
Deployment GuideDeployment Guide

Domain Boundary Controller

© 2010 PrismTech. All rights reserved.No part of this document may be reproduced or transmitted in any form for any purpose
without the written permission of PrismTech.

This document and the software described herein are furnished under license and may be used and copied only in accordance with
the terms of such license and with the inclusion of the above copyright notice. The information contained within this document is
subject to change without notice.

PrismTech (a) makes no warranty of any kind with regard to this product, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose; and (b) and the suppliers disclaim all liability in connection with your use of
the product, including liability for all direct or indirect damages or loss of profit, business interruption, loss, damage or destruction
of data or for special, incidental or consequential damages or for any other indirect damages such as, but not limited to exemplary
or punitive damages.

This product includes software developed by Open SSL Project for use in the OpenSSL Toolkit. Copyright © by The Open SSL
Project (http://www.openssl.org). All rights reserved. This product includes cryptographic software written by Eric Young Copy-
right © by Eric Young (eay@cryptsoft.com). This product includes software written by Tim Hudson (tjh@cryptsoft.com). All
rights reserved.

This product includes software developed by the Apache Software Foundation (http://www.apache.org). Copyright © by The
Apache Software Foundation. All rights reserved.
ORB, Object Request Broker, OMG IDL and CORBA are trademarks of Object Management Group.
Enterprise JavaBeans is a trademark of Sun Microsystems Inc.
SecurID is a registered trademark of RSA Security Inc.
All other registered and unregistered trademarks in this document are the sole property of their respective owners.
XTRADYNE is a registered trademark of PrismTech.

1st Edition
Issue Date: 1 April 2010
Security Policy Server v. 3.1

USA Corporate Headquarters
PrismTech Corporation
400 TradeCenter, Suite 5900
Woburn, MA, 01801
USA
Tel: (1) 781-569-5819

European Headquarters
PrismTech Limited
5th Avenue Business Park, Team Valley
Gateshead, Tyne & Wear, NE11 0NG
United Kingdom
Tel: +44 (0) 191-4979900

For product or technical questions, please contact our Customer Response Center,
Email: crc@prismtech.com
For licensing an pricing questions, please email to sales@prismtech.com

Table of Contents
Contents
Contents ... 3

Preface ... 7

Document Conventions .. 9

PrismTech Customer Support .. 10

When contacting customer support ... 10
How to contact PrismTech customer support 10
Encrypting DBC Configuration Files for Support 10
Making Screenshots for Support ... 10

Chapter 1 High Availability and Scalability 11

1.1 High Availability and Scalability ... 11
1.2 Different Flavours of HA and Scalability .. 12

1.2.1 High Availability and Scalability on System Level 12
1.2.2 High Availability and Scalability on the Application Level 12

1.3 High Availability and Scalability with a Traffic Redirector 13
1.4 High Availability & Scalability as provided by the DBC 14

1.4.1 Traffic Redirection: NAT versus Direct Routing 15
Network Address Translation (NAT) .. 15
Direct Routing (DR) .. 17

1.4.2 Connection Bundling .. 18
Connection Bundling in tunnelling scenarios 18

1.5 High Availability Provided by Hot Standby .. 19
1.6 Monitoring .. 21

1.6.1 DBC Built-In Monitoring .. 21
Interworking with Traffic Redirector Monitoring 21
DBCAgent in Detail .. 22

1.6.2 End-to-End Monitoring ... 22
Operating the DBC Proxy with Servers “In Line” 22
Domain Boundary Controller - Deployment Guide 3

Table of Contents
1.7 Deployment Considerations ... 23
1.7.1 Planning the Installation ... 24
1.7.2 Calculate Application Throughput .. 24
1.7.3 Calculate DBC Requirements ... 25

1.8 Deployment Example ... 25
1.9 Deployment Requirements ... 26

Without Traffic Redirector for the SPS Cluster 26
With Traffic Redirector for the SPS Cluster 26

Chapter 2 Replication ... 27

2.1 Replication Technology ... 27
2.1.1 Shared Host ... 28
2.1.2 Resources .. 28

2.2 Maintenance ... 28
2.3 Reliability and Asynchronous Operation ... 29
2.4 Limitations and Restrictions .. 30

2.4.1 Communication ... 30
2.4.2 Security ... 30
2.4.3 IOR Timeout ... 30
2.4.4 Object Keys ... 31
2.4.5 Duplication of Calls .. 31
2.4.6 Delayed OBJECT_NOT_EXIST .. 31

2.5 Configuration ... 32
2.5.1 Replication Interface ... 32
2.5.2 Replication Message Properties .. 34

2.6 Performance ... 34
2.6.1 Multi Processor Machines ... 34
2.6.2 Estimated Throughput ... 34

2.7 Runtime Object Values .. 35
Example: State Dump of Replication Service 36

2.8 Installation Notes ... 38
Direct Routing ... 38
NAT ... 38
4 Domain Boundary Controller - Deployment Guide

Table of Contents
Chapter 3 Performance Monitoring ... 39

3.1 Setting up the Usage Data Collector .. 40
3.2 Activating the Usage Data Collector .. 40

Chapter 4 SPS Client ... 41

4.1 Installing the SPS Client .. 41
4.1.1 Installation Overview .. 42

4.2 Post installation Steps .. 43
4.2.1 Configuring the SPS Client ... 43
4.2.2 Installing Keys and Certificates .. 44

4.3 SPS Client Commands ... 44
4.4 Administrative Rights for SPS Client Operations 48

Chapter 5 WS-DBC Tools ... 49

5.1 Introduction .. 49
5.2 The wsdl2schema Tool ... 49

5.2.1 Usage ... 49
5.2.2 Restricting data ... 50

5.3 The schematest Utility .. 52
5.4 The XPathTest Tool .. 53

Chapter 6 Hardened System .. 55

6.1 Operating System ... 55
6.2 Network Services ... 56
6.3 Kernel and Network Stack ... 57

Chapter 7 I-DBC Authentication .. 59

7.1 I-DBC Authenticator Architecture ... 59
7.2 Caveats ... 60
7.3 Generic Interface .. 61
7.4 Generic Use .. 63
7.5 Authentication Methods ... 66
Domain Boundary Controller - Deployment Guide 5

Table of Contents
7.5.1 RSA/ACE SecurID Mapping .. 67
7.6 I-DBC Authenticator Events .. 70

Index .. 71
6 Domain Boundary Controller - Deployment Guide

Preface
Preface
The DBC is an infrastructure building block that can be deployed in many ways, in
diverse scenarios. This Deployment Guide takes a closer look at special deployment
requirements like high availability and scalability and discusses various topics related to
the deployment of DBCs like, for example, performance monitoring and hardening the
operating system. Most topics presented in this guide require a basic understanding of
DBC concepts as presented in the Administrator’s Guide.

Note that some of these topics apply exclusively to the I-DBC or the WS-DBC. The
I-DBC is Xtradyne’s IIOP Domain Boundary Controller, the WS-DBC is Xtradyne’s
Web Services Domain Boundary Controller.

The Deployment Guide comprises the following parts:

• Chapter 1, “High Availability and Scalability” on page 11 discusses how the DBC
can be deployed to provide linear scalability and unlimited support for various
high-availability scenarios,

• Chapter 2, “Replication” on page 27 describes a feature called replication, which
enables stateful failover. Stateful failover means that any hardware or software
failures will go completely unnoticed to the client (this feature is only available in
the I-DBC),

• Chapter 3, “Performance Monitoring” on page 39 describes how I-DBC perfor-
mance can be monitored,

• Chapter 4, “SPS Client” on page 41 takes a closer look at the SPS Client – a com-
mand line interface which can be used to configure the SPS or to get state informa-
tion about the SPS,

• Chapter 5, “WS-DBC Tools” on page 49 describes WS-DBC tools included in the
installation. There are tools to

- generate XML schema files from Web Service definitions in WSDL,
- check the correctness of schema files,
- check the correctness of xpath expressions.

• Chapter 6, “Hardened System” on page 55 gives recommendations on how to set
up a hardened operating system,

• Chapter 7, “I-DBC Authentication” on page 59 explains the DBC Authenticator
plugin, an authentication framework via a dedicated CORBA interface which can
be used when the client cannot do certificate based authentication.
Domain Boundary Controller – Deployment Guide 7

Preface
8 Domain Boundary Controller – Deployment Guide

Document Conventions
Document Conventions
This guide uses the following typographical conventions:

This font is used for:
courier filenames and Unix commands
courier URLs and e-mail addresses

(e.g., http://www.xtradyne.com)
Arial Bold menu selections / menu items and key-

board short cuts (e.g., CTRL-C)
simple emphasis new terms
Domain Boundary Controller - Administrator’s Guide 9

PrismTech Customer Support
PrismTech Customer Support
When contacting customer support
When contacting customer support please have the following information available:

• Your name, title, company name, email address, fax, and telephone number.
• Name and version of the product.
• Operating system and version.
• Severity level.
• Brief description of the problem.
• Details of any error messages or exceptions raised.

How to contact PrismTech customer support
PrismTech offers different levels of customer support. PrismTech customer support can
be contacted by

• filling in the web form at:
http://www.xtradyne.com/services/problem_report.htm

• sending an email to support@xtradyne.com

Furthermore PrismTech offers priority support – silver and gold support. Access infor-
mation for silver or gold support are part of the support contract.

Encrypting DBC Configuration Files for Support
For diagnosing problems it might be helpful to send the DBC configuration file to the
PrismTech support team. As configuration files contain confidential information like
keys and certificates, you may use the File « Export « Encrypt for support... facility of the
Admin Console. This will encrypt all the sensible information contained in the config
file. For details please refer to page 217.

Making Screenshots for Support
Additionally, it might be helpful to send a screenshot of a certain configuration panel of
the Admin Console to the PrismTech support team. To do this, you may use snapshot
feature of the Admin Console, choose Help « Capture Screen from the menu bar.
10 Domain Boundary Controller - Administrator’s Guide

High Availability and Scalability
CHAPTER

1 High Availability
and Scalability

This chapter describes how to configure the DBC to scale in high throughput
scenarios and how availability of DBC services can be ensured in case of hard-
ware or software failures. Before reading this chapter you should be familiar
with the standard DBC system. Stateful failover (replication) for I-DBC installa-
tions is explained in Chapter 2 “Replication” on page 27.

1.1 High Availability and Scalability
The following sections discuss the different mechanisms that the DBC architecture
offers to achieve high availability and scalability. The ways in which high availability
and scalability are tackled are closely related, therefore they are presented together. Let’s
first define what we mean by high availability and scalability:

High Availability (HA): The service of the DBC will still be provided even if a hard- or
software component fails. This is achieved by replicating components of the DBC Proxy
to eliminate single points of failure and providing health monitoring facilities. In case a
component fails, a failover mechanism will use a replica of the failed component.

Scalability: Adapt the service of the DBC Proxy to fit higher requirements in terms of
number of clients, throughput, or latency. Scalability can be achieved in several ways.
The type of scalability presented here is obtained by operating multiple DBC Proxies in
a cluster. A traffic redirector is used to distribute requests among DBC Proxies so that
the load is shared.
Domain Boundary Controller - Deployment Guide 11

Chapter 1 High Availability and Scalability
1.2 Different Flavours of HA and Scalability
High availability and scalability can be provided in two ways. Either, the application
takes care of failover and load-distribution itself (application level) or it relies on some
external mechanism to provide the failover service (system level).

1.2.1 High Availability and Scalability on System Level
To provide high availability and scalability on system level an external mechanism (on
protocol level) is required. Such a mechanism is usually called cluster management soft-
ware. A central part of this cluster management software is the traffic redirector. A traf-
fic redirector is a software add-on or dedicated device that employs a load-balancing
algorithm to distribute client connections to a “cluster” of servers. Typically, this soft-
ware presents the cluster host as a single virtual host and provides a single virtual IP-
address to the client. The traffic redirector of the cluster management software simply
redirects network traffic from a failed or overloaded component to another working and
less busy one in a way possibly transparent to the client. The load of message processing
is reduced on the individual DBC Proxy machines in the cluster, allowing the deploy-
ment of less expensive hardware. Examples for cluster management software are Sun
Cluster 3 or Linux Virtual Server. Examples for traffic redirectors are Cisco CSS (Con-
tent Service Switch) or Cisco SLB (Server Load-Balancer) which is a feature of Cisco’s
IOS software and can be run on Cisco’s switches).

