
Micro Focus
®

Modernization Workbench™

Creating Components

Copyright © 2010 Micro Focus (IP) Ltd. All rights reserved.
Micro Focus (IP) Ltd. has made every effort to ensure that this book is cor-
rect and accurate, but reserves the right to make changes without notice
at its sole discretion at any time. The software described in this document
is supplied under a license and may be used or copied only in accordance
with the terms of such license, and in particular any warranty of fitness
of Micro Focus software products for any particular purpose is expressly
excluded and in no event will Micro Focus be liable for any consequential
loss.
Micro Focus, the Micro Focus Logo, Micro Focus Server, Micro Focus Stu-
dio, Net Express, Net Express Academic Edition, Net Express Personal
Edition, Server Express, Mainframe Express, Animator, Application Serv-
er, AppMaster Builder, APS, Data Express, Enterprise Server, Enterprise
View, EnterpriseLink, Object COBOL Developer Suite, Revolve, Revolve
Enterprise Edition, SOA Express, Unlocking the Value of Legacy, and XDB
are trademarks or registered trademarks of Micro Focus (IP) Limited in the
United Kingdom, the United States and other countries.
IBM®, CICS® and RACF® are registered trademarks, and IMS™ is a trade-
mark, of International Business Machines Corporation.
Copyrights for third party software used in the product:
• The YGrep Search Engine is Copyright (c) 1992-2004 Yves Rou-

mazeilles
• Apache web site (http://www.microfocus.com/docs/

links.asp?mfe=apache)
• Eclipse (http://www.microfocus.com/docs/links.asp?nx=eclp)
• Cyrus SASL license
• Open LDAP license
All other trademarks are the property of their respective owners.
No part of this publication, with the exception of the software product user
documentation contained on a CD-ROM, may be copied, photocopied, re-
produced, transmitted, transcribed, or reduced to any electronic medium
or machine-readable form without prior written consent of Micro Focus
(IP) Ltd. Contact your Micro Focus representative if you require access to
the modified Apache Software Foundation source files.
Licensees may duplicate the software product user documentation con-
tained on a CD-ROM, but only to the extent necessary to support the us-
ers authorized access to the software under the license agreement. Any
reproduction of the documentation, regardless of whether the documen-
tation is reproduced in whole or in part, must be accompanied by this
copyright statement in its entirety, without modification.
U.S. GOVERNMENT RESTRICTED RIGHTS. It is acknowledged that the
Software and the Documentation were developed at private expense, that
no part is in the public domain, and that the Software and Documentation
are Commercial Computer Software provided with RESTRICTED RIGHTS
under Federal Acquisition Regulations and agency supplements to them.
Use, duplication or disclosure by the U.S. Government is subject to re-
strictions as set forth in subparagraph (c)(1)(ii) of The Rights in Technical
Data and Computer Software clause at DFAR 252.227-7013 et. seq. or
subparagraphs (c)(1) and (2) of the Commercial Computer Software Re-
stricted Rights at FAR 52.227-19, as applicable. Contractor is Micro Focus
(IP) Ltd, 9420 Key West Avenue, Rockville, Maryland 20850. Rights are re-
served under copyright laws of the United States with respect to unpub-
lished portions of the Software.

http://www.microfocus.com/docs/links.asp?mfe=apache
http://www.microfocