
description of each operation and each attribute.
353



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Simple Types

The Interface Repository defines the following simple IDL definitions:

// IDL
// In module CORBA.
typedef string Identifier;
typedef string ScopedName;
typedef string RepositoryId;
typedef string VersionSpec;

enum DefinitionKind {
dk_none, dk_all, dk_Attribute, dk_Constant,
dk_Exception, dk_Interface, dk_Module,
dk_Operation, dk_Typedef, dk_Alias, dk_Struct,
dk_Union, dk_Enum, dk_Primitive, dk_String,
dk_Sequence, dk_Array, dk_Repository

};

An Identifier is a simple name that identifies modules, interfaces, constants, 
typedefs, exceptions, attributes and operations.

A ScopedName gives an entity�s name relative to a scope. A ScopedName that 
begins with �::� is an absolute scoped name. This is a name that uniquely 
identifies an entity within a repository. An example is 
::finance::account::makeWithdrawal. A ScopedName that does not begin 
with �::� is a relative scoped name. This is a name that identifies an entity relative 
to some other entity. An example is makeWithdrawal within the entity with the 
absolute scoped name ::finance::account.

A RepositoryId is a string that uniquely identifies an object within a repository, 
or globally within a set of repositories if more than one is being used. An object 
can be a constant, exception, attribute, operation, structure, union, 
enumeration, alias, interface or module.

Type VersionSpec is used to indicate the version number of an Interface 
Repository object; that is, to allow the Interface Repository to distinguish two or 
more versions of a definition, each with the same name but with details that 
evolve over time. However, the Interface Repository is not required to support 
such versioning: it is not required to store more than one definition with any 
given name. The Interface Repository currently does not support versioning.
 354



Th e  I n t e r f a c e  R epo s i t o r y
Each Interface Repository object has an attribute (called def_kind) of type 
DefinitionKind that records the kind of the Interface Repository object. For 
example, the def_kind attribute of an interfaceDef object will be 
dk_interface. The enumerate constants dk_none and dk_all have special 
meanings when searching for objects in a repository.

Abstract Interfaces in the Interface Repository
There are five abstract interfaces defined for the Interface Repository. These are 
as 
follows:

� IRObject

� IDLType

� TypedefDef

� Contained 

� Container

These are of key importance in understanding the basic structure of the 
Interface Repository and provide basic functionality for each of the concrete 
interface types.

Class Hierarchy and Abstract Base Interfaces

The Interface Repository defines five abstract base interfaces. These are 
interfaces that cannot have direct instances, and are used to define the other 
Interface Repository types:

IRObject This is the base interface of all Interface 
Repository objects. Its only attribute defines the 
kind of an Interface Repository object.

IDLType All Interface Repository interfaces that hold the 
definition of a type directly or indirectly inherit 
from this interface.
355



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
The interface hierarchy for all of the Interface Repository interfaces is shown in 
Figure 20.1. 

Interface IRObject

Interface IRObject is defined as follows:

// IDL
// In module CORBA.
interface IRObject {

// read interface
readonly attribute DefinitionKind def_kind;

// write interface
void destroy ();

};

This is the base interface of all Interface Repository types. The attribute 
def_kind provides a simple way of determining the type of an Interface 
Repository object. Other than defining an attribute and operation, and acting as 
the base interface of other interfaces, IRObject plays no further role in the 
Interface Repository.

TypedefDef This is the base interface for all Interface 
Repository types that can have names (except 
interfaces). These include structures, unions, 
enumerations and aliases (results of IDL typedef 
definitions).

Contained Many Interface Repository objects can be 
contained within others and these all inherit from 
Contained. 

Container Some Interface Repository interfaces, such as 
Repository, ModuleDef and InterfaceDef, can 
contain other Interface Repository objects. These 
interfaces inherit from Container.
 356



Th e  I n t e r f a c e  R epo s i t o r y
Figure 20.1: Hierarchy for Interface Repository Interfaces

IRObject 

TypedefDef

Repository

Contained

ModuleDef

Container

PrimitiveDef
StringDef
SequenceDef
ArrayDef

ConstantDef
ExceptionDef
AttributeDef
OperationDef

StructDef InterfaceDef
UnionDef
EnumDef
AliasDef

attribute identifier name...

readonly attribute DefinitionKind def_kind

readonly attribute TypeCode type;

// Abstract

// Abstract

// Abstract// Abstract

// Abstract

// Base interface

Set of unnamed types.Set of named types.

// of all named
// types (except
// interfaces)

IDL Type
357



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Modifying Objects of Type IRObject

You can delete an Interface Repository object by calling its destroy() 
operation. This also deletes any objects contained in the target object. It is an 
error to call destroy() on a Repository or a PrimitiveDef object.

Containment in the Interface Repository
Definitions in the IDL language have a nested structure. For example a module 
can contain definitions of interfaces and the interfaces themselves can contain 
definitions of attributes, operations and many others. Consider the following IDL 
fragment:

// IDL

module finance {
interface account {

readonly attribute float balance;
void makeLodgement(in float amount);
void makeWithdrawal(in float amount);

};
interface bank {

account newAccount();
};

};

In this example the module finance (represented in the Interface Repository as 
a ModuleDef object) contains two definitions: interface bank and interface 
account (each represented by an individual InterfaceDef object). These two 
interfaces contain further definitions. For example, the interface account 
contains a single attribute and two operations.

Since the notion of containment is basic to the structure of the IDL definitions, 
the Interface Repository specification abstracts the properties of containment. 
For example, an Interface Repository object (such as a ModuleDef or 
InterfaceDef object) that can contain further definitions needs a function to list 
its contents. Similarly, an Interface Repository object that can be contained 
within another Interface Repository object may want to know the identity of the 
object it is contained in. This leads to the definition of two abstract base 
interfaces, Container and Contained, which group together common 
 358



Th e  I n t e r f a c e  R epo s i t o r y
operations and attributes. Most of the objects in the repository are derived from 
one or both of Container or Contained. The exceptions to this are instances of 
PrimitiveDef, StringDef, SequenceDef and ArrayDef.

You can access much of the structure of the Interface Repository by using the 
operations and attributes of Container and Contained. Understanding 
containment is the key to understanding most Interface Repository functionality.

There are three different kinds of interface which use containment. There are 
interfaces that inherit only from Container, interfaces that inherit from both 
Container and Contained, and interfaces that inherit only from Contained. 
These are as follows: 

The last interface TypedefDef is exceptional because it is an abstract interface.

The Repository itself is the only interface that can be a pure Container. There 
is only one Repository object per Interface Repository server. This has all the 
other definitions nested within it.

Objects of type ModuleDef and InterfaceDef can create additional layers of 
nesting, and therefore these derive from both Container and Contained.

The remaining types of object have a simpler structure and derive from 
Contained only. 

The Contained Interface

This section is limited to a discussion of the basic attributes and operations of 
interface Contained. Refer to the Orbix Java Edition Programmer�s Reference 
for a full description of this interface. An outline of the Contained interface is as 
follows:

//IDL

typedef Identifier string;

base Container Repository

base Container and Contained ModuleDef, InterfaceDef

base Contained ConstantDef, ExceptionDef, 
AttributeDef, OperationDef, 
StructDef, UnionDef, EnumDef, 
AliasDef, TypedefDef
359



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
interface Contained : IRObject {
// Incomplete list of operations and attributes...
...
attribute Identifier name;
...
readonly attribute Container defined_in;
...
struct Description {

DefinitionKind kind;
any value;

};
Description describe();

};

A basic attribute of any Contained object is its name. The attribute name has the 
type Identifier which is a typedef for a string. For example, the module 
finance is represented in the repository by a ModuleDef object. The inherited 
ModuleDef::name attribute resolves to the string �finance�. Similarly, an 
OperationDef object representing makeWithdrawal has an 
OperationDef::name which resolves to �makeWithdrawal�. The Repository 
object itself has no name because it does not inherit from Contained. 

Another basic attribute is Contained::defined_in, which returns an object 
reference to the Container in which the object is defined. This attribute is all 
that is needed to express the idea of containment for a Contained object. Since 
a given definition appears only once in IDL, the attribute defined_in returns a 
uniquely-defined Container reference. However, because of the possibility of 
inheritance between interfaces, a given object can be contained in more than 
one interface. For example, interface currentAccount is derived from interface 
account as follows:

//IDL
// in module finance
interface currentAccount : account {

readonly attribute overDraftLimit;
};

Here the attribute balance is contained in interface account and also contained 
in interface currentAccount. However, querying AttributeDef::defined_in 
for the balance attribute always returns an object for account. This is because 
the definition of attribute balance appears in the base interface account.
 360



Th e  I n t e r f a c e  R epo s i t o r y
The operation Contained::describe() returns a generic Description 
structure. This provides access to details such as the parameters and return 
types associated with a specified object. 

The Container Interface

Some of the basic definitions for interface Container are as follows:

//IDL
typedef sequence<Contained> ContainedSeq;
enum DefinitionKind {dk_name, dk_all, dk_Attribute,

dk_Constant, dk_Exception, dk_Interface, dk_Module,
dk_Operation, dk_Typedef, dk_Alias, dk_Struct, dk_Union,
dk_Enum, dk_Primitive, dk_String, dk_Sequence, dk_Array,
dk_Repository};

interface Container : IRObject {
// Incomplete list of operations and attributes
...
ContainedSeq contents(

in DefinitionKind limit_type,
in boolean exclude_inherited);

...
};

contents()

The contents() operation is the most basic operation associated with a 
Container. This returns a sequence of Contained objects belonging to the 
Container. Using contents you can browse a Container and descend nested 
layers of containment. Once the appropriate Contained object is found, you can 
find the details of its definition by invoking Contained::describe() to obtain a 
detailed Description of the object. Using Container::contents() coupled 
with Contained::describe() provides a basic way of browsing the Interface 
Repository. 

However, there are other approaches to browsing the Interface Repository 
which may be more efficient. These more sophisticated search operations are 
discussed in �Retrieving Information from the Interface Repository� on 
page 369.
361



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
The arguments to the contents() operation make use of DefinitionKind. This 
is an enum type which is used to tag the different kinds of repository objects. In 
addition to the interfaces for concrete repository objects there are three 
additional tags: 

The parameters to contents are as follows: 

The value returned from the contents() operation is a sequence of Contained 
objects which match the given criteria.

Containment Descriptions

The containment framework reveals which definitions are made within a specific 
interface or module. However, each interface repository object, besides being a 
Contained or Container, also contains the details of an IDL definition. Calling 
describe() on a Contained object returns a Description struct holding these 
details.

Both interfaces Contained and Container define their own version of a 
Description struct. These are, respectively, Contained::Description and 
Container::Description. The structure of Container::Description differs 

dk_none This tag matches no repository object.

dk_all This tag matches any repository object.

dk_Typedef This tag matches any one of dk_Alias, dk_Struct, 
dk_Union, dk_Enum.

limit_type A tag of type DefinitionKind which can be used to 
limit the list of contents to certain kinds of repository 
objects. A value of dk_all lists all objects.

exclude_inherited This argument is only relevant if the Container 
happens to be an InterfaceDef object. In this case, it 
determines whether or not inherited definitions 
should be included in the contents listing. true 
indicates they should be excluded, while false 
indicates they should be included.
 362



Th e  I n t e r f a c e  R epo s i t o r y
slightly from that of Contained::Description, as shown in �The Contained 
Interface� on page 359. Consider the following fragment of the IDL interface for 
Container:

//IDL
interface Container : IRObject {

// Incomplete listing of interface
...
struct Description {

Contained contained_object;
DefinitionKind kind;
any value;

};
typedef sequence<Description> DescriptionSeq;
DescriptionSeq describe_contents(

in DefinitionKind limit_type,
in boolean exclude_inherited,
in long max_returned objects);

...
};

Container::Description includes the extra member contained_object. 

describe_ contents()

The Container::Description is used by the operation describe_contents(). 
This operation effectively combines calling contents() on the Container with 
calling describe() on each of the returned objects. The parameters to 
describe_contents() are as follows: 

limit_type A tag of type DefinitionKind that can be used 
to limit the list of contents to certain kinds of 
repository objects. A value of dk_all lists all 
objects.

exclude_inherited This parameter is only relevant if the Container 
is an InterfaceDef object. In this case, it 
determines whether inherited definitions are 
included in the contents listing. true indicates 
they are excluded, while false indicates they are 
included.

max_returned_objects Specifies the maximum length of the sequence 
that is returned.
363



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
The describe_contents() operation returns a sequence of Description 
structs, one for each of the Contained objects found.

Interface Description Structures

The Description struct itself serves as a wrapper for a detailed description 
specific to the repository object. For example, the interface OperationDef 
inherits the OperationDef::describe() operation.

Associated with the OperationDef interface is the struct 
OperationDescription. This has the following structure:

struct OperationDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode result;
OperationMode mode;
ContextIdSeq contexts;
ParDescriptionSeq parameters;
ExcDescriptionSeq exceptions;

};

This struct is not returned directly by the operation 
OperationDef::describe(). Initially, it returns a Contained::Description 
wrapper. The first layer includes Description::kind, which in this case equals 
dk_Operation. The second layer includes Description::value, which is an 
any. This is the substance of the Description. Inside the any there is a 
TypeCode _tc_OperationDescription and the value of the any is the 
OperationDescription structure itself.

The structure of OperationDescription is as follows: 

name The name of the operation as it appears in the definition. 
For example, the operation account::makeWithdrawal 
has the name �makeWithdrawal�.

id The id is a RepositoryId for the OperationDef object. 
A RepositoryId is a string that uniquely identifies an 
object within a repository, or globally within a set of 
repositories if more than one is being used. 
 364



Th e  I n t e r f a c e  R epo s i t o r y
The OperationDescription provides all of the information present in the 
original definition of the operation. The CORBA specification provides for more 
than one way of accessing this information. The interface OperationDef also 
defines a number of attributes allowing direct access to the members of 
OperationDescription. Frequently, it is more convenient to obtain the 
complete description in a single step, which is why the OperationDescription 
structure is provided.

Only those interfaces that inherit from Contained have an associated 
description structure. Of those which do inherit from Contained, only EnumDef, 
UnionDef, AliasDef and StructDef have a unique associated description 
structure called TypeDescription.

defined_in The member defined_in gives the RepositoryId for 
the parent Container of the OperationDef object.

version The version of type VersionSpec is used to indicate the 
version number of an Interface Repository object. This 
allows the Interface Repository to distinguish two or 
more versions of a definition with the same name, but 
whose details evolve over time. The Interface Repository 
currently does not support versioning.

result The TypeCode of the result returned by the defined 
operation.

mode The mode specifies whether the operation is normal 
(OP_NORMAL) or oneway (OP_ONEWAY).

contexts The member contexts is of type ContextIdSeq which is 
a typedef for a sequence of strings. The sequence lists the 
context identifiers specified in the context clause of the 
operation.

parameters The member parameters is a sequence of 
ParameterDescription structs giving details of each 
parameter to the operation.

exceptions The member exceptions is a sequence of 
ExceptionDescription structures giving details of the 
exceptions specified in the raises clause of the 
operation. 
365



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
The interface InterfaceDef is a special case. It has an extra description 
structure called FullInterfaceDescription. This structure is provided 
because of the special importance of InterfaceDef objects. It enables a full 
description of the interface in one step. The description is given as the return 
value of the special operation InterfaceDef::describe_interface(). Further 
details are given in the Orbix  Programmer�s Reference Java Edition.

Type Interfaces in the Interface Repository
A number of repository interfaces are used to represent definitions of types in 
the Interface Repository, as follows: 

� StructDef

� UnionDef

� EnumDef

� AliasDef

� InterfaceDef

� PrimitiveDef 

� StringDef

� SequenceDef 

� ArrayDef

This property is independent of, and overlaps with, the properties of 
containment. It is useful to represent this property by inheriting these objects 
from an abstract base interface called IDLType. 

This is defined as follows:

// IDL
// In module CORBA.
interface IDLType : IRObject {

readonly attribute TypeCode type;
};

This base interface defines a single attribute giving the TypeCode of the defined 
type. This is also useful for referring to the type interfaces collectively.

The type interfaces can be classified as either named or unnamed types.
 366



Th e  I n t e r f a c e  R epo s i t o r y
Named Types

The named type interfaces are as follows: 

� StructDef

� UnionDef

� EnumDef

� AliasDef

� InterfaceDef

For example, consider the following IDL definition:

// IDL
enum UD {UP, DOWN};

This effectively defines a new type UD which for use wherever an ordinary type 
might appear. It is represented by an EnumDef object. More obviously, the IDL 
definition

typedef string accountName;

gives rise to the new type accountName.

Both these interfaces are examples of named types. This means that their 
definitions give rise to a new type identifier, such as �UD� or �accountName� 
which can be reused throughout the IDL file.

The named types StructDef, UnionDef, EnumDef and AliasDef can be grouped 
together by deriving from the abstract base interface TypedefDef.

Note: It is important to note that interface TypedefDef does not directly 
represent an IDL typedef. The interface AliasDef, which derives from 
TypedefDef, is the interface representing an IDL typedef.

The abstract interface TypedefDef is defined as follows:

// IDL
// In module CORBA.
interface TypedefDef : Contained, IDLType {
};
367



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
The definition of TypedefDef is trivial and causes the four named interfaces to 
derive from Contained in addition to IDLType. The interfaces inherit the 
attribute Contained::name, which gives the name of the type, and the operation 
Contained::describe().

For example the definition of enum UD gives rise to an EnumDef object that has an 
EnumDef::name of �UD�. Calling EnumDef::describe() gives access to a 
description of type TypeDescription. The type member of the 
TypeDescription gives the TypeCode of the enum. The TypedefDef interfaces 
all share the same description structure TypeDescription.

The interface InterfaceDef is also a named type but it is a special case. Its 
inheritance is given as follows:

// IDL
// In module CORBA.
interface InterfaceDef : Contained, Container, IDLType 
{

...
};

It has three base interfaces. Since you can use IDL object references in just the 
same way as any ordinary type the interface IntefaceDef inherits from 
IDLType. For example, the definition interface account {...} gives rise to an 
InterfaceDef object. This object has an InterfaceDef::name that is account, 
and this name can be reused as a type.

Unnamed Types

The unnamed type interfaces are as follows:

� PrimitiveDef

� StringDef

� SequenceDef 

� ArrayDef

These interfaces are not strictly necessary but offer an approach to querying the 
types in the repository that operates in parallel to the use of TypeCodes.

There are two independent approaches to querying types in the repository. The 
traditional approach is to provide TypeCode attributes whenever necessary so 
that all the types defined in the repository can be determined. However the 
 368



Th e  I n t e r f a c e  R epo s i t o r y
Interface Repository also provides a complete object-oriented approach for 
querying the types. Consider the following example which allows you to 
determine the return type of getLongAddress():

interface Mailer {
sequence<string> getLongAddress();

};

The definition of getLongAddress() maps to an object of type OperationDef in 
the repository. One way of querying the return type is to call 
OperationDef::result_def which returns an object reference of type 
IDLType. You can determine the type of object returned by result_def by 
obtaining the attribute OperationDef::def_kind inherited from IRObject.

In this example, the object reference is of type SequenceDef corresponding to 
the sequence<string> return type. To query the returned SequenceDef object 
further, obtain the attribute SequenceDef::element_type_def. This returns an 
IDLType which is a PrimitiveDef object. This PrimitiveDef object, in turn, 
has an attribute PrimitiveDef::kind that has a value of pk_string. At this 
stage the return type is fully determined to be a sequence<string>.

