ORBIX

Orbix Programmer’s Guide C++ Edition
Version 3.3, SP11 March 2012

PROGRESS

software
BUSINESS MAKING PROGRESSw

Progress Orbix v3.3.11

© 2012 Progress Software Corporation and/or its subsidiaries or affiliates. All rights
reserved.

These materials and all Progress® software products are copyrighted and all rights are
reserved by Progress Software Corporation. The information in these materials is subject to
change without notice, and Progress Software Corporation assumes no responsibility for
any errors that may appear therein. The references in these materials to specific platforms
supported are subject to change.

Actional, Apama, Artix, Business Empowerment, Business Making Progress, Corticon,
Corticon (and design), DataDirect (and design), DataDirect Connect, DataDirect
Connect64, DataDirect Technologies, DataDirect XML Converters, DataDirect XQuery,
DataXtend, Dynamic Routing Architecture, Empowerment Center, Fathom, Fuse Mediation
Router, Fuse Message Broker, Fuse Services Framework, IONA, Making Software Work
Together, Mindreef, ObjectStore, OpenEdge, Orbix, PeerDirect, Powered by Progress, Pow-
erTier, Progress, Progress DataXtend, Progress Dynamics, Progress Business Empower-
ment, Progress Empowerment Center, Progress Empowerment Program, Progress
OpenEdge, Progress Profiles, Progress Results, Progress Software Business Making
Progress, Progress Software Developers Network, Progress Sonic, ProVision, PS Select,
RulesCloud, RulesWorld, Savvion, SequeLink, Shadow, SOAPscope, SOAPStation, Sonic,
Sonic ESB, SonicMQ, Sonic Orchestration Server, SpeedScript, Stylus Studio, Technical
Empowerment, WebSpeed, Xcalia (and design), and Your Software, Our Technol-
ogy-Experience the Connection are registered trademarks of Progress Software Corporation
or one of its affiliates or subsidiaries in the U.S. and/or other countries. AccelEvent, Apama
Dashboard Studio, Apama Event Manager, Apama Event Modeler, Apama Event Store,
Apama Risk Firewall, AppsAlive, AppServer, ASPen, ASP-in-a-Box, BusinessEdge,
Cache-Forward, CloudEdge, DataDirect Spy, DataDirect SupportLink, Fuse, FuseSource,
Future Proof, GVAC, High Performance Integration, ObjectStore Inspector, ObjectStore
Performance Expert, OpenAccess, Orbacus, Pantero, POSSE, ProDataSet, Progress Arcade,
Progress CloudEdge, Progress Cloudware, Progress Control Tower, Progress ESP Event
Manager, Progress ESP Event Modeler, Progress Event Engine, Progress RFID, Progress
RPM, Progress Responsive Cloud, Progress Responsive Process Management, Progress
Software, PSE Pro, SectorAlliance, SeeThinkAct, Shadow z/Services, Shadow z/Direct,
Shadow z/Events, Shadow z/Presentation, Shadow Studio, SmartBrowser, SmartCompo-
nent, SmartDataBrowser, SmartDataObjects, SmartDataView, SmartDialog, SmartFolder,
SmartFrame, SmartObjects, SmartPanel, SmartQuery, SmartViewer, SmartWindow, Sonic
Business Integration Suite, Sonic Process Manager, Sonic Collaboration Server, Sonic Con-
tinuous Availability Architecture, Sonic Database Service, Sonic Workbench, Sonic XML
Server, The Brains Behind BAM, WebClient, and Who Makes Progress are trademarks or
service marks of Progress Software Corporation and/or its subsidiaries or affiliates in the
U.S. and other countries. Java is a registered trademark of Oracle and/or its affiliates. Any
other marks contained herein may be trademarks of their respective owners.

Third Party Acknowledgements: One or more products in the Progress Orbix v3.3.11
release includes third party components covered by licenses that require that the following
documentation notices be provided:

Progress Orbix v3.3.11 incorporates OpenSSL/SSLeay v0.9.8.i technology from
OpenSSL.org. Such Technology is subject to the following terms and conditions: LICENSE
ISSUES

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of the OpenSSL
License and the original SSLeay license apply to the toolkit. See below for the actual
license texts. Actually both licenses are BSD-style Open Source licenses. In case of any
license issues related to OpenSSL please contact openssl-core@openssl.org.

OpenSSL License

Copyright (c) 1998-2008 The OpenSSL Project. All rights reserved. Redistribution and use
in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

3. All advertising materials mentioning features or use of this software must display the fol-
lowing acknowledgment:

"This product includes software developed by the OpenSSL Project for use in the OpenSSL
Toolkit. (http://www.openssl.org/)"

4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to endorse or
promote products derived from this software without prior written permission. For written
permission, please contact openssl-core@openssl.org.

5. Products derived from this software may not be called "OpenSSL" nor may "OpenSSL"
appear in their names without prior written permission of the OpenSSL Project.

6. Redistributions of any form whatsoever must retain the following acknowledgment:

"This product includes software developed by the OpenSSL Project for use in the OpenSSL
Toolkit (http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT "AS IS" AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL
PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHER-
WISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com).
This product includes software written by Tim Hudson (tjh@cryptsoft.com).

Original SSLeay License

Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) All rights reserved. This pack-
age is an SSL implementation written by Eric Young (eay@cryptsoft.com). The implemen-
tation was written so as to conform with Netscapes SSL. This library is free for commercial
and non-commercial use as long as the following conditions are adhered to. The following
conditions apply to all code found in this distribution, be it the RC4, RSA, lhash, DES, etc.,
code; not just the SSL code. The SSL documentation included with this distribution is cov-
ered by the same copyright terms except that the holder is Tim Hudson (tjh@crypt-
soft.com).

Copyright remains Eric Young's, and as such any Copyright notices in the code are not to be
removed. If this package is used in a product, Eric Young should be given attribution as the
author of the parts of the library used. This can be in the form of a textual message at pro-
gram startup or in documentation (online or textual) provided with the package. Redistribu-
tion and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the copyright notice, this list of conditions and
the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

3. All advertising materials mentioning features or use of this software must display the fol-
lowing acknowledgement:

"This product includes cryptographic software written by Eric Young (eay@cryptsoft.com)"”

The word 'cryptographic' can be left out if the rouines from the library being used are not
cryptographic related :-).

4. If you include any Windows specific code (or a derivative thereof) from the apps direc-
tory (application code) you must include an acknowledgement:

"This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBU-
TORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

The licence and distribution terms for any publically available version or derivative of this
code cannot be changed. i.e. this code cannot simply be copied and put under another distri-
bution licence [including the GNU Public Licence.]

Progress Orbix v3.3.11 incorporates mcpp v2.6.4 from SourceForge (http://sourceforge.net/
softwaremap/index.php). Such technology is subject to the following terms and conditions:
Copyright (¢) 1998, 2002-2007 Kiyoshi Matsui kmatsui@t3.rim.or.jp All rights reserved.
This software including the files in this directory is provided under the following license.
Redistribution and use in source and binary forms, with or without modification, are permit-
ted provided that the following conditions are met: 1. Redistributions of source code must
retain the above copyright notice, this list of conditions and the following disclaimer. 2.
Redistributions in binary form must reproduce the above copyright notice, this list of condi-
tions and the following disclaimer in the documentation and/or other materials provided
with the distribution. THIS SOFTWARE IS PROVIDED BY THE AUTHOR "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Progress Orbix v3.3.11 incorporates IDL Compiler Front End v1.0 from Sun Microsystems.
Such technology is subject to the following terms and conditions: COPYRIGHT NOTICE
on OMG IDL CFE: Copyright 1992 Sun Microsystems, Inc. Printed in the United States of
America. All Rights Reserved. This product is protected by copyright and distributed under
the following license restricting its use. The Interface Definition Language Compiler Front
End (CFE) is made available for your use provided that you include this license and copy-
right notice on all media and documentation and the software program in which this product
is incorporated in whole or part. You may copy and extend functionality (but may not
remove functionality) of the Interface Definition Language CFE without charge, but you are
not authorized to license or distribute it to anyone else except as part of a product or pro-
gram developed by you or with the express written consent of Sun Microsystems, Inc.
("Sun"). The names of Sun Microsystems, Inc. and any of its subsidiaries or affiliates may
not be used in advertising or publicity pertaining to distribution of Interface Definition Lan-
guage CFE as permitted herein. This license is effective until terminated by Sun for failure
to comply with this license. Upon termination, you shall destroy or return all code and doc-
umentation for the Interface Definition Language CFE. The Interface Definition Language
CFE may not be exported outside the United States without first obtaining the appropriate
government approvals. INTERFACE DEFINITION LANGUAGE CFE IS PROVIDED AS
IS WITH NO WARRANTIES OF ANY KIND INCLUDING THE WARRANTIES OF
DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE,
NONINFRINGEMENT, OR ARISING FROM A COURSE OF DEALING, USAGE OR
TRADE PRACTICE. INTERFACE DEFINITION LANGUAGE CFE IS PROVIDED

WITH NO SUPPORT AND WITHOUT ANY OBLIGATION ON THE PART OF Sun OR
ANY OF ITS SUBSIDIARIES OR AFFILIATES TO ASSIST IN ITS USE, CORREC-
TION, MODIFICATION OR ENHANCEMENT. SUN OR ANY OF ITS SUBSIDIARIES
OR AFFILIATES SHALL HAVE NO LIABILITY WITH RESPECT TO THE INFRINGE-
MENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY INTERFACE
DEFINITION LANGUAGE CFE OR ANY PART THEREOF. IN NO EVENT WILL SUN
OR ANY OF ITS SUBSIDIARIES OR AFFILIATES BE LIABLE FOR ANY LOST REV-
ENUE OR PROFITS OR OTHER SPECIAL, INDIRECT AND CONSEQUENTIAL
DAMAGES, EVEN IF SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES. Use, duplication, or disclosure by the government is subject to restrictions as
set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software
clause at DFARS 252.227-7013 and FAR 52.227-19. Sun, Sun Microsystems and the Sun
logo are trademarks or registered trademarks of Sun Microsystems, Inc. SunSoft, Inc. 2550
Garcia Avenue Mountain View, California 94043

Updated: 07-Mar-2012

Contents

Preface 17
Audience 17
Organization of this Guide 17
Document Conventions 18

Part I Getting Started with Orbix C++

Chapter 1 Getting Started with Orbix 23
Prerequisites 23
Hello World Example 24
Development from the Command Line 25

Steps to Implement the Hello World! Application 25
Step 1—Define the IDL Interface 25
Step 2—Generate Starting Point Code. 26
Step 3—Complete the Server Program 27
Step 4—Complete the Client Program 28
Step 5—Build and Run the Demonstration 28

Chapter 2 First Application 33
Developing a Distributed Application 34
Defining IDL Interfaces 34
Compiling IDL Interfaces 36

Setting Up Configuration for the IDL Compiler 36
Running the IDL Compiler 37
Output from the IDL Compiler 38
The Client Stub Code 39
The Object Skeleton Code 40
Implementing the IDL Interfaces 40
Writing an Orbix Server Application 43
Initializing the ORB 43
Creating an Implementation Object 44

Receiving Client Requests 45

Orbix Programmer’s Guide C++ Edition

Writing an Orbix Client Application
Initializing the ORB
CORBA Object References
Getting a Reference to an Object
Invoking IDL Attributes and Operations

