
Deployment Guide
Version 6.1, December 2003

IONA, IONA Technologies, the IONA logo, Orbix, Orbix/E, Orbacus, Artix, Orchestrator,
Mobile Orchestrator, Enterprise Integrator, Adaptive Runtime Technology, Transparent
Enterprise Deployment, and Total Business Integration are trademarks or registered
trademarks of IONA Technologies PLC and/or its subsidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.
While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty
of any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for
a particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publica-
tion and features described herein are subject to change without notice.

Copyright © 2003 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

M 3 1 3 2

Updated: 06-Jan-2004

Contents

List of Figures v

Preface vii

Chapter 1 Orbix Configuration and Deployment 1
Introduction to Orbix Configuration and Deployment 2
Deploying Orbix Configuration from the Command Line 6
Generating a Deployment Descriptor 7
Deploying on a Machine without a GUI 11

Chapter 2 Orbix Domain Deployment Descriptor 13
Deployment Descriptor Structure 14
Domain Configuration Elements 17
Profile Configuration Elements 21

Chapter 3 Advanced Configuration and Deployment 29
Specifying Custom Locations for Domain Files 30
Specifying Custom Library Paths 38
Using Custom XML Files 39
Deploying on Multihomed Host Machines 43
Specifying Address Mode Policies 48

Chapter 4 Migrating from Orbix 5.1 Deployments 53
Migrating from Orbix 5.1 Driver Files 54
Converting to an Orbix 6.1 Descriptor 56

Appendix A Orbix Deployment DTD 63
Orbix Component Template Structure 64

Index 69
iii

CONTENTS
 iv

List of Figures

Figure 1: Overview of Orbix Configuration and Deployment 2

Figure 2: Orbix Configuration GUI 7

Figure 3: Domain Settings Screen 8

Figure 4: Services Settings Screen 9

Figure 5: Summary Screen 10

Figure 6: Custom Domain Settings 33

Figure 7: Custom Domain Summary 34

Figure 8: Custom Configuration Locations 35

Figure 9: Partially Set Custom Locations 36

Figure 10: Custom XML Components 40

Figure 11: Select Custom Components 40

Figure 12: Dialog for Two Nodes 43

Figure 13: Dialog for More than Two Nodes 44

Figure 14: Multihomed Hostname 45

Figure 15: Services Selected on Multihomed Host 46

Figure 16: Mulitihomed Message 47

Figure 17: Selecting an Address Mode Policy 49

Figure 18: Specifying a Hostname 50

Figure 19: Node Daemon Settings Dialog 51
v

LIST OF FIGURES
 vi

Preface
Orbix enables you to develop and deploy enterprise-level applications across
different platform and programming language environments. This guide
examines the Orbix configuration and deployment process in detail.

Audience This guide is aimed at IONA customers and partners who wish to customize
their configuration and deployment. It assumes prior knowledge of Orbix.

Related documentation The document set for Orbix includes the following related documentation:

• Administrator’s Guide

• Configuration Reference

• Management User’s Guide

The latest updates to the Orbix documentation can be found at:

http://www.iona.com/docs

Additional resources The IONA knowledge base (http://www.iona.com/support/knowledge_base/
index.xml) contains helpful articles, written by IONA experts, about Orbix
and other products. You can access the knowledge base at the following
location:

The IONA update center (http://www.iona.com/support/updates/index.xml)
contains the latest releases and patches for IONA products:

WARNING: The scope of this guide is limited to the configuration and
deployment features that are supported by IONA. Unsupported
configuration and deployment features are not documented. These are
proprietary features and are subject to change without notice.
vii

http://www.iona.com/docs
http://www.iona.com/support/knowledge_base/index.xml
http://www.iona.com/support/updates/index.xml

PREFACE
If you need help with this or any other IONA products, contact IONA at
support@iona.com. Comments on IONA documentation can be sent to
docs-support@iona.com.

Typographical conventions This guide uses the following typographical conventions:

Keying conventions This guide may use the following keying conventions:

Constant width Constant width (courier font) in normal text represents
portions of code and literal names of items such as
classes, functions, variables, and data structures. For
example, text might refer to the CORBA::Object class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>

Italic Italic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle
brackets to represent variable values you must supply.
This is an older convention that is replaced with italic
words or characters.

No prompt When a command’s format is the same for multiple
platforms, a prompt is not used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the DOS or Windows
command prompt.
 viii

PREFACE
...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{ } Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.
ix

PREFACE
 x

CHAPTER 1

Orbix
Configuration and
Deployment
This chapter gives an overview of Orbix configuration and
deployment, and explains how manually deploy a configuration
domain.

 In this chapter The following topics are discussed in this chapter:

Introduction to Orbix Configuration and Deployment page 2

Deploying Orbix Configuration from the Command Line page 6

Generating a Deployment Descriptor page 7

Deploying on a Machine without a GUI page 11
1

CHAPTER 1 | Orbix Configuration and Deployment
Introduction to Orbix Configuration and
Deployment

Overview This section introduces Orbix configuration and deployment. It includes the
following topics:

• “Orbix configuration and deployment process”.

• “Orbix configuration tool (itconfigure)”.

• “Domain deployment descriptor”.

• “Orbix deployer and component XML files”.

• “Deployed configuration models”.

• “Implementation Repository”.

Orbix configuration and
deployment process

Figure 1 shows a general overview of the Orbix configuration and
deployment process.

Figure 1: Overview of Orbix Configuration and Deployment

_dd.xml

Deployer

itconfigure

CFR

IMR

.cfg file

component XML
 2

Introduction to Orbix Configuration and Deployment
Figure 1 can be described as follows:

1. The Orbix configuration tool (itconfigure command) is used to
generate the domain deployment descriptor (domain-name_dd.xml).

2. The deployer parses the deployment descriptor, taking input from the
standard XML templates for the various Orbix components and
services. You can also specify custom XML files.

3. The deployer deploys the configuration domain into a configuration
domain file or the Configuration Repository (CFR), and also into the
Implementation Repository (IMR).

The components in Figure 1 are described in more detail in the topics that
follow.

Orbix configuration tool
(itconfigure)

The Orbix configuration tool (itconfigure command) guides you through
configuring Orbix components in your environment. You can use it to
perform tasks such as installing a license, creating a configuration domain,
or linking to an existing configuration domain.

You can run the Orbix configuration tool in GUI and command-line modes.
You should create a domain deployment descriptor by using the Orbix
configuration tool in GUI mode (as shown in Figure 1). You can also create a
configuration domain in non-GUI mode by passing a previously created
deployment descriptor to the itconfigure command.

The GUI imposes constraints and performs validity checking, for example,
on the combinations of Orbix services that are permitted. Finally, the GUI
creates a domain deployment descriptor (domain-name_dd.xml). You can
choose to create the configuration domain specified by this deployment
descriptor straight from the GUI. Alternatively, you can save the descriptor
and create your domain later, in GUI or non-GUI mode.

For a comprehensive description of how to use the Orbix configuration tool,
see the Orbix Administrator’s Guide.

Domain deployment descriptor The domain deployment descriptor file (domain-name_dd.xml) describes the
contents of a configuration domain. For example, for a domain named
sample-domain, a deployment descriptor named sample-domain_dd.xml
specifies the services, components, features and hosts that are included in
that domain. By default, the deployment descriptor file is stored in your
etc\domains directory, for example:
3

CHAPTER 1 | Orbix Configuration and Deployment
<install-dir>\etc\domains\sample-domain\sample-domain_dd.xml

The Orbix configuration GUI generates the deployment descriptor, which it
then uses to automatically deploy the specified configuration into your
environment (as shown in Figure 1).

Alternatively, you can also save the deployment descriptor before it is
deployed by the GUI, and then perform a command-line deployment at a
later stage. This is particularly useful if you want to customize your
configuration by editing your deployment descriptor, or use multiple
deployments with the same configuration.

For full details of how to perform a command-line deployment, see
“Deploying Orbix Configuration from the Command Line” on page 6. For
details on the contents of the deployment descriptor file, see Chapter 2.

Orbix deployer and component
XML files

The deployer parses the deployment descriptor produced by the Orbix
configuration GUI. It also takes input from the XML templates for the various
Orbix components and services (for example, appserver.xml and
event_log.xml). By default, these XML templates are stored in the following
directory:

<install-dir>\asp\6.1\etc\conf

These template files all conform to a standard XML format as specified by
the ABDeploy.dtd file. For details of this DTD file, see Appendix A.

You can also specify custom XML files to the deployer. For details, see
“Using Custom XML Files” on page 39.

Deployed configuration models Depending on which option you chose in the configuration GUI, the deployer
gathers your configuration information into either a configuration file or a
Configuration Repository (CFR), and creates scripts to start and stop the
domain services.

The Interoperable Object References (IORs) that the deployer obtains by
preparing the domain services are essential part of this configuration domain
data. If these are stored in a file, and clients need access to these IORs, you
need to make sure that this file is accessible for all clients (using NFS or
similar network services). If you are dealing with a larger number of clients,
or expect to modify configuration data, using a Configuration Repository
might be your preferred choice.
 4

Introduction to Orbix Configuration and Deployment
A Configuration Repository is a centralized database for all configuration
information. This centralized configuration model is suitable for
environments with a potentially large number of clients and servers, or when
configuration is likely to change.

Implementation Repository The deployer also stores server process information in the Implementation
Repository (IMR). This specifies whether the process can be started up on
demand by a node daemon, and includes details such as POA names, and
ORB names.

For more details on Orbix configuration models and the IMR, see the Orbix
Administrator’s Guide.
5

CHAPTER 1 | Orbix Configuration and Deployment
Deploying Orbix Configuration from the
Command Line

Overview You can use the Orbix configuration GUI to generate and deploy the domain
deployment descriptor. However, for users who cannot deploy using a GUI
application, Orbix also provides a command-line version of the configuration
tool (itconfigure -nogui). This parses a pre-existing deployment descriptor
and deploys the specified configuration domain. This section lists the
requirements for a command line deployment. The two sections that follow
explain the two main steps:

• “Generating a Deployment Descriptor”.

• “Deploying on a Machine without a GUI”.

Requirements The Orbix configuration tool requires that the following environment
variables are set:

• IT_PRODUCT_DIR should point to your Orbix installation.

• JAVA_HOME should point to a JDK installation.

• PATH should include the following directory:

<install-dir>\asp\6.1\bin

Before performing a command-line deployment, you must ensure that a
properly-formed deployment descriptor exists. The deployment descriptor is
the XML source document from which itconfigure builds and deploys the
configuration domain. It specifies what components are to be included in
the configuration domain, and takes the form domain-name_dd.xml.
 6

Generating a Deployment Descriptor
Generating a Deployment Descriptor

Overview The recommended method of generating a deployment descriptor is to first
run the Orbix configuration tool on a GUI-enabled machine, and then save
the deployment descriptor for later use in command-line mode. This ensures
that the generated XML document is valid.

Generating the descriptor To generate the deployment descriptor in GUI mode, perform the following
steps:

1. On a machine with GUI capabilities, enter the following command:

<install-dir>\asp\6.1\bin\itconfigure

This displays the Orbix Configuration GUI, shown in Figure 2.

Figure 2: Orbix Configuration GUI
7

CHAPTER 1 | Orbix Configuration and Deployment
2. Click the Expert button, and enter your domain name, in the Domain
Details panel, shown in Figure 3. You can also specify other settings
such as whether to use a file or CFR-based configuration domain.

3. Click Next to display the Services Settings screen, and select the
services that you require. Figure 4 shows a simple example with a
small number of services selected.

Figure 3: Domain Settings Screen
 8

Generating a Deployment Descriptor

4. Click Next to display the Summary screen, shown in Figure 4.

Figure 4: Services Settings Screen
9

CHAPTER 1 | Orbix Configuration and Deployment
5. Click the Save button at the bottom left of the screen, and save the
deployment descriptor to your chosen location; for example, the default
location is:

install-dir\etc\domains\sample-domain\

6. Click the Cancel button to exit the configuration GUI.

Figure 5: Summary Screen
 10

Deploying on a Machine without a GUI
Deploying on a Machine without a GUI

Overview This section shows how to deploy a pre-generated deployment descriptor on
a machine without GUI capabilities. It includes the following sections:

• Deploying on the command line.

• Localizing the domain.

• Changing the domain name.

Deploying on the command line To deploy a deployment descriptor on the command line, perform the
following steps:

1. Copy your deployment descriptor file to the machine without GUI
capabilities.

2. At the command prompt, change directory to the location of your
domain deployment descriptor, for example:

install-dir\etc\domains\sample-domain

3. Enter the following command:

itconfigure -load sample-domain_dd.xml -nogui

itconfigure reads the specified deployment descriptor, finds the
profile matching the current host’s IP address and deploys the services
in this profile. If no such match is found, itconfigure prints an
information message and exits.

Localizing the domain If the descriptor contains exactly one profile/node, and that node does not
match the local host, use the following command:

itconfigure -load sample-domain_dd.xml -nogui -localize

This replaces the name and IP address of that node with name and IP
address of the local host.

Changing the domain name If you whish to change the name of the configuration domain, use following
command:

itconfigure -load sample-domain_dd.xml -nogui -name my-domain
11

CHAPTER 1 | Orbix Configuration and Deployment
The name specified on the command line overrides the name specified in
the descriptor.

Example output The following example output is displayed for a host machine called ARAN:

For full details of all the options to the itconfigure command, see the Orbix
Administrator’s Guide.

COPY RESOURCES f:\orbix\asp\6.1\templates\etc\admin TO
f:\orbixorbix\etc\domains\my-domain

COPY RESOURCES f:\orbix\asp\6.1\templates\etc\log4j TO
f:\orbix\etc\domains\my-domain

STARTING TO PREPARE: iona_services.management
COMPLETED PREPARE: iona_services.management
STARTING TO PREPARE: iona_services.locator.ARAN
COMPLETED PREPARE: iona_services.locator.ARAN
STARTING TO RUN: iona_services.locator.ARAN
COMPLETED RUN: iona_services.locator.ARAN
STARTING TO PREPARE: iona_services.node_daemon.ARAN
COMPLETED PREPARE: iona_services.node_daemon.ARAN
STARTING TO RUN: iona_services.node_daemon.ARAN
COMPLETED RUN: iona_services.node_daemon.ARAN
START-UP MODE: on_demand
STARTING TO PREPARE: iona_services.naming.ARAN
COMPLETED PREPARE: iona_services.naming.ARAN
COPY RESOURCES f:\orbix\asp\6.1\templates\etc\log4j TO

f:\orbix\etc\domains\my-domain
START-UP MODE: on_demand
STARTING TO SHUTDOWN: iona_services.node_daemon.ARAN
COMPLETED SHUTDOWN: iona_services.node_daemon.ARAN
STARTING TO SHUTDOWN: iona_services.locator.ARAN
COMPLETED SHUTDOWN: iona_services.locator.ARAN
Configuration completed successfully
You can view the log in 'f:\orbix\etc\log'.

To set your environment to use these configuration settings run:
f:\orbix\etc\bin\my-domain_env.bat
 12

CHAPTER 2

Orbix Domain
Deployment
Descriptor
This chapter explains the data structure and grammar of the
deployment descriptor file.

In this chapter The following topics are discussed in this chapter:

“Deployment Descriptor Structure” on page 14

“Domain Configuration Elements” on page 17

“Profile Configuration Elements” on page 21
13

CHAPTER 2 | Orbix Domain Deployment Descriptor
Deployment Descriptor Structure

Overview The domain deployment descriptor file (domain-name_dd.xml) describes the
contents of a configuration domain. This section outlines the overall
structure of this file.

Document structure The <domain-name>_dd.xml file must conform to the following document
structure:

Example 1: Deployment Descriptor Structure

 <?xml version="1.0" encoding="UTF-8"?>
1 <dd:descriptor xmlns:dd="http://ns.iona.com/aspdd">

 <!--This deployment descriptor version 1.0 has been generated
by Orbix tools-->

2 <dd:configuration>
 <dd:domain>domain-name</dd:domain>
 ...
 </dd:configuration>

 <!--Concrete node information for this deployment-->

3 <dd:nodes>
 <dd:node name="hostname" ip="ip-address" profile="hostname"
 <dd:resource name="some-resource" value="some-value"/>
 ...
 <dd:policies>
 <dd:policy name="some-policy" value="some-value" />
 </dd:policies>
 ...
 </dd:node>
 ...
 </dd:nodes>

5 <dd:feature id="feature-name">
 <dd:resource type="directory" name="some-resource"/>
 </dd:feature>

 <!--The following profiles will be deployed-->
5 <dd:profile id="hostname">
 14

Deployment Descriptor Structure
This deployment descriptor structure is described as follows:

1. The <dd:descriptor> element is the containing root element of the
deployment descriptor XML vocabulary. It specifies an XML namespace
named dd. This element will indicate what version of the deployment
descriptor XML vocabulary is being used. In this case, the absence of a
version attribute indicates that this is version 1.0.

2. The <dd:configuration> element specifies the general configuration
information for the domain (for example, its name, type, and location
domain).

3. The <dd:nodes> element specifies information about the host
machines included in the domain. A <dd:node> element can include
<dd:resource> and <dd:policies> elements.

4. The <dd:feature> element specifies information about domain-level
features.

5. The <dd:profile> element specifies a logical group of services and
components that maps to a particular node.

6. The <dd:service> element specifies the details for a particular service
(for example, the naming service).

7. The <dd:component> element specifies the details for a particular
component (for example, Orbix demos). The difference between a
component and a service is that services maintain live database
information as part of the domain state, whereas a component does
not.

These elements are described in more detail with examples in the sections
that follow.

6 <dd:service name="service-name" ... >
 ...
 </dd:service>
 ...