The alternative approach is to obtain the TypeCode that retrieves the complete 
type information in a single step at the outset. For example, the OperationDef 
object associated with getLongAddress() has an attribute 
OperationDef::result that gives the TypeCode of sequence<string>.

Retrieving Information from the Interface 
Repository

There are three ways to retrieve information from the Interface Repository:

1. Given an object reference, you can find its corresponding InterfaceDef 
object. You can determine from this all of the details of the object�s 
interface definition.

2. Obtain an object reference to a Repository, the full contents can then 
be navigated.

3. Given a RepositoryId, a reference to the corresponding object in the 
Interface Repository can be obtained and interrogated.

These are explained in more detail in the following three subsections.
369



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
org.omg.CORBA.Object._get_interface()

Given an object reference to any CORBA object, for example, objVar, you can 
acquire an object reference to an InterfaceDef object as follows:

import org.omg.CORBA.InterfaceDef;
InterfaceDef ifVar = objVar._get_interface();

The member function _get_interface() returns a reference to an object 
within the Interface Repository. See the example in �Retrieving Information from 
the Interface Repository� on page 369 for an illustration of how to use 
_get_interface().

For _get_interface() to work correctly the program must be set up to use 
the Interface Repository as described in �Using the Interface Repository� on 
page 349.

Browsing or Listing a Repository

When you obtain a reference to a Repository object, you can then browse or 
list the contents of that repository. There are two ways to obtain such an object 
reference as follows:

� Using resolve_initial_references()

� Using bind()

You can call the resolve_initial_references() operation on the ORB 
(org.omg.CORBA.ORB), passing the string �InterfaceRepository� as a 
parameter. This returns an object reference of type org.omg.CORBA.Object. 
You can then narrow this object reference to a org.omg.CORBA.Repository 
reference.

Alternatively, you can use the Orbix Java bind() function, as follows:

import org.omg.CORBA.Repository;
import org.omg.CORBA.RepositoryHelper;
Repository repVar =

RepositoryHelper.bind
("IDL\\iona.com/Repository:IFR�, �hostname�);

The operations which enable you to browse the Repository are provided by 
the interface org.omg.CORBA.Container. There are four provided as follows:

� contents()
 370



Th e  I n t e r f a c e  R epo s i t o r y
� describe_contents()

� lookup()

� lookup_name()

The last two are particularly useful as they provide a facility for searching the 
Repository. The IDL for the search operations is:

// IDL
// In module CORBA.
interface Container : IRObject {

...
Contained lookup(in ScopedName search_name);
...
ContainedSeq lookup_name(

in Identifier search_name,
in long levels_to_search,
in DefinitionKind limit_type,
in boolean exclude_inherited);

...
};

The operation lookup() provides a simple search facility based on a 
ScopedName. For example, consider the case where Container is a ModuleDef 
object representing finance. Passing the string �account::balance� to 
ModuleDef.lookup() then retrieves a reference to an AttributeDef object 
representing balance. This is an example of using a relative ScopedName. 
However, lookup() is not restricted to searching a specific Container. By 
passing an absolute ScopedName as an argument it is possible to search the 
whole Repository given any Container as a starting point. For example, given 
the InterfaceDef for account you can pass the string 
�::finance::bank::newAccount� to InterfaceDef.lookup to find the 
newAccount() operation lying within the scope of the interface bank.

The operation lookup_name() provides a different approach to searching a 
Container. Instead of the ScopedName it specifies only a simple name to search 
for within the Container. Because more than one match is possible with a given 
simple name, the lookup() operation can return a sequence of Contained 
objects. 
371



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
The parameters to lookup_name() are as follows:

Note: You cannot use lookup_name() to search outside of the given 
Container.

Finding an Object Using its Repository ID

You can pass a Repository ID (of type org.omg.CORBA.RepositoryId) as a 
parameter to the lookup_id() operation of an object reference for a repository 
(of type org.omg.CORBA.Repository). This returns a reference to an object of 
type Contained, which you can narrow to the correct object reference type.

Using the Interface Repository with the Dynamic 
Invocation Interface

When the Interface Repository is used in conjunction with the Dynamic 
Invocation Interface (DII) it is frequently necessary to retrieve type information 
for the parameters of an operation. 

search_name Specifies the simple name of the object to search 
for. The Orbix Java implementation also allows 
the use of �*� which matches any simple name.

levels_to_search Specifies the number of levels of nesting to be 
included in the search. If set to 1, the search is 
restricted to the current object. If set to -1, the 
search is unrestricted.

limit_type Limits the objects which are returned. If it is set 
to dk_all, all objects are returned. If set to the 
DefinitionKind for a particular Interface 
Repository kind, only objects of that kind are 
returned. For example, if operations are of 
interest, you can set limit_type to 
dk_operation.

exclude_inherited If set to true, inherited objects are not 
returned. If set to false, all objects, including 
those inherited, are returned.
 372



Th e  I n t e r f a c e  R epo s i t o r y
The function org.omg.CORBA.ORB.create_operation_list() is a convenient 
function that obtains the types of all the parameters in a single step. Refer to the 
API Reference in the Orbix  Programmer�s Reference Java Edition for more 
details. 

Example of Using the Interface Repository
This section presents some sample code that uses the Interface Repository.

The following code prints the list of operation names and attribute names 
defined on the interface of a given object:

import org.omg.CORBA.*;
import org.omg.CORBA.ORB;
import org.omg.CORBA.InterfaceDefPackage.*;
try {

//
// Bind to the Interface Repository server
//
Repository ifr_repository = RepositoryHelper.bind
("IDL\\iona.com/Repository:IFR", �hostname�);
//
// Get the interface definition
//
Contained contained = ifr_repository.lookup( "grid" );
InterfaceDef interfaceDef = 

InterfaceDefHelper.narrow ( contained );
// Get a full interface description
FullInterfaceDescription description =

interfaceDef.describe_interface();
// Now print out the operation names:
System.out.println "The operation names are: ";
for( int i = 0; i < description.operations.length; i++ )

System.out.println( "-> " + description.operations[i].name 
);

// Now print out the attribute names:
System.out.println "The attribute names are: ";
for( int i = 0; i < description.attributes.length; i++ )

System.out.println( "-> " + description.attributes[i].name 
);
}

373



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
catch ( SystemException ex ){
// Handle exceptions

}

You can extend the example by finding the OperationDef object for an 
operation called do it. You can use the Container.lookup_name() as follows:

Contained[] opSeq = null;
OperationDef opRef = null;
try
{

interfaceDef.lookup_name 
( "doit", 1, DefinitionKind.dk_Operation, 0 );

if( opSeq.length != 1 ){
System.out.println

( "Incorrect lookup name for lookup_name() " );
System.exit(1);

}
//
// Narrow the result to be an OperationDef
//
opRef = OperationDefHelper.narrow( opSeq[0] );
.......

}
catch ( SystemException ex )
{

// Handle Exceptions
}

Repository IDs

Each Interface Repository object describing an IDL definition has a Repository 
ID. A Repository ID globally identifies an IDL module, interface, constant, 
typedef, exception, attribute or operation definition. A Repository ID is simply a 
string identifying the IDL definition. 

Three formats for Repository IDs are defined by CORBA. However Repository 
IDs are not, in general, required to be in one of these formats. The formats 
defined by CORBA are described as follows.
 374



Th e  I n t e r f a c e  R epo s i t o r y
OMG IDL Format

This format is derived from the IDL definition�s scoped name. It contains three 
components which are separated by colons (�:�) as follows:

IDL:<identifier/identifier/identifier/...>:<version 
number>

The first component identifies the Repository ID format as the OMG IDL 
format.

The second component consists of a list of identifiers. These identifiers are 
derived from the scoped name by substituting �/� instead of �::�. 

The third component contains a version number of the format:

<major>.<minor>

Consider the following IDL definitions:

// IDL
interface account {

attribute float balance;
void makeLodgement(in float amount);

};

An IDL format Repository ID for the attribute account::balance based on 
these definitions is:

IDL:account/balance:1.0

This is the format of the Repository ID used by default in Orbix Java.

DCE UUID Format

The DCE UUID format is:

DCE:<UUID>:<minor version number>

LOCAL Format

Local format IDs are intended to be used locally within an Interface Repository 
and are not intended to be known outside that repository. They have the 
format:

LOCAL:<ID>
375



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Local format Repository IDs can be useful in a development environment as a 
way to avoid conflicts with Repository IDs using other formats.

Pragma Directives

You can control Repository IDs using pragma directives in an IDL source file. 
These pragmas allow you control over the format of a Repository ID for IDL 
definitions.

At present Orbix Java supports the use of a pragma that allows you to set the 
version number of the Repository ID. In the present implementation of the 
Interface Repository you should only use one version number per Interface 
Repository.

Version Pragma

You can specify a version number for an IDL definition Repository ID (IDL 
format) using a version pragma. The version pragma directive takes the format:

#pragma version <name> <major>.<minor>

The <name> can be a fully scoped name or an identifier whose scope is 
interpreted relative to the scope in which the pragma directive is included. 

If you do not specify a version pragma for an IDL definition, the version number 
defaults to 1.0. Thus the following definitions:

// IDL
module finance {

interface account {
...

};
 #pragma version account 2.5

};

yield the following Repository IDs:

IDL:finance:1.0
and
IDL:finance/account:2.5
 376



Th e  I n t e r f a c e  R epo s i t o r y
It is important to realize that #pragma version does not only affect Repository 
IDs. If #pragma is used to set the version of an interface, the version number is 
also embedded in the stringified object reference. A client must bind to a server 
object whose interface has a matching version number. If the IDL interface on 
the server side has no version, bind() does not require matching versions.
377



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
 378



 21
Service Contexts

Service contexts provide a means of passing service-specific 
information as part of IIOP message headers. This chapter describes 
Orbix Java APIs that allow you to register handlers that intercept IIOP 
requests and replies, and to store and retrieve service contexts. 

A service context consists of a unique ID and a sequence of octets. Its structure 
in IDL can be outlined as follows:

// IDL
module IIOP {

typedef unsigned long ServiceId;

struct ServiceContext {
ServiceId context_id;
sequence<octet> context_data;

};

typedef sequence<ServiceContext> ServiceContextList;

};

The context_id is a unique ID by which a particular service context is 
recognized. The context_data octet sequence is the part of the context 
containing the data. 

Note: Service contexts in Orbix Java can only be used over IIOP.
379



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
The Orbix Java Service Context API
The Orbix Java API for service contexts comprises the following:

� Service context handlers.

� Service context lists.

� ORB interfaces.

Service Context Handlers

The ServiceContextHandler class is the base class from which you derive 
handlers for a particular ServiceContext. Each handler has a unique ID. This 
corresponds to the ID of the particular ServiceContext used. You should 
register a handler on both the client and the server for each ServiceContext. 
Refer to �ORB Interfaces� on page 381 for more details.

The ServiceContextHandler base class has the following structure: 

// Java 

public abstract class  ServiceContextHandler { 

// Fields
public int m_serviceContextId;
public Object m_serviceContextObject;

// Constructors
public ServiceContextHandler(int);

// Methods
public int _getID();
public Object _getObject();
public void _setObject(Object);
public abstract boolean incomingReplyHandler(Request);
public abstract boolean incomingRequestHandler(Request);
public abstract boolean outboundReplyHandler(Request);
public abstract boolean outboundRequestHandler(Request);

}

 380



S e r v i c e  C on t e x t s
Service Context Lists

A ServiceContextList is a field in an IIOP message header containing all the 
service context data associated with a request or reply. 
A ServiceContextList is implemented as a sequence of ServiceContexts. 
ServiceContextLists support both per-object and per-request service context 
handlers. 

The ServiceContextList class has the following structure:

public class  ServiceContextList {
// Constructors
public ServiceContextList();
public ServiceContextList(ServiceContext[]);

// Methods
public void add(int, byte[]);
public final ServiceContext get(int);
public final ServiceContext[] getList();
public void register(ServiceContext);
public final int size();

}

ORB Interfaces

Orbix Java provides APIs in class IE.Iona.OrbixWeb.CORBA.ORB to allow you to 
enable service contexts and to register service context handlers with the ORB. 

Enabling Service Contexts

The following ORB API allows you to enable ServiceContexts on the ORB:

public void enableServiceContextList(boolean state);

You must call this method to use service contexts.
381



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Registering Service Context Handlers

The following ORB APIs allow you to register the service context handler with 
the ORB:

// Java

public class ORB {
...
public void registerPerRequestServiceContext

(ServiceContextHandler CtxHandler);

public void unregisterPerRequestServiceContext
 (int CtxHandlerId);

public void registerPerObjectServiceContext
(ServiceContextHandler CtxHandler,

org.omg.CORBA.Object HandledObject);

public void unregisterPerObjectServiceContext
(int CtxHandlerId)

}

Per-Request Handlers

Registering a handler as per-request adds its request/reply handler methods to a 
ServiceContextList (SCL). The handler is then called at the appropriate point 
for the request.

Per-Object Handlers

Registering a handler as per-object also adds its request/reply handler methods 
to a ServiceContextList. The handler is then called for requests /replies 
associated with the specified target object.
 382



S e r v i c e  C on t e x t s
Using Service Contexts in Orbix Java 
Applications

Service contexts in Orbix Java are based on two models:

ServiceContext Per Request Model

This section gives an overview of implementing per-request service contexts in 
Orbix Java applications. 

Client Side

To add service context information to all requests leaving a client application, 
perform the following steps:

1. Call the enableServiceContextList() method on the ORB to enable 
ServiceContexts.

2. In the user code, derive a class from the base class 
ServiceContextHandler; for example, myServiceContextHandler.

3. Create an instance of this class within the client, and pass it a unique 
SrvCntxtId.

4. Register this handler instance with the ORB using the following method:

void registerPerRequestServiceContextHandler
(ServiceContextHandler CtxHandlerId)

This registration means, for example, if any outgoing requests leave the 
client, the following method is called: 

myServiceContextHandler.outboundRequestHandler
(Request req);

Service context per-request. In this model, service contexts are 
handled on all requests and replies 
entering and leaving an ORB.

Service context per-object. In this model, only service context 
information is handled for requests 
and replies going to or coming from a 
particular object.
383



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
This method takes the request that caused the invocation as a parameter. 
The request is interrogated by the user handler class showing the 
operation name.

Similarly, for incoming requests, incomingReplyHandler() is called.

5. Create a new instance of ServiceContext in the user code of the 
handler.

6. Populate the context_data part of the ServiceContext with 
information, and add it to the ServiceContextList. 

This ServiceContextList is marshalled with the request message and is 
passed across the wire to the server.

Server Side 

The server side design is similar to the client side. It creates and registers 
handlers, and re-implements the methods from the serviceContextHandler 
class. 

To receive service context information from all requests entering a server, 
perform the following steps: 

1. Call the enableServiceContextList() method to on the ORB enable 
ServiceContexts.

2. In the user code, derive a class from the base class 
ServiceContextHandler; for example, myServiceContextHandler.

3. Create an instance of this class within the server passing it the 
SrvCntxtId. You can use the same code on both the server and client 
sides. 

4. Register this handler instance with the ORB using: 

void registerPerRequestServiceContextHandler
(ServiceContextHandler CtxHandlerId);

This registration means that when a request comes into the server 
address space, the ServiceContextList in the request header is 
unmarshalled. This means that only the relevant handlers are called via 
the following method:

public boolean incomingRequestHandler(Request req);

If there is a ServiceContext in the request header list that has the same 
ID as the registered handler, the incomingRequestHandler() method is 
called. 
 384



S e r v i c e  C on t e x t s
5. Using the incomingRequestHandler() method, take a copy of the 
ServiceContext required, and extract the required information, calling 
the necessary code. This information can then be processed.

After the handler has returned, and all other ServiceContext handlers have 
completed, the request continues as normal.

Note: Replies are treated the same as requests. They activate the 
outboundReply() and incomingReply() handlers in the same way.

Per-Request ServiceContextHandler Example 

The service context example in this section sends a String message using a per-
request ServiceContextHandler. 

First, you should place the following code in both your client and your server 
applications:

//java
IE.Iona.OrbixWeb._OrbixWeb.ORB
(orb).enableServiceContextList(true);

mySrvContext = new myServiceContextHandler(5);

IE.Iona.OrbixWeb._OrbixWeb.ORB
(orb).registerPerRequestServiceContextHandler

(mySrvContext);

Second, you can use the following example code to send a String using a per-
request ServiceContextHandler: 

//java
import IE.Iona.OrbixWeb.Features.ServiceContextHandler;
import IE.Iona.OrbixWeb.Features.ServiceContext;
import IE.Iona.OrbixWeb.CORBA.Request;
import IE.Iona.OrbixWeb.CORBA.*;
import IE.Iona.OrbixWeb.*;
import IE.Iona.OrbixWeb.CORBA.Any;
import IE.Iona.OrbixWeb.CORBA.ORB;
385



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
public class myServiceContextHandler 
extends ServiceContextHandler {

long num = 0;    

// constructor
public myServiceContextHandler(int id) {
 super(id);

System.out.println
("Created ServiceContextHandler");

}

public boolean outboundReplyHandler(Request req) {
return true;}

public boolean outboundRequestHandler(Request req) {
String str = "hello world";
System.out.println("Add Service Context list to

Request \n" + "\ttarget \t" + req.target()
+"\tcalling \t" + req.operation() );

IE.Iona.OrbixWeb.CORBA.Any a = new
IE.Iona.OrbixWeb.CORBA.Any

(_CORBA.IT_INTEROPERABLE_OR_KIND);

a.insert_string(str); 
ServiceContext sc = new ServiceContext();
sc.context_id = _getID();
sc.context_data = str.getBytes();

String str2 = new String(sc.context_data);
/*Byte b = null;
for (int i=0; i < sc.context_data.length; i ++) {

str2 += Byte.toString(sc.context_data[i]);
} */
System.out.println("converted to = " + str2);
req.addServiceContext(sc);

return true;
}

    
public boolean incomingReplyHandler(Request req) {

return true;}
 386



S e r v i c e  C on t e x t s
public boolean incomingRequestHandler(Request req) {
String str = null;
System.out.println("attempting to extract data

from Service Context List on incoming Request
\n" + "\ttarget \t" + req.target() + "\tcalling
\t" + req.operation());

ServiceContext sc = req.getServiceContext
(_getID());

        
IE.Iona.OrbixWeb.CORBA.Any a = 

new IE.Iona.OrbixWeb.CORBA.Any
(_CORBA.IT_INTEROPERABLE_OR_KIND);

a.insert_string(str);
str = new String(sc.context_data);
System.out.println("Extracted from Request \n" +
"\tID \t\t" + sc.context_id + " " + str);

return true;
}

}

ServiceContext Per-Object Model

This section gives an overview of implementing per-object service contexts in 
Orbix Java applications.

Client Side

To add ServiceContexts to requests leaving the client for a particular object, 
you must also create and register handlers. This involves the following:

� The registerPerObjectServiceContextHandler() method returns 
the handler and object reference. 

� The object reference is stored in a Vector array.

� Each ServiceContext in the ServiceContextList has the same ID as 
one of the handlers registered for that object. 

� Only one ServiceContextList is marshalled and sent across on the 
wire.
387



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Server Side

To receive ServiceContexts from requests entering the server for a particular 
object you must create and register handlers. The following stages are involved:

� An object reference is obtained and stored in a Vector array. 