Compiling the Client and Server
Compiling the Client
Compiling the Server

Running the Application
Running the Orbix Daemon
Registering the Server
Running the Client

Summary of Programming Steps

Part II Orbix C++ Programming

Chapter 3 Introduction to CORBA IDL
IDL Modules and Scoping
Defining IDL Interfaces
Attributes in IDL Interface Definitions
Operations in IDL Interface Definitions
Inheritance of IDL Interfaces
Forward Declaration of IDL Interfaces
Overview of the IDL Data Types
IDL Basic Types
IDL Complex Types
IDL Pseudo Object Types
Defining Data Type Names and Constants

Chapter 4 The CORBA IDL to C++ Mapping

Overview of the Mapping
Mapping for Modules and Scoping

Alternative Mappings for Modules
Mapping for Interfaces

Mapping for Attributes

Mapping for Operations

Mapping for Inheritance of IDL Interfaces

48
48
48
49
51
52
52
53
53
54
54
55
56

61
62
62
63
64
67
70
70
71
72
78
78

81
82
82
&3
84
&5
87
90

Contents

Object Reference Counts and Nil Object References 93
Mapping for IDL Data Types 95
Mapping for Basic Types 96
Mapping for Complex Types 97
Mapping for Enum 98
Mapping for Struct 98
Mapping for Union 100
Mapping for String 104
General Mapping for Sequences 106
Mapping for Unbounded Sequences 107
Mapping for Bounded Sequences 111
Bounded Sequence Examples 112
Mapping for Fixed 114
Mapping for Array 117
Mapping for Typedef 118
Mapping for Pseudo-Object Types 119
Memory Management and _var Types 120
Memory Management for Parameters 124
in Parameters 124

inout Parameters 126

out Parameters 130

Return Values 132

An Example of Applying the Rules for Object References 133
Chapter 5 Using and Implementing IDL Interfaces 135
Overview of an Example Application 135
Overview of the Programming Steps 137
Defining IDL Interfaces 137
Implementing IDL Interfaces 138
Defining Implementation Classes for IDL Interfaces 142
Developing a Server Program 152
Writing a Server main() Function 152
Developing a Client Program 157
Alternatives to the Naming Service 159
Registering the Server 160
Execution Trace for the Example Application 161
Comparing the TIE and BOAImpl Approaches 165
Wrapping Existing Code 165
Providing Different Implementations of the Same Interface 167

Orbix Programmer’s Guide C++ Edition

Providing Different Interfaces to the Same Implementation

Comparison of the BOAImpl and TIE Approaches

Chapter 6 Making Objects Available in Orbix
Identifying CORBA Objects
Interoperable Object References
Orbix Object References
Assigning Markers to Orbix Objects
Using the CORBA Naming Service
The Interface to the Naming Service
Format of Names in the Naming Service
Making Initial Contact with the Naming Service
Associating Names with Objects
Using Names to Find Objects
Associating a Compound Name with an Object
Using the Naming Service in Orbix Example Applications
Transferring Object References
Passing Object References as Operation Parameters
Transferring Object Reference Strings
Binding to Orbix Objects

Chapter 7 Exception Handling in Orbix
An Example of Raising and Handling Exceptions
The Generated C++ Code for User-Defined Exceptions
Handling Exceptions in a Client
Handling Specific System Exceptions
Information Available in System Exceptions
Throwing a System Exception

Chapter 8 Using Inheritance of IDL Interfaces
The IDL Interfaces
The Generated C++ Code
Implementation Class Hierarchies
The Implementation Classes
Using Inheritance in a Client
Multiple Inheritance of IDL Interfaces

10

168
168

169
170
170
171
172
174
174
174
175
176
176
177
178
179
179
180
181

185
186
187
188
190
192
193

195
195
196
197
198
202
203

Contents

Chapter 9 Orbix Connections and Events 207
Overview of the Direct API to Orbix 208
Initializing a Connection to the ORB 209
Obtaining Initial Object References 209
Managing Orbix Connections and Events 210
Establishing Connections between Clients and Servers 211

Event Processing in Orbix 215
Chapter 10 Advanced Programming Topics 219
Developing Collocated Clients and Servers 220
Testing for the Presence of Collocation 221
Writing Code for both Collocation and Distribution 221
Determining Locality of Objects 223
Determining Hierarchy of Objects 224
Casting from Interface to Implementation Class 225
Actions when Proxy Code is Unavailable 228
Multiple Implementations of an Interface 229
Multiple Interfaces per Implementation 230
Using the TIE Approach 231

Using the BOAImpl Approach 233
Passing Context Information to IDL Operations 234
Receiving Diagnostic Messages from Orbix 238

Part III Dynamic Orbix C++ Programming

Chapter 11 The TypeCode Data Type 241
Overview of the TypeCode Data Type 242
Implementation of TypeCode in Orbix 244

CORBA::TypeCode ptr Constants 244
TypeCode Public Members 245
CORBA::TypeCode::IT create() 246
Examples of Using TypeCode 246
Use of TypeCode in Type CORBA::Any 246
Use of TypeCode when Querying the Interface Repository 247

11

Orbix Programmer’s Guide C++ Edition

Chapter 12 The Any Data Type 249
Inserting Data into an Any with operator<<=() 250
Inserting a Basic Type 251
Inserting a User-Defined Type 251
Interpreting an any with operator>>=() 253
Interpreting a Basic Type 253
Interpreting a User-Defined Type 254

Other Ways to Construct and Interpret an Any 255
Inserting Values at Construction Time 255

Low Level Access to a CORBA::Any 258
Inserting and Extracting Array Types 260
Inserting and Extracting boolean, octet and char 261

Any Constructors, Destructor and Assignment 262
Any as a Parameter or Return Value 263
Chapter 13 Dynamic Invocation Interface 265
Using the DII 266
Programming Steps in Using the DII 267

The CORBA Approach to Using the DII 268
Setting up a Request 268

Setting up a Request Using _request() 269

Setting up a Request Using _create request() 271

Using the Interface Repository when Setting Up a Request 274
Invoking a Request 275
Retrieving the Results of a Request 277
Getting Information About a Request Object 277

The Orbix-Specific Approach to Using the DII 278
Setting Up a Request 278
Invoking a Request 280
Retrieving the Results of a Request 281
Additional Information About operator<<() 282
Chapter 14 Dynamic Skeleton Interface 287
Uses of the DSI 288
Using the DSI 289
Creating CORBA::DynamicImplementation Objects 289
Registering CORBA::Dynamiclmplementation Objects 290
Example of Using the DSI 292

12

Contents

Example of Using params() 294
Chapter 15 The Interface Repository 297
Configuring the Interface Repository 298
Runtime Information about IDL Definitions 298
The Structure of Interface Repository Data 299
Containment Relationships 301

Simple Types 302
Abstract Interfaces in the Interface Repository 303
Class Hierarchy and Abstract Base Interfaces 304

The Interface IRObject 304
Containment in the Interface Repository 305
The Contained Interface 308

The Container Interface 309
Containment Descriptions 311

Type Interfaces in the Interface Repository 314
Named Types 315
Unnamed Types 317
Retrieving Information about IDL Definitions 318
CORBA::Object::_get interface() 318
Browsing or Listing a Repository 318
Finding an Object Using its Repository ID 321
Example of Using the Interface Repository 321
Repository IDs 323
Pragma Directives 324

Part IV Advanced Orbix C++ Programming

Chapter 16 Filtering Operation Calls 329
Introduction to Per-process Filters 330
Pre-marshalling Filter Points 331
Post-marshalling Filter Points 332

Failure Points 332

Introduction to Per-Object Filters 334

Using Per-Process Filters 336

An Example Per-Process Filter 338

Installing a Per-Process Filter 340

13

Orbix Programmer’s Guide C++ Edition

Raising an Exception in a Filter 340
Piggybacking Extra Data to the Request Buffer 342
Defining an Authentication Filter 344

Using Per-Object Filters 345
IDL Compiler Switch to Enable Object Filtering 348
Chapter 17 Using Smart Proxy Classes 349
Management of Proxies by Proxy Factories 350
Generating Smart Proxies 351

A Simple Smart Proxy Example 354
The Account IDL Interface 354
Defining a New Proxy Class 354
Chapter 18 Callbacks from Servers to Clients 361
Implementing Callbacks in Orbix 361
Defining the IDL Interfaces 362
Implementing the IDL Interfaces 363
Writing the Client 367
Writing the Server 370
Preventing Deadlock in a Callback Model 372
Using Non-Blocking Operation Invocations 372

Using Multiple Threads of Execution 375
Callbacks and Bidirectional Connections 375
Chapter 19 Loading Objects at Runtime 377
Overview of Creating a Loader 378
Installing a Loader 379
Specifying a Loader for an Object 379
Loaders and Object Naming 381
Loading Objects 383
Saving Objects 385
Writing a Loader 386
Example Loader 386
The IDL Interface 386
Implementing the IDL 387
Coding the Loader 393
Loaders are Transparent to Clients 397

14

Contents

Chapter 20 Using Opaque Types in IDL 399
Using Opaque Types 401

IDL Definitions 401

Mapping of Opaque Types to C++ 402

Memory Management Rules 404

Implementing an Opaque Type 405

Implementing an Interface that uses an Opaque Type 409

Chapter 21 Transforming Requests 411
Transforming Request Data 412

The IT_reqTransformer Class 412

Registering a Transformer 414

An Example Transformer 415
Chapter 22 Using Threads with Orbix 419
Benefits of Multi-threaded Clients and Servers 420
Multi-threaded Servers 420
Multi-threaded Clients 421

Comparison with Non-Blocking Calls 422

Thread Programming in Orbix 423
Compiling Orbix Applications 424

Operating System Support for Creating Threads 425

Creating a Thread to Handle a Request 427

Concurrency Control 429
Models of Thread Support 430
Implementing Models of Thread Support 431

Changing Internal Orbix Thread Creation 432
Chapter 23 Service Contexts in Orbix 435
The Orbix Service Context API 437
ServiceContextHandler Class 437

ORB Interfaces 438
ServiceContextList 438

Using Service Contexts in Orbix Applications 439
ServiceContext Per-Request Model 439
ServiceContext Per-Object Model 443

Main Components of the Service Context Model 446

Service Context Handlers and Filter points 447

15

Orbix Programmer’s Guide C++ Edition

Appendix A
Orbix IDL Compiler Options 451
Index 457

16

Preface

Orbix is a standards-based programming environment for building and
integrating distributed applications. Orbix is a full implementation of the Object
Management Group’s (OMG) Common Object Request Broker Architecture
(CORBA).

Orbix documentation is periodically updated. New versions between releases are
available at this site:

http://communities.progress.com/pcom/docs/DOC-105220

If you need assistance with Orbix or any other Progress products, go to http://
www.progress.com/orbix/orbix-support.html.

If you want to provide any comments on Progress documentation, go to http://
WWWw.progress.com/en/about/contact.html .

Audience

This guide is intended for use by application programmers who wish to
familiarize themselves with distributed programming with Orbix. This guide
addresses all levels of Orbix programming, from getting started to advanced
topics. Users should be familiar with the C++ programming language. Before
reading this guide, you should read the Introduction to Orbix C++ Edition manual.

Organization of this Guide

The Orbix Programmer’s Guide C++ Edition is divided into four parts as follows:

Part I, Getting Started with Orbix C++

This part describes a simple example that enables you to get started with Orbix
programming. Read this part first to get a sense of how the Orbix programming
environment works.

