
Web Services Programmer’s
Reference

Version 6.1, December 2003

IONA, IONA Technologies, the IONA logo, Orbix, Orbix/E, Orbacus, Artix, Orchestrator,
Mobile Orchestrator, Enterprise Integrator, Adaptive Runtime Technology, Transparent
Enterprise Deployment, and Total Business Integration are trademarks or registered
trademarks of IONA Technologies PLC and/or its subsidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.
While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of
any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publication
and features described herein are subject to change without notice.

Copyright © 2001–2003 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 18-Dec-2003

M 3 1 7 4

Contents

List of Tables vii

List of Figures ix

Preface xi

Chapter 1 Developing Web Service Clients 1
Generating Client Code 3
J2SE Client 4

J2SE Client Architecture 5
Generating J2SE Client Code 7
Using the J2SE Client Demo 8
Using the Web Service Interface in Custom Code 10
Controlling Client I/O Settings 13
Controlling SOAP Message Processing 14
Handling Web Service Exceptions 15

J2ME Client 18
J2ME Protocol Options 19
Generating a J2ME Client 20

Chapter 2 Customizing SOAP Faults 25
Controlling SOAP Faults 26
Mapping Exceptions to SOAP Faults 27

Chapter 3 Adding Handlers 29
About Handlers 32
Implementing Handlers 36

Stream Handlers 37
Message Handlers 40
Invocation Handlers 42

Adding Handlers to a Web Service 43
Adding Handlers to a Web Service Client 45
iii

CONTENTS
Chaining Handlers 46
Writing a Data Content Handler for SOAP Attachments 47

Chapter 4 Supported Data Types 51
Mapping from Java to WSDL 52

Supported Java Objects 53
Primitive Java Types 54
Common Java Classes 55
Java Arrays and Sequences 56
Java Structures 57
Java Exceptions 59

Mapping from CORBA IDL to WSDL 61
Primitive CORBA IDL Types 62
CORBA IDL Arrays and Sequences 64
CORBA IDL Structures 65
CORBA IDL Enumeration 66
CORBA IDL Unions 67
CORBA Exceptions 68

Mapping from WSDL to Java 71
Supported Primitive XML Schema Types 72
Supported Derived XML Schema Types 74
Other WSDL Type Mappings 76
Links to the XML Schema Specifications 81

Chapter 5 XAR Properties 83
<chain> 86
<chainSequence> 87
<complexType> 88
<dependencies> 90
<endpoint> 91
<handler> 92
<include> 93
<operation> 94
<param> 95
<part> 96
<reference> 98
<resource> 99
<schema> 100
 iv

CONTENTS
<schemas> 101
<service> 102
<soapproperties> 103
<source> 105

Index 107
v

CONTENTS
 vi

List of Tables

Table 1: Command-line Options for a J2SE Client Demo 9

Table 2: J2ME Client Limitations 18

Table 3: SOAPFaultException Constructors 26

Table 4: ServerExceptionHandler Methods 27

Table 5: InputStreamHandler Methods 37

Table 6: OutputStreamHandler Methods 39

Table 7: MessageHandler Methods 40

Table 8: Key Methods of the DataContentHandler Interface 49

Table 9: Supported Java Types and the WSDL Mapping 54

Table 10: Supported Common Java Classes and the WSDL Mapping 55

Table 11: Supported CORBA IDL Types and the WSDL Mapping 62

Table 12: Supported Primitive XML Schema Types and the Java Mapping 72

Table 13: Supported Derived XML Schema Types and the Java Mapping 74
vii

LIST OF TABLES
 viii

List of Figures

Figure 1: Interaction of J2SE client code with a Web service 5

Figure 2: J2ME Wireless Toolkit GUI 20

Figure 3: Create J2ME Client from WSDL 21

Figure 4: J2ME Wireless Toolkit Phone Simulator 23

Figure 5: Handler interfaces and classes 30

Figure 6: Client-side handlers 32

Figure 7: Message handler chains 33

Figure 8: Server-side handlers 34

Figure 9: Message handlers 35

Figure 10: A SOAP message and a SOAP with attachments message 48
ix

LIST OF FIGURES
 x

Preface
Audience This guide is aimed at developers who are developing Web services. Java or

other programming experience is assumed.

Updated documentation The latest updates to the documentation can be found at this URL: http://
www.iona.com/docs/.

Additional resources The IONA knowledge base contains helpful articles, written by IONA
experts. You can access the knowledge base at the following location:

http://www.iona.com/support/kb/

The IONA update center contains the latest releases and patches for IONA
products:

http://www.iona.com/support/update/

Additional resources The IONA knowledge base (http://www.iona.com/support/knowledge_base/
index.xml) contains helpful articles, written by IONA experts, about the
Orbix and other products. You can access the knowledge base at the
following location:

The IONA update center (http://www.iona.com/support/updates/index.xml)
contains the latest releases and patches for IONA products:

If you need help with this or any other IONA products, contact IONA at
support@iona.com. Comments on IONA documentation can be sent to

.

xi

http://www.iona.com/docs/
http://www.iona.com/docs/
mailto:support@iona.com
http://www.iona.com/support/kb/
http://www.iona.com/support/update/
http://www.iona.com/support/knowledge_base/index.xml
http://www.iona.com/support/updates/index.xml

PREFACE
Typographical conventions This guide uses the following typographical conventions:

Constant width Constant width (courier font) in normal text
represents portions of code and literal names of items
such as classes, functions, variables, and data
structures. For example, text might refer to the
CORBA::Object class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>

Italic Italic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle
brackets to represent variable values you must
supply. This is an older convention that is replaced
with italic words or characters.
 xii

PREFACE
Keying conventions This guide may use the following keying conventions:

No prompt When a command’s format is the same for multiple
platforms, a prompt is not used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the DOS or Windows
command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{ } Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.
xiii

PREFACE
 xiv

CHAPTER 1

Developing Web
Service Clients
Clients developed in Web Service Builder provide all the Web
service access usually needed. You can also use the generated
code as the basis for creating custom applications.

In either case, all low-level programming issues including SOAP, XML, and
WSDL technologies are hidden, so you can concentrate on getting Web
services working quickly.

Types of Web service clients Web Service Builder (and equivalent command-line tools) can help you
develop several types of client applications:

J2ME Client: A lightweight client that runs in the Java 2 Micro Edition
(J2ME) environment.

J2SE Client: A client that uses the Java 2 Platform, Standard Edition (J2SE)
interface. A J2SE client can have either RPC- or document-style interaction
with a Web service.s

.NET interoperability The clients that you generate with Web Service Builder or equivalent
command-line tools are standards-compliant. Interoperability is verified
against Microsoft’s.NET toolkit and MS SOAP. The SOAP client that you
build can access Web services that are constructed with Microsoft tools, just
like any other Web service.
1

CHAPTER 1 | Developing Web Service Clients
In this chapter This chapter contains the following sections:

Generating Client Code page 3

J2SE Client page 4

J2ME Client page 18
 2

Generating Client Code
Generating Client Code

Client types After deploying a Web service, you need a way to access it. Web service
builder can generate the following client types:

J2SE client: You can generate a J2SE DOM or RPC client. Either client
consists of an interface class that is created at compile time, along with an
implementation class that is created and instantiated at runtime based on
the Java 1.3 proxy scheme.

You can also generate a J2SE client with command-line tools
xmlbus.WSDLToInterface and xmlbus.WSDLToJ2SEDemo

J2ME client: Web Service Builder can generate code for a working J2ME
client that can access the Web service. You can compile and run the J2ME
client application to access the Web service’s methods from devices like a
WAP-enabled phone or a palmtop computer.

You can also generate a J2ME client with the command-line tool
xmlbus.WSDLToJ2MEClient.

Client code sources In general, client code can be generated from two sources:

• The XAR file for Web service that is created in Web Service Builder

• The WSDL of any Web service.
3

CHAPTER 1 | Developing Web Service Clients
J2SE Client

Overview You can build J2SE clients that access a Web service with Web Service
Builder or command-line tools. A J2SE client consists of a Web service
interface class that is created at compile time, with an implementation
proxy class that is created and instantiated at runtime, based on the Java
1.3 proxy scheme.

In this section This section contains the following topics:

J2SE Client Architecture page 5

Generating J2SE Client Code page 7

Using the J2SE Client Demo page 8

Using the Web Service Interface in Custom Code page 10

Controlling Client I/O Settings page 13

Controlling SOAP Message Processing page 14

Handling Web Service Exceptions page 15
 4

J2SE Client
J2SE Client Architecture

Key features A J2SE client include the following features:

Web service Java interface: A Java interface that represents the Web
service’s WSDL information. Client code such as the J2SE client demo or
your custom client code calls this proxy code to access the Web service.

J2SE client demo: A simple demonstration client that tests the Web service
from the command line. This code calls the Web service Java interface.

WebServiceProxy object: A proxy object created at runtime that
implements the Web service Java interface and accesses the Web service.
The WebServiceProxy object is instantiated in client code such as the J2SE
client demo or your custom client code.

How it works The following figure shows how the various pieces of code interact:

Figure 1: Interaction of J2SE client code with a Web service

Server SystemClient System

Web service
Java interface

WebServiceProxy

Web service
implementation

Custom
client
code

J2SE
client
demo

Calls to
interface

Message

virtual
communication

WSDL

Calls to proxy

SOAP message
communication
5

CHAPTER 1 | Developing Web Service Clients
At runtime, the WebServiceProxy and Message objects are created. The
WebServiceProxy implements the interface on the client side. When the
client code—J2SE client demo or custom code—calls a method on the Web
service interface, the WebServiceProxy object provides the mapping to the
methods defined in the WSDL. Finally, the Message object communicates
the information from the WebServiceProxy to the actual Web service on the
server side.

Note: The generating tool uses the WSDL to create the Web service Java
interface and the J2SE client demo.

If you already have the Web service’s Java interface class, you can use it
directly. For example, if you generate the Web service from your
application’s interface, you can use the original interface in the client code,
provided the methods on the interface correspond to the Web services
WSDL.

If you lack interface code for a deployed Web service, use a URL to the
Web service’s WSDL to generate the Web service Java interface class
 6

J2SE Client
Generating J2SE Client Code

Steps Follow these steps to generate J2SE client code:

1. Use Web Service Builder to generate the Web service Java interface
and J2SE client demo (see “Generating Client Code” on page 3). You
can also generate the code with the command-line tools
xmlbus.WSDLToInterface and xmlbus.WSDLToJ2SEDemo.

For this example, use the Finance application provided with your
installation.

2. Set the environment for compiling and running J2SE clients by running
itws_clientenv.bat (Windows) or by sourcing itws_clientenv
(UNIX) from your installation’s /asp/Version/bin subdirectory.

3. Compile the Web service interface class for the J2SE client. For
example:

javac FinanceInterface.java
7

CHAPTER 1 | Developing Web Service Clients
Using the J2SE Client Demo

Overview The J2SE client demo is a ready-made client that accesses the Web service
from which it was built. When the tester is invoked, the user specifies the
URL of a WSDL and the method call. A J2SE client demo lets you try Web
service operations (that use parameters of simple types) and modify some
features of the WSDL.