� The incomingRequest() method is called for any ServiceContext IDs 
that correspond to any of the handlers registered. 

Service Context Main Components

The ServiceContext per-request and ServiceContext per-object models 
comprise a number of common components. This section defines each 
component and explains how these components interact.

ServiceContextHandler

This base class allows users to define their own handlers for a particular 
Context_Id. For each ServiceContext you wish to handle, there is a handler 
registered on both the client and on the server. Each handler is recognized by its 
ID, which corresponds to the ID of the ServiceContext it handles.

The ServiceContextHandler base class includes the following methods:

♦ incomingRequestHandler()

This method is called when an incoming request arrives in a server at 
the point where the ServiceContextList has been unmarshalled. It 
accesses the unmarshalled ServiceContextList, passing the 
appropriate Context_Id required to access a specific 
ServiceContext. 

♦ outboundRequestHandler()

This method is called when an outgoing request is being marshalled in 
the client. It can add a ServiceContext to the ServiceContextList 
for marshalling. 

♦ incomingReplyHandler()

This method is called when an incoming reply arrives in a client at the 
point where the ServiceContextList has been unmarshalled. It 
accesses the unmarshalled ServiceContextList, passing the 
 388



S e r v i c e  C on t e x t s
appropriate ServiceContext_Id required to access a specific 
ServiceContext. 

♦ outboundReplyHandler()

This method is called when an outgoing reply is being marshalled in 
the server. It can add a ServiceContext to the ServiceContextList 
for marshalling. 

PerRequestServiceContextHandler

This is a SerivceContextHandler that has been registered as a handler for all 
requests on the client or server side. The user derives from the base class, and 
registers the handler. The handler is recognized by its ID. This corresponds to 
the ID of the ServiceContext it handles.

PerObjectServiceContextHandler

This is a ServiceContextHandler that has been registered as a handler for all 
requests to a particular object on the client or server side. The user derives 
from the base class and registers the handler. The handler is recognized by its 
ID, which corresponds to the ID of the ServiceContext it handles.

PerRequestServiceContextHandlerList

This is a list of service context handlers. For all requests or replies leaving an 
address space, all outbound methods in all handlers are called. This is because 
you do not know which ServiceContext to add to each request. 

For all incoming requests or replies in the client address space, only the 
incoming methods of the handlers with IDs corresponding to actual 
ServiceContexts are called.

Similarly, on the server side, for all outgoing requests or replies, only the 
outgoing methods of the handlers whose IDs corresponds to actual 
ServiceContexts in the request or reply header are called.
389



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
PerObjectServiceContextHandlerList

This works the same way as PerRequestServiceContextHandlerList except 
that only requests and replies relating to a particular object are both tagged and 
have their ServiceContext data investigated. 
PerRequestServiceContextHandlerList is actually a list indexed by both the 
context ID and the omg.org.CORBA.Object it references.

Service Context Handlers and Filter Points
Service context handlers also interact with Orbix Java filter points. In Orbix Java, 
there are ten filter points, including the in reply and out reply failure filter points. 
Refer to �Filters�for more details. The service context mechanism provides four 
more points for interaction with requests and replies in a typical invocation. 

Figure 21.1 shows the position of the ServiceContextHandlers in an 
invocation, in the subsequent reply, and also the order in which they are called.

If an exception is thrown in any of the outRequest() pre or post marshall filter 
points on the client side, the incomingReplyHandler() is not called.

Oneway calls do not return anything, thus they do not call the client-side 
inboundReplyHandler().
 390



S e r v i c e  C on t e x t s
 Client Server

Figure 21.1: ServiceContext Handlers and Filter Points

outRequestPostMarshall

outRequestPreMarshall

outboundRequestHandler

incomingRequestHandler

inRequestPreMarshall

inRequestPostMarshall

outboundReplyHandler

outReplyPreMarshall

outReplyPostMarshall

outReplyFailure

inReplyFailure

inReplyPostMarshall

inReplyPreMarshall

incomingReplyHandler
391



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
 392



Part V
Advanced Orbix Java
Programming





 22
Filters

Orbix Java allows you to specify that additional code be executed 
before or after the normal code of an operation or attribute. This 
support is provided by allowing applications to create filters, which 
can perform security checks, provide debugging traps or information, 
maintain an audit trail, and so on. 

There are two forms of filters in Orbix Java: 

� Per-process filters.

� Per-object filters.

Per-process filters monitor all operation and attribute calls leaving or entering a 
client�s or server�s address space, irrespective of the target object. Per-object 
filters apply to individual objects. Both of these filter types are illustrated in 
Figure 22.1 on page 396. This chapter briefly introduces each filter type, and 
then describes each in detail.
395



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Figure 22.1: Per-Process and Per-Object Filtering

Multiple ORB Support

All parameterized calls to ORB.init()create a separate ORB. Each newly-
created ORB instance is completely independent; for example, in terms of its 
configuration and listener ports. Orbix Java allows you to associate filters with a 
particular ORB instance. 

By default, Orbix Java associates filters with the first fully-functional ORB created 
in a process. To associate a filter with a particular ORB instance, use the 
following constructor for your derived class: 

protected Filter(org.omg.CORBA.ORB orb, boolean installme);

Refer to the Orbix  Programmer�s Reference Java Edition for details of 
org.omg.CORBA.ORB.init() and class 
IE.Iona.OrbixWeb.Features.Filter.

Orbix Java also provides constructors that associate a ThreadFilter or an 
AuthenticationFilter with a particular ORB instance. Refer to package 
IE.Iona.OrbixWeb.Features in the Orbix  Programmer�s Reference Java 
Edition for more details.

Objects

o1 o2 o3

per-object filter
attached to object o2

chain of per-process
filters

Client or Server Process
 396



F i l t e r s
Introduction to Per-Process Filters
Per-process filters monitor all incoming and outgoing operation and attribute 
requests to and from an address space. Each process can have a chain of such 
filters, with each element of the chain performing its own actions. You can add a 
new element to the chain by performing the following two steps:

� Define a class that inherits from class Filter (defined in package 
IE.Iona.OrbixWeb.Features).

� Create a single instance of the new class.

Pre-Marshalling Filter Points

Each filter of the chain can monitor ten individual points during the transmission 
and reception of an operation or attribute request, as shown in Figure 22.2 on 
page 399. The four most commonly-used filter points are:

� outRequestPreMarshal (in the caller�s address space).

This filter monitors the point prior to the transmission of an operation or 
attribute request from the filter�s address space to any object in another 
address space. Specifically, it monitors the point before the operation�s 
parameters are added to the request packet.

� inRequestPreMarshal (in the target object�s address space).

This filter monitors the point after an operation or attribute request has 
arrived at the filter�s address space, but before it has been processed. 
Specifically, it monitors the point before the operation has been sent to 
the target object and before the operation�s parameters have been 
removed from the request packet.

� outReplyPreMarshal (in the target object�s address space). 

This filter monitors the point after the operation or attribute request has 
been processed by the target object, but before the result has been 
transmitted to the caller�s address space. Specifically, it monitors the 
point before an operation�s out parameters and return value have been 
added to the reply packet.
397



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
� inReplyPreMarshal (in the caller�s address space).

This filter monitors the point after the result of an operation or attribute 
request has arrived at the filter�s address space, but before the result has 
been processed. Specifically, it monitors the point before an operation�s 
out parameters and return value have been removed from the reply 
packet.

Post-Marshalling Filter Points

These four monitor points are as follows:

� outRequestPostMarshal (in the caller�s address space). 

This filter operates the same way as outRequestPreMarshal, but after 
the operation�s parameters have been added to the request packet.

� inRequestPostMarshal (in the target object�s address space). 

This filter operates the same way as inRequestPreMarshal, but after the 
operation�s parameters have been removed from the request packet.

� outReplyPostMarshal (in the target object�s address space). 

This filter operates the same way as outReplyPreMarshal, but after the 
operation�s out parameters and return value have been added to the 
reply packet.

� inReplyPostMarshal (in the caller�s address space). 

This filter operates the same way as inReplyPreMarshal, but after the 
operation�s out parameters and return value have been removed from 
the reply packet.

Failure Points

Two additional monitor points deal with exceptional conditions:

� outReplyFailure (in the target object�s address space). 

This filter is called if the target object raises an exception, or if any 
preceding filter point (�in request� or �out reply�) raises an exception or 
uses its return value to indicate that the call should not be processed any 
further. 
 398



F i l t e r s
� inReplyFailure (in the caller�s address space). 

This filter is called if the target object raises an exception or if any 
preceding filter point (�out request�, �in request�, �out reply� or �in reply�) 
raises an exception, or uses its return value to indicate that the call 
should not be processed any further. 

Once an exception is raised or a filter point uses its return value to indicate that 
the call should not be processed further, no further monitor points are called 
(with the exception of the two failure monitor points). If this occurs in the 
caller�s address space, InReplyFailure is called. If it occurs in the target 
object�s address space, outReplyFailure and inReplyFailure are both called. 

All per-process monitor points (eight marshalling points and two failure points) 
are shown in Figure 22.2 on page 399.

Figure 22.2: Per-Process Monitor Points

outRequestPostMarshal

inReplyPostMarshal

inReplyPreMarshal

outReplyPostMarshal

inRequestPostMarshal

outReplyPreMarshal

target

outReplyFailure

object

inReplyFailure

Client 
Process

Server
Process

outRequestPreMarshal request

reply

calling
object

inRequestPreMarshal
399



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
A particular filter on the per-process filter chain may perform actions for any 
number of these filter points, although it is common to handle four filter points, 
for example:

� outRequestPreMarshal

� inRequestPreMarshal

� outReplyPreMarshal

� inReplyPreMarshal

Along with monitoring incoming and outgoing requests, a filter on the client side 
and a filter on the server side can cooperate to pass data between them, in 
addition to the normal parameters of an operation (or attribute) or call. For 
example, you can use the �out� filter points of a filter in the client to insert extra 
data into the request package; for example, using outRequestPreMarshal. You 
can use the �in� filter points of a filter in the server to extract this data, for 
example, using inRequestPreMarshal.

Each filter point must indicate how the handling of the request should be 
continued once the filter point itself has completed. Specifically, a filter point can 
determine whether or not Orbix Java should continue to process the request or 
return an exception to the caller.

Note: Per-process filters are not informed of calls between collocated objects. 
This is because the filters are applied only when a call leaves or arrives at 
an address space. 

You can use a special form of per-process filter to pass authentication 
information from a client to a server. This type of filter is called an authentication 
filter. This supports the verification of the identity of a caller, a fundamental 
requirement for security. Refer to �Defining an Authentication Filter� on 
page 412 for more details.
 400



F i l t e r s
Introduction to Per-Object Filters
Per-object filters are associated with a particular object, and not with all objects 
in an address space as in per-process filtering. Unlike per-process filters, per-
object filters apply to intra-process operation requests. The following filtering 
points are supported:

� Per-object pre

This filter applies to operation invocations on a particular object�before 
they are passed to the target object. 

� Per-object post

This filter is applied to operation invocations on a particular object�after 
they have been processed by the target object.

A per-object pre-filter can indicate, by raising an exception, that the actual 
operation call should not be passed to the target object.

To create per-object filters, perform the following steps:

1. Derive a new class from the IDL-generated Operations class. For 
example, inherit from class _GridOperations for an object implementing 
interface Grid.

2. Create an instance of this new class. This instance behaves as a per-object 
filter when installed.

3. Install this filter object as either a pre-filter or as a post-filter to a 
particular target object.

It is important to realize that a per-object filter is either a pre-filter or a post-
filter. In contrast, a single per-process filter can perform actions for any or all of 
its eight monitor points. 

Note: You can only use per-object filtering if it was enabled when the 
corresponding IDL interface was compiled by the IDL compiler. 
Refer to �IDL Compiler Switch to Enable Object Filtering� on page 415.
401



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
The parameters to an IDL operation request are readily available for both pre 
and post per-object filters. Any in and inout parameters are valid for pre filters; 
in, out and inout parameters and return values are valid for post filters. In 
contrast, for per-process filters, parameters to the operation request are not 
available in general.

The per-process inRequestPreMarshal and inRequestPostMarshal filters are 
applied before any per-object pre-filter. The per-object post-filters are applied 
before any per-process outReplyPreMarshal and outReplyPostMarshal filters.

Using Per-Process Filters
To install a per-process filter, define a class deriving from the 
IE.Iona.OrbixWeb.Features.Filter class, and redefine one or more of its 
methods:

outRequestPreMarshal() Operates in the caller�s address space before 
outgoing requests (before marshalling).

outRequestPostMarshal() Operates in the caller�s address space before 
outgoing requests (after marshalling).

inRequestPreMarshal() Operates in the receiver�s address space before 
incoming requests (before marshalling).

inRequestPostMarshal() Operates in the receiver�s address space before 
incoming requests (after marshalling).

outReplyPreMarshal() Operates in the receiver�s address space before 
outgoing replies (before marshalling).

outReplyPostMarshal() Operates in the receiver�s address space before 
outgoing replies (after marshalling).

inReplyPreMarshal() Operates in the caller�s address space before 
incoming replies (before marshalling).

inReplyPostMarshal() Operates in the caller�s address space before 
incoming replies (after marshalling).
 402



F i l t e r s
Each of the eight marshalling methods take a single parameter. This is the 
request on which the filtering is to take place. The return value is boolean, 
indicating whether or not Orbix Java should continue to make the request. For 
example:

public boolean outRequestPreMarshal(org.omg.CORBA.Request r)

Both failure methods take two parameters: the request on which the filtering 
was to take place, and the exception which representing the failure of that 
request. The failure methods have a void return type. Refer to the API 
Reference in the Orbix  Programmer�s Reference Java Edition for full details of 
these methods.

You can obtain the details of the request being made by calling methods on the 
Request parameter. See �An Example Per-Process Filter� on page 404 for more 
details. 

The constructor of class Filter adds the newly created filter object into the 
per-process filter chain. You cannot create direct instances of Filter; its 
constructor is protected to enforce this. Classes derived from Filter normally 
have public constructors.

The marshalling methods return a value which indicates how the call should 
continue. Redefinitions of these methods in a derived class should retain the 
same semantics for the return value as specified in the relevant entries in the 
Orbix Java Edition Programmer�s Reference.

outReplyFailure() Operates in the receiver�s address space if a 
preceding filter point raises an exception or 
indicates that the call should not be processed 
further or if the target object raises an 
exception.

inReplyFailure() Operates in the caller�s address space if the 
target object raises an exception or a preceding 
filter point raises an exception or indicates that 
the call should not be processed further.
403



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
You should define derived classes of Filter and redefine some subset of the 
filter point methods to perform the required filtering. If you do not redefine any 
of the non-failure monitoring methods in a derived class of Filter, the following 
implementation is inherited in all cases:

// Java
{ return true; } // Continue the call.

The failure filter methods inherit the following implementation:

// Java
{ return; }

An Example Per-Process Filter

Consider the following simple example of a per-process filter:

// Java

import IE.Iona.OrbixWeb.Features.Filter;
import org.omg.CORBA.Request;
import org.omg.CORBA.ORB;
import org.omg.CORBA.SystemException;

ORB orb = ORB.init(args, null); 

public class ProcessFilter extends Filter {
public boolean outRequestPreMarshal (Request r) {

String s, o;
try {

s = orb.object_to_string((r.target ());
o = r.operation ();

}
catch (SystemException se) {

...
}
System.out.println ("Request outgoing to "+ s 

+ " with operation name "+ o + ".");
return true; // continue the call

}

boolean inRequestPreMarshal (Request r) {
String s, o;
 404



F i l t e r s
try {
s = orb.object_to_string(r.target ());
o = r.operation ();

}
catch (SystemException se) {

...
}
System.out.println ("Request incoming to "+ s 

+ " with operation name " + o + ".");
return true; // continue the call

}

boolean outReplyPreMarshal (Request r) {
String o;
try {

o = r.operation ();
}
catch (SystemException se) {

...
}
System.out.println ("Incoming operation "

+ o + " finished.");
return true; // Continue the call.

}

boolean inReplyPreMarshal (Request r) {
String o;
try {

o = r.operation ();
}
catch (SystemException se) {

...
}
System.out.println ("Outgoing operation "

+ o + " finished.");
return true; // Continue the call.

}

void outReplyFailure (Request r, Exception ex) {
String o;
try {

o = r.operation ();
}

405



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
catch (SystemException se) {
...

}
System.out.println ("Operation " + o 

+ " raised exception.");
return;

}

void inReplyFailure (Request r, Exception ex) {
String o;
try {

o = r.operation ();
}
catch (SystemException se) {

...
}
System.out.println ("Operation " + o 

+ " raised exception.");
return;

}
}

Filter classes can have any name, however they must inherit from the class 
Filter. This class has a protected default constructor. In the example, 
ProcessFilter is given a parameterless public constructor by Java.

Each filter object method can examine the Request object it receives by calling 
its member functions. However, this examination must be performed in a non-
destructive manner. Modification of the Request instance is only permitted if it 
is to �unwind� modifications made by a corresponding filter at the other end of 
the connection. This process is known as piggybacking. Refer to �Piggybacking 
Extra Data to the Request Buffer� on page 409 for more details. Modification of 
data inserted by the Orbix Java runtime into the Request instance invariably 
causes the request to fail after the filtering stage.
 406



F i l t e r s
Getting Additional Information about Requests

You can obtain additional information about the request by using the filter 
methods. 

For example, you can obtain an instance of 
IE.Iona.OrbixWeb.CORBA.OrbCurrent by including the following code:

import IE.Iona.OrbixWeb.CORBA.OrbCurrent;
import IE.Iona.OrbixWeb._OrbixWeb;
import IE.Iona.OrbixWeb._CORBA;
....
Current curr = _OrbixWeb.ORB(orb).get_current();
OrbCurrent orbcurr = _OrbixWeb.Current(curr); 

You can then call the OrbCurrent() methods on the current instance.
Refer to the description of OrbCurrent() in the API Reference of the Orbix  
Programmer�s Reference Java Edition.

The following methods are of particular interest:

� get_principal()

� get_object()

� get_server()

Installing a Per-Process Filter

To install this per-process filter, you need only create an instance of it:

// Java
ProcessFilter myFilter = new ProcessFilter ();

This object must be created after the call to ORB.init() and before the handling 
of requests.

How to Create a System Exception

Any of the per-process filter points can raise an exception in the normal manner. 
Exceptions have three constructors, as shown in the following example, which 
uses the NO_PERMISSION exception:

public NO_PERMISSION(String reason, int minor,
CompletionStatus completed);
407



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
public NO_PERMISSION(int minor, CompletionStatus completed)
public NO_PERMISSION(String reason)

The reason parameter represents an exception message in text form. When 
using IIOP, the marshalling of this string back to a client is not supported. This is 
because IIOP does not permit exception reason strings to be passed over the 
wire. The client receives, instead, the string �unknown�. The string can be 
marshalled successfully back to the client when using the Orbix Java Protocol.

The minor parameter represents an error code used to look up an error 
message when reconstructing the exception on the client side.

The completed parameter indicates whether the requested operation 
succeeded. Its possible values are COMPLETED_YES, COMPLETED_NO and 
COMPLETED_MAYBE. Refer to the description of CompletionStatus in the API 
Reference of the Orbix  Programmer�s Reference Java Edition.