7 <dd:component/>
 ...
 </dd:profile>
</dd:descriptor>

Example 1: Deployment Descriptor Structure
15

CHAPTER 2 | Orbix Domain Deployment Descriptor
Recommended deployment
descriptor generation

The recommended method of generating a deployment descriptor is to run
the Orbix configuration tool on a GUI-enabled machine, and, if necessary,
save the deployment descriptor for later use in command-line. Generating
the descriptor in GUI mode ensures that the generated XML document is
valid, and checked for dependencies.

Certain combinations of services and features are not permitted. For
example, a descriptor that contains an indirect persistent, on-demand
naming service, but no node-daemon, is invalid. Using different transports
for different services is also invalid. Finally, a descriptor with a node daemon
that has secure endpoints only, and a locator with insecure endpoints only is
not valid either because the locator would not be able to communicate with
the node daemon.

Validating manual changes to a
deployment descriptor

You can edit the domain deployment descriptor file to meet your
requirements using any text editor. However, any changes you make need to
be checked for validity and dependencies.

Running the Orbix configuration tool enforces consistency on a deployment
descriptor that has inconsistent relationships between services, or has
incorrect container descriptions. You can validate manual changes to a
deployment descriptor by running the following command:

itconfigure -nogui -load descriptor.xml -save somefile.xml

If the descriptor is correct, descriptor.xml and somefile.xml will be
identical in structure. Otherwise, the configuration tool reports an error
message and exits without saving into the specified document.
 16

Domain Configuration Elements
Domain Configuration Elements

Overview This section explains the domain-specific information contained in an
example deployment descriptor file.

Example descriptor The following extract from a deployment descriptor file named
my-domain_dd.xml shows some example domain-specific elements:

Domain elements The following table explains all the domain-specific elements:

Example 2: Domain-Specific Configuration

<?xml version="1.0" encoding="UTF-8"?>
<dd:descriptor xmlns:dd="http://ns.iona.com/aspdd">
 <!--This deployment descriptor version 1.0 has been generated

by Orbix tools-->
 <dd:configuration>
 <dd:domain>my-domain</dd:domain>
 <dd:source>file</dd:source>
 <dd:location_domain>my-domain.location</dd:location_domain>
 </dd:configuration>
 <!--Concrete node information for this deployment-->
 <dd:nodes>
 <dd:node name="summer" ip="10.2.4.82" profile="summer" />
 </dd:nodes>
 <!--The following profiles will be deployed-->
 <dd:profile id="summer">
 ...
 </dd:profile
</dd:descriptor>

Table 1: Domain-Specific Elements

Element Description

<dd:descriptor> Specifies the XML namespace details for the
deployment descriptor.
17

CHAPTER 2 | Orbix Domain Deployment Descriptor
<dd:configuration> Specifies the general configuration information
for the domain (for example, its name, type,
and location domain)

<dd:domain> Specifies the configuration domain name (in
this case, my-domain).

<dd:source> Specifies the configuration domain type. Can
be either file, cfr, or link (.cfg text file,
Configuration Repository, or a link domain).

<dd:location_domain> Specifies the location domain name. This
takes the form <domain-name>.location (for
example, my-domain.location).

A location domain is a group of servers that
are registered with the same locator daemon.

<dd:nodes> This is a container for all host machines in a
configuration domain that belong to the same
dns domain. It has a single dns attribute (for
example, dns="dublin.emea.myco.com").

There can be multiple <dd:nodes> in one
deployment descriptor. For example:

<dd:nodes dns="dublin.emea.myco.com">
 <dd:node name="summer" ip="10.2.4.82"

profile="summer.dublin.emea.myco.com"
/>

 <dd:node name="onion" ip="10.2.1.101"
profile="onion.dublin.emea.myco.com"
/>

</dd:nodes>

<dd:nodes dns="boston.amer.mycorp.com">
 <dd:node name="jupiter" ip="10.5.3.18"

profile="jupiter.boston.amer.mycorp.c
om" />

</dd:nodes>

Table 1: Domain-Specific Elements

Element Description
 18

Domain Configuration Elements
<dd:node> Specifies the identity of a particular host
machine in the domain. It has three attributes:

• name specifies the hostname.

• ip specifies the IP address.

• profile specifies a logical group of
services and components to deploy on
the specified node.

A <dd:node> element can also include optional
<dd:resource> and <dd:policies> elements.

<dd:profile> Specifies a logical group of services and
components. Its id attribute corresponds to
the <dd:node profile> attribute. In this
version of Orbix, only one profile per node is
supported.

<dd:feature> Specifies information about optional
domain-level features. These are implemented
separately from the deployer and invoked at
the end of the deployment process. The
following example is for integration with IBM
Tivoli management:

<dd:descriptor ...
 <dd:feature
 xmlns:dd="http://ns.iona.com/aspdd"
 id="tivoli-integration">
 <dd:resource type="directory"
 name="configuration-files" />
 </dd:feature>
 ...
</dd:descriptor>

Table 1: Domain-Specific Elements

Element Description
19

CHAPTER 2 | Orbix Domain Deployment Descriptor
<dd:resource> Specifies resources used by domain-level
features. For example:

<dd:resource type="directory"
 name="configuration-files"/>

This specifies a resource that is a file system
directory named configration-files.

<dd:policies> As a child of the <dd:node> element, specifies
policies that apply to all services on that node.
Currently, there is only one available policy:

address_mode

For example:

<dd:nodes>
 <dd:node name=”orion2” ip=”10.2.1.101”>
 <dd:policies>
 <dd:policy name=”address_mode”
 value=”ip”/>
 </dd:policies>
 </dd:node>
</dd:nodes>

For more details on this example, see
“Converting to an Orbix 6.1 Descriptor” on
page 56.

Policies can also be specified on a per-service
bases (see “Profile Configuration Elements” on
page 21). Service-specific policies override
node-specific policies.

Table 1: Domain-Specific Elements

Element Description
 20

Profile Configuration Elements
Profile Configuration Elements

Overview A profile specifies a group of configured services and components for a
particular node. This section explains the profile-specific information
contained in a example deployment descriptor file.

Example descriptor The following is a complete listing of a deployment descriptor file named
my-domain_dd.xml. It shows an entire profile configured for a default
domain:

Example 3: Profile Configuration

<?xml version="1.0" encoding="UTF-8"?>
<dd:descriptor xmlns:dd="http://ns.iona.com/aspdd">
 <!--This deployment descriptor has been generated by ASP

tools-->
 <dd:configuration>
 <dd:domain>my-domain</dd:domain>
 <dd:source>file</dd:source>
 <dd:location_domain>my-domain.location</dd:location_domain>
 </dd:configuration>

 <!--Concrete node information for this deployment-->
 <dd:nodes>
 <dd:node name="summer" ip="10.2.4.83" profile="summer" />
 </dd:nodes>
 <!--The following profiles will be deployed-->
 <dd:profile id="summer">
 <dd:service name="locator">
 <dd:activation mode="manual" />
 <dd:run mode="direct_persistent" proxified="false"
 managed="true" authenticated="false" />
 <dd:endpoint protocol="iiop" port="3075" />
 </dd:service>
21

CHAPTER 2 | Orbix Domain Deployment Descriptor
Service elements The following table explains the profile-specific elements

 <dd:service name="node_daemon">
 <dd:activation mode="manual" />
 <dd:run mode="direct_persistent" proxified="false"
 managed="true" authenticated="false" />
 <dd:endpoint protocol="iiop" port="53079" />
 </dd:service>
 <dd:service name="naming">
 <dd:activation mode="on_demand" />
 <dd:run mode="indirect_persistent" proxified="false"
 managed="true" authenticated="false" />
 <dd:endpoint protocol="iiop" port="0" />
 </dd:service>
 <dd:service name="management">
 <dd:activation mode="manual" />
 <dd:run mode="direct_persistent" proxified="false"
 managed="true" authenticated="false" />
 <dd:endpoint protocol="iiop" port="53085" />
 <dd:endpoint protocol="http" port="53185" />
 </dd:service>
 <dd:component name="demos" />
 </dd:profile>
</dd:descriptor>

Example 3: Profile Configuration

Table 2: Profile-Specific Elements

Element Description

<dd:service> Specifies the identity of a service. It has two
attributes:

• name is the service name (for example,
locator).
 22

Profile Configuration Elements
<dd:activation> Specifies how a service is activated. Its single
mode attribute has two possible values:

• manual specifies that it must be activated
using a start command or a script.

• on_demand means that the node daemon
starts the service when requested by a
client.

• system_service specifies that the service
will be started at boot time. On Windows,
the service will be installed as an NT
service. On Unix, appropriate run control
scripts will be created. For more details, see
Part IV in the Administrator's Guide.

Table 2: Profile-Specific Elements

Element Description
23

CHAPTER 2 | Orbix Domain Deployment Descriptor
<dd:run> Specifies how a service is run. It has the
following attributes, all of which are optional:

• mode specifies whether the service uses the
locator to resolve persistent object
references (indirect persistence), or its IOR
contains a well-known address for the
server process (direct persistence). Possible
values are indirect_persistent or
direct_persistent. Defaults to
indirect_persistent.