17

http://communities.progress.com/pcom/docs/DOC-105220
http://www.progress.com/orbix/orbix-support.html
http://www.progress.com/orbix/orbix-support.html
http://www.progress.com/en/about/contact.html
http://www.progress.com/en/about/contact.html

Orbix Programmer’s Guide C++ Edition

Part II, Orbix C++ Programming

This part describes the core topics of Orbix programming that all programmers
need to know. Read this part to learn the main programming techniques that most
Orbix applications require.

Part III, Dynamic Orbix C++ Programming

This part describes a special subset of Orbix programming components that allow
you to write dynamic applications. The concept of dynamic Orbix programming
is described in this section. Each chapter is dedicated to a single dynamic Orbix
component.

Part IV, Advanced Orbix C++ Programming

Orbix extends the CORBA specification by adding features that allow you to
write more flexible distributed applications. Each chapter in this part describes an
advanced Orbix feature. Browse this part to discover the advanced features
available in Orbix and select the features that may be useful in your applications.

Document Conventions

18

This guide uses the following typographical conventions:

Constant width Constant width in normal text represents portions of code
and literal names of items such as classes, functions,
variables, and data structures. For example, text might
refer to the CORBA: :Object class.

Constant width paragraphs represent code examples or
information a system displays on the screen. For example:

#include <stdio.h>

Preface

Italic

Italic words in normal text represent emphasis and new
terms.

Italic words or characters in code and commands represent
variable values you must supply, such as arguments to
commands or path names for your particular system. For
example:

% cd /users/your_name

Note: some command examples may use angle brackets to
represent variable values you must supply. This is an older
convention that is replaced with italic words or characters.

This guide may use the following keying conventions:

No prompt

%

[]

{1

When a command’s format is the same for multiple
platforms, no prompt is used.

A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

The notation > represents the DOS, Windows NT, or
Windows 95 command prompt.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been eliminated
to simplify a discussion.

Brackets enclose optional items in format and syntax
descriptions.

Braces enclose a list from which you must choose an
item in format and syntax descriptions.

A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.

19

Orbix Programmer’s Guide C++ Edition

20

Part 1

Getting Started with Orbix
C++

Getting Started with Orbix

You can use the Orbix Code Generation Toolkit to develop an
Orbix application quickly.
Given a user-defined IDL interface, the toolkit generates the bulk of the client

and server application code, including makefiles. You then complete the
distributed application by filling in the missing business logic.

Prerequisites

Before proceeding with the demonstration in this chapter you need to ensure:
® The Orbix developer’s kit is installed on your host.
® Orbix is configured to run on your host platform.

The Orbix Administrator’s Guide C++ Edition contains more information on Orbix
configuration, and details of Orbix command line utilities.

23

Orbix Programmer’s Guide C++ Edition

Hello World Example

24

This chapter shows how to create, build and run a complete client/server
demonstration with the help of the Orbix Code Generation Toolkit. The
architecture of this example system is shown in Figure 1.1.

Client Machine Server Machine

Client Application Server Application

. , ORB
Operation Call >
Code Result Code /‘ hled

IDL Interface

A

Figure 1.1: Client Making a Single Operation Call on a Server

The client and server applications communicate with each other using the Internet
Inter-ORB Protocol (IIOP), which sits on top of TCP/IP. When a client invokes a
remote operation a request message is sent from the client to the server the
operation has completed, a reply message containing the return values from the
operation is sent back to the client. This completes a single remote CORBA
invocation.

All interaction between the client and server is mediated via a set of IDL
declarations. The IDL for the Hello World! application is:

//IDL
interface Hello {

string getGreeting();
}i

The IDL declares a single Hello interface, which exposes a single operation
getGreeting (). This declaration provides a language neutral interface to
CORBA objects of type Hello.

Getting Started with Orbix

The concrete implementation of the He11o CORBA object is written in C++ and
is provided by the server application. The server could create multiple instances
of Hello objects if required. However, the generated code generates only one
Hello object.

The client application has to locate the Hel1lo object—it does this by reading a
stringified object reference from the file Hello.ior. There is one operation
getGreeting () defined on the Hello interface. The client invokes this operation
and exits.

Development from the Command Line

Starting point code for Orbix client and server applications can also be generated
using the idlgen command line utility, which offers equivalent functionality to
the client/server wizard presented in the previous section.

The idlgen utility can be used on Windows and UNIX platforms.

Steps to Implement the Hello World! Application

Implement the Hello World! application with the following steps:
1. Define the IDL interface, Hello.
2. Generate starting point code.
3. Complete the server program.
Implement the single IDL getGreeting () operation.
4. Complete the client program.
Insert a line of code to invoke the getGreeting () operation.
5. Build and run the demonstration.

Step 1—Define the IDL Interface

Create the IDL file for the Hello World! application. First of all, make a directory
to hold the example code:

Windows
> mkdir C:\OCGT\HelloExample

25

Orbix Programmer’s Guide C++ Edition

UNIX
% mkdir -p OCGT/HelloExample

Create an IDL file C:\OCGT\HelloExample\hello.idl (Windows) or
OCGT/HelloExample/hello.idl (UNIX) using a text editor.

Enter the following text into the file hello.idl:

//IDL
interface Hello {

string getGreeting() ;
}i

This interface mediates the interaction between the client and the server halves of
the distributed application.

Step 2—Generate Starting Point Code.

26

Generate files for the server and client application using the Orbix Code
Generation Toolkit.

In the directory C:\OCGT\HelloExample (Windows) or OCGT/HelloExample
(UNIX) enter the following command:

idlgen cpp_genie.tcl -client -server -interface -makefile
hello.idl

This command logs the following output to the screen while it is generating the
files:

hello.idl:

cpp_genie.tcl: creating Hello i.h
cpp_genie.tcl: creating Hello i.cxx
cpp_genie.tcl: creating server.cxx
cpp_genie.tcl: creating client.cxx
cpp_genie.tcl: creating call funcs.h
cpp_genie.tcl: creating call funcs.cxx
cpp_genie.tcl: creating it print funcs.h
cpp_genie.tcl: creating it print funcs.cxx
cpp_genie.tcl: creating it random funcs.h
cpp_genie.tcl: creating it random funcs.cxx
cpp_genie.tcl: creating makefile
cpp_genie.tcl: creating makefile.inc

Getting Started with Orbix

The files you can edit to customize the client and server applications are:

Client Files Server Files

client.cxx server.cxx
Hello i.h
Hello i.cxx

Table: 1.2: Main C++ source files for the Hello World! application

Step 3—Complete the Server Program

Complete the implementation class, Hello i, by providing the definition of the
Hello i::getGreeting() member function . This C++ function provides the
concrete realization of the Hello: :getGreeting () IDL operation.

Edit the Hello i.cxx file.

Delete most of the generated boilerplate code occupying the body of the
Hello i::getGreeting() function and replace it with the line of code
highlighted in bold font below:

//C++
char *
Hello i::getGreeting(

CORBA: :Environment &)
{

char* _result;
_result = CORBA::string dup("Hello World!");

return result;

The function CORBA: :string dup () allocates a copy of the "Hello World!"
string on the free store. It would be an error to return a string literal directly from
the CORBA operation because the ORB automatically deletes the return value
after the function has completed. It would also be an error to create a copy of the
string using the C++ new operator.

27

Orbix Programmer’s Guide C++ Edition

Step 4—Complete the Client Program

Complete the implementation of the client main () function in the client.cxx
file. You must add a couple of lines of code to make a remote invocation of the
getGreeting () operation on the Hello object.

Edit the client.cxx file.

Search for the line where the call Hello getGreeting() function is called.
Delete this line and replace it with the two lines of code highlighted in bold font
below:

//CH++
//File: ‘client.cxx’

//==mmmmmm
// Invoke the operations and attributes

[/===

CORBA: :String var strV = objl->getGreeting();
cout << "Greeting is: " << strV << endl;

The obj1 object reference refers to an instance of a Hello object in the server
application. It is already initialized for you.

A remote invocation is made by invoking getGreeting () on the objl object
reference. The ORB automatically establishes a network connection and sends
packets across the network to invoke the Hello i::getGreeting() function in
the server application.

The returned string is put into a C++ object, strV, of the type
CORBA: :String var. The destructor of this object will delete the returned string
so that there is no memory leak in the above code.

Step 5S—Build and Run the Demonstration

28

The Makefile generated by the code generation toolkit has a complete set of rules
for building both the client and server applications. To build the client and server:

Windows
At a command-line prompt, from the C:\OCGT\HelloExample directory enter:

> nmake

Getting Started with Orbix

UNIX

At a command-line prompt, from the OCGT/HelloExample directory enter:

% make

Run the Demonstration

Run the application as follows:

1.

Run the Orbix daemon.

The Orbix daemon is responsible for bootstrapping connections between
CORBA clients and servers and can, if necessary, activate dormant servers
on demand. Information about CORBA servers is stored in the the
Implementation Repository, a database of CORBA servers maintained by
the Orbix daemon. Exactly one Orbix daemon runs on each server host.

Open a new MS-DOS prompt, or xterm window (UNIX).
Windows

> orbixd

UNIX

% orbixd

The Orbix daemon runs in the foreground and logs its activities to this
window.

Register the server with the daemon.

Every Orbix server must be registered with the Orbix daemon before it
runs for the first time. Registration only needs to be performed once per
server.

Open a new MS-DOS prompt, or xterm window (UNIX).
Windows

At a command-line prompt, from the C:\OCGT\HelloExample directory
enter:

> nmake putit

UNIX

At a command-line prompt, from the OCGT/HelloExample directory enter:
% make putit

This script outputs the following lines to the screen:

putit helloSrv C:\OCGT\HelloExample\server.exe

29

Orbix Programmer’s Guide C++ Edition

[277:New Connection
(foobar.iona.ie, IT daemon, *,userid,pid=275,optimised)]
The makefile uses the Orbix putit utility to register the server—see the
Orbix Administrator’s Guide C++ Edition for details.

3. Run the server program.
Open a new MS-DOS prompt, or xterm window (UNIX). From the
OCGT/HelloExample directory enter the name of the executable file—
server.exe (Windows) or server (UNIX).The server outputs the
following lines to the screen:
[helloSrv: New Connection
(foobar.iona.ie, IT daemon, *,userid,pid=346,optimised)]
[helloSrv: Server "helloSrv" is now available to the

network]
[Configuration TCP/1571/cdr]

The server performs the following steps when it is launched:
+ It instantiates and activates a single He11o CORBA object.

+ The stringified object reference for the Hello object is written to the
local Hello.ior file.

+ The server opens an IP port and begins listening on the port for
connection attempts by CORBA clients.

4. Run the client program.

Open a new MS-DOS prompt, or xterm window (UNIX). From the

OCGT/HelloExample directory enter the name of the executable file—

client.exe (Windows) or client (UNIX).

The client outputs the following lines to the screen:

[133: New Connection
(foobar.iona.ie,IT daemon, *,userid,pid=346,optimised)]
[133: New IIOP Connection (foobar.iona.ie:1573)]
Greeting is: Hello World!

The client performs the following steps when it runs:

+ It reads the stringified object reference for the Hello object from the
local Hello.ior file.

+ It converts the stringified object reference into an object reference.

+ It calls the remote Hello: :getGreeting () operation by invoking on
the object reference. This causes a connection to be established with
the server and the remote invocation to be performed.

