
Orbix 3.3.15

Administrator’s Guide C++ Edition

ii

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK
http://www.microfocus.com

© Copyright 2012-2019 Micro Focus or one of its affiliates.

MICRO FOCUS, the Micro Focus logo and Orbix are trademarks or
registered trademarks of Micro Focus or one of its affiliates.

All other marks are the property of their respective owners.

2019-01-31

http://www.microfocus.com

Contents

Preface..v

Audience ...v
Organization of this Guide ...v
Document Conventions .. vi

Part I Orbix C++ Administration

Overview of Orbix Administration ...3
Components of the Orbix Architecture ...3
Administration of Orbix Components ...5

Getting Started..7
Basic Orbix Configuration ..7
Starting The Orbix Daemon ...12
Registering a Server ...13
Checking for an Orbix Daemon ...13
Checking for Running Servers ..13
Configuring Orbix for IPv6 Communications ...14
Configuring Orbix for Multi-Homed Hosts ...15

Managing the Implementation Repository...........................19
Implementation Repository Entries ...19
Basic Implementation Repository Usage ..20
Starting Servers Manually ...22
Stopping Servers ...23
Security of Registered Servers ...24
Server Activation Modes ..26
Managing Server Port Selection ..29

Managing the Interface Repository33
Configuring the Interface Repository ...33
Registering the Interface Repository Server ...33
Adding IDL Definitions ..34
Reading the Interface Repository Contents ..34
Removing IDL Definitions ..35

Active Connection Management...37

Part II Orbix C++ GUI Tools

The Orbix Configuration Explorer ..41
Starting the Configuration Explorer ...41
Configuring Common Settings ..42
Configuring Orbix-Specific Settings ...43
 Orbix Administrator’s Guide C++ Edition iii

Customizing Your Configuration ..44

The Orbix Server Manager .. 49
Starting the Server Manager ..49
Connecting to an Implementation Repository ...50
Creating a New Directory ...51
Registering a Server ...52
Modifying Server Registration Details ..57
Launching a Persistent Server ..58
Configuring the Server Manager ...59

The Interface Repository Browser 61
Starting the Interface Repository Browser ..62
Connecting to an Interface Repository ...62
Adding IDL to the Interface Repository ..63
Viewing the Interface Repository Contents ...64
Exporting IDL Definitions to a File ...66
Configuring the Interface Repository Browser ...66

Part III Appendices

Configuration Variables .. 71
Common Configuration Variables ..71
Orbix-Specific Configuration Variables ...72

Orbix Daemon Options.. 77

Command Reference... 79
Command Summary ...79
Command Descriptions ...79

Error Messages and Exceptions... 91
Setting Error Messages ...91
System Exceptions Defined by CORBA ...91
System Exceptions Specific to Orbix ..92
iv Orbix Administrator’s Guide C++ Edition

Preface
Orbix is a software environment for building and integrating
distributed, object-oriented applications. This guide explains how
to configure and manage the components of the Orbix
environment. Many Orbix components have associated graphical
user (GUI) interfaces. This guide describes the Orbix GUI tools
associated with Orbix configuration, the Implementation
Repository, and the Interface Repository.

Audience
Read this guide if you are responsible for any of the following
tasks:

• Configuring an Orbix installation.
• Registering servers in the Orbix Implementation Repository.
• Adding IDL definitions to the Orbix Interface Repository.
This guide describes how you can use the command line and Orbix
GUI tools.
It assumes that you are familiar with relevant sections of the
Orbix Programmer’s Guide C++ Edition, and the Orbix
Programmer’s Reference C++ Edition. Before reading this
guide, you should read the Introduction to Orbix C++ Edition
manual.

Organization of this Guide
This guide is divided into three parts as follows:

Part I “Orbix C++ Administration”
• Overview of Orbix Administration

This chapter introduces the main components of the Orbix
environment. You should read this chapter first to familiarize
yourself with terminology used throughout the guide.

• Getting Started
This is a quick start chapter on how to configure Orbix, start
the Orbix daemon process, and how to register a server that
automatically starts when it is needed.

• Managing the Implementation Repository
This explains more about using the Implementation
Repository including registering servers, displaying and
organizing server entries, and security issues.

• Managing the Interface Repository
This chapter describes how to configure Orbix to store object
interface definitions so that applications can learn about them
at runtime.

Part II “Orbix C++ GUI Tools”
• The Orbix Configuration Explorer

This chapter describes how you can configure an Orbix
installation using the Orbix Configuration Tool.
 Orbix Administrator’s Guide C++ Edition v

• The Orbix Server Manager
This chapter describes how you can register servers in the
Orbix Implementation Repository using the Orbix Server
Manager.

• The Interface Repository Browser
This chapter describes how you can add IDL definitions to the
Orbix Interface Repository using the Interface Repository
browser.
Refer to the OrbixNames Programmer’s and
Administrator’s Guide for details of the OrbixNames
Browser.

Part III “Appendices”
• Configuration Variables

This appendix shows the configuration variables that Orbix
recognizes.

• Orbix Daemon Options
This appendix describes the start-up options that the Orbix
daemon can use.

• Command Reference
This describes the syntax and the options for each Orbix
command you can use.

• Error Messages and Exceptions
This describes how to modify error messages, shows the error
formats, and lists tables of standard error messages that
Orbix applications can return.

Document Conventions
This guide uses the following typographical conventions:

Constant
width

Constant width (courier font) in normal text
represents portions of code and literal names of
items such as classes, functions, variables, and
data structures. For example, text might refer to
the CORBA::Object class.
Constant width paragraphs represent code
examples or information a system displays on the
screen. For example:

#include <stdio.h>

Italic Italic words in normal text represent emphasis
and new terms.
Italic words or characters in code and commands
represent variable values you must supply, such
as arguments to commands or path names for
your particular system. For example:

% cd /users/your_name
Note: Some command examples may use angle
brackets to represent variable values you must
supply. This is an older convention that is
replaced with italic words or characters.
 vi Orbix Administrator’s Guide C++ Edition

This guide may use the following keying conventions:

Note: Unless otherwise stated, all examples in this guide apply to Orbix
on both UNIX and Windows platforms.

Contacting Micro Focus
Our Web site gives up-to-date details of contact numbers and
addresses.

Further Information and Product
Support
Additional technical information or advice is available from several
sources.
The product support pages contain a considerable amount of
additional information, such as:
• The WebSync service, where you can download fixes and

documentation updates.
• The Knowledge Base, a large collection of product tips and

workarounds.
• Examples and Utilities, including demos and additional

product documentation.
To connect, enter http://www.microfocus.com in your browser to
go to the Micro Focus home page.
Note:
Some information may be available only to customers who have
maintenance agreements.

No prompt When a command’s format is the same for
multiple platforms, no prompt is used.

% A percent sign represents the UNIX command
shell prompt for a command that does not
require root privileges.

A number sign represents the UNIX command
shell prompt for a command that requires root
privileges.

> The notation > represents the DOS, Windows
NT, or Windows 95 command prompt.

......
Horizontal or vertical ellipses in format and
syntax descriptions indicate that material has
been eliminated to simplify a discussion.

[] Brackets enclose optional items in format and
syntax descriptions.

{ } Braces enclose a list from which you must
choose an item in format and syntax
descriptions.

| A vertical bar separates items in a list of
choices enclosed in { } (braces) in format and
syntax descriptions.
Orbix Administrator’s Guide C++ Edition vii

http://www.microfocus.com

If you obtained this product directly from Micro Focus, contact us
as described on the Micro Focus Web site,
http://www.microfocus.com. If you obtained the product from
another source, such as an authorized distributor, contact them
for help first. If they are unable to help, contact us.

Information We Need
However you contact us, please try to include the information
below, if you have it. The more information you can give, the
better Micro Focus SupportLine can help you. But if you don't
know all the answers, or you think some are irrelevant to your
problem, please give whatever information you have.
• The name and version number of all products that you think

might be causing a problem.
• Your computer make and model.
• Your operating system version number and details of any

networking software you are using.
• The amount of memory in your computer.
• The relevant page reference or section in the documentation.
• Your serial number. To find out these numbers, look in the

subject line and body of your Electronic Product Delivery
Notice email that you received from Micro Focus.

Contact information
Our Web site gives up-to-date details of contact numbers and
addresses.
Additional technical information or advice is available from several
sources.
The product support pages contain considerable additional
information, including the WebSync service, where you can
download fixes and documentation updates. To connect, enter
http://www.microfocus.com in your browser to go to the Micro
Focus home page.
If you are a Micro Focus SupportLine customer, please see your
SupportLine Handbook for contact information. You can download
it from our Web site or order it in printed form from your sales
representative. Support from Micro Focus may be available only to
customers who have maintenance agreements.
You may want to check these URLs in particular:
• http://www.microfocus.com/products/corba/orbix/orbix-3.aspx (

trial software download and Micro Focus Community files)
• https://supportline.microfocus.com/productdoc.aspx.

(documentation updates and PDFs)
To subscribe to Micro Focus electronic newsletters, use the online
form at:

http://www.microfocus.com/Resources/Newsletters/infocus/n
ewsletter-subscription.asp
 viii Orbix Administrator’s Guide C++ Edition

http://www.microfocus.com
http://www.microfocus.com
http://www.microfocus.com/products/corba/orbix/orbix-3.aspx
https://supportline.microfocus.com/productdoc.aspx
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscription.asp

Part I
Orbix C++

Administration

In this part
This part contains the following:

Overview of Orbix Administration page 3

Getting Started page 7

Managing the Implementation Repository page 19

Managing the Interface Repository page 33

Overview of Orbix
Administration
Orbix is a software environment that allows you to develop
distributed applications. This chapter introduces the main
components of the Orbix environment.
As described in the Orbix Programmer’s Guide C++ Edition,
Orbix allows you to build distributed software systems composed
of interacting objects. Orbix is a full implementation of the Object
Management Group (OMG) Common Object Request Broker
Architecture (CORBA).
An Orbix application consists of one or more client programs that
communicate with distributed objects located in server programs.
Clients can communicate with distributed objects from any host in
a network through clearly-defined interfaces specified in the
CORBA Interface Definition Language (IDL).
Orbix mediates the communication between clients and
distributed objects. This mediation allows clients to communicate
with objects without concern for details such as:

• The hosts on which the objects exist.
• The operating system that these hosts run.
• The programming language used to implement the objects.
The Orbix architecture includes several configurable components
that support the mediation of communications between clients and
objects.

Components of the Orbix Architecture
An Orbix client invokes IDL operations on a distributed object
using normal C++ function calls, as if the object were located in
the client’s address space. Orbix converts these function calls to a
series of network messages and sends these messages to the
server process that contains the target object. At the server, Orbix
receives these messages and translates them to function calls on
the target object, as shown in Figure 1.

Figure 1: An IDL Operation Call on a Distributed Object
 Orbix Administrator’s Guide C++ Edition 3

Servers and the Implementation Repository
Each Orbix server program has a name, unique within its host
machine. A server can consist of one or more processes. When a
client invokes a method on an object, a server process containing
the target object must be available. If the process is not running,
the Orbix daemon at the server host attempts to launch the server
process automatically.
To allow an Orbix daemon to manage the server processes
running in the system, Orbix provides an Implementation
Repository. The Implementation Repository maintains a mapping
from a server’s name to the filename of the executable code
implementing that server. The server code must therefore be
registered with the Implementation Repository.

Figure 2: Automatic Launch of an Orbix Server Process

As shown in Figure 2, the Orbix daemon launches a server process
as follows:
1. A client makes its first operation call to an object located in a

server.
2. The Orbix daemon reads the server details from the

Implementation Repository, including the server launch
command.

3. If the required server process is not running, the Orbix
daemon executes the server launch command.

To allow the daemon to launch server processes, you must
maintain records in the Implementation Repository for each server
in your system.
 4 Orbix Administrator’s Guide C++ Edition

The Interface Repository
Orbix maintains object specifications by storing an object’s IDL
interface in a database called the Interface Repository. Some
client applications use the Interface Repository to determine
object interfaces and all information about those interfaces at
runtime.
A client accesses the Orbix Interface Repository by contacting an
Interface Repository server. This is a standard Orbix server that
provides a programming interface, defined in IDL, to the Interface
Repository.
To allow clients to obtain information about IDL definitions
implemented in your system, you must add those definitions to
the Interface Repository.

Administration of Orbix Components
To allow Orbix applications to run in your network, you must do
the following:

• Configure Orbix for your network and environment, using the
Orbix configuration files.

• Run the Orbix daemon process.
• Register servers in the Implementation Repository.

Part I Orbix C++ Administration presents the configuration
files and command-line utilities that allow you to achieve each of
these tasks.
Part II Orbix C++ GUI Tools presents the graphical user
interfaces that provide an alternative way to manage Orbix
components.
Orbix Administrator’s Guide C++ Edition 5

 6 Orbix Administrator’s Guide C++ Edition

Getting Started
Several components of Orbix require administration. This chapter
describes the basic Orbix administration steps required when
running Orbix applications.
Orbix administration involves the following basic steps:
1. Configuring Orbix for your network and environment.
2. Starting the Orbix daemon (orbixd) on each host that Orbix

servers run on.
3. Registering servers in the Implementation Repository so that

Orbix can start them when needed.
4. Starting client applications that make object requests.
5. Monitoring Orbix to fine tune it and your clients and servers.
Steps 1 and 2 apply when you first install Orbix and only
occasionally after that. Steps 3, 4, and 5 are iterative. This guide
describes how to perform these steps. This chapter first gives you
a quick start to using Orbix and its environment of distributed
computing.

Basic Orbix Configuration
This section describes the configuration settings you may need to
modify before starting the Orbix daemon. You can modify the
main Orbix configuration settings by editing the Orbix
configuration files, or by setting environment variables or by using
the Orbix GUI tools. Refer to “The Orbix Configuration Explorer”
on page 41 for details of configuring Orbix using GUI tools.
The paths in the following examples are for a Windows
installation. Configuration files for Unix should use the Unix syntax
for directories. All values provided must be enclosed in double
quotes (“ “). Each line, except for blank lines and comments, must
be terminated with a semi-colon (;).

The Orbix Configuration Files
The Orbix configuration files are located in the config directory of
your Orbix installation. By default, these are named as follows:

• iona.cfg

• common.cfg

• orbix3.cfg

• orbixnames3.cfg

iona.cfg
The iona.cfg file is the root configuration file used by Orbix. This
file contains links to all other Orbix configuration files. You can edit
this file to include links to your customized configuration files. The
default iona.cfg file includes the following information:

// In file iona.cfg
cfg_dir = "C:\Program Files\Micro Focus\Orbix 3.3
SP15 for Windows\config\";
 Orbix Administrator’s Guide C++ Edition 7

include cfg_dir + "common.cfg";
include cfg_dir + "orbix3.cfg";
include cfg_dir + "orbixnames3.cfg";

You should set the config_dir variable to
<orbix_install_dir>\config\.

common.cfg
The common.cfg file contains a list of configuration variables that
are common to multiple Micro Focus CORBA products. The
configuration variables in this file are declared within the scope
Common{...}, for example:
// In file common.cfg
Common {

The port number for the Orbix daemon.
IT_DAEMON_PORT = "1570";

The starting port number for daemon-run servers:
IT_DAEMON_SERVER_BASE = "1570";

The full path name of the Implementation Repository
directory.
IT_IMP_REP_PATH = cfg_dir + "Repositories\ImpRep";

The full path name of the Interface Repository
directory.
IT_INT_REP_PATH = cfg_dir + "Repositories\IFR";

The local DNS domain name.
IT_LOCAL_DOMAIN = "microfocus.com";

The full path name to the JRE binary
executable that installs with Orbix.
IT_JAVA_INTERPRETER="C:\JDK\bin\java.exe";

The default classpath to be used when java
servers are automatically launched by the daemon.
IT_DEFAULT_CLASSPATH = cfg_dir +
";C:\JDK\jre\lib\rt.jar;
 C:\Program Files\Micro Focus\Orbix 3.3 SP15 for

Windows\bin\rt.jar;
 C:\Program Files\Micro Focus\Orbix 3.3 SP15 for

Windows\bin\orbixweb.jar";
};

Note: You can also use the prefix Common. to refer to individual entries in
this file. For example, Common.IT_DAEMON_PORT.
After installation, the common.cfg file provides default settings for
the main environment variables required by Orbix. You can
change these default settings by manually editing the
configuration file, or by using the Configuration Explorer, or by
setting a variable in the user environment. An environment
variable, if set, takes precedence over the value set in the
configuration file. Environment variables are not scoped with a
Common. prefix.
 8 Orbix Administrator’s Guide C++ Edition

Format of Configuration Files
Each line of the common.cfg configuration file has the following
form:

<entry name> = “<entry value>”

Each variable in your configuration file must start at the beginning
of a line. Any line that does not start with a variable that Orbix
recognizes is ignored. You can add comments to your
configuration file in this way. Any entry value can use any desired
environment variable.

orbix3.cfg
This file contains configuration varibles that are specific to Orbix
only. By default, the configuration variables in this file are scoped
with the Orbix. prefix. You can also use the scope Orbix{...}.