• proxified specifies whether service is
registered with the Firewall Proxy Server.
Possible values are true or false. This
attribute is optional. Defaults to false.

• managed specifies whether service is
registered the management service.
Possible values are true or false. Defaults
to false.

• authenticated specifies whether the
service is registered with the security
service. Possible values are true or false.
Defaults to false.

• perflog specifies whether the service is
configured for performance logging. This is
necessary for integration with Enterprise
Management Systems (for example, IBM
Tivoli). Possible values are true or false.
Defaults to false.

Table 2: Profile-Specific Elements

Element Description
 24

Profile Configuration Elements
<dd:endpoint> Specifies details of a service communication
endpoint. It has three attributes:

• protocol specifies the protocol used by the
service. Possible values are iiop and http,
as well as fps<n>, where <n> is the number
of the proxy group. This protocol is only
used by the Firewall Proxy Service to
indicate its proxy ports.

• port specifies the port number used by the
service (for example, 9000).

• secure specifes if the endpoint is secure.
Values are true or false. A secure
endpoint is one that includes TLS
(Transport Layer Security). For example, if
secure="true" is set on an endpoint where
protocol="http", a https endpoint is
configured.

Table 2: Profile-Specific Elements

Element Description
25

CHAPTER 2 | Orbix Domain Deployment Descriptor
<dd:configuration> Specifies configuration overrides for the service.
This enables you to change a small number of
configuration settings in your domains, at the
scope of a service, without modifying the shared
description.

<dd:service name="..." ... >
 <dd:configuration
 name="variable-name"
 value="value" action="set"
 stage="preprepare"/>
 <dd:configuration
 name="variable-name"
 action="unset"/>
 ...
</dd:service>

Available actions are set and unset. The default
is set, so the action attribute can be omitted.
Configuration overrides only change the value at
the service instance scope.

Table 2: Profile-Specific Elements

Element Description
 26

Profile Configuration Elements
<dd:policies> Specifies information about any policy overrides
for that service. Currently, there is only one
available policy:

address_mode

Specified values must match those already
specified in the <dd:node> element (see “Domain
Configuration Elements” on page 17).

The following example shows policy overrides for
address modes and ORB hostnames:

 <dd:service ... >
 <dd:policies>
 <dd:policy name=”address_mode”
 value=”ip”/>
 </dd:policies>
</dd:service>

For more details on this example, see
“Converting to an Orbix 6.1 Descriptor” on
page 56.

<dd:component> Specifies a component for the profile. It has a
single name attribute. An example value is demos.

Table 2: Profile-Specific Elements

Element Description
27

CHAPTER 2 | Orbix Domain Deployment Descriptor
Service and component XML Files <dd:service> and <dd:component> elements have corresponding XML
source documents containing the data needed to deploy the configuration
domain. Many of these XML source documents correspond to Orbix services.
Other XML documents contain core information that is needed for all
configurations.

Note: These XML source documents are proprietary IONA documents.
These XML source documents and their XML schema are not fully
documented and subject to change without notice.

However, to enable you to write and use your own custom XML source
documents, a subset of the schema is documented and supported. Custom
XML files that comply with this partial schema will continue to work with
future versions of Orbix, even though the overall schema may change. For
details of the partial schema, see Appendix A.
 28

CHAPTER 3

Advanced
Configuration and
Deployment
This chapter explains advanced custom configuration and
deployment features offered by Orbix.

In this chapter The following topics are discussed in this chapter:

Specifying Custom Locations for Domain Files page 30

Specifying Custom Library Paths page 38

Using Custom XML Files page 39

Deploying on Multihomed Host Machines page 43

Specifying Address Mode Policies page 48
29

CHAPTER 3 | Advanced Configuration and Deployment
Specifying Custom Locations for Domain Files

Overview This section explains how to specify custom locations for all your
configuration domain’s files by passing properties to the itconfigure tool. It
includes the following topics:

• “Configuration domain files”.

• “Command-line properties for custom locations”.

• “Setting all locations on the command line”.

• “Partially setting custom locations”.

• “Redeploying an existing domain”.

Configuration domain files Orbix configuration domain files include start, stop, and _env scripts,
domain databases, domain log files, and configuration (.cfg) files.

Specifying custom locations for these domain files enables you to use a
directory structure such as the following:

• domains/bin/*_env|start*|stop*

• domains/config/*.cfg|cfr-*.cfg

• domains/dbs/<domain>/<service>/...

• domains/logs/<domain>/...

Command-line properties for
custom locations

By default, domain start/stop and environment scripts are stored in the bin
subdirectory of your <config_dir>. Domain configuration files are stored in
the domains subdirectory in your <config_dir>. By default, database files
are stored in the <domain_name>/dbs subdirectory of your <var_dir>.
Service log files are stored in the <domain_name>/logs subdirectory of your
<var_dir>.
 30

Specifying Custom Locations for Domain Files
The default locations for <config_dir> and <var_dir> are shown in
Table 3. These locations can be overwritten using the properties and
command-line options to itconfigure displayed in Table 3.

For more fine-grained control of the location of your domain scripts and files,
you can use the properties shown in Table 4.

Table 3: Properties and Options for Custom Directory Locations

Location for Property Command
line option

Default location

Configuration
files and scripts
for all domains
(<config_dir>)

com.iona.deploy.config.dir -etc Windows:

%IT_PRODUCT_DIR%\etc

UNIX:

/opt/etc/iona,

$IT_PRODUCT_DIR/etc

or $HOME/etc

Database and log
files for all
domains
(<var_dir>)

com.iona.deploy.data.dir -var Windows:

%IT_PRODUCT_DIR%\var

UNIX:

/opt/var/iona,
$IT_PRODUCT_DIR/var

or $HOME/var

Table 4: Properties for Custom File Locations

Location for Property Default location

Domain
start/stop and
env scripts

com.iona.deploy.config.bin.dir <config_dir>/bin

Domain
configuration
files

com.iona.deploy.config.domains.dir <config_dir>/domains

Domain data
files

com.iona.deploy.domain.db.dir <var_dir>/<domain_name>/dbs

Domain log files com.iona.deploy.domain.log.dir <var_dir>/<domain_name>logs
31

CHAPTER 3 | Advanced Configuration and Deployment
Setting all locations on the
command line

The itconfigure command enables you to specify the custom locations for
the domain log, data, script and configuration files. The configuration GUI
also provides feedback on locations that are passed to itconfigure as
properties. If all four configuration file locations are set, the GUI does not
prompt for the config and var directories. Instead, it displays the values for
these four directories in non-editable text fields.

To deploy your custom locations and also view them in the configuration
GUI, perform the following steps.

1. Specify your custom locations to itconfigure on the command line,
for example:

E:\Program Files\IONA\asp\6.1\bin>itconfigure –name d1 \
-Dcom.iona.deploy.config.domains.dir=e:\domains\config \
-Dcom.iona.deploy.config.bin.dir=e:\domains\bin \
-Dcom.iona.deploy.domain.db.dir=e:\domains\dbs\d1 \
-Dcom.iona.deploy.domain.log.dir=e:\domains\log\d1

This launches the configuration GUI. You can proceed to deploy your
domain as usual.

Note: If all four properties are specified, values for the etc and var
directories do not need to be specified (their default values are not
relevant). However, if either one of these values is not specified, it defaults
to a subdirectory of the var or the etc directory.
 32

Specifying Custom Locations for Domain Files

2. Click Expert to use the advanced configuration wizard. This displays
your custom locations in the Domain Settings screen, shown in
Figure 6.

3. Click Next and select the domain services (for example, locator, node
daemon and naming service).

Figure 6: Custom Domain Settings
33

CHAPTER 3 | Advanced Configuration and Deployment
4. Click Next. The Summary screen is shown in Figure 7:

Figure 7: Custom Domain Summary
 34

Specifying Custom Locations for Domain Files
5. Click Next. After all services have been deployed, the Complete screen
displays the custom locations for your environment scripts, shown in
Figure 8.

Partially setting custom locations If not all four custom locations have been set, a value for the configuration
and/or data directories is required, so that the missing value can be replaced
with a subdirectory of the configuration or data directory. The GUI displays
the configuration and data directories in editable text fields, and displays the
directories that have already been set in non-editable text fields.

For example, specify the following on the command line:

E:\Program Files\IONA\asp\6.1\bin>itconfigure \
-Dcom.iona.deploy.domain.db.dir=e:\domains\dbs\d1 \
-Dcom.iona.deploy.domain.log.dir=e:\domains\log\d1

Figure 8: Custom Configuration Locations
35

CHAPTER 3 | Advanced Configuration and Deployment
This will be displayed in the Domain Settings screen, shown in Figure 9.
You can select the default configuration directory (e:\Program
Files\iona\etc in this case), or overwrite this value with a custom location.