30

Getting Started with Orbix

5. When you are finished, terminate all processes.

Shut down the server by typing Ctrl-C in the window where it is running.
The passing of the object reference from the server to the client in this way is
suitable only for simple demonstrations. Realistic server applications use the

CORBA naming service to export their object references instead (see Chapter
“Making Objects Available in Orbix” on page 169).

31

Orbix Programmer’s Guide C++ Edition

32

First Application

The chapter describes how to develop a distributed application
using Orbix. An example application illustrates the steps
involved in the development process. These include defining an
IDL interface, implementing this interface in C++, and
developing a C++ client application.

This chapter describes the basic programming steps required to create Orbix
objects, write server programs that expose those objects, and write client
programs that access those objects.

This chapter illustrates the programming steps using an example named
BankSimple. In this example, an Orbix server program implements two types of
objects: a single object implementing the Bank interface, and multiple objects
implementing the Account interface. A client program uses these clearly-defined
object interfaces to create and find accounts, and to deposit and withdraw money.

On Windows and UNIX, the source code for the example described in this
chapter is available in the demos\banksimple directory of your Orbix
installation. On OS/390, the location of the source code is documented in
orbixhlg.DEMOS.README (BANKSIMP), where orbixhlqrepresents your
installation’s high-level qualifier. This source code may differ slightly from the
code published in this guide. On OpenVMS, the source code for the example is
available in the orbix_root: [demos.banksimple] directory.

33

Orbix Programmer’s Guide C++ Edition

Developing a Distributed Application

To develop an Orbix application, you must perform the following steps:
1. Identify the objects required in your system and define public interfaces to
those objects using CORBA Interface Definition Language (IDL).
2. Compile the IDL interfaces.
3. Implement the IDL interfaces using C++ classes.

4. Write a server program that creates instances of the implementation
classes.

5. Write a client program that accesses the server object.
6. Compile the client and server.

7. Run the application

Defining IDL Interfaces

34

Defining IDL interfaces to your objects is the most important step in developing
an Orbix application. These interfaces define how clients access objects
regardless of the location of those objects on the network.

An interface definition contains attributes and operations. Attributes allow clients
to get and set values on the object. Operations are functions that clients can call
on an object.

For example, the following IDL from the BankSimple example defines two
interfaces for objects representing a bank application. The interfaces are defined
inside an IDL module to prevent clashes with similarly-named interfaces defined
in subsequent examples.

The interfaces to the BankSimple example are defined in IDL as follows:

// IDL
// In file banksimple.idl

module BankSimple {
typedef float CashAmount;

interface Account;

First Application

interface Bank {
Account create account (in string name);
Account find account (in string name);

}i

interface Account {
readonly attribute string name;
readonly attribute CashAmount balance;

void deposit (in CashAmount amount) ;
void withdraw (in CashAmount amount);
i
i

This code is explained as follows:

1.

An IDL module is equivalent to a C++ namespace, and groups the
definitions into a common namespace. Using a module is not mandatory,
but is good practice.

This is a forward declaration to the Account interface. It allows you to
refer to Account in the Bank interface, before actually defining Account.

The Bank interface contains two operations: create account () and
find account (), allowing a client to create and search for an account.

The Account interface contains two attributes: name and balance; both are
readonly. This means that clients can get the balance or name, but cannot

directly set them. If the readonly keyword is omitted, clients can also set
these values.

The Account interface also contains two operations: deposit () and
withdraw (). The deposit () operation allows a client to deposit money in
the account. The withdraw () operation allows a client to withdraw money
from the account.

The parameters to these operations are labelled with the IDL keyword in. This
means that their values are passed from the client to the object. Operation
parameters can be labelled as in, out (passed from the object to the client) or
inout (passed in both directions).

35

Orbix Programmer’s Guide C++ Edition

Compiling IDL Interfaces

You must compile IDL definitions using the Orbix IDL compiler. Before running
the IDL compiler, ensure that your configuration is correct.

Setting Up Configuration for the IDL Compiler

You should ensure that the environment variable IT CONFIG PATH is set to the
location of iona.cfg, the root Orbix configuration file.

UNIX

On UNIX, if iona.cfg is in directory /local/progress, perform the following
steps:

1. Under sh enter:

o©

IT CONFIG_PATH=/local/progress
export IT CONFIG PATH

or under csh enter:

o©

o©

setenv IT_CONFIG_PATH /local/progress

2. Set the environment variable LD LIBRARY PATH to include the location of
the Orbix 1ib directory in a similar manner.

Windows

On Windows, if iona.config is in directory C:\progress\config,
enter the following at the DOS prompt:

set IT CONFIG PATH = C:\progress\config

0S/390

On OS/390, you can specify the IT CONFIG PATH environment variable using

ENVAR in the list of runtime options preceding the arguments to any Language
Environment program. For example:

//STEP1 EXEC PGM=progname.

// PARM:'ENVAR(“IT_CONFIG_PATH:TEST.PARMS(ORBIXCFG)")
// /arguments'

36

First Application

Refer to the Orbix for 0S/390 Administrator’s Guide for full details about running
Orbix on 0S/390.

OpenVMS

On OpenVMS, the IT CONFIG PATH is a system logical, which is set to
orbix.root: [config.your host]. You can override this, for example:

S$define IT CONFIG PATH orbix root: [config.some other host].

Running the IDL Compiler

The IDL compiler checks the validity of the specification and generates C++ code
that allows you to write client and server programs.

Windows and UNIX

To compile the Bank and Account interfaces defined in file banksimple.idl, run
the IDL compiler as follows:

idl [options] banksimple.idl

The -B compiler option produces BOAImpl classes for the server. Refer to
Appendix A, “Orbix IDL Compiler Options” for a complete list of IDL compiler
options.

0S/390

On 0S/390, you can run the IDL compiler in batch or as a TSO command. All the
JCL procedures that are supplied by Progress are stored in orbixhlg.PROCS. The
JCL to run the IDL compiler in batch is as follows:

//STEP1 EXEC PROC=0RXI,

// INTERFACE=BANKSIMP,

// IDLPARMS='-B',

// IDL=orbixhlqg.DEMOS. IDL,
// HH=output.pds.hh,

// STUBS=output.pds.stubs

The TSO command to run the IDL compiler on OS/390 is as follows:
CALL 'orbixhlg.LOAD(IDL)' '-B orbixhlg.DEMOS.IDL (BANKSIMP)' ASIS

37

Orbix Programmer’s Guide C++ Edition

You must pass a fully-qualified data set name as an argument to the IDL
compiler. The IDL compiler reads the input from this PDS and then writes the
generated C++ files to it.

OpenVMS

On OpenVMS, the syntax for the complier command is:

$idl [options] banksimple.idl

Output from the IDL Compiler

The IDL compiler produces three C++ files that communicate with Orbix:

1. A common header file containing declarations used by both client and
server mode. This header file should be included in all client and server
programs.

2. A source file to be compiled and linked with servers (object skeleton
code).

3. A source file to be compiled and linked with clients (client stub code).

These source files contain C++ definitions that correspond to your IDL
definitions. These C++ definitions allow you to write C++ client and server
programs.

By default, these files are named as follows:

File Windows UNIX 0S/390 OpenVMS
Header file banksimple.hh banksimple.hh |output.pds.hh (banksimple.hh
BANKSIM)

Client stub code

banksimpleC.cpp |banksimpleC.C |output.pds.stubs(|banksimpleC.cc|
BANKSIMC)

Server skeleton
code

banksimpleS.cpp |banksimpleS.C |output.pds.stubs(|banksimpleS.cc
BANKSIMS)

38

First Application

The Client Stub Code

The files banksimple.hh and banksimple.client .cxx define the C++ code that
a client uses to access a Bank object. This code is termed the client stub code. For
example, the banksimple.hh file for the BankSimple IDL includes a class to
represent Bank and Account objects from a client’s point of view.

The IDL declarations for the Account interface include the C++ definitions in the
following code extract:

// C++
// In file banksimple.hh

// Automatically generated by the IDL compiler.
class Account: public virtual CORBA::Object ({
public:
// CORBA support functions and error handling are
// omitted here for clarity
virtual char* name ()
throw (CORBA::SystemException) ;
virtual CashAmount balance ()
throw (CORBA::SystemException) ;
virtual void deposit (CashAmount amount)
throw (CORBA::SystemException) ;
virtual void withdraw (CashAmount amount)
throw (CORBA::SystemException) ;
}i
The environment argument (the last argument passed to each method) is omitted
here.

This class represents the IDL Account interface in C++ allowing C++ clients to
treat Account objects like any other C++ object. The readonly name and balance
attributes map to member functions of the same name. The deposit () and
withdraw () operations map to C++ member functions with equivalent
parameters.

39

Orbix Programmer’s Guide C++ Edition

The Object Skeleton Code

The files banksimple.hh and banksimple.server.cxx define the C++ code that
allows a server program to implement IDL interfaces and accept operation calls
from clients to objects. This code is known as the object skeleton code. These
server-side skeletons receive CORBA calls and pass them onto application code.
When implementing a server using the BOAI/mpl approach, you inherit from a
BOAImpl class generated by the IDL compiler.

For the Account interface the BOAImpl class includes the following C++
definitions:

// C++
// In file banksimple.hh

// Automatically generated by IDL compiler.
class AccountBOAImpl: public virtual Account {
public:
virtual char* name ()
throw (CORBA::SystemException) = 0;
virtual CashAmount balance ()
throw (CORBA::SystemException) 0;
virtual void deposit (CashAmount amount)
throw (CORBA::SystemException) = 0;
virtual void withdraw (CashAmount amount)
throw (CORBA::SystemException) = 0;

}i

To implement the Account interface, you must inherit from this class and
override the pure virtual functions that represent IDL operations with application
code.

Implementing the IDL Interfaces

This example uses the CORBA BOAImpl approach to implementing an IDL
interface. It uses two classes to implement the Bank and Account IDL interfaces
in C++: BankSimple BankImpl and BankSimple AccountImpl. These classes
inherit the IDL compiler-generated BankSimple: : BankBOAImpl and
BankSimple: :AccountBOAImpl classes. These base classes provide all the Orbix
functionality. All that remains is to override the abstract member functions that
represent the IDL operations.

40

First Application

For example, the code for BankSimple BankImpl is as follows:

// C++
// In file BankSimple\banksimple bankimpl.h
// Implementation class for the Bank IDL interface.

class BankSimple BankImpl : public virtual BankSimple::BankBOAImpl
{
public:
// Mapped IDL operations.
virtual BankSimple::Account ptr
create account (const char* name, CORBA::Environmenté&);
virtual BankSimple::Account ptr
find account(const char* name, CORBA::Environmenté);
// C++ constructor and destructor.
BankSimple BankImpl () ;
virtual ~BankSimple BankImpl () ;

protected:
static const int MAX ACCOUNTS;
BankSimple::Account var* m accounts;

i
This code is explained as follows:
1. Inheriting from the BOAImpl class generated by the IDL compiler
provides Orbix functionality for the server objects.

2. Operations defined in IDL are implemented by corresponding operations
in C++. The IDL Account type is represented by an Account ptr.

3. The constructor and destructor are normal C++ functions that can be called
by server code. Only IDL functions can be called remotely by clients.

4. The accounts created by the bank are stored in an array of Account var.
These are like pointers; for more information on Account var, refer to
“CORBA Object References” on page 48.