1.2.2 High Availability and Scalability on the Application
Level

The other possibility is to make the client aware of redundant components, thus provid-
ing high availability and scalability on the application level. This usually requires a
higher development effort, but there are benefits: the application can be tailored more
precisely to the requirements it has to fulfill. This includes but is not restricted to: faster
failover, behaviour based on knowledge about the failure state of components, better
dynamic load-balancing, improved stickiness of sessions. Besides, it saves the money
for the cluster management software or traffic redirector.
12 Domain Boundary Controller - Deployment Guide

High Availability and Scalability with a Traffic Redirector
1.3 High Availability and Scalability with a Traffic
Redirector

To provide high availability and scalability several DBC Proxies can be operated in a
cluster. Each DBC Proxy in a cluster shares its properties with any other DBC Proxy in
the same cluster. In the standard case (as depicted in figure 1), a traffic redirector will
distribute the traffic from the clients amongst the DBCs in this cluster. A typical cluster
would consist of at least two DBC Proxies.

The clients reach the DBC service via the virtual IP address (VIP), i.e., the address of the
traffic redirector (or load-balancer). The traffic redirector receives all the traffic and dis-
tributes the IP packets among the active DBC Proxies, based on the result of regular
monitoring checks. If a DBC Proxy is overloaded or fails, the traffic redirector removes
this DBC Proxy from its distribution list and forwards packets to the remaining set of
active DBC Proxies. The traffic redirector takes care that IP packets belonging to a TCP
connection are always directed to the same DBC Proxy. If a DBC Proxy fails in such a
scenario, high availability is provided by terminating all TCP connections associated
with the failed DBC Proxy and re-routing all new TCP connections to another DBC
Proxy. The clients will see that their connections to the cluster are broken and they will
establish new TCP connections.

Fig. 1. Multiple DBC Proxies with traffic redirector

Client 1

Client 2

Server

DBC Proxy

DBC Proxy

Redirector

DBC Proxy Cluster

VIP
Domain Boundary Controller - Deployment Guide 13

Chapter 1 High Availability and Scalability
1.4 High Availability & Scalability as provided by the DBC
The DBC Proxy offers several mechanisms to support high availability and scalability.
In general, the recommended configuration uses at least the traffic redirector of a cluster
management software at the domain boundary and does application level HA and scala-
bility between DBC Proxies and Security Policy Servers (see figure 2). Therefore, a
DBC installation can consist of multiple Security Policy Servers which constitute the
Security Policy Server Cluster. All Security Policy Servers are configured the same
way so that any of those Security Policy Servers can serve requests from any client.
Thus, there can only be one Security Policy Server cluster belonging to a single DBC
installation.

Fig. 2. Recommended High Availability / Scalability configuration

Sensible configurations include at least two, but not more than ten Security Policy Serv-
ers. If operating only a single Security Policy Server, high availability and scalability are
not provided.

SPS 2

SPS 1

Traffic
Redirector

DBC
Proxy 1

DBC
Proxy 2

From/to the
external
domain

Traffic
Redirector

Server 1

Server 2
14 Domain Boundary Controller - Deployment Guide

High Availability & Scalability as provided by the DBC
Standard clients of these Security Policy Servers are the DBC Proxies. A DBC installa-
tion can have multiple clusters of DBC Proxies. Each DBC Proxy in a cluster shares its
properties with any other DBC Proxy in the same cluster. In the standard case (as
depicted in figure 2), a cluster management software distributes the traffic from the cli-
ents amongst the DBC Proxies in this cluster. A typical cluster would consist of at least
two DBC Proxies.

If operating only a single DBC Proxy in a cluster, high availability and scalability are not
provided for clients of this DBC Proxy.

The DBC Proxies are cluster-aware and interoperate with the cluster management, i.e.,
they provide the cluster management with state information so that the cluster manage-
ment can see if a DBC Proxy is still providing its service1. Migration, as offered by some
cluster management packages, is not supported by the DBC Proxy.

Towards the Security Policy Servers, the DBC Proxies provide application-level high
availability and scalability themselves. DBC Proxies failover to another Security Policy
Server autonomously. Therefore, no cluster management software is needed for the
Security Policy Server. Multiple DBC Proxies statically distribute the load to the Secu-
rity Policy Servers.

1.4.1 Traffic Redirection: NAT versus Direct Routing
There are various techniques for redirecting network traffic. The DBC can be used with
Network Address Translation (NAT) and Direct Routing (DR), as explained in the fol-
lowing sections. In both cases, the DBC software configurations on all cluster machines
must be identical, except, of course, for local network addresses (the Admin Console
takes care of this).

Network Address Translation (NAT)
The first redirection technique is Network Address Translation (NAT). The redirector
effectively is a NAT router, providing a virtual address (VIP) for the DBC service of the
cluster, as shown in Figure 3, “Traffic redirection using a NAT router”, on page 16. A
client packet targeted at this virtual address is routed to one of the cluster DBC Proxies
for processing, with the target address translated to the DBC Proxy’s physical network
address, the Real IP address (RIP). Replies from the DBC Proxy are routed back to the

1 The recommended configuration requires the use of a cluster management software for the DBC Proxies.
At least the traffic redirector is required. It is optionally possible to operate without traffic redirector, but
then the distribution of clients must be achieved by other means, e.g., DNS round-robin. Doing so is not
recommended.
Domain Boundary Controller - Deployment Guide 15

Chapter 1 High Availability and Scalability
redirector, which translates the physical originator address back to the virtual DBC
Proxy address before routing the reply to the client.

Fig. 3. Traffic redirection using a NAT router

The individual DBC Proxy machines in the cluster must use the redirector as the default
gateway for reply routing. The DBC software must be configured to use the virtual DBC
Proxy address as NAT address on the external interface (assuming distribution is done
for incoming client traffic). Apart from that, the configuration is the same as for a single
DBC Proxy solution. An advantage of this redirection technique is that the DBC Proxies
do not have to be located in the same physical network or on the same VLAN.

Router/Firewall

DBC
Proxy

NAT
Redirector

VIP

DBC Proxy Cluster

Client Server

DBC
Proxy

RIP1

RIP2

Router/Firewall

DBC
Proxy

NAT
Redirector

VIP

DBC Proxy Cluster

Client Server

DBC
Proxy

RIP1

RIP2
16 Domain Boundary Controller - Deployment Guide

High Availability & Scalability as provided by the DBC
Direct Routing (DR)
The second redirection technique is Direct Routing (DR). Incoming and outgoing pack-
ets are routed on different paths (see figure 4).

Fig. 4. Traffic redirection using direct routing

All of the DBC Proxies in the cluster have the virtual DBC Proxy address (VIP) config-
ured as an alias address typically on a loopback interface. The redirector forwards
incoming client packets to one of the DBC Proxies for processing. Reply packets are
routed directly to the client, bypassing the redirector.

This approach requires more complex configuration of the components. The router
between the clients and the redirector must be configured to route all inbound client traf-
fic to the redirector, but directly route outbound traffic. The individual DBC Proxy
machines in the cluster must be capable of providing alias addresses on their loopback
interface for configuring the virtual DBC Proxy address. Also, these addresses must be
prevented from replying to ARP requests (cf. “DBC Built-In Monitoring” on page 21).
The default gateway must be the router towards the client network. The DBC software
must be configured to use the virtual DBC Proxy address (VIP) as external interface
(assuming distribution is done for incoming client traffic). Apart from that, the configu-
ration is the same as for a single DBC Proxy solution.

An advantage of this redirection technique is that it is faster than the NAT setup because
replies are not routed via Traffic Redirector. Note that outgoing connections may not

Router/Firewall

DBC
Proxy

DR
Redirector

VIP

DBC Proxy Cluster

Client Server

DBC
Proxy

loopback
VIP

loopback
VIP

Router/Firewall

DBC
Proxy

DR
Redirector

VIP

DBC Proxy Cluster

Client Server

DBC
Proxy

loopback
VIP

loopback
VIP
Domain Boundary Controller - Deployment Guide 17

Chapter 1 High Availability and Scalability
come from the VIP address. A disadvantage of the Direct Routing setup is that the DBC
Proxies have to be located in the same physical network.

1.4.2 Connection Bundling
This section applies to the I-DBC only.

There is one problem with traffic redirection: CORBA IIOP is a multi-connection proto-
col, i.e., a single set of application interactions between client and server may consist of
multiple TCP connections. As the I-DBC is a stateful device with respect to exported
IORs, all connections of a session must be routed to I-DBC Proxies which have this state
available. The standard I-DBC edition has no provision for state replication between dif-
ferent I-DBC Proxy hosts. Accordingly, the redirector must recognize all connections of
a session, and route them to the same I-DBC Proxy machine in the cluster. In other
words, traffic redirection is restricted to complete sessions. This capability is usually
called bundling, persistence, or sticky mode. It is mandatory that this is enabled on the
redirector, otherwise the I-DBC service will not work. As the director has no notion of
what a session comprises for the I-DBC Proxy, all connections from the same source are
routed to the same destination I-DBC Proxy in sticky mode.

Replication The I-DBC Enterprise Edition provides a feature called “Replication”, enabling different
I-DBC Proxies to share their IORs. When Replication is active, operating the redirector
in sticky mode is not necessary.

Usually, sessions are coupled with a timer. Once the last connection of a session is
closed, its association to a particular machine remains active for a certain amount of
time, so subsequent connections may continue the session. After this timer expires, new
connections from the same source are considered to belong to a new session. A new
association will be established for a different machine, based on the redirector’s load-
balancing algorithm. The I-DBC software employs a similar timer, the Access Session
termination timeout, that closes an Access Session once all client connections are
closed. Both timeouts, on the I-DBC Proxy and on the redirector, must be configured to
the same value.

Connection Bundling in tunnelling scenarios
Although connection bundling is required for the IIOP protocol to function, it may cause
a problem in tunnelling scenarios, or in the case of clients hidden behind a masquerading
firewall. In these cases all network traffic appears to come from a single IP address.
Accordingly, the redirector has no means of distinguishing between the individual client
sessions, in fact it will assume them all to be part of a single session. That way scalabil-
18 Domain Boundary Controller - Deployment Guide

High Availability Provided by Hot Standby
ity is lost (in case the standard edition is used) but the architecture can still provide avail-
ability.

In tunnelling scenarios, the bundling problem may be avoided by also using a cluster of
DBC Proxies on the client side, where each DBC Proxy has an individual (possibly
translated) address (see figure 5).

Fig. 5. Load-balancing in a tunnel scenario

The server-side redirector may then use these addresses for load-balancing. This is espe-
cially useful if the tunnel runs over a high bandwidth network, as the client-side redirec-
tors allow efficient use of the full bandwidth.

1.5 High Availability Provided by Hot Standby
The hot standby approach is based on a single machine hosting the primary DBC instal-
lation, which serves requests on a virtual IP address and performs normal message
processing. In case of failures, a secondary (or “standby”) DBC machine takes over and
guarantees uninterrupted service to clients.

This approach relies on a secondary DBC host monitoring the primary DBC host, and on
network-level functionality to take over the virtual IP address used by the primary host.
This functionality is offered by the separate failover package, which is included in
the DBC distribution and combines with DBC specific monitoring and failover func-
tions, as shown in Figure 6 on page 20.

DBC Cluster

Client 2

Server

Client 1

Redirector

DBC Cluster

DBC

DBC

Redirector

DBC

DBC

DBC Cluster

Client 2

Server

Client 1

Redirector

DBC Cluster

DBC

DBC

Redirector

DBC

DBC

DBC Cluster

Client 2

Server

Client 1

Redirector

DBC Cluster

DBC

DBC

Redirector

DBC

DBC
Domain Boundary Controller - Deployment Guide 19

Chapter 1 High Availability and Scalability
The DBC’s hot standby functionality is designed to mask two types of failures:

• failures of the entire machine, or the host’s network interface card (NIC), and
• failures of only the DBC Proxy process.

Failures of the Security Policy Server process are addressed by a different mechanism,
viz. the failover functionality of the Security Policy Server Cluster, as explained in
“High Availability & Scalability as provided by the DBC” on page 14.

When the primary DBC host or just its network interface become unavailable, this is
noticed by the failover daemon on the secondary DBC. This daemon will simply
send out an ARP packet that announces the new NIC that now binds to the virtual IP
address, so client requests will now arrive at the secondary DBC.

To integrate with the failover package Xtradyne provides additional monitoring compo-
nents (see also next section). These components are called dbcmon and
dbcfailover.sh. dbcmon monitors the availability of the DBC Proxy and provides
this monitoring information via HTTP. The script dbcfailover.sh regularly polls
the dbcmon and notifies the failover mechanism, which finally triggers the same ARP-
based mechanism that was used to mask machine-level failures.

Fig. 6. DBC Hot Standby

Note that to mask the failover process from clients, routers in the network where the
DBC hosts are deployed must be configured to accept gratuitous ARP packets from the

DBC Host 1DBC Host 1

dbcmon

SPS
Master

DBC
Proxy

dbc-
failover

failover

IPIP

DBC Host 2DBC Host 2

dbcmon

SPS

DBC
Proxy

dbc-
failover

failover

IPIP
20 Domain Boundary Controller - Deployment Guide

Monitoring
DBC hosts that announce that the virtual IP address is now to be mapped to the second-
ary DBC’s network interface card (NIC). The primary DBC host can re-obtain this vir-
tual address when it is back in operation.