// In file orbix3.cfg
The path name to the error messages file.
Orbix.IT_ERRORS = cfg_dir + "ErrorMsgs";

The maximum number of retries Orbix makes to
connect to a server.
Orbix.IT_CONNECT_ATTEMPTS = "10";

Note: Orbix uses the IT prefix to distinguish its configuration and
environment variables.
The orbixnames3.cfg file contains configuration variables that are
specific to OrbixNames. Refer to the OrbixNames
Programmer’s and Administrator’s Guide for more details.

Locating the Configuration Files
Orbix must be able to find its root configuration file before the
Orbix daemon, the IDL compiler, or application processes run. The
Orbix config directory is the default location for all configuration
files. You can set a different directory or configuration file by
setting the IT_CONFIG_PATH environment variable. If the
IT_CONFIG_PATH variable is a directory, that directory should
contain the iona.cfg file. If the IT_CONFIG_PATH environment
variable is the full path name of a file, that file is used as the
configuration file.

How Orbix Finds its Configuration
Orbix has a chain of configuration handlers that it looks in when
asked for a configuration parameter. These are as follows (in
order):

[Environment Handler (IT_Environment)] ->
[ScopedConfigFile Handler (IT_ScopedConfigFile)] ->
[OldConfigFileHandler (IT_ConfigFile)]

The Environment handler allows any configuration variables defined
in your environment to take precedence over those defined in
configuration files or other user-defined configuration handlers.
The ScopedConfigFile handler does the following when searching
for the root configuration file (iona.cfg by default):

• Checks the environment variable IT_IONA_CONFIG_FILE.
The configuration file does not need to be called iona.cfg.
Orbix Administrator’s Guide C++ Edition 9

• Checks the environment variable IT_CONFIG_PATH and appends
iona.cfg.

• Searches for iona.cfg in the same directory as the Orbix
runtime libraries.

• On Windows, checks the Registry to find where Orbix was
installed and appends config\iona.cfg.

• Tries the default installation locations, which are:

The OldConfigFileHandler enables you to use Orbix.cfg files for
backwards compatibility. However, it is recommended that you
use the default files supplied with this version of Orbix.
The following sections describe more about the IT_DAEMON_PORT,
IT_IMP_REP_PATH, and IT_LOCAL_DOMAIN variables. The
IT_DAEMON_SERVER_BASE, IT_ERRORS, and IT_INT_REP_PATH variables
are described in later chapters of the guide.

Locating the Orbix Library Directory on UNIX Platforms
On Solaris platforms, you must set the environment variable
LD_LIBRARY_PATH to include the Orbix lib directory before the Orbix
daemon, the IDL compiler, or the Orbix administration commands
can run.
On HPUX platforms, you must set the SHLIB_PATH environment
variable to include the Orbix lib directory.
In addition, you need to force the program to first search for
libraries using the SHLIB_PATH environment variable by using the
chatr command (see the chatr(1) man page).
The SHLIB_PATH environment variable must be given precedence
for searching over the internal build list.

Setting the Orbix Daemon Port
Orbix uses the daemon process orbixd on each site running Orbix
servers to await incoming requests for server activation and to
connect new clients to existing server processes. This is not
involved in subsequent client/server communications.
The daemon uses one Internet port, and by default this port
number is given by the IT_DAEMON_PORT entry in common.cfg. This is
a required variable.

Platform Default Location

UNIX main installation /opt/microfocus/orbix33

Windows C:\Program Files\Micro Focus\Orbix
3.3 SP15 for Windows

Windows (installing
32-bit kit on a 64-bit
Windows)

C:\Program Files (x86)\Micro
Focus\Orbix 3.3 SP15 for Windows
 10 Orbix Administrator’s Guide C++ Edition

The standard registered port number assigned to orbixd by the
Internet Engineering Task Force (IETF) is the internet port number
1570. You must ensure that the IT_DAEMON_PORT number is the same
for all of your network hosts.
However, when experimenting with the system, you may wish to
install more than one Orbix daemon on a specific machine to
isolate a particular set of servers. In this case you must specify a
different port for each daemon, by setting the environment
variable IT_DAEMON_PORT or by using a different root configuration
file iona.cfg.

Locating the Implementation Repository
The data held in the Implementation Repository maps from
server, application object, and operation names to the path names
of executable server files. The location for storing this data is
given by the required entry for IT_IMP_REP_PATH in the common.cfg
configuration file. Each Orbix daemon has an associated
Implementation Repository.
Occasionally it might be useful for a group of programmers to
have their own Implementation Repository store on a particular
host. For example, when running a separate daemon with a
different daemon port. You can specify a different location by
setting the IT_CONFIG_PATH to refer to a configuration file that
specifies a different location for the IT_IMP_REP_PATH entry or by
setting the IT_IMP_REP_PATH environment variable to override the
one in the configuration file.

Specifying Your Local Internet Domain
You can specify the name of the local Internet domain by using
the IT_LOCAL_DOMAIN variable.
An example is:

IT_LOCAL_DOMAIN="microfocus.com";

A value for this variable is not always required—however, it is
advisable to provide one. For example, it is required if both the
host’s full name (for example, alpha.microfocus.com) and
abbreviated name (for example, alpha) are used in Orbix
applications.

Using the dumpconfig Utility
The dumpconfig utility enables you to obtain information about your
Orbix configuration. This utility outputs the values of the
configuration variables used by Orbix, and the location of the
Orbix configuration files in your system. It also reports if there are
any syntax errors in your configuration files that would normally
go unrecognized by Orbix. The dumpconfig utility is especially
useful if you need to know where Orbix is being configured from.
Orbix Administrator’s Guide C++ Edition 11

Starting The Orbix Daemon
An Orbix daemon runs on each host to control aspects of the
distributed system. The daemon is responsible for the following
tasks:

• Starting servers when appropriate.
• Connecting clients to servers.
• Managing the Implementation Repository. The daemon

accepts requests from the Orbix Implementation Repository
commands.

• Providing information from the Interface Repository about the
supported interfaces for clients that request it.

A typical start of the Orbix daemon without options is as follows:
orbixd

Running the Orbix Daemon as a Windows Service
On Windows platforms, you can install the Orbix daemon as a
Windows service as follows:

> orbixd -j

You must manually start the service on Windows platforms as
follows:
1. Select Start>Control Panel>Administrative Tools>Services.
2. Highlight the Orbix daemon entry.
3. Click the Start Service button.

Windows starts the service as <path>\orbixd -b.
To uninstall this service on Windows platforms, do the following:

> orbixd -w

Using the -o Option to the Orbix Daemon
You should use the -o option if you are running orbixd as a
super-user on UNIX platforms. This option indicates that if the
daemon runs with super-user privileges, servers launched by the
daemon should run using the specified user ID instead of the root
ID.
You should run orbixd in this way for the following reasons:

• A client running as root on a remote machine could launch a
server with root privileges on a different machine. This poses
a serious security risk because a remote user could easily be
faked. When the Orbix daemon is launched as orbixd -o
userId, servers launched by the daemon run using the
specified user ID instead of the root ID.

• When the daemon has super-user capabilities, the
permissions of servers are indeterminate and depend on the
permissions of the first remote user to start a specific server.
For example, on UNIX the files written by a server may have
different owners on different activations making it possible
that the server would be unable to read or write files in future
activations.

Refer to “Orbix Daemon Options” for more details.

Note: Any changes you make to the configuration of Orbix do not take
effect until you restart the Orbix daemon.
 12 Orbix Administrator’s Guide C++ Edition

Registering a Server
The putit utility registers servers with the Orbix Implementation
Repository. You can use the putit command in its simplest form
as follows:

putit server_name command_line
For example:

putit BankSrv /usr/users/chris/banker

The executable file /usr/users/chris/banker is registered as the
implementation code for the server called BankSrv at the local
host. You should use the full path name and not a relative path
name. This is because Orbix interprets relative path names with
respect to the Orbix daemon’s current directory, not the putit
user’s current directory.
The putit command does not execute the indicated file. The file is
automatically launched by Orbix in response to an incoming
operation invocation.

Note: You should ensure that the server name specified in the putit
command matches exactly the server name used in the server
application code.

Checking for an Orbix Daemon
Use the pingit utility to determine if an Orbix daemon is running
on a particular host. For example:

pingit -h host_name
If the Orbix daemon is running at the target host, pingit displays
a message to indicate this. Otherwise, pingit displays a CORBA
COMM_FAILURE exception message.

Checking for Running Servers
Use the psit utility to display information about all of the running
servers that a particular Orbix daemon knows about.
One line is output for each server process. Each line of output has
the following fields:

Name The server name.
Marker The object marker pattern associated with the

process.
Code The data encoder used; for example, XDR.
Comms The communications protocol used; for example,

TCP.
Port The port number used by the communications

system.
Status One of “automatic”, “manual” or “inactive”.
Per-Client? Indicates whether the server is a per-client

server.
OS-pid The operating system process.
Orbix Administrator’s Guide C++ Edition 13

Configuring Orbix for IPv6 Communications
Orbix provides support for Internet Protocol version 4 (IPv4) and
Internet Protocol version 6 (IPv6). Orbix supports IPv4
connections by default. IPv6 fixes a number of issues in IPv4, such
as the limited number of available IPv4 addresses, and adds
improvements in routing and network configuration.

Supported Platforms
IPv6 is supported on a wide variety of platforms. For more details
please see the supported platforms list at:
http://supportline/supportresources/CORBAPlatformInfo.aspx

Configuration
There are three possible states that Orbix servers can be
configured for:
• IPv6 only (only in Orbix for C++).
• IPv4 only.
• IPv4 and IPv6 (commonly referred to as "dual stack").
The default behavior is for Orbix servers to listen and
communicate over IPv4, as in previous versions of Orbix.
The IPv6 enablement is controlled by configuration. By default
Orbix C++ will use IPv4 for Orbix servers and client
communication. The configuration variables are in the Orbix
namespace, in the orbix3.cfg configuration file.
The variables are:
• Orbix.IT_ENABLE_IPV4

• Orbix.IT_ENABLE_IPv6

In order to use IPv6 instead you must set IT_ENABLE_IPV4 to false,
and IT_ENABLE_IPV6 to true.
For a dual stack setup, just setting IT_ENABLE_IPV6 to true is all
that is required. Alternatively, setting both configuration variables
to true will achieve the same effect. If both variables are set to
false, then only IPv4 will be configured (this is the same as having
neither variable configured).

C++ Details
The new C++ implementation has changed how things are done
internally in Orbix a little. For example, previously most of the
network lookups and name resolution was done via the old APIs
such as:
• gethostbyname

• gethostbyaddr
 14 Orbix Administrator’s Guide C++ Edition

http://supportline/supportresources/CORBAPlatformInfo.aspx

These APIs are old and deprecated in both the Unix andWindows
worlds, and we now use the IP-agnostic APIs for address
resolution, and name lookups:
• getaddrinfo

• getnameinfo

These new APIs work seamlessly with both IP versions, and if the
machine that Orbix runs on is configured correctly then these APIs
will work correctly, and previous Orbix applications will continue to
run as before.

These APIs are quite smart in how they do their name lookup, and
the way they resolve names and addresses greatly impacts on
how well the various client/ server machines are configured.
For example, if you have a dual stack configured client and server,
the client does a lookup on the server in dual stack mode, and if
the server is not configured correctly for IPv6 with the DNS, then
it is perfectly reasonable that the next viable address to be
resolved will be an IPv4 address.
The IPv6 link-local addresses (IPv6 addresses beginning with the
fe80 prefix) are not supported and will not be considered as a
suitable candidate for IPv6 connections. If this is the only
configured IPv6 address, then Orbix will not communicate with
this address.
If you try to run Orbix in IPv6 mode on a machine that is not
configured correctly for IPv6 communications, then a CORBA
exception similar to the following may be thrown:
$ orbixd
[orbixd:Initialisation of server "IT_daemon" failed...]
10088-- Communication failure
- TCP/IP Socket interface failure Reason: Bad file number

[Completion status : COMPLETED_NO]

Configuring Orbix for Multi-Homed Hosts
Some machines have multiple hostnames or IP addresses (for
example, those using multiple DNS aliases or multiple network
cards). These machines are often termed multi-homed hosts. A
multi-homed host is a host with one or more IP addresses.
Orbix is multi-home aware and can be used successfully with
various different network and multi-homed package
configurations. There are a number of basic configuration changes
that need to be made. For all versions of Orbix the configuration is
divided between two configuration variables, IT_LOCAL_HOST and
IT_LOCAL_ADDR_LIST.
IT_LOCAL_HOST sets the host name a server will use in any IOR that
it exports. Setting it to anything other than one hostname or IP
address is not supported. IT_LOCAL_ADDR_LIST is used to make a
server or client aware of its multi-homed settings. This is a
colon-separated list of IP addresses, or hostnames, on which the
Orbix servers and the Orbix daemon orbixd can expect to receive
invocations.

Note: You should note one caveat when using these new APIs:
Orbix Administrator’s Guide C++ Edition 15

For Orbix to enable its multi-home capabilities it is also necessary
to use the configuration variable IT_ENABLE_MULTI_HOMED_SUPPORT,
which must be available to the ORB at startup.
The following example indicates how you should set up the
multi-homed configuration on Orbix:
In the file orbix3.cfg

Orbix{
IT_ENABLE_MULTI_HOMED_SUPPORT = "YES";
IT_LOCAL_HOST = "10.1.1.0";
IT_LOCAL_ADDR_LIST = "10.1.1.0:10.1.2.0";
};

By default Orbix uses the IP addresses returned by getaddrinfo(),
so Micro Focus recommends using multi-homed support only
where it is necessary: that is, where the list of addresses that
Orbix returns may actually already include the list of addresses
that you would previously have used the multi-homed support
configuration to specify. If this is the case, and Orbix does not
return all IP addresses, you may configure multi-homed support
to make Orbix aware of these extra IP addresses. The
IT_LOCAL_ADDR_LIST configuration variable is provided for this
purpose. See “Multi-Homed Configuration Variables” for more
details.
Starting from Orbix 3.3 Service Pack 12, the getaddrinfo() call is
now used internally in Orbix instead of the older networking calls
such as gethostbyname() and gethostbyaddr(). This was changed as
the older methods do not support IPv6, so the change was needed
for the product to support IPv6.
Starting with Orbix 3.3 Service Pack 12, if "multi-homed" support
is enabled, and an application wants to make use of a loopback
address, such as making a "_bind()" call with the host set as
"localhost", then the loopback IP address needs to be included in
the IT_LOCAL_ADDR_LIST configuration variable. In previous
versions of Orbix 3.3 this was not the case, but because it has a
stricter networking layer to facilitate IPv6, Orbix now requires all
IP addresses to be explicitly specified.

Multi-Homed Configuration Variables
IT_ENABLE_MULTI_HOMED_SUPPORT

Set this variable to “YES” to enable Orbix for multi-homed
machines. It is disabled by default.
IT_LOCAL_HOST

The local host hostname that a server will use in any IOR it
exports.
IT_LOCAL_ADDR_LIST

A colon-separated list of IP addresses from which the server is
willing to accept connections.
 16 Orbix Administrator’s Guide C++ Edition

If configuring IPv6 IP addresses to this list, it is important that you
surround them by square brackets so the colon can still be used to
signify the starting of a another address. See the example
configuration below:
Orbix
{
 # ...
 IT_LOCAL_ADDR_LIST = "[fd00:1:230::808f:301]:[fd00:1:230::808f:302];
};

For a complete list of Orbix C++ configuration parameters, refer
to “Configuration Variables”.

Configuring Orbix for Multiple Network Cards on
Independent Networks

It is possible to configure a machine with multiple network cards
which are interfaces for separate networks. This example is
illustrated in Figure 3.

Figure 3: Simple Example of a Multi-homed Host

The multi-homed host (Host 1) can be on any of the networks in
Figure 3. All of the networks are completely independent of each
other, and any hosts on any of these networks are unaware of
those on the other network(s).
The recommended configuration settings for the above example
are:
Orbix{

IT_ENABLE_MULTI_HOMED_SUPPORT = "YES";
// MUST resolve in all domains to the IP address
// used to connect.
// No need to set if this is the same as the
// default name.
IT_LOCAL_HOST = "host1";
IT_LOCAL_ADDR_LIST ="card1_IP_address:

card2_IP_address:card3_IP_address";
};

and
Orbix Administrator’s Guide C++ Edition 17

Orbix{
IT_ENABLE_MULTI_HOMED_SUPPORT = "YES";
// MUST resolve in all domains to the IP address
// used to connect.
// This will more than likely will common alias.
IT_LOCAL_HOST = "host1";
IT_LOCAL_ADDR_LIST = "card1_host_name:

card2_host_name:card3_host_name";
};
 18 Orbix Administrator’s Guide C++ Edition

Managing the
Implementation
Repository
When you install server applications on a network host, you must
register those servers in the Orbix Implementation Repository.
This repository allows Orbix to direct client operation calls to
objects in servers and to start server processes when necessary.
This chapter describes how to manage servers in the
Implementation Repository.
The chapter covers the following topics:

• The Implementation Repository and its entries.
• Basic usage of the Implementation Repository including

registering servers, organizing server entries, removing
server entries, listing registered servers, and displaying
information about an entry.

• How to start a server manually.
• How to stop servers manually.
• The security of servers including how to change ownership of

servers and how to modify access control lists.
• How to register servers in specialized activation modes other

than simply one server process for all clients.
• How to manage the set of ports Orbix uses to run servers.
This chapter explains how to manage the Implementation
Repository using Orbix command-line utilities. Refer to “The Orbix
Server Manager” for details of how you can use Orbix GUI tools.

Implementation Repository Entries
The Implementation Repository maintains a mapping from a
server’s name to the filename of the executable code
implementing that server. A server must be registered with the
Implementation Repository to make use of this mapping. Orbix
automatically starts the server (if it is not already running) when a
client binds to one of the server’s objects or when an operation
invocation is made on any object that names that particular
server.
When a client first communicates with an object, Orbix uses the
Implementation Repository to identify an appropriate server to
handle the connection. If a suitable entry cannot be found in the
Implementation Repository during a search for a server, an error
is returned to the client.
The Implementation Repository maintains its data in entries that
include the following information:

• The server name.
Server names can be hierarchical so the Implementation
Repository supports directories.
 Orbix Administrator’s Guide C++ Edition 19

• The server owner—usually the user who registered the server.
• The server permission values.

These specify which users have the right to launch the server
and which users have the right to invoke operations on
objects in the server.

• One or more activation orders.
An activation order associates an object or group of objects
with a launch command. A launch command specifies how
Orbix starts the server.

Basic Implementation Repository Usage
Use the putit command to create or modify an Implementation
Repository entry. For example, the following command registers a
shared server called “FirstTrust” on the local host, with the
specified executable file:

putit FirstTrust /work/bank/banker

Activation occurs when any of the objects managed by the
FirstTrust server is used. In this example there is only one server
process associated with this server and all clients share the same
server process.

Registering a Server on a Remote Host
The following command registers a shared server called
“FirstTrust” on the remote host “alpha”, with the specified
executable file and command-line argument:

putit -h alpha FirstTrust
"/work/bank/banker -v 1.1"

Note: If the server requires parameters and options, you should use
quotes so that the putit command does not try to interpret them.
Using the -h hostname option enables you to use all the utility
commands for remote hosts. However, for simplicity, most of the
examples in this guide do not use this option and use the local
host default instead.

Organizing Servers Into Hierarchies
Server names may be hierarchically structured, in the same way
as UNIX file names. Hierarchical server names are useful in
structuring the name space of servers in Implementation
Repositories. You can create hierarchical directories by using the
mkdirit command. For example, you can make a new banking
registration directory and make a registration within it as follows:

mkdirit banking
putit banking/Berliner /usr/users/joe/banker

Thus banking/Berliner is a valid, hierarchical server name.
 20 Orbix Administrator’s Guide C++ Edition

The rmdirit command removes a registration directory. This
command can take a -R option to recursively delete a directory
and the Implementation Repository entries and sub-directories
within it. The rmdirit command returns an error if it is called
without the -R option on a non-empty registration directory.
For example:

lsit
FirstTrust
banking

rmdirit banking
directory not empty

rmdirit -R banking

This example uses the lsit command to display the
Implementation Repository entries and directories.
To move an entry in the hierarchy, first remove it with the rmit
command and then re-register it with the putit command.

Removing a Registered Server
Use the rmit command to remove an Implementation Repository
entry. For example, the following command removes a server
entry:

rmit FirstTrust

This simplest format of the command removes the entry and all
activation orders for the server.
You can also use the rmit command to remove specific activation
orders. Use the -marker option for the shared or unshared
activation modes to remove specific activation orders for
individual objects. Use the -method option for the per-method call
activation mode to remove specific activation orders for individual
methods. Activation modes are described in “Server Activation
Modes”.

Listing Registered Servers
Use the lsit command to list registered servers and directories.
For example:

Register a server called International and
one called printer
putit International /usr/users/joe/banker
putit printer /usr/users/joe/print laser
Register a server called Berliner.
"Berlin 98-00-00" are parameters for the
executable file.
putit Berliner

/usr/users/joe/banker Berlin 98-00-00
lsit

International
Berliner
printer

Use the -R option with the lsit command to recursively list all
server entries in the given directory and its subdirectories.
Orbix Administrator’s Guide C++ Edition 21

Displaying A Server Entry
Use the catit command to display information about a specific
server’s registration entry. The following example assumes the
server Berliner is registered from the previous example:

catit Berliner
name: Berliner
Activation: shared
Owner: smith
Launch: ;jones;developers;friends;
Invoke: ;all;
Per-client: false

Marker Launch_Command
* /usr/users/joe/banker Berlin 98-00-00

The output includes the following:

The final output is a table of activation orders. An activation order
is identified with a marker. An asterisk (*) represents all objects
and means that there is only one activation order for the server
entry.

Starting Servers Manually
Most servers are designed to have Orbix start them automatically
when a client uses an object. The majority of an administrator’s
work therefore involves registering servers in the Implementation
Repository and managing the registration entries in the
repository. However, some servers do need to be started before
any clients attempt to use their objects.
Servers that are started by some mechanism external to Orbix are
useful for a number of reasons. For example, if a server takes a
long time to initialize and it starts when a client request a service,
it may cause the client to timeout. In addition, some servers that
are meant to run as long-lived daemons may require manual
starting. Manual servers are also known as persistent servers in
CORBA terminology.

name Server name.
Activation Activation mode.
Owner The user who put the in the entry.
Launch The users and groups who have permission to

start or launch the server.
Invoke The users and groups who have permission to

invoke operations on an object controlled by the
server.

Per-client A per-client indicator that indicates whether a
new server is to be launched for each client that
uses the server.
 22 Orbix Administrator’s Guide C++ Edition

Registering a Manual Server
All servers that are registered in the shared mode can also be
started manually. Subsequent invocations on the objects are
passed to the running process.
However, if you wish to prevent Orbix from starting a server and
make it manual-only, use the following command:

putit FirstTrust -persistent

This command registers a manual-only server called “FirstTrust”
on the local host. No start command is specified to putit, because
this server cannot be started by Orbix automatically but can only
start as a manual server.
The CORBA specification requires that unshared or per-method
types of servers fail if an attempt is made to start them manually.
This means that manual servers can only be registered as shared
servers. Therefore, you cannot use the -persistent option with
either the -unshared or -per-method options of the putit command.
These unshared and per-method servers are described in “Server
Activation Modes”.

Starting the Orbix Daemon for Unregistered Servers
In some circumstances, it can be useful not to register servers
with the Implementation Repository. Under normal operation,
Orbix would know nothing about these servers. However, if you
invoke the Orbix daemon with the -u option, it maintains an active
record of unregistered Orbix servers and clients that may use
these servers:

orbixd -u

When Orbix is started this way, any server process can be started
manually. However, no access control is enforced and there is no
record of the server in the Implementation Repository.

Stopping Servers
Just as most servers start automatically when needed, they are
usually designed to stop automatically after some period.
However, there may be other situations where you need to
manually stop a server.
The killit command stops a server process by using the SIGTERM
signal.
1. For example, the following command stops the Berliner

server on the host omega:
killit -h omega /Banking/Berliner

2. When there is more than one server process, use the marker
option and argument to distinguish between different
processes. To do this, use the following killit command
format:

killit -m marker server_name
Orbix Administrator’s Guide C++ Edition 23

Security of Registered Servers
For each Implementation Repository entry, Orbix maintains two
access control lists (ACLs) as follows:

The entries in the access control list can be user names or group
names. The owner of an Implementation Repository entry is
always allowed to launch it and invoke operations on its objects. A
client normally needs both launch and invoke access to use an
automatically-launched server. The following sections describe
how to modify ACLs by adding groups and users or removing
groups and users from ACLs.

Modifying Server Access
Use the chmodit command to modify the launch or invoke access
control lists (ACLs). For example:
1. The following command allows the user chris to launch the

server AlliedBank:
chmodit AlliedBank l+chris

2. The following command grants the user chris rights to launch
any server in the directory banks/investmentBanks:

chmodit -a banks/investmentBanks l+chris

3. The following command revokes joe’s right to invoke all
servers in the Implementation Repository directory
banks/commercialBanks:

chmodit -a banks/commercialBanks i-joe

4. There is also a pseudo-group named all that you can use to
implicitly add all users to an ACL. The following command
grants all users the right to invoke the server
banks/commercialBanks/AlliedBank:

chmodit banks/commercialBanks/AlliedBank i+all

On UNIX, the group membership of a user is determined using the
user’s primary group as well as the user’s supplementary groups
as specified in the /etc/group file.

Changing the Owners of Registered Servers
Only the owner of an Implementation Repository entry can use the
chmodit command on that entry. The original owner is the one who
uses the putit command to register the server. Use the chownit
command to change ownership. For example, use the following
command to change the ownership of server AlliedBank to user
mcnamara:

chownit -s AlliedBank mcnamara

Launch The users or groups that can launch the associated
server. Users on this list, and users in groups on this
list, can cause the server to be launched by invoking
on one of its objects.

Invoke The users and groups that can invoke operations on
any object controlled by the associated server.
 24 Orbix Administrator’s Guide C++ Edition

An Implementation Repository directory may have more than one
owner. An ownership ACL is associated with each directory in the
Implementation Repository, and this ACL can be modified to give
certain users or groups ownership rights on a directory. Only a
user on an ownership ACL has the right to modify the ACL. Some
other examples of changing ownership include the following:
1. To add the group microfocus to the ownership ACL on the

Implementation Repository directory banks/investmentBanks,
use the following command:

chownit -d banks/investmentBanks + microfocus

2. To remove mcnamara from the same ACL, do the following:
chownit -d banks/investmentBanks - mcnamara

3. Orbix supports the pseudo-group all that, when added to an
ACL, grants access to all callers. The following command
grants all users the ownership rights on directory
banks/commercialBanks:

chownit -d banks/commercialBanks + all

Spaces are significant in this grammar; for example:

Determining the User and Group IDs of Running Servers
On Windows platforms, the user ID (uid) and group ID (gid) of a
server process launched by the Orbix daemon are the same as
those of the daemon itself.
On UNIX platforms, the effective uid and gid of a server process
launched by the Orbix daemon are determined as follows:
1. If orbixd is not running as a super-user, such as root on UNIX,

the uid and gid of every activated server process is that of
orbixd itself.
If orbixd is running as root, it attempts to activate a server
with the uid and gid of the, possibly remote, principal
attempting to activate the server.

2. If the principal is unknown (not a registered user) at the local
machine on which orbixd is running, orbixd attempts to run
the new server with uid and gid of a standard user called
“orbixusr”.

3. If there is no such standard user “orbixusr”, orbixd attempts
to run the new server with uid and gid of a user “nobody”.
If there is no such user “nobody”, the activation fails and an
exception is returned to the caller.

The daemon must be able to execute the server’s executable file.

Note: If you are running orbixd as super-user, you should use the -o
option to the Orbix daemon. This prevents a client running as a
super-user on a remote machine from launching a server with
super-user privileges on your machine. Refer to “Using the -o
Option to the Orbix Daemon” on page 12 for more details.

CORRECT chownit -d banks/investmentBanks + microfocus

INCORRECT chownit -dbanks/investmentBanks + microfocus

INCORRECT chownit -d banks/investmentBanks +microfocus
Orbix Administrator’s Guide C++ Edition 25

Server Activation Modes
Orbix provides a number of different modes for launching servers.
You specify the mode of a server when it is registered. Usually,
clients are not concerned with the activation details of a server or
aware of what server processes are launched. The following
primary activation modes are supported by Orbix.

Shared Activation Mode
In this mode, all of the objects with the same server name on
a given machine are managed by the same server process on
that machine. This is the default activation mode.
If the process is already running when an application
invocation arrives for one of its objects, Orbix routes the
invocation to that process; otherwise Orbix launches a
process.

Unshared Activation Mode
In this mode, individual objects of a server are registered with
the Implementation Repository. As each object is invoked, an
individual process is run for that particular object—one
process is created per active registered object. You can
register each object managed by a server with a different
executable file, or any number of objects can share the same
executable file.

Per-method call Activation Mode
In this mode, individual operation names are registered with
the Implementation Repository. Inter-process calls can be
made to these operations—and each invocation results in the
launch of an individual process. A process is launched to
handle each individual operation call, and the process is
destroyed once the operation has completed. You can specify
a different executable file for each operation, or any number
of operations can share the same executable file.

The shared mode is most common. The unshared and per-method
modes are rarely used. Refer to your server documentation to
determine the correct activation modes to use.

Registering Unshared Servers
The -unshared option registers a server in the unshared activation
mode. For example:

putit -unshared
NationalTrust /financial/banks/banker

This command registers an unshared server called “NationalTrust”
on the local host, with the specified executable file. Each
activation for an object goes to a unique server process for that
particular object. However, all users accessing a particular object
share the same server process.
 26 Orbix Administrator’s Guide C++ Edition

Using Markers to Specify Named Objects
Each Orbix object has a unique object reference that includes the
following information:

• A name that is usually referred to as a marker.
An object’s interface name and its marker uniquely identify
the object within a server. A server programmer can choose
the marker names for objects or they can be assigned
automatically by Orbix.

• A server name identifying the server in which the object is
located.

• A host name identifying the host on which the server is
located.

For example, the object reference for a bank account would
include the bank account name (marker name), the name of the
server that manages the account, and the name of the server’s
host.
Since objects can be named, shared and unshared server
activation policies can specify individual object marker names. For
example:
1. putit -marker College_Green

 NationalBank /financial/banks/banker

This command registers a shared server called “NationalBank”
on the local host, with the specified executable file. However,
activation only occurs for the object whose marker matches
“College_Green”. There is at most one server process resulting
from this registration request; although you can make other
-marker registrations for server NationalBank. All users share
the same server process.

2. putit -unshared -marker College_Green
 FirstNational /banks/FNbank_CG

putit -unshared -marker St_Stephens_Green
FirstNational /banks/FNbank_STG

The first command registers an unshared server called
“FirstNational” on the local host with the specified executable
files and the second adds an activation order (marker and
launch command) for the “St_Stephens_Green” marker.
However, activation only occurs for objects whose marker
name is “College_Green” or “St_Stephens_Green” and each
activation for a specific object goes to a unique server process
for that particular object. All users of a specific object share
the same server process.