Steps To use the J2SE client demo, perform the following steps:

1. Set the client environment by running itws_clientenv.bat (Windows)
or by sourcing itws_clientenv (UNIX) from your installation’s
/asp/Version/bin subdirectory .

2. If you generated a J2SE DOM client, edit the following line of code:

org.w3c.dom.Document doc = null;

Replace null; as follows:

com.iona.webservices.util.DOMUtils.createDocumentFromStream
(new FileInputStream(args[1]));

3. Compile the J2SE client demo’s generated code, including the
demonstration client code. For example:

javac FinanceInterface.java FinanceProxyDemo.java

4. If you run the J2SE client demo without arguments, it shows usage
options and a list of the available Web service methods. For example:

set classpath=.;%classpath%
java FinanceProxyDemo
Syntax is: FinanceProxyDemo [-debug] [-url soapurl] [-wsdl

wsdllocation] operation [args...]
operation is one of:

calculateFutureValue
showTaxRate
paymentMortgage
periodMortgage
calculateAPR
calculateRate
calculateTimeToDoubleUsingRuleOf72
calculateRateToDoubleUsingRuleOf72
calculateTimeToDouble
calculateRateToDouble
 8

J2SE Client
The command-line options available for a J2SE client demo are
described in Table 1.

5. The following example shows how to execute the J2SE client demo
with an operation and argument. This example shows the monthly
payment on a loan of 100000 with an interest rate of 8% over a period
of 30 years.

% java FinanceProxyDemo paymentMortgage 100000 8.0 30
% 733.7645738793778

Table 1: Command-line Options for a J2SE Client Demo

Option Description

-debug Causes the display of SOAP messages when the
client tester runs.

-url soapurl Overrides the URL in the client. This is useful if
you want to use a different server
implementation of the Web service.

-wsdl wsdllocation Overrides the location of the WSDL file, so you
can specify a different implementation. Use this
option if you want to use the client for a
different Web service other than the one for
which the client was generated.

Note: You might also need to change the client
code for WebServiceProxy.getProxy():

Object proxy = WebServiceProxy.getProxy(
"", //Set to null
"", //Set to null
xwarInterface.class,
wsdlPath,
debug,
url,
userDefinedDataContentHandler

);

operation [args...] Causes execution of an operation for the Web
service with its appropriate arguments.
9

CHAPTER 1 | Developing Web Service Clients
Using the Web Service Interface in Custom Code

Overview With a few simple steps, you can use the Web service Java interface class in
custom code to interact with the Web service. The result is that local
method calls give your client access to the remote Web service.

Code example Example 1 is taken from the generated J2SE client demo, which you can
use as a guide for your own code.

Example 1: Custom Client Code

1 ...
import com.iona.webservices.soap.proxy.*;
import com.iona.webservices.client.*;
import com.iona.webservices.client.j2se.*;
import com.iona.webservices.handlers.*;

/**
* FinanceService
*/
...

2 Object proxy = WebServiceProxy.getProxy(
"FinanceService",
"FinancePort",
FinanceInterface.class,
wsdlPath,
debug,
url,
userDefinedDataContentHandler);

FinanceInterface impl = (FinanceInterface)proxy;
...

3 if ("paymentMortgage".equals(args[0])) {
double result = impl.paymentMortgage(

J2SEUtils.parseDouble(args[1]),
J2SEUtils.parseDouble(args[2]),
Integer.parseInt(args[3]));

System.out.println(J2SEUtils.doubleToString(result));
foundOp = true;

}
...
 10

J2SE Client
Code explanation This code executes as follows:

1. Imports the classes required by the client implementation—in this
example, the WebServiceProxy class and handlers.

2. Calls the WebServiceProxy object’s getProxy()method to bind the
interface with the corresponding WSDL, with the following arguments:

3. Using the Web service is as simple as making Java method calls. For
this example, the mortgage payment is calculated using the three input
arguments as input, as follows:

impl.paymentMortgage(
J2SEUtils.parseDouble(args[1]),
J2SEUtils.parseDouble(args[2]),
Integer.parseInt(args[3]));

Usage guidelines Keep the following considerations in mind when working with J2SE clients:

FinanceService The name of the Web service.

FinancePort The name of the Web service’s endpoint

FinanceServiceInterfa

ce.class

The interface class for the Web service.

wsdlPath The WSDL file. The default is set to the path
used when the code is generated. You can
reset this value when running the J2SE client
demo using the -wsdl option. (See Table 1 on
page 9.)

debug An optional boolean argument for displaying
debugging information. The default is set to
false. You can reset this value when running
the J2SE client demo using the -debug option
(see Table 1 on page 9).

url An optional String argument. The default is
set to null. You can reset this value when
running the J2SE client demo using the -url
option. (See Table 1 on page 9.)

userDefinedDataConten

tHandler

An optional HashMap object.
11

CHAPTER 1 | Developing Web Service Clients
• A client side runtime library, SoapClient.jar, is required. See the
itws_clientenv script in “Generating J2SE Client Code” on page 7.

• The reflective nature of the coding presents a minor performance
reduction.

• SOAP messages and connections are created at runtime and cannot be
modified.

• You should maintain the interface class for each service.

• Some changes to the WSDL require you to regenerate the Web service
interface. These include changes to methods, including added or
removed methods, changes to the number of parameters to methods,
and changes to data types.
 12

J2SE Client
Controlling Client I/O Settings
The com.iona.webservices.soap.client.io.ClientIOSettings interface
provides methods that let you control how a client performs it's IO
operations. These include:

• The endpoint URL that the client contacts

• Content handlers that convert MIME streams to objects

• I/O listeners that are useful for debugging.

• Socket layer properties such as timeouts and keepalives.

To obtain a handle to these settings, call:

ClientIOSettings io = WebServiceProxy.getClientIOSettings(proxy);
13

CHAPTER 1 | Developing Web Service Clients
Controlling SOAP Message Processing
The MessageSettings interface
(com.iona.webservices.soap.client.message.MessageSettings)

provides methods that let you control how a client creates and processes
SOAP messages. These include:

• Setting the charset encoding that is used (default is UTF-8).

• Specifying whether to add and validate xsi:type attributes.

• Default namespace prefixes.

Many of these settings can help clients interoperate with other servers and
improve performance. For example, turning off addition and validation of
xsi:type attributes can increase performance, but at the expense of
validation.

To obtain a handle to these settings, call:

MessageSettings ms = WebServiceProxy.getMessageSettings(proxy);
 14

J2SE Client
Handling Web Service Exceptions
When a Web service returns a SOAP fault, a J2SE client can handle it in two
ways:

• The generated ProxyDemo client catches any
RemoteSoapFaultException that the Web service throws. The
exception members—faultActor, faultcode, faultString, and
Detail—are accessible to the client code, as shown in Example 2.

• Exception handlers that implement the ClientExceptionHandler
interface can be registered with the ClientChain, as shown in
Example 3.

Catching
RemoteSoapFaultException

For example, the following ProxyDemo code is generated for a J2SE client:

Writing client exception handlers Catching the RemoteSOAPFaultException can be supplemented or
supplanted by one or more exception handlers that you write. These
handlers must be registered with the client’s handler chain with
addClientExceptionHandler() (see “Chaining Handlers” on page 46).

The following example shows how you might write a client exception
handler for SOAP message faults:

Example 2: Catching RemoteSOAPFaultException in a ProxyDemo

...
} catch (RemoteSOAPFaultException sfx) {

String faultCode = sfx.getFaultCode();
String faultActor = sfx.getFaultActor();
String faultString = sfx.getFaultString();
Detail detail = sfx.getDetail();
System.err.println("FaultCode: "+faultCode);
System.err.println("FaultActor: "+faultActor);
System.err.println("FaultString: "+faultString);

}
...
15

CHAPTER 1 | Developing Web Service Clients
Example 3: Client Exception Handler for SOAP Faults

import java.io.*;
import java.util.*;
import com.iona.webservices.handlers.*;
import com.iona.webservices.handlers.exception.*;
import com.iona.webservices.handlers.message.*;
import javax.xml.soap.*;
import com.iona.webservices.jaxm.soap.MessageImpl;

public class ExHandler1 implements ClientExceptionHandler {

public void init(HandlerContext ctx) {
}

public void destroy() {
}

public void handleException(MessageContext ctx, Throwable th, SOAPMessage fault)
throws MessageHandlerException {

try {
if (fault.getSOAPPart().getEnvelope().getBody().hasFault()) {

SOAPFault sf = fault.getSOAPPart().getEnvelope().getBody().getFault();
String fstr = sf.getFaultString();
Iterator iter = sf.getDetail().getDetailEntries();
String trace = "";

if (iter.hasNext()) {
DetailEntry entry = (DetailEntry)iter.next();
trace = entry.getValue();

//entry.getElementName().getLocalName().startsWith("StackTrace"));
}
System.out.println("code=" + sf.getFaultCode() + ", str="

+ sf.getFaultString() + ", actor=" + sf.getFaultActor());
System.out.println("trace=" + trace);

if (fstr.startsWith("java_io_FileNotFoundException")) {
th = new java.io.FileNotFoundException(trace);
System.out.println("create FileNOtFoundException");

}

 16

J2SE Client
} else {
System.out.println("create SOAPFaultException");
throw new SOAPFaultException("Invalid msg",

"InvalidFaultString",
"InvalidFaultActor");

}

/*
if (th instanceof FileNotFoundException) {

String msg = ((FileNotFoundException)th).getMessage();
if ("no file".equals(msg)) {

throw new SOAPFaultException("2SFCode", "2SFString", "2SFActor");
} else {

throw new SOAPFaultException("Invalid msg " + msg,
"InvalidFaultString",
"InvalidFaultActor");

}
}*/

} catch (SOAPException ex) {
throw new MessageHandlerException(ex);

}

}
}

Example 3: Client Exception Handler for SOAP Faults
17

CHAPTER 1 | Developing Web Service Clients
J2ME Client

Overview J2ME client run in the Java 2 Micro Edition (J2ME) environment. The
generated code consists of:

• A client that can be embedded in any J2ME application

• A sample Mobile Information Device applet (MIDlet) that shows how to
use the client.

Functional constraints J2ME clients are not as full-featured as J2SE clients (see page 4). The
following restrictions apply:

Table 2: J2ME Client Limitations

Disallowed Notes

Floating point data
types

float and double data types in the Web service’s
WSDL are represented as String type.

SOAP attachments

Multi-reference
SOAP encoding

Disallowed if a value can be referenced by more
than one accessor

Arrays and
structures

Document or literal encoding is limited to simple
types.

HTTPS support If not supported by the Mobile Information Device
Profile (MIDP) emulator. For example, the JavaSoft
emulator does not support HTTPS.

J2SE-specific
interfaces

The following interfaces are not supported:

ClientChain
ClientSecurity
MessageSettings
ClientIOSettings
 18

J2ME Client
J2ME Protocol Options
A J2ME client can communicate with servers in two ways.

• Streamed HTTP over a raw socket

• Native HTTP provided by the J2ME device

Streamed HTTP By default, clients try to use streamed HTTP over a raw socket with the
J2ME socket protocol handler. This works best for most servers. However,
not all J2ME devices support the use of raw sockets. Also, this method does
not support HTTPS.

All servers support streamed HTTP.