1.6 Monitoring
To provide high availability all involved components must be constantly monitored to
check their availability. There are many techniques that can be employed to monitor
hardware, software, and network links. At minimum, a simple ping test can be used to
check the availability of a DBC Proxy machine. However, this does not verify the avail-
ability of the actual DBC software running on that machine.

The DBC supports two principal monitoring approaches: It can interwork with the mon-
itoring mechanism of a traffic redirector (see next section) or end-to-end monitoring can
be employed, i.e., access the Server across the DBC (this approach is explained in more
detail in section “End-to-End Monitoring” on page 22).

1.6.1 DBC Built-In Monitoring
The DBC software provides a facility for external monitoring, which is used by an addi-
tional monitoring agent software. This monitoring agent (DBCAgent) checks the avail-
ability of the DBC Proxy at regular intervals and provides this information to a
monitoring agent by HTTP or port availability. When the master fails, the monitoring
agent sends a gratuitous ARP which tells the routers and/or switches that the association
between the VIP and the MAC address has changed. From then on IP packets destined
for the VIP will be forwarded to a bystanding DBC Proxy. Note that sending the ARP is
not part of the DBCAgent. For details on setting up ARP sending tools, please ask Xtra-
dyne’s professional services.

Interworking with Traffic Redirector Monitoring
Most traffic redirectors use a monitoring mechanism to determine the availability of
individual cluster machines, i.e., DBC Proxies, as well as the services running on them.
The DBC’s monitoring agent can be queried by the redirector monitor via a specific pro-
tocol. Currently, Xtradyne ships an HTTP Agent. Agents for other protocols or monitor
products can be provided via professional services.
Domain Boundary Controller - Deployment Guide 21

Chapter 1 High Availability and Scalability
DBCAgent in Detail
The DBC monitoring mechanism (DBCAgent) works as follows: If the DBC Proxy is
operational, it writes a single character to a FIFO queue roughly every second. The
DBCAgent reads the FIFO queue. If it does not see a new character for five seconds
(default), it will flag the DBC Proxy as down. The DBCAgent can be queried externally
by opening a TCP connection to a port specified when starting the DBCAgent. If the
DBC Proxy is up, the DBCAgent will send an HTTP reply with the state of 200 OK. If
the DBC Proxy is down, DBCAgent will either send 503 Service unavailable
or, if used with the -a option, it will refuse the connection. As most traffic redirectors
are used for WWW-Servers, it is easy to configure the traffic redirectors to check the
DBCAgent at regular intervals to find out if the DBC Proxy is up or down. The request
actually sent to the DBCAgent is ignored by the DBCAgent. Thus, it does not matter
which document is requested by the traffic redirector’s monitoring. For further refer-
ence, please refer to the man-page of the DBCAgent.

1.6.2 End-to-End Monitoring
This section applies to the I-DBC only.

The best way to ensure the proper operation of the DBC is to access a CORBA service
across it. The monitoring interface of the CORBA server which provides information
whether the service is working properly can be used for this purpose. If the service can
be accessed from the DBC Proxy host across the DBC Proxy, all is well and the DBC
Proxy is flagged up. Otherwise, it is flagged down. You simply need to implement a
small CORBA client accessing the service at regular intervals and open a TCP listener if
the test succeeded, and close the TCP listener again if it fails.

With this method, a very reliable monitoring can be achieved. The only remaining prob-
lem is that the failure of the test does not tell you whether the DBC Proxy or the original
CORBA server is down or if something is misconfigured in between. For traffic redirec-
tors capable of querying multiple sources, you can run the DBCAgent in parallel, and, if
the service is considered unavailable by the traffic redirector, check the DBCAgent’s
output to see if the DBC Proxy is causing the outage or the CORBA server.

Operating the DBC Proxy with Servers “In Line”
Sometimes, it is sensible to operate a DBC Proxy together with a bunch of servers as a
failover group (see figure 7). In this case, the DBC Proxy and the servers are regarded as
22 Domain Boundary Controller - Deployment Guide

Deployment Considerations
a unit. Whether the server(s) or the DBC Proxy fails does not matter – the whole unit is
failed over to a hot-standby unit (or load-balanced onto the remaining units only).

Fig. 7. DBC Proxies with Servers “in line”

This setup saves the cost for an additional traffic redirector in front of the servers (cf.
Figure 2, “Recommended High Availability / Scalability configuration”, on page 14). It
is a common scenario when the DBC is used for access control for all services offered by
the servers and there is no other path of access to the servers than across the DBC Prox-
ies. This deployment provides for similar availability compared to a deployment where
the servers have their own traffic redirector in addition to the one in front of the DBC
Proxies.

1.7 Deployment Considerations
The optimal deployment of a load-balanced DBC architecture depends on several inter-
dependent variables that must be considered during the planning phase. The following
procedure may help to determine the requirements for a given scenario.

If availability is an issue, remember that all involved components (server, redirector, net-
works) must be laid out in a redundant form.

Traffic
Redirector

DBC
Proxy 1

DBC
Proxy 2

From/to the
external
domain

Server 1

Server 2

Group A

Group B
Domain Boundary Controller - Deployment Guide 23

Chapter 1 High Availability and Scalability
1.7.1 Planning the Installation
For high availability, the DBC can be operated in a failover scenario (variant A). The
actual failover operation is provided by a component which is not part of the DBC itself.
For scalability, the traffic redirector is responsible for routing the clients to different
DBC Proxies to distribute the load evenly among the available DBC Proxies (variant B).

From the DBC perspective, both installation variants are considered equal. For the DBC
Proxy, it makes no difference whether it is steadily working in parallel to another DBC
Proxy (in the load-balancing scenario, variant B) or whether it stands by until the pri-
mary DBC Proxy fails and it is assigned the virtual IP (VIP) in a failover scenario (vari-
ant A).

hot-standby vs. load-
balancing

When planning the installation, it is necessary to consider the sizing of the components
to decide if a load-balancing solution is needed or if a hot-standby solution will suffice.
If a single DBC Proxy can handle all the requests alone, a hot-standby solution is ade-
quate, though it does not hurt to use a traffic redirector. The only reason not to use a traf-
fic redirector would be the cost of the traffic redirector. For a recipe to calculate the
sizing of a DBC installation from application throughput demands, see next section.

Note that if high availability is an issue, remember that all involved components (server,
redirector, networks) must be laid out in a redundant form.

1.7.2 Calculate Application Throughput
1. Measure the average throughput required by a typical interaction in your applica-

tion, between a single client and the server, without the DBC Proxy.
2. Calculate the total required throughput from the anticipated number of concurrent

sessions and the measured single-session value.
3. Make sure the network deployed between the client and the server is capable of

handling the total throughput. If not, you will have to upgrade the network first.
4. Make sure your server is capable of handling this total throughput. If not you will

have to find a load balancing solution for this problem first.
24 Domain Boundary Controller - Deployment Guide

Deployment Example
1.7.3 Calculate DBC Requirements
1. Select a Traffic Redirector product that is capable of handling the total application

throughput. Make sure it has at least minimal monitoring capabilities, if not add a
compatible monitor product.

2. Select a hardware platform for the DBC Proxy cluster machines.
3. Measure the maximum throughput that a DBC Proxy on the selected platform can

provide. You can do this by running an increasing number of concurrent sessions
of your application through the DBC Proxy, and finding the strongest downward
bend in the resulting performance graph.

4. Calculate the total number of DBC Proxies required from the total throughput and
the maximum throughput of the single DBC Proxy. You may need to repeat these
last three steps to optimize the cost-to-performance balance.

After finishing the process, you may want to estimate the performance of the scenario
under peak load. For that purpose, repeat the application throughput calculation, but this
time, measuring the maximum single session throughput. Compare the resulting through-
put against the capacities of your server, network, and redirector. Divide the throughput
by the number of planned DBC Proxy machines, and check their performance graphs
with this load.

1.8 Deployment Example
This section applies to the I-DBC only.

Lets consider an application that requires an average throughput of 200 kBit/sec and a
maximum throughput of 300 kBit/sec in each direction for a typical IIOP session, i.e.,
between a single client and the server. The session consists of 6 request/reply round trips
where each has a message size of 4 kByte (ca. 192 kBit/sec in each direction).

We anticipate a requirement for 250 parallel sessions, so the required average through-
put in each direction is 48 MBit/sec with a peak of 75 MBit/sec and 1500 messages per
second. The total required average throughput (in both directions) is 96 MBit/sec with a
peak of 150 MBit/sec and 3000 messages per second.

We have an existing infrastructure built on 100 MBit/sec FastEthernet, which will be
capable of sustaining this load both in the average and maximum case, and thus is suffi-
cient for this application. The server runs on high-end hardware and is also capable of
handling this load.
Domain Boundary Controller - Deployment Guide 25

Chapter 1 High Availability and Scalability
For this example, we assume the traffic redirector deployed can handle the 100 MBit/sec
full duplex of the network without measurable performance impact.

Performance tests were done with standard PC hardware for the DBC platform (because
it has a good price/performance ratio). Specifically, a Dual-Pentium III 866 MHz system
with 512 MB RAM and two quality network interface cards. This machine was capable
of handling a peak throughput of 85 MBit/sec at 4 KByte per IIOP message with 2700
IIOP messages per second.

Consequently, we need two of these machines to handle the average application through-
put. Assuming a good load-balancing algorithm in the redirector, each machine would
handle 48 MBit/sec, running at 64% load, and handling 1500 IIOP messages per second.

The two machines will also be capable of handling the maximum application through-
put. Each would handle 75 MBit/sec, running at 88% load.

1.9 Deployment Requirements
When planning the system, take the following requirements into account: The Security
Policy Servers must be able to contact each other directly. This is necessary for the syn-
chronization of configuration data and state information between the SPSs.

Each Security Policy Server in the cluster must be able to contact any DBC Proxy
directly on the respective local or NAT address. This means that the connection is made
directly to the respective DBC Proxy and that no redirector must be interfering with the
connection. This is absolutely necessary to make sure every DBC Proxy will be config-
ured in the startup process.

Without Traffic Redirector for the SPS Cluster
If you are not using a cluster management software (i.e., a traffic redirector) on the Secu-
rity Policy Server cluster, the only requirement is that each DBC Proxy must be able to
connect to at least one SPS directly on the respective local or NAT address.

With Traffic Redirector for the SPS Cluster
If a traffic redirector is used for the Security Policy Server cluster, only the virtual IP
address of the cluster mapped to the Control Connection port of all Security Policy Serv-
ers needs to be reachable. Combinations are supported, e.g., accessing the virtual IP-
address from the user interfaces and letting the DBC Proxies connect directly to the real
IP-addresses.
26 Domain Boundary Controller - Deployment Guide

Replication Technology
CHAPTER

2 Replication
The I-DBC Enterprise Edition offers a feature called “Replication” which
enables stateful failover. Stateful failover means that any hardware or software
failures will go completely unnoticed to the client.

Without replication, in case a cluster component fails, a client must reconnect to the
overtaking I-DBC Proxy, i.e., the client needs to start over from the beginning. Replica-
tion enables multiple I-DBC Proxies to share their state. Newly proxified IORs will be
multicasted to the other I-DBC Proxies. This enables stateful failover as any I-DBC
Proxy will have all the necessary information available to serve any client request.

Replication also provides better scalability, because in contrast to the standard edition, it
is no longer necessary to operate the traffic redirector in sticky mode. Load-balancing
can be done based on the individual load of the I-DBC Proxies and is no longer
restricted by connection bundling (cf. section “Connection Bundling” on page 18).

The following sections describe Replication in detail, covering the different modes and
configuration options.

2.1 Replication Technology
State Replication between different Proxy Processes is done using UDP messages. A
replication ADD request containing the Access Session identifier, the original and the
proxified IOR is sent for each newly proxified IOR to a multicast address on which
every Proxy Process is listening. This multicast address must be unique for each cluster
using the same cluster interconnect network. Acknowledges and RESOLVE requests are
sent and received from and to a unicast UDP socket.

Other state that is replicated is the termination of Access Sessions. An Access Session
may only end after the last client has closed its last connection to any of the Proxy Proc-
Domain Boundary Controller – Deployment Guide27

Chapter 2 Replication
esses. Thus, the Proxy Processes need to agree upon this moment. This is accomplished
using a distributed termination detection algorithm.

2.1.1 Shared Host
State replication between Proxy Processes running on the same host is done using the
same mechanism as for state replication across host boundaries. To make this work, the
sockets are configured to receive multicast packets originating from the same host. This
behaviour is called “loopback”. It is not to be confused with the loopback interface.
Thus, if there is more than one Proxy Process running on the same host, i.e., if multi-
processor systems are employed, loopback is enabled automatically, so that Proxy Proc-
esses running on the same host can participate just as any other Proxy Process located on
a different host.