If you click Next and continue to select and deploy services, your domain
files will be located as follows:

Figure 9: Partially Set Custom Locations

service and deployer log files e:\domains\log\d1

databases e:\domains\dbs\d1

scripts e:\Program Files\iona\etc\bin

configuration files e:\Program Files\iona\etc\domains

Note: If the etc directory does not exist and needs to be created,
itconfigure requires your confirmation. However, it does not require
confirmation to create the domain log and domain database directories.
 36

Specifying Custom Locations for Domain Files
Redeploying an existing domain Before deploying, the itconfigure tool checks for existing scripts in the bin
directory, configuration files (and sub-directories named <domain_name>) in
the domains directory, databases in the data directory, and logs in the log
directory.

If any such files exist, this indicates that a domain with the same name
already exists. The itconfigure tool only continues and deletes the existing
files after your confirmation. This has the same effect as in the default case.
For example, domain log files and domain databases are located in <var
directory>/<domain_name>/dbs and
<var_directory>/<domain_name>/logs. Only the sub-directories are
deleted, leaving the <var directory>/<domain_name> directory.
37

CHAPTER 3 | Advanced Configuration and Deployment
Specifying Custom Library Paths

Overview This section explains how to specify a custom library path using a
command-line option to the itconfigure command.

This feature enables you to put shared libraries in different directories and
still deploy, without needing to change system defaults that may need
root/administrator permissions.

Using the -libs option The -libs (shorthand -L) option to the itconfigure command has the
following syntax:

-libs <library-path>

 or

-L <library-path>

Specifying this option causes itconfigure to pass the supplied library path
to the deployer. The deployer then prepends the path to the built-in path
used when preparing and running Orbix services.

The library path argument is a list of directories to be searched for shared
libraries when a service is run. The syntax of the list is the same as the
platform-specific path syntax, as shown in the following examples.

UNIX:

itconfigure -load sample_dd.xml -libs /usr/my_libs:/home/me/lib
-nogui

Windows:

itconfigure -load sample_dd.xml -libs c:\usr\my_libs;d:\me\lib
-nogui
 38

Using Custom XML Files
Using Custom XML Files

Overview This section explains how to automate the process of deploying an Orbix
configuration domain, and subsequently adding or modifying some of its
configuration data (for example, adding a scope for a service developed at
your site).

In previous versions of Orbix (for example 5.x), you could only do this by
manually modifying the ABDriver.dtd and <domain_name>_driver.xml files
generated by the itconfigure tool. Orbix 6.0.2 and higher enable you to do
this by passing a system property to the itconfigure command. This
section includes the following topics:

• “Passing custom XML to itconfigure”.

• “Deploying custom XML with the GUI”.

• “Custom XML example”.

• “Rules for writing XML files”.

Passing custom XML to
itconfigure

To use custom XML files, you must first supply the path to the directory
containing your files to the itconfigure tool. You can do this by passing a
system property to itconfigure, for example:

itconfigure –Dcom.iona.deploy.custom.xml.dir=e:\custom\conf

The specified directory should exist and contain at least one file with the
.xml extension.

Deploying custom XML with the
GUI

To deploy custom XML files, perform the following steps:

1. Run the configuration GUI and click Expert.

2. Click Next to display the Services Settings screen, shown in Figure 10.
The Custom Components checkbox at the bottom right of the screen is
disabled. This is unchecked when no custom components are selected.
39

CHAPTER 3 | Advanced Configuration and Deployment
3. Click the Select button on the right of the Custom Components
checkbox to display the Select Custom Components dialog, shown in
Figure 11. This enables you to select components from your specified
directory.

4. Click OK. The Custom Components checkbox is then displayed as
checked.

Figure 10: Custom XML Components

Figure 11: Select Custom Components
 40

Using Custom XML Files
Custom XML example For example, if you select the custom XML file with the following content:

Then the generated configuration will include the following fragment:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ABDeploy SYSTEM "ABDeploy.dtd">
<ABDeploy>
 <service>
 <dataId>example_using_custom_xml_files</dataId>
 </service>

 <process>
 <stage action="filePopulate">
 <source>
 <Dsection>main</Dsection>
 </source>
 </stage>
 </process>

 <section name="main">
 <configScope>
 <dataId>custom</dataId>
 </configScope>

 <configData scope="custom">
 <dataId>custom:example:var</dataId>
 <dataType>list</dataType>
 <dataValue>This</dataValue>
 <dataValue>is</dataValue>
 <dataValue>just</dataValue>
 <dataValue>an</dataValue>
 <dataValue>example!</dataValue>
 </configData>
 </section>
</ABDeploy>

custom
{
 custom:example:var = ["This", "is", "just", "an",

"example!"];
};
41

CHAPTER 3 | Advanced Configuration and Deployment
Rules for writing XML files If you must write your own XML files, you should obey the following rules:

• Only use a simple service element (i.e., one with just a dataId child).

• Use simple process elements and stages with one of the following
actions only: filePopulate, configPopulate.

• Do not use constraints.

• Use configData elements with a dataType of list, string, or long.

• Do not use external entities.

Note: If you select more than one custom component in the GUI, the
order in which they are deployed is non-deterministic. Do not make any
assumptions about the order in which custom components are deployed,
except that they will be deployed after all Orbix services and components
(such as demos).

WARNING: The schema for the Orbix deployer XML files is not fully
documented. A subset of the complete DTD is supported and documented.
Unsupported features are subject to change without notice. For details,
see Appendix A.
 42

Deploying on Multihomed Host Machines
Deploying on Multihomed Host Machines

Overview This section explains how to deploy Orbix services for a virtual or additional
network interface on a localhost machine. It includes the following topics:

• “Background to multihomed deployment”.

• “Deploying on the command line”.

• “Deploying with the GUI”.

• “Modifying hostnames without the -multihome option”.

Background to multihomed
deployment

When you click the configuration tool Finish button, the behavior in GUI
mode is identical with command line mode. The itconfigure tool has a
descriptor loaded in memory, and must now decide which services to
deploy. This selection process is as follows:

• itconfigure looks for the node that matches the localhost IP
address—as obtained by
InetAddress.getLocalHost().getHostAddress().

• If a match is found, itconfigure deploys the services specified in this
node’s profile.

• If no match is found, itconfigure displays either Figure 12 or
Figure 13, depending on the total number of nodes specified in the
descriptor:

Figure 12: Dialog for Two Nodes
43

CHAPTER 3 | Advanced Configuration and Deployment
You can choose to deploy the services for one of these nodes. However, be
aware that this will only succeed if you are on a multihomed machine, and
the selected node IP address/name maps to another non-default physical
interface on this machine. The only exception to this is when there is no
interaction between the services on the selected node.

Using the JDK 1.3.1 API, it is not possible to detect that two network
interfaces belong to the same physical host. This means that itconfigure
cannot resolve this conflict on its own and hence requires your confirmation.
This confirmation tells itconfigure to behave as if it were running on the
selected node, in which case it would find the matching profile and proceed
to deploy this profile's services.

Deploying on the command line On the command line, you can avoid the confirmation step described in
“Background to multihomed deployment” by specifying to itconfigure in
advance which node to consider as its local node.

If the descriptor has a <dd:node> name attribute set to the name of a virtual
or additional network adapter (for example: charlie), you can deploy the
services for this node using the following command:

E:\Program Files\IONA\asp\6.1\bin>itconfigure -nogui -multihome
charlie -load <descriptor>

The -multihome option causes itconfigure to look for a node matching the
one specified as the -multihome value instead of finding one that matches
the localhost’s default IP address.

Deploying with the GUI In GUI mode, you can also use the -multihome option to avoid the
confirmation step described in “Background to multihomed deployment”. In
addition to looking for matches with the host specified with the -multihome
option, when you click Finish, itconfigure also initializes the default host

Figure 13: Dialog for More than Two Nodes
 44

Deploying on Multihomed Host Machines
with the one specified with the -multihome value. Unless you manually alter
the host field(s), no question dialog appears when you click Finish because
there is no conflict to resolve.

To deploy the services using the GUI, perform the following steps:

1. Enter the following command:

E:\Program Files\IONA\asp\6.1\bin>itconfigure –multihome charlie

2. Select Expert mode, and click Defaults. Because you selected the –
multihome option, the default host is already set to charlie, shown in
Figure 14.

Figure 14: Multihomed Hostname
45

CHAPTER 3 | Advanced Configuration and Deployment
3. Click Next, select your domain services, and edit a service’s details.
The services are automatically selected for deployment on host
charlie, shown in Figure 15.

4. Close the dialog, click Next, and Next again. itconfigure deploys the
service. Specifying the –multihome option tells itconfigure that it
should act as if it were running on charlie.

Figure 15: Services Selected on Multihomed Host
 46

Deploying on Multihomed Host Machines
Modifying hostnames without the
-multihome option

If you do not use the -multihome option, and you modify the content of the
hosts field (for example, from smyth to smyth-2), itconfigure displays the
question shown in Figure 16.