You can implement the member functions of BankSimple BankImpl as follows:

// Ct+
// In file banksimple bankimpl.cxx

#include “banksimple bankimpl.h”
#include “banksimple accountimpl.h”

41

Orbix Programmer’s Guide C++ Edition

1 const int BankSimple BankImpl::MAX ACCOUNTS = 1000;
BankSimple BankImpl::BankSimple BankImpl ()
m_accounts (new BankSimple::Account var[MAX ACCOUNTS]) {
// Make sure all accounts are nil.
for (int i = 0; i < MAX ACCOUNTS; ++i) {
m accounts[i] = BankSimple::Account:: nil();

BankSimple BankImpl::~BankSimple BankImpl() {
delete [] m accounts;

// Add a new account.
BankSimple: :Account ptr BankSimple BankImpl::create account
(const char* name, CORBA::Environmenté&) {

int 1 = 0;
for (; i < MAX ACCOUNTS && !CORBA::is nil (m accounts[i]); ++i)
{}
if (i < MAX ACCOUNTS) {
2 m accounts[i] = new BankSimple AccountImpl (name, 0.0);
cout << “create account: Created account with name: ”
<< name << endl;
3 return BankSimple::Account:: duplicate(m accounts[i]);
}
elsef
cout << “create account: failed, no space left!” << endl;
4 return BankSimple::Account:: nil();

// Find a named account.
BankSimple: :Account ptr BankSimple BankImpl::find account
(const char* name, CORBA::Environmenté&) {

int i = 0;

for (; i < MAX ACCOUNTS &&(CORBA::is nil(m accounts[i]) ||
strcmp (name, m accounts[i]->name()) != 0); ++i)

if (i < MAX ACCOUNTS) {
cout << “find;account: found account named” << name << endl;

42

First Application

return BankSimple::Account:: duplicate(m accounts[i]);

}

else{
cout << “find account: no account named” << name << endl;
return BankSimple::Account:: nil();

}

The code is explained as follows:

1. The maximum number of accounts that the bank can handle in this simple
implementation is set as a constant of 1000.
2. New accounts are created with a balance of zero.

3. When an Account reference is returned from create account () and
find account () operations, it must be duplicated. According to CORBA
memory management rules, this reference is released by the caller.

4. If an account cannot be created, nil is returned.

Refer to the banksimple\demos directory of your Orbix installation for the
corresponding code for BankSimple AccountImpl.

Writing an Orbix Server Application

To write a C++ program that acts as an Orbix server, perform the following steps:

1. Initialize the server connection to the Orbix ORB, and to the Basic Object
Adaptor (BOA).

2. Create an implementation object. This is done by creating instances of the
implementation classes.

3. Allow Orbix to receive and process incoming requests from clients.

This section describes each of these programming steps in turn.

Initializing the ORB

Because Orbix uses the standard OMG IDL to C++ mapping, all servers and
clients must call CORBA: :ORB_init () to initialize the ORB. This returns a
reference to the ORB object. The ORB methods defined by the standard can then
be invoked on this instance.

43

Orbix Programmer’s Guide C++ Edition

// C++
// In file server.cxx

try {
// Initialize the ORB.
CORBA: :0RB var orb = CORBA::0RB init (argc,argv, “Orbix”);

}
catch (const CORBA::SystemException& e) {
cout << “Unexpected exception” << e << endl;

}

In this code sample, the argc parameter refers to the number of arguments in
argv. The argv parameter is a sequence of configuration strings used if “Orbix”
is a null string; the string “Orbix” identifies the ORB. Refer to the Orbix
Reference Guide for more information on CORBA: :ORB_init ().

Orbix raises a C++ exception to indicate that a function call has failed. All
CORBA exceptions derive from CORBA: :Exception. Many Orbix functions (for
example, ORB_init ()) and all IDL operations may raise a CORBA system
exception, of type CORBA: : SystemException.

You must use C++ try/catch statements to handle exceptions, as illustrated in
the preceding code sample. In the remainder of this chapter, try/catch
statements are omitted for clarity.

Creating an Implementation Object

44

To create an implementation object, you must create an instance of your
implementation class in your server program. Typically a server program creates
a small number of objects in its main () function, and these objects may in turn
create further objects. In the BankSimple example, the server creates a single
bank object in its main () function. This bank object then creates accounts when
create account () is called by the client.

For example, to create an instance of BankSimple: :Bank in your server main ()
function, do the following:

// C++
// In file server.cxx

#include “banksimple bankimpl.h”

First Application

int main (...) {

// Create a bank implementation object.
BankSimple::Bank var my bank = new BankSimple BankImpl;

}

A server program can create any number of implementation objects for any
number of IDL interfaces.

Note that implementation object has a name that uniquely identifies it to the
server. This name is called the “marker” (discussed more in ‘Making Objects
Available in Orbix” on page 169). The above code does not explicitly set the
marker for the Bank implementation object, hence the ORB picks an unused
random name. In general, you always need to explicitly set the marker from your
implementation objects (see ‘Making Objects Available in Orbix” on page 169).

Receiving Client Requests

When a server instantiates an Orbix object (for example, one inheriting from the
BOAImpl class), it is automatically registered with Orbix as a distributed object.
To make objects available to clients, the server must call the Orbix function
CORBA: :BOA: :impl is ready() to complete its initialization and to process
operation calls from clients.

You can code a complete server main () function as follows:
// C++

// In file server.cxx

#include “banksimple bankImpl.h”
#include “banksimple accountImpl.h”
#include <it demo nsw.h>

// Server mainline.

int main (int argc, char* argv[]) {
try {
// Use standard demo server options.
1 IT Demo ServerOptions serveropt (“IT Demo/BankSimple/Bank”) ;
2 CORBA: :ORB var orb = CORBA::0RB init(argc, argv, “Orbix”);

CORBA: :BOA var boa = orb->BOA init (argc, argv, “Orbix BOA");

45

Orbix Programmer’s Guide C++ Edition

// Set diagnostics.
orb->setDiagnostics (serveropt.diagnostics()) ;

// Set server name.
3 orb->setServerName (serveropt.server name());

4 // Indicate server should not quit while clients
// are connected.
boa->setNoHangup (1) ;
// Set up Naming Service Wrappers (NSW).

5 IT Demo NSW ns wrapper;
6 ns_wrapper.setNamePrefix (serveropt.context());
7 const char* bank name = “BankSimple.Bank”;

// Create a bank implementation object.

8 BankSimple::Bank var my bank = new BankSimple BankImpl;
9 // Register server object with the Naming Service.
if (serveropt.bindns()) {

cout << “Binding objects in the Naming Service” << endl;
ns wrapper.registerObject (bank name, my bank);

// Server has completed initialization, wait for
// incoming requests.
10 boa->impl is ready((char*)serveropt.server name(),
serveropt.timeout());

// impl is ready() returns only when Orbix times-out
// an idle server.
cout << “server exiting” << endl;
}
catch (const CORBA::Exception& e) {
cerr << “Unexpected exception” << e << endl;
return 1;
}
return 0;

I

This code is explained as follows:

46

First Application

. Create the standard server options for use throughout the demonstration
and set the server name to IT Demo/BankSimple/Bank. The Orbix
demos\demolib directory contains the standard server and client options
used by the Bank series examples in this book.

. Initialize the ORB and BOA. The ORB object provides functionality
common to both clients and servers. The BOA (Basic Object Adapter)
object is derived from the ORB and provides additional server-side
functionality.

The ORB and the BOA are different views of the same ORB API—this
object is also available via the global variable CORBA: :Orbix. However,
use of this variable is not CORBA-defined and is discouraged.

. Set the server name using setServerName (serveropt.server name ()).
This is required by Orbix before exporting object references.

. Create a Naming Service Wrapper (NSW) object. To simplify the use of
the Naming Service, a Naming Service Wrapper is provided. This hides

the low-level detail of the CORBA Naming Service. Refer to “Using the
Naming Service in Orbix Example Applications” on page 178 for details
of the Naming Service wrapper functions.

5. Define a name prefix that is used for subsequent operations.

6. BankSimple.Bank is the name that the bank object is known by in the

Naming Service.

. The created BankSimple instance is my bank. This object implements an
instance of the IDL interface Bank. This is called directly from client
applications using the CORBA standard Internet Inter-ORB Protocol
(IIOP).

. The server now registers its objects in the Naming Service using the
Naming Service wrapper function registerObject ().

. The CORBA: :BOA: :impl is ready () operation is called to complete
server initialization. This takes a server name and a timeout value as
parameters. You can specify any name for your server; however, the name
should match the name used to register the server in the Implementation
Repository, and the argument used to call setServerName ().

The timeout value indicates the period of time, in milliseconds, that the
impl is ready () call should block for while waiting for an operation call
to arrive from a client. If no call arrives in this period, impl is ready ()

47

Orbix Programmer’s Guide C++ Edition

returns. If a call arrives, Orbix calls the appropriate member function on
the implementation object and the timeout counter starts again from zero.

Writing an Orbix Client Application

To write a C++ client program to an Orbix object, you must perform the
following steps:

1. Initialize the client connection to the ORB.

2. Get a reference to an object.

3. Invoke attributes and operations defined in the object’s IDL interface.

This section describes each of these steps in turn.

Initializing the ORB

All clients and servers must call CORBA: :ORB_init () to initialize the ORB. This
returns a reference to the ORB object. The ORB methods defined by the standard
can then be invoked on this instance.

CORBA Object References

A CORBA object reference identifies an object in your system. When an object
reference enters a client address space, Orbix creates a proxy object that acts as a
local representative for the remote implementation object. Orbix forwards
operation invocations on the proxy object to corresponding functions in the
implementation object.

Consider an object reference as a pointer that can point to an object in a remote
server process. Object references to an object of interface x are represented by a
type X_ptr, which behaves like a normal C++ pointer.

An object reference requires some memory in the client (the memory needed by
the proxy object), so you must release each reference when finished by calling
CORBA: :release (). The CORBA: : release () method releases the client memory
used by the object reference—it does not affect the remote server object.

48

First Application

For interface X, the IDL compiler also generates a smart pointer class called
X_var that automates memory management. Xx_var behaves just like X ptr,
except it releases the reference when it goes out of scope, or if a new reference is
assigned.

Getting a Reference to an Object

The flexible CORBA-defined way to obtain object references is to use the
standard CORBA Naming Service. The CORBA Naming Service allows a name
to be bound to an object and allows that object to be found subsequently by
resolving that name within the Naming Service.

A server that holds an object reference can register it with the Naming Service,
giving it a name that can be used by other components of the system to find the
object. The Naming Service maintains a database of bindings between names and
object references. A binding is an association between a name and an object
reference. Clients can call the Naming Service to resolve a name, and this returns
the object reference bound to that name. The Naming Service provides operations
to resolve a name, to create new bindings, to delete existing bindings, and to list
the bound names.

A name is always resolved within a given naming context. The naming context
objects in the system are organized into a graph, which may form a naming
hierarchy, much like that of a file system. The following sample code shows how
the client uses the Naming Service wrapper functions to obtain an object
reference:

// C++
// In file client.cxx

// Naming Service Setup.
// Create a Naming Service Wrapper object.
IT Demo NSW ns wrapper;
1 ns wrapper.setNamePrefix (clientopt.context());

// Get CORBA object.
// Specify the object name in the Naming Service.