2.1.2 Resources
Replication needs two UDP addresses per Proxy Process, which need to be configured:
A unicast sender/receiver and a multicast receiver. The replication sender/receiver is
bound to a configurable port on a unicast address on the cluster interconnect network.
Each Proxy Process needs its own port. Thus, the configured port number is the start of a
range of ports, one for each Proxy Process on the host. The multicast address can be
freely chosen from the range of multicast addresses. Sending to and receiving from the
multicast group will only be done using the interface specified by the unicast address.

2.2 Maintenance
For maintenance, the I-DBC Proxy Cluster supports check out and check in. Check out
of a cluster member happens automatically when the cluster host or the I-DBC Proxy
running on it is shut down. For check in, the I-DBC Proxy coming up must have its state
synchronized with the state of the other cluster members. This is achieved by a proce-
dure called “ResolveAll”. When an I-DBC Proxy is started, the replication system will
automatically multicast a “ResolveAll” request first. This tells the other cluster members
to send their state to the newly started Proxy Process, effectively copying the cluster
state to the new cluster member. This supports maintenance of an I-DBC Proxy Cluster
in the following scenario:

A cluster with two I-DBC Proxies (I-DBC Proxy A and I-DBC Proxy B) is running.
I-DBC Proxy A is taken down for maintenance. Check out happens automatically. After
28 Domain Boundary Controller – Deployment Guide

Reliability and Asynchronous Operation
completing the maintenance, A comes up again. Next, B shall be shut down for mainte-
nance. To be able to safely shut down B without interrupting the CORBA service
exported via the I-DBC Proxy Cluster, the state of B must be replicated onto A before
shutting down B. This will be done automatically during startup of I-DBC Proxy A with
the check in procedure “Resolve All”. An event “ReplicationIORTableCopySuccess”
will be generated, when the state transfer is complete. It has an attribute “role” with the
value “client” for the newly started Proxy Process and “server” for any other Proxy Pro-
cess. You need to wait for this event to occur before shutting down I-DBC Proxy B oth-
erwise the state of the cluster will be corrupted. Eventually, the service will be
interrupted because of lost state.

If check in (ResolveAll) fails, it is retried after a timeout of 60 seconds (default) for as
many times as specified in the field “number of retries” (default 3). This timeout can be
changed by the user (see section “Configuration” on page 32). If even the last retry fails,
an event “ReplicationIOR-TableCopyFailure” will be generated.

2.3 Reliability and Asynchronous Operation
The replication mechanism is reliable in the sense that it assures that state replication to
at least one peer Proxy Process on a different host has been successful for every state
change. The mechanism can be operated either asynchronously or synchronously.

Asynchronous modeAsynchronous operation means that GIOP messages are forwarded even if the replica-
tion requests triggered by proxifications in this message have not been acknowledged
yet. Synchronous mode means that the GIOP message is forwarded only after all replica-
tion requests triggered by this message have been acknowledged.

Synchronous modeIn the synchronous case, we can be sure that each IOR has been replicated within the
cluster, i.e., it is present on a least two different cluster hosts. In case of failure of any
I-DBC Proxy host, the replicated state can be used after the client has established a new
connection to one of the other I-DBC Proxies. Synchronous operation is slower than
asynchronous mode: It increases the latency for each call by about 1.5 milliseconds on a
fast ethernet cluster interconnect, but does not limit the achievable throughput for inde-
pendent parallel CORBA requests. Depending on your reliability and speed require-
ments, we recommend using asynchronous operation if you’re ready to sacrifice a little
reliability for speed. Even in asynchronous operation, requests are retried, so asynchro-
nous operation is nearly as reliable as synchronous operation.

Asynchronous operation will lead to severe problems when the cluster interconnect is
not redundant and fails. It might take the I-DBC a while to recognize the failure of the
cluster interconnect, but by then it has no means to replicate the state changes to its peer
I-DBC Proxies.
Domain Boundary Controller – Deployment Guide29

Chapter 2 Replication
Making the cluster interconnect redundant will reduce the problem, but it can still not be
guaranteed that the replication request has been sent before the GIOP request has been
forwarded. If the I-DBC Proxy machine fails between sending the GIOP request and
sending the replication request, state information will be lost. Loss of state would inad-
vertently make the Access Session unusable for the client. However, the chance of a rep-
lication request being delayed longer than the corresponding GIOP message is very
small.

2.4 Limitations and Restrictions
This section lists some implementation details to clarify limitations and restrictions
when using replication. For instructions on how to configure replication with the Admin
Console, please refer to section “Configuration” on page 32.

2.4.1 Communication
The Replication Module binds to the configured multicast address and port. It sets the
socket option REUSEADDR to enable multiple receivers on the same port. It also needs
to know its real interface address (supplied via the configuration), because it will only
respond with ACK packets, if the address given in the request for selection of the ACK
sender matches the interface address part of the configuration dictionary “localAddress”.
Translated addresses (NAT) are not supported for the cluster interconnect.

2.4.2 Security
For performance reasons, there is no encryption and no authentication between hosts on
the cluster interconnect network. Therefore the cluster interconnect network must be
trustworthy and should be isolated from any other network. Either a dedicated cluster
interconnect network is used or replication is done via one of the other network inter-
faces. In the latter case, firewalls need to be in place to prevent UDP traffic from enter-
ing into or leaving the cluster interconnect.

2.4.3 IOR Timeout
If IOR Invalidation Timeout Triggered (II-TT) is active, IORs are timed out autono-
mously. Currently, there is no provision for deleting IORs from the replicated state or to
30 Domain Boundary Controller – Deployment Guide

Limitations and Restrictions
prevent deletion as described for the Access Session management. Because this prevents
reliable failover, it can not be used in a replicated cluster.

2.4.4 Object Keys
Object keys are unique per Proxy Process to prevent duplicates. In addition to the object
key scheme employed in the I-DBC Standard Edition, the process id of the Proxy Proc-
ess and a fixed random number chosen at startup is prepended to every object key.

2.4.5 Duplication of Calls
There is a chance of a method being called multiple times on the server when failover
occurs during a method call. The problem is caused by the fact that the client can not
decide whether the method has already been called on the server when the connection
brakes while waiting for the result from the I-DBC Proxy. The client has to retry the call.
Method calls thus need to be idempotent to prevent inconsistencies or transaction
semantics need to be used. This is true for any distributed application.

Consider the following scenario: The client sends a request to the I-DBC Proxy. The
request gets forwarded to the server and the server sends a reply. The I-DBC Proxy host
goes down before the reply reaches the client. What will the client do?

The client gets a timeout from the I-DBC Proxy, because it is no longer there. The client
reconnects, gets switched over to another I-DBC Proxy. Then, the client re-sends the
request and all goes well. The only drawback is, that the server has served the request
twice without the client knowing. But that will happen in configurations without the
I-DBC Proxies as well, if the network is interrupted and the client reconnects to re-issue
the request. It is the responsibility of the application programmer to anticipate this
behaviour.

To ensure transaction semantics you must use a transaction monitor. The use of such a
monitor is highly recommended for any mission critical business application anyway!

2.4.6 Delayed OBJECT_NOT_EXIST
If faced with an unknown IOR or a request addressing an unknown object key, the Proxy
Process needs to emit a resolve request to check if the IOR or object key is present in the
state of any other Proxy Process and wait for a reply. If the IOR or object key can not be
found, OBJECT_NOT_EXIST will be thrown eventually. If an application expects to
Domain Boundary Controller – Deployment Guide31

Chapter 2 Replication
see OBJECT_NOT_EXIST exceptions as part of its normal operation on a regular basis,
the application will be slowed down a bit, because this exception will only be thrown
after the I-DBC has verified that the key is not known to any host.

2.5 Configuration
This section explains how to configure the replication feature with the Admin Console.
Go to the “I-DBC Proxy Cluster” panel and activate replication by checking the box
“Replicate the state between DBCs”. Now you can configure the replication interface on
the “I-DBC Proxy” panel. The replication interface is the physical interface the Multi-
cast Address binds to (see below). It is used to exchange cluster interconnect messages.

Fig. 1. Network Interfaces – Replication Interface

The replication interface can be a separate interface, or it can be shared with any other
interface, for example, the Internal or Management Interface. Note that the NAT
Address of this interface does not apply the Replication Interface.

2.5.1 Replication Interface
After activating replication on the “I-DBC Proxy Cluster” panel, the panel “Replication
Interface” will be available (see below).
32 Domain Boundary Controller – Deployment Guide

Configuration

Fig. 2. Replication Interface

On this panel you can configure replication properties:

• Local UDP Port Range: As stated before, the state information is exchanged
between the different Proxy Processes using UDP messages. Here you configure
the address of the unicast UDP sender and receiver. This address is used for send-
ing ACKs and RESOLVEs. The address must be on the cluster interconnect net-
work. The UDP port given here is the base of a range of ports, one port for each
Proxy Process on a host. The range must not overlap with the UDP port used in the
multicast address (see below). The ports defined here will also be used as the target
port for sending RESOLVES. Thus, all local ports of all I-DBC Proxies in a cluster
are equal.

• Multicast Address: Defines the multicast address. The address must be between
224.0.0.2 and 239.255.255.255. As all addresses in the range 224.0.0.2 to
224.0.0.255 are link local addresses, these are recommended. The default multicast
address is 239.255.58.1.

• Multicast Port: Defines the multicast UDP port. The UDP port can be chosen
freely, but must be different from the ports specified for the local UDP port range.
Domain Boundary Controller – Deployment Guide33

Chapter 2 Replication
2.5.2 Replication Message Properties
• Maximum Number of Retries: Defines the number of retries. This is valid for ADD,

RESOLVE and RESOLVE_ALL.
• Retry Timeout (Standard): The timeout for standard retries in milliseconds
• Retry Timeout (Resolve All): The timeout for Resolve All retries in milliseconds
• Synchronized: If you check this box, GIOP messages will be forwarded only after

the state replication has been confirmed. If not activated, state replication will be
retried until number of retries is exceeded, GIOP messages will be forwarded
before successful replication has been confirmed.

2.6 Performance
This section discusses how the performance of a cluster can be estimated.

2.6.1 Multi Processor Machines
All multicast requests need to be looped back to the same host if more than one Proxy
Process is active on a host, which is usually only the case on a multiprocessor machine.
This is expensive because the sending process will also see all of its own ADD requests.

“No looping” is selected automatically when the number of Proxy Processes is 1. If the
number of Proxy Processes is larger than 1, “looping” is activated automatically.

When looping is selected, the sender can identify its own requests by the sender id con-
tained in each ADD request. Thus, the sender can filter out its own packets before being
processed further. This saves the effort for updating the IOR Table, but not the effort of
receiving the packet and decoding at least part of it.

2.6.2 Estimated Throughput
The total capacity of the cluster is calculated by the capacity of single CPU multiplied
by the number of CPUs, but limited by the time needed for replication. This is expressed
by the following formula:

throuhghput n= 1
roundtriptime overhead+
--×

overhead n p replicationtime×× ,=
34 Domain Boundary Controller – Deployment Guide

Runtime Object Values
where

• n is the number of CPUs in the cluster,
• roundtriptime the time for a method call including response,
• replicationtime the additional cost for the replication of a single proxified IOR.
• p is the proxification rate which gives the ratio of messages causing a proxification

to the total number of messages. A message causing proxification is a message
transmitting an object reference (IOR) as parameter or return value.

The assumption here is that every pth requests a proxification including replication is
done. Therefore, the time needed to accomplish this is the product of the time needed for
a single replication multiplied by p and the number of CPUs.

If the rate of proxifications is low compared to the number of messages transmitted,
scalability is expected to be very good, as can be seen in Table 1 on page 35, in the col-
umn for p=0.1. Please note that these numbers are synthesized. Measurements were
made on two single processor Sun Ultra 10 running at 440 MHz. Measurements were
taken to determine the average delay imposed on a method call without parameters
returning a single IOR. The result was that a round-trip took no longer than 2000 micro-
seconds without replication, and replication costs less than 500 microseconds per Proxy
Process. The delays were verified to be linear by running 2 and 3 Proxy Processes on the
same machines. For the table, we made the assumption that the capacity of the cluster
simply scales linearly with the number of available CPUs. This is not true in general, but
close enough for this demonstration.

2.7 Runtime Object Values
During operation, the state of the Replication Service can be monitored using the SPS
Client – a command line interface to the SPS to get state information from the SPS (for

Table 1. Predicted throughput on cluster with Sparc IIe / 440 MHz Processors

n msg/sec for p=1 msg/sec for p=0.5 msg/sec for p=0.1

2 571 727 930

4 888 1230 1777

6 1090 1600 2553

8 1230 1882 3265

12 1411 2285 4528

16 1523 2560 5614
Domain Boundary Controller – Deployment Guide35

Chapter 2 Replication
details on how to install and use the SPS Client, please refer to Chapter 4 “SPS Client”
on page 41).