If you click Yes, the services are deployed. The last sentence in this message
shows that this conflict can also arise when the host is a truly remote
machine, and forcing local deployment would not make sense.

Figure 16: Mulitihomed Message
47

CHAPTER 3 | Advanced Configuration and Deployment
Specifying Address Mode Policies

Overview This section explains how to use address mode policies to control the way in
which host names and/or IP addresses are published in IORs. In previous
versions of Orbix, you could do this by literally specifying the host DNS alias
or IP address. Orbix 6.0 and later use policies. These are portable and
enable you design your configuration domain on one host (run itconfigure
in GUI mode and save the descriptor), and deploy it elsewhere, without the
need to supply actual hostnames or IP addresses at that later stage.

This section includes the following topics:

• “Selecting an address mode”.

• “Specifying a fully-qualified hostname”.

• “Persistence of address mode policies”.

• “Restrictions and special cases”.
 48

Specifying Address Mode Policies
Selecting an address mode To select an address mode, perform the following steps:

1. Run the configuration GUI and click Expert. This displays the Domain
Settings screen.

2. Select your preferred policy using the Address mode policy for Object
References drop-down box, shown in Figure 17.

Specifying a fully-qualified
hostname

To use fully qualified hostnames in IORs, you must ensure that itconfigure
knows the fully qualified host name. Depending on your network
configuration, this cannot always be obtained with JDK 1.3 APIs.

However, you can do this by invoking the itconfigure command using the
–host option, for example:

itconfigure –host orion.dublin.emea.iona.com

Figure 17: Selecting an Address Mode Policy
49

CHAPTER 3 | Advanced Configuration and Deployment
Alternatively, you can edit the host field in the Default Settings dialog. This
opens when you click Defaults on the Domain Settings screen, shown in
Figure 18:

Persistence of address mode
policies

If you chose not to deploy now, and save the descriptor to deploy on other
hosts, you can still use the selected address mode policy on the other hosts
because the policy is persisted by the descriptor.

The descriptor stores addresses as policies (instead of literal string IP
addresses or names). This enables you to apply the same policy on other
hosts, using the –localize option to itconfigure. For more information,
see “Deploying on a Machine without a GUI” on page 11.

Restrictions and special cases While the deployment descriptor schema supports node-specific address
mode policies, the itconfigure GUI only allows you to specify the address
mode policy on a global level—for all nodes.

If you must use different policies on different nodes, please refer to
Chapter 2, and manually edit the descriptor. The same applies if you want
one more level of granularity and specify address mode policies on a
per-service basis. There is one case, however, where itconfigure allows
you to specify service-specific address mode policies:

Figure 18: Specifying a Hostname
 50

Specifying Address Mode Policies
Specific address mode policies for the node daemon: The Node Daemon
Settings dialog, shown in Figure 19, enables you to specify the address
mode policy for node daemons:

Therefore, if you want all services, except for the node daemon, to publish
fully qualified host names, you must first change the global address mode
policy to fully qualified hostname. For the node daemon, you can
override this with the localhost IP policy (127.0.0.7).

It is also possible (although not recommended) to avoid giving the node
daemon an explicit name. The default is
iona_services.node_daemon.<hostname>, the ORB name. You can do this
by checking the box labelled Don't set variable
plugins:node_daemon:name, displayed in Figure 19.

Figure 19: Node Daemon Settings Dialog

Note: This policy will be used for all node daemon in the domains.
itconfigure does not allow you to interactively specify the node daemon's
address mode policy on a per instance basis.
51

CHAPTER 3 | Advanced Configuration and Deployment
If a node daemon does not have a name assigned to it in the configuration,
on startup, it will register itself with the locator and identify itself to the
locator as node daemon named <host>, where <host> is the value the node
daemon obtains by a call to the gethostname() function. Obviously, this
value will depend on the host on which the node daemon is started.

It is important to note that this may break the mapping between process
and node daemon. A process that was registered to be monitored and
started on demand by node daemon <activating host> can only be
activated if a node daemon with the name <activating host> exists. In
addition, generated start and stop scripts will not be able to stop such a
node daemon.
 52

CHAPTER 4

Migrating from
Orbix 5.1
Deployments
For users who have modified Orbix 5.1 driver files, this chapter
explains how to migrate to Orbix 6.1.

In this chapter The following topics are discussed in this chapter:

Migrating from Orbix 5.1 Driver Files page 54

Converting to an Orbix 6.1 Descriptor page 56
53

CHAPTER 4 | Migrating from Orbix 5.1 Deployments
Migrating from Orbix 5.1 Driver Files

Overview This section explains how to migrate from Orbix 5.1 driver files to an Orbix
6.1 deployment descriptor. This applies to customers who have modified
ABDriver.dtd and/or <domain>_driver.xml files. It includes the following
topics:

• “Approach to migration”.

• “Using the itconfigure command line”.

• “Using the itconfigure GUI”.

• “Migrating custom XML”.

Approach to migration The approach used is to generate an Orbix 6.1 deployment descriptor on the
fly by retrieving the domain topology (selected domain services) from the
driver file, and the service details (for example, port numbers) from the
ABDriver.dtd file. This descriptor is then passed to the itconfigure tool,
as if it had been created by itconfigure.

The implementation is limited to driver files for domains without replicated
services. Driver file entries with the component attribute role=replica
result in an exception. The deployer also rejects driver files for link domains
(links can always be re-created), and driver files for domains that include a
J2EE application server.

Using the itconfigure command
line

For example, to generate an Orbix 6.1 deployment descriptor using the
command line, enter the following:

E:\Program Files\IONA\asp\6.1\bin>itconfigure -nogui -compatible \
-load e:\drivers\my-domain_driver.xml \
-entities e:\drivers\ABDriver.dtd \
-etc e:\etc -var e:\var

Using the itconfigure GUI For example, to generate an Orbix 6.1 deployment descriptor using the
configuration GUI, enter the following:

E:\Program Files\IONA\asp\6.1\bin>itconfigure -compatible \
-load e:\drivers\my-domain_driver.xml \
-entities e:\drivers\ABDriver.dtd \
-etc e:\etc -var e:\var
 54

Migrating from Orbix 5.1 Driver Files
The services specified in the driver file are displayed as selected in the GUI,
with their service details as specified in the ABDriver.dtd file. You can
subsequently add more services, or change the details for the pre-selected
services in the GUI, before proceeding to deploy the domain.

Migrating custom XML Migration can also be used in conjunction with custom component files (see
“Using Custom XML Files” on page 39).

If your Orbix 5.1 driver files specify one or more components that are not
recognized as Orbix components, and you pass the directory containing
these XML files using the –Dcom.iona.deploy.custom.xml.dir property, the
deployment will also include your custom components.

If you use itconfigure in GUI mode, and chose to save the descriptor, this
descriptor also includes your custom components.
55

CHAPTER 4 | Migrating from Orbix 5.1 Deployments
Converting to an Orbix 6.1 Descriptor

Overview This section explains how an Orbix 6.1 deployment descriptor is constructed
from an Orbix 5.1 <domain_name>_driver.xml and ABDriver.dtd file. This
includes the following topics:

• “Step 1—Construction of an empty descriptor”.

• “Step 2—Parsing of driver files and construction of node profiles”.

• “Step 3—Obtaining the service details from ABDriver.dtd”.

• “Step 4—Obtaining the address mode policy”.

• “Example conversion”.

• “Conversion for virtual hosts”.

• “Adding new Orbix 6.1 features”.

Step 1—Construction of an empty
descriptor

An empty deployment descriptor is constructed with a domain name and
location domain name as found in ABDriver.dtd.

If no definition for the config.domain.name entity is found, an exception is
thrown. If no value for the location_domain_name entity is found, the Orbix
6.1 default is used (<domain_name>.local). Initially, the domain type is
file-based.

Step 2—Parsing of driver files and
construction of node profiles

The <domain_name>_driver.xml files are parsed to enable construction of
service entries for the deployment descriptor’s local node profile. Any
constraints and the ordering of the driver file entries are ignored. Orbix 6.1
does not depend on the order of the entries in a deployment descriptor when
deploying a domain—it automatically constructs it correctly. Driver
component entries are processed as follows:

• A component named config_rep.xml causes the descriptor’s domain
type to be changed to CFR based, and adds a service element into the
descriptor’s local node profile.

• Components named init.xml, init_svcs.xml, file_core.xml,
file_svcs.xml, comet.xml. admin.xml, tool_corba.xml are ignored.

• A component named link.xml results in an exception (no conversion
of driver files for link domains).
 56

Converting to an Orbix 6.1 Descriptor
• A component with the role attribute set to replica results in an
exception (no conversion of driver files for domains with replicas).

• A component named demos.xml results in a component element being
added to the descriptor’s local node profile.

• All other components, provided they are known Orbix components,
result in a service element being added to the descriptor’s local node
profile. If they are not known Orbix components (for example,
custom.xml), a component element is added to the descriptors local
node profile.