Native HTTP Alternatively, clients can communicate through the J2ME device’s native
HTTP connection support (HttpConnection). This built-in HTTP connection
support normally chunks the data.

Native HTTP is not supported by the following servers:

• IONA Orbix E2A Application Server

• BEA WebLogic Server

To use native HTTP support, change the protocol portion of the URL in the
generated client from socket to http.
19

CHAPTER 1 | Developing Web Service Clients
Generating a J2ME Client
The following procedure assumes usage of Sun Microsystem’s J2ME
Wireless Toolkit
(http://java.sun.com/products/j2mewtoolkit/download.html).

Steps Follow these steps to generate and use a J2ME client demo:

1. Start J2ME Wireless Toolkit:

2. Click New Project.

3. Set the following values:

Project Name: A project name that you assign.

MIDlet Class Name: The name of the MIDlet class to be generated in Web
Service Builder, as follows: project-nameMIDlet.For example, in order to
create a J2ME client from the project Finance, enter FinanceMIDlet.

4. Click Create Project. J2ME Wireless Toolkit creates a directory with
the project name as follows:

Figure 2: J2ME Wireless Toolkit GUI

j2meTookit-install/apps/project-name
 20

http://java.sun.com/products/j2mewtoolkit/download.html

J2ME Client
For example:

5. In Web Service Builder, select the desired project and choose
Generate|J2ME Client. In the Output Directory Selection, specify the
J2ME project’s source directory as follows:

For example:

C:\WTK104\apps\Finance

j2meTookit-install/apps/project-name/src

Figure 3: Create J2ME Client from WSDL
21

CHAPTER 1 | Developing Web Service Clients
6. Copy the following files from
install-root/asp/Version/lib/webservices/

Put these files in j2meTookit-install/apps/project-name/lib.

7. In J2ME Wireless Toolkit:

♦ Click Build

♦ Choose the desired device and click Run

j2meclient.jar
kxml.zip
 22

J2ME Client
J2ME Wireless Toolkit runs the service on the selected device:

Figure 4: J2ME Wireless Toolkit Phone Simulator
23

CHAPTER 1 | Developing Web Service Clients
 24

CHAPTER 2

Customizing SOAP
Faults
This chapter shows how to writes code that customizes SOAP
faults.

Overview SOAP faults are messages returned to a client in the case of an error.
Normally, the Orbix container returns a SOAP fault whenever a Web service
implementation raises an exception. However, the default contents of these
SOAP faults might not be appropriate for certain applications.

In this chapter Orbix provides the following ways for an application to customize the
contents of SOAP faults returned to clients:

Controlling SOAP Faults page 26

Mapping Exceptions to SOAP Faults page 27
25

CHAPTER 2 | Customizing SOAP Faults
Controlling SOAP Faults

Overview An application that wants to return a SOAP fault with specific contents can
raise a com.iona.webservices.handlers.message.SOAPFaultException.
When raising this exception, an application can specifically set the
<faultcode>, <faultstring>, <actor>, and fault <details> that are
returned to the application.

Constructors There are four constructors for this exception:

More information on SOAPFaultException can be found in the Web
Services JavaDoc.

Table 3: SOAPFaultException Constructors

Constructor Description

SOAPFaultException(
String faultCode,
String faultString,
String actor,
javax.xml.soap.Detail detail

)

Creates a SOAPFaultException with specific faultcode, faultstring,
and actor tags, and with a detail element represented as a SAAJ
Detail object. The detail element can be created using the SAAJ APIs
provided by Orbix.

SOAPFaultException(
String faultCode,
String faultString,
String actor

)

Creates a SOAPFaultException with specific faultcode, faultstring,
and actor tags, but without any detail information.

SOAPFaultException(
String faultCode,
String faultString,
String actor,
Exception ex

)

Creates a SOAPFaultException with specific faultcode, faultstring,
and actor tags, and whose detail tag contains a stack trace for the
provided exception.

SOAPFaultException(
String faultCode,
Exception ex

)

Creates a SOAPFaultException with a specific faultcode tag, whose
faultstring tag contains the message of the provided exception, and
whose detail tag contains a stack trace for the provided exception.
 26

Mapping Exceptions to SOAP Faults
Mapping Exceptions to SOAP Faults

Overview Orbix offers a ServerExceptionHandler interface which provides you with
flexibility in mapping exceptions raised by the Web service implementation
with SOAP faults returned to the client. This section discusses the following
topics:

• ServerExceptionHandler interface

• Using custom exception handlers

• Chaining exception handlers

ServerExceptionHandler interface The ServerExceptionHandler interface provides a way to convert
exceptions raised during the processing of a message into a specific SOAP
response. By writing a ServerExceptionHandler, you can customize the
way in which server-side exceptions are reported to clients. For example,
you might write a ServerExceptionHandler to convert an
application-specific message (such as LoginFailed) into a SOAP fault with
a specific <faultcode> or <faultstring>.

To create a custom server exception handler, you must implement the
interface ServerExceptionHandler with the following methods

Table 4: ServerExceptionHandler Methods

Method Description

public void init(
HandlerContext context

)

Initializes the handler. This method is called when a server
exception handler is first created. This method can be empty.
27

CHAPTER 2 | Customizing SOAP Faults
Using custom exception handlers After you’ve implemented your custom exception handler, it needs to be
placed into the Web service. A custom exception handler is a special type of
message handler which is made part of a Web service in three steps:

1. Compile the custom exception handler

2. Insert the custom exception handler into a Web service

3. Add the handler to an endpoint’s handler chain

These steps are described in detail in “Adding Handlers to a Web Service
Client” on page 45.

Chaining exception handlers A single Web service can be configured with more than one
ServerExceptionHandler. This lets you write simpler handlers that process
only a single exception, instead of requiring you to handle all possible
exceptions with a single ServerExceptionHandler. When an exception
occurs during the processing of a SOAP message, the container calls the
exception handlers in the order in which they are specified in the XAR. The
engine stops when one of the handlers returns a non-null value from
handleException.

public SOAPMessage handleException(
MessageContext context,
Throwable th,
MessageHandlerException mex

)

Called when an exception occurs during the processing of a SOAP
message. This method takes three parameters:

• The context of the message causing the exception.

• The original exception thrown by the Web service
implementation.

• The MessageHandlerException raised during the processing
of exceptions.

The ServerExceptionHandler returns a SOAPMessage indicating
the response it wants to return to the client, or null to indicate that
it does not want to customize the response.

public void destroy() Called to destroy the handler; This method can be empty.

Table 4: ServerExceptionHandler Methods

Method Description
 28

CHAPTER 3

Adding Handlers
Web service handlers let you intercept SOAP messages at
various points in their life-cycle and customize message
processing.

For example, you can use handlers to incorporate compression, encoding,
and logging logic into a Web service. With Web Service Builder, you can
easily add one or more message handlers to a Web service.

In this chapter This chapter discusses the following topics:

About Handlers page 32

Implementing Handlers page 36

Adding Handlers to a Web Service page 43

Adding Handlers to a Web Service Client page 45

Chaining Handlers page 46

Writing a Data Content Handler for SOAP Attachments page 47
29

CHAPTER 3 | Adding Handlers
Message handling API Figure 5 shows the Java interfaces and classes that are provided for
implementing handlers for Web service applications and clients:

• Interfaces InputStreamHandler, OutputStreamHandler, and
MessageHandler extend the Handler interface to provide control and
access to various points in the SOAP message life cycle. See
“Implementing Handlers” on page 36.

• Classes RPCHandler and DOMHandler implement the MessageHandler
interface to provide custom tasks for SOAP messages that are
RPC-based and document-based, respectively. See “Adding Handlers
to a Web Service” on page 43

• Interface HandlerContext initializes handlers, and provides repository
information. Interface MessageContext provides handlers with
information to process a SOAP request received, such as endpoint
information.

• Interface ClientChain provides a mechanism for adding message and
stream handlers to clients. See “Adding Handlers to a Web Service
Client” on page 45.

Figure 5: Handler interfaces and classes

Handler
interface

HandlerContext
interface

OutputStreamHandler
interface

InputStreamHandler
interface

ClientChain
interface

MessageContext
interface

RPCHandler
class

DOMHandler
class

MessageHandler
interface
 30

SOAP message manipulation API An implementation of the javax.xml.soap package is provided, for
manipulating SOAP message objects in custom Web service applications.
See http://java.sun.com/xml/saaj/index.html for the complete SAAJ
documentation.
31

http://java.sun.com/xml/jaxm/index.html

CHAPTER 3 | Adding Handlers
About Handlers

Overview This section includes the following topics:

• Series of handlers process messages

• Handler chains

• Server-side handlers

• Server-side message handlers

• Synchronizing server-side and client-side handlers

Series of handlers process
messages

Figure 6 shows how a client’s SOAP message passes through a series of
handlers for both the output message and the returning input message.

Figure 6: Client-side handlers

Outgoing
message

WSDL
Interface

Returned input
message

han
dle

r
handler

handler

handler han
dle

r

Java method invocation

handler
 32

About Handlers
Handler chains Handlers can be grouped into chains. Each handler chain addresses a
distinct part of the SOAP message lifecycle. Chain types include stream and
message handlers:

Stream handlers are used to manipulate the raw streamed data of a SOAP
message. There are two types of stream handlers:

• Input stream handlers process the message data stream immediately
after it arrives off the network—for example, for decryption and
decompression.

• Output stream handlers process the message data stream just before it
goes out to the network—for example, encryption and compression.

Figure 7: Message handler chains

WSDL
Interface

Java
method

invocation

message

handler

output
stream

handler

message

handler outputstreamhandler

Message Chains Stream Chains

messagehandler
message
handler

input

stream

handler

input

stream

handler
33

CHAPTER 3 | Adding Handlers
Server-side handlers In Figure 8, the server has several handler chains that process the incoming
message, and others that process it before it returns to the client:

Server-side message handlers Server-side message handlers perform application-specific processing with
implementations of the RPCHandler and DOMHandler classes. These handlers
access the code for the various types of Web services you have built,

Figure 8: Server-side handlers

WSDL
Interface

Application
processing

Message ChainsStream Chains

messagehandler

Receiver's returned output message

Receiver's input message

message

handler

message

handler

message
handler

outputstreamhandler

outputstreamhandler

input

stream

handler
input

stre
am

handler
 34

About Handlers
including those based on Java classes, EJBs, CORBA resources, operation
flows, Java DOM objects, and schema maps. Other internal handlers deal
with issues such as security and routing.

Synchronizing server-side and
client-side handlers

Because the WSDL does not contain any information about handlers, it is
important for client-side and server-side developers to understand and
synchronize their respective handlers. For example, a Web service might
have stream handlers that decrypt incoming SOAP messages and encrypt
the SOAP messages before they are returned to the client. In this case, the
client must have corresponding encryption and decryption handlers.