Using Pattern Matching
You can use pattern matching in activation policies when seeking
to identify which server process to communicate with. In
particular, you can register a server activation policy for a subset
of the server’s objects. Since the number of objects named can
get very large, pattern matching also means you do not have to
specify a separate policy for every possible object. You specify this
object subset by using wildcard characters in a marker pattern.
The pattern matching is based on regular expressions, similar to
UNIX regular expressions.
Orbix Administrator’s Guide C++ Edition 27

You can use pattern matching to specify a set of objects for shared
or unshared servers. For example, some registrations can be used
as a means of sharing work between server processes in this case,
between two processes:

putit -marker '[0-4]*'
NationalBank /work/bank/NBBank

putit -marker '[5-9]*'
NationalBank /work/bank/NBBank

If these two commands are issued, server NationalBank can have
up to two active processes; one launched for objects whose
markers begin with the digits 0 through 4 and the other for
markers beginning with digits 5 through 9.
Refer to the entry for the putit command in the appendix
“Command Reference” for a complete list of recognized patterns
with examples.
Use the rmit command with -marker option to modify a server
entry. This allows you to remove a specific activation order for a
server without removing the entire server entry. You can also use
pattern matching with the rmit command’s marker option.

Registering Per-Method Servers
A per-method server processes each operation call in a separate
process.
1. The following command registers a per-method server called

“NationalTrust” on the local host with the specified executable
file. The activation occurs only if the operation
makeWithdrawal() is called.
putit -per-method -method makeWithdrawal
 NationalTrust /financial/NTbank

2. If the -method option is used, Orbix assumes that the server is
a per-method server.
putit -method makeDeposit

NationalTrust /financial/NTbank

You can specify patterns for methods so that operation names
matching a particular pattern causes Orbix to use a particular
server activation. The use of pattern matching allows a group
of server processes to share a workload between them,
whereby each server process is responsible for a range of
methods. The pattern matching is based on regular
expressions similar to UNIX regular expressions.

3. The following command registers a per-method server called
“FirstTrust” on the local host with the specified executable
file.
putit -per-method FirstTrust

-method 'make*' /financial/banker

The activation is to occur only if an operation matching the
pattern “make*” is being called, for example makeDeposit() or
makeWithdrawal(). A separate process is activated for each
method call.

Note: You can only use method pattern matching in the per-method
activation mode, thus the -per-method option is redundant.
 28 Orbix Administrator’s Guide C++ Edition

Use the rmit command with -method option to modify a
per-method server entry. This allows you to remove a specific
activation order for a server without removing the entire server
entry. You can also use pattern matching with the rmit command’s
-method option.

Secondary Activation Modes
For each of the primary activation modes, a server can be
launched in one of the secondary activation modes described as
follows:

Multiple-client Activation Mode
In this mode, activations of the same server by different users
share the same process, in accordance with the selected
primary activation mode. This is the default secondary
activation mode. No putit option is required to specify this
mode when registering a server.

Per-client Activation Mode
In this mode, activations of the same server by different users
cause a different process to be launched for each end-user.
Use the putit -per-client option to register a server in this
secondary activation mode.

Per-client-process Activation Mode
In this mode, activations of the same server by different client
processes cause a different process to be created for each
such client process.
Use the putit -per-client-pid option to register a server in
this secondary activation mode. For example, the following
command registers a shared, per-client-process server:

putit -per-client-pid
FirstTrust /work/bank/banker

Activation occurs when any of the objects managed by the
FirstTrust server are used; there is a separate server process
for each different client process.

Managing Server Port Selection
When the Orbix daemon activates a server, the server is activated
by the Orbix daemon, it is assigned a port so that clients can
communicate with it. There are two ways to control the port
numbers assigned to a server:

• Registering the server with a specified port number.
• Using configuration variables to control port numbers.
This section describes each of these approaches.
Orbix Administrator’s Guide C++ Edition 29

Registering Servers with Specified Ports
When registering a server, you can specify the port on which the
server should listen using the -port option to putit. For example,
to specify that shared server FirstTrust should communicate on
port 1597, do the following:

putit -port 1597 FirstTrust /work/bank/banker

By default, all Orbix applications communicate over the CORBA
standard Internet Inter-ORB Protocol (IIOP). The -port option is
very important for such applications.
If an Orbix server that communicates over IIOP publishes an
object reference, for example using the CORBA Naming Service,
this reference is valid while the server continues to run. However,
if the server exits and then recreates the same object, the
published object reference is not valid unless the server always
runs on the same port. If your servers require this functionality,
you should register them using the -port option.

Controlling Port Allocation with Configuration Variables
You can control the range of server port numbers chosen by the
Orbix daemon by using the configuration entries
IT_DAEMON_SERVER_BASE and IT_DAEMON_SERVER_RANGE. The
IT_DAEMON_SERVER_BASE must be set and the recommended value is
1590. You do not have to set IT_DAEMON_SERVER_RANGE which has a
default value of 50.
When the Orbix daemon starts a server, the first server port
assigned is IT_DAEMON_SERVER_BASE plus 1, and the last assigned is
IT_DAEMON_SERVER_BASE plus IT_DAEMON_SERVER_RANGE. For example,
using the default values the server ports range from 1591 to 1640.
Once the end of the range is reached, orbixd recycles the range in
an attempt to find a free port. If no free port is found, an
IMP_LIMIT system exception is raised to the client application
attempting an invocation to the server.
You can set IT_DAEMON_SERVER_BASE and IT_DAEMON_SERVER_RANGE
values by using their entries in the common.cfg configuration file, or
by setting the corresponding environment variables. Values you
set must be greater that 1024 and you should make sure that they
do not conflict with other services. Make sure the range you
choose is greater than the maximum number of servers you
expect to run on the host.
 30 Orbix Administrator’s Guide C++ Edition

Registering SSL-Enabled Servers
To register servers that are SSL-enabled use the putit utility with
the additional SSL syntax highlighted below.
This is the full putit command syntax:
putit [-v] [-h <host>] [-per-client | -per-client-pid]
[[-shared | -unshared] [-marker <marker>]]
[-j | -java [-classpath <classpath> | -addpath <path>]]
[-oc <ORBclass> -os <ORBSingletonClass>] [-jdk2]
| [-per-method [-method <method>]]
[-port <iiop portnumber>]
[-n <number of servers>] [-l]
[-ssl_secure | -ssl_semi_secure [-ssl_client_auth]

[-ssl_support_null_enc | -ssl_support_null_enc_only]
[-ssl_support_null_auth | -ssl_support_null_auth_only]]

<serverName> [<commandLine> | -persistent]

The ssl parameters are described in Table 1. To use them, you
must specify either –ssl_secure or –ssl_semi_secure first.

Table 1: putit SSL Parameters

putit Flag Description

-ssl_client_auth Indicates that the server authenticates clients.

-ssl_support_null_enc This indicates that the NULL encryption SSL
ciphersuites (which do not support
confidentiality) are supported by the server.

-ssl_support_null_enc_only This indicates that only the server supports the
NULL encryption SSL ciphersuites.

-ssl_secure This is the minimal flag needed to indicate that
the server is SSL-enabled. If this flag or –
ssl_semi_secure are not supplied then the server
is insecure, and no SSL related data should be
written to the IR. One of these two flags must be
supplied before any other SSL flag is acceptable.
An error should be presented to the user if they
are not.

-ssl_semi_secure This indicates a SEMI_SECURE server policy. If this
flag or –ssl_secure are not supplied to putit then
the policy is INSECURE and no SSL-related data
should be written to the IR. One of these two
flags must be supplied before any other SSL flag
is acceptable. An error should be presented to
the user if they are not.

-ssl_support_null_auth This flag indicates that the server supports null
authentication. OrbixSSL servers do not currently
support this; nevertheless you can code the flag
now to save time in the future.

-ssl_support_null_auth_only This flag indicates that the server supports null
authentication. OrbixSSL servers do not currently
support this; nevertheless you can code the flag
now to save time in the future.
Orbix Administrator’s Guide C++ Edition 31

Using the putit SSL Parameters
There are four groups of SSL parameters. If you want to use
them, you must use one from Group 1, followed by one or none
from each of the other three groups:

Group 1
-ssl_secure
-ssl_semi_secure

Group 2
-ssl_support_null_enc
-ssl_support_null_enc_only
<NOTHING>

Group 3
-ssl_support_null_auth
-ssl_support_null_auth_only
<NOTHING>

Group 4
-ssl_client_auth
<NOTHING>

As OrbixSSL supports per server process security policy settings,
those settings specified by putit apply to all objects created by
the server.
The most common use cases are:
Putit –ssl_secure demo/grid grid.exe
Putit –ssl_secure –ssl_client_auth demo/grid grid.exe
Putit –ssl_semi_secure demo/grid grid.exe

The following might be less common:
Putit –ssl_semi_secure –ssl_client_auth demo/grid grid.exe
 32 Orbix Administrator’s Guide C++ Edition

Managing the Interface
Repository
The Interface Repository is the component of Orbix that stores
information about IDL definitions and allows clients to retrieve this
information at runtime. This chapter describes how to manage the
contents of the Interface Repository.
The Interface Repository maintains full information about the IDL
definitions implemented in your system. Given an object
reference, a client can determine at runtime the object’s type and
all information about that type by using the Interface Repository.
Clients can also browse contents of the Interface Repository.
To allow a client to obtain information about a set of IDL
definitions, you must add those definitions to the Interface
Repository. Orbix supports commands that allow you to add IDL
definitions to the repository, read the contents of the repository,
and remove definitions from it. Each of these commands accesses
the Interface Repository through the Interface Repository server.
This chapter explains how to manage the Interface Repository
using Orbix command-line utilities. Refer to “Managing the
Interface Repository” for details of how you can use Orbix GUI
tools.

Configuring the Interface Repository
The Interface Repository has its own directory, which is specified
by the IT_INT_REP_PATH entry in the common.cfg configuration file or
as an environment variable. IT_INT_REP_PATH is a required variable.
You must configure the Interface Repository before the IDL
compiler or applications can use it. To configure the Interface
Repository, do the following:
1. Specify a value for the IT_INT_REP_PATH entry in the common.cfg

file or as an environment variable. For example:
IT_INT_REP_PATH /orbix/IntRep

2. Create the corresponding directory if it does not already exist.
mkdir /orbix/IntRep

3. If the Orbix daemon is running, stop it and then restart it so
that it recognizes the new configuration variable:

orbixd

Registering the Interface Repository Server
The Interface Repository is accessed through an Orbix server. The
interfaces to the Interface Repository objects are defined in IDL
and you must register the Interface Repository server using the
putit command. For example:

putit IFR /orbix/ifr/bin/IFR

Orbix expects that the server is registered with the name IFR as a
shared server. The Interface Repository’s executable file is in the
bin directory with the name IFR.
 Orbix Administrator’s Guide C++ Edition 33

The Interface Repository server can be launched by the Orbix
daemon, or it can be launched manually. For example, the server
executable file can be explicitly run as a background process:

/orbix/ifr/bin/IFR

This has the advantage that the Interface Repository can initialize
itself before any other processes need to use it.
The server executable file can take the following options:

Adding IDL Definitions
The Orbix utility putidl allows you to enter all the definitions in a
single IDL source file into the Interface Repository. This utility
provides a simple and safe way to add IDL definitions to the
repository.
For example, the following command adds the definitions in the
file banksimple.idl to the Interface Repository:

putidl banksimple.idl

The putidl utility parses the definitions in the file banksimple.idl
and integrates the definitions into the repository. If the file
banksimple.idl uses definitions already registered in the
repository, putidl checks that the definitions are used consistently
before updating the repository contents.
If you modify the file banksimple.idl, you can update the contents
of the Interface Repository by repeating the putidl command.
Although putidl takes an IDL file as an argument, the Interface
Repository does not store information about the file itself. The
Interface Repository has no knowledge of the file associated with
specific IDL definitions. This means that you cannot remove
definitions based on the file in which they were declared. For this
reason, it is important that you use modules in your IDL
definitions to group definitions in logical units.

Reading the Interface Repository Contents
The readifr utility allows you to read a specified IDL definition
from the Interface Repository. For example, to view the definition
of interface Bank defined in module Finance, do the following:

readifr Finance::Bank

This utility prints the IDL definition to the standard output.
If you use readifr to view an IDL interface definition, you can
instruct it to also display all derived interfaces. To do this, specify
the -d option, for example:

readifr -d Finance::Bank

-h Print a summary of switches.
-L Immediately load data from the Interface Repository

data directory. The default is not to do this, but instead
to load each file on demand at runtime as it is required.

-t time Specify the timeout in seconds for the Interface
Repository server. The default timeout is infinite.

-v Print version information about the Interface
Repository.
 34 Orbix Administrator’s Guide C++ Edition

Removing IDL Definitions
The rmidl utility allows you to remove an IDL definition from the
Interface Repository. This utility takes a fully scoped name for an
IDL definition as an argument.
For example, to remove information about the IDL operation
create_Account() defined on interface Bank in module Finance, do
the following:

rmidl Finance::Bank::create_Account()

The rmidl command removes definitions recursively. For example,
to remove the module Finance and all definitions within this
module, do the following:

rmidl Finance
Orbix Administrator’s Guide C++ Edition 35

 36 Orbix Administrator’s Guide C++ Edition

Active Connection
Management
The Orbix daemon supports a feature called Active Connection
Management (ACM).
When ACM is enabled the Orbix daemon disconnects the least
recently used connections when the number of active file
descriptors reaches the connection limit.
To enable ACM the Orbix daemon process needs to be started with
the -a option (see “Orbix Daemon Options” for this option) as
follows:
 orbixd -a

If ACM is enabled the Orbix daemon prints the following message
when it starts up:
 [orbixd: ACM option is enabled]

To view diagnostic messages, the configuration variable
IT_DIAGNOSTICS_LEVEL must be set to 3.
The ACM feature is primarily driven by two Orbix-specific
configuration variables, IT_DAEMON_CONNECTION_LIMIT and
IT_DAEMON_CONNECTION_REAP_NUMBER.
IT_DAEMON_CONNECTION_LIMIT defines the maximum number of
connections that the Orbix daemon accepts before it starts to reap
the least recently used connections.
While a range is specified, Orbix will not enforce that range. The
value is stored in an unsigned short, so it is recommended not to
increase the value above 65535 to avoid value truncation.
IT_DAEMON_CONNECTION_REAP_NUMBER indicates the number of least
recently used connections that are to be closed when the
IT_DAEMON_CONNECTION_LIMIT value is reached. This variable enables
you to reap many connections during one iteration.
 Orbix Administrator’s Guide C++ Edition 37

 38 Orbix Administrator’s Guide C++ Edition

Part II
Orbix C++ GUI Tools

In this part
This part contains the following:

The Orbix Configuration Explorer page 41

The Orbix Server Manager page 49

Orbix Daemon Options page 77

The Orbix
Configuration Explorer
Components of an Orbix system are configured using a number of
configuration files, as described in the chapter “Getting Started”.
The Orbix Configuration Explorer allows you to configure Orbix
components without modifying the configuration files directly.
The Orbix configuration files configure the main components of
Orbix, and each Orbix installation has at least one copy of each
file. The Orbix Configuration Explorer allows you to modify any
Orbix configuration file on your system.
The configuration files include settings that affect the
configuration of Orbix and settings that affect the configuration of
other Orbix products, for example OrbixNames. The Orbix
Configuration Explorer allows you to modify all these settings, and
to create additional settings. This tool integrates all Orbix
configuration in a single user interface.
By default, the Configuration Explorer allows you to configure
settings that are:

• Common to multiple Micro Focus products.
• Orbix-specific
• OrbixNames-specific

Starting the Configuration Explorer
You can run the Configuration Explorer from the Windows Start
menu, or by entering configurationexplorer at the command line.
The Configuration Explorer appears as shown in Figure 4.

Figure 4: Orbix Configuration Explorer
 Orbix Administrator’s Guide C++ Edition 41

This tool includes the following elements:

• A menu bar.
• A toolbar.
• A navigation tree.

The navigation tree displays icons that represent each
configuration file and configuration scope.

• A text box.
The Name textbox displays the name of the current
configuration file or scope.

• A text pane.
The text pane control contains a Name column and a Value
column as shown in Figure 5 on page 42. Each row
corresponds to individual configuration file entries. The text
pane enables you to view and modify these entries.

At startup, the Orbix Configuration Explorer opens the iona.cfg
root configuration file. By default, this file is located in the config
directory of your Orbix installation. The Configuration Explorer
navigation tree displays icons that represent the configuration files
included in iona.cfg as shown in Figure 4 on page 41.