Example: State Dump of Replication Service
The following example shows the state of a Replication Service after a test with a single
client has been run. The I-DBC Proxy is configured with two Proxy Processes per host,
which can be deduced from the listing of the peers containing two entries. The peer list
includes only those Proxy Processes which are selectable as acknowledgers, so only
peers on another host are listed. The name of the peer host is dolphin, while the host
on which the state was dumped is named mamba.

{"ObjectId" = "pid5966.ReplicationService"
 "Values" = {
 "active" = "true"
 "addMessagesSent" = "924"
 "averageRtt" = "0.294063"
 "currentProcesses" = "0"
 "droppedLooped" = "887"
 "identifier" = "1693381801"
 "inhibited" = "false"
 "maxRtt" = "1.166224"
 "maxVirtualProcessId" = "2"
 "messagesACK" = "1019"
 "messagesReceived" = "3696"
 "messagesRequest" = "2677"
 "messagesResent" = "4"
 "messagesSent" = "932"
 "messagesTerminate" = "4"
 "messagesVeto" = "2"
 "minRtt" = "0.005208"
 "outstandingReplicates" = "0"
 "peers" = [
 { "address" = "hostname=dolphin.xtradyne.com,
 address=192.168.1.33, port=50305"
 "state" = "up"
 "virtualProcessId" = "0" },
 { "address" = "hostname=dolphin.xtradyne.com,
 address=192.168.1.33, port=50306"
 "state" = "up"
 "virtualProcessId" = "1" }
]
 "resolveMessagesSent" = "2"
 "sequenceNumber" = "928"
36 Domain Boundary Controller – Deployment Guide

Runtime Object Values
 "singlePeer" = "false"
 "synchronous" = "false"
 "terminateMessagesSent" = "6"
 "virtualProcessId" = "0" }

Now for an explanation of the fields:

• The state of active is true or false. True means, replication is active. In a non-clus-
tered environment, active is false.

• addMessagesSent counts the number of ADD messages.
• currentProcesses is the number of currently active replication processes.
• minRtt, averageRtt and maxRtt give the respective round-trip times in seconds.
• droppedLooped counts the number of packets which have been received by the

sender itself and thus been dropped before being processed.
• identifier is the fixed random number which identifies this Proxy Process on the

host. This is also used for object key disambiguation.
• inhibited is false, because ADD messages are sent while proxifying. For testing

and performance evaluation, the Replication Service can be switched to inhibited
mode where ADDs are sent only upon RESOLVE request.

• maxVirtualProcessId is the same as the number of Proxy Processes on one host.
• messagesACK is the number of acknowledges received.
• messagesReceived counts the total of messages received.
• messagesRequest is the count of request messages.
• messagesResent is the total of messages which timed out and needed to be resent.
• messagesSent counts the total number of messages sent.
• messagesTerminate is the number of requests for Access Session termination

received.
• messagesVeto is the number of VETOs received.
• outstandingReplicates is the number of ACKs, which are expected to arrive but

have not yet.
• peers is a vector of peers on other hosts.
• The state of each entry is either “up” or “down“. “down” means, the peer has not

responded to an ADD request within the timeout.
• The virtualProcessId just numbers the peers on one host.
• resolveMessagesSent is the number of RESOLVEs sent.
• sequenceNumber is the current sequence number.
• If there is only a single peer, then singlePeer is true.
Domain Boundary Controller – Deployment Guide37

Chapter 2 Replication
• synchronous denotes the mode of operation.
• terminateMessagesSent is the number of requests for Access Session termination

sent.
• virtualProcessId is the number this Proxy Process has on this host.

2.8 Installation Notes
When installing a cluster of I-DBC Proxies, there are several non-obvious things to con-
sider. The following text will give you some advice.

Direct Routing
Direct routing is the recommended mode of operation for a traffic redirector for a small
cluster, because it provides the best performance. When using direct routing, you need to
do the following:

• Configure the virtual IP address of the traffic redirector on all I-DBC Proxy hosts.
Make sure these virtual IP addresses are never advertised via ARP.

• Enter the virtual IP address as the local external and internal interface address in
Admin Console. This will cause the Proxy Processes to actually bind to the virtual
address, which is intended. Do not enter the virtual IP address in the field “virtual
address”.

• Make sure the virtual IP is routed from clients and servers to the virtual director.
• Check availability of the virtual address using telnet vip <I-DBC port>.

If you want to operate the I-DBC in dual homed mode, you must use a second traffic
redirector, or a second virtual address on your traffic redirector.

NAT
When your traffic redirector is configured to use NAT for mapping the virtual IP address
to the cluster hosts, do the following:

• Enter the real interface address of each I-DBC Proxy into the fields for the local
address of external and/or internal interface of the AdminConsole. Usually, you
will not be filling out the NAT fields.

• Enter the virtual IP address in the field “virtual address” and check the box.
• Make sure the virtual IP is routed from clients and servers to the virtual director.
• Check availability of the virtual address using telnet vip <I-DBC port>
38 Domain Boundary Controller – Deployment Guide

CHAPTER

3 Performance
Monitoring

To support performance management tasks the DBC provides on-demand access to
usage data, which may be accounted for a single DBC Cluster or DBC host. The follow-
ing performance indicators are accounted:

When operating the I-DBC:

• GIOP Message Bytes Received
• GIOP Message Bytes Sent
• Number of GIOP Messages Received
• Number of GIOP Messages Sent

When operating the WS-DBC:

• HTTP Message Bytes Received,
• HTTP Message Bytes Sent,
• Number of HTTP Messages Received,
• Number of HTTP Messages Sent.

The usage data collector has been designed to provide data at regular time intervals.
Each time when usage data is retrieved the usage counters are reset to account usage
within the next time interval. For the ease of integration with third party performance
management solutions, the collected usage data is stored in a flat file with comma sepa-
rated values (CSV). The usage data collector is provided by means of a shell script
which can be adapted easily to your requirements.
Domain Boundary Controller – Deployment Guide 39

Chapter 3 Performance Monitoring
3.1 Setting up the Usage Data Collector
The usage data collector script collectperfdata.sh is part of your SPS installa-
tion and it is located in directory <INSTALLDIR>/sps/bin/.
By default, the collected usage data is stored on the Security Policy Server to the CSV
file <INSTALLDIR>/sps/adm/PerfData.csv. Before using the script you need
to adapt the script internal settings to your Security Policy Server (SPS) configuration.
Use a text editor to open the shell script and modify the following settings:

• Check the settings for SPS_PROTOCOL, SPS_HOST, and SPS_PORT. These
variables are set up during the installation of the SPS. SPS_HOST and SPS_PORT
should contain the SPS host, IP address, and port provided for management access
(i.e., the endpoint to which you connect with the AdminConsole). Variable
SPS_PROTOCOL must be set to “ssliop” if SSL protection is enabled for the SPS.
Otherwise set the variable to “iiop”.

• Variable CLUSTER_NAME holds the name of the DBC Cluster. The default name
used by the SPS configuration is “idbcCluster1” or “wsdbcCluster1” respectively.
If you have assigned a different name you need to set the variable to the assigned
name.

• Variables ADMIN_USER and ADMIN_PWD hold the user ID and password
required for management access. If you changed the account settings you need to
adapt the variables to the new settings.

3.2 Activating the Usage Data Collector
To activate the usage data collector it is required to execute the shell script at regular
time intervals (i.e., every hour). This can be achieved easily using the cron tool of the
operating system. To defined a cron job you can use the "crontab -e" command.
This command will open a text editor to edit the current table of cron jobs. Each entry
has the following format: “<minute> <hour> <day of month> <month> <day of week>
<command>”, where each time and date field may specify a single value or a range of
values. The asterisk "*" may be used for time and date fields to specify all possible val-
ues. To schedule the script for hourly execution you need to enter:

0 * * * * /usr/xtradyne/sps/bin/collectperfdata.sh
40 Domain Boundary Controller – Deployment Guide

Installing the SPS Client
CHAPTER

4 SPS Client
The SPS Client is a command line interface to the Security Policy Server (SPS).
The SPS Client can be used to configure the SPS or to get state information
about the SPS.

4.1 Installing the SPS Client
All files are placed in the directory /usr/xtradyne/cli on Linux and in the direc-
tory /opt/xtradyne/cli on Solaris.

Linux: Installation Command
rpm -ivh /cdrom/linux/resources/Xtradyne_CLI-3.1-<x>i386.rpm

If you want to install into a different directory use the --prefix option (not possible
using RPM 4.0, e.g., RedHat 8.0):

rpm -ivh --prefix /different_directory ...
Domain Boundary Controller – Deployment Guide 41

Chapter 4 SPS Client
For more information about the installed package, e.g., the date of installation, the ver-
sion number, etc., use the command:

rpm -q -i Xtradyne_CLI

Solaris: Installation command
Install the package by typing:

pkgadd -d /cdrom/solaris/resources/Xtradyne_CLI-3.1-<x>.pkg

For more information about the installed package, e.g., the date of installation, the ver-
sion number, etc., use the command:

pkginfo -l -i XDNCLI

4.1.1 Installation Overview
The SPS Client installation directory contains the following:

Directory Description
env.sh Source this script to set the appropriate shell environment

(bash and sh) for DBC commands.
env.csh Source this script to set the appropriate shell environment

(csh and tcsh) for DBC commands.
bin/ Contains the binaries.
bin/cliconfig.sh Shell script to configure the SPS Client.
bin/collectperfdata.sh Shell script for collecting performance data (see also

Chapter 3 “Performance Monitoring” on page 39).
bin/dbcstat Tool to find out the status of the DBC.
bin/deploydominoior.sh Shell script to deploy a domino IOR.
bin/der2pem.sh Shell script to convert key and certificate files from DER

to PEM encoding.
bin/generateior Shell script to generate an IOR.
bin/listconnections.sh A helper script to view all connections on a single DBC.
bin/openssl Tool to create keys and certificates
bin/printcert.sh Tool for checking the validity of certificates.
bin/printior Tool for printing an IOR in a readable way.
42 Domain Boundary Controller – Deployment Guide

Post installation Steps
4.2 Post installation Steps

4.2.1 Configuring the SPS Client
Use the script <INSTALLDIR>/bin/cliconfig.sh to configure the SPS Client,
i.e., give the script the host and port of the Security Policy Server. The script can be
given the following arguments:

 ./cliconfig.sh [-h][-b] [-i <address>] [-p <port>]

[-s yes|no] [-n <cluster>]

-h prints a help message

-b batch mode, do not ask for confirmation

-i <address> this is the IP address of SPS to contact. The default address is
127.0.0.1

-p <port> this is the port of SPS to contact. The default port is 15000.

-s yes|no If you choose “yes” IIOP/SSL will be used to contact the SPS. If
you choose “no” plain IIOP will be used to contact the SPS. The default is yes.

-n <cluster> name of the DBC cluster. The default name is
iDBCProxyCluster1.

If your SPS is for example running on a host with the IP address 192.168.47.11 with the
default management port 15000, type:

./cliconfig.sh -i 192.168.47.11

bin/proxifyior.sh Script to proxify an IOR.
bin/spscli.sh Script to start the SPS Client.
bin/spsclient The SPS Client executable
bin/xtradyne.sh Collection of common things for Xtradyne scripts. This

is sourced by all other scripts.
lib/ Dynamic libraries for the SPS Client.
adm/ Contains configuration information and keys.
Domain Boundary Controller – Deployment Guide 43

Chapter 4 SPS Client
4.2.2 Installing Keys and Certificates
If SSL is used on the management connection, you need to install the proper keys and
certificates for the SPS Client installation:

1. Copy the file <INSTALLDIR>/sps/adm/AdminConsoleKeys.tar from
the SPS host to the directory <INSTALLDIR>/cli/adm on the host where the
SPS Client will be running.

2. On the SPS Client host change to directory <INSTALLDIR>/cli/adm and
unpack the tar file:
tar xvfp AdminConsoleKeys.tar

3. Create symbolic links as follows:
ln -sf AdminConsoleKey.der SPSClientKey.der
ln -sf AdminConsoleCert.der SPSClientCert.der

4. Make sure that key files are owned by user xtradyne:
chown xtradyne *.der

4.3 SPS Client Commands
To start the SPS client type:

./spscli.sh

After start-up, the SPS Client will ask for a user name and password. You can use, for
example, the default user admin with the password admin to log in.

The SPS Client knows several commands which are listed in the following table.