2 const char* object name = "BankSimple.Bank";

// Get a reference to the required object from the NSW.
3 CORBA: :Object var obj = ns wrapper.resolveName (object name) ;

49

Orbix Programmer’s Guide C++ Edition

50

}

// Narrow the object reference.
BankSimple: :Bank var bank = BankSimple::Bank:: narrow (obj);
if (CORBA::is nil (bank)) {
cerr << "Object \"" << object name
<< "\"in the Naming Service" << endl
<< "\tis not of the expected type."<< endl;
return 1;

// Start client menu loop
BankMenu main menu (bank) ;
main menu.start();

This code is described as follows:

1.

Define a name prefix used by the Naming Service wrapper object for
subsequent operations.

BankSimple.Bank is the name by which the bank object is known in the
Naming Service.

The method nswrapper: : resolveName () retrieves the object reference
from the Naming Service placed there by servers. The object name
parameter is the name of the object to resolve. This must match the name
used by the server when it calls registerObject ().

The return type from resolveName () is of type CORBA: :Object. You
must call narrow () to safely cast down from the base class to the Bank
IDL class, before you can make invocations on remote Bank objects. The
client stub code generated for every IDL class contains the narrow ()
function definition for that class.

This creates and runs a main menu for Bank clients. This menu enables
you to find or create accounts by calling the appropriate C++ member
function on the object reference.

First Application

Invoking IDL Attributes and Operations

To access an attribute or an operation associated with an object, call the
appropriate C++ member function on the object reference. The client-side proxy
redirects this C++ call across the network to the appropriate member function of
the implementation object.

The main BankSimple client program calls a simple interactive menu. This
enables you to call IDL operations on a Bank. The following code extracts show
the code called when you choose to create or find an account:

// C++
// In file bankmenu.cxx

void BankMenu::do create() throw(CORBA::SystemException) {

cout << “Enter account name: ” << flush;
CORBA: :String var name = IT Demo Menu::get string();

1 BankSimple::Account var account = m bank->create account (name) ;

// Start a sub-menu with the returned account reference.
AccountMenu sub menu(account) ;
sub menu.start();

// do_find -- calls find account and runs account menu.
void BankMenu::do find throw (CORBA::SystemException) {

cout << “Enter account name: “ << flush;
2 CORBA::String var name = IT Demo Menu::get string();

BankSimple::Account var account = m bank->find account (name) ;
AccountMenu sub menu (account)
sub menu.start();

}
This code is explained as follows:

1. m bankisaBank var—a C++ helper class automatically generated by the
IDL compiler from the Bank interface. This is used like a normal C++
pointer to call IDL operations just like C++ operations.

51

Orbix Programmer’s Guide C++ Edition

2. Thestring var name variable is used for the account name entered. The
caller is not responsible for releasing the memory—String var
automatically does this when it goes out of scope.

Use the C++ arrow operator (—>) to access the operations defined in IDL through
a BankSimple: :Bank var object. Call those member functions using normal
C++ calls and test for errors using C++ exception handling.

Compiling the Client and Server

To build the client and server, you must compile and link the relevant C++ files
with the Orbix library. On UNIX, this is 1iborbix; on Windows, this is
ITMi.lib. On OpenVMS, this is liborbix.olb. These files are available in the
Orbix 1ib directory.

Note: For demonstration-specific functionality, you must also include
libdemo.a on UNIX and demolib.1lib on Windows.

Compiling the Client
To build the client application, compile and link the following C++ files, and the
Orbix library:
® banksimple.client.cxx
® client.cxx
® bankmenu.cxx

® accountmenu.cxx

client.cxx is the source file for the client main () function.

52

First Application

Compiling the Server

To build the server application, compile and link the following C++ files, and the
Orbix library.

® banksimple.server.cxx
® Dbanksimple bankimpl.cxx
® Dbanksimple accountimpl.cxx
® server.cxx
server.cxx 18 the source file for the server main () function.

The Orbix demos/banksimple directory includes a makefile that compiles and
links the bank client and server demonstration code.

To build the executables, type one of the following in the demos\banksimple
directory of your Orbix installation:

Windows >nmake
UNIX Ymake
OpenVMS $mms

On 0S/390, JCL is provided to build and run the demo in
ORBIXhlqg.DEMOS.BUILD.JCL.

Running the Application

To run the application, do the following:

1. Run the Orbix daemon process (orbixd) on the server host.
2. Register the server in the Orbix Implementation Repository.

3. Run the client program.

53

Orbix Programmer’s Guide C++ Edition

Running the Orbix Daemon

Before a client can access a server, the server must be registered with the Orbix
daemon. Before running the Orbix daemon, ensure that the environment variable
IT CONFIG PATH is set as described in “Setting Up Configuration for the IDL
Compiler” on page 36.

Windows and UNIX

You can run the Orbix daemon on the server host by typing orbixd at the
command line or using the Start menu on Windows.

0S/390

On 0S/390, the daemon can be run as a batch job or a started task. Sample JCL is
supplied in orbixhlqg.JCL (ORBIXD).

OpenVMS
On OpenVMS, the daemon should be started using the command:

$orbixd a em on start

Registering the Server

54

The Implementation Repository is the component of Orbix that stores information
about servers available in the system. Before running your application, you must
register your server in the Implementation Repository.

Windows and UNIX and OpenVMS

To register the server(s), use either the Server Manager GUI tool or run the Orbix
putit command on the server host as follows:

putit server name server executable

0S/390

To register the server(s), you can execute utilities either by TSO call commands
or the Orbix ISPF panels. For example:

First Application

CALL orbixhlq.LOAD (PUTIT) 'server name execution jcl location' ASIS
On all platforms, server name is the name of your server passed to
impl is ready().

If a server binds names in the Naming Service, you may need to run it once to
allow it to set up the name bindings. Details of how to do this depend on the
server used. The demonstrations provide a makefile that do the necessary server
registration and set up names in the Naming Service.

To register the server, type one of the following:

Windows > nmake register
UNIX % make register
OpenVMS $mms register

On 0S/390, the details for each demonstration are documented in a member of
orbixhlqg.DEMOS.README.

Running the Client

When a client binds to an object in a server registered in the Implementation
Repository, the Orbix daemon automatically launches the server executable file.
Consequently, you can run the client without running the server in advance.

Before running the client, ensure that the environment variable IT CONFIG PATH
is set as described in “Setting Up Configuration for the IDL Compiler” on
page 36.

Windows and UNIX

Run the example client by entering client at the command-line prompt. The
client displays a text menu allowing you to choose the actions you want to take,
and then prompts you for the necessary information. The server outputs messages
when it processes incoming calls. You can see these messages by looking at the
application shell window launched by the Orbix daemon.

0S/390

Run the example client using the following TSO command:

55

Orbix Programmer’s Guide C++ Edition

CALL orbixhlg.DEMOS.LOAD (BANKCLNT)
'"ENVAR (“IT CONFIG PATH=orbixhlqg.PROCS (ORBIXCFG)”) /"'

The client displays a text menu allowing you to choose the actions you want to
take, and then prompts you for the necessary information. The server outputs
messages when it processes incoming calls. You can view these messages by
looking at the SYSPRINT output.

OpenVMS

On OpenVMS, run the example client by entering mcr []Jclient.exe at
the command line prompt. The client displays a text menu that
allows you to choose the actions you want to take and then prompts
you for the necessary information. The server outputs messages
when it processes incoming calls. These messages are logged to the
orbix$log:process name.log file. You can identify the name of the
process your server is running by typing observ at the command line
prompt.

Summary of Programming Steps

To develop a distributed application with Orbix, do the following:

1. Identify the objects required in your system and define the public
interfaces to those objects using the CORBA Interface Definition
Language (IDL).

Compile the IDL interfaces.
Implement the IDL interfaces with C++ classes.

Write a server program that creates instances of the implementation
classes. This involves:

i. Initializing the ORB.

ii. Creating initial implementation objects.

iii. Allowing Orbix to receive and process incoming requests from clients.
5. Write a client program that accesses the server objects. This involves:

i. Initializing the ORB.

ii. Getting a reference to an object.

iii. Invoking object attributes and operations.

56

First Application

6. Compile the client and server.

7. Run the application. This involves:

i. Running the Orbix daemon process.
ii. Registering the server in the Implementation Repository.

iii. Running the client.

57

Orbix Programmer’s Guide C++ Edition

58

Part 11

Orbix C++ Programming

Introduction to CORBA IDL

The CORBA Interface Definition Language (IDL) is used to
define interfaces to objects in your network. This chapter
introduces the features of CORBA IDL and illustrates the syntax
used to describe interfaces.

The first step in developing a CORBA application is to define the interfaces to the
objects required in your distributed system. To define these interfaces, you use
CORBA IDL.

IDL allows you to define interfaces to objects without specifying the
implementation of those interfaces. To implement an IDL interface, you define a
C++ class that can be accessed through that interface and then you create objects
of that class within an Orbix server application.

In fact, you can implement IDL interfaces using any programming language for
which an IDL mapping is available. An IDL mapping specifies how an interface
defined in IDL corresponds to an implementation defined in a programming
language. CORBA applications written in different programming languages are
fully interoperable.

CORBA defines standard mappings from IDL to several programming
languages, including C++, Java, and Smalltalk. The Orbix IDL compiler converts
IDL definitions to corresponding C++ definitions, in accordance with the
standard IDL to C++ mapping.

61

Orbix Programmer’s Guide C++ Edition

IDL Modules and Scoping

An IDL module defines a naming scope for a set of IDL definitions. Modules
allow you to group interface and other IDL type definitions in logical name
spaces. When writing IDL definitions, always use modules to avoid possible
name clashes.

The following example illustrates the use of modules in IDL:
// IDL
module BankSimple {
interface Bank {
}i
interface Account ({
}i
}i

The interfaces Bank and Account are scoped within the module BankSimple. IDL
definitions are available directly within the scope in which you define them. In
other naming scopes, you must use the scoping operator (: :) to access these
definitions. For example, the fully scoped name of interfaces Bank and Account
are BankSimple: :Bank and BankSimple: :Account respectively.

IDL modules can be reopened. For example, a module declaration can appear
several times in a single IDL specification if each declaration contains different
data types. In most IDL specifications, this feature of modules is not required.

Defining IDL Interfaces

62

An IDL interface describes the functions that an object supports in a distributed
application. Interface definitions provide all of the information that clients need to
access the object across a network.

Introduction to CORBA IDL

Consider the example of an interface that describes objects which implement
bank accounts in a distributed application. The IDL interface definition is as
follows:

//IDL
module BankSimple {

// Define a named type to represent money.
typedef float CashAmount;

// Forward declaration of interface Account.
interface Account;

interface Bank {

i

interface Account {
// The account owner and balance.
readonly attribute string name;
readonly attribute CashAmount balance;

// Operations available on the account.
void deposit (in CashAmount amount);
void withdraw (in CashAmount amount) ;

bi
bi
The definition of interface Account includes both attributes and operations. These
are the main elements of any IDL interface definition.

Attributes in IDL Interface Definitions

Conceptually, attributes correspond to variables that an object implements.
Attributes indicate that these variables are available in an object and that clients
can read or write their values.

In general, attributes map to a pair of functions in the programming language used
to implement the object. These functions allow client applications to read or write
the attribute values. However, if an attribute is preceded by the keyword
readonly, then clients can only read the attribute value.