Configuring Common Settings
To configure settings that are common to multiple Micro Focus
products, select the Common icon in the navigation tree. This
icon represents the Common configuration scope in the file
common.cfg. The Common variables stored in the default common.cfg
configuration file then appear in the text pane, as shown in
Figure 5 on page 42.

Figure 5: Common Configuration Settings
 42 Orbix Administrator’s Guide C++ Edition

The default Common configuration settings are as follows:

To update any of these settings, do the following:
1. Select the variable in the text pane.
2. Double-click on this variable in the Value column
3. Enter your new setting.
4. Select the Apply button to save your setting to the

appropriate configuration file.
You cannot undo settings that you have saved to file.

Configuring Orbix-Specific Settings
To configure settings that apply to Orbix only, select the Orbix
icon in the navigation tree. This icon represents the Orbix
configuration scope in the file orbix3.cfg. The Orbix variables
stored in the default orbix3.cfg configuration file then appear in
the text pane, as shown in Figure 6.

Figure 6: Configuring Orbix-Specific Settings

IT_DAEMON_PORT The TCP port number on which the Orbix daemon
receives communications from clients.

IT_DAEMON_ SERVER_ BASE The TCP port number assigned by the daemon to
a server. Each server listens on a single port
number for client connection attempts.

IT_IMP_REP_PATH The full path name of the Orbix Implementation
Repository directory.

IT_INT_REP_PATH The full path name of the Orbix Interface
Repository directory.

IT_LOCAL_DOMAIN The Internet domain name for your local network.
IT_JAVA_INTERPRETER The full path name to the Java Runtime

Environment binary executable. This installs with
Orbix by default.

IT_DEFAULT_CLASSPATH The default classpath used when Java servers are
automatically launched by the daemon.
Orbix Administrator’s Guide C++ Edition 43

By default, the Orbix configuration settings include the following:

To update these settings, do the following:
1. Select the variable in the text pane.
2. Double-click on this variable in the Value column to enter

your setting.
3. Select the Apply button to save your setting to the

appropriate configuration file.
You can also modify OrbixNames-specific configuration variables
by following these steps. Refer to the OrbixNames
Programmer’s and Administrator’s Guide for details of
configuration variables that are specific OrbixNames.

Customizing Your Configuration
By default, the Orbix Configuration Explorer displays the
configuration variables contained in the default configuration files.
You can use the Orbix Configuration Explorer to customize your
configuration by:

• Creating configuration variables.
• Creating configuration scopes.
• Creating configuration files.

IT_ERRORS The full path name of the Orbix error
messages file.

IT_CONNECT_ATTEMPTS If a client fails to connect to a server,
Orbix retries the connection attempt every
two seconds until the client succeeds. This
value specifies the maximum number of
retry attempts.
 44 Orbix Administrator’s Guide C++ Edition

Creating Configuration Variables
By default, the Configuration Explorer displays a default subset of
the available configuration variables. You can also create
additional configuration variables, as shown in Figure 7.

Figure 7: Creating Configuration Variables

To create a configuration variable, perform the following steps:
1. Select the Create Configuration Variable button, shown in

Figure 8 on page 45.
2. Double-click the new entry in the Name column of the text

pane.
3. Enter a name for your configuration setting.
4. Double-click the entry in the Value column.
5. Enter a value for your configuration variable
6. Select the Apply button to save your setting to the

appropriate configuration file.

Figure 8: Creating and Deleting Configuration Variables

Valid Names for Configuration Variables and Scopes
You can use the following characters when naming configuration
variables and scopes:

["_", "-"], ["a"-"z","A"-"Z"], ["0"-"9"]

Note: You cannot uses spaces when naming configuration variables and
configuration scopes.
There are no restrictions on the valid characters for configuration
values.
Orbix Administrator’s Guide C++ Edition 45

Deleting Configuration Variables
You cannot delete the configuration variables included in the
default configuration files. You can only change the values of
these variables. However, you can delete any additional variables
that you may have created.
To delete a configuration variable, do the following:
1. Select the setting to be deleted from the text pane.
2. Select the Delete Configuration Variable button, shown in

Figure 8.
3. Select the Apply button to save your setting to the

appropriate configuration file.
Refer to the appendix “Configuration Variables” for a complete list
of both common and Orbix-specific configuration variables.

Creating Configuration Scopes
The Configuration Explorer displays the configuration variables
contained in the default configuration files. You can customize
your configuration by creating additional configuration scopes.
Configuration scopes are containers for configuration variables.
Refer to “The Orbix Configuration Files” for more details.
In the navigation tree, user-defined configuration scopes are
displayed as branching from default configuration scope icons, as
shown in Figure 9 on page 47.
To create a user-defined configuration scope, do the following:
1. Select Edit>Create Scope from the menu bar. Alternatively,

you can use the Create Scope toolbar.
2. In the Name text box, enter the name of your configuration

scope.
3. Select the Apply button to save your setting to the

appropriate configuration file.
You can then create new configuration variables within your
configuration scope, as described in “Creating Configuration
Variables” on page 45.

Deleting Configuration Scopes
You cannot delete the default configuration scopes included in the
default configuration files. However, you can delete any additional
scopes that you may have created.
To delete a configuration scope, do the following:
1. From the navigation tree, select the scope to be deleted.
2. Select the Edit>Delete Scope menu option. Alternatively,

you can use the Delete Scope button on the toolbar.
Select the Apply button to save your setting to the appropriate
configuration file.
 46 Orbix Administrator’s Guide C++ Edition

Figure 9: Creating Configuration Scopes

Creating Configuration Files
You can extend the Configuration Explorer to display custom
configuration files. To create a configuration file you should edit
your iona.cfg file to include the additional configuration file. An
icon associated with this configuration file then appears in the
Configuration Explorer navigation tree.
You can then create new configuration scopes and variables within
your new configuration file as usual, as described in “Creating
Configuration Variables” on page 45 and “Creating Configuration
Scopes” on page 46.
Orbix Administrator’s Guide C++ Edition 47

 48 Orbix Administrator’s Guide C++ Edition

The Orbix Server
Manager
The Implementation Repository is the component of Orbix that
maintains registration information about servers and controls their
activation. The Orbix Server Manager allows you to manage the
Implementation Repository.
The Implementation Repository maintains a mapping from a
server name to the executable code that implements that server.
In an Orbix system, the Orbix daemon on each host has an
associated Implementation Repository. The Implementation
Repository allows the daemon to launch server processes in
response to operation calls from Orbix clients.
The Orbix Server Manager allows you to do the following:

• Browse an Implementation Repository.
• Register new servers.
• Modify existing server registration details.
The Orbix Programmer’s Guide C++ Edition describes the
Implementation Repository in detail. This chapter assumes that
you are familiar with this description.

Starting the Server Manager
You can run the Server Manager from the Windows Start menu or
by entering srvmgr at the command line. The main Server
Manager window appears as shown in Figure 10.

Figure 10: Server Manager Main Window
 Orbix Administrator’s Guide C++ Edition 49

The Server Manager window includes the following elements:

• A menu bar.
• A toolbar.
• A navigation tree.

This tree displays a graphical representation of the contents of
an Implementation Repository.

• A server information pane.
If you select an item in the navigation tree, the pane to the
right of the tree displays detailed information about that item.
Information about servers is displayed in a tabbed folder.

• A status bar.
You can use the toolbar icons in place of the menu options
described in this chapter.

Connecting to an Implementation Repository
To connect to an Implementation Repository, do the following:
1. Select Host>Connect. The Connect to Host dialog box

appears, as shown in Figure 11.

2. In the Host Name text box, enter the name or IP address of
the host on which the required Orbix daemon runs. The
default is the local host.

3. In the Port Number text box, enter the TCP/IP port number
on which the Orbix daemon runs. To make a port number the
default, select the Set as Default Port check box. The
default port number is initially set to 1570.

4. Select the Connect button. The main Server Manager window
displays the contents of the Implementation Repository. For
example, Figure 12 shows an Implementation Repository on
the local host.

Figure 11: Connect to Host Dialog Box
 50 Orbix Administrator’s Guide C++ Edition

You can disconnect from an Implementation Repository at any
time. To disconnect, in the main window, select the required host
and then select Host>Disconnect.

Figure 12: Connection to an Implementation Repository

Creating a New Directory
The Implementation Repository supports the concept of
directories. This allows you to structure server names
hierarchically, and organize the contents of an Implementation
Repository.
To create an Implementation Repository directory, do the
following:
1. Select the Implementation Repository on the appropriate

host.
2. Select Directory>New. The Directory Name text box

appears in the right hand pane of the main window, as shown
in Figure 13 on page 52.

3. In the Directory Name text box, enter the name of the new
directory.

4. Select the Apply button. The main Server Manager window
now includes the new directory when displaying the contents
of the Implementation Repository. For example, if you create
a Bank directory, this directory is displayed in the directory
tree after the Apply button is selected. This is shown in
Figure 13 on page 52.
Orbix Administrator’s Guide C++ Edition 51

To delete a directory, select the directory in the main Server
Manager window and then select Directory>Delete.

Figure 13: Creating a New Directory

Registering a Server
To register a server, do the following:
1. Select the Implementation Repository directory in which you

wish to register the server. For example, to register a server
in directory Bank, select the icon for this directory in the main
window.

2. Select Server>New. A tabbed folder appears in the right
pane of the main window as shown in Figure 14 on page 53.
This folder is used to record a server’s registration details.

3. Enter the server name in the Server Name text box on the
General tab.

4. If the server is an Java server, select the OrbixWeb Server
check box.

5. By default, only the user who registers the server can run
clients that launch the server or invoke operations on server
objects.
To provide server access rights to other users, select the
Rights tab. The Rights tab is described in “Providing Server
Access Rights to Users” on page 53.

6. The default server primary activation mode is shared. The
default secondary activation mode is normal.
 52 Orbix Administrator’s Guide C++ Edition

To modify the server activation details, select the Activation
tab. The Activation tab is described in “Specifying Server
Activation Details” on page 55.

Figure 14: Registering a New Server

Providing Server Access Rights to Users
During server registration, you can provide server access rights to
other users by selecting the Rights tab in the main window. The
Rights tab appears as shown in Figure 15 on page 54.
Orbix offers two types of access rights:

• Launch rights
• Invoke rights
Launch rights allow clients owned by a specified user to cause the
Orbix daemon to activate the server.
Invoke rights allow clients owned by a specified user to invoke
operations on objects in the server.
To provide launch or invoke rights to a user, do the following:
1. In the appropriate area, enter the user identifier in the text

box. To grant these rights to all users, enter the user name
all.

2. Select Add.
To remove launch or invoke rights for a user, do the following:
1. In the appropriate user list, select the required user identifier.
2. Select Remove.
Orbix Administrator’s Guide C++ Edition 53

When you have added or removed the required users from the
access rights lists, select Apply to commit the changes.

Figure 15: Providing Server Access Rights
 54 Orbix Administrator’s Guide C++ Edition

Specifying Server Activation Details
During server registration, you can specify the server activation
details by selecting the Activation tab in the Server Manager
main window. The Activation tab appears as shown in Figure 16.

Figure 16: Specifying Server Activation Details

Activation Modes
To specify a server’s primary activation mode, use the radio
buttons in the Activation Mode section of the Activation tab.
The default server primary activation mode is shared.
Orbix Administrator’s Guide C++ Edition 55

To specify a server’s secondary activation mode select the
Advanced button in the Activation Mode section. This launches
the Secondary Activation Modes dialog box, as shown in
Figure 17. The default secondary activation mode is normal.

A server registered in shared activation mode can have an
associated maximum number of processes. The Orbix daemon
launches up to the specified number of processes for that server.
Each new client connection results in a new server process until
the maximum number of processes is available. Subsequent client
connections are routed to existing server processes using a
round-robin algorithm. This provides a primitive form of
load-balancing for shared servers.
To specify the number of processes associated with a shared
server, enter a positive integer value in the Max. number of
processes associated with this server text box.
You can associate a well-known TCP/IP port number with servers
that communicate using the CORBA-defined Internet Inter-ORB
Protocol (IIOP). To specify a well-known IIOP port for a server,
select the Use a Well known IIOP Port check box and enter a
value in the Port Number text box.
When you have specified the server activation details, select OK
to confirm these details.

Launch Commands
The Commands section on the Activation tab allows you to
modify the launch commands associated with a server. Launch
commands depend on the server activation mode, as follows:

Shared Activation Mode
If the server activation mode is shared:
1. Enter the server launch command in the Command text box.
2. Enter a * character in the Marker text box.
3. Select Add.

UnShared Activation Mode
If the server activation mode is unshared:
1. Enter a marker pattern in the Marker text box.
2. Enter the launch command for this marker pattern in the

Command text box.

Figure 17: Secondary Activation Modes
 56 Orbix Administrator’s Guide C++ Edition

3. Select Add.
Repeat this process for each marker pattern you wish to register.

Note: A server registered in the Implementation Repository must have
at least one launch command.

Per-method Activation Mode
If the server activation mode is per-method:
1. Enter a method name in the Marker text box.
2. Enter the launch command for this method in the Command

text box.
3. Select Add.
Repeat this process for each method you wish to register.

Modifying Server Registration Details
When you register a server, the Orbix daemon creates a server
registration record in the Implementation Repository. This record
stores detailed information about the server.
To modify a server registration record, do the following:
1. Select the server you wish to modify.

The Server Manager displays the tabbed folder containing all
the registration details for the selected server.

2. Select the required tab from the following:
 General
 Activation
 Rights

3. Enter the value in the appropriate section of the tab, as
described in “Registering a Server” on page 52.

4. Select the Apply button.
Orbix Administrator’s Guide C++ Edition 57

Launching a Persistent Server
Orbix allows you to launch shared servers manually. A
manually-launched server is known as a persistent server.
To launch a persistent server process, do the following:
1. Select the server you wish to launch. The server must be

registered in shared mode.
2. Select Server>Launch. If successful, this starts the server

executable file specified in the server launch command. The
icon for the selected server displays a green traffic light while
the server process runs, as shown in Figure 18.

To kill a shared server process, select Server>Kill.

Figure 18: Launching a Persistent Server
 58 Orbix Administrator’s Guide C++ Edition

Configuring the Server Manager
To configure the Server Manager, do the following:
1. In the main Server Manager window, select Server

Manager>Options. The Options dialog box appears, as
shown in Figure 19.

2. By default, the Server Manager does not connect to an Orbix
daemon at startup. To specify that the Server Manager should
connect to the Orbix daemon at the local host, select the
Connect to your local host on startup check box.

3. The Server Manager allows you to register C++ or Java
servers. By default, the Server Manager assumes that all
servers are C++ servers.
To change this default, select Create Java Servers by
default.

4. You can also select the transport protocol used. The default
protocol is IIOP (Internet Inter-Orb Protocol). To change this
default, select the check box labelled Set the transport
protocol to use Orbix.

5. To enable on-line help, enter the Location of your internet
browser in the text box provided.

6. Select OK to commit the new configuration.

Note: The main Server Manager window refreshes itself automatically,
reflecting updates as they occur. This means that the Refresh
Time option, used in earlier versions of the Orbix Server Manager,
is no longer necessary.

Figure 19: The Options Dialog Box
Orbix Administrator’s Guide C++ Edition 59

 60 Orbix Administrator’s Guide C++ Edition

The Interface
Repository Browser
The Orbix Interface Repository provides persistent storage of IDL
definitions and allows CORBA applications to retrieve information
about those definitions at runtime. The Interface Repository
browser allows you manage IDL definitions in the Interface
Repository.
Note: The Interface Repository browser is not supplied for all
platforms.
Some CORBA applications, for example applications that use the
Dynamic Invocation Interface (DII) to invoke operations, require
runtime access to information about IDL definitions. The Interface
Repository allows you to store IDL definitions for retrieval by these
applications.
The Interface Repository browser enables you to add IDL
definitions to the Interface Repository and view information about
those definitions. CORBA applications can retrieve information
about those definitions using standard IDL interfaces implemented
by the Interface Repository.
The Interface Repository browser also enables you to export IDL
definitions from the Interface Repository to a file. This feature
makes the Interface Repository browser a useful development tool
for managing the availability of IDL definitions in your system.
The Orbix Programmer’s Guide C++ Edition describes the
Interface Repository in detail. This chapter assumes that you are
familiar with this description.
 Orbix Administrator’s Guide C++ Edition 61

Starting the Interface Repository Browser
To start the Interface Repository browser, use the Windows Start
menu or enter orbixifr at the command line The main Interface
Repository browser window appears as shown in Figure 20.