Figure 9: Message handlers

Security

RPCHandler

Routing

DOMHandler

Java Class

EJB

CORBA Resource

Operation Flow

Basic Security

Java DOM

Schema Map
Transformation

messagehandler

message

handler

m
es

sa
ge

ha
nd

le
r

m
essage

handler
35

CHAPTER 3 | Adding Handlers
Implementing Handlers

Overview Provided handler interfaces let you write custom handlers for several points
in the SOAP message life-cycle. These include:

1. The raw SOAP message as it comes off the wire, which is handled by
the InputStreamHandler interface.

2. The message itself, which is handled by the MessageHandler interface.

3. The implementation’s method invocation which is handled by the
RPCHandler interface.

4. The raw SOAP message immediately prior to being placed in the wire,
which is handled by the OutputStreamHandler interface.

In this section This section discusses the following topics:

Stream Handlers page 37

Message Handlers page 40

Invocation Handlers page 42
 36

Implementing Handlers
Stream Handlers

Overview Input and output stream handlers are implementations of interfaces
InputStreamHandler and OutputStreamHandler, respectively. Both are
extensions of interface Handler, in com.iona.webservices.handlers. These
handlers enable access to the raw bytes of SOAP messages immediately
above the network transport layer.

Input stream handlers Input streams are manipulated via handlers that implement interface
InputStreamHandler. Input stream handlers let a Web service client or
service process raw SOAP messages as they come off the wire. For example,
an input stream handler can decompress or decrypt SOAP messages, or log
incoming requests.

The life cycle of an input stream handler is managed by the Web services
container, which calls the following methods in this order:

• createStream()

• beginRead()

• endRead()

As it receives SOAP messages off the wire, the Web services container calls
read() on the InputStream returned from createStream() after it calls
beginRead(). After the container returns from read(), the Web services
container calls endRead().

Table 5 shows the methods that an input stream handler implements:

Table 5: InputStreamHandler Methods

Method Description

init() public void init(HandlerContext context)

Initializes the handler. This method is called when a message handler is first
created. This method can be empty.
37

CHAPTER 3 | Adding Handlers
Output stream handlers Output stream handlers implement interface OutputStreamHandler. Output
stream handlers let a Web service client or service process raw SOAP
messages just before they are put on the wire. For example, an output
stream handler can be used to build a logging facility.

The life cycle of an output stream handler is managed by the Web services
container, which calls the following methods in this order:

• createStream()

• beginWrite()

• endWrite()

createStream() InputStream createStream(InputStream is, MessageContext context)
throws InputStreamHandlerException

Processes the passed input stream and creates a new InputStream to hold
the processed data. This method returns a reference to the new input
stream. The input stream created by this method is used by the Web
services container to process the raw SOAP message before converting it
into a SAAJ message object. This is the first method the Web services
container calls on a registered input stream handler.

beginRead() public void beginRead(InputStream is, MessageContext context)
throws InputStreamHandlerException

The Web services container calls this method before reading the input
stream returned by createStream(). The input stream passed to
beginRead() is the input stream returned from createStream(). This
method can be empty.

endRead() public void endRead(InputStream is, MessageContext context)
throws InputStreamHandlerException

The Web services container calls this method when it returns from reading
the input stream. The input stream passed to endRead() is the input stream
returned from createStream(). This method can be empty.

destroy() public void destroy()

Destroys the handler. This method can be empty.

Table 5: InputStreamHandler Methods

Method Description
 38

Implementing Handlers
The Web services container calls write()on the OutputStream returned
from createStream() after it calls beginWrite(). After it returns from
write(), the Web services container calls endWrite().

Table 6 shows the methods that an output stream handler implements:

Table 6: OutputStreamHandler Methods

Method Description

init() public void init(HandlerContext context)

Initializes the handler. This method is called when a message handler is first
created. This method can be empty.

createStream() OutputStream createStream(OutputStream os, MessageContext context)
throws OutputStreamHandlerException

Processes the passed output stream and creates a new output stream to hold
the processed stream. This method returns a reference to the new output
stream. The output stream created by this method is used by the Web
services container to process the raw SOAP message before sending it to the
network transport layer. This is the first method the Web services container
calls on a registered output stream handler.

beginWrite() public void beginWrite(OutputStream is, MessageContext context)
throws OutputStreamHandlerException

The Web services container calls this method prior to writing the output
stream returned by createStream(). The output stream passed to
beginRead() is the output stream returned from createStream(). This
method can be empty.

endWrite() public void endWrite(OutputStream is, MessageContext context)
throws OutputStreamHandlerException

The Web services container calls this method when it returns from writing
the output stream. The output stream passed to endRead() is the output
stream returned from createStream(). This method can be empty.

destroy() public void destroy()

Destroys the handler. This method can be empty.
39

CHAPTER 3 | Adding Handlers
Message Handlers

Overview After the SOAP request is processed by a chain of input stream handlers, the
Web services container turns the SOAP message into a SAAJ message
object. The SAAJ message is an object representation of a SOAP message.
This object model is based upon the SAAJ specification.

All the handlers are cached so there is only one instance of handler for all
the calls. When you redeploy the Web service, the handlers are reset and
reinitialized when they receive the first call.

This section discusses the following topics:

• MessageHandler interface

• MessageHandler methods

MessageHandler interface The MessageHandler interface provides access to the elements of the SOAP
message. It uses the SAAJ interfaces to provide access to the object
representation of the original SOAP message. Using this interface, you can
write message handlers to process specific parts of the SOAP message. For
example, you might build a handler to report the information in a message’s
header element.

MessageHandler methods To create a custom message handler, you must implement the
MessageHandler interface. Table 7 shows the methods to implement:

Table 7: MessageHandler Methods

Method Description

init() public void init(HandlerContext context)

Initializes the handler. This method is called when a message handler is first created.
Handlers are created when the associated web service endpoint receives the first call.

This method can be empty.

processMessage() public SOAPMessage processMessage(SOAPMessage message, MessageContext
context)

throws MessageHandlerException

Processes the SOAP message using the methods provided in the SAAJ API. The method
returns the processed message.
 40

Implementing Handlers
destroy() public void destroy()

Destroys the handler. Also, when you undeploy a Web service, destroy() is
automatically called on each handler.

This method can be empty.

Table 7: MessageHandler Methods

Method Description
41

CHAPTER 3 | Adding Handlers
Invocation Handlers

Overview The RPCHandler interface is a special case of the MessageHandler interface.
It provides methods to invoke RPC calls. When using the RPCHandler
interface, you do not have to worry about disassembling the SAAJ message.
Implementations are provided for processing the SOAP message, validating
it against the WSDL, and handling the serialization and deserialization.

Note that there can be only one invocation handler in a message handler
chain because the SOAP message is consumed with the request.

Implement invoke() In order to write a custom invocation handler, you must implement the
invoke() method, which accepts a set of objects that are the result of the
deserialization of the SOAP elements, and returns a set of objects that are
the result of some type of invocation.

invoke() has two possible signatures:

Object invoke(Method method, Object[] params,
MessageContext context)

abstract Object[] invoke(String methodName, Class[] paramTypes,
Object[] objs, MessageContext context)

Through the context information and the initialization of the handler, the
interface obtains access to XAR-related information. Using this collective
information, you can choose to process an RPC call in any fashion you
choose, such as with CORBA-oriented code.
 42

Adding Handlers to a Web Service
Adding Handlers to a Web Service

Overview After you implement a handler, you insert it into a Web service in the
following steps:

1. Compile the handler

2. Insert a handler into a Web service

3. Add a handler to an endpoint’s handler chain

Compile the handler To compile a handler:

1. Ensure the correct classes are in your CLASSPATH. From the
installation’s /asp/Version/bin subdirectory, run (Windows) or source
(UNIX) the script itws_clientenv[.bat].

2. Compile the Java file:

javac myHandler.java

3. You can break down the compiled JAR file into classes as follows:

jar -cvf myHandler.jar classes

Insert a handler into a Web service Follow these steps to insert a handler into a Web service through Web
Service Builder.

1. Start Web Service Builder.

2. From the Projects list, select the Web service where you wish to insert
the handler.

3. Select the Handlers tab on the bottom of the work area.

4. Click Add, and enter the handler’s name and class name.

5. Select the Classes tab, then click Add a Supporting Class.

6. Locate the file that contains the class for your handler and include it.

7. Repeat steps 5-6 for any classes on which your handler has
dependencies.

Add a handler to an endpoint’s
handler chain

After you add a handler to a Web service, you place it in an endpoint’s
processing chain:
43

CHAPTER 3 | Adding Handlers
1. Start Web Service Builder.

2. From the Projects list, select the target endpoint.

3. Select Handler Sequence.

4. Select the type of handler you wish to add from the Types of Handlers
panel.

5. The list of handlers available to the Web service will appear in the
Available Handlers panel. These handlers are not currently being used
by the endpoint. Select the handler you want to add to the endpoint’s
handler chain and use the right arrow between the Available Handlers
panel and the Chained Handlers panel. The handler should move to
the Chained Handlers panel.

6. To change the order handlers in the chain are called, select the handler
you want to move and use the up and down arrows next to the
Chained Handlers panel to move it around.

Note: Endpoints can only use message handlers that are included by
their parent Web service.
 44

Adding Handlers to a Web Service Client
Adding Handlers to a Web Service Client

Overview Handlers are added to Web service clients with the ClientChain interface
defined in the package com.iona.webservices.soap.client.chain.

ClientChain interface This interface includes the following methods for adding handlers to each
point in a message’s life-cycle.

• addClientExceptionHandler()

• addInputMessageHandler()

• addInputStreamHandler()

• addOutputMessageHandler()

• addOutputStreamHandler()

Other methods are also available to determine the size of the message
handler chain and to remove handlers from chains, among other things. For
details of all methods for the ClientChain interface, see Web Services
JavaDoc.
45

CHAPTER 3 | Adding Handlers
Chaining Handlers

Overview Handlers can be chained together to increase flexibility and functionality. A
Web service has the following types of handler chains:

• Input stream chain

• Message object chain

• Output stream chain

• SOAP fault exception chain

Handlers in a chain are called in sequence, so the first handler in the chain
completes its processing and passes the result to the next handler in the
chain. Each handler can be independent of all other handlers. This gives you
greater flexibility in developing Web service handlers, and makes handlers
reusable.

However, handler independence also requires you to chain handlers
together in the correct sequence. For example, if a Web service receives an
encrypted request in a compressed file, and its input stream handler chain
puts the decryption handler ahead of the decompression handler, the
request will fail or produce unpredictable results. Or, if a Web service
packages a response to include a number of records field in the SOAP
header and the Web services client does not have a handler to process it,
the client may not function correctly.

Handler chain on a Web service Using Web Service Builder, you can easily add handlers to a Web service’s
endpoint handler chain and reorder them using the Handler Sequence tab
for an end point. See “Add a handler to an endpoint’s handler chain” on
page 43 for more information.

Handler chain on a client Client handler chains are built programatically with interface ClientChain,
defined in the package com.iona.webservices.soap.client.chain. See
“Adding Handlers to a Web Service Client” on page 45 or the Web Services
JavaDoc for more information.
 46

Writing a Data Content Handler for SOAP Attachments
Writing a Data Content Handler for SOAP
Attachments

Overview Your installation provides data content handlers for processing SOAP
attachments of several common data types, including plain text, XML, JPEG
images, and octet streams. These default content handlers can be
supplemented or replaced by custom content handlers. Custom content
handlers let you manipulate the way a Web service handles default data or
define specific data types for a Web service to process. For example, a Web
service that handles purchasing requests might require that a purchase
order be in a particular format.