Rules for Raising an Exception

The following rules apply when a filter point raises an exception:

� Per-process filters can raise only system exceptions. Any such exception 
is propagated by Orbix Java back to the caller. However, raising an 
exception in an inReplyPostMarshal() filter point does not cause the 
exception to be propagated. At that stage, the call is essentially already 
completed, and it is too late to raise an exception.

� If any filter point raises an exception, no further filter points are 
processed for that call, except for one or both of the failure filter points, 
outReplyFailure() and inReplyFailure().

� If one of the filter points

♦ outRequestPreMarshal()

♦ outRequestPostMarshal()
♦ inRequestPreMarshal()

♦ inRequestPostMarshal()

raises an exception, the actual operation call is not forwarded to the 
target application object.

� If the operation implementation raises a user exception, and one of the 
filter points

♦ outReplyFailure()
 408



F i l t e r s
♦ inReplyFailure()

raises a system exception, the system exception is raised in the calling 
client. The user exception is overwritten. 

� If the operation implementation raises a system exception, no further 
filter points, except one or both of outReplyFailure() and 
inReplyFailure() are called for this invocation.

Piggybacking Extra Data to the Request Buffer

One of the outRequest filter points in a client can add extra piggybacked data to 
an outgoing request buffer. This data is then made available to the corresponding 
inRequest filter point on the server side. In addition, one of the �out reply� 
marshalling filter points on a server can add data to an outgoing reply. This data 
is then made available to the corresponding inReply filter point on the client-
side. 

At each of the four �out� marshalling monitor points, you can insert data by using 
an appropriate org.omg.CORBA.portable.OutputStream method for the 
Request parameter, for example:

// Java
import IE.Iona.OrbixWeb._OrbixWeb;
import org.omg.CORBA.Request;
import org.omg.CORBA.portable.OutputStream;
...
int l = 27;
...
try {

OutputStream s = 
_OrbixWeb.Request(r).create_output_stream();

s.write_long (l);
}
catch (SystemException se) {

...
}

409



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
You can extract data at each of the �in� marshalling monitor points, using 
an appropriate org.omg.CORBA.portable.Inputstream method, for 
example:

// Java
import IE.Iona.OrbixWeb._OrbixWeb;
import org.omg.CORBA.Request;
import org.omg.CORBA.portable.InputStream;
...
int j;
...
try {

InputStream =
_OrbixWeb.Request(r).create_input_stream();

j = s.read_long ();
}
catch (SystemException se) {

...

Matching Insertion and Extraction Points

You must ensure that the insertion and extraction points match correctly, 
as follows:

For example, a value inserted by outRequestPreMarshal() must be extracted 
by inRequestPreMarshal(). Unmatched insertions and extractions corrupt the 
request buffer and can cause a program crash.

When only one filter is being used, its outRequestPostMarshal() method can 
insert piggybacked data that is not removed by the corresponding 
inRequestPostMarshal() method on the called side. However, this causes 
problems if more than one filter is being used.

Insertion Point Extraction Point

outRequestPreMarshal() inRequestPreMarshal()

outReplyPreMarshal() inReplyPreMarshal()

outRequestPostMarshal() inRequestPostMarshal()

outReplyPostMarshal() inReplyPostMarshal()
 410



F i l t e r s
Ensuring that Unexpected Extra Data is not Passed

When coding a filter that adds extra data to the request, you should ensure that 
you are communicating with a server that is expecting the extra data. 
Frequently, a filter should add extra data only if the target object is in one of an 
expected set of servers.

For example, 

outRequestPreMarshal()
outRequestPostMarshal()
inRequestPreMarshal()
inRequestPostMarshal()

should include the following code:

// Java
// First find the server name:
import org.omg.CORBA.SystemException;

String impl;

try {
1 impl = (r.target())._get_implementation().toString();

}
catch (SystemException se) {

...
}

if (impl.equals ("some_server")) {
// Can add extra data.

}
else {

// Do not add any extra data.
}

1. It is assumed here that the Request parameter is r.

The method org.omg.CORBA.Object._get_implementation().toString() 
returns the server name of an object reference. In this case, it returns the name 
of the target object.

You should not add extra data when communicating with the Orbix Java 
daemon. The Orbix Java classes may communicate with the daemon process, 
and you must ensure that you do not pass extra data to the daemon. 
411



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Retrieving the Size of a Request Buffer

Sometimes when programming filters you may wish to obtain the size of a 
Request; for example, in order to display trace information about traffic 
between Orbix Java applications. You can obtain this information by invoking the 
method getMessageLength() on the org.omg.CORBA.Request class as follows:

// Java
import IE.Iona.OrbixWeb._OrbixWeb;
import org.omg.CORBA.SystemException;
...
int msgLen;
try {

msgLen = 

_OrbixWeb.Request(r)1.getMessageLength();
}
catch (SystemException se) {...}

Defining an Authentication Filter

Verification of the identity of the caller of an operation is a fundamental 
component of a protection system. Orbix Java supports this by installing an 
authentication filter in every process�s filter chain. This default implementation 
transmits the name of the principal (user name) to the server when the channel 
between the client and the server is first established by bind(). This name is 
also added to all requests at the server side. A server object can obtain the user 
name of the caller by calling the method:

// Java
import IE.Iona.OrbixWeb._CORBA;
...
String name = _CORBA.Orbix.get_principal_string();

You can override the default authentication filter by declaring a derived class of 
AuthenticationFilter and creating an instance of this class. For example, an 
alternative authentication filter could use a ticket-based authentication system 
rather than passing the caller�s user name. 

1.   For further details, see the description of _OrbixWeb.Request() in the API Reference in the 
Orbix  Programmer�s Reference Java Edition.
 412



F i l t e r s
On the client side, a derived AuthenticationFilter class should override the 
outRequestPreMarshal() filter point. If this filter point alters the default 
behavior, the server-side authentication filter point inRequestPreMarshal() 
must be appropriately overridden in all servers with which the client 
communicates.

Using Per-Object Filters
You can attach a pre and/or a post per-object filter to an individual object of a 
given IDL type. Consider the following IDL interface:

// IDL
interface Inc {

unsigned long increment(in unsigned long vin);
};

You can implement this as follows:

// Java
public class IncImplementation

implements _IncOperations {
public int increment (int vin) {

return (vin+1); 
}

}

For example, if you have two objects of this type created, as follows:

// Java
Inc i1, i2;
try {

i1 = new _tie_Inc (new IncImplementation ());
i2 = new _tie_Inc (new IncImplementation ());

}
catch (org.omg.CORBA.SystemException se) {

...
}

you may wish to pre and/or post filter the specific object referenced by i1. To 
achieve this, define one or more additional classes that implement the 
_<Interface>Operations Java interface.
413



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
To perform pre-filtering, you can define a class, for example FilterPre, to have 
the methods and parameters specified in the _IncOperations Java interface:

// Java 
public class FilterPre 

implements _IncOperations {
public int increment (int vin) {

System.out.println 
("*** PRE call with parameter " + vin);

return 0; // Here any value will do.
}

Similarly, to perform post-filtering, you could define a class called FilterPost, as 
follows:

// Java
public class FilterPost

implements _IncOperations {
public int increment (int vin) {

System.out.println 
("*** POST call with parameter " + vin);
return 0; // Here any value will do.

}
}

In these examples, a per-object filter cannot access the object it is filtering. A 
filter can however access the object it is filtering by having a member variable 
that points to the object. You can set up this member using a constructor 
parameter for the filter.

To apply filters to a specific object, do the following:

// Java
// Create two filter objects.
Inc.Ref serverPre, serverPost;

try {
serverPre = new FilterPre ();
serverPost = new FilterPost ();
 414



F i l t e r s
// Attach the two filter objects to 
// the target object pointed to by i1.

((_incSkeleton)i1).__preObject = serverPre;
((_incSkeleton)il).__postObject = serverPost;

It is not always necessary to attach both a pre and a post filter to an object. 

Attaching a pre filter to an object which already has a pre filter causes the old 
filter to be removed and the new one to be attached. The same applies to a post 
filter.

If a per-object pre filter raises an exception in the normal way, the actual 
operation call is not made. Normally this exception is returned to the client to 
indicate the outcome of the call. However, if the pre filter raises the exception 
FILTER_SUPPRESS, no exception is returned to the caller. The caller cannot tell 
that the operation call has not been processed as normal.

You can raise a FILTER_SUPPRESS exception as follows:

// Java
import IE.Iona.OrbixWeb.Features.FILTER_SUPPRESS;
import org.omg.CORBA.CompletionStatus;
...

throw new FILTER_SUPPRESS(0, CompletionStatus.COMPLETED_NO);

In this example, you could use the same filter objects (those pointed to by 
serverPre and serverPost) to filter call to many objects. Other filters, for 
example a filter holding a pointer to the object it is filtering, can only be used to 
filter one object.

IDL Compiler Switch to Enable Object Filtering

You can apply per-object filtering to an IDL interface only if it has been compiled 
with the -F switch to the IDL compiler. By default, -F is not set, so object level 
filtering is not enabled. 
415



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Thread Filters
The class ThreadFilter (in package IE.Iona.OrbixWeb.Features) is a 
special kind of filter that can be used to implement custom threading and 
queueing policies.

This section explains the benefits of multi-threaded clients and servers, and 
describes class ThreadFilter as a mechanism for implementing multi-threaded 
programming with Orbix Java. 

Multi-Threaded Clients and Servers

Normally, Orbix Java client and server programs contain one thread that starts 
executing at the beginning of the program (main()) and continues until the 
program terminates. Many modern operating systems enable you to create 
lightweight threads, with each thread having its own set of CPU registers and 
stack. Each thread is independently scheduled by the operating system, so it can 
run in parallel with the other threads in its process. The mechanisms for creating 
and controlling threads differ between operating systems but the underlying 
concepts are common. 

Both clients and servers may benefit from multi-threading. However, the 
advantages of multi-threading are most apparent for servers. 

Multi-Threaded Servers

Many servers accept one request at a time and process each request to 
completion before accepting the next. Where parallelism is not required, there 
is no need to make a server multi-threaded. However, some servers can provide 
improved service to their clients by processing a number of requests in parallel. 
Parallelism of requests may be possible because a set of clients can concurrently 
use different objects in the same server. Also some objects in the server can be 
used concurrently by a number of clients.
 416



F i l t e r s
Benefits of Threading

Some operations can take a significant amount of time to execute. This can be 
because they are compute bound, or perform a large number of I/O operations, 
or make invocations on remote objects. If a server can execute only one such 
operation at a time, clients suffer because of long delays before their requests 
can be started. Multi-threading enables a reduction in latency of requests, and an 
increase in the number of requests that a server can handle over a given period. 
Multi-threading also allows advantage to be taken of multi-processor machines.

The simplest threading model involves automatically creating a thread for each 
incoming request. Each thread executes the code for each call, executes the low 
level code that sends the reply to the caller, and then terminates. Any number of 
such threads can be running concurrently in a server. These can use normal 
synchronization techniques, such as mutex or semaphore variables, to prevent 
corruption of the server�s data. This protection must be programmed at two 
levels. The underlying ORB library must be thread safe so that concurrent 
threads do not corrupt internal variables and tables. Also, the application level 
must be made thread safe by the application programmer.

Drawbacks of Threading

The main drawbacks associated with threads are as follows:

� It may be more efficient to avoid creating a thread to execute a very 
simple operation. The overhead of creating a thread may be greater than 
the potential benefit of parallelism. 

� You must ensure that application code is thread safe. 

Nevertheless, multi-threaded servers are considered essential for many 
applications. A benefit of using Orbix Java is that the creation of threads in a 
server is simple.
417



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Threads can also be created explicitly in servers, using the threading facilities of 
the underlying operating system. This can be done so that a remote call can be 
made without blocking the server. Threads can also be created within the code 
that implements an operation or attribute, so that a complex algorithm can be 
parallelized and performed by a number of threads. These threads can be in 
addition to those created implicitly to handle each request.

Multi-Threaded Clients

Multi-threaded clients can also be useful. A client can create a thread and have it 
make a remote operation call, rather than making that remote call directly. The 
result is that the thread that makes the call blocks until the operation call has 
completed, while the rest of the client can continue in parallel. Another 
advantage of a multi-threaded client is that it can receive incoming operation 
requests to its objects without having to poll for events. 

Clients must create threads explicitly, using the threading facilities of the 
underlying operating system. Naturally, multi-threaded clients must also be 
coded to ensure that they are thread safe, using a synchronization mechanism. 
As for servers, the difficulty of doing this depends on the complexity of the data, 
the complexity of the concurrency control rules, and the form of concurrency 
control mechanism being used.

Thread Programming in Orbix Java 

Orbix Java supports multi-threaded Java servers that handle multiple client 
requests. The Java language is multi-threaded and the Orbix Java runtime is 
thread-safe. 

Using Class ThreadFilter

The class IE.Iona.OrbixWeb.Features.ThreadFilter enables the 
implementation of custom threading and queuing policies in Orbix Java.

The class ThreadFilter inherits from the class Filter. Although ThreadFilter 
does not redefine any of the method in the class Filter, it does change the 
behavior of inRequestPreMarshal() and that of the default constructor.
 418



F i l t e r s
To use the special functionality associated with class ThreadFilter, you should 
define a derived class of ThreadFilter and redefine the 
inRequestPreMarshal() method. When a request enters this filter point you 
can control the dispatching of the request. You can then pass the request into a 
custom event queue serviced by one or more threads, or you can create a 
thread directly and pass it the Request object to be dispatched.

To use the special features of the ThreadFilter you must use its default 
constructor, Threadfilter(). This adds a newly created object onto the 
ThreadFilter chain. You can also pass an ORB instance to the constructor to 
add the filter to that ORB�s ThreadFilter chain.

Refer to the Orbix  Programmer�s Reference Java Edition for more details on 
IE.Iona.OrbixWeb.Features.ThreadFilter.

Models of Threading

The following are the three models of thread support provided by Orbix Java:

� Thread per process

� Thread per object

� Pool of threads

Thread Per Process

In this model, a thread is created for each request. Each thread executes the 
code for each call, executes the low level code that sends the reply to the caller, 
and then terminates. Any number of such threads can be running concurrently in 
a server. 

Thread Per Object 

In this model, a thread is created for each object (or for a subset of the objects 
in the server). Each of these threads accept requests for one object only, and 
ignores all others. This can be an important model in real-time processing, 
where the threads associated with some objects need to be given higher 
priorities that those associated with others.
419



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Pool of Threads

In this model, a pool of threads is created to handle incoming requests. The size 
of the pool puts some limit on the server�s use of resources. In some cases this 
is better than the unbounded nature of the thread per request model. Each 
thread waits for an incoming request, and handles it before looping to repeat this 
sequence.

Implementing Threads in Orbix Java 

This section gives a brief description of how these models can be implemented in 
Orbix Java.

Thread Per Process

To implement this model, you should create a thread to handle a request. 

The thread filter�s inRequestPreMarshal() method can create a thread to 
handle an incoming request. You should use the underlying Java threads package 
to create the thread, and then use that thread to process the request. 

The inRequestPreMarshal() method returns a boolean value. This method 
returns true when the request has been passed on. It returns false when the 
request is being handled by a separate thread.

Thread Per Object

To implement this model, you should create a thread for each (or for a subset 
of) the objects in the server. 

Each thread should have its own semaphore and queue of requests. Each thread 
should wait on its own semaphore. The inRequestPreMarshal() call should 
add the Request to the correct queue of requests, and signal the correct 
semaphore. 

When the thread awakens, it should call continueThreadDispatch() to 
process the topmost request, and then loop to await the next one.
 420



F i l t e r s
Pool of Threads

To implement this model, a pool of threads should be created, and each thread 
should wait on a shared semaphore. 

When a request arrives, the inRequestPreMarshal() function of the 
ThreadFilter should place a pointer to the Request in an agreed variable and 
signal the semaphore. Alternatively, a queue can be used. 

One of the threads awakens, and should call continueThreadDispatch() 
before looping to repeat the sequence.

The three models of threading are illustrated in the Threads demonstrations in 
the demos/orbixjava/ directory of your Orbix Java installation. 
421



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
 422



 23
Smart Proxies

Smart proxies are an Orbix Java-specific feature that allow you to 
implement proxy classes manually, thereby allowing client interaction 
with remote services to be optimized. This chapter describes how 
proxy objects are generated, and the general steps needed to 
implement smart proxy support for a given interface. It also describes 
how a you can build a simple smart proxy. This example is based 
on a small load balancing application.

The IDL compiler automatically generates proxy classes for IDL interfaces. 
Proxy classes are used to support invocations on remote interfaces. When a 
proxy receives an invocation, it packages the invocation for transmission to the 
target object in another address space on the same host, or on a different host. 
423



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Proxy Classes and Smart Proxy Classes
This section describes how Orbix Java manages proxies.

Proxy Classes

For each IDL interface, the Orbix Java IDL compiler generates a Java interface 
defining the client view of the IDL interface. It also generates a Java proxy class, 
which implements proxy functionality for the methods defined in the Java 
interface. The proxy class gives the code for standard proxies for that IDL 
interface�these proxies transmit requests to their real object and return the 
results they receive to the caller.

Smart Proxy Classes

A smart proxy class is a user-defined alternative to the IDL-generated proxy 
class. Orbix Java implicitly constructs a standard proxy when an object reference 
enters the client address space. Experienced Orbix developers should note that 
Orbix Java does not use proxy factory classes to construct standard proxy 
objects. However, Orbix Java does not implicitly create smart proxies, so each 
smart proxy class depends on the implementation of a corresponding class that 
manufactures smart proxy objects when requested to by Orbix Java. This class is 
called a smart proxy factory class.

Requirements for Smart Proxies

To provide smart proxies for an IDL interface, do the following:

1. Define the smart proxy class, which must inherit from the generated 
proxy class.

2. Define a smart proxy factory class, which creates instances of the smart 
proxy class on request. Orbix Java calls the proxy factory's New() method 
whenever it wishes to create a proxy for that interface.

3. Create a single instance of the proxy factory class in the client program.
 424



Sma r t  P r o x i e s
Note: Apart from the introduction of new classes and the creation of the proxy 
factory object, no changes are required to existing clients in order to 
introduce smart proxy functionality. In particular, their operation 
invocation code remains unchanged.

Once you have performed these steps, Orbix Java communicates with the smart 
proxy factory whenever it needs to create a proxy of that interface.There are 
three cases, as follows:

� When the interface�s bind() method is called.

� When a reference to an object of that interface is passed back as an out 
or inout parameter or a return value, or when a reference to a remote 
object enters an address space via an in parameter.

� When ORB.string_to_object() is called with a stringified object 
reference for a proxy of that interface.

You can define more than one smart proxy class, and associated smart proxy 
factory class for a given IDL interface. Orbix Java maintains a linear linked list of 
all of the proxy factories for a given IDL interface.

A chain of smart proxy factories is allowed for an IDL interface because the 
same IDL interface can be provided by a number of different servers in the 
system. It may be useful, therefore, to have different smart proxy code to handle 
each server, or set of servers. Each factory in turn can examine the marker and 
server name of the target object for which the proxy is to be created. The 
factory class can then decide whether to create a smart proxy for the object or 
to defer the request to the next proxy factory in the chain.

Creating a Smart Proxy

The following steps must be performed in order to create a smart proxy:

1. Implement the smart proxy class.

The constructor(s) of this class are used by the proxy factory.
425



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
2. Implement a new proxy factory class, derived from the Orbix Java 
ProxyFactory class (defined in package IE.Iona.OrbixWeb.Features). 
It should redefine the New() method to create new smart proxy objects. 
It may also return null to indicate that it is not willing to create a smart 
proxy.