Figure 20: The Main Interface Repository Browser Window

The browser interface includes the following elements:

• A menu bar.
• A tool bar.
• A navigation tree.

This tree displays a graphical representation of the contents of
an Implementation Repository.

• A multi-columned list box.
This list box displays information about IDL definitions
selected in the navigation tree.

• A status bar.
You can use the toolbar icons in place of the menu options
described in this chapter.

Connecting to an Interface Repository
The Interface Repository is implemented as an Orbix server. The
Orbix Programmer’s Guide C++ Edition describes how you
make an Interface Repository server available to your system.
 62 Orbix Administrator’s Guide C++ Edition

To connect to an Interface Repository server, do the following:
1. Select Host>Connect. The Connect dialog box appears, as

shown in Figure 21.

2. In the text box, enter the name or IP address of the host on
which the Interface Repository server runs.

3. Select OK. The navigation tree in the main browser window
displays the contents of the Interface Repository.

Adding IDL to the Interface Repository
The Interface Repository browser allows you to import IDL
definitions from a source file. This is a safe mechanism for adding
IDL definitions to the Interface Repository which maintains the
Interface Repository in a consistent state.
To add IDL definitions to the Interface Repository, do the
following:
1. Select FileImport. The standard Open File dialog box for

your operating system appears.
2. In the dialog box, enter the name of the source file in which

your IDL is defined.
3. Select OK. In the main browser window, the navigation tree

control displays the contents of the Interface Repository
including the new IDL definitions.

Consider the following example IDL source file:
// IDL
interface Grid {

readonly attribute short height;
readonly attribute short width;

long get (in short n, in short m);
void set (in short n,

in short m, in long value);
};

Figure 21: The Connect Dialog Box
Orbix Administrator’s Guide C++ Edition 63

If you import this file into an empty Interface Repository, the main
browser window appears as shown in Figure 22 on page 64.

Figure 22: IDL Definitions in the Interface Repository Browser

Viewing the Interface Repository Contents
The navigation tree in the main browser window represents the
contents of the Interface Repository in terms of containment
relationships. As described in the Orbix Programmer’s Guide
C++ Edition, the Interface Repository uses containment
relationships to represent the nested structure of IDL definitions.
Consider the following example IDL source file:

// IDL
module Finance {

interface Account {
readonly attribute float

balance;

void makeDeposit (in float
amount);

void makeWithdrawal (in float
amount);

};

interface Bank {
Account newAccount ();

};
};

If you import this file into an Interface Repository, the browser
navigation tree represents the fact that the definition of module
Finance contains interfaces Account and Bank which in turn contain
attribute and operation definitions, as shown in Figure 23.
 64 Orbix Administrator’s Guide C++ Edition

Figure 23: Containment Relationships in the Interface Repository Browser

Viewing Information about IDL Definitions
The list box in the main browser window displays information
about selected IDL definitions. To view information about an IDL
definition, select the navigation tree icon of the container in which
the definition is contained. The list box displays information about
the contents of the container, including the type and name of each
contained definition.
For example, if you select the icon for module Finance, the list box
displays information about the IDL interface definitions contained
within this module, as shown inFigure 23 on page 65.

Viewing Source Code for IDL Definitions
To view the source for an IDL definition, do the following:
1. Navigate to the required IDL definition.
2. Select View>View CORBA IDL. The View Interface

Definition Language dialog box displays the IDL source
associated with the selected definition.
Orbix Administrator’s Guide C++ Edition 65

For example, if you view the source for interface Bank, the View
Interface Definition Language dialog box appears as shown in
Figure 24.

Figure 24: The View Interface Definition Language Dialog Box

Exporting IDL Definitions to a File
The Interface Repository browser allows you to save an IDL
definition to a file. To export an IDL definition from the Interface
Repository to a file, do the following:
1. Navigate to the required IDL definition.
2. Select File>Export. The standard Save File As dialog box for

your operating system appears.
3. In the dialog box, enter the name of the target file in which

you wish to save the IDL definition.
4. Select OK to save the definition to the specified file.

Configuring the Interface Repository Browser
To configure the Interface Repository browser, do the following:
1. Select Network>Options. The Interface Repository

Options dialog box appears as shown in Figure 25:

Figure 25: The Interface Repository Options Dialog Box

2. By default, the main browser window refreshes every seven
seconds. To modify this refresh time, enter a positive integer
value in the Refresh Time text box.
 66 Orbix Administrator’s Guide C++ Edition

3. By default, the browser does not connect to an Interface
Repository at startup. To specify that the browser should
connect to the Interface Repository at the local host, select
the Connect to local host on startup button.

4. Select OK to commit the new configuration.
Note: You can manually refresh the main browser window at any
time. To do this, select View>Refresh.
Orbix Administrator’s Guide C++ Edition 67

 68 Orbix Administrator’s Guide C++ Edition

Part III
Appendices

In this part
This part contains the following:

Configuration Variables page 71

Orbix Daemon Options page 77

Command Reference page 79

Error Messages and Exceptions page 91

Configuration
Variables
There are two forms of Orbix configuration variables: those that
are common to multiple Micro Focus CORBA products and
variables that are specific to Orbix only.

Common Configuration Variables
You can set the following variables as environment variables using
the Configuration Explorer GUI tool, or by editing the common.cfg
configuration file. Alternatively, you can modify some of these
configuration variables at runtime using the SetConfigValue()
series of APIs, and you must preface the configuration variable
with “Common.”, for example Common.IT_DAEMON_PORT.

* These configuration variables can be set using the
SetConfigValue() API. See “CORBA::ORB::SetConfigValue()” in
the Orbix Programmer’s Reference C++ Edition.

Variable Description

IT_DAEMON_PORT TCP port number for the Orbix daemon.

IT_DAEMON_SERVER_BASE A server that is launched in separate
processes listens on its own port. The first
server port assigned is IT_DAEMON_SERVER_BASE
plus 1, subsequently allocated ports increment
until IT_DAEMON_SERVER_BASE plus
IT_DAEMON_SERVER_RANGE.

IT_DAEMON_SERVER_RANGE The number set in this variable is used
together with that set in IT_DAEMON_SERVER_BASE
to determine the range of port numbers
available for Orbix servers.

IT_DEFAULT_CLASSPATH This is a colon-separated list of full path
names specifying the location of class files for
the Java Interpreter. Default value points to
the CLASSPATH environment variable.

IT_IMP_REP_PATH * The full path name of the Implementation
Repository directory.

IT_INT_REP_PATH * The full path name of the Interface Repository
directory.

IT_JAVA_INTERPRETER The number set in this variable is used
together with that set in IT_DAEMON_SERVER_BASE
to determine the range of port numbers
available for Orbix servers.

IT_LOCAL_DOMAIN The name of the local internet domain, for
example, microfocus.com.
 Orbix Administrator’s Guide C++ Edition 71

Orbix-Specific Configuration Variables
You can set the following variables using the Configuration
Explorer GUI tool, or by editing the common.cfg configuration file.
Alternatively, you can modify the configuration variables at
runtime using the SetConfigValue() series of APIs, and you must
preface the configuration variable with “Orbix.”, for example
Orbix.IT_CONNECT_ATTEMPTS.

Variable Description

IT_ACT_POLICY * The activation policy (or mode) to be used for
launching servers.

IT_COLLOCATED Set to TRUE if a client is using a collocated server
object.

IT_CONNECT_ATTEMPTS * The maximum number of retries Orbix makes to
connect a client to a server. The value specified is
only used if the API function
CORBA::ORB::maxConnectRetries(CORBA::ULong) is called
with a value of zero for the parameter.

IT_DAEMON_CONNECTION_LIMIT Defines the maximum number of connections that the
Orbix daemon accepts before it starts to reap the
least recently used connections. See “Active
Connection Management” for details of how this
variable is used.
May be a value from 2 to 65535. The default value is
FD_SETSIZE. Typically FD_SETSIZE varies across
platforms; typical values are:
• AIX: 65534
• Windows, Linux, and Solaris (32-bit): 1024
• Solaris (64-bit): 65535
• HP-UX: 2048

IT_DAEMON_CONNECTION_REAP_NUMBER This configuration variable indicates the number of
least recently used connections that are to be closed.
This occurs when the IT_DAEMON_CONNECTION_LIMIT
value is reached. Its function is to enable users to
reap many connections during one iteration.
May be a value from 1 to IT_DAEMON_CONNECTION_LIMIT,
and defaults to 1.

IT_DAEMON_PROTOCOL Defines the protocol that Orbix uses to talk to the
daemon. Valid values are POOP (Orbix protocol) or
IIOP. This may be required for clients connecting to
servers through a firewall. You should use this
variable carefully and should not use it with _bind().

IT_DEFAULT_CODE The default encoder to be used, for example, XDR.

IT_DEFAULT_COMMS The default communications protocol to be used, for
example, TCP/IP.

IT_DEF_NUM_NW_THREADS The initial number of threads used in the new
threading model for the internal network thread pool.
 72 Orbix Administrator’s Guide C++ Edition

IT_DIAGNOSTICS_LEVEL Controls the level of the diagnostic messages
reported by Orbix.

IT_ENABLE_ANON_BIND_SUPPORT * Allows a client built using an earlier version of Orbix
to use anonymous binds omitting the marker name.

IT_ENABLE_IPV4 Specifies whether to enable IPv4 communication. The
default is true.

IT_ENABLE_IPV6 Specifies whether to enable IPv6 communication>
Where both IPv4 and IPv6 are enabled, Orbix will
communicate in dual stack mode. The default is false.

IT_ENABLE_MULTI_HOMED_SUPPORT Enables multi-homed support for machines with
multiple IP addresses. This is disabled by default and
impacts on performance when enabled.

IT_ERRORS * The full path name of the error messages file.

IT_FD_WARNING_NUMBER * The number of file descriptors, which when exceeded,
will cause an IOCallback warning to be generated if a
callback has been registered. See
CORBA::IT_IOCallback::AtFDLowLimit()

IT_FD_STOP_LISTENING_POINT * The number of file descriptors, which when exceeded,
will stop the server from listening for new
connections. An associated IOCallback warning may
be generated if a callback has been registered. See
CORBA::IT_IOCallback::StopListeningAtFDHigh() and
CORBA::IT_IOCallback::ResumeListeningBelowFDHigh().

IT_GIOP_VERSION The version number of the GIOP protocol to be used.

IT_IIOP_PORT The port number to be used for server client
connections when using IIOP.

IT_IIOP_VERSION The IIOP version of IORs generated by Orbix servers,
and IIOP messages understood by Orbix. Valid values
are 10 and 11, representing IIOP 1.0 and IIOP 1.1,
respectively. The default value is 10.

IT_KEYCHANNELTABLE_USINGPORT Determines whether Orbix should take into account
the host and port when creating an entry in the table
of channels.
By default, this is set to FALSE. If so, then if there are
multiple channels with the same object key, and the
only difference between them is in the host or the
port, the same channel can be returned when multiple
threads are calling the following:
 CORBA::Orbix.string_to_object()

 CORBA::Orbix.object_to_string()

In order to make Orbix take the host and port into
consideration and so distinguish between such
channels, set this configuration variable to TRUE.

Variable Description
Orbix Administrator’s Guide C++ Edition 73

IT_KEYOBJECTTABLE_USINGPORT Determines whether Orbix should take into account
the host and port in the internal table of cached
proxies.
By default, this is set to FALSE. If so, then if there are
multiple IORs with the same object key, and the only
difference between them is in the host or the port, the
same IOR can be returned when multiple threads are
calling the following:
 CORBA::Orbix.string_to_object()

 CORBA::Orbix.object_to_string()

In order to make Orbix take the host and port into
consideration and so distinguish between such IORs,
set this configuration variable to TRUE.

IT_LISTEN_QUEUE_SIZE * The internal listener thread’s queue size.

IT_LOCAL_ADDR_LIST This is a colon-separated list of IP addresses, or
hostnames, on which Orbix servers and the Orbix
daemon (orbixd) can expect to receive invocations.
This variable is used as a part of multi-homed
support.

IT_LOCAL_HOST The name of the local host that is used in any IOR
that is exported.

IT_MARKER_PATTERN * Contains the marker pattern name that caused the
server to be launched.

IT_ONEWAY_RESPONSE_REQUIRED * A boolean variable that specifies if an IIOP reply is
expected for an outgoing IIOP request containing a
oneway operation.
A response to a oneway is useful when you wish to
catch system exceptions, or to enable the client to
receive IIOP replies with LOCATION_FORWARD status. The
default value is FALSE.

IT_READ_TIMEOUT Specifies how much time in seconds a thread is going
to wait for data to be received on the socket. When
there is no activity on the socket for the time limit
set, the reader thread times out and becomes free for
processing further events.
If a value passed in is less than or equal to -1,
INFINITE_TIMEOUT will actually be used.
If a value passed in is 0, the read timeout will be 0.
The default value of the timeout is INFINITE.

IT_SERVER_CODE * The name of the encoder to be used by this server,
for example, XDR.

IT_SERVER_COMMS * The name of the communications protocol to be used
by this server, for example, TCP/IP.

IT_SERVER_MARKER * Contains the server marker name that caused the
server to be launched.

Variable Description
 74 Orbix Administrator’s Guide C++ Edition

* These configuration variables can be set using the
SetConfigValue() API. See “CORBA::ORB::SetConfigValue()” in
the Orbix Programmer’s Reference C++ Edition.
Note: Entries in Orbix configuration files are scoped with a prefix;
for example, Common.IT_DAEMON_PORT or Orbix.IT_CONNECT_ATTEMPTS.
Environment variables are not scoped. The scoped entries are also
used by the SetConfigValue() and GetConfigValue() APIs.
For details of OrbixNames-specific configuration variables, refer to
the OrbixNames Programmer’s and Administrator’s Guide.

IT_SERVER_METHOD * Contains the server method name that caused the
server to be launched.

IT_SERVER_NAME * Used to set the name of the server.

IT_SERVER_PORT * The port number being used by the server when
listening for new connections.

IT_USE_GET_USERNAME (This applies to Windows only.)
Specifies that Orbix will use the API GetUserName
internally. If set to FALSE, Orbix will try to use the
GetEnvironmentVariable API instead for reading the
USERNAME environment variable, to try and get the
current username. The default value is true.
This variable was introduced as a workaround to the
following issue with the GetUserName API:
https://support.microsoft.com/en-us/kb/942234.

IT_USE_HOST_IN_IOR Specifies whether the hostname or the host's IP
address will appear in any exported IORs.

IT_USE_ORBIX3_STYLE_SYS_EXC * Used to determine if Orbix 3.x style exceptions or new
interoperable exceptions should be used. Specifically,
it is used to determine if an OBJ_NOT_EXIST exception
or an INV_OBJREF exception should be raised when an
object is not found for a given IOR. It is also used to
distinguish COMM_FAILURE and TRANSIENT errors.

IT_USE_REVERSE_LOOKUP * Specifies if reverse lookup (that is, determining the
hostname from an IP address) is enabled.

IT_BIND_WITH_LOCATE_REQS * Specifies whether or not the _bind() method on a
CORBA proxy will send IIOP Locate Request messages
during connecting to a remote CORBA servant.
Default is FALSE.

IT_LOAD_BALANCING_STRATEGY * Specifies the load balancing strategy to be used when
choosing IOR profiles in a multi-profile IOR. Possible
values are sequential or random. Default is sequential.

Variable Description
Orbix Administrator’s Guide C++ Edition 75

https://support.microsoft.com/en-us/kb/942234

 76 Orbix Administrator’s Guide C++ Edition

Orbix Daemon Options
The daemon process, orbixd, takes the following options:

-a Enable Active Connection Management (ACM), so
that the daemon will actively monitor connections
and remove or reap older unused connections.

-c filename Specifies the log file to use for check-point
information. In the event that a daemon is
terminated, this allows a new daemon to recover
information about existing running servers.
Unless an absolute path name is specified, the
file is placed in a directory relative to that from
which the daemon is launched.

-f filename (Windows only) Redirects 'stdout' to the file
when Orbix Daemon is started as a Windows
service. Unless an absolute path name is
specified, the file is placed in a directory relative
to that from which the daemon install command
is given.