Step 3—Obtaining the service
details from ABDriver.dtd

For every driver component entry for which a corresponding service element
has been added to the descriptor’s local node profile, ABDriver.dtd is
consulted to determine the service details:

Direct/Indirect Persistence: cfr, management, locator and node_daemon
service elements are always set to be direct persistent—regardless the
constraints in the driver component element and the content of
ABDriver.dtd.

For all other services, if the <service_name>.direct_persistence entity is
defined in ABDriver.dtd, and if its value is true or yes, the service is set to
be direct persistent. The default for a service element is indirect persistent.

Start Mode: cfr, management, locator and node_daemon service elements
are always set to be started manually—regardless the constraints of the
driver component element and the content of ABDriver.dtd.

For all other services, if the <service_name>.mode entity is defined in
ABDriver.dtd, and if its value is manual or boot, the service is set to be
started manually (default for a service element is on demand).

Subsequently, if the config.daemon.install entity is defined in
ABDriver.dtd and if its value is true, the startup mode of a service is
promoted to system service, if it had been manual. On Windows it is
installed as an NT service.

Ports: If the component’s security attribute in the
<domain_name>_driver.xml file is set to iiopOnly or iiopTls, and if the
<service_name>.port entity is defined (is a number and not zero), an
endpoint element is created in the corresponding service element in the
descriptor.
57

CHAPTER 4 | Migrating from Orbix 5.1 Deployments
If the component’s security attribute in the <domain_name>_driver.xml file
is set to iiopTls or tlsOnly, and if the entity <service_name>.tls.port is
defined (is a number and not zero), a secure endpoint element is created in
the corresponding service element in the descriptor.

If no port entities can be found for a service (other than the management
service) that by now is marked as direct persistent, an exception is thrown.

For the management service. the <domain_name>_driver.xml and
ABDriver.dtd files may have specified this as an indirect persistent service,
and therefore no non-zero IIOP ports for the management service are defined
in ABDriver.dtd. Instead of throwing an exception, default endpoints
elements are created in the descriptor (IIOP port 53086, IIOP TLS port
53086, HTTP port 53185, HTTPS port 53186). This is necessary because the
management service in Orbix 6.1 is always direct persistent.

Finally, if the manage_services entity is defined in ABDriver.dtd and if its
value is true, or if the <service_name>.managed entity is defined and its
value is true, the corresponding service element in the descriptor is set to
be managed.

Step 4—Obtaining the address
mode policy

The default behavior of the deployer towards address mode policies
(whether hostnames or IP addresses used in IORs) is to use the unqualified
host name, and to assume all services and components are to be deployed
on the localhost. The name and IP address of the localhost are obtained by
InetAddress.getLocalHost().

If the host.hostname_for_iors entity is present in ABDriver.dtd, this
default behavior is overwritten as follows:

• If the deployer fails to obtain the InetAddress of the host identified by
the value of the host.hostname_for_iors entity (i.e. if
InetAddress.getByName() throws an UnknownHostException), the
conversion fails.

• Otherwise the converter creates a dd:nodes element in the descriptor,
and sets its dns attribute set to the DNS domain name. This is
obtained from the InetAddress object’s hostname, after stripping off
the first part of the name, so this may be an empty string.

For example, the following entry in ABDriver.dtd:

<!ENTITY host.hostname_for_iors = “orion.dublin.emea.iona.com”>

results in: <dd:nodes dns=”dublin.emea.iona.com”>.
 58

Converting to an Orbix 6.1 Descriptor
If the entity value is an IP address, or an unqualified host name, it depends
on your network configuration whether a DNS name is specified.

Next, a dd:node element is created as a child of the dd:nodes element. The
value for the name attribute of dd:node is obtained as the hostname member
of the above InetAddress object, the value for the ip attribute as the host
address member of the InetAddress object. For example, the following
entry in ABDriver.dtd:

<!ENTITY host.hostname_for_iors “10.2.1.101”>

results in:

<dd:nodes>
 <dd:node name=”orion” ip=”10.2.1.101” profile=”orion” />
</dd:nodes>

Rules for inferring the address mode policy: By comparing the value of the
dns attribute (of dd:nodes), and the values of the name and ip attributes (of
dd:node) with the original entity value, the address mode policy is inferred.
If this is not short, it is stored as a dd:policy element under the dd:node
element. The rules for this process are as follows:

• If the entity value is the literal localhost, the address mode policy is
set to localhost.

• Otherwise, if the entity value is the literal 127.0.0.1, the address mode
policy is set to localhost_ip.

• Otherwise, if the entity value matches the value for ip attribute on the
dd:node element, the address mode policy is set to ip.

• Otherwise, if the entity value matches the string obtained by
concatenating the value of the name attribute on the dd:node element
with (a dot and) the value of the dns attribute of the dd:nodes element,
the address mode policy is set to long.

• Otherwise, the address mode policy is short.

If the entity value specifies the IP address of the localhost, the value of the
name attribute on the dd:node element may not be identical with the default
name of the localhost. This is the case for example, if on the network, IP
address 10.2.1.101 is known to belong to host orion, but the DNS
resolution on orion has a different virtual name for this host (for example,
orion-2).
59

CHAPTER 4 | Migrating from Orbix 5.1 Deployments
Ensuring ORB name compatibility: By default, the value dd:node element’s
name attribute is used to determine host-qualified service ORB names. This
may result in different ORB names in the 6.1 domain than those in the 5.1
domain. To prevent this—and to allow for hostnames used in ORB names
that are not the name of an existing host (5.1 accepted any string entered in
the What is the unqualified hostname? text box)—the converter also checks
if any of the following entities are defined:

cfr.orbname
locator.orbname
node_daemon.orbname
naming.orbname

To ensure ORB name compatibility between Orbix 5.1 and Orbix 6.1, the
last part of the name in the value of the first entity found—if different from
the dd:node element’s name attribute—is also recorded as a policy under
the dd:node element.

Example conversion Assume the following contents of c:\winnt\system32\drivers\etc\hosts
on host orion (IP address 10.2.1.101):

127.0.0.1 localhost

orion2

and the following in the ABDriver.dtd file:

<!ENTITY host.hostname_for_iors “10.2.1.101”>
<!ENTITY naming.orbname “iona_services.naming.orion”>

In this case, InetAddress.getByName(“10.2.1.101”).getHostName()
returns orion2.

And InetAddress.getByName(“10.2.1.101”).getHostAddress() returns
10.2.1.101.

To ensure that in Orbix 6.1 the same address mode policy and ORB names
are used as were in the Orbix 5.1 domain, the descriptor has the following
entries:

<dd:nodes>
 <dd:node name=”orion2” ip=”10.2.1.101”>
 <dd:policies>
 <dd:policy name=”address_mode” value=”ip”/>
 <dd:policy name=”hostname_for_orbs” value=”orion”/>
 </dd:policies>
 </dd:node>
</dd:nodes>
 60

Converting to an Orbix 6.1 Descriptor
Conversion for virtual hosts Changes in the conversion process for hostnames and address mode policies
ensure that you can migrate 5.1 driver and entity files that used virtual
hostnames/IP addresses. See “Deploying on Multihomed Host Machines” on
page 43 for more details.

One important difference however is that—while the actual conversion of
the driver and entities files from a remote host may succeed as it did in
Orbix 6.0.2—subsequent deployment can fail because services may not be
able to communicate with each other. For example, a locator is prepared
and subsequently started on the localhost (for example, orion), but when
the node daemon is started it fails to communicate with the locator, which
listens on a network address on the remote host. In practice, you should
avoid such conversions, because they will not yield the expected results.

Adding new Orbix 6.1 features Because address mode policies (and hostname policies for the ORB) are
now persisted in the deployment descriptors, you can migrate 5.1 domains,
and also add Orbix 6.1 features and services to your domains, without
loosing what has been extracted from the driver and entities files.

The follows steps show how to migrate and add new features at the same
time:

1. Convert the driver and/or entities file to a descriptor, without deploying
the services, as follows:

itconfigure –nogui –compatible –load <driver> -entities
<entities>

2. Process the descriptor using proprietary tools to add the new feature
(for example, a security service).

3. Deploy the extended descriptor using the following command:

itconfigure –nogui –load <extended_descriptor> -etc <etc_dir>
-var <var_dir>

Note: All other entities (apart from those needed to resolve references in
<domain_name>_driver.xml) are ignored. In particular, all path related
entities (<service_name>.bin.dir, and the associated parameter entity
%binDir) are ignored. Also, address list entities are ignored because the
deployer reconstructs that information when processing the generated
descriptor.
61

CHAPTER 4 | Migrating from Orbix 5.1 Deployments
 62

APPENDIX A

Orbix Deployment
DTD
This appendix lists the supported DTD for the Orbix component
XML templates. These XML template files are used to deploy
Orbix components and services. The supported DTD is a subset
of the complete DTD. Unsupported features are not
documented.