3. Declare an object of this new class. The inherited base class constructor 
automatically registers this new proxy factory with the factory manager 
object.

When a new proxy is required, Orbix Java calls all of the registered proxy 
factories for the class until one of them successfully builds a new proxy. If none 
succeeds, a standard proxy is implicitly constructed. Proxy factories are 
automatically added to the chain of factories as they are created. However, you 
cannot predict the order of use of smart proxy factories.

The factory manager requests each proxy factory to manufacture a new proxy 
using its New() method:

// Java
// The String parameter is the full object 
// reference of the target object.  
// The return value is the new smart proxy
// object.
import org.omg.CORBA.portable.Delegate;
...
public org.omg.CORBA.Object New (Delegate d);

If the New() method returns null, Orbix Java tries the next smart proxy factory 
in the chain.

Examples of these smart proxy implementation steps are given in the rest of this 
chapter.

Multiple ORB Support

All parameterized calls to ORB.init()create a separate ORB. Each newly-
created ORB instance is completely independent; for example, in terms of its 
configuration and listener ports. Orbix Java allows you to associate smart 
proxies with particular ORB instances. 

By default, Orbix Java associates smart proxies with the first fully-functional ORB 
created in a process. To associate a smart proxy with a particular ORB instance, 
use the following constructor for your derived class: 
 426



Sma r t  P r o x i e s
protected ProxyFactory(org.omg.CORBA.ORB orb, String name);

The orb parameter associates the smart proxy with a specific ORB instance. The 
name parameter refers to name of the IDL interface implemented by the smart 
proxy object

Refer to the Orbix  Programmer�s Reference Java Edition for details of class 
IE.Iona.OrbixWeb.Features.ProxyFactory and the 
org.omg.CORBA.ORB.init()method.

Benefits of Using Smart Proxies

It is sometimes beneficial to be able to implement proxy classes manually. The 
circumstances in which the use of smart proxies may be advantageous include 
the following:

� Load Balancing

For client programmers, a typical example is where you want to 
introduce load balancing between several remote objects when invoking 
operations. For example, if multiple remote objects can meet a request 
for a computationally intensive operation, a client application may wish to 
route each invocation to the object that is currently least busy.

� Caching Information

For interface implementers, it is often useful to implement smart proxies 
to cache some information from a remote object locally at a client site. In 
the simple bank application you may wish, for example, to cache the 
balance of an account at a client. Requests to obtain the balance of the 
account can then be immediately satisfied, provided you ensure that 
withdrawals and deposits to the account refresh the cached value.
427



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Using Smart Proxies
Consider a very simple example of a load balancing system, based on the 
following IDL definition:

// IDL

interface NumberCruncher {
long crunch (in long number);

}; 

interface NCManager {
// Get the least loaded number cruncher:
NumberCruncher getNumberCruncher ();

};

In this application, it is assumed that a number of objects exist that implement 
the NumberCruncher interface. Each of these objects is capable of exhibiting 
individual load characteristics; this is the case, for example, if each is located in a 
separate Orbix Java server process.

It is also assumed that an Orbix Java server exists that implements the 
NCManager interface. The NCManager implementation object is responsible for 
locating the currently least-loaded NumberCruncher and returning the 
corresponding object reference to the client. The client can then invoke the 
crunch() operation, perhaps repeatedly, on the target object.

Of course, the load on each NumberCruncher object changes over time. If it is 
valid to direct each client crunch() invocation to any NumberCruncher object, 
the performance perceived by the client can be improved by updating the target 
object before each operation call. In this example, a smart proxy is implemented 
which takes advantage of this fact to optimize the performance of the crunch() 
operation.

Creating a Smart Proxy

The following two steps are required when creating a smart proxy:

� Define a Smart Proxy Class.

� Define a Proxy Factory for Smart Proxies.
 428



Sma r t  P r o x i e s
Defining a Smart Proxy Class

Define a smart proxy class, called SmartNC, for Java proxy class 
NumberCruncher. Instances of this class stores a variable holding a default proxy 
for the NumberCruncher object. This proxy variable is updated before each call 
to crunch(), and the operation invocation is then routed via the refreshed 
default proxy.

// Java
package SmartProxy;

import org.omg.CORBA.SystemException;

1 public class SmartNC
extends _NumberCruncherStub {

// Store an NCManager proxy
private NCManager theNCManager;

2 public SmartNC () {

// Create NCManager proxy
try {

theNCManager = NCManagerHelper.bind ();
}
catch (SystemException se) {

...
}

}
  

3 public int crunch (int number) {
NumberCruncher actNC = null;

// Create default proxy for current
// least busy NumberCruncher object
try {

actNC = theNCManager.getNumberCruncher ();
}
catch (SystemException se) {

...
}

429



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
// Make remote invocation
return actNC.crunch (number);

}
}

1. Class SmartNC inherits from the default proxy class generated by the IDL 
compiler. It therefore inherits all of the code required to make a remote 
invocation: if required, each SmartNC method can make a call-up to its 
base class�s method to make a remote call. However, this functionality is 
not required in this example.

2. The SmartNC constructor initializes a member variable holding a proxy 
for the NCManager object by calling NCManagerHelper.bind().

3. The crunch() method first obtains a default proxy for the current least 
loaded NumberCruncher object by invoking 
NCManager.getNumberCruncher(). The implementation of the smart 
proxy factory class, described in �Defining a Proxy Factory for Smart 
Proxies�, prevents this invocation from creating a second smart proxy. 
The smart crunch() method then invokes the default crunch() on the 
newly created object.

Defining a Proxy Factory for Smart Proxies

Define a new proxy factory to generate the smart proxies at the appropriate 
time. Recall that the base class for all proxy factory classes is the following class: 
IE.Iona.OrbixWeb.Features.ProxyFactory. 

// Java
package SmartProxy;

import IE.Iona.OrbixWeb.Features.ProxyFactory;
import org.omg.CORBA.portable.Delegate;
import org.omg.CORBA.portable.ObjectImpl;
import org.omg.CORBA.SystemException;
import org.omg.CORBA.Object;
...

1 public class SmartNCFactory 
extends ProxyFactory {

// Flag to indicate whether a smart proxy
// or a true proxy should be created
private static boolean createProxy;

  
 430



Sma r t  P r o x i e s
public SmartNCFactory () {
super (NumberCruncherHelper.id());
createProxy = true;

}

2 public Object New(Delegate d) {
// You only need one smart proxy to
// manage the default proxies, so 
// allow implicit creation of a default
// proxy (if a smart proxy already exists)
if (createProxy == false)

return null;

createProxy = false; 

3 // Create a smart proxy
ObjectImpl new_ref = null;

    try {
      new_ref = new SmartNC ();

new_ref._set_delegate(d);
    }
    catch (SystemException ex) {

return null;
    }

return new_ref;
}

}

This code is described as follows:

1. The member initialization list of the constructor of class SmartNCFactory 
makes a call to the constructor of class ProxyFactory. The parameter 
passed is the return value of the static method 
NumberCruncherHelper.id(). This automatically generated method 
returns a string which holds information about the IDL interface type for 
the proxy. 

The proxy and proxy factory class hierarchies are shown in Figure 23.1. 

2. The SmartNCFactory.New() method is called by Orbix Java to signal that 
a smart proxy can be created. Orbix Java passes it an object of type 
org.omg.CORBA.portable.Delegate. 
431



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
If the method decides to create a smart proxy, it must instantiate a new 
smart proxy It must also set the delegate object using the 
_set_delegate() operation which all proxies inherit from 
org.omg.CORBA.portable.ObjectImpl.

3. In this example, each client only requires a single smart proxy object to 
manage all invocations on class NumberCruncher. The New() method first 
checks the member variable createProxy member variable to determine 
if it needs to create a smart proxy. 

If the value of this variable is false, the method simply returns null. This 
results in the invocation of the next smart proxy factory in the factory 
chain, or the creation of a default proxy object (if this is the last factory in 
the chain).

A Sample Client

Finally, you must declare a single instance of the new proxy factory class in the 
client:

// Java
SmartNCFactory ncFact = new SmartNCFactory ();

The inherited base class constructor then registers this new factory, and enters 
it into the linked list of factories for interface NumberCruncher.

You can code a sample client that communicates using this smart proxy as 
follows:

// Java
package SmartProxy;

import org.omg.CORBA.SystemException;

Figure 23.1: Class Hierarchy for Smart Proxy Classes

_NumberCruncherStub

SmartNC

ProxyFactory

SmartNCFactory
 432



Sma r t  P r o x i e s
public class Client {
static public void main (String argv[]) {

NumberCruncher ncRef = null;
NCManager ncmRef = null;
SmartNCFactory ncFact = 

new SmartNCFactory ();
int result1 = 0;
int result2 = 0;
int result3 = 0;

try {
1 // bind to NCManager

ncmRef = NCManagerHelper.bind ();

// get least loaded number cruncher
ncRef = ncmRef.getNumberCruncher ();

2 // do some calculations
result1 = ncRef.crunch (100);
result2 = ncRef.crunch (200);
result3 = ncRef.crunch (300);

}
catch (SystemException se) {

System.out.println (
"Number crunch failed.");

System.out.println (se.toString ());
}

}
}

This code can be described as follows:

1. The client binds to the NCManager object, from which it obtains an object 
reference for the currently least-loaded NumberCruncher. When this 
object reference enters the client address space, a smart proxy is created 
transparently to the client. 

2. The client invocations on operation crunch() are then automatically 
routed through the smart proxy, as previously described in this chapter.
433



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
 434



 24
Loaders

This chapter describes the use of loaders, an Orbix Java-specific 
feature designed to support persistent objects. 

When an operation invocation arrives at a server process, Orbix Java searches 
for the target object in the internal object table for the process. By default, if the 
object is not found, Orbix Java returns an exception to the caller. However, if 
one or more loader objects are installed in the process, Orbix Java informs the 
loader about the object fault and allows it to load the target object and resume 
the invocation transparently to the caller. Orbix Java maintains the loaders in a 
chain, and tries each loader in turn until one can load the object. If no loader can 
load the object, an exception is returned to the caller.

Loaders can provide support for persistent objects�long-lived objects stored 
on disk in the file system or in a database.

Loaders are also called when an object reference enters an address space, and 
not only when a missing object is the target of a request. This can arise in a 
number of ways:

� When a call to either of the methods bind() or string_to_object() is 
made from within a process.

� For a server: as an in parameter.

� For a client (or a server making an operation call): as an out or inout 
parameter, or a return value.

The loaders can respond to such object faults by loading the target object of the 
reference into the process�s address space. If no loader can load the referenced 
object, Orbix Java constructs a proxy for the object.
435



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Overview of Creating a Loader
To code a loader, define a derived class of LoaderClass (defined in package 
IE.Iona.OrbixWeb.Features). To install a loader, create an instance of that 
new class. LoaderClass provides the following methods:

� load()

Orbix Java uses this method to inform a loader of an object fault. The 
loader is given the marker of the missing object so that it can identify 
which object to load.

� save()

When a process terminates, the objects in its address space can be saved 
by its loaders. To allow this, Orbix Java supplies a shutdown() method, 
to call on the _CORBA.Orbix object before process termination. 
_CORBA.Orbix.shutdown() makes an individual call to save() for each 
object managed by a loader. You can also explicitly call the save() 
method through the IE.Iona.OrbixWeb.CORBA.ObjectRef._save() 
method. The _OrbixWeb.Object() cast operation must be used on any 
org.omg.CORBA.Object object before calling _save() because this 
method is on the Orbix Java-specific ObjectRef interface.

� record() and rename()

These methods are used to control naming of objects, and they are 
explained in Chapter 8 �Making Objects Available in Orbix Java� on 
page 175.

The constructor of LoaderClass (the base class of all loaders) takes an optional 
boolean parameter. When creating a loader object, this parameter must be 
true if the load() method of the new loader is to be called by Orbix Java.

Multiple ORB Support

All parameterized calls to ORB.init()create a separate ORB. Each newly-
created ORB instance is completely independent; for example, in terms of its 
configuration and listener ports. Orbix Java allows you to associate loaders with 
particular ORB instances. 

By default, Orbix Java associates loaders with the first fully-functional ORB 
created in a process. To associate a loader with a particular ORB instance, use 
the following constructor for your derived class: 
 436



L o ad e r s
public LoaderClass(org.omg.CORBA.ORB orb, boolean 
registerMe);

You should refer to the Orbix  Programmer�s Reference Java Edition for more 
details on class LoaderClass.

Refer to the section �Example Loader� on page 442 for sample code. The 
sections before this explain the different aspects of the loader mechanism in 
more detail.

Specifying a Loader for an Object
Each object has an associated a loader object. Orbix Java informs the loader 
object when the object is named, renamed or saved. If an object does not have a 
specified loader, Orbix Java associates it with a default loader.

You can specify an object�s loader as the object is being created, either using the 
TIE or the ImplBase approach.

TIE Approach

Using the TIE approach, you can pass the loader object as the third parameter to 
a TIE object constructor. For example,

// Java
// myLoader is a loader object:

bank bRef = new _tie_bank 
(new bankImplementation (), 
"College Green", myLoader);

ImplBase Approach

Using the ImplBase approach, you can declare the implementation class�s 
constructor to take a loader object parameter; and define this constructor to 
pass on this object as the second parameter to its ImplBase class�s constructor. 
For example:

// Java
import org.omg.CORBA.SystemException;
import IE.Iona.OrbixWeb.Features.LoaderClass;
437



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
class bankImplementation extends _bankImplBase {
...

public bankImplementation 
(String marker, LoaderClass loader) {

super (marker, loader);
...

}
}

Orbix Java associates each object with a simple default loader if it does not have 
a specified loader. This loader does not support persistence.

You can retrieve an object�s loader by calling:

// Java
// In package IE.Iona.OrbixWeb.CORBA
// in interface ObjectRef
import IE.Iona.OrbixWeb.Features;
...
public LoaderClass _loader ();

Connection between Loaders and Object 
Naming

When supporting persistent objects, you often need to control the markers that 
are assigned to them. For example, you may need to use an object�s marker as a 
key to search for its persistent data. The format of these keys depends on how 
the persistence is implemented by the loader. Therefore, it is common for 
loaders to choose object markers. Loaders can accept or reject markers chosen 
by application level code.

Recall that you can name an object in a number of ways:

� By passing a marker name to a TIE object constructor, for example: 

bankRef bRef = new _tie_bank 
(new bankImplementation (), "College Green",

myLoader);

� By passing the marker name to the BOAImpl constructor, for example:

bankImplementation bImpl;
 438



L o ad e r s
try {
bImpl = new bankImplementation 

("College Green", myLoader);
}
...

� By calling IE.Iona.OrbixWeb.CORBA.ObjectRef._marker(String), for 
example:

import IE.Iona.OrbixWeb._OrbixWeb;
...
org.omg.CORBA.Object bRef = //obtained using bind 

 //or Naming Service

_OrbixWeb.Object(bRef)._marker ("Foster Place");

In all cases, Orbix Java calls the object�s loader to confirm the chosen name, thus 
allowing the loader to override the choice. In the first two cases above, Orbix 
Java calls record(); in the last case it calls rename() because the object already 
exists.

Orbix Java executes the following algorithm when an object is created, or an 
object�s existing marker is changed:

� If the specified marker is not null, Orbix Java checks if the name is already 
in use in the process. If it is not in use, the name is suggested to the 
loader (by calling record() or rename()). The loader can accept the 
name by not changing it. Alternatively, the loader can reject it by changing 
it to a new name. If the loader changes the name, Orbix Java again checks 
that the new name is not already in use within the current process; if it is 
already in use, the object is not correctly registered.

� If no name is specified or if the specified name is already in use within the 
current process, Orbix Java passes a null value to the loader (by calling 
record() or rename()) which must then choose a name. Orbix Java then 
checks the chosen name; the object is not correctly registered if this 
chosen name is already in use.

Both record() and rename() can, if necessary, raise an exception.

The implementations of rename() and record() in LoaderClass both return 
without changing the suggested name. Its implementations of load() and save() 
perform no actions. 
439



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
The default loader (associated with all objects not explicitly associated with 
another loader) is an instance of NullLoaderClass, a derived class of 
LoaderClass. This class inherits load(), save() and rename() from 
LoaderClass. It implements record() so that if no marker name is suggested it 
chooses a name that is a unique string of decimal digits. 

Loading Objects

When an object fault occurs, the load() method is called on each loader in turn 
until one of them successfully returns the address of the object, or until they 
have all returned null.

The responsibilities of the load() method are:

� To determine if the required object is to be loaded by the current loader.

� If so, to re-create the object and assign the correct marker to it.

The load() method is given the following information:

� The interface name.

� The target object�s marker.

� A boolean value, set as follows depending on why the object fault 
occurred:

You can determine the interface name of the missing object as follows:

� If an object fault occurs because of the call:

p = I1Helper.bind( <parameters> );

the interface name in load() will be �I1�.

If the first parameter to the bind() is a full object reference string, Orbix 
Java returns an exception if the reference�s interface field is not I1 or a 
derived interface of I1.

true Because of a call to bind() or string_to_object() by the 
process that contains the loader.

false Because of an object fault on the target object of an incoming 
operation invocation, or on an in, out or inout parameter or 
return value.
 440



L o ad e r s
� If an object fault occurs during the call

p = _CORBA.Orbix.string_to_object
( <full object reference string> );

the interface name in load() is that extracted from the full object 
reference string.

� If a loader is called because of a reference entering an address space (as 
an in, out or inout parameter, a return value, or as the target object of 
an operation call), the interface name in load() is the interface name 
extracted from the object reference.

Saving Objects
You can invoke the method _CORBA.Orbix.shutdown() before the application 
exits. If this method is invoked, Orbix Java iterates through all of the objects in 
its object table and calls the save() method on the loader associated with each 
object. A loader can save the object to persistent storage, either by calling a 
method on the object, or by accessing the object�s data and writing this data 
itself. The _save() method is also called if disconnect() or dispose() is called 
for the object.

You can also explicitly cause the save() method to be called by invoking an 
object�s _save() method. The _save() method calls the save() method on the 
object�s loader. You must call the _save() in the same address space as the 
target object: calling it in a client process, on a proxy, has no effect.

The two alternative invocations of save() are distinguished by its second 
parameter. This parameter is of type int, and takes one of the following values:

_CORBA.processTermination The process is about to exit.

_CORBA.objectDeletion The method BOA.dispose or method 
BOA.disconnect() has been called on the 
object.

_CORBA.explicitCall The object�s _save() method has been called.
441



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Writing a Loader
To write a loader for a specific interface, you normally perform the following 
actions:

1. Redefine the load() method to load the object on demand. Normally, 
you use the object�s marker to find the object in the persistent store.

2. Redefine the save() method so that it saves its objects on process 
termination, and also when _save() is called.

3. Redefine the record() and rename() methods normally. Often, 
record() chooses the marker for a new object; and rename() is 
sometimes written to prevent an object�s marker being changed. 
However, record() and rename() are sometimes not redefined in a 
simple application, where the code that chooses markers at the 
application level can be trusted to choose correct values.

Example Loader
This section presents a simple loader for one IDL interface. A version of the 
code for this example is given in the demos\orbixjava\loaders_per_simp 
directory of your Orbix Java installation.