This section discusses the following topics:

• Structure of SOAP messages

• Data content handlers

• Default content handlers

• JAMX API

• DataContentHandler interface

• Registering data content handlers
47

CHAPTER 3 | Adding Handlers
Structure of SOAP messages Figure 10 shows the structure of a SOAP 1.1 message and the structure of a
SOAP 1.1 message with attachments. SOAP with attachments uses the
Multipurpose Internet Mail Extensions (MIME) specification.

Data content handlers Data content handlers convert raw SOAP attachments into java objects that
a Web service, or back-end application server, works with. Each handler
corresponds to a particular MIME type and is responsible for converting the
raw data stream into the proper java object and converting the java object
back into a raw data stream.

Default content handlers Default data content handlers are provided for many basic MIME types
including, text/plain, text/html, image/gif, and image/jpeg. While these
are sufficient for simple Web service implementations, a more robust Web
service may utilize a custom built purchase order form or another data
object model.

Figure 10: A SOAP message and a SOAP with attachments message

SOAP1.1 with AttachementsEvelope

SOAPPart

At tachment Part

At tacment Part

SOAPEnvelope

SOAPHeader

SOAPBody

Header 1

Call Element

SOAP1.1 Message

SOAPEnvelope

SOAPHeader

SOAPBody

Header 1

Body Eleement

...

...

...

...

...

Note: As with message handlers, it is critical that both the server and the
client are in agreement on the types of objects that will be communicated.
 48

Writing a Data Content Handler for SOAP Attachments
JAMX API Using JAMX with the Java Activation Framework, a set of APIs are exposed
that let you build custom data content handlers, and register them with the
Web services container.

DataContentHandler interface To create a data content handler, you must implement the
DataContentHandler interface defined in javax.activation. While the
interface contains several operations, only two must be fully implemented in
a data content handler:

Registering data content handlers After a data content handler has been developed, it must be compiled and
registered with the Web service. To register a data content handler with a
Web service using Web Service Builder perform the following steps.

1. Start Web Service Builder.

2. Select the service for which you want to use your handler from the
projects list and open its Content Handlers tab.

3. On the Content Handlers tab, click Add.

4. Fill in the name of the handler, the MIME type it filters, and the Java
class that implements it. Press OK.

5. Select the Class tab and add any classes that the content handler
requires.

Table 8: Key Methods of the DataContentHandler Interface

Method Description

getContent() public Object getContent(DataSource ds)
throws IOException

Takes in the raw data and returns the contents as the desired Java object.
The returned object will need to be cast into the proper data type.

writeTo() public void writeTo(Object obj, String mimeType, OutputStream os)
throws IOException

Takes a Java Object and writes it to the output stream as raw byte data.
49

CHAPTER 3 | Adding Handlers
 50

CHAPTER 4

Supported Data
Types
Applications that are to be transformed to Web services must
use supported method data types. This requirement avoids the
generation of invalid code. This chapter shows the data types
supported and the type mapping used when mapping between
programming languages and WSDL.

In this chapter This chapter consists of the following sections:

Unsupported Data types that are not yet supported include:

• Any class which cannot get or set values.

• Vector, List, and Hashtable types.

• Missing application parts. If the class cannot be loaded, then it cannot
be supported.

• CORBA IDL Value types and object references.

Mapping from Java to WSDL page 52

Mapping from CORBA IDL to WSDL page 61

Mapping from WSDL to Java page 71
51

CHAPTER 4 | Supported Data Types
Mapping from Java to WSDL

In this section This section discusses the following topics:

Supported Java Objects page 53

Primitive Java Types page 54

Common Java Classes page 55

Java Arrays and Sequences page 56

Java Structures page 57

Java Exceptions page 59
 52

Mapping from Java to WSDL
Supported Java Objects

Overview Parameters and return value objects other than simple types require:

• A public, default (no arguments) constructor.

• A get() method for all data members.

• A set() method for all data members.

JavaBeans JavaBean type classes (also known as structures) are supported. These data
members can be the basic Java types (primitive and common class types),
arrays of basic types, or arrays of structures. This means that you can create
a complex Java object to serialize over the wire.
53

CHAPTER 4 | Supported Data Types
Primitive Java Types

Overview Table 9 shows the Java types for application method parameters and return
values supported when creating a Web service. The table also shows the
associated WSDL type mapping.

Examples Examples include the following:

Java code containing char[] results in WSDL with the following types:

Table 9: Supported Java Types and the WSDL Mapping

Java Type WSDL Type Mapping

boolean
byte
char
char[]
byte[]
double
float
int
long
short

xsd:boolean
xsd:byte
xsd:string (length=1)
Array of xsd:string(length=1)
xsd:base64Binary
xsd:double
xsd:float
xsd:int
xsd:long
xsd:short

public void myMethod(int count){}
public int myMethod(char letter){ return 10; }
public boolean isMyMethod(void){ return true; }

<simpleType name="char">
<restriction base="xsd:string">

<length value="1"/>
</restriction>

</simpleType>
<complexType name="ArrayOfchar">

<complexContent>
<restriction base="SOAP-ENC:Array">

<attribute ref="SOAP-ENC:arrayType"
wsdl:arrayType="xsd1:char[]"/>

</restriction>
</complexContent>

</complexType>
 54

Mapping from Java to WSDL
Common Java Classes

Overview Table 10 shows the Java classes for application method parameters and
return values supported when creating a Web service. The table also shows
the associated WSDL type mapping.

java.lang.Object not supported No direct support is provided for java.lang.Object because the actual class
of the object must be known. Since Object is untyped, there is not sufficient
information to build the WSDL at design time and to properly encode and
decode the object at runtime. This is an example of missing metadata. The
problem affects Java, EJB, and CORBA-based Web services. As a work
around, you can manually build a wrapper class, or facade, that uses a
concrete type. This wrapper effectively adds the type information that is
otherwise missing.

Examples Examples include the following:

Table 10: Supported Common Java Classes and the WSDL Mapping

Supported Java Class WSDL Type Mapping

java.lang.Boolean
java.lang.Byte
java.lang.Character
java.lang.Double
java.lang.Float
java.lang.Integer
java.lang.Long
java.lang.Short
java.lang.String
java.math.BigDecimal
java.math.BigInteger
java.util.Calendar
java.util.Date

xsd:boolean
xsd:byte
xsd:string (length=1)
xsd:double
xsd:float
xsd:int
xsd:long
xsd:short
xsd:string
xsd:decimal
xsd:integer
xsd:dateTime
xsd:dateTime

public void myMethod(Integer count){}
public int countLetters(String essay){ return essay.length();}
public Integer getSize(String s){ return s.length(); }
55

CHAPTER 4 | Supported Data Types
Java Arrays and Sequences

Overview Arrays and sequences are mapped into the <complexType> XML schema
type similar to the following:

<complexType name ='ArrayOfstring'>
<complexContent>
<restriction base='SOAP-ENC:Array'>
<attribute ref='SOAP-ENC:arrayType'

wsdl:arrayType='xsd:string[]'/>
</restriction>

</complexContent>
</complexType>
 56

Mapping from Java to WSDL
Java Structures

Overview Structures are mapped into the <all> XML schema type within the
<complexType>.

Examples For example, a structure with three properties (an int, a float, and a
string) is mapped to the code shown in Example 4:

Example 5 shows the Java code that maps to Example 4.

Example 4: WSDL Mapping for a Java Structure

<complexType name="SOAPStruct">
<all>

<element name="varInt" type="xsd:int"/>
<element name="varFloat" type="xsd:float"/>
<element name="varString" type="xsd:string"/>

</all>
</complexType>

Example 5: Java Structure Mapping Example

public class SOAPStruct {
int m_varInt = 0;
float m_varFloat = 0.0f;
String m_varString = "";
public SOAPStruct() {
}

public void setvarInt(int v) {
m_varInt = v;

}
public int getvarInt() {

return m_varInt;
}
public void setvarFloat(float v) {

m_varFloat = v;
}
public float getvarFloat() {

return m_varFloat;
}

57

CHAPTER 4 | Supported Data Types
public void setvarString(String v) {
m_varString = v;

}
public String getvarString() {

return m_varString;
}

}

Example 5: Java Structure Mapping Example
 58

Mapping from Java to WSDL
Java Exceptions

Overview A Java class can declare service-specific exceptions in a method signature.
Only checked exceptions are mapped to WSDL faults. A checked exception
means it must extend java.lang.Exception either directly or indirectly.
Unchecked exceptions are runtime exceptions
(java.lang.RuntimeException) which cannot be mapped to WSDL.

Examples For example, note the following Java code:

The checked exception is InvalidTickerException because its class
extends java.lang.Exception. This code results in the WSDL as shown in
Example 6:

// Java
package com.example;
public class StockQuoteProvider extends java.rmi.Remote {

float getLastTradePrice(String tickerSymbol)
throws RemoteException,
com.example.InvalidTickerException;

// ...
}

public class InvalidTickerException extends java.lang.Exception
{
public InvalidTickerException(String tickersymbol) { ... }
public String getTickerSymbol() { ... }

}

59

CHAPTER 4 | Supported Data Types
Example 6: WSDL Mapping for Java Exceptions

<types>
<schema ...>
<!-- Exception definitions -->
<complexType name="InvalidTickerException">
<sequence>

<element name="tickerSymbol" type="xsd:string"/>
</sequence>

</complexType>
</schema>

</types>
<message name="InvalidTickerException">
<part name="InvalidTickerException"
type="xsd1:InvalidTickerException"/>

</message>
<portType name="StockQuoteProvider">
<operation name="getLastTradePrice" ...>
<input message="tns:getLastTradePrice"/>
<output message="tns:getLastTradePriceResponse"/>
<fault name="InvalidTickerException"
message="tns:InvalidTickerException"/>

</operation>
</portType>
 60

Mapping from CORBA IDL to WSDL
Mapping from CORBA IDL to WSDL

In this section This section discusses the following topics:

Primitive CORBA IDL Types page 62

CORBA IDL Arrays and Sequences page 64

CORBA IDL Structures page 65

CORBA IDL Enumeration page 66

CORBA IDL Unions page 67

CORBA Exceptions page 68
61

CHAPTER 4 | Supported Data Types
Primitive CORBA IDL Types

Overview Table 11 shows the CORBA IDL types for application method parameters
and return values that supported when creating a Web service. The table
also shows the associated WSDL type mapping.

char[] example IDL code containing char[] results in WSDL with the following types:

Table 11: Supported CORBA IDL Types and the WSDL Mapping

CORBA IDL Type WSDL Type Mapping

any
boolean
char
char[]
double
fixed
float
long
long double
long long
Object
octet
short
unsigned long
unsigned long long
unsigned short
string
wchar
wstring

see notea
xsd:boolean
xsd:string (length=1)
Array of xsd:string(length=1)
xsd:double
not supported
xsd:float
xsd:int
not supported
xsd:long
not supported
xsd:byte
xsd:short
xsd:unsignedInt
xsd:unsignedLong
xsd:unsignedShort
xsd:string
xsd:string (length=1)
xsd:string

a. When you create a Web service that includes CORBA Any data, Web
Service Builder asks to indicate the Any’s data’s type code. This
information is used to map the Any to a concrete WSDL type.