63

Orbix Programmer’s Guide C++ Edition

For example, the Account interface defines the attributes name and balance.
These attributes represent information about the account which the object
implementation can set, but which client applications can only read.

Operations in IDL Interface Definitions

IDL operations define the format of functions, methods, or operations that clients
use to access the functionality of an object. An IDL operation can take parameters
and return a value, using any of the available IDL data types.

For example, the Account interface defines the operations deposit () and
withdraw () as follows:

//IDL
module BankSimple {
typedef float CashAmount;

interface Account {
// Operations available on the account.
void deposit (in CashAmount amount) ;
void withdraw (in CashAmount amount) ;

i
}i
Each operation takes a parameter and has a void return type.

Each parameter definition must specify the direction in which the parameter value
is passed. The possible parameter passing modes are as follows:

in The parameter is passed from the caller of the operation to the
object.

out The parameter is passed from the object to the caller.

inout The parameter is passed in both directions.

Parameter passing modes clarify operation definitions and allow an IDL compiler
to map operations accurately to a target programming language.

64

Introduction to CORBA IDL

Raising Exceptions in IDL Operations

IDL operations can raise exceptions to indicate the occurrence of an error.
CORBA defines two types of exceptions:

* System exceptions are a set of standard exceptions defined by CORBA.

* User-defined exceptions are exceptions that you define in your IDL
specification.

Implicitly, all IDL operations can raise any of the CORBA system exceptions. No
reference to system exceptions appears in an IDL specification.

To specify that an operation can raise a user-defined exception, first define the
exception structure and then add an IDL raises clause to the operation
definition. For example, the operation withdraw () in interface Account could
raise an exception to indicate that the withdrawal has failed, as follows:

// IDL
module BankExceptions {
typedef float CashAmount;

interface Account {
exception InsufficientFunds {
string reason;

}i

void withdraw (in CashAmount amount)
raises (InsufficientFunds) ;

bi
bi
An IDL exception is a data structure that contains member fields. In the preceding

example, the exception InsufficientFunds includes a single member of type
string.

The raises clause follows the definition of operation withdraw () to indicate that
this operation can raise exception InsufficientFunds. If an operation can raise
more then one type of user-defined exception, include each exception identifier in
the raises clause and separate the identifiers using commas.

65

Orbix Programmer’s Guide C++ Edition

66

Invocation Semantics for IDL Operations

By default, IDL operations calls are synchronous, that is a client calls an
operation and blocks until the object has processed the operation call and returned
a value. The IDL keyword oneway allows you to modify these invocation
semantics.

If you precede an operation definition with the keyword oneway, a client that calls
the operation will not block while the object processes the call. For example, you
could add a oneway operation to interface Account that sends a notice to an
Account object, as follows:

module BankSimple ({

interface Account {
oneway void notice(in string text);

}i
i
Orbix does not guarantee that a oneway operation call will succeed; so if a
oneway operation fails, a client may never know. There is only one circumstance
in which Orbix indicates failure of a oneway operation. If a oneway operation call
fails before Orbix transmits the call from the client address space, then Orbix
raises a system exception.

A oneway operation can not have any out or inout parameters and can not return
a value. In addition, a oneway operation can not have an associated raises
clause.

Passing Context Information to IDL Operations

CORBA context objects allow a client to map a set of identifiers to a set of string
values. When defining an IDL operation, you can specify that the operation
should receive the client mapping for particular identifiers as an implicit part of
the operation call. To do this, add a context clause to the operation definition.

Consider the example of an Account object, where each client maintains a set of
identifiers, such as sys_time and sys location that map to information that the
operation deposit () logs for each deposit received. To ensure that this
information is passed with every operation call, extend the definition of
deposit () as follows:

Introduction to CORBA IDL

// IDL
module BankSimple {
typedef float CashAmount;

interface Account {
void deposit (in CashAmount amount)
context (“sys time”, “sys location”);

bi
bi
A context clause includes the identifiers for which the operation expects to
receive mappings.

Note that IDL contexts are rarely used in practice.

Inheritance of IDL Interfaces

IDL supports inheritance of interfaces. An IDL interface can inherit all the
elements of one or more other interfaces.

For example, the following IDL definition illustrates two interfaces, called
CheckingAccount and SavingsAccount, that inherit from interface Account:

// IDL
module BankSimple({
interface Account {

}i

interface CheckingAccount : Account {
readonly attribute overdraftLimit;
boolean orderChequeBook () ;

i

interface SavingsAccount : Account {
float calculatelInterest ();

}i
}i
Interfaces CheckingAccount and SavingsAccount implicitly include all
elements of interface Account.

67

Orbix Programmer’s Guide C++ Edition

68

An object that implements CheckingAccount can accept invocations on any of
the attributes and operations of this interface, and on any of the elements of
interface Account. However, a CheckingAccount object may provide different
implementations of the elements of interface Account to an object that
implements Account only.

The following IDL definition shows how to define an interface that inherits both
CheckingAccount and SavingsAccount:

// IDL
module BankSimple {
interface Account {

. ce
interface CheckingAccount : Account {
. .
interface SavingsAccount : Account {
. ce

interface PremiumAccount
CheckingAccount, SavingsAccount {

}i
i
Interface PremiumAccount is an example of multiple inheritance in IDL.
Figure 3.1 on page 69 illustrates the inheritance hierarchy for this interface.

If you define an interface that inherits from two interfaces which contain a
constant, type, or exception definition of the same name, you must fully scope
that name when using that constant, type, or exception. An interface can not
inherit from two interfaces that include operations or attributes that have the same
name.

Introduction to CORBA IDL

CheckingAccount| SavingsAccount

A

|PremiumAccount|

Figure 3.1: Multiple Inheritance of IDL Interfaces

The Object Interface Type

IDL includes the pre-defined interface Object, which all user-defined interfaces
inherit implicitly. The operations defined in this interface are described in the
Orbix C++ Edition Programmer’s Reference.

While interface Object is never defined explicitly in your IDL specification, the
operations of this interface are available through all your interface types. In
addition, you can use Object as an attribute or operation parameter type to
indicate that the attribute or operation accepts any interface type, for example:

// IDL
interface ObjectLocator

{
void getAnyObject (out Object obj);
}i

Note that it is not legal IDL syntax to inherit interface Object explicitly.

69

Orbix Programmer’s Guide C++ Edition

Forward Declaration of IDL Interfaces

In an IDL definition, you must declare an IDL interface before you reference it. A
forward declaration declares the name of an interface without defining it. This
feature of IDL allows you to define interfaces that mutually reference each other.

For example, IDL interface Bank includes an operation of IDL interface type
Account, to indicate that Bank stores a reference to an Account object. If the
definition of interface Account follows the definition of interface Bank, you must
forward declare Account as follows:

// IDL

module BankSimple {
// Forward declaration of Account.
interface Account;

interface Bank {
Account create account (in string name);
Account find account (in string name);
}i
// Full definition of Account.
interface Account {

}r
}s

The syntax for a forward declaration is the keyword interface followed by the
interface identifier.

Overview of the IDL Data Types

In addition to IDL module, interface, and exception types, there are three general
categories of data type in IDL:

® Basic types.
®* Complex types.
® Pseudo object types.

This section examines each category of IDL types in turn and also describes how
you can define new data type names in IDL.

70

Introduction to CORBA IDL

IDL Basic Types

The following table lists the basic types supported in IDL.
IDL Type Range of Values
short -2t 211 (16-bit)

unsigned short

0...2%-1 (16-bit)

long

231, ..231-1 (32-bit)

unsigned long

0...2%2-1 (32-bit)

long long

203 .2%_1 (64-bit)

unsigned long long

0...-2% (64-bit)

express an arbitrary IDL type.

float IEEE single-precision floating point numbers.

double IEEE double-precision floating point numbers.

char An 8-bit value.

boolean TRUE or FALSE.

octet An 8-bit value that is guaranteed not to undergo any
conversion during transmission.

any The any type allows the specification of values that can

The any data type allows you to specify that an attribute value, an operation

parameter, or an operation return value can contain an arbitrary type of value to

be determined at runtime. Type any is described in detail in Chapter 12, “The

Any Data Type” on page 249.

71

Orbix Programmer’s Guide C++ Edition

IDL Complex Types

This section describes the IDL data types enum, struct, union, string, sequence,
array, and fixed.

Enum

An enumerated type allows you to assign identifiers to the members of a set of
values, for example:

// IDL
module BankSimple {
enum Currency {pound, dollar, yen, franc};

interface Account {
readonly attribute CashAmount balance;
readonly attribute Currency balanceCurrency;

}i
}i
In this example, attribute balanceCurrency in interface Account can take any
one of the values pound, dollar, yen, or franc.

Struct

A struct data type allows you to package a set of named members of various
types, for example:

// IDL
module BankSimple{
struct CustomerDetails {
string name;
short age;

}i

interface Bank {
CustomerDetails getCustomerDetails
(in string name) ;

}i

72

Introduction to CORBA IDL

In this example, the struct CustomerDetails has two members. The operation
getCustomerDetails () returns a struct of type CustomerDetails that includes
values for the customer name and age.

Union

A union data type allows you to define a structure that can contain only one of
several alternative members at any given time. A union saves space in memory,
as the amount of storage required for a union is the amount necessary to store its
largest member.

All IDL unions are discriminated. A discriminated union associates a label value
with each member. The value of the label indicates which member of the union
currently stores a value.

For example, consider the following IDL union definition:

// IDL

struct DateStructure {
short Day;
short Month;
short Year;

i

union Date switch (short) {
case 1l: string stringFormat;
case 2: long digitalFormat;
default: DateStructure structFormat;

i

The union type Date is discriminated by a short value. For example, if this short
value is 1, then the union member stringFormat stores a date value as an IDL
string. The default label associated with the member structFormat indicates that
if the short value is not 1 or 2, then the structFormat member stores a date value
as an IDL struct.

Note that the type specified in parentheses after the switch keyword must be an
integer, char, boolean or enum type and the value of each case label must be
compatible with this type.

73

Orbix Programmer’s Guide C++ Edition

74

String

An IDL string represents a character string, where each character can take any
value of the char basic type.

If the maximum length of an IDL string is specified in the string declaration, then
the string is bounded. Otherwise the string is unbounded.

The following example shows how to declare bounded and unbounded strings:

// IDL
module BankSimple {
interface Account {
// A bounded string with maximum length 10.
attribute string<l0> sortCode;

// An unbounded string.
readonly attribute string name;

}i
}:

Sequence

In IDL, you can declare a sequence of any IDL data type. An IDL sequence is
similar to a one-dimensional array of elements.

An IDL sequence does not have a fixed length. If the sequence has a fixed
maximum length, then the sequence is bounded. Otherwise, the sequence is
unbounded.

For example, the following code shows how to declare bounded and unbounded
sequences as members of an IDL struct:

// IDL
module BankSimple {
interface Account {

b7

struct LimitedAccounts {
string bankSortCode<10>;
// Maximum length of sequence is 50.
sequence<Account, 50> accounts;

}i

Introduction to CORBA IDL

struct UnlimitedAccounts {
string bankSortCode<10>;
// No maximum length of sequence.
sequence<Account> accounts;
bi
bi
A sequence must be named by an IDL typedef declaration before it can be used
as the type of an IDL attribute or operation parameter. Refer to “Defining Data
Type Names and Constants” on page 78 for details. The following code illustrates
this:
// IDL

module BankSimple {
typedef sequence<string> CustomerSeq;

interface Account {
void getCustomerList (out CustomerSeq names) ;

}i
}i

Arrays

In IDL, you can declare an array of any IDL data type. IDL arrays can be multi-
dimensional and always have a fixed size. For example, you can define an IDL
struct with an array member as follows:

// IDL
module BankSimple {

interface Account {

i

struct CustomerAccountInfo {
string name;

Account accounts[3];

i

75

Orbix Programmer’s Guide C++ Edition

interface Bank {
getCustomerAccountInfo (in string name,
out CustomerAccountInfo accounts);

}i
}i
In this example, struct CustomerAccountInfo provides access to an array of
Account objects for a bank customer, where each customer can have a maximum
of three accounts.