There are two interfaces involved in the application:

// IDL
// In file bank.idl.

interface account {
readonly attribute float balance;
void makeLodgement(in float f);
void makeWithdrawal(in float f);

};

interface bank {
account newAccount(in string name);

};

This simple example assumes that these definitions are compiled using the IDL 
-jP switch as follows:

idlj -jP loaders_per_simp bank.idl
 442



L o ad e r s
The classes output by the IDL compiler are within the scope of the 
loaders_per_simp Java package.

Interfaces account and bank are implemented by classes 
accountImplementation and bankImplementation, respectively. Instances of 
class accountImplementation are made persistent using a loader (of class 
Loader). The persistence mechanism used is very primitive because it uses one 
file per account object. Nevertheless, the example acts as a simple introduction 
to loaders. The implementation of class Loader is shown later, but first the 
implementations of classes accountImplementation and bankImplementation 
are shown.

You can implement class accountImplementation as follows:

// Java

package loaders_per_simp;

import IE.Iona.OrbixWeb.Features.LoaderClass;
import org.omg.CORBA.SystemException;
import org.omg.CORBA.Object;
public class accountImplementation 

implements _accountOperations {
protected String m_name;
protected float m_balance;
protected String m_accountNr;

public accountImplementation 
(float initialBalance, String name, 

String nr) {
// Initialize member variable values.
// Details omitted.

}

// Methods to implement IDL operations:
public float balance () {

return m_balance;
}

public void makeLodgement (float f) {
m_balance += f;

}

443



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
public void makeWithdrawal (float f) {
m_balance -= f;

}

// Methods for supporting persistence.
public static Object loadMe 

(String file_name, LoaderClass loader) {
// Details shown later.

}

public void saveMe (String file_name) {
// Details shown later.

}
};

Two methods are added to the implementation class. The load() method of the 
loader calls the static method loadMe(). This is given the name of the file to load 
the account from. The method saveMe() writes the member variables of an 
account to a specified file. You can code these methods as follows:

public static Object loadMe 
(String file_name, LoaderClass loader) {

...

RandomAccessFile file = null;
String name = null;
float bal = 0;

try {
file = new RandomAccessFile (file_name, "r"); 
name = file.readLine ();
bal = file.readFloat ();
file.close();

} 
catch (java.io.IOException ex) {

...
System.exit (1);

}
accountImplementation aImpl = new 

accountImplementation (bal, name, file_name);
account aRef = new 

_tie_account (aImpl, file_name, loader);
 444



L o ad e r s
return aRef;
}

public void saveMe (String file_name) {
...
RandomAccessFile file = null;

try {
file = new RandomAccessFile (file_name, "rw"); 
file.seek (0);
file.writeBytes (m_name + "\n");
file.writeFloat (m_balance);
f.close();

} 
catch (java.io.IOException ex) {

...
System.exit(1);

}
}

The statement:

account aRef = new _tie_account (aImpl, file_name, loader);

in accountImplementation.loadMe() creates a new TIE for the 
implementation object accImpl, and specifies its marker to be file_name and 
its loader to be the loader object referenced by parameter loader. Actually, this 
example creates only a single loader object as shown in the next code sample.

Class bankImplementation is implemented as follows:

// Java

package loaders_per_simp;

import IE.Iona.OrbixWeb.Features.LoaderClass;
import org.omg.CORBA.SystemException;

public class bankImplementation
implements _bankOperations {
protected int m_sortCode;
protected int m_lastAc;
protected LoaderClass m_loader;

public bankImplementation (long sortCode,
445



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
LoaderClass loader) {
m_sortCode = sortCode;
m_loader = loader;
m_lastAc = 0; // Number of previous account.

}

// Method to implement IDL operation:
public account newAccount (String name) {

String accountNr = new String ("a" 
+ m_sortCode + "-" + (++m_lastAc));

accountImplementation aImpl = null;
try {

aImpl = new accountImplementation 
(100, name, accountNr);

}
catch (SystemException se) {

...
}

account aRef = new _tie_account(aImpl, accountNr, m_loader); 
return aRef;

}
}

The main method creates a single loader object, of class Loader, and each 
account object created is assigned this loader. Each bankImplementation 
object holds its sort code (a unique number for each bank, for example 1234), 
and also a reference to the loader object to associate with each account object 
as it is created. Each account is assigned a unique account number, constructed 
from its bank�s sort code and a unique counter value. The first account in the 
bank with sort code 1234 is therefore given the number �a1234-1�. The marker 
of each account is its account number, for example   �a1234-1�. This ability to 
choose markers is an important feature for persistence.
 446



L o ad e r s
The statement:

account aRef = 
new _tie_account (aImpl, accountNr, m_loader);

creates a new TIE for the accountImplementation object assigning it the marker 
accountNr and the loader referenced by m_loader. (The bank objects are not associated 
with an application level loader, so they are implicitly associated with the Orbix Java 
default loader.)

The server application class must create a loader and a bank; for example:

// Java
package loaders_per_simp;

import org.omg.CORBA.SystemException;

public class bankServer {
public static void main (String args[]) {

Loader myLoader = new Loader ();
bankImplementation bankImpl = 

new bankImplementation (1234, myLoader);
bank bRef; 

try {
bRef = new _tie_bank (bankImpl, "b1234");

}
catch (SystemException se) {

...
}
...

}
}

Coding the Loader

You can implement class Loader as follows:

// Java
// In file Loader.java.
package loaders_per_simp;

import org.omg.CORBA.SystemException;
import org.omg.CORBA.Object;
447



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
import IE.Iona.OrbixWeb.CORBA.Features.LoaderClass;
import IE.Iona.OrbixWeb._CORBA;
import IE.Iona.OrbixWeb._OrbixWeb;
class Loader extends LoaderClass {

public Loader() {
    super (true);

}

public Object load (String interfaceMarker, 
String marker, boolean isBind) {
// There will always be an interface; 
// but the marker may be the null string.
if (marker!=null && !marker.equals ("") 

&& marker.charAt (0)==�a� && 
interface.equals ("account"))
return accountImplementation.loadMe 

(marker, this);
return null;

}

public void save (Object obj, int reason) {
String marker = _OrbixWeb.Object(obj)._marker ();

if (reason == _CORBA.processTermination) {
accountImplementation impl = 

(accountImplementation)(((_tie_account)obj)._deref());

aImpl.saveMe (marker);
}

}
}

The constructor of LoaderClass takes a parameter indicating whether or not 
the loader being created should be included in the list of loaders tried when an 
object fault occurs. By default, this value is false; so the loader class�s 
constructor passes a value of true to the LoaderClass constructor to indicate 
that instances of Loader should be added to this list.

The accountImplementation.loadMe() method assigns the correct marker to 
the newly created object. If it failed to do this, subsequent calls on the same 
object result in further object faults and calls to the Loader.load() method.
 448



L o ad e r s
It is possible for the Loader.load() method to read the data itself, rather than 
calling the static method accountImplementation. loadMe(). However, to 
construct the object, load() dependent on there being a constructor on class 
accountImplementation that takes all of an account�s state as parameters. 
Since this is not be the case for all classes, it is safer to introduce a method such 
as loadMe(). Equally, Loader.save() can access the account�s data and write it 
out, rather than calling accountImplementation.saveMe(). However, it is then 
dependent on accountImplementation providing some means to access all of 
its state.

In any case, having loadMe() and saveMe() within class 
accountImplementation provides a sensible split of functionality between the 
application level class, accountImplementation, and the loader class.

Client Side

Loaders are transparent to clients. A client that wishes to create a specific 
account could execute the following:

// Java

bank bRef;
account aRef;

try {
// Find the bank somehow; for example, 
// using bind():
bRef = bankHelper.bind (b1234:per_simp�, host);

aRef = bRef.newAccount ("John");
}
catch (SystemException se) {

...
}

A client that wishes to manipulate an account can execute the following:

// Java
// To access account with account 
// number "a1234-1".
account aRef;
float bal;
449



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
try {
aRef = accountHelper.bind 

("a1234-1:per_simp", host);
bal = aRef.balance ();
aRef.makeWithdrawal (100.00);

}
catch (SystemException se) {

...
}

If the target account is not already present in the server then the load() 
method of the loader object is called. If the loader recognizes the object, it 
handles the object fault by re-creating the object from the saved data. If the load 
request cannot be handled by that loader, then the default loader is tried next 
and this always indicates that it cannot load the object. This finally results in an 
org.omg.CORBA.INV_OBJREF exception being returned to the caller.

Polymorphism
Every loader you write should allow for polymorphism. In particular, the 
interface name passed to a loader may be a base interface of the actual interface 
that the target object implements. This may arise, for example, when the client 
has bound to an object using I1Helper.bind() but where the object�s actual 
interface is in fact a derived interface of I1.

The class of the target object must therefore be determined either from the 
marker passed to the loader, or from the data used to load the target object. 
The demonstration code for loaders shows the marker names being used to 
distinguish the real interface of an object, using the first character of each 
marker. This is a simple approach, but it is probably better in a large system to 
use some information stored with the persistent data of each object.

You must also remember that it may not be necessary to distinguish the real 
interface of an object in all applications and for all interfaces. If you always use 
the correct interface name in calls to bind() (that is, you always used 
I1Helper.bind() when binding to an object with interface I1) handling 
polymorphism is not required. This is also the case if you do not use bind() for 
a given interface: for example, you may obtain all object references to accounts 
by searching (say, using an owner name) in a bank, rather than using bind().
 450



L o ad e r s
It is however possible that, because of programmer error, the actual interface of 
the target object is not the same or a derived interface of the correct one. This 
should be detected by a loader.

Approaches to Providing Persistent Objects
There are many ways to use the support described so far in this chapter. This 
section outlines some of the choices available.

The information provided to a loader on an object fault comprises the object�s 
marker and the interface name. The loader must be able to find the requested 
object using these two pieces of information. It must also be able to determine 
the implementation class of the target object�so that it can create an object of 
the correct class. Naturally, this implementation class must implement the 
required interface or one of its derived interfaces.

It is normal, therefore, to use the marker as a key to find the object, and either 
to encode the target object�s implementation class in the marker, or to first find 
the object�s persistent state and determine the implementation class from that 
data.

For example, a prefix of the marker could indicate the implementation class and 
the remainder of the marker could be the name of the file that holds the object�s 
persistent state.

The following are some of the choices available when using loaders to support 
persistent objects:

� You can store each object in its own file, or you may use a record system 
in which one or more records represent an object. You can store 
records, for example, in a relational database management system, or by 
using lines of a normal file.

� An object can be loaded when a request arrives for it; or all of the 
required objects can be loaded when the first request is made. For 
example, in the bank application, an account object can be loaded when 
an invocation is made on it, or all of the accounts controlled by a bank 
can be loaded when the bank, or any of its accounts, is first interacted 
with.
451



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
� An object can be saved to the persistent store at the termination of the 
process, or it can be saved before that time: for example, at the end of 
the method call that caused it to be loaded, or if the object has not been 
used for some period of time.

Many different arrangements are possible for the loaders themselves, for 
example:

� A process can have a single loader to handle all of the interfaces that it 
supports. However, it is difficult to maintain such a loader for many 
interfaces.

� A process can have one loader to handle each interface, or each separate 
hierarchy of interfaces.

If one loader per interface is used, each loader�s load() method is called in turn 
until one indicates that it can load the target object. Although this approach is 
simple to implement, such a linear search may be inefficient if a process handles a 
large number of interfaces. One efficient mechanism is to install a master loader, 
with which the other loaders can register. Each registration gives some key 
indicating when the registering loader�s load() method is to be called by the 
master loader; a key can be a marker prefix and an interface name. 

Another reason for having more than one loader is that a process may use 
objects from separate subsystems�each of which installs its own loader(s). 
These loaders must be able to distinguish requests to load their own objects. 
You can avoid confusion if the subsystems handle disjoint interfaces, since the 
interface name is passed to a loader; however, some co-operation between the 
subsystems is required if they handle the same interfaces, or interfaces which 
have a common base interface. Each subsystem must be able to distinguish its 
objects based on their markers or their persistent state.

If I1 is a base interface of I2 and I3, the objects of interfaces I2 and I3 must be 
distinguishable to avoid confusion when �I1� is passed as an interface name to 
load().

In particular, the subsystems must choose disjoint markers.
 452



L o ad e r s
Disabling the Loaders
On occasion, it is useful to be able to disable the loaders for a period. If, when 
binding to an object, the caller knows that the object already loaded if it exists, it 
might be worthwhile to avoid involving the loaders if the object cannot be found.

You can disable the loaders by calling the following method:

// Java
// In package IE.Iona.OrbixWeb.CORBA
// in class BOA.
public boolean enableLoaders (boolean b)

on the _CORBA.Orbix object, with a false parameter value. This returns the 
previous setting; the default is to have loaders enabled.
453



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
 454



 25
Opaque Types

Orbix Java provides an extension to IDL that allows you to define 
opaque data types. Opaque data types can be passed by value 
through an IDL definition. This chapter describes how to use opaque 
data types with Orbix Java.

In accordance with the CORBA standard, Orbix Java objects are passed to and 
from IDL operations by reference. Orbix Java objects are described by an 
interface which is defined in IDL. These objects are created in a server. Object 
references rather than actual copies of the objects are passed to clients. 

This model applies to the majority of applications that use an ORB. However, in 
some cases, you may wish to pass objects across a CORBA IDL interface by 
value rather than by reference. Passing an object by value means that the 
internal state of the object is included in an operation parameter or return 
value. A copy of the object is constructed in the process. 

In addition, there has been demand for a mechanism that allows existing objects 
to be passed across an IDL interface without having to retrospectively define 
IDL interfaces for these objects. Such a mechanism allows the integration of IDL 
types with non-IDL data types within a CORBA environment.

Opaque types address both of these issues. A new opaque keyword identifies a 
IDL data type as opaque. This means that nothing is known at the IDL level. A 
type defined to be opaque behaves like an interface type. This means that it may 
be passed as a parameter or return value to an IDL operation. It may also be 
used as an attribute type or as a member of a struct or exception.
455



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
An opaque type is always passed to and from IDL operations by value. You must 
supply the following:

� A Java class that implements the opaque object.

� The opaque's Helper class that implements the stream-based marshalling 
and unmarshalling of the opaque object. 

Possible Alternative Solutions

As outlined in the previous section, IONA�s approach to passing objects 
between client and server processes by value is to introduce a new type 
constructor at the IDL level.

It is possible to achieve similar results without extending the IDL language. One 
solution to transmitting an object by value is to define its state in an IDL struct 
definition. This solution is unsatisfactory for two reasons: first, you are forced to 
separate state information from interface information; second, you must make 
explicit in the IDL definition information that properly belongs to the 
implementation.

A second solution is to pass an object�s state information in binary form, as a 
sequence<octet>. This mechanism does not make explicit the type of the 
information transmitted, so it does not violate the privacy of the object. 
However, no marshalling or unmarshalling is performed on a sequence<octet>, 
so byte-swapping and other data-conversion becomes the responsibility of the 
programmer. Further, in stripping the interface of type information, the ORB 
assumes the role of an RPC package. 

Note: Because of the Orbix Java-specific nature of opaques, you cannot use 
opaque types with the CORBA-defined Interface Repository.
 456



Opaqu e  T yp e s
Using Opaque Types
This section demonstrates how to use the opaque mechanism to pass a user-
defined type by value in IDL operations. The sample code described in this section is 
available in the demos/orbixjava/Date directory of your Orbix Java installation.

IDL Definition

The example used here defines an IDL interface Calendar that makes use of the 
opaque type Date. The IDL definitions are as follows:

// IDL
// In file calendar.idl.

opaque Date;

interface Calendar {
// Today's date.
readonly attribute Date today;

// Length of time from given date until today.
unsigned long daysSince(in Date d);

};

The opaque data type is introduced by the keyword opaque, denoting a new IDL 
type. An opaque type may be defined at file level scope or within a module, at 
the same level as an interface definition. In this example, the new Date type is 
used as an attribute type and as an in parameter. 

Compiling the IDL Definition

You can compile IDL definitions using the -K switch, as follows:

idlj -jPopaqueDateDemo -K calendar.idl

opaque is not a keyword in CORBA IDL. The -K switch to the IDL compiler 
indicates that support for opaque types is required.
457



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Mapping of Opaque Types to Java

The following template classes are generated by the IDL compiler:

// the date class 
_DateTemplate.java 

// the Holder class
_DateHolderTemplate.java

// the Helper class
_DateHelperTemplate.java

Implementing the Opaque Type 

The generated file _DateTemplate.java contains the template Date 
implementation class. You should change the name of _DateTemplate.java to 
Date.java. The following is an example implementation for the Date class: 

// Java
// In file _DateTemplate.java.

package opaqueDateDemo;

public class Date  {  

public Date () {}  

public Date (int day, String month, int year) { 
this.day = day;
this.month = month;
this.year = year;

}  
public String toString() { 

return("Date ==> " + day + " " + month + " " + year);
}  

public int day;
public String month;
public int year;  

}

 458



Opaqu e  T yp e s
The Helper Class

The generated file _DateHelperTemplate.java contains the code you must use 
to stream information into and out of the Date objects. 

This involves implementing read() and write() methods to marshal and 
unmarshal the objects. The org.omg.CORBA.portable.InputStream and 
OutputStream interfaces are use for this: 

// Java
// In file _DateHelperTemplate.java.

package opaqueDateDemo;

import IE.Iona.OrbixWeb._OrbixWeb;

public class DateHelper {

public static Date read
(org.omg.CORBA.portable.InputStream _stream) {

Date value = new Date();
value.day = _stream.read_long();
value.month = _stream.read_string();
value.year = _stream.read_short();
return value;

}

public static void write
(org.omg.CORBA.portable.OutputStream _stream, Date value) {

_stream.write_long(value.day);
_stream.write_string(value.month);
_stream.write_long(value.year);

}
...

}

You should change the name of_DateHelperTemplate.java to 
DateHelper.java. 
459



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
The Holder Class

The generated file _DateHolderTemplate.java is the Holder for Date. You can 
avoid implementing the marshalling again by invoking the Helper class read() 
and write() methods as follows:

// Java
// In file _DateHolderTemplate.java.

package opaqueDateDemo;

import IE.Iona.OrbixWeb._OrbixWeb;

public final class DateHolder
implements org.omg.CORBA.portable.Streamable {

public Date value;

public DateHolder() {
value = new Date();

}

public DateHolder(Date value) {
this.value = value;

}

public void _read 
(org.omg.CORBA.portable.InputStream _stream) {
DateHelper.read(_stream);

} 

public void _write 
(org.omg.CORBA.portable.OutputStream _stream) {
DateHelper.write(_stream, value); 

}
...

}

You should also change the name of this file from _DateHolderTemplate.java 
to DateHolder.java. 

Refer to the demos/orbixjava/Date directory of your Orbix Java installation for an 
example client/server application that uses the Date type.
 460



 26
Transforming Requests

This chapter describes how you can modify the data buffers 
containing Orbix Java operation call information immediately before 
and after transmission across the network.

In Orbix Java, an operation invocation or an operation reply is transmitted 
between a client and a server in a org.omg.CORBA.Request object. Using the 
Dynamic Invocation Interface, an org.omg.CORBA.Request is explicitly created. 
A static invocation results in the implicit creation of a org.omg.CORBA.Request 
object.