Command Description
clearCache Clears the ADF cache in Proxy. Note that caches in the

Security Policy Server are not cleared with this call!
collectUsageData
<clusterName>
[<dbcName>]

Gathers usage data from the given cluster, accumulates
the retrieved values, and prints a CSV record with the
format: timestamp, bytes received, bytes sent, messages
received, messages sent. Optionally, a DBC name may be
specified to gather the data from a single DBC host, only.

config Prints the current configuration.
dump
<clusterName>
<dbcName>

Dump all attributes from the named DBC Proxy in a
cluster.
44 Domain Boundary Controller – Deployment Guide

SPS Client Commands
echo <n>
<anystring>

Print “any string” n times.

exportUser
<filename>

Creates a csv file containing users. The file will be writ-
ten to <INSTALLDIR>/cli/adm.

get <clusterName>
<dbcName>
<objectId>
<attribute name>

Retrieves the attribute value of <attribute name>
from the object with id <objectId>. E.g., the com-
mand get cluster1 dbc1 NodeManagerAdmin
proxyProcesses yields a list of all proxy process
identifiers.

getAll
<clusterName>
<dbcName>
<objectId>
<attribute name>

Retrieves the attribute values of the attribute
<attribute name> from all the objects with id
<object id>.

getDescription Retrieves the description of the Security Policy Server.
help Prints a list of all commands.
importUser [-v]
<filename>

Imports a csv file containing users. Use exportUser to
create an example file. The file to import will be read
from <INSTALLDIR>/cli/adm.

ior ... The ior command has a number of sub commands,
please refer to table 3 for a list of these commands.

lock <name> Locks GUI use on Security Policy Server cluster. See
also unlock and reset.

login <username> Login on Security Policy Server.
mon Enter monitor mode.
readUser <uid> Read a user dictionary from the storage.
reset Reset GUI lock on Security Policy Server cluster, see

also lock and unlock.
restart Restart the ProxyManager after configuration changes.
restartSPS
<SPSName>

Restart SPS with the given name. Omit <SPSName> to
restart all SPSs.

sessionInfo
<clusterName>

Prints the number of connections, IORs, and pending
requests for all access sessions from the given cluster and
calculates the total numbers. For example:
sessionInfo iDBCProxyCluster1
Domain Boundary Controller – Deployment Guide 45

Chapter 4 SPS Client
Table 2. SPS Client commands

set <clusterName>
<dbcName>
<objectId>
<attribute name>
<attribute value>

Sets the attribute with name <attribute name> of
the object with id <objectId> to value <attribute
value>. The attribute value must be a stringified dic-
tionary, i.e., string/int/bool literals must be quoted.
Example: set dbcCluster1 dbcProxy1
pid1234.ADF enabled “false”

setAll
<clusterName>
<dbcName>
<objectId>
<attribute name>
<attribute value>

Sets the attribute with name <attribute name> of
the object with id <object id> to value
<attribute value> for all Proxies. Example:
setAll dbcCluster1 dbcProxy1 ADF ena-
bled “false”

setTree
<clusterName>
<dbcName>
<objectId>
<attribute name>
<attribute value>

Sets the attribute with name <attribute name> of
all objects subordinate to id <objectId> to value
<attribute value>. The attribute value must be a
stringified dictionary, i.e., string/int/bool literals must be
quoted. Example: set dbcCluster1 dbcProxy1
pid1234 enabled “false”

smon Enter into state monitor mode.
storeModel
<modelFileName>

Stores the access control model contained in the file
named <modelFileName> in the DBC, i.e., it acti-
vates the use of the given access control model. The
model must be complete.

syn Synchronize Security Policy Server cluster.
unlock Unlock GUI on SecurityServer cluster, see also reset

and lock.
writeConfig
<filename>

Write the configuration from file <filename> to the
Security Policy Server. The file will be read from
<INSTALLDIR>/cli/adm.

quit Exit the program.
46 Domain Boundary Controller – Deployment Guide

SPS Client Commands
Table 3. Sub commands for the ior command

Command Description
ior ... Note that ior commands apply only to I-DBCs!
ior activate
<stringified
original IOR>
[public|private]
[mode] [preserve-
ObjectKey]

Proxify the given original IOR and activate it on the
DBC Proxy. This command is effective immediately. The
argument <mode> can have the following values:

• 0 TCP only,
• 1 SSL only,
• 2 TCP optional and SSL mandatory,
• 3 TCP mandatory and SSL mandatory,
• 4 TCP optional and SSL optional

<preserveObjectKey> may be true or false.
ior deactivate
<stringified
original ior>
[match]

Deactivate the given original IOR on the DBC Proxy.
This change is effective immediately. By default, the
original IOR is matched. The other IOR is returned.
[match] is a bitmask: 0 all, 1 host, 2 TCP port, 4 SSL
port, 8 object key, 16 match will be done on the proxified
IOR.

ior deactivateOn-
Cluster
<clusterName>
<stringified
original ior>
[match]

Deactivate the given original IOR on the DBC Proxy.
This change is effective immediately. By default, the
original IOR is matched. The other IOR is returned.
[match] is a bitmask: 0 all, 1 host, 2 TCP port, 4 SSL
port, 8 object key, 16 match will be done on the proxified
IOR.

ior deploy
<cluster name>
<stringified
original IOR>
<proxification
info dict>
<makePersistent>

Proxify the given original IOR and activate it on the
given cluster. This command is effective immediately.
<proxification info dict> is a dictionary con-
taining additional proxification info. The dictionary must
not contain any spaces. <makePersistent> can be
true or false. If true, the configuration will be saved.
Domain Boundary Controller – Deployment Guide 47

Chapter 4 SPS Client
4.4 Administrative Rights for SPS Client Operations
You can allow or deny administrative rights for the following SPS Client operations:

• Update IOR table, i.e., commands ior activate, ior deactivate, ior
deactivateOnCluster, ior deploy

• Clear ADF Cache, i.e., command clearCache
• Reload policy data, i.e., command importUser
• Get/set attribute, i.e., commands get, getAll, set, setAll, setTree

Administrative rights can be configured on the “Roles - Administration” panel, see
“Role Properties – Administration” on page 261 of the Administrator’s Guide.
48 Domain Boundary Controller – Deployment Guide

Introduction
CHAPTER

5 WS-DBC Tools
This chapter describes WS-DBC Tools included in the DBC installation.

5.1 Introduction
The tools are included in the Admin Console installer and are available for Linux, Sola-
ris, and Windows. On how to install the tools, please refer to section “Installation of the
Admin Console” on page 99 of the Administrator’s Guide. The following tools are avail-
able:

• wsdl2schema: generates XML schema files from Web Service definitions in
WSDL

• schematest: checks the correctness of your schema.
• xpathtest: checks the correctness of xpath expressions.

5.2 The wsdl2schema Tool
wsdl2schema is a tool to automatically generate XML schema files from Web Service
definitions in WSDL. The generated schema files can then be used for validating SOAP
messages with the WS-DBC. The tool supports automatic substitutions of XML data
types with user-defined, more restricted types.

5.2.1 Usage
The wsdl2schema tool has to be installed before it can be used. The general syntax
for invoking the tool is:

wsdl2schema <infile> [output=out_dir] [replace-file=<replace_file>]
Domain Boundary Controller - Deployment Guide 49

Chapter 5 WS-DBC Tools
To generate XML schema files from an input WSDL file myService.wsdl, go to the
installation directory and invoke the script like this on Solaris and Linux:

wsdl2schema.sh myService.wsdl output=/tmp/somewhere

and

wsdl2schema.bat myService.wsdl "output=c:\tmp\somewhere"

on Windows. Note that quotes around the output option are required on Windows.

As a result, a schema representing the message and parameter types of the service
described in myService.wsdl will be output on the terminal. WSDL files may
directly contain nested XML schemas. These will be extracted and written to the output
directory (tmp/somewhere). If you examine the content of the output directory, you
will note that the target XML name space of a schema is used as the name for the file
that contains the schema. To have your main schema reside next to the inner schemas
that were extracted from the WSDL, please redirect the standard output to a file.

It is important to note that for using XML schema validation you must place the gener-
ated schemas and, when referenced, the supplied standard schemas in the WS-DBC
proxy's schema directory on the proxy host. Otherwise, the scheme generator will com-
plain about undefined types.

5.2.2 Restricting data
The wsdl2schema tool supports automatic modifications of the XML data types
found in a WSDL file and its contained schemas. This mechanism can be used to enforce
restrictions on the data that is sent in SOAP messages when performing XML schema
validation with the WS-DBC. For example, it may be required that all XML string data
in messages for a given service conform to a predefined pattern, which is specified in a
50 Domain Boundary Controller - Deployment Guide

The wsdl2schema Tool
separate, user-defined XML schema. This schema could contain the following definition
of a restricted integer type:

 <simpleType name="betweenZeroAndSeven">
 <restriction base="int">
 <enumeration value="0"/>
 <enumeration value="1"/>
 <enumeration value="2"/>
 <enumeration value="3"/>
 <enumeration value="4"/>
 <enumeration value="5"/>
 <enumeration value="6"/>
 <enumeration value="7"/>
 </restriction>
 </simpleType>

To restrict SOAP messages with integer parameters such that only values between 0 and
7 may reach the service, it is sufficient to replace the type attributes xsd:int with the
name of the restricted type betweenZeroAndSeven. This approach only works for
named types, however, not for anonymous nested type definitions.

The wsdl2schema tool lets you write a replacement file with substitution rules that
will be applied by the schema generator. The generator will then substitute the names of
specified types with the names of other, potentially more restricted types in the output.
Here is an example replacement file:

<?xml version="1.0" encoding="UTF-8"?>
<restrictions xmlns="http://www.xtradyne.com/schemas/2004/
wsdl2schema"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<!-- each restriction targets schemas in a single targetNamespace
 for more than one schema, use multiple restriction elements
 with different targetNamespaces -->
<restriction targetNamespace="http://example1.com">
<!-- There can be zero or one <substitutions> element -->
<!-- The subns attribute denoting the namespace is mandatory -->
<substitutions subns="urn:my-restricted-types1">
<!-- There can be one or more <replace>s element -->
<replace type="xsd:string" with="subns:restricted-string"/>
</substitutions>
</restriction>
<restriction targetNamespace="http://example2.com">
<substitutions subns="urn:another-namespace">
Domain Boundary Controller - Deployment Guide 51

Chapter 5 WS-DBC Tools
<replace type="xsd:int" with="subns:restricted-int"/>
</substitutions>
</restriction>

The replacement file comprises one or more <restriction> sections. Each of these
sections specifies one ore more substitutions sections for the same
targetNamespace. The rules in these sections will then be applied to definitions in
the schema output for the given targetNamespace. The substitutions section
groups one or more <replace> rules that define individual type name substitutions.
As part of the instantiation we provide a schema substitution.xsd that you can
use to check your replacement file for correctness.

In the example above, any xsd:string type attribute found XML schema definitions
in the http://example1.com namespace would be replaced by a
subns:restricted-string type attribute, and xsd:int type attributes on ele-
ments in the http://example2.com name space would be turned into
subns:restricted-int attribute values. Note that the XML namespace prefix is
always subns (substitution name space), and also note that all <replace> rules in
one substitutions section share the same substitution name space, i.e., the schema
where the substitution type is defined. The schemas for all substitution name spaces
must be available on the WS-DBC proxy host for XML schema validation purposes, just
as with the standard schemas.

5.3 The schematest Utility
We recommend using XML editing tools when writing schema definition files to avoid
syntactic errors. Additionally, you should always check your schemas using the com-
mand schematest. The schematest program can be found in the directory
<INSTALLDIR>/tools/bin (after installing the tools set included in the Admin
Console installer) and behaves the same way as the XML parser in the WS-DBC Proxy
implementation. Please only deploy schema files that are accepted by this utility (as
shown below).

Go to the installation directory and invoke the script like this on Solaris and Linux:

schematest.sh -I myschema.xsd

and on Windows:

schematest.exe -I myschema.xsd
52 Domain Boundary Controller - Deployment Guide

The XPathTest Tool
If the check was successful, the output will read:

Successfully parsed schema file myschema.xsd for target namespace
urn:myns

5.4 The XPathTest Tool
The XML Path Language (XPath) supports addressing parts of an XML document.
XPath expressions may be defined as filters for request and response messages in the
WS-DBC. XPath expressions can be syntactically and semantically checked with the
tool xpathtest. Go to the installation directory and invoke xpathtest like this:

./xpathtest -i <xml-file> <“xpath expression”>

<xml-file> is a file containing an XML document and <“xpath expression”>
is an XPath expression that will be applied to the XML document. Note that the XPath
expression must be included in quotes or double quotes. Instead of passing the XPath
expression directly as an argument, you may use the option -f <xpath file>,
where <xpath file> is a file containing the XPath expression.