An array must be named by an IDL typedef declaration before it can be used as
the type of an IDL attribute or operation parameter. The IDL typedef declaration
allows you define an alias for a data type, as described in “Defining Data Type
Names and Constants” on page 78.

The following code illustrates this:

// IDL
module BankSimple {
interface Account {

}i
typedef Account AccountArray[100];

interface Bank {
readonly attribute AccountArray accounts;

}i
}i
Note that an array is a less flexible data type than an IDL sequence, because an

array always has a fixed length. An IDL sequence always has a variable length,
although it may have an associated maximum length value.

76

Introduction to CORBA IDL

Fixed

The fixed data type allows you to represent number in two parts: a digit and a
scale. The digit represents the length of the number, and the scale is a non-
negative integer that represents the position of the decimal point in the number,
relative to the rightmost digit.

module BankSimple {
typedef fixed<10,4> ExchangeRate;

struct Rates {
ExchangeRate USRate;
ExchangeRate UKRate;
ExchangeRate IRRate;
bi
}i
In this case, the ExchangeRate type has a digit of size 10, and a scale of 4. This
means that it can represent numbers up to (+/-)999999.9999.

The maximum value for the digits is 31, and scale cannot be greater than digits.
The maximum value that a fixed type can hold is equal to the maximum value of
a double.

Scale can also be a negative number. This means that the decimal point is moved
scale digits in a rightward direction, causing trailing zeros to be added to the
value of the fixed. For example, fixed <3, -4> with a numeric value of 123
actually represents the number 1230000. This provides a mechanism for storing
numbers with trailing zeros in an efficient manner.

Note: Fixed <3, -4> can also be represented as fixed <7, 0>.

Constant fixed types can also be declared in IDL. The digits and scale are
automatically calculated from the constant value. For example:

module Circle {
const fixed pi = 3.142857;
i

This yields a fixed type with a digits value of 7, and a scale value of 6.

77

Orbix Programmer’s Guide C++ Edition

IDL Pseudo Object Types

CORBA defines a set of pseudo object types that ORB implementations use when
mapping IDL to some programming languages. These object types have
interfaces defined in IDL but do not have to follow the normal IDL mapping for
interfaces and are not generally available in your IDL specifications.

You can use only the following pseudo object types as attribute or operation
parameter types in an IDL specification:

CORBA: :NamedValue
CORBA: :Principal
CORBA: : TypeCode

To use any of these three types in an IDL specification, include the file orb.id1l
in the IDL file as follows:

// IDL
#include <orb.idl>

This statement indicates to the IDL compiler that types Namedvalue, Principal,
and TypeCode may be used. The file orb.id1 should not actually exist in your
system. Do not name any of your IDL files orb.idl.

Defining Data Type Names and Constants

IDL allows you to define new data type names and constants. This section
describes how to use each of these features of IDL.

Data Type Names

The typedef keyword allows you define a meaningful or more simple name for
an IDL type. The following IDL provides a simple example of using this
keyword:

// IDL
module BankSimple {
interface Account {

}i

typedef Account StandardAccount;

78

Introduction to CORBA IDL

}i

The identifier StandardAccount can act as an alias for type Account in
subsequent IDL definitions. Note that CORBA does not specify whether the
identifiers Account and StandardAccount represent distinct IDL data types in
this example.

Constants

IDL allows you to specify constant data values using one of several basic data
types. To declare a constant, use the IDL keyword const, for example:

// IDL
module BankSimple {
interface Bank {
const long MaxAccounts = 10000;
const float Factor = (10.0 - 6.5) * 3.91;

}i
}i

The value of an IDL constant cannot change. You can define a constant at any
level of scope in your IDL specification.

79

Orbix Programmer’s Guide C++ Edition

80

The CORBA IDL to C++ Mapping

The CORBA Interface Definition Language (IDL) to C++
mapping specifies how to write C++ programs that access or

implement IDL interfaces. This chapter describes this mapping
in full.

CORBA separates the definition of an object’s interface from the implementation
of that interface. As described in Chapter 3, “Introduction to CORBA IDL” on
page 61, IDL allows you to define interfaces to objects. To implement and use
those interfaces, you must use a programming language such as C, C++, Java,
Ada, or Smalltalk.

The Orbix IDL compiler allows you to implement and use IDL interfaces in C++.
The compiler does this by generating C++ constructs that correspond to your IDL
definitions, in accordance with the standard CORBA IDL to C++ mapping.

This chapter describes the CORBA IDL to C++ mapping, as defined in the C++
mapping section of the OMG Common Object Request Broker Architecture. The
purpose of the chapter is to explain the rules by which the Orbix IDL compiler
converts IDL definitions into C++ code and how to use the generated C++
constructs.

This chapter contains a lot of detailed technical information that you require
when developing Orbix applications. However, you should not try to learn all the
technical details at once. Instead, read this chapter briefly to understand the
mappings for the main IDL constructs, such as modules, interfaces, and basic
types, and the C++ memory management rules associated with the mapping.
When writing applications, consult this chapter for detailed information about
mapping the specific IDL constructs you require.

81

Orbix Programmer’s Guide C++ Edition

Overview of the Mapping

The major elements of the IDL to C++ mapping are:

®* An IDL module maps to a C++ namespace of the same name. Alternative
mappings are provided for C++ compilers that do not support the
namespace construct.

®* AnIDL interface maps to a C++ class of the same name.

* An IDL operation maps to a C++ member function in the corresponding
C++ class.

* An IDL attribute maps to a pair of overloaded C++ member functions in
the corresponding C++ class. These functions allow a client program to set
and read the attribute value.

Note that IDL identifiers map directly to identifiers of the same name in C++.
However, if an IDL definition contains an identifier that exactly matches a C++
keyword, the identifier is mapped to the name of the identifier preceded by an
underscore. An IDL identifier cannot begin with an underscore.

Mapping for Modules and Scoping

IDL modules map to C++ namespaces, where your C++ compiler supports them.
For example:

// IDL
module BankSimple {
struct Details {

b7
}i

This maps to:

// C++
namespace BankSimple {
struct Details {

}i
b

82

The CORBA IDL to C++ Mapping

Outside of namespace BankSimple, the struct Details can be referred to as
BankSimple: :Details. Alternatively, a C++ using directive allows you to refer
to Details without explicit scoping:

// C++

using namespace BankSimple;
Details d;

Alternative Mappings for Modules

Since namespaces have only recently been added to the C++ language, few
compilers support them. In the absence of support for namespaces, IDL modules
map to C++ classes that have no member functions or data. This allows IDL
scoped names to be mapped directly onto C++ scoped names. For example:

// IDL
module BankSimple {
interface Bank {

struct Details {

}i
}i
}i

This maps to:

// C++
class BankSimple {
public:

class Bank : public virtual CORBA::0Object ({
struct Details {

}i
}i
b7

You can use struct Details in C++ as follows:

// C++
BankSimple::Bank::Details d;

83

Orbix Programmer’s Guide C++ Edition

Mapping for Interfaces

Each IDL interface maps to a C++ class that defines a client programmer’s view
of the interface. This class lists the C++ member functions that a client can call on
objects that implement the interface.

Each IDL interface also maps to other C++ classes that allow a server
programmer to implement the interface using either the BOAImpl or TIE approach.
However, this chapter describes only the C++ class that describes the client view
of the interface, as this class is sufficient to illustrate the principles of the
mapping for interfaces.

Consider a simple interface to describe a bank account:

// IDL
typedef float CashAmount;

interface Account {
readonly attribute CashAmount balance;
void deposit (in CashAmount amount) ;
void withdraw (in CashAmount amount);

i
This maps to the following IDL C++ class:

// C++
class Account : public virtual CORBA::Object {
public:
virtual CashAmount balance () ;
virtual void deposit (in CashAmount amount) ;
virtual void withdraw (in CashAmount amount);

}i

Implicitly, all IDL interfaces inherit from interface CORBA: : Object. Class
Account inherits from the Orbix class CORBA: :Object, which maps the
functionality of interface CORBA: :Object.

Class Account defines the client view of the IDL interface Account.
Conceptually, instances of class Account allow a client to access CORBA objects
that implement interface Account. However, an Orbix program should never
create an instance of class Account and should never use a pointer (Account*) or
a reference (Accounte) to this class.

84

The CORBA IDL to C++ Mapping

Instead, an Orbix program should access objects of type Account through an
interface helper type. Two helper types are generated for each IDL interface: a
_vartype and a_ptr type. For example, the helper types for interface Account
are Account var and Account ptr.

Conceptually, a _var type is a managed pointer that assumes ownership of the
data to which it points. This means that you can use a _var type such as
Account_var as a pointer to an object of type Account, without ever deallocating
the object memory. If a_var type goes out of scope or is assigned a new value,
Orbix automatically manages the memory associated with the existing value of
the var type.

A ptr type is more primitive and has similar semantics to a C++ pointer. In fact,
_ptr types in Orbix are currently implemented as C++ pointers. However, it is
important that you do not use this knowledge because this implementation may
change. For example, you should not attempt conversion to void*, arithmetic
operations and relational operations, including test for equality on ptr types.

The varand ptr types for an IDL interface allow a client to access IDL
attributes and operations defined by the interface. Examples of how to use the
_var and ptr types are provided later in this section.

Mapping for Attributes

Each attribute in an IDL interface maps to two member functions in the
corresponding C++ class. Both member functions have the same name as the
attribute: one function allows clients to set the attribute’s value and the other
allows clients to read the value. A readonly attribute maps to a single member
function that allows clients to read the value.

Consider the following IDL interfaces:

// IDL

interface Account {
readonly attribute float balance;
attribute long accountnumber;

85

Orbix Programmer’s Guide C++ Edition

86

The following code illustrates the mapping for attributes balance and
accountNumber

// C++
class Account : public virtual CORBA::Object {
public:
virtual CORBA::Float balance (CORBA: :Environmenté&) ;
virtual CORBA::Long accountNumber (CORBA: :Environmentég) ;
virtual void accountNumber
(Long accountNumber, CORBA::Environmenté&) ;

}i

Note that the IDL type float maps to CORBA: : Float, while type long maps to
CORBA: : Long. “Mapping for Basic Types” on page 96 provides a detailed
description of this mapping.

The following code illustrates how a client program could access attributes
balance and accountnumber of an Account object:

// C++

Account var aVar;

CORBA: :Float bal = 0;

CORBA: :Long number = 99;

// Code to bind aVar to an Account object omitted.

try {
// Get value of balance.
bal = aVar->balance();

// Set and get value of accountNumber.
aVar->accountnumber (number) ;
number = aVar->accountnumber () ;

}

catch (const CORBA::SystemExceptioné& se) {

The CORBA IDL to C++ Mapping

Mapping for Operations

Operations with