In this appendix The following topics are discussed in this appendix:

“Orbix Component Template Structure” on page 64
63

CHAPTER A | Orbix Deployment DTD
Orbix Component Template Structure

Overview The Orbix component XML template documents use a Document Type
Definition (DTD) document to define the tags and values that make up the
data and the structure the data takes. The DTD defining the configuration
data is ABDeploy.dtd.

All XML documents used as source for an Orbix configuration must specify
ABDeploy.dtd as its DTD, and conform to the structure it defines.

ABDeploy.dtd Example 4 shows the subset the ABDeploy.dtd file that is supported by
IONA. This file defines the structure of configuration XML component
templates.

WARNING: The schema for the Orbix deployer XML files is not fully
documented. Only a subset of the complete DTD is supported and
documented. Unsupported features are not documented, and are subject
to change without notice.

Example 4: The DTD defining Orbix configuration source documents.

<!-- Application Builder Data Deployment Definition -->

<!ENTITY % ABDriver SYSTEM "ABDriver.dtd">
<!ENTITY % DynamicDriver SYSTEM "dynamic_deploy.dtd">

1 <!ELEMENT ABDeploy (service?, process?, section*)>
<!ELEMENT configData (dataType, (dataValue?)>
<!ATTLIST configData
 scope CDATA #IMPLIED>
<!ELEMENT dataId (#PCDATA)>
<!ELEMENT dataType (#PCDATA)>
<!ELEMENT dataValue (#PCDATA)>

2 <!-- service -->
<!ELEMENT service (data)>

3 <!-- process -->
<!ELEMENT process (stage*)>
 64

Orbix Component Template Structure
The numbered elements in Example 4 are explained as follows:

1. <ABDeploy> is the root element of every Orbix configuration document.
It must be the first tag and is required for the document to be valid.

<ABDeploy> may contain one <service> element, <process> element,
and any number of <section> elements.

2. <service> specifies information about a service that the deployer
needs to deploy it.

This element must be present in custom XML files to satisfy the more
general syntax. Aside from using its id attribute to identify the custom
component for your own documentation purposes, it is of no further
relevance to custom XML files.

3. <process> specifies when and how certain <section> elements are
processed. May contain any number of <stage> elements.

4 <!ELEMENT stage (source*)>
<!ATTLIST stage
 action (filePopulate | configPopulate) #REQUIRED>

5 <!ELEMENT source (file?, Dsection*)>
<!ELEMENT file (#PCDATA)>

6 <!ELEMENT Dsection (#PCDATA)>
<!ATTLIST Dsection
 os NMTOKENS #IMPLIED
 os_family (unix | windows) #IMPLIED
 security (iiopOnly | iiopTls | tlsOnly | is2_iiop |
 is2_semi | is2_tls) #IMPLIED

7 <!-- section -->
<!ELEMENT section ((configScope | configData)*)>
<!ELEMENT configScope (dataId)>

<!-- -->
%DynamicDriver;
%ABDriver;

Example 4: The DTD defining Orbix configuration source documents.
65

CHAPTER A | Orbix Deployment DTD
4. A <stage> element can reference one or multiple sections that may
reside in one or more XML files. A <stage> element has one or more
<source> elements.

The action attribute of the stage determines the target location of the
configuration data processed in the <stage>. It decides where the
configuration data specified in the configData elements in the stage’s
sections will be placed.

IONA XML files place configuration data into the configuration domain
file or CFR (action="configPopulate"), in the handler files
(action="populateHandler"), secure handler files (with iS2 only,
action="populateSecureHandler", or the CFR boot configuration file
(action="configBoot").

Most custom XML files will have the action attribute set to
"configPopulate". The configuration data will be placed in the
domain configuration domain file or CFR. An exception is the use of
"populateHandler" action to overwrite default values of substitution
variables.

In the case of file-based domains, there is only one repository for
configuration data—the configuration domain file. In that case, the
effects of using "populateHandler" and "configPopulate" are
identical. However, they are not identical in CFR based domains.

Finally, a custom XML file's <stage> element should rarely ever have
more than one <section> child element.

5. <source> has an optional attribute file, the value of which, if specified,
indicates in which XML file the sections referred to in the CDATA of
the<Dsection> child elements can be found. Custom XML files most
likely specify their sections locally, so this attribute is not needed.

A <source> element can have one or several <Dsection> child
elements.
 66

Orbix Component Template Structure
6. A <Dsection> element is a reference to set of <configData> elements
which is itself contained in a <section>. The Dsection's CDATA
effectively provides the mapping.

It is an error if a <Dsection> element references a <section>that
cannot be found (in the local file, or in the file denoted by its parent
source element.

While DScections in IONA XML files can have constraint attributes
(meaning the data in the references sections is processed only if the
constraint is met), custom XML files should not use these constraint
attributes.

7. A <section> element is a container for a set of <configScope> and/or
<configData> elements. It has one mandatory name attribute, which is
used to map to <Dsection> elements appearing in the as child
elements of a <process> element. A <section> element must contain
at least one <configScope> or <configData> element.

<section> elements are used support multiple installation and
configuration scenarios.

Summary In practice the full complexity described in Example 4 will rarely be needed.
Most custom XML files will provide sufficient functionality if the following
conditions are met:

• the <process> element contains one <stage> element (the action
attribute of which is set to configPopulate).

• the <stage> element contains one <soucre> element, without the file
attribute being set.

• the <soucre> element contains one <Dsection> element (without any
attributes), and this <Dsection> element's CDATA of which is the same
as the name of a <section> to be found further on in the document.

• the document contains one section element.

• the <section> element contains any number of <configData>
elements.

• a <configData> element and its child elements hold the equivalent
information to an itadmin variable create command—they specify
variable scope, name, type and values(s).
67

CHAPTER A | Orbix Deployment DTD
 68

Index

A
ABDeploy.dtd 4, 64
ABDeploy element 65
ABDriver.dtd 54
authenticated attribute 24

B
bin directory 30

C
Complete screen 35
config.daemon.install entity 57
configData element 42
config directory 30
configPopulate action 42
configuration

file 4
overrides 26
repository (CFR) 5

Custom Components checkbox 39
custom directories 30
custom XML files 39

D
dataId element 42
dataType 42
dbs directory 30
dd:activation element 23
dd:component element 15, 27
dd:configuration element 15, 18, 26
dd:descriptor element 15, 17
dd:domain element 18
dd:endpoint element 25
dd:feature element 15, 19
dd:location_domain element 18
dd:node element 15, 19, 59
dd:nodes element 15, 18, 59
dd:policies element 20, 27
dd:policy element 59
dd:profile element 15, 19
dd:resource element 20
dd:run element 24
dd:service element 15, 22
dd:source element 18
Defaults button 45
deployer 4
deployment descriptor

overview 3
structure 14

dns attribute 18
Domain Details panel 8
Domain Settings screen 36, 49

E
Expert button 8, 33

F
filePopulate action 42
fps 25
fully qualified hostname 51

G
getHostAddress() function 43
gethostname() function 52
getLocalHost() function 58

H
host.hostname_for_iors entity 58
http 25

I
iiop 25
implementation repository (IMR) 5
InetAddress object 58
interoperable object reference (IOR) 4
ip attribute 19, 59
itconfigure 3, 7

-compatible option 54
-entities option 54
-host option 49
-libs option 38
-L option 38
-multihome option 44
69

INDEX
-nogui option 16, 44
passing properties 31
-save option 16

IT_PRODUCT_DIR 6

J
JAVA_HOME 6

L
localhost IP policy 51
location_domain_name entity 56
logs directory 30

M
managed attribute 24
manage_services entity 58
manual attribute 23
mode attribute 24
multihomed hosts 43

N
name attribute 19, 22, 27, 44
Node Daemon Settings dialog 51

O
on_demand attribute 23
Orbix Configuration GUI 7

P
PATH 6
perflog attribute 24
port attribute 25
process element 42, 65
profile attribute 19
protocol attribute 25
proxified attribute 24

R
requirements 6

S
Save button 10
section element 67
secure attribute 25
Select Custom Components dialog 40
service element 65
 70
service-specific address mode 50
Services Settings screen 8, 39
source element 66
stage element 42, 66
start scripts 30
stop scripts 30
Summary screen 9, 34
system_service attribute 23

INDEX
71

INDEX
 72

	Orbix Configuration and Deployment
	Introduction to Orbix Configuration and Deployment
	Deploying Orbix Configuration from the Command Line
	Generating a Deployment Descriptor
	Deploying on a Machine without a GUI

	Orbix Domain Deployment Descriptor
	Deployment Descriptor Structure
	Domain Configuration Elements
	Profile Configuration Elements

	Advanced Configuration and Deployment
	Specifying Custom Locations for Domain Files
	Specifying Custom Library Paths
	Using Custom XML Files
	Deploying on Multihomed Host Machines
	Specifying Address Mode Policies

	Migrating from Orbix 5.1 Deployments
	Migrating from Orbix 5.1 Driver Files
	Converting to an Orbix 6.1 Descriptor

	Orbix Deployment DTD
	Orbix Component Template Structure