This chapter describes how you can modify an Orbix Java Request data buffer 
and allow a client or server process to specify what modifications to the buffer 
should occur when requests or replies are transmitted to other processes. The 
ability to modify this data just before its transmission, or just after its reception 
means that you can add additional information to the data stream. For example, 
you can add information identifying the participants in the communication or 
encrypt the data stream for security purposes. The process of modifying the 
data buffer is known as transforming the data buffer.

The functionality provided by transformers is at a lower level than that provided 
by filters, since it allows access to the actual data buffer transmitted in a 
Request. 
461



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
Transforming Request Data
You can transform a Requestdata buffer using a transformer object. To obtain a 
new transformer object, perform the following steps:

1. Define a class which inherits from the class 
IE.Iona.OrbixWeb.Features.IT_reqTransformer.

2. Create an instance of this class.

3. Register this instance with the Orbix Java runtime. 

You can register the transformer object so that it performs 
transformations on all communications to and from the process that 
contains the transformer object. Alternatively, you can register it so that 
transformations are performed only on communications to and from a 
particular server on a particular host that contains the transformer.

Note: Because transformations are applied when an operation invocation leaves 
or arrives at an address space, no transformations are applied when the 
caller and invoked object are collocated.

The IE.Iona.OrbixWeb.Features.IT_reqTransformer Class

The IT_reqTransformer class defines the interface to transformer objects. This 
class is defined as follows:

// Java

package IE.Iona.OrbixWeb.Features;

public class IT_reqTransformer {

public boolean transform(octetSeqHolder data,
String host,
boolean is_send,
org.omg.CORBA.Request req) {

  return true;
  }
 462



T r a n s f o rm i n g  R equ e s t s
public String transform_error() {
return null;

  }
}

A class derived from IT_reqTransformer can access a data buffer just before 
transmission and can therefore manipulate or transform the data as required. 
The derived class must, at least, override the transform() method. Refer to the 
Orbix  Programmer�s Reference Java Edition for full details of the 
IT_reqTransformer class. 

The transform() method is called by Orbix Java immediately prior to 
transmitting the data in a Request out of an address space and immediately 
subsequent to receiving a Request from another address space. The derived 
class can allocate new storage to handle any alteration in the data size caused by 
the transformation. 

The transform() method can indicate that a org.omg.CORBA.COMM_FAILURE 
system exception should be raised by Orbix Java by returning false.

A derived class may implement the transform_error() method to return a 
string containing suitable error text. 

The req parameter in the transform() method holds a reference to the 
Request object when an outgoing transform() is called. This has a value of null 
for all incoming transform operations. 

Registering a Transformer

Orbix Java provides two methods to register a transformer object (an instance 
of IT_reqTransformer). You can call both on the ORB object:

� setMyReqTransformer()

� setReqTransformer()
463



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
setMyReqTransformer()

This method is defined as follows:

// Java
// In class IE.Iona.OrbixWeb.CORBA.ORB

IT_reqTransformer setMyReqTransformer(
IT_reqTransformer transformer)

setMyReqTransformer() registers a transformer object as the default 
transformer for all Requests entering and leaving an address space. 

setReqTransformer()

This method is defined as follows:

// Java
// In class IE.Iona.OrbixWeb.ORB.

void setReqTransformer(
IT_reqTransformer transformer, 
String server,
String host)

setReqTransformer() registers a transformer object for all Requests 
destined for a specific server and host and for all Requests received from a 
specific server and host. You can call this method more than once to register 
different server/host pairs.

A transformer registered using setReqTransformer() overrides any default 
transformer registered with setMyReqTransformer(). 

Note: At most, one transformation is applied to any Request�the default 
transformation registered with setMyReqTransformer() or overriding 
specific transformation registered with setReqTransformer().
 464



T r a n s f o rm i n g  R equ e s t s
An Example Transformer
This section presents a simple example of a transformer that adds the name of 
the sending host to a Request�s buffer when sending a Request out of a process 
and removes the host name from a Request�s buffer when receiving a Request 
containing an operation reply. 

The transformer is implemented as follows:

// Java
...

public boolean transform(octetSeqHolder data,
String host,
boolean is_send
org.omg.CORBA.Request req)

{
if (is_send) {

byte[] buf = new byte[data.value.length + 
host.length() + 4];

 
// insert the host name length 
buf[0] = (byte)((host.length() >> 24) &

0x000000ff);
buf[1] = (byte)((host.length() >> 16) &

0x000000ff);
buf[2] = (byte)((host.length() >> 8) & 

0x000000ff);
buf[3] = (byte)(host.length() & 0x000000ff);

// insert the host name 
System.arraycopy(host.getBytes(), 0, buf, 

4, host.getBytes().length);

// add the Orbix Java data buffer 
System.arraycopy(data.value, 0, buf, 4 + 

host.length(), data.value.length);
data.value = buf;

}
else {

// extract the host name length 
int l = ((((int)data.value[0]) << 24) &
465



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
0xff000000) | 
((((int)data.value[1]) << 16) &

0x00ff0000) |
            ((((int)data.value[2]) <<  8) & 

0x0000ff00) |
             (((int)data.value[3]) & 0x000000ff);

// extract the host name 
String h = new String(data.value, 4, l);
int len = data.value.length - h.length() - 4;

// extract the Orbix Java data buffer
byte[] buf = new byte[len];
System.arraycopy(data.value, 4 + 

host.length(), buf, 0, len);
data.value = buf;

 }
return true;

}

java.lang.String transform_error() {
return �Error in Transformer�;

}

// Create a Transformer:
Transformer transformer = new Transformer();

The transform() method uses the parameter is_send. This indicates whether 
the Request is incoming or outgoing, to determine whether to add or remove 
the host name from the Request�s buffer. 

Registering the Transformer

The following call registers this transformer as the default transformer for a 
client or server process:

ORB.setMyReqTransformer(transformer);
 466



T r a n s f o rm i n g  R equ e s t s
To register a transformer that acts on Requests going to or received from a 
specific server on a specific host, make the following call:

// Register a transformer that transforms data 
// sent to or received from myServer on host
// alpha.

ORB.setReqTransformer(
transformer,"myServer", "alpha");
467



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
 468



Appendix A
IDL Compiler Switches

This appendix describes the command-line switches to the IDL 
Compiler.

The IDL Compiler supports the following switches to the idlj command:

-D name Pre-define the macro name to be 1 within the IDL 
file.

-D name=definition Pre-define the macro name to be definition.

-E Only run the Orbix Java IDL pre-processor. Do 
not pass the output of the pre-processor to the 
Orbix Java IDL compiler, but output the pre-
processed file to standard output. By default, the 
output of the Orbix Java IDL pre-processor is sent 
to the Orbix Java IDL compiler.

-F Generate per-object filtering code.

-flags Display the command-line usage summary.

-I directory Specify an include file directory for use with IDL 
include directives of the form 
#include<filename>. 

You can specify more than one -I switch.

-jc Generate support for client-side functionality only. 
By default, the IDL compiler generates both client-
side and server-side support. This involves the 
creation of several server-specific source files that 
are not required by client programmers. This 
switch suppresses the generation of these files.
469



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
-jNoC Specify that the generated constructors for TIE and 
Implbase classes do not implicitly call 
_CORBA.Orbix.connect(). 

The default is that the generated constructors 
implicitly call _CORBA.Orbix.connect().

If this switch is used an application must explicitly 
connect the newly created implementation object 
before use.

-jO directory Specify a target directory for the file structure 
output by the IDL compiler. The directory path 
may be absolute or relative.

The default directory for IDL compiler output is 
java_output.

-jOMG Ensure the generated code is OMG-mapping 
compliant by suppressing the addition of Orbix Java 
-specific functionality. This functionality includes 
bind() and additional constructors that require 
marker, loader or orb parameters.

Calling this switch also has the same effect as 
calling -jNoC.

-jP [ package |
module=package ]

Specify a Java package name within which all IDL 
generated Java code is placed, or an IDL module 
that should be mapped to a specific package name. 

By default, generated code is placed within the 
global package, so the use of this switch is generally 
recommended to avoid naming clashes.

-jQ Generate support for the equals() method in all 
IDL-produced Java classes.

-juATC Creates an alias TypeCode for the specified file. 
This contains the TypeCode�s Repository ID, name 
and original type. 

Alias Typecodes are required for ORB 
interoperability.
 470



I D L  C omp i l e r  Sw i t c h e s
Note: You must process each IDL file through the IDL compiler. Including an 
IDL file in another (using #include) does not produce output for the 
included file (unless the -N switch is specified to the compiler). 
Otherwise, Java code generation occurs more than once for a file that is 
included in more than one file.

-K Required if the IDL file uses the opaque type 
specifier.

-m <IIOPonly> Generate marshalling code for the CORBA 
Internet Inter-ORB Protocol (IIOP) only.

By default, code generated by the IDL Compiler 
supports both IIOP and the Orbix protocol. 

-N Specify that the IDL compiler is to compile and 
produce code for included files (files included using 
the #include directive). Without the -N switch, 
included files are compiled but no code is output. 
The use of the -N flag is not encouraged as it 
complicates the use of the Interface Repository. 

The -N flag also has the restriction that the 
compilation must be invoked from the same 
directory as the root IDL file to retain 
compatibility with the Interface Repository server. 

-U name Do not pre-define the macro name. If -U is 
specified for a macro name, that macro name is not 
defined even if -D is used to define it.

-v Print version information. The version information 
includes the IDL compiler release and the target 
JDK version number.
471



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
 472



Index
A
activation

information for servers 273
activation modes 259

primary 259
per-method 260
shared 259
unshared 260

secondary 260
multiple-client 260
per-client 261
per-client-process 261

activation orders 262
any 313�319

constructing
insertion methods 314

constructors 319
interpreting

extraction methods 316
mapping for 100

applets
clients 251

Application
running 18

ARG_IN 330
ARG_INOUT 330
ARG_OUT 330
arguments() 334
Arrays

mapping for 137
arrays

IDL definitions 90
attributes 24

readonly 25
authentication filters 412

B
banking example 23, 54, 143, 197, 209
basic types

mapping for 98
bind() 190�193

parameters to 191�??
to proxy objects 190

examples 192
exceptions 192
binding 164, 190�193

to objects 189
BOA

methods
disconnect() 441
dispose() 441
impl_is_ready() 158
myActivationMode() 273
myImplementationName() 274
myMarkerName() 273
myMarkerPattern() 274
myMethodName() 274

BOAImpl Approach 148

C
callbacks

avoiding deadlock 227�231
examples 222�245
from servers to clients 221�245
implementing 221�226

casting
object references 123

catitj 266
CDR 292
chmoditj 266
chownitj 266
Client

generating 16
implementing 17

clients
applets

loading from a Web servers 252
loading from files 251
security issues 252

debugging 253
multi-threaded 416
possible platform dependencies 254
running 249�254

Code generation toolkit
idlgen utility 16

Common Data Representation 292
components 184
compound name 184
473



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
ConstantDef 353
context 184
_CORBA

constants
ARG_IN 330
ARG_INOUT 330
ARG_OUT 330
explicitCall 441
IT_DEFAULT_TIMEOUT 160
IT_INFINITE_TIMEOUT 160
IT_INTEROPERABLE_OR_KIND 176
objectDeletion 441
processTermination 441

CORBA
interfaces

object 177
ObjectRef 178

CORBA Module
mapping for 101

CORBA::
IT_reqTransformer 462

CORBA::ORB::
setMyReqTransformer() 464
setReqTransformer() 464

CORBA::ServerRequest 342
_create_request() 331
ctx() 334

D
daemon

IDL interface to 274
deadlock

avoiding in callback models 227�231
debugging

clients 253
deferred synchronous invocations 229, 336
diagnostics

diagnostics levels 306
diagnostics log 305�309
setDiagnostics() 308

DII 321�338
steps in using 323
using CORBA based approach 325
using filters with 338
using with the Interface Repository 333

disconnect() 441
dispose() 441
DSI 339�346
DynamicImplementation 341
 474
E
event processing

in threads 230
examples

banking 23, 54, 143, 197, 209
exceptions 198
inheritance 209
Interface Repository 373

ExceptionDef 353
exceptions 197, 202

handling 201
in filters 407
system exceptions 201

explicitCall 441

F
filter 402

methods
inReplyFailure() 403
inReplyPostMarshal() 402
inReplyPreMarshal() 402
inRequestPostMarshal() 402
inRequestPreMarshal() 402
outReplyFailure() 403
outReplyPostMarshal() 402
outReplyPreMarshal() 402
outRequestPostMarshal() 402
outRequestPreMarshal() 402

filters 395�415
authentication 412
filter points

in reply failure 399
in reply post marshal 398
in reply pre marshal 398
in request post marshal 398
out reply failure 398
out reply post marshal 398
out reply pre marshal 397
out request post marshal 398
out request pre marshal 397
per-object post 401
per-object pre 401

multiple ORB support 396
per-object 401, 413�415

examples 413�415
per-process 402�413

chain of 397
examples 404
installing 407



I n d e x
piggybacking data on requests 409, 411
raising exceptions in 407, 409
retrieving request buffer size 412
using with the DII 338

fixed data type 91
fixed data types 91
flags 330
format

of names 184

G
General Inter-ORB Protocol 291
Genie-generated application

package name 16
get_response() 336
gid of server 272
GIOP 291

message formats 292
overview 292

H
Hello World! example 13

I
IDL

arrays 133, 137
basic types 98
compiler

switches to 469
constants 135
data types 85

basic types 85
constructed types 86

enums 124
exceptions 137, 198
fixed 134
inheritance 118
interfaces 98, 101
modules 76, 100
object references 117
opaque 457
operations 78

oneway 80
orb.idl 93
pseudo types 92
sequences 131
string 130
structs 125, 135
unions 127
_ids() 343
IIOP 295�303

configuring server port 302
examples 296

ImplBase approach 152, 220
Implementation Repository 166, 258�267

entries 262
impl_is_ready() 158
include files

-I switch to IDL compiler 469
inheritance 209, 220

implementation classes 216
mapping for 118
multiple inheritance 218, 220
single inheritance

examples 217
in-process activation 284
inReplyFailure() 403
inReplyPostMarshal() 402
inReplyPreMarshal() 402
inRequestPostMarshal() 402
inRequestPreMarshal() 402
Interface Repository 324, 347�377

example 373
installing 349

InterfaceDef 353
interfaces

implementing 146
BOAImpl approach 148
comparison of approaches 172
example 143
ImplBase approach 148
multiple interfaces per implementation 173
providing multiple implementations 173
steps involved 144
TIE approach 146

mapping for 98
multiple inheritance of 218

interoperability
of ORBs 291

invoke() 343
IORs (Interoperable Object References) 176, 295

format of 176
Istring 184
IT_DEFAULT_CLASSPATH 258
IT_DEFAULT_TIMEOUT 160
IT_INFINITE_TIMEOUT 160
IT_INTEROPERABLE_OR_KIND 176
IT_JAVA_INTERPRETER 258
IT_reqTransformer 462
475



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
J
Java daemon

configuring 280
in-process activation 284
scope of 287
using 278

java_poa_genie.tcl 16

K
killitj 266

L
load balancing

using smart proxies 427
load() 436, 440
LoaderClass

methods
load() 436, 440
record() 436, 439
rename() 436, 439
save() 436, 441

loaders 435�453
creating a loader 436
disabling 453
examples 442�450
multiple ORB support 436
polymorphism in 450
relationship to object naming 438
specifying for an object 437

lsitj 266

M
mapping

arrays 133, 137
basic types 98
constants 135
CORBA module 101
enums 124
exceptions 137
fixed 134
inheritance 118
interfaces 98, 101
naming conventions 140
object references 117
sequence 131
string 130
strings 130
structs 125, 135
type any 100
 476
unions 127
_marker() 180
markers 178�181
mkdiritj 266
module

CORBA 101
modules 76
multiple implementations

of interfaces 173
multiple inheritance

See inheritance, multiple inheritance
using the ImplBase approach 220
using the TIE approach 220

multiple interfaces
per implementation 173

multiple ORB support 396, 426, 436
multiple-client activation mode 260
myActivationMode() 273
myImplementationName() 274
myMarkerName() 273
myMarkerPattern() 274
myMethodName() 274

N
name space 188
names

format 184
Naming Service

examples 297, 300
NamingContext 184
narrow() 123
narrowing

object references 123
New() 426

O
object 177
object deletion 441
object faults 435
Object reference

passing as a string 14
object reference strings 193
object references

casting 123
IOR format 176
mapping for 117
naming 438
narrowing 123
obtaining 181



I n d e x
publishing 181
_ObjectRef

methods
_marker() 180
_request() 326
_save() 436, 441

objects
connection 157, 158

comparison of methods 160
impl_is_ready() 158

creating 32
creating in servers 155
initialisation 157
initialization of 177
lifecycle 168
naming 178
persistent 451
references to 32

oneway operations 229
opaque types 455�459
OperationDef 353
operations 24

invoking 165
non-blocking invocations 228
oneway operations 229

ORB
connect() 158
disconnect() 158
methods

pingDuringBind() 193
shutdown() 436

ORB.connect() 158
ORBClass 12
Orbix 178
orbixd

See daemon 274
orbixdj

See Java daemon 278
orbixusr 272
org.omg.CORBA.ORBClass 12
org.omg.CORBA.ORBSingletonClass 12
outReplyFailure() 403
outReplyPostMarshal() 402
outReplyPreMarshal() 402
outRequestPostMarshal() 402
outRequestPreMarshal() 402
owjavac 42

P
Package name 16
parameters
passing modes in IDL 26

pattern matching 267
per-client activation mode 261
per-client-process activation mode 261
per-method activation mode 260
PerObjectServiceContextHandler 389
PerObjectServiceContextHandlerList 390
PerRequestServiceContextHandler 389
PerRequestServiceContextHandlerList 389
persistent objects 451
piggybacking data on requests 409, 411
pingDuringBind() 193
pingitj 266
poll_response() 336
polymorphism

in loaders 450
processTermination 441
proxies 423
proxy 36, 60
proxy classes 428
proxy objects

creating 193
ProxyFactory 426

methods
New() 426

psitj 266
putitj 166, 263�265, 266

examples 265

R
readonly attributes 25
record() 436, 439
references, object 32
registering

a request transformer 463
registering servers

See servers, registration of
registration commands 266

catitj 266
chmoditj 266
chownitj 266
killitj 266
lsitj 266
mkdiritj 266
pingitj 266
psitj 266
putitj

See putitj
rmdiritj 266
477



Orb i x  P r o g r amme r � s  Gu i d e  J a v a  E d i t i o n
rmitj 266
remote invocations 165
rename() 436, 439
request

methods
arguments() 334
_create_request() 331
ctx() 334
get_response() 336
poll_response() 336
reset() 335
result() 335
send_deferred() 336

transforming request data 461
_request() 326
requests

adding a context parameter 334
constructing 325

using _create_request() 331
using _request() 327

invoking 333
piggybacking data on 409, 411
reading and writing attributes 334
resetting for reuse 335
retrieving buffer size 412
retrieving operation names 335
retrieving results

using arguments() and results() 334
retrieving target objects 335

reset() 335
result() 335
rmdiritj 266
rmitj 266
runtime information 348

S
_save() 436, 441
save() 436, 441
security

caller identity 270
effective uid/gid 272
of client applets 252
of servers 271

send_deferred() 336
Server

generating 16
implementing 17

ServerRequest 342
servers

activation information 273
 478
activation of 166
configuring IIOP ports 302
creating objects 155
initalisation 158
in-process

developing 284
multi-threaded 416
registration of 166
security of 271
uid and gid 272

service contexts 379�390
ServiceContext

ServiceContext per object 387
ServiceContext per request 383

ServiceContextHandler 380
example 385
incomingReplyHandler() 388
incomingRequestHandler() 388
outboundReplyHandler() 389
outboundRequestHandler() 388
using with filter points 390