<simpleType name="char">
<restriction base="xsd:string">

<length value="1"/>
</restriction>

</simpleType>
 62

Mapping from CORBA IDL to WSDL
<complexType name="ArrayOfchar">
<complexContent>

<restriction base="SOAP-ENC:Array">
<attribute ref="SOAP-ENC:arrayType"

wsdl:arrayType="xsd1:char[]"/>
</restriction>

</complexContent>
</complexType>
63

CHAPTER 4 | Supported Data Types
CORBA IDL Arrays and Sequences

Overview Arrays and sequences are mapped into the <complexType> XML schema
type similar to the following:

sequence<octet> A sequence<octet> maps to xsd:base64Binary.

<complexType name ='ArrayOfstring'>
<complexContent>
<restriction base='SOAP-ENC:Array'>
<attribute ref='SOAP-ENC:arrayType'

wsdl:arrayType='xsd:string[]'/>
</restriction>

</complexContent>
</complexType>
 64

Mapping from CORBA IDL to WSDL
CORBA IDL Structures

Overview IDL structures are mapped into the WSDL <all> XML schema type within
the <complexType>.

Example For example, assume an IDL structure with the following three properties:

This IDL structure maps to the WSDL shown in Example 7:

struct SOAPStruct
{

long varInt;
float varFloat;
string varString;

};

Example 7: WSDL Mapping for a CORBA Structure

<complexType name="SOAPStruct">
<all>

<element name="varInt" type="xsd:int"/>
<element name="varFloat" type="xsd:float"/>
<element name="varString" type="xsd:string"/>

</all>
</complexType>
65

CHAPTER 4 | Supported Data Types
CORBA IDL Enumeration

Overview IDL enumeration is mapped to an XSchema <simpleType> with enumeration
restrictions.

Example For example, assume the following IDL enumeration:

This IDL enumeration results in the WSDL shown in Example 8.

enum Beer {
Wheat, Lambic, Bitter, Stout, Porter

};

Example 8: WSDL Mapping for CORBA IDL Enumeration

<simpleType name="Beer">
<restriction base="xsd:string">

<enumeration value="Wheat"/>
<enumeration value="Lambic"/>
<enumeration value="Bitter"/>
<enumeration value="Stout"/>
<enumeration value="Porter"/>

</restriction>
</simpleType>
 66

Mapping from CORBA IDL to WSDL
CORBA IDL Unions

Overview IDL unions are mapped to a <choice> complex type with the discriminator
mapped to either an attribute for literal endpoints, or to an optional element
for encoded endpoints.

Example For example, assume the following IDL union:

This IDL union results in the WSDL shown in Example 9.

union LongUnion switch (long)
{

case 101: long foo;
case 102: string bar;

};

Example 9: WSDL Mapping for a CORBA IDL Union

<complexType name="LongUnion">
<sequence>

<element maxOccurs="1" minOccurs="0" name="discriminator"
type="xsd:int"/>

<choice>
<element name="foo" type="xsd:int"/>
<element name="bar" type="xsd:string"/>

</choice>
</sequence>

</complexType>
67

CHAPTER 4 | Supported Data Types
CORBA Exceptions

Overview IDL exceptions are mapped in WSDL as constructed types, such as
structures. A fault message (<fault>) is generated for each exception in a
raises clause of an IDL operation. Note that in IDL, exceptions can only be
used in raises clauses and not as operation parameters.

Example For example, assume the following IDL:

This code results in the WSDL as shown in Example 10:

// IDL
module Example {

exception UnknownError {};
exception BadRecord {

string why;
};
exception RottenApple {

long numberOfWorms;
};
interface SomeInterface {

long bar(in float pi) raises (BadRecord, UnknownError);
};

};

Example 10:WSDL Mapping for CORBA IDL Exceptions

<?xml version="1.0"?>
<definitions name="anExample" ...
...
<!-- Exception definitions -->
<xsd:complexType name="BadRecord">
<xsd:sequence>
<xsd:element name="why" type="xsd:string" maxOccurs="1"

minOccurs="1"/>
</xsd:sequence>

</xsd:complexType>
 68

Mapping from CORBA IDL to WSDL
These fault messages are named after the fully qualified exception name,
and consist of a single element, named exception, which is of the same
type as the mapped complex type corresponding to the exception definition.

<xsd:complexType name="RottenApple">
<xsd:sequence>
<xsd:element name="numberOfWorms" type="xsd:int"

maxOccurs="1" minOccurs="1"/>
</xsd:sequence>

</xsd:complexType>
<xsd:complexType name="UnknownError">
<xsd:sequence>
</xsd:sequence>

</xsd:complexType>

<simpleType name="completion_status">
<restriction base="xsd:string">

<enumeration value="COMPLETED_YES"/>
<enumeration value="COMPLETED_NO"/>
<enumeration value="COMPLETED_MAYBE"/>

</restriction>
</simpleType>
<complexType name="SystemException">

<sequence>
<element name="completed"

type="xsd1:completion_status"/>
<element name="minor" type="xsd:unsignedInt"/>

</sequence>
</complexType>

<!-- Messages related to port: SomeInterface -->
...
<!-- port for Example.SomeInterface -->
<portType name="SomeInterface">
<operation name="bar" parameterOrder="_target pi">
<input message="tns:bar"/>
<output message="tns:barResponse"/>
<fault name="BadRecord" message="BadRecord"/>
<fault name="UnknownError" message="UnknownError"/>
<fault name="SystemException"

message="tns:SystemException"/>
</operation>

</portType>
</definitions>

Example 10:WSDL Mapping for CORBA IDL Exceptions
69

CHAPTER 4 | Supported Data Types
Note that when creating a Web service from CORBA IDL, a
SystemException fault is added to every operation. This is added even if the
IDL does not specifically declare a system exception, because CORBA
system exceptions are widely used for debugging and conveying other
important information.
 70

Mapping from WSDL to Java
Mapping from WSDL to Java

Overview When the Web service tools map from WSDL to Java, the supported types
are from the XML Schema specifications of 2001, 2000, and 1999.

In this section This section discusses the following topics:

Supported Primitive XML Schema Types page 72

Supported Derived XML Schema Types page 74

Other WSDL Type Mappings page 76

Links to the XML Schema Specifications page 81
71

CHAPTER 4 | Supported Data Types
Supported Primitive XML Schema Types

Overview Table 12 shows the primitive XML Schema data types that are supported.
Bold indicates supported types. If no Java mapping is shown, the type is not
supported. The table includes indicators as to which XML Schema
specifications the type applies.

Table 12: Supported Primitive XML Schema Types and the Java Mapping

XML Schema Type Java Mapping 2001 2000 1999

anyURI X

base64Binary byte[] X

boolean boolean X X X

binary X X

date X

dateTime java.util.Date X

decimal java.math.BigDecimal X X X

double double X X X

duration X

ENTITY X

float float X X X

gDay X

gMonth X

gMonthDay X

gYear X

gYearMonth X

hexBinary byte[] X
 72

Mapping from WSDL to Java
ID X

IDREF X

NOTATION X

Qname X X

recurringInstant X

string java.lang.String X X X

time X

timeInstant java.util.Date X

timeDuration X X

uri X

uriReference X

Table 12: Supported Primitive XML Schema Types and the Java Mapping

XML Schema Type Java Mapping 2001 2000 1999
73

CHAPTER 4 | Supported Data Types
Supported Derived XML Schema Types

Overview Table 13 shows the derived XML Schema data types that are supported.
Bold indicates supported types. If no Java mapping is shown, the type is not
supported. The table includes indicators as to which XML Schema
specifications the type applies.

Table 13: Supported Derived XML Schema Types and the Java Mapping

XML Schema Type Java Mapping 2001 2000 1999

byte byte X X

CDATA X

century X

date java.util.Date X X

ENTITIES X X X

ENTITY X X

ID X X

IDREF X X

IDREFS X X X

int int X X

integer java.math.BigInteger X X X

language X X X

long long X X

month X

Name X X X

NCName X X X

negativeInteger java.math.BigInteger X X
 74

Mapping from WSDL to Java
NMTOKEN X X X

NMTOKENS X X X

nonNegativeInteger java.math.BigInteger X X X

nonPositiveInteger java.math.BigInteger X X X

normalizedString java.lang.String X

positiveInteger java.math.BigInteger X X X

NOTATION X X

QName X

recurringDate X

recurringDay X

short short X X

time X X

timeInstant java.util.Date X

timePeriod X

token X X

unsignedByte short X X

unsignedInt long X X

unsignedLong java.math.BigInteger X X

unsignedShort int X X

year X

Table 13: Supported Derived XML Schema Types and the Java Mapping

XML Schema Type Java Mapping 2001 2000 1999
75

CHAPTER 4 | Supported Data Types
Other WSDL Type Mappings

In this section This section describes the WSDL to Java mapping that is used for the
following WSDL types:

• <choice>

• <enumeration>

• <fault>

<choice> The mapping for the <choice> WSDL type is a class as shown in the
following examples.

Assume the following WSDL <ComplexType> with the <choice> element:

This maps to the following Java class:

Note: CORBA IDL union is mapped to the <choice> WSDL type. See
“CORBA IDL Unions” on page 67.

<complexType name="LongUnion">
<sequence>

<element maxOccurs="1" minOccurs="0" name="discriminator"
type="xsd:int"/>

<choice>
<element name="foo" type="xsd:int"/>
<element name="bar" type="xsd:string"/>

</choice>
</sequence>

</complexType>

public class LongUnion {

public static final String XMLBUS_VERSION = ...;

public static final String TARGET_NAMESPACE =
"http://xmlbus.com/CORBAApp/xsd";

private String __discriminator;
 76

Mapping from WSDL to Java
public Integer discriminator;
private int foo;
private String bar;

public int getfoo() {
return foo;

}

public void setfoo(int _v) {
this.foo = _v;
__discriminator = "foo";

}

public String getbar() {
return bar;

}

public void setbar(String _v) {
this.bar = _v;
__discriminator = "bar";

}

public void setToNoMember() {
__discriminator = null;

}

public String _getDiscriminator() {
return __discriminator;

}

public String toString() {
StringBuffer buffer = new StringBuffer();
buffer.append("discriminator:

"+discriminator.toString()+"\n");
buffer.append("foo: "+Integer.toString(foo)+"\n");
buffer.append("bar: "+bar+"\n");
return buffer.toString();

}
}

77

CHAPTER 4 | Supported Data Types
<enumeration> The mapping for the <enumeration> WSDL type matches the JAX-RPC
mapping for a schema enumeration. For example, assume the following
WSDL:

This maps to the following Java class:

<simpleType name="Beer">
<restriction base="xsd:string">

<enumeration value="Wheat"/>
<enumeration value="Lambic"/>
<enumeration value="Bitter"/>
<enumeration value="Stout"/>
<enumeration value="Porter"/>

</restriction>
</simpleType>

public class Beer {

public static final String XMLBUS_VERSION = ...;

public static final String TARGET_NAMESPACE =
"http://xmlbus.com/CORBAApp/xsd";

private final String _val;

public static final String _Wheat = "Wheat";
public static final Beer Wheat = new Beer(_Wheat);

public static final String _Lambic = "Lambic";
public static final Beer Lambic = new Beer(_Lambic);

public static final String _Bitter = "Bitter";
public static final Beer Bitter = new Beer(_Bitter);

public static final String _Stout = "Stout";
public static final Beer Stout = new Beer(_Stout);

public static final String _Porter = "Porter";
public static final Beer Porter = new Beer(_Porter);

protected Beer(String value) {
_val = value;

}

 78

Mapping from WSDL to Java
<fault> The WSDL <fault> element specifies the abstract message format for error
messages that might be output as a result of a remote operation. According
to the WSDL specification, a fault message must have a single part.