Example
Given the following example XML message in the file Envelope.xml:

<?xml version="1.0"?>
<soap-env:Envelopexmlns="http://schemas.xmlsoap.org/wsdl/
soap/"
xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/04/secext"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soap-env:Header>
</soap-env:Header>
<soap-env:Body>
<ns:test xmlns:ns="urn:test"
soap-env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<test>TEST</test>
</ns:test>
</soap-env:Body>
</soap-env:Envelope>

The following call of xpathtest searches for the node ‘test’ in the XML file
Envelope.xml: and compares the value of this node with ‘TEST’:
Domain Boundary Controller - Deployment Guide 53

Chapter 5 WS-DBC Tools
./xpathtest -i Envelope.xml "string(//*[local-name()='test']/
text())='TEST'"
Object is a Boolean: true

The output of xpathtest states that the expression evaluated against the XML file
Envelope.xml yielded true. If the node ‘test’ in the XML file had a different value,
the tool would yield ‘false’. If the xpath expression is syntactically incorrect, the tool
will yield an error.
54 Domain Boundary Controller - Deployment Guide

Operating System
CHAPTER

6 Hardened System
Requirements and Recommendations for Linux

The DBC software must be installed on machines that will become part of your
firewall. All firewall machines are potential targets of attacks, so they require
great care in the configuration of their operating system and network compo-
nents. In this chapter, we describe the requirements for the machines you will
use as DBC components, and provide recommendations for hardening your sys-
tem for secure operation. If you are unsure about the things described here,
please consult a computer security or firewall expert for advice.

While it is a good idea to secure every machine in your network, it is mandatory for the
firewall machines. Since these are located at the entry points of your network, they are
the first line of defence that a potential attacker has to deal with.

hardened systemOn firewall machines you should make sure that there are as few handles for attacks as
possible, both in terms of available network services and operating system features. This
is called a hardened system.

When using DBC software, you should especially take care with the machine you will
use as the DBC Proxy host, as it is part of your firewall. However, if your security policy
requires protection against inside attacks too, the same applies to the Security Policy
Server machines and possibly the DBC Proxy administration machines.

6.1 Operating System
minimal operating
system

In general, start with a minimum installation of the operating system. If you are more
experienced with the installation procedures, use a custom installation. You should only
install such components that are absolutely required for the operation of the security
related software.
Domain Boundary Controller – Deployment Guide 55

Chapter 6 Hardened System
The DBC Proxy host is run solely as a server, so there is no need for any graphical user
interface (GUI) components. This also applies to the Security Policy Server if you do not
use the Admin Console locally.

file permissions and
logon

Make sure you have very strict permissions on critical system files, especially in the
directory /etc. Remove SUID/SGID flags from executables if possible. Restrict
logon to the console or a dedicated management interface. We cannot describe this proc-
ess in detail here, but there are several good books about it.

no NFS or YP/NIS Configure the machine as a stand alone system. Do not use NFS or YP/NIS, since these
components are very vulnerable to attacks. Instead, use only local file systems and the
shadow password mechanism. If possible, deactivate any accounts on the machine,
except those needed for administration and the services. There should be no need for
your regular network users to access the firewall machines anyway.

6.2 Network Services
Pay special attention to network services. Most of them are unnecessary on a firewall
machine, so you can disable them. Prevent stand alone service daemons from starting,
and also disable the inetd super daemon if you do not need the services it provides
(check its configuration file /etc/inetd.conf). See your operating system manual
for instructions.

remote
administration

There are a few exceptions to this general rule. If you need a means for remote adminis-
tration, use a secure service such as SSH. This is usually provided by the stand alone
daemon sshd. Do not use traditional services such as telnet or rsh/rexec, since
they are vulnerable to sniffing and hijacking attacks.

e-mail only in
forward mode

You may also want to use e-mail notifications for problems or security alerts. Often, the
sending of e-mail is possible without a specific mail daemon, but in some cases you may
have to use one. Then you should disable all of its features, and use it only for forward-
ing mail to your mail gateway or administration system.

restricted access to
network services

If you use any network services, try to restrict their binding to network interfaces. If you
have a dedicated management interface, configure the services to bind to that. Generally,
the services should not be accessible from interfaces that are connected to a public or
untrusted network. You may also use meta-daemons such as tcpd to restrict access, or
use local packet filtering for that purpose.

After you have finished configuring the network services, use netstat -a and watch
for any lines specifying LISTEN as state. Verify that there are only those services you
need, and that they use the correct bind address (network interface).
56 Domain Boundary Controller – Deployment Guide

Kernel and Network Stack
6.3 Kernel and Network Stack
Make sure you have the latest patches installed for your kernel. For some operating sys-
tems, there may be special add-on patches available which can be used to enhance secu-
rity.

minimum kernelOn some systems, you can compile your own kernel. Apply the same rule as for the sys-
tem components: Only include those features that you absolutely need, and omit any-
thing else. Build a monolithic kernel if possible.

Check your operating system manual to see if your network stack provides basic protec-
tion against common low-level attacks, such as SYN flooding or fragmentation bombs.
Enable these features or compile them in.

IP forwardingIf you use a multi-homed machine for the DBC Proxy host, make sure that IP forward-
ing/routing is disabled. This prevents an attacker bypassing the IIOP Proxy.

strong end system
model

Also, consult your manuals to see if your network stack enforces a strong end system
model. This means that each packet arriving at a network interface must have that inter-
face’s network address as its target address. If this is not the case, your system may be
vulnerable to spoofing attacks. You can enforce a strong end system model by using a
local packet filtering component (e.g., ipchains on Linux). Create a rule for each
interface to only accept packets targeted at the interface address or its broadcast address,
and set the default policy to discard or drop anything else.
Domain Boundary Controller – Deployment Guide 57

Chapter 6 Hardened System
58 Domain Boundary Controller – Deployment Guide

I-DBC Authenticator Architecture
CHAPTER

7 I-DBC
Authentication

The I-DBC Access Control is primarily designed to work with mutual authenti-
cation via SSL. However, in some scenarios the client cannot use certificate
based authentication. For such cases the I-DBC provides an alternative authen-
tication framework via a dedicated CORBA interface

This chapter is intended for developers who wish to use the I-DBC Authenticator
in their applications. We assume you are familiar with the general I-DBC Archi-
tecture, and the requirements of the specific native authentication method you
wish to use.

7.1 I-DBC Authenticator Architecture
The I-DBC Authenticator interface is a framework for generic authentication. Specific
authentication methods are provided as a mapping to this interface. We describe both the
generic use and several specific mappings in the following sections.

The I-DBC Authenticator service is located on the I-DBC host (see Figure 1, “The
I-DBC Authenticator Architecture”on the next page). Clients can contact the I-DBC
Authenticator interface at the same host and port address as any Initial Contact Point
(ICP). It is an inband service, so the client must use the same connection for subsequent
invocations on IIOP Proxies.
IIOP Domain Boundary Controller – Deployment Guide 59

Chapter 7 I-DBC Authentication
Fig. 1. The I-DBC Authenticator Architecture

inband
authentication

The I-DBC Authenticator interface cannot authenticate clients by itself, since this proc-
ess usually requires sensitive information. Accordingly, the authenticator forwards the
request to the Security Policy Server, which in turn passes the request to the appropriate
authentication module.

There may be multiple authentication modules, each of which can perform a specific
authentication method. The module either performs the authentication by itself, or uses a
local system service. Finally, the module sends a response to the I-DBC Authenticator
service which in turn sends it back to the client.

7.2 Caveats
You may use the I-DBC Authenticator interface instead of SSL authentication. However,
you must consider some constraints.

If you don’t use SSL, all data is sent unprotected over any intermediate networks
between the client and the I-DBC host. Attackers may intercept this data on the way to
get hold of passwords or other sensitive information.

WE URGE YOU TO USE AT LEAST CLIENT-SIDE SSL.

That way, your password is cryptographically protected as it travels through the net-
work.

Client Host

ICP
Client

Security ServerDBC Host

Security Service
DBC Authenticator

Service

Authentication

Module

IIOP Proxy
60 Domain Boundary Controller – Deployment Guide

Generic Interface
Authentication using the I-DBC-Authenticator Interface is also not as fine-grained as
SSL. It only accepts a single user at a time from each client host, and denies access to
other users from the same machine. (In some scenarios you may work around this
restriction by using IP address based Access Sessions). The I-DBC Proxy has to enforce
this restriction to securely separate Access Sessions. This may lead to problems if your
client network is behind a masquerading firewall.

Since the I-DBC Authenticator is an inband service, a successful authentication is only
valid for the TCP connection it was sent over. If your client ORB creates additional con-
nections to the I-DBC Proxy, it must re-authenticate on the new connection. This is not a
problem if your client ORB reuses connections to its peers, actually most ORBs do so.
However, if your client ORB creates connections for each method invocation, you can-
not use the I-DBC Authenticator. The I-DBC Proxy has to enforce this restriction, other-
wise attackers could forge the source address of a connection to gain access to your
authenticated session.

7.3 Generic Interface
The I-DBC Authenticator CORBA interface is generic enough to allow mapping to all
kinds of authentication services, including those that utilize query callbacks (we use
continue_authentication for that). For a detailed description of the methods
and their parameters see section “Generic Use” on page 63.

You may notice some similarities to the application view interfaces of the CORBA secu-
rity specification. We chose a different interface to prevent clashes if your clients and
servers use a compliant ORB security service.

// Generic I-DBC Authenticator Interface

#pragma prefix “xtradyne.com”

module Xtradyne {
 // return value of authentication functions
 // this is the same as Security::AuthenticationStatus
 enum AuthenticationStatus {
 SecAuthSuccess,
 SecAuthFailure,
 SecAuthContinue,
 SecAuthExpired
 };
IIOP Domain Boundary Controller – Deployment Guide 61

Chapter 7 I-DBC Authentication
 // this is the same as Security::Opaque
 typedef sequence<octet> Opaque;

 // this is the same as Security::AuthenticationMethod
 typedef unsigned long AuthenticationMethod;

 // we currently support these authentication methods:
 // SSL, already verified by transport layer
 const AuthenticationMethod authSSL = 0;

 // RSA ACE (SecurID)
 const AuthenticationMethod authACE = 2;

 // Xtradyne specific User ID/Password scheme
 const AuthenticationMethod authUsernamePassword = 222;

 // the methods of this interface are implemented
 // or intercepted by the I-DBC
 interface DBCAuthenticator {
 // authenticate
 AuthenticationStatus authenticate(
 in AuthenticationMethod method,
 in string security_name,
 in Opaque auth_data,
 out Opaque session_data,
 out Opaque continuation_data,
 inout Opaque auth_specific_data
);

 // respond to challenge
 AuthenticationStatus continue_authentication(
 inout Opaque session_data,
 in Opaque response_data,
 out Opaque continuation_data,
 inout Opaque auth_specific_data
);
62 Domain Boundary Controller – Deployment Guide

Generic Use
 // change authentication data
 AuthenticationStatus change_auth_data(
 in AuthenticationMethod method,
 in string security_name,
 in Opaque new_auth_data,
 out Opaque session_data,
 out Opaque continuation_data,
 inout Opaque auth_specific_data
);
 };
};

7.4 Generic Use
In this section we describe the generic use of the I-DBC Authenticator interface. These
are only general guidelines. See the description of a specific authentication method for
additional information in section “Authentication Methods” on page 66.

authenticateThe client starts an authentication session by calling authenticate, see Figure 2,
“Basic Authentication”. The desired authentication method prescribes the use and for-
mat of the other parameters. In all cases the client must provide a security name (e.g.,
user name) and authentication data (e.g., password).

Fig. 2. Basic Authentication

The client may provide additional authentication specific data if this is needed for the
authentication method. In that case the client may construct an appropriate sequence, for
example, to indicate requested privileges. If no additional data is needed the client
should pass an empty sequence.

Client Host Authenticator

authenticate

SecAuthSuccess/Se
cAuthFailure

SecAuthExpired/Sec
AuthContinue
IIOP Domain Boundary Controller – Deployment Guide 63

Chapter 7 I-DBC Authentication
return values The result of the call indicates the further course of action:

• If the I-DBC Proxy returns SecAuthSuccess, all is well. The user may still call
change_auth_data if this is supported by the current authentication method
(see sidebar “change_auth_data” on page 65 for details).

• If the I-DBC Proxy returns SecAuthFailure, the user may retry authentication
by calling authenticate again, usually with different parameters.

• If the I-DBC Proxy returns SecAuthExpired, the client should stop attempting
to authenticate. Often the user must reestablish the account by some external
means.

• If the I-DBC Proxy returns SecAuthContinue, the user must provide a
response to the given challenge via continue_authentication.

In any case the I-DBC Proxy provides session_data (SD) that the client must use
for further invocations. The client must consider it to be an opaque value, and thus pass
it verbatim.