ServiceContextList 381
setDiagnostics() 282, 305, 308
setMyReqTransformer() 464
setReqTransformer() 464
shared activation mode 259
shutdown() 436
signals

SIGINT 350
smart proxies 423�433

examples 428�433
factory classes 424
implementation steps 425
multiple ORB support 426

smart proxy factory classes
See smart proxies, factory classes

Strings
mapping for 130

string_to_object() 193
Structs

mapping for 135
system exceptions

See exceptions, system
SystemException 201

T
threads

event processing in 230
TIE approach 146, 220

examples 150



I n d e x
transformers
implementing 462
registering 463

transforming request data 461
TypeDef 353

U
uid of server 272
unregistered servers 269, 280
unshared activation mode 260
user-defined exceptions 198

W
Wrapper Utilities

alternative standard method 256
owjava 254
owjavac 254
479




	Heading 1FBM - Preface
	Heading 2 - Audience
	Heading 2 - Organization of the Orbix Java Edition Documentation
	Heading 2 - Organization of this Guide
	Heading 2 - Document Conventions

	Part - Part 1
	Part - Getting Started
	Heading 1 - Introduction to CORBA and Orbix Java
	Heading 2 - CORBA and Distributed Object Programming
	Heading 3 - The Role of an Object Request Broker
	Heading 3 - The Structure of a CORBA Application
	Heading 3 - The Structure of a Dynamic CORBA Application
	Heading 3 - Interoperability between Object Request Brokers

	Heading 2 - The Object Management Architecture
	Heading 3 - The CORBAservices
	Heading 3 - The CORBAfacilities

	Heading 2 - How Orbix Java Implements CORBA

	Heading 1 - Getting Started with Orbix Java
	Heading 2 - Prerequisites
	Heading 2 - Setting ORB Properties for the Orbix ORB
	Heading 3 - Using the orb.properties File
	Heading 3 - Using Java Interpreter Arguments

	Heading 2 - Hello World Example
	Heading 2 - Development from the Command Line
	Heading 3 - Steps to Implement the Hello World! Application
	Heading 3 - Step 1-Define the IDL Interface
	Heading 3 - Step 2-Generate Starting Point Code.
	Heading 3 - Step 3-Complete the Server Program
	Heading 3 - Step 4-Complete the Client Program
	Heading 3 - Step 5-Build and Run the Demonstration


	Heading 1 - Developing Applications with Orbix Java
	Heading 2 - Developing a Distributed Application with Orbix Java
	Heading 2 - Defining IDL Interfaces
	Heading 2 - Compiling IDL Interfaces
	Heading 3 - Checking your Configuration
	Heading 3 - Running the IDL Compiler
	Heading 3 - Implementing IDL Interfaces

	Heading 2 - Writing an Orbix Java Server Application
	Heading 3 - Initializing the ORB
	Heading 3 - Creating an Implementation Object
	Heading 3 - Registering an Object with the Naming Service
	Heading 3 - Error Handling for Server Applications

	Heading 2 - Writing the Client Application
	Heading 3 - Initializing the ORB
	Heading 3 - Getting a Reference to an Object
	Heading 3 - Invoking IDL Attributes and Operations

	Heading 2 - Compiling the Client and Server
	Heading 3 - Compiling the Server Application
	Heading 3 - Compiling the Client Application

	Heading 2 - Registering the Server
	Heading 3 - Running the Orbix Java Daemon
	Heading 3 - Using Putitj

	Heading 2 - Running the Client Application
	Heading 2 - Summary of the Programming Steps
	Heading 2 - Orbix Java IDL Compilation
	Heading 3 - Examining the Generated Interfaces and Classes


	Heading 1 - Developing Applets with Orbix Java
	Heading 2 - Review of Orbix Java Programming Steps
	Heading 2 - Providing a Server
	Heading 2 - Writing a Client Applet
	Heading 2 - Creating the User Interface
	Heading 2 - Adding Orbix Java Client Functionality
	Heading 3 - Getting a Reference to an Object
	Heading 3 - Invoking IDL Attributes and Operations
	Heading 3 - Handling Exceptions in Orbix Java Client Applets
	Heading 3 - Creating the Applet
	Heading 3 - Initializing the ORB

	Heading 2 - Adding the Applet to a HTML File
	Heading 2 - Compiling the Client Applet
	Heading 2 - Running the Client Applet
	Heading 3 - Security Issues for Java Applets

	Heading 2 - Learning more about Orbix Java


	Part - Part II
	Part - CORBA Programming with Orbix Java
	Heading 1 - Introduction to CORBA IDL
	Heading 2 - IDL Modules and Scoping
	Heading 2 - Defining IDL Interfaces
	Heading 3 - IDL Attributes
	Heading 3 - IDL Operations
	Heading 3 - Inheritance of IDL Interfaces
	Heading 3 - Forward Declaration of IDL Interfaces

	Heading 2 - Overview of the IDL Data Types
	Heading 3 - IDL Basic Types
	Heading 3 - IDL Constructed Types
	Heading 3 - IDL Template Types
	Heading 3 - Arrays
	Heading 3 - Fixed Types
	Heading 3 - IDL Pseudo-Object Types
	Heading 3 - Defining Aliases and Constants


	Heading 1 - IDL to Java Mapping
	Heading 2 - Overview of IDL to Java Mapping
	Heading 2 - Mapping for Basic Data Types
	Heading 2 - Mapping for Modules
	Heading 3 - Scoped Names
	Heading 3 - The CORBA Module

	Heading 2 - Mapping for Interfaces
	Heading 3 - Client Mapping
	Heading 3 - Helper Classes for Type Manipulation
	Heading 3 - Holder Classes and Parameter Passing
	Heading 3 - Server Implementation Mapping
	Heading 3 - Approaches to Interface Implementation
	Heading 3 - Object References
	Heading 3 - Mapping for Derived Interfaces

	Heading 2 - Mapping for Constructed Types
	Heading 3 - Enums
	Heading 3 - Structs
	Heading 3 - Unions

	Heading 2 - Mapping for Strings
	Heading 2 - Mapping for Sequences
	Heading 2 - Mapping for Arrays
	Heading 2 - Mapping for Fixed Types
	Heading 2 - Mapping for Constants
	Heading 2 - Mapping for Typedefs
	Heading 2 - Mapping for Exception Types
	Heading 3 - System Exceptions
	Heading 3 - User-Defined Exceptions

	Heading 2 - Naming Conventions
	Heading 2 - Parameter Passing Modes and Return Types

	Heading 1 - Using and Implementing IDL Interfaces
	Heading 2 - Overview of an Example Application
	Heading 2 - Overview of the Programming Steps
	Heading 2 - Defining IDL Interfaces to Application Objects
	Heading 2 - Compiling IDL Interfaces
	Heading 2 - Implementing the IDL Interfaces
	Heading 3 - The TIE Approach to Implementing Interfaces
	Heading 3 - The ImplBase Approach to Implementing Interfaces

	Heading 2 - Developing the Server Application
	Heading 3 - Implementing the Bank Interface
	Heading 3 - Implementing the Account Interface
	Heading 3 - Writing the Server
	Heading 3 - Object Initialization and Connection
	Heading 3 - Comparison of Methods for Connecting to the ORB

	Heading 2 - Developing the Client Application
	Heading 3 - Obtaining a Reference to a Bank Object
	Heading 3 - Alternatives to the Naming Service
	Heading 3 - Making Remote Invocations

	Heading 2 - Registration and Activation
	Heading 2 - Execution Trace
	Heading 2 - Comparison of the ImplBase and TIE Approaches
	Heading 3 - Providing Different Implementations of the Same Interface
	Heading 3 - Providing Different Interfaces to the Same Implementation


	Heading 1 - Making Objects Available in Orbix Java
	Heading 2 - Identifying CORBA Objects
	Heading 3 - Interoperable Object References
	Heading 3 - Orbix Java Object References
	Heading 3 - Accessing Object References
	Heading 3 - Assigning Markers to Orbix Java Objects

	Heading 2 - Using the CORBA Naming Service
	Heading 3 - The Interface to the Naming Service
	Heading 3 - Format of Names within the Naming Service
	Heading 3 - Making Contact with the Naming Service
	Heading 3 - Associating Names with Objects
	Heading 3 - Using Names to Find Objects
	Heading 3 - Associating a Compound Name with an Object
	Heading 3 - Federation of Name Spaces

	Heading 2 - Binding to Objects in Orbix Java Servers
	Heading 3 - The bind() Method
	Heading 3 - Example Calls to bind()
	Heading 3 - Binding and Exceptions

	Heading 2 - Using Object Reference Strings to Create Proxy Objects

	Heading 1 - Exception Handling
	Heading 2 - User-Defined Exceptions
	Heading 3 - The IDL Definitions
	Heading 3 - The Generated Java Code

	Heading 2 - System Exceptions
	Heading 3 - Obtaining Information from System Exceptions

	Heading 2 - Example of Server-Side Exception Handling
	Heading 2 - Example of Client-Side Exception Handling
	Heading 3 - Handling Specific System Exceptions


	Heading 1 - Using Inheritance of IDL Interfaces
	Heading 2 - Single Inheritance of IDL Interfaces
	Heading 3 - The IDL Interfaces
	Heading 3 - The Client-Side Generated Types

	Heading 2 - Using Inheritance in a Client
	Heading 2 - Using Inheritance in a Server
	Heading 3 - The TIE Approach
	Heading 3 - The ImplBase Approach

	Heading 2 - Multiple Inheritance of IDL Interfaces
	Heading 3 - Implementing Multiple Inheritance


	Heading 1 - Callbacks from Servers to Clients
	Heading 2 - Implementing Callbacks in Orbix Java
	Heading 3 - Defining the IDL Interfaces
	Heading 3 - Writing a Client
	Heading 3 - Writing a Server

	Heading 2 - Callbacks and Bidirectional Connections
	Heading 2 - Avoiding Deadlock in a Callback Model
	Heading 3 - Using Non-Blocking Operation Invocations
	Heading 3 - Using Multiple Threads of Execution

	Heading 2 - An Example Callback Application
	Heading 3 - The IDL Specification
	Heading 3 - The Client Application
	Heading 3 - The Central Server Application

	Heading 2 - Specifying the Ports to Use for Callbacks


	Part - Part III
	Part - Running Orbix Java Programs
	Heading 1 - Running Orbix Java Clients
	Heading 2 - Running Client Applications
	Heading 2 - Running Orbix Java Client Applets
	Heading 3 - Loading a Client Applet from a File
	Heading 3 - Loading a Client Applet from a Web Server
	Heading 3 - Security Issues for Client Applets

	Heading 2 - Debugging Orbix Java Clients
	Heading 2 - Possible Platform Dependencies in Orbix Java Clients
	Heading 2 - Using the Orbix Java Wrapper Utilities
	Heading 3 - Using owjava as a Front End to the Java Interpreter
	Heading 3 - Using owjavac as a Front End to the Java Compiler
	Heading 3 - Using the Interpreter and Compiler without the Wrapper Utilities


	Heading 1 - Registration and Activation of Servers
	Heading 2 - The Implementation Repository
	Heading 2 - Activation Modes
	Heading 3 - Primary Activation Modes
	Heading 3 - Secondary Activation Modes
	Heading 3 - Persistent Server Mode
	Heading 3 - Implementation Repository Entries

	Heading 2 - The Orbix Java Putitj Utility for Server Registration
	Heading 3 - Examples of Using Putitj

	Heading 2 - Additional Registration Commands
	Heading 2 - Activation and Pattern Matching
	Heading 2 - Persistent Servers
	Heading 2 - Unregistered Servers
	Heading 2 - Activation Issues Specific to IIOP Servers
	Heading 2 - Security Issues for Orbix Java Servers
	Heading 3 - Identity of the Caller of an Operation
	Heading 3 - Server Security

	Heading 2 - Activation and Concurrency
	Heading 2 - Activation Information for Servers
	Heading 2 - IDL Interface to the Implementation Repository
	Heading 2 - Using the Server Manager
	Heading 2 - About the Java Daemon (orbixdj)

	Heading 1 - Using the Orbix Java Daemon
	Heading 2 - Overview of the Java Daemon
	Heading 3 - Features of the Java Daemon

	Heading 2 - Using the Java Daemon
	Heading 3 - Starting the Java Daemon
	Heading 3 - Configuring the Java Daemon
	Heading 3 - Viewing Output with the Graphical Console

	Heading 2 - In-Process Activation of Servers
	Heading 3 - Guidelines for Developing In-Process Servers

	Heading 2 - Scope of the Java Daemon
	Heading 3 - Activation
	Heading 3 - Java Version
	Heading 3 - IT_daemon Interface
	Heading 3 - Utilities
	Heading 3 - Markers and the Implementation Repository
	Heading 3 - Security
	Heading 3 - Server Names
	Heading 3 - In-Process Servers


	Heading 1 - ORB Interoperability
	Heading 2 - Overview of GIOP
	Heading 3 - Coding
	Heading 3 - Message Formats

	Heading 2 - Internet Inter-ORB Protocol (IIOP)
	Heading 3 - IIOP in Orbix Java
	Heading 3 - Example using IIOP in a Platform-Independent Application
	Heading 3 - Configuring an IIOP Port Number for an Orbix Java Server

	Heading 2 - Interoperability between Orbix and Orbix Java

	Heading 1 - Orbix Java Diagnostics
	Heading 2 - Setting Diagnostics
	Heading 3 - Diagnostics Levels
	Heading 3 - Alternative Approaches to Setting Diagnostics



	Part - Part IV
	Part - Advanced CORBA Programming
	Heading 1 - Type any
	Heading 2 - Constructing an Any Object
	Heading 2 - Inserting Values into an Any Object
	Heading 2 - Extracting Values from an Any Object
	Heading 2 - Any as a Parameter or Return Value
	Heading 2 - Additional Methods

	Heading 1 - Dynamic Invocation Interface
	Heading 2 - Using the DII
	Heading 3 - Programming Steps for Using the DII
	Heading 3 - Examples of Clients Using the DII

	Heading 2 - The CORBA Approach to Using the DII
	Heading 3 - Creating a Request
	Heading 3 - Setting up a Request Using _request()
	Heading 3 - Alternative approach
	Heading 3 - Setting up a Request Using _create_request()
	Heading 3 - Invoking a Request
	Heading 3 - Using the DII with the Interface Repository
	Heading 3 - Setting up a Request to Read or Write an IDL Attribute
	Heading 3 - Operation Results
	Heading 3 - Interrogating a Request
	Heading 3 - Resetting a Request Object for Reuse

	Heading 2 - Deferred Synchronous Invocations
	Heading 2 - Using Filters with the DII

	Heading 1 - Dynamic Skeleton Interface
	Heading 2 - Uses of the DSI
	Heading 2 - Using the DSI
	Heading 3 - Creating DynamicImplementation Objects

	Heading 2 - Example of Using the DSI

	Heading 1 - The Interface Repository
	Heading 2 - Configuring the Interface Repository
	Heading 2 - Runtime Information about IDL Definitions
	Heading 2 - Using the Interface Repository
	Heading 3 - Installing the Interface Repository

	Heading 2 - Structure of the Interface Repository Data
	Heading 3 - Simple Types

	Heading 2 - Abstract Interfaces in the Interface Repository
	Heading 3 - Class Hierarchy and Abstract Base Interfaces
	Heading 3 - Interface IRObject

	Heading 2 - Containment in the Interface Repository
	Heading 3 - The Contained Interface
	Heading 3 - The Container Interface
	Heading 3 - Containment Descriptions

	Heading 2 - Type Interfaces in the Interface Repository
	Heading 3 - Named Types
	Heading 3 - Unnamed Types

	Heading 2 - Retrieving Information from the Interface Repository
	Heading 2 - Example of Using the Interface Repository
	Heading 3 - Repository IDs
	Heading 3 - OMG IDL Format
	Heading 3 - Pragma Directives


	Heading 1 - Service Contexts
	Heading 2 - The Orbix Java Service Context API
	Heading 3 - Service Context Handlers
	Heading 3 - Service Context Lists
	Heading 3 - ORB Interfaces

	Heading 2 - Using Service Contexts in Orbix Java Applications
	Heading 3 - ServiceContext Per Request Model
	Heading 3 - ServiceContext Per-Object Model
	Heading 3 - Service Context Main Components

	Heading 2 - Service Context Handlers and Filter Points


	Part - Part V
	Part - Advanced Orbix Java Programming
	Heading 1 - Filters
	Heading 2 - Introduction to Per-Process Filters
	Heading 3 - Pre-Marshalling Filter Points
	Heading 3 - Post-Marshalling Filter Points
	Heading 3 - Failure Points

	Heading 2 - Introduction to Per-Object Filters
	Heading 2 - Using Per-Process Filters
	Heading 3 - An Example Per-Process Filter
	Heading 3 - Installing a Per-Process Filter
	Heading 3 - How to Create a System Exception
	Heading 3 - Piggybacking Extra Data to the Request Buffer
	Heading 3 - Retrieving the Size of a Request Buffer
	Heading 3 - Defining an Authentication Filter

	Heading 2 - Using Per-Object Filters
	Heading 3 - IDL Compiler Switch to Enable Object Filtering

	Heading 2 - Thread Filters
	Heading 3 - Multi-Threaded Clients and Servers
	Heading 3 - Thread Programming in Orbix Java
	Heading 3 - Models of Threading
	Heading 3 - Implementing Threads in Orbix Java


	Heading 1 - Smart Proxies
	Heading 2 - Proxy Classes and Smart Proxy Classes
	Heading 3 - Proxy Classes
	Heading 3 - Smart Proxy Classes
	Heading 3 - Requirements for Smart Proxies
	Heading 3 - Creating a Smart Proxy
	Heading 3 - Benefits of Using Smart Proxies

	Heading 2 - Using Smart Proxies
	Heading 3 - Creating a Smart Proxy
	Heading 3 - A Sample Client


	Heading 1 - Loaders
	Heading 2 - Overview of Creating a Loader
	Heading 2 - Specifying a Loader for an Object
	Heading 2 - Connection between Loaders and Object Naming
	Heading 3 - Loading Objects

	Heading 2 - Saving Objects
	Heading 2 - Writing a Loader
	Heading 2 - Example Loader
	Heading 3 - Coding the Loader

	Heading 2 - Polymorphism
	Heading 2 - Approaches to Providing Persistent Objects
	Heading 2 - Disabling the Loaders

	Heading 1 - Opaque Types
	Heading 2 - Using Opaque Types
	Heading 3 - IDL Definition
	Heading 3 - Compiling the IDL Definition
	Heading 3 - Mapping of Opaque Types to Java
	Heading 3 - Implementing the Opaque Type
	Heading 3 - The Helper Class
	Heading 3 - The Holder Class


	Heading 1 - Transforming Requests
	Heading 2 - Transforming Request Data
	Heading 3 - The IE.Iona.OrbixWeb.Features.IT_reqTransformer Class
	Heading 3 - Registering a Transformer

	Heading 2 - An Example Transformer


	Appendix 1 - Appendix A IDL Compiler Switches
	Heading 1FBM - Index