A <fault> is mapped to one of the following:

• A java.rmi.RemoteException or its subclass

• A service-specific Java exception

• A javax.xml.rpc.soap.SOAPFaultException

Service-Specific Exceptions

A service-specific Java exception extends the class java.lang.Exception
directly or indirectly. The single message part in the WSDL <message>
(which is referenced from the <fault> element) can be a simple XML type
or an xsd:complexType type.

public String getValue() {
return _val;

};

public static Beer fromValue(String value) {
if (value.equals("Wheat")) {

return Wheat;
}
if (value.equals("Lambic")) {

return Lambic;
}
if (value.equals("Bitter")) {

return Bitter;
}
if (value.equals("Stout")) {

return Stout;
}
if (value.equals("Porter")) {

return Porter;
}
throw new IllegalArgumentException("Invalid enumeration

value: "+value);
};

public String toString() {
return ""+_val;

}
}

79

CHAPTER 4 | Supported Data Types
Example

The following WSDL shows an example of the mapping of a WSDL <fault>
to a service-specific Java exception. The WSDL <message> has a single part
of type xsd:string:

This maps to the following Java interface shown in Example 11. Note that
getLastTradePrice() throws the InvalidTickerException based on the
mapping of the corresponding <fault>:

<!-- WSDL snippet -->
<message name=”InvalidTickerException”>

<part name=”tickerSymbol” type=”xsd:string”/>
</message>
<portType name=”StockQuoteProvider”>

<operation name=”getLastTradePrice” ...>
<input message=”tns:getLastTradePrice”/>
<output message=”tns:getLastTradePriceResponse”/>
<fault name=”InvalidTickerException”

message=”tns:InvalidTickerException”/>
</operation>

</portType>

Example 11:WSDL <fault> Element Mapped to Java Exception

package com.example;
public interface StockQuoteProvider extends java.rmi.Remote {

float getLastTradePrice(String tickerSymbol)
throws java.rmi.RemoteException,

com.example.InvalidTickerException;
}
public class InvalidTickerException extends java.lang.Exception

{
public InvalidTickerException(String tickerSymbol) { ... }
public getTickerSymbol() { ... }

}

 80

Mapping from WSDL to Java
Links to the XML Schema Specifications

2001 XML Schema The 2001 XML Schema specification is located at
http://www.w3.org/TR/xmlschema-2/.

The Schema’s URL is located at http://www.w3c.org/2001/XMLSchema.

2000 XML Schema The 2000 XML Schema specification is located at
http://www.w3.org/TR/2000/CR-xmlschema-2-20001024/.

The Schema’s URL is located at
http://www.w3c.org/2000/10/XMLSchema.

1999 XML Schema The 1999 XML Schema specification is located at
http://www.w3.org/TR/1999/WD-xmlschema-2-19991217/.

The Schema’s URL is located at http://www.w3c.org/1999/XMLSchema.
81

http://www.w3.org/TR/xmlschema-2/
http://www.w3c.org/2001/XMLSchema
http://www.w3.org/TR/2000/CR-xmlschema-2-20001024/
http://www.w3c.org/2000/10/XMLSchema
http://www.w3.org/TR/1999/WD-xmlschema-2-19991217/
http://www.w3c.org/1999/XMLSchema

CHAPTER 4 | Supported Data Types
 82

CHAPTER 5

XAR Properties
XARs contain an XML document that describes the properties
of the XAR and the Web services it encapsulates.

Overview The file properties.xml is a sample XAR properties document. Each
element in the document specifies certain properties of the XAR and its
contents. Using these elements, you can reconstruct the WSDL for all of the
services encapsulated by the XAR.

XAR hierarchy The following example shows the hierarchy of a XARs elements.

<xar>
<dependencies>

<include>...
<reference>...
<resource>...

</dependencies>
<service>

<schemas>
<schema>

</schemas>
<dependencies>

<resource>
<soapproperties>

<targetnamespace>...
<schemanamespace>...

</soapproperties>
<handler>
83

CHAPTER 5 | XAR Properties
<endpoint>
<soapproperties>

<style>...
<transport>...

</soapproperties>
<source>

<param>...
...

</source>
<chainSequence>

<chain>
</chainSequence>
<operation>

<soapproperties>
<soapaction>
<input>

<encodingstyle>...
<use>...

</input>
<output>

<encodingstyle>...
<use>...

</output>
<style>...

</soapproperties>
<method>...
<display>...
<part>

<type>
<wsdltype>...
<mimetype>...
<attachable>...

</part>
...

</operation>
...

</endpoint>
...

</service>
...

</xar>
 84

Top-level XAR elements The following example shows the top-level elements of properties.xml:

1. \<xar> is the top level element of the properties.xml file. It takes one
attribute, application, which contains the string entered for the XAR
Application Name in Web Service Builder.

2. <dependencies> lists all the classes that the web services contained
in the XAR are dependent on. It contains two sub-elements: <include>
and <reference>.

3. <service> describes a Web service. It has sub-elements describing its
endpoints, operations, and SOAP messages. It has one attribute, name,
which specifies the Web service’s name. properties.xml has one
<service> element for each Web service encapsulated by the XAR.

1 <xar application="MyApplication">
2 <dependencies>

...
</dependencies>

3 <service name="MyApplicationService">
...

</service>
...
<service name="Service2">
...

</service>
...

</xar>
85

CHAPTER 5 | XAR Properties
<chain>
Lists the handlers for each stage in the SOAP lifecycle.

Contained in <xar>
<service>

<endpoint>
<chainSequence>

<chain>

Attributes

handlerSequence Lists the handlers in the chain. The handler names used
must match the name attribute specified in one of the
service level <handler> elements. The handlers are listed
in the order they are executed.

type Specifies at what stage in the SOAP lifecycle the chain is
for. The valid values consist of the following:

• InputStreamHandler

• OutputStreamHandler

• MessageHandler
 86

<chainSequence>
<chainSequence>
Lists the message handlers used by the Web service.

Contained in <xar>
<service>

<endpoint>
<chainSequence>

Contains Up to three <chain> elements, one for each point in the SOAP message
lifecycle.
87

CHAPTER 5 | XAR Properties
<complexType>
Describes a complex datatype or an array.

Contained in <xar>
<service>

<schemas>
<schema>

<complexType>

Attributes name is the fully qualified name of the datatype.

Contains

<complexContent> If the datatype being described is an array, the
<complexType> element contains a <complexContent>
element, which in turn contains a <restriction>
element. The <restriction> element takes one attribute,
base, which specifies the SOAP encoding type for the
array. The <restriction> element encapsulates an
<attribute> element. The <attribute> element takes
two attributes:

• ref - Specifies the SOAP encoding type for the array
elements.

• wsdl:arrayType - Specifies the XSchema type for
the array elements.

<all> If the datatype being describes is a structure, the
<complexType> element encapsulates an <all> element.
The <all> element contains one <element> element for
each component of the structure being described. The
<element> element takes two attributes:

• name - Specifies the name given to the compenent.

• type - Specifies the XSchema datatype of the
component.
 88

<complexType>
Examples The following code sample shows a <complexType> element describing an
array:

The following code sample shows a <complexType> element describing a
structure:

<complexType name="ArrayOfstring">
<complexContent>
<restriction base="SOAP-ENC:Array">
<attribute ref="SOAP-ENC:arrayType"

wsdl:arrayType="xsd:string[]" />
</restriction>

</complexContent>
</complexType>

<complexType name="LineItem">
<all>
<element name="SupplierName" type="xsd:string" />
<element name="UnitPrice" type="xsd:float" />
<element name="TotalPrice" type="xsd:float" />
<element name="Quantity" type="xsd:float" />
<element name="ProductName" type="xsd:string" />

</all>
</complexType>
89

CHAPTER 5 | XAR Properties
<dependencies>
Specifies which classes are included in the XAR’s CLASSPATH and which files
are directly included.

A XAR can either include a reference to a Java class by having it listed in its
CLASSPATH, or it can directly include a copy of the class.

Contained in <xar>
<dependencies>
<service>

<dependencies>

This element appears in two places in properties.xml:

• The <xar> element includes a <dependencies> element which specifies
the java classes that all of the Web services encapsulated in the XAR
have access to.

• Each <service> element also includes a <dependencies> element
which specifies Java classes that only the specific service can access.

Contains <include> <reference> <resource>

Examples
<dependencies>
<include>C:\jdk1.3.1\jre\lib\rt.jar</include>
<reference>C:\jdk1.3.1\lib\tools.jar</reference>

</dependencies>
 90

<endpoint>
<endpoint>
Describes a Web service endpoint. There is one endpoint element for each
endpoint in the Web service.

Contained in

Attributes name is the port name entered into Web Service Builder when the service was
created.

Contains

Examples

<xar>
<service>

<endpoint>

<soapproperties> Specifies the style of the SOAP message and the
transport used to send and receive SOAP messages.

<source> Specifies any parameters that the Web service need to
run. This can include command line parameters.

<chainSequence> Lists the message handlers used by the Web service.

<operation> Describes an endpoint operation There is one
description for each operation the endpoint supports.

<endpoint name="MyApplicationPort">
<soapproperties>
<style>rpc</style>
<transport>http://schemas.xmlsoap.org/soap/http</transport>

</soapproperties>
<source>
...
</source>
<chainSequence>
...
</chainSequence>
<operation name="toString">
...
</operation>
<operation name="parseShort">
...
</operation>

...
</endpoint>
91

CHAPTER 5 | XAR Properties
<handler>
Listed for each message handler the Web service can use.

Contained in

Attributes

<xar>
<service>

<handler>

class Specifies the fully qualified name of the Java class which
implements the handler.

name Specifies the name of the handler. This value can be any string.
 92

<include>
<include>
Specifies the classes that are directly included in the XAR. Multiple files are
listed in the same element and separated by semicolons.

Contained in
<xar>

<dependencies>
<include>

<service>
<dependencies>

<include>
93

CHAPTER 5 | XAR Properties
<operation>
Describes the interface to the implementation the Web service is using.

Contained in

Attributes name identifies the operation.

Contains Information about the data elements passed to and from the method and the
method’s signature, stored in the following sub-elements:

Examples

<xar>
<service>

<endpoint>
<operation>

<soapproperties>Specifies how the incoming and outgoing SOAP messages
will be formatted.

<method> Specifies the fully qualified signature of the method
implementing the Web service operation.

<display> Specifies the name that is displayed in Web Service
Builder.

<part> Describes the data representation of input and output
parameters to the operation. There is one <part> element
for each parameter to the operation and one for the return
value.