The I-DBC Proxy may also issue a challenge in continuation_data, specially
when the return value is SecAuthContinue. See Figure 3, “Authentication Chal-
lenge and Continuation”.

Furthermore, the I-DBC Proxy may provide additional authentication specific data if
needed for the current authentication method. In this case, the client is responsible for
interpreting the contents of the sequence. The sequence may, for example, indicate
which kind of response is expected to the challenge, or that the user is expected to
change his authentication data.

continue_
authentication

If the I-DBC Proxy issues a challenge, the client must respond by calling
continue_authentication and must provide the returned session data verbatim
(see Figure 3, “Authentication Challenge and Continuation”). The client must give the
64 Domain Boundary Controller – Deployment Guide

Generic Use
response in response_data. Furthermore the client may provide authentication spe-
cific data if needed for the authentication method.

Fig. 3. Authentication Challenge and Continuation

The I-DBC Proxy responds with the same return values as for authenticate, and
also uses the out parameters in the same way. Note that the returned session data (SD2 in
the figure above) may be different from the data the client provided (in the above exam-
ple the client provided the session data SD1). The new data must be used for further
invocations.

change_auth_dataAfter successful authentication, the client may change its authentication data via
change_auth_data. (see Figure 4, “Change of Authentication Data”). It must pro-
vide the last returned session data along with the new authentication data. The I-DBC
Proxy responds with the same return values and output parameters as with authenti-

Client Host

authenticate

Authenticator

SecAuthContinue (SD1)

SecAuthSuccess/ SecAuthFailure

SecAuthExpired/ SecAuthContinue (SD2)

continue authenticatation (SD1)
IIOP Domain Boundary Controller – Deployment Guide 65

Chapter 7 I-DBC Authentication
cate. But if it issues a challenge, change_auth_data must be called again instead
of continue_authentication.

Fig. 4. Change of Authentication Data

exceptions In some cases the I-DBC Authenticator may raise an exception. It uses the existing
CORBA system exceptions. Specifically, it raises

• BAD_PARAM when the authentication method is unknown or not supported,
• MARSHAL when the parameters provided by the client are not formed as expected,
• BAD_INV_ORDER is used if continue_authentication or
change_auth_data is called before authenticate.

7.5 Authentication Methods
For each supported authentication method we provide a mapping to our generic I-DBC
Authenticator scheme. Such a mapping describes how authentication data is encoded
into the generic parameter sequences, and how the client must react to return values and
output parameters. In some cases we provide convenience functions or classes which

Client Host

authenticate

Authenticator

SecAuthContinue (S
D1)

SecAuthSuccess
/ SecAuthFailure

SecAuthExpired/
SecAuthContinu

e (SD2)

change_auth_data (SD1)

SecAuthSuccess
/ SecAuthFailure

SecAuthExpired/
SecAuthContinu

e (SD3)

change_auth_data (SD2)

(optional)
66 Domain Boundary Controller – Deployment Guide

Authentication Methods
you can include into your client, these are described at the end of each mapping descrip-
tion.

7.5.1 RSA/ACE SecurID Mapping
This section describes how the RSA/ACE Agent API is mapped to the I-DBC Authenti-
cator interface.

Fig. 5. SecurID Authentication

authenticateThe client calls authenticate with the method constant authACE and specifies his
user name as security_name, and his passcode (pin and token-code combination) in
auth_data (see Figure 5, “SecurID Authentication”). The auth_specific_data
parameter is not used in this mapping, the client must provide an empty sequence.

The return value of the call indicates the further course of action:

• SecAuthSuccess: Authentication succeeded. The auth_specific_data
out parameter contains a string specifying the users default shell. This ends the
authentication session. The client may now issue regular application calls.

• SecAuthFailure: Authentication failed. This ends the authentication session.
The client may start a new session with different parameters. In most cases, the
user made a mistake with the passcode.

• SecAuthExpired: The users account does not exist or has expired. This ends
the authentication session. The client may start a new session with different param-
eters. Usually, a different user name is given.

• SecAuthContinue: Further data is needed. The two continuation cases are
indicated by the contents of the auth_specific_data output parameter. The
sequence contains a single byte. If this byte has the value 0, the client must con-
tinue authentication with the next token code. If this byte is 1, the user must select
a new pin, this is described below. In any case the I-DBC Proxy returns a session

Client Host Authenticator

authenticate

SecAuthSuccess (spec=shell)

SecAuthFailure/ SecAuthExpired
IIOP Domain Boundary Controller – Deployment Guide 67

Chapter 7 I-DBC Authentication
identifier, which must be passed verbatim for further invocations. The
continuation_data output parameter contains values specific to each case.

continue_
authentication: next
token code required

Fig. 6. Next Token Code Challenge and Response

If the authenticate call results in the next token code situation, the client must
respond with the next token within a certain time (see Figure 6, “Next Token Code Chal-
lenge and Response”). The time-out value (in seconds) is given in the
continuation_data out parameter in network byte order. To continue the authenti-
cation session, the client may call continue_authentication, giving the
session_data as received before, and the next passcode as response_data. The
auth_specific_data parameter must contain a single byte set to 0. The return
value from this call is either SecAuthSuccess or SecAuthFailure, with the
semantics as described above.

If the authenticate call results in the new pin situation, the client must respond in
conformance with the domains policy (see Figure 7, “New PIN Challenge”). This is
specified by the values encoded in the continuation_data out parameter. Its lay-
out is as follows:

• octet 1 is the minimum pin length,
• octet 2 the maximum pin length,
• octet 3 the user-selectable flag,
• octet 4 the alphanumeric flag.
• The next 16 octets contain a system generated pin.

Client Host

authenticate (code1)

Authenticator

SecAuthContinue (SD, spec=0,timeout)

SecAuthSuccess/ SecAuthFailure

continue authenticatation (SD, spec=0, code2)
68 Domain Boundary Controller – Deployment Guide

Authentication Methods
See the ACE/Agent API documentation for a detailed description on how to use these
values.

continue_
authentication: new
PIN selection

Fig. 7. New PIN Challenge

The client must call continue_authentication, giving the session_data as
received before, and the new pin as response_data. The user may decide to cancel
the pin creation/selection, but then the client must still invoke
continue_authentication, with an empty sequence as response_data. The
auth_specific_data parameter must contain a single byte set to 1.

The I-DBC Proxy returns SecAuthFailure if the new pin is not accepted by the
ACE system. This ends the authentication session. The client may start a new one if
desired, but will have to supply a new pin.

The I-DBC Proxy indicates success by returning SecAuthExpired. This may seem a
bit strange, but it means that the old pin has “expired”. The ACE/Agent API requires
that the user re-authenticates after a pin change, so the I-DBC Proxy does not return suc-
cess here. This allows client authentication code to loop until SecAuthSuccess is
returned.

This mapping does not use the change_auth_data method because changing the
pin is handled by continue_authentication.

Client Host

authenticate (oldPIN)

Authenticator

SecAuthContinue (SD, spec=1,PIN-params)

SecAuthFailure/ SecAuthExpired

continue authenticatation (SD, spec=1, newPIN)
IIOP Domain Boundary Controller – Deployment Guide 69

Chapter 7 I-DBC Authentication
exceptions The I-DBC Proxy may raise an exception in certain cases:

• INITIALIZE means that the I-DBC Proxy could not start the ACE module for
some reason.

• BAD_PARAM means that a parameter did not match the size requirements of the
ACE/Agent API.

• BAD_INV_ORDER means that a next token code or pin change challenge were not
answered with continue_authentication, or that the wrong type of
response was sent.

See the ACE Programmers Manual for details.

7.6 I-DBC Authenticator Events
I-DBC Authenticator events can be used to check the behavior of the I-DBC Authentica-
tor Interface. The following events are available and can be activated on the “Audit Pol-
icy” panel of the Admin Console:

• DBCAuthenticatorAuthenticationFailure,
• DBCAuthenticatorAuthenticationSuccess,
• DBCAuthenticatorAuthenticationInfo.

Note that the Info event yields information about every step of the authentication proc-
ess, whereas the Success and Failure events only state if the authentication as a whole
was successful or not.
70 Domain Boundary Controller – Deployment Guide

Index

Domain Boundary Controller – Deployment Guide 71

Index
A
Authentication Mechanisms

RSA SecurID 67

H
Hardened System

Kernel and Network Stack 57
Network Services 56
Operating System 55
Requirements and Recommendations 55

High Availability 11
as provided by the DBC 14
Calculate application throughput 24
Calculate DBC requirements 25
Deployment Considerations 23
Deployment Requirements 26
Types 12

I
I-DBC Authenticator 59

Architecture 59
Audit Events 70
Authenticator Caveats 60
Basic Authentication 63
Challenge and Continuation 65
Generic Interface 61

R
Replication 27

Configuration 32
Duplication of calls 31
Estimated Throughput 34
Installation Notes 38
IOR Timeout 30
Limitations and Restrictions 30
Loopback 28
Maintenance 28
Message Properties 34
Object Keys 31
Performance 34
Reliability and asynchronous operation 29
Runtime Object Values 35
Security Considerations 30
Technology 27

Replication Interface 32

RSA/ACE SecurID Mapping 67

S
Scalability 11, 15

Connection Bundling 18
Deployment Example 25
Direct Routing 17
Network Address Translation 15
Tunnel Scenario 19
Types 12

Schema Validation
schematest 52

SecurID
RSA/ACE Mapping 67

SPS Client 41
Administrative Rights 48
Commands 44
Configuration 43
Installation 41

T
Traffic Redirector 26

U
UserID/Password authentication

I-DBC Authenticator 59

W
wsdl2schema 49

X
xpathtest 53

	Contents
	Preface
	Document Conventions
	PrismTech Customer Support
	When contacting customer support
	How to contact PrismTech customer support
	Encrypting DBC Configuration Files for Support
	Making Screenshots for Support

	1 High Availability and Scalability
	1.1 High Availability and Scalability
	1.2 Different Flavours of HA and Scalability
	1.2.1 High Availability and Scalability on System Level
	1.2.2 High Availability and Scalability on the Application Level

	1.3 High Availability and Scalability with a Traffic Redirector
	1.4 High Availability & Scalability as provided by the DBC
	1.4.1 Traffic Redirection: NAT versus Direct Routing
	Network Address Translation (NAT)
	Direct Routing (DR)

	1.4.2 Connection Bundling
	Connection Bundling in tunnelling scenarios

	1.5 High Availability Provided by Hot Standby
	1.6 Monitoring
	1.6.1 DBC Built-In Monitoring
	Interworking with Traffic Redirector Monitoring
	DBCAgent in Detail

	1.6.2 End-to-End Monitoring
	Operating the DBC Proxy with Servers “In Line”

	1.7 Deployment Considerations
	1.7.1 Planning the Installation
	1.7.2 Calculate Application Throughput
	1.7.3 Calculate DBC Requirements

	1.8 Deployment Example
	1.9 Deployment Requirements
	Without Traffic Redirector for the SPS Cluster
	With Traffic Redirector for the SPS Cluster

	2 Replication
	2.1 Replication Technology
	2.1.1 Shared Host
	2.1.2 Resources

	2.2 Maintenance
	2.3 Reliability and Asynchronous Operation
	2.4 Limitations and Restrictions
	2.4.1 Communication
	2.4.2 Security
	2.4.3 IOR Timeout
	2.4.4 Object Keys
	2.4.5 Duplication of Calls
	2.4.6 Delayed OBJECT_NOT_EXIST

	2.5 Configuration
	2.5.1 Replication Interface
	2.5.2 Replication Message Properties

	2.6 Performance
	2.6.1 Multi Processor Machines
	2.6.2 Estimated Throughput

	2.7 Runtime Object Values
	Example: State Dump of Replication Service

	2.8 Installation Notes
	Direct Routing
	NAT

	3 Performance Monitoring
	3.1 Setting up the Usage Data Collector
	3.2 Activating the Usage Data Collector

	4 SPS Client
	4.1 Installing the SPS Client
	4.1.1 Installation Overview

	4.2 Post installation Steps
	4.2.1 Configuring the SPS Client
	4.2.2 Installing Keys and Certificates

	4.3 SPS Client Commands
	4.4 Administrative Rights for SPS Client Operations

	5 WS-DBC Tools
	5.1 Introduction
	5.2 The wsdl2schema Tool
	5.2.1 Usage
	5.2.2 Restricting data

	5.3 The schematest Utility
	5.4 The XPathTest Tool

	6 Hardened System
	6.1 Operating System
	6.2 Network Services
	6.3 Kernel and Network Stack

	7 IDBC Authentication
	7.1 IDBC Authenticator Architecture
	7.2 Caveats
	7.3 Generic Interface
	7.4 Generic Use
	7.5 Authentication Methods
	7.5.1 RSA/ACE SecurID Mapping

	7.6 IDBC Authenticator Events

	Index