-i filename Outputs the daemon’s interoperable object
reference (IOR) to the specified file.
Unless an absolute path name is specified, the
file is placed in a directory relative to that from
which the daemon is launched.

-j (Windows only, in a shell with Administrator
privileges.)
Installs the daemon as a Windows service. The
service must be started manually using the
Services Control Panel. This starts the daemon
with <path>\orbixd -b.

-l number (UNIX only; in addition, this option is not
available on AIX platforms.)
Specifies the maximum number of socket
descriptors, and thus, the maximum number of
connections to the daemon.
By default, the maximum number of descriptors
is determined by the operating system’s limit.
This limit varies between different UNIX
systems; it is the default value configured with
ulimit -n.
The highest value that can be set is the hard
limit of the operating system, which is the value
configured with ulimit -Hn.
 Orbix Administrator’s Guide C++ Edition 77

-o userId (UNIX only) Indicates that if the daemon runs
with super-user privileges, servers launched by
the daemon should run using the specified user
ID instead of the root ID. Without this switch, a
client running as root on a remote machine could
launch a server with root privileges on a different
machine.
Using the -o switch reduces the security risks
associated with easily faked remote user IDs, If
the remote user is not root, the server is
launched under the user ID of the client process
sending the request. This is the default when the
-o switch is not used.

-p Runs the daemon in protected mode. In this
mode, only clients running as the same user as
the daemon are allowed to modify the
Implementation Repository. No updates are
accepted from remote hosts.

-r time Specifies the frequency (in seconds) at which
orbixd’s child processes should be reaped. The
default is 60 seconds.

-s Runs the daemon in silent mode. By default the
daemon outputs some trace information.

-t Outputs more than the default trace information
while the daemon is running.

-u Allows invocations on a manually-launched
unregistered server. This means that the
manually-launched (persistent) server does not
have to be registered in the Implementation
Repository.

-x number Sets the time limit in seconds for establishing
that a connection to the daemon is fully
operational. The default is 30 seconds.

-v Outputs the daemon version number and a
summary of the configuration details that a new
daemon process would use. Specifying -v does
not cause a new daemon to be run.

-w (Windows only, in a shell with Administrator
privileges.)
 Uninstalls the daemon as a Windows service.
 78 Orbix Administrator’s Guide C++ Edition

Command Reference
This appendix acts as a reference for the command-line interface
to Orbix. The commands described in this appendix allow you to
manage the Implementation Repository and the Interface
Repository.

Command Summary
The following table shows the available commands:

Command Descriptions
This appendix describes each command in alphabetical order.

catit
The catit command outputs full information about a given
Implementation Repository entry.

Syntax
catit [-v] [-h host] server_name

Options

Purpose Commands

Configuration dumpconfig

Server Registration putit, rmit

Listing Server Information lsit, psit, catit

Process Management pingit, killit

Implementation Repository
Directories

mkdirit, rmdirit

Security chownit, chmodit

Interface Repository
Management

putidl, readifr, rmidl

-v Outputs the command version information.
-h host Indicates which host to use.
 Orbix Administrator’s Guide C++ Edition 79

chmodit
The chmodit command modifies access control for a server. For
example, use it to grant launch and invoke rights on a server to
users other than the server owner.

Syntax
chmodit [-v] [-h host]

{ server | -a directory }
{ i{+,-}{user, group}|

 l{+,-}{user, group} }

Options

By default, only the owner of an Implementation Repository entry
can launch or invoke the registered server. However, launch and
invoke access control lists (ACLs) are associated with each entry
in the Implementation Repository and you can modify these ACLs
to give certain users or groups the right to launch or invoke a
specific server, or a directory of servers.
There is also a pseudo-group name called all that you can use to
implicitly add all users to an access control list.

chownit
The chownit command makes changes to the ownership of
Implementation Repository entries and directories.

Syntax
chownit [-v] [-h host]

{ -s server_name new_owner |
 -d directory { +, - } {user, group} }

Options

Only the current owner of an Implementation Repository entry has
the right to change its ownership.

-v Outputs the command version information.
-h host Indicates which host to use.
-a The -a option specifies that a user or group is to be

added to an access control list (ACL) for a directory of
servers.

i+
i-

By specifying the i option, you can add a user or group
to (i+) or removed from (i-) the invoke ACL.

l+
l-

By specifying the l option, you can add a user or group
to (l+) or removed from (l-) the launch ACL.

-v Outputs the command version information.
-h host Indicates which host to use.
-s The -s option enables you to change the ownership of

an Implementation Repository entry.
-d The -d option modifies the ACL on a directory

allowing you to add (+) or remove (-) a user or group
from the list of owners of a directory.
 80 Orbix Administrator’s Guide C++ Edition

An Implementation Repository directory can have more than one
owner. An ownership access control list (ACL) is associated with
each directory in the Implementation Repository, and this ACL can
be modified to give certain users or groups ownership rights on a
directory. Only a user on an ownership ACL has the right to modify
the ACL.
Note: Spaces are significant in this grammar. Spaces must exist
between an option and its argument, and on either side of the + or
- that follows a directory.
Orbix supports the pseudo-group all which, when added to an
ACL, grants access to all callers.

dumpconfig
The dumpconfig utility outputs the values of the configuration
variables used by Orbix, and the location of the Orbix
configuration files in your system. It also reports if there are any
syntax errors in your configuration files.

Syntax
dumpconfig [-v]

Options

killit
The killit command kills (stops) a running server process.

Syntax
killit [-v] [-h host] [-m marker] server_name

Options

Where there is more than one server process, use the marker
parameter to select between different processes. You require the
marker parameter when killing a process in the unshared mode.
The killit command uses the SIGTERM signal. This command does
not remove the entry from the Implementation Repository.

-v Outputs the command version information.

-v Outputs the command version information.
-h host Indicates which host to use.
-m Specifies a marker value to identify a specific object, or

set of objects, to which the killit command applies.
Orbix Administrator’s Guide C++ Edition 81

lsit
The lsit command lists entries in an Implementation Repository
directory.

Syntax
lsit [-v] [-h host] [-R] directory

Options

mkdirit
The mkdirit command creates a new registration directory.

Syntax
mkdirit [-v] [-h host] directory

Options

Hierarchical names are extremely useful in structuring the name
space of servers in Implementation Repositories.

pingit
The pingit command tries to contact an Orbix daemon to
determine if it is running.

Syntax
pingit [-v] [-h host]

Options

psit
The psit command outputs a list of server processes known to an
Orbix daemon.

Syntax
psit [-v] [-h host]

Options

-v Outputs the command version information.
-h host Indicates which host to use.
-R Recursively lists all subdirectories and entries.

-v Outputs the command version information.
-h host Indicates which host to use.

-v Outputs the command version information.
-h host Indicates which host to use.

-v Outputs the command version information.
-h host Indicates which host to use.
 82 Orbix Administrator’s Guide C++ Edition

One line is output for each server process. Each line has values for
the following fields:

Name Marker Code Comms Port Status Per-Client? OS-pid

The fields are as follows:

putidl
The putidl command allows you to add a set of IDL definitions to
the Interface Repository. This command takes the name of an IDL
file as an argument. All IDL definitions within that file are added to
the repository.
The Interface Repository server must be available for this
command to succeed.

Syntax
putidl {[-?] | [-v] [-h host] [-s] file}

Options

Name The server name.
Marker The object marker pattern associated with the

process.
Code The data encoder used; for example, xdr.
Comms The communications protocol used; for example,

tcp.
Port The port number used by the communications

system.
Status One of “automatic”, “manual” or “inactive”.
Per-Client? Indicates whether the server is a per-client

server.
OS-pid The operating system process.

-? Displays the allowed options for this command.
-v Outputs the command version information.
-h host Indicates the host at which the Interface Repository

server is available.
-s Indicates that the command should run in silent

mode.
Orbix Administrator’s Guide C++ Edition 83

putit
The putit command creates an entry in the Implementation
Repository that represents how Orbix can start a server.

Syntax
putit [-v] [-h host] [-per-client | -per-client-pid]

[[-shared | -unshared] [-marker marker]]
[-j | -java [-classpath classpath | -addpath path]]
[-oc ORB_class -os ORB_singleton_class] [-jdk2]
| [-per-method [-method method]]
[-port iiop portnumber]
[-n number_of_servers] [-l]
serverName [command_line | -persistent]

Options
Executing putit without any arguments outputs a summary of its
options. The options are as follows:

-v Outputs the utility’s version information
without executing the command. This
option is available on all of the utilities.

-h host Specifies the host name on which to
execute the putit command. By default,
the command is executed on the local
host.

-per-client Specifies that a separate server process is
used for each user. You can use this
activation mode with the shared,
unshared, or per-method modes.

-per-client-pid Specifies that a separate server process is
used for each client process. You can use
this activation mode with the shared,
unshared, or per-method modes.

-shared Specifies that all active objects managed
by a given server on a given machine are
contained in the same process. This is the
default mode.

-unshared Specifies that as an object for a given
server is invoked, an individual process is
activated to handle all requests for that
object. Each object managed by a server
can (but does not have to) be registered
with a different executable file—as
specified in command_line.

-java The -java switch is an extension of the
standard Orbix putit command. This
indicates that the specified server should
be launched via the Java interpreter. You
can truncate this switch to -j.
 84 Orbix Administrator’s Guide C++ Edition

-oc ORB_class Passes
-Dorg.omg.CORBA.ORBClass=ORB_class to
the Java interpreter. You should use this
switch with the -os switch.
For OrbixWeb servers, the parameter to
this switch should be as follows:
 IE.Iona.OrbixWeb.CORBA.ORBClass.
You should pass this string to the Java
interpreter before the server class name.

-os
ORB_singleton_class

Passes -Dorg.omg.CORBA.ORBSingletonClass=
ORB_singleton_class to the Java
interpreter. You should use this switch
with the -oc switch.
For OrbixWeb servers the parameter to
this switch should be
IE.Iona.OrbixWeb.CORBA.ORBSingletonClass.
This string must be passed to the Java
interpreter before the servers class name.
The -os and -oc switches provide foreign
ORB support.

-jdk2 Passes the following system properties to
the Java interpreter:
Dorg.omg.CORBA.ORBClass=

IE.Iona.OrbixWeb.CORBA.ORB

-Dorg.omg.CORBA.ORBSingletonClass=
IE.Iona.OrbixWeb.CORBA.singletonORB

You must pass this string to the Java
interpreter before the server class name.
You should use this switch for OrbixWeb
servers being executed by JDK1.2.

-per method Specifies that each invocation to a server
results in a process being activated to
handle that request. Each method can
(but does not have to) be registered with
a different executable file—as specified in
command_line.

-port port Specifies a well-known port number for a
server so that Orbix, if necessary,
activates a server that communicates on
the specified port number. Often required
by servers that communicate over the
CORBA Internet Inter-ORB Protocol
(IIOP).
Orbix Administrator’s Guide C++ Edition 85

The following options apply to the shared mode:

The following option applies to the shared and unshared modes:

The following option applies to the per-method mode:

Notes
The putit command is often used in its simplest form:

putit server_name command_line
The command_line is an absolute path name specifying the
executable file that implements the server. Any command-line
parameters to be given to the executable file are appended after
the absolute path name in the putit command. These parameters
are given to the server every time it is run by Orbix. However, the
parameters must be given explicitly if the executable file is
executed manually.
The default settings for putit mean that the simplest form of the
command is equivalent to any of the following:

putit -shared server_name command_line
putit -shared -marker '*' server_name command_line
putit -marker '*' server_name command_line

-n
number_of_servers

This switch is applicable only to servers
registered in shared activation mode. It
instructs the daemon to launch up to the
specified number of servers. Each new client
connection results in a new server being
launched as long as the number of clients is
less than the number specified in
number_of_servers. When the number of
clients equals the number of servers
specified in number_of_servers, new clients
are connected to running servers using a
round robin algorithm.
The default number of servers is 1.

-persistent Specifies that the server can only be
launched persistently, that is, manually. The
server is never automatically launched by
Orbix.
If the -u option is passed to the Orbix
daemon, such servers do not have to be
registered in the Implementation Repository.

-marker marker Specifies a marker value to identify a specific
object, or set of objects, to which the putit
applies.
Marker names specified using putit cannot
contain white space.

-method method Specifies a method name to identify a
specific method, or set of methods, to which
the putit applies.
 86 Orbix Administrator’s Guide C++ Edition

By default, putit uses the Implementation Repository on the local
host. By default, putit uses the shared activation mode.
Therefore, on any given host, all objects with the specified server
name are controlled by the same process. By default also, putit
registers a server in the multiple-client activation mode. This
means that all client processes bind to the same server process.

Server Activation Modes
Activation modes control how servers are implemented when they
become processes of the underlying operating system.The
primary activation modes are shared, unshared, and per-method:

• In shared mode, all of the objects with the same server name
on a given machine are managed by one process on that
machine. If a server is registered in shared mode, it can also
be launched manually prior to any invocation on its objects.

• In unshared mode, individual objects are registered with the
Implementation Repository, and a process is launched for
each such object.

• In per-method mode, individual operations are registered with
the Implementation Repository, and each invocation on an
operation results in a separate process.

You should note the following:

• The default activation mode is shared.
• For a given server name, you can select only one of shared,

unshared, or per-method.
• For each of the modes shared or unshared, a server can be

registered in a secondary activation mode:
 multiple-client
 per-client
 per-client-process
The default is multiple-client activation, with the effect that a
server process is shared between multiple principals and
multiple client processes.
Per-client activation results in a separate server process for
each principal (end-user). Per-client-process activation results
in a separate server process for each separate client process.
Per-client and per-client-process activation is orthogonal to
shared, unshared and per-method modes.

• Manually-launched servers behave in a similar way to shared
activation mode servers. If a server is registered as unshared
or per-method, the server fails if it is launched manually. This
is in line with the CORBA specification.

Note: Per-method servers are activated for a single IDL
operation call. As a result, the per-client flag is ignored for
per-method servers.

Pattern Matching for Markers and Methods
Pattern matching specifies a set of objects for the -marker option,
or a set of methods for the -method option. Pattern matching
allows a group of server processes to share a workload between
Orbix Administrator’s Guide C++ Edition 87

them, whereby each server process is responsible for a range of
object marker values. The pattern matching is based on regular
expressions, as follows:

A SET, as presented above, is composed of characters and ranges.
A range is specified using a hyphen character -.
Finally, since each of the characters *?!^-[]\ is special, in the
sense that it is interpreted by the pattern matching algorithm;
each of them can be preceded by a \ character to suppress its
interpretation.
Examples of patterns are:

If an activation order exists in an Implementation Repository entry
for a specific object marker or method and another exists for an
overlapping set of markers or methods, the particular server that
is activated for a given object is non-deterministic. This means
that no attempt is made to find an entry registered for best or
exact match.

readifr
The readifr command allows you to view an IDL definition stored
in the Interface Repository. This command takes the fully scoped
name of the IDL definition as an argument and displays that
definition. Calling readifr with no arguments lists the contents of
the entire Interface Repository.
The Interface Repository server must be available for this
command to succeed.

Syntax
readifr {[-?] | [-v] [-h host] [-d] [-t] [-c]

[definition_name]}

* Matches any sequence of characters.
? Matches any single character.
[SET] Matches any characters belonging to the specified

set, for example, [abc].
[!SET] Matches any characters not belonging to the

specified set, for example, [!abc].
[^SET] Equivalent to [!SET], for example, [^abc].

hello matches “hello”.
he* matches any text beginning with “he”, for

example, “he”, “help”, “hello”.
he? matches any three character text beginning

with “he”, for example, “hec”.
[abc] matches “a”, “b” or “c”.
he[abc] matches “hea”, “heb” or “hec”.
[a-zA-Z0-9] matches any alphanumeric character.
[!a-zA-Z0-9] matches any non alphanumeric character.
_[gs]et_balance matches _get_balance and _set_balance.
make* matches makeDeposit and makeWithdrawal.
 88 Orbix Administrator’s Guide C++ Edition

Options

rmdirit
The rmdirit command removes a registration directory.

Syntax
rmdirit [-v] [-h host] [-R] directory

Options

The rmdirit command returns an error if it is called without the -R
option on a non-empty registration directory.

rmidl

The rmidl command allows you to remove an IDL definition from
the Interface Repository. This command takes the fully scoped
name of the IDL definition as an argument.
The Interface Repository server must be available for this
command to succeed.