<operation name="parseShort">
<soapproperties>
...
</soapproperties>
<method>parseShort</method>
<display>public static short parseShort(java.lang.String)
throws java.lang.NumberFormatException</display>

<part name="param0" type="in">
...
</part>
<part name="return" type="out">
...
</part>

</operation>
 94

<param>
<param>
Specifies a parameter required by a Web service. The value of the element is
passed to the Web service as the value of the parameter named.

Contained in

Attributes name identifies the parameter.

<xar>
<service>

<endpoint>
<source>

<param>
95

CHAPTER 5 | XAR Properties
<part>
The data of the Web service operation that is passed in as parameters and
that which is passed out as a return value is described in a <part> element.

Contained in

Attributes

Contains

<xar>
<service>

<endpoint>
<operation>

<part>

name Specifies the name of the parameter that appears in Web
Service Builder and is derived from the method implementing
the Web service operation.

type Specifies the type of parameter. Valid values consist of the
following:

• in

The in values are passed by value and cannot be changed
by the operation.

• out

The out value represent the return value of the method
implementing the Web service operation.

<type> Specifies the datatype of the parameter. It take a
single attribute, class, which specifies the fully
qualified class name that implements the datatype.

<wsdltype> Specifies the XSchema type that represents the
data.

<mimetype> Specifies the MIME type that represents the data.
This information is used to determine which Data
Content Handler will be used to decode the data.

<attachable> Specifies if the data can be made a SOAP
attachment. Valid values are true and false.
 96

<part>
Examples

<mandatoryAttachment>Specifies if the data must be passed as an
attachment. Valid values are true and false.

<part name="param0" type="in">
<type class="java.lang.String" />
<wsdltype>xsd:base64Binary</wsdltype>
<mimetype>text/plain</mimetype>
<attachable>true</attachable>

</part>
97

CHAPTER 5 | XAR Properties
<reference>
Specifies the entries to include in the CLASSPATH. The entries are valid file
names for the system the classes are stored on. Separate entries are placed
in the same element and separated by semicolons.

Contained in
<xar>
<dependencies>

<reference>
<service>

<dependencies>
<reference>
 98

<resource>
<resource>
XARs can have included within them resources such as classes, zip files,
archive files, image files, and any other file needed by the XAR’s Web
service implementations. The resource file details are maintained at the XAR
level. If a service is going to use a resource, the service level refers to the
named resource at the XAR level.

Contained in

Contains The <resource> element contains the following elements at the XAR level
under the <dependencies> element:

Attributes name at the XAR level names the resources. At the service level, name refers
to a resource name defined at the XAR level.

<xar>
<dependencies>

<resource>
<service>

<dependencies>
<resource>

<description> A text description of the resource.

<type> The type of resource stored. Resources can be
almost any kind of file needed by the service, but
they are typically the following types:

• archive

• class

• image

• properties

• schema map

• miscellaneous

For details of the resources a specific XAR contains,
see also the specific XAR file of the properties.xml
file you are viewing.

<path> The original load path of the resource when
available.
99

CHAPTER 5 | XAR Properties
<schema>
Specifies the XML namespaces used to define the data used by the Web
service.

Contained in

Contains The <schema> element encapsulates a number for <complexType> elements.
There is one <complexType> element for each complex datatype or array used
by the Web service.

Note: The attributes for this element should not be edited.

<xar>
<service>

<schemas>
<schema>
 100

<schemas>
<schemas>
Describes the representations of any arrays and complex datatypes used by
the Web service.

Contained in

Contains A single <schema> element.

<xar>
<service>

<schemas>
101

CHAPTER 5 | XAR Properties
<service>
Describes a Web service so that its WSDL can be recreated. It has a single
attribute, name, that specifies the Web service’s name. This is the Service
Name entered into Web Service Builder when the service was created.

Contained in

Contains

Examples

<xar>
<service>

<schemas> Specifies the XML schemas representing arrays and
complex datatypes used by the Web service.

<dependencies> Lists all the classes that implement the Web service.

<soapproperties>Specifies the namespaces entered into Web Service
Builder for Schema Namespace and Target Namespace.

<handler> Specifies the message handlers that the Web service can
use to process SOAP messages.

<endpoint> Describes an endpoint in the Web service.

<service name="MyApplicationService">
<schemas>
...
</schemas>
<dependencies />
<soapproperties>
...
</soapproperties>
<handler
class="com.iona.webservices.handlers.message.invocation.rpc.J
avaHandler" name="default" />

<endpoint name="MyApplicationPort">
...
</endpoint>

</service>
 102

<soapproperties>
<soapproperties>
Specifies SOAP properties. The properties depend on the element in which
the <soapproperties> element is in.

Contained in

Within <operation>, the <soapproperties> element specifies the encoding
method for the operation’s incoming and outgoing SOAP messages. The
messages can be either encoded or literal and use either RPC or Document
styles.

Contains Within <operation>, <soapproperties> uses the following sub-elements to
describe the SOAP encoding style to use:

<xar>
<service>

<soapproperties>
<endpoint>

<soapproperties>
<operation>

<soapproperties>

<soapaction>

<input> Specifies how the incoming SOAP message will be encoded.
The <input> element takes two sub-elements:

• <encodingstyle>

Specifies the XSchema namespace to decode the
message.

• <use>

Specifies what encoding method the message is in.
Valid values are encoded or literal.

<output> Specifies how the outgoing SOAP message will be encoded.
It takes the same sub-elements as <input>.

<style> Specifies the encoding style to use. Valid values consist of
the following:

• rpc

• doc
103

CHAPTER 5 | XAR Properties
Examples The code sample below shows an example of a <saopprotperties> element
within an <operation> element:

See also <service> <endpoint> <operation>

<soapproperties>
<soapaction />
<input>
<encodingstyle>
http://schemas.xmlsoap.org/soap/encoding/

</encodingstyle>
<use>encoded</use>

</input>
<output>
<encodingstyle>
http://schemas.xmlsoap.org/soap/encoding/

</encodingstyle>
<use>encoded</use>

</output>
<style>rpc</style>

</soapproperties>
 104

<source>
<source>
Specifies parameters that the Web service needs to run. These include
command line parameters, class names, and archive or executable
locations, among other things. The parameters listed depend on the type of
Web service being implemented. For example, a Web service implementing
a CORBA object will have its IOR and ORBinit parameters listed as
parameters.

Contained in

Examples The following code shows a <source> element for a Web service that
implements an EJB:

Each parameter needed by the Web service is listed under the <source>
element in a <param> element.

<xar>
<service>

<endpoint>
<source>

<source>
<param name="class">java.lang.Short</param>
<param name="classarchive">none</param>
<param name="classsource">classpath</param>
<param name="applicationserver">none</param>
<param name="jndiname">none</param>

</source>
105

CHAPTER 5 | XAR Properties
 106

Index

Numerics
1999-2001 XML Schema Specification 81

A
anyURI 72
API interfaces

ClientChain 45
DataContentHandler 49
MessageHandler 40
RPCHandler 42

B
base64Binary 72
binary 72
boolean 54, 72
byte 54, 74

C
CDATA 74
century 74
char 54
CLASSPATH 43, 90
ClientChain 45
Client Code

J2SE client 3
clients 1
CORBA IDL types supported 62

D
DataContentHandler 49
date 72, 74
dateTime 72
debug option for J2SE client 9
decimal 72
derived XML Schema types supported 74
double 54, 72
duration 72

E
ENTITIES 74
ENTITY 72, 74
F
float 54, 72

G
gDay 72
generating

J2SE Client interface 7
getContent() 49
getProxy() 11
gMonth 72
gMonthDay 72
gYear 72
gYearMonth 72

H
Handlers

Chaining 46
Invocations 42
Messages 40

hexBinary 72

I
ID 73, 74
IDREF 73, 74
IDREFS 74
int 54, 74
integer 74

J
J2ME Client

using 18
J2SE Client 3

in custom code 10
using 4

J2SE Client coding with getProxy() 11
J2SE Client interface, generating 7
J2SE Client tester 8
java.lang 55
java.math 55
java.util 55
Java to WSDL mapping 51
107

INDEX
Java types supported 54
javax.activation 49

L
language 74
long 54, 74

M
mapping between Java and WSDL 51
mapping from WSDL to Java 71
MessageHandler 40
Message Object 40
month 74

N
Name 74
NCName 74
negativeInteger 74
NMTOKEN 75
NMTOKENS 75
nonNegativeInteger 75
nonPositiveInteger 75
normalizedString 75
NOTATION 73, 75

P
positiveInteger 75
primitive XML Schema types 72

Q
QName 75
Qname 73

R
recurringDate 75
recurringDay 75
recurringInstant 73
RPCHandler 42

S
schema specifications 71
Schema specifications, links to 81
short 54, 75
string 73
supported derived XML Schema types 74
supported primitive XML Schema types 72
 108
T
time 73, 75
timeDuration 73
timeInstant 73, 75
timePeriod 75
token 75
type mapping between Java and WSDL 51
Types of clients 1

U
unsignedByte 75
unsignedInt 75
unsignedLong 75
unsignedShort 75
uri 73
uriReference 73
url option for J2SE client 9

W
Web Service

clients 1
using 1

Web Service Clients
Adding a Handler 45

writeTo() 49
wsdl option for J2SE client 9
WSDL to Java mapping 51, 71

X
XML

Schema specifications, links to 81
xsd 54, 55

Y
year 75

INDEX
109

INDEX
 110

	Web Services Programmer's Reference
	List of Tables
	List of Figures
	Preface
	1 Developing Web Service Clients
	Generating Client Code
	J2SE Client
	J2SE Client Architecture
	Generating J2SE Client Code
	Using the J2SE Client Demo
	Using the Web Service Interface in Custom Code
	Controlling Client I/O Settings
	Controlling SOAP Message Processing
	Handling Web Service Exceptions

	J2ME Client
	J2ME Protocol Options
	Generating a J2ME Client

	2 Customizing SOAP Faults
	Controlling SOAP Faults
	Mapping Exceptions to SOAP Faults

	3 Adding Handlers
	About Handlers
	Implementing Handlers
	Stream Handlers
	Message Handlers
	Invocation Handlers

	Adding Handlers to a Web Service
	Adding Handlers to a Web Service Client
	Chaining Handlers
	Writing a Data Content Handler for SOAP Attachments

	4 Supported Data Types
	Mapping from Java to WSDL
	Supported Java Objects
	Primitive Java Types
	Common Java Classes
	Java Arrays and Sequences
	Java Structures
	Java Exceptions

	Mapping from CORBA IDL to WSDL
	Primitive CORBA IDL Types
	CORBA IDL Arrays and Sequences
	CORBA IDL Structures
	CORBA IDL Enumeration
	CORBA IDL Unions
	CORBA Exceptions

	Mapping from WSDL to Java
	Supported Primitive XML Schema Types
	Supported Derived XML Schema Types
	Other WSDL Type Mappings
	Links to the XML Schema Specifications

	5 XAR Properties
	<chain>
	<chainSequence>
	<complexType>
	<dependencies>
	<endpoint>
	<handler>
	<include>
	<operation>
	<param>
	<part>
	<reference>
	<resource>
	<schema>
	<schemas>
	<service>
	<soapproperties>
	<source>

	Index