Syntax
rmidl {[-?] | [-v] [-h host] definition_name}

Options

-? Displays the allowed options for this command.
-v Outputs the command version information.
-h host Indicates the host at which the Interface Repository

server is available.
-d Displays all derived types of an IDL interface.
-c Indicates that the command should not prompt the

user for input. This is useful when running readifr with
no other arguments.

-v Outputs the command version information.
-h host Indicates which host to use.
-R Recursively deletes the directory and all of the

Implementation Repository entries and sub-directories
within it.

-? Displays the allowed options for this command.
-v Outputs the command version information.
-h host Indicates the host at which the Interface Repository

server is available.
Orbix Administrator’s Guide C++ Edition 89

rmit
Removes an Implementation Repository entry or modifies an
entry.

Syntax
rmit [-v] [-h host]

[-marker marker | -method method] server_name

Options

This command does not kill any currently running processes
associated with a server.
You can use pattern matching for markers and methods as
described in the putit command reference. See putit for details.

-v Outputs the command version information.
-h host Indicates which host to use.
-marker marker Specifies a marker value to identify a specific

object, or set of objects, to which the rmit
command applies.

-method method Specifies a method name to identify a specific
method, or set of methods, to which the rmit
applies.
 90 Orbix Administrator’s Guide C++ Edition

Error Messages and
Exceptions
Orbix has an external text file containing an explanation of all
error messages, both for IDL compiler errors and system
exceptions. Orbix outputs error messages from the file named by
the IT_ERRORS environment variable or entry in the orbix3.cfg
configuration file. This file contains Orbix-specific configuration
variables.

Setting Error Messages
The standard error file can be edited for a particular installation if
required. For example, by translating all of the text into French or
German, or by providing more verbose explanations of errors than
those provided in the standard Orbix release.
Each error is assigned a unique number, and the file contains a
line for each error in the form:

error_number: error_message_text

Rather than changing the standard file distributed with the Orbix
release, you can specify an alternative file by using the IT_ERRORS
entry in the orbix3.cfg configuration file. You can also specify a
file on a per user basis by setting the value of the IT_ERRORS
environment variable to a file which contains the list of system
error messages.
Within the IT_ERRORS file, comments can be inserted using “//”,
and “\” can be used as a continuation character if the message
needs to extend past the end of a line. IDL compiler errors have
been divided into pre-processing, syntax and semantic errors, and
their error numbers are arranged within these divisions.

System Exceptions Defined by CORBA
The following table lists the system exceptions defined in the
CORBA specification:

Identifier Exception Description

10000 UNKNOWN The unknown exception.

10020 BAD_PARAM An invalid parameter was passed.

10040 NO_MEMORY Dynamic memory allocation failure.

10060 IMP_LIMIT Violated implementation limit.

10080 COMM_FAILURE Communication failure.

10100 INV_OBJREF Invalid object reference.

10120 NO_PERMISSION No permission for attempted
operation.

10140 INTERNAL ORB internal error.
 Orbix Administrator’s Guide C++ Edition 91

System Exceptions Specific to Orbix
The following table lists system exceptions specific to Orbix:

10160 MARSHAL Error marshalling parameter/result.

10180 INITIALIZE ORB initialization failure.

10200 NO_IMPLEMENT Operation implementation unavailable.

10220 BAD_TYPECODE Bad TypeCode.

10240 BAD_OPERATION Invalid operation.

10260 NO_RESOURCES Insufficient resources for request.

10280 NO_RESPONSE Response to request not yet available.

10300 PERSIST_STORE Persistent storage failure.

10320 BAD_INV_ORDER Routine invocations out of order.

10340 TRANSIENT Transient failure; reissue the request.

10360 FREE_MEM Cannot free memory.

10380 INV_IDENT Invalid identifier syntax.

10400 INV_FLAG Invalid flag was specified.

10420 INTF_REPOS Error accessing interface repository.

10440 BAD_CONTEXT Error processing context object.

10460 OBJ_ADAPTOR Failure detected by object adaptor.

10480 DATA_CONVERSION Data conversion error.

Identifier Exception Description

Identifier Orbix Exception Description

10500 FILTER_SUPPRESS Suppress exception raised in
per-object pre-filter.

10540 ASCII_FILE ASCII file error.

10560 LICENCING Licensing error.

10600 IIOP IIOP error.

10620 NO_CONFIG_VALUE No configuration value set for one
of the mandatory configuration
entries.
 92 Orbix Administrator’s Guide C++ Edition

Index
A
access control lists 24, 80
access rights to servers 52, 53
activation modes 26–29, 87

multiple-client 29
per-client 13, 29, 83
per-client-process 29
per-method 26, 28
setting 52, 55
shared 26
unshared 26

activation orders for servers 22
Active Connection Management (ACM) 37,

72, 77
adding IDL to the Interface Repository 63
administration, overview 5, 7

C
catit 22, 79
chmodit 24, 80
chownit 24, 80
COMM_FAILURE exception from pingit 13
common.cfg

modifying 42
opening in Configuration Explorer 42

Common.IT_INT_REP_PATH 71
Common.IT_JAVA_INTERPRETER 71
communications protocols 13, 83
config 9
configuration, basic steps 7
Configuration Explorer 41, 44

adding configuration files 47
adding configuration scopes 46
adding configuration variables 45
deleting configuration scopes 46
deleting configuration variables 46
modifying configuration values 42, 43
opening iona.cfg 42
valid names 45
valid values 45

configuration files
common.cfg 42
iona.cfg 42
orbix3.cfg 43

configuration variables
multi-homed 16

connecting
to an Interface Repository 62

connection attempts 44
connection retries 72
connection timeout 78
CORBA 3
customizing configuration 44
D
daemon

configuring
Orbix port value 43
server base port value 43

daemon. See Orbix daemon
data encoders 13, 83
default classpath 43
directories in Implementation
Repository 20

distributed objects 3
documentation

.pdf format viii
updates on the web viii

domains 11, 43, 71
dumpconfig 11, 81
dynamic libraries 10

E
entries in Implementation Repository 19
environment variables 9
error messages 91

file 73
errors file 44
exceptions 91
exporting IDL to files 66

F
FD_SETSIZE 72

G
gids 25
group identifiers 25

H
hierarchical server names 20
hosts

multi-homed 15

I
IDL 3
IDL definitions

adding to Interface Repository 34
removing from Interface Repository 35

IETF 11
IFR server 33
IIOP 56

server ports 30
well-known ports for servers 85

Implementation Repository 4, 11, 19–??,
49–59
changing owners of servers 24
Orbix Administrator’s Guide C++ Edition 93

connecting to 50
deleting directories 52
directories 20
directory path 71
disconnecting from 51
listing details of servers 22
listing registered servers 21
location of 43
modifying server registration details 57
permissions to servers 24
registering servers 20, 52, 56
removing server registrations 21
role of Orbix daemon 12

IMP_LIMIT 30
Interface Repository 5, 33–35

adding IDL definitions 34
configuring 33
location of 43
reading contents 34
removing IDL definitions 35
role of Orbix daemon 12
server 33

command line options 34
Interface Repository browser 61–67

adding IDL definitions 63
configuring 66
connecting to an Interface
Repository 62

exporting IDL to files 66
refreshing 66
starting 62
viewing IDL definitions 64–66

internet domains 11, 43, 71
invoke permissions to servers 24
invoke rights to servers 53
iona.cfg

opening in Configuration Explorer 42
IOR for Orbix daemon 77
IT_ACT_POLICY 72
IT_BIND_WITH_LOCATE_REQS 75
IT_COLLOCATED 72
IT_CONFIG_PATH 9, 11
IT_CONNECT_ATTEMPTS 44, 72
IT_DAEMON_CONNECTION_LIMIT 72
IT_DAEMON_CONNECTION_REAP_NUMBE
R 72

IT_DAEMON_PORT 10, 43, 71
IT_DAEMON_PROTOCOL 72
IT_DAEMON_SERVER_BASE 30, 43, 71
IT_DAEMON_SERVER_RANGE 30, 71
IT_DEFAULT_CLASSPATH 43, 71
IT_DEFAULT_CODE 72
IT_DEFAULT_COMMS 72
IT_DEF_NUM_NW_THREADS 72
IT_DIAGNOSTICS_LEVEL 73
IT_ENABLE_ANON_BIND_SUPPORT 73
IT_ENABLE_MULTI_HOMED_SUPPORT 73
IT_ERRORS 44, 73, 91
IT_FD_STOP_LISTENING_POINT 73
IT_GIOP_VERSION 73
IT_IIOP_PORT 73
IT_IIOP_VERSION 73

IT_IMP_REP_PATH 11, 43, 71
IT_INT_REP_PATH 33, 43
IT_JAVA_INTERPRETER 43
IT_KEYCHANNELTABLE_USINGPORT 73
IT_KEYOBJECTTABLE_USINGPORT 74
IT_LISTEN_QUEUE_SIZE 74
IT_LOAD_BALANCING_STRATEGY 75
IT_LOCAL_ADDR_LIST 74
IT_LOCAL_ DOMAIN 43
IT_LOCAL_DOMAIN 11, 71
IT_LOCAL_HOST 74
IT_MARKER_PATTERN 74
IT_ONEWAY_RESPONSE_REQUIRED 74
IT_SERVER_CODE 74
IT_SERVER_COMMS 74
IT_SERVER_MARKER 74
IT_SERVER_METHOD 75
IT_SERVER_NAME 75
IT_SERVER_PORT 75
IT_USE_HOST_IN_IOR 75
IT_USE_ORBIX3_STYLE_SYS_EXC 75
IT_USE_REVERSE_LOOKUP 75

K
killit 23, 81

L
launch commands for servers 56
launch permissions to servers 24
launch rights to servers 53
LD_LIBRARY_PATH 10
library path 10
listing registered servers 21
lsit 21, 82

M
manually-started servers 22
mkdirit 20, 82
multi-homed

configuration variables 16
hosts 15

multiple-client activation mode 29

N
nobody, user identifier 25

O
OMG 3
Orbix

architecture components 3
daemon port 10

Orbix.IT_FD_WARNING_NUMBER 73
orbix3.cfg

modifying 43
opening in Configuration Explorer 43

orbixd 4
port number 10
running 12
running as super-user 12, 78
running in protected mode 78
running in silent mode 78
 94 Orbix Administrator’s Guide C++ Edition

See also Orbix daemon
version information 78

Orbix daemon
checking for 13
check-point information 77
command options 77
security risks 12
starting 12
trace information 78

orbixusr, user identifier 25
owners, changing for servers 24

P
pattern matching, when registering
servers 27

per-client activation mode 13, 29, 83
per-client-process activation mode 29
per-method activation mode 26, 28
permissions for servers 20
persistent servers 22, 58, 78
pingit 13, 82
port numbers

for servers 56
for the Orbix daemon 43

ports
for Orbix daemon 10, 71
for servers 13, 29, 30, 83, 85

process identifiers 13
protected mode 78
protocols 13, 83
psit 13
putidl 34, 83
putit 13, 20, 84

Q
quick start to Orbix administration 7

R
readifr 34, 88
reading contents of the Interface
Repository 34

refreshing
the Interface Repository browser
window 66

registering servers 13, 20
regular expressions 27
rmdirit 21, 89
rmidl 35, 89
rmit 21, 28, 29, 90
running orbixd in 78

S
security 12

of servers 24
Server Manager 49–59

configuring 59
connecting to an Implementation
Repository 50

deleting directories 52
disconnecting from an Implementation
Repository 51

killing persistent servers 58
launching persistent server 58
launching persistent servers 58
modifying server details 57
registering servers 52, 56

specifying access rights 53
specifying activation modes 55, 56

starting 49
servers 13

access control lists 24
access rights 52, 53
activation modes 26–29, 52
activation orders 20
details of registration 22
details of running servers 13, 83
for Interface Repository 33
hierarchical names 20
IIOP port numbers 56
IIOP ports 85
invoke permissions 24
killing 58
launch commands 56
launching persistently 58
launch permissions 24
listing 21
managing 19
modifying registration details 57
names of 20
owners of 20, 24
permissions for 20, 24
ports 29, 30
process identifiers 13
registering 13, 20, 52, 56
registry 52
removing registration of 21
starting 12
starting manually 22
stopping 23

shared activation mode 26
silent mode, running orbixd in 78
starting

the Interface Repository browser 62
the Server Manager 49

starting servers 12
stopping servers 23
super-user, running orbixd as 12, 78

T
TCP/IP 13, 83
tools

Configuration Explorer 41
Interface Repository browser 61–67
Server Manager 49–59

trace information from Orbix daemon 78

U
uids 25
unshared activation mode 26
user identifiers 25
Orbix Administrator’s Guide C++ Edition 95

V
version number, of Orbix 78
Viewing Information about IDL
Definitions 65

X
XDR 13, 83
 96 Orbix Administrator’s Guide C++ Edition

	Preface
	Audience
	Organization of this Guide
	Document Conventions

	Contacting Micro Focus
	Orbix C++ Administration
	Overview of Orbix Administration
	Components of the Orbix Architecture
	Servers and the Implementation Repository
	The Interface Repository

	Administration of Orbix Components

	Getting Started
	Basic Orbix Configuration
	The Orbix Configuration Files
	Locating the Configuration Files
	Locating the Orbix Library Directory on UNIX Platforms
	Setting the Orbix Daemon Port
	Locating the Implementation Repository
	Specifying Your Local Internet Domain

	Starting The Orbix Daemon
	Registering a Server
	Checking for an Orbix Daemon
	Checking for Running Servers
	Configuring Orbix for IPv6 Communications
	Supported Platforms
	Configuration
	C++ Details

	Configuring Orbix for Multi-Homed Hosts
	Multi-Homed Configuration Variables
	Configuring Orbix for Multiple Network Cards on Independent Networks

	Managing the Implementation Repository
	Implementation Repository Entries
	Basic Implementation Repository Usage
	Registering a Server on a Remote Host
	Organizing Servers Into Hierarchies
	Removing a Registered Server
	Listing Registered Servers
	Displaying A Server Entry

	Starting Servers Manually
	Registering a Manual Server
	Starting the Orbix Daemon for Unregistered Servers

	Stopping Servers
	Security of Registered Servers
	Modifying Server Access
	Changing the Owners of Registered Servers
	Determining the User and Group IDs of Running Servers

	Server Activation Modes
	Registering Unshared Servers
	Using Markers to Specify Named Objects
	Registering Per-Method Servers
	Secondary Activation Modes

	Managing Server Port Selection
	Registering Servers with Specified Ports
	Controlling Port Allocation with Configuration Variables
	Registering SSL-Enabled Servers
	Using the putit SSL Parameters

	Managing the Interface Repository
	Configuring the Interface Repository
	Registering the Interface Repository Server
	Adding IDL Definitions
	Reading the Interface Repository Contents
	Removing IDL Definitions

	Active Connection Management

	Orbix C++ GUI Tools
	The Orbix Configuration Explorer
	Starting the Configuration Explorer
	Configuring Common Settings
	Configuring Orbix-Specific Settings
	Customizing Your Configuration
	Creating Configuration Variables
	Creating Configuration Scopes
	Creating Configuration Files

	The Orbix Server Manager
	Starting the Server Manager
	Connecting to an Implementation Repository
	Creating a New Directory
	Registering a Server
	Providing Server Access Rights to Users
	Specifying Server Activation Details

	Modifying Server Registration Details
	Launching a Persistent Server
	Configuring the Server Manager

	The Interface Repository Browser
	Starting the Interface Repository Browser
	Connecting to an Interface Repository
	Adding IDL to the Interface Repository
	Viewing the Interface Repository Contents
	Viewing Information about IDL Definitions
	Viewing Source Code for IDL Definitions

	Exporting IDL Definitions to a File
	Configuring the Interface Repository Browser

	Appendices
	Configuration Variables
	Common Configuration Variables
	Orbix-Specific Configuration Variables

	Orbix Daemon Options
	Command Reference
	Command Summary
	Command Descriptions
	catit
	chmodit
	chownit
	dumpconfig
	killit
	lsit
	mkdirit
	pingit
	psit
	putidl
	putit
	readifr
	rmdirit
	rmit

	Error Messages and Exceptions
	Setting Error Messages
	System Exceptions Defined by CORBA
	System Exceptions Specific to Orbix

	Index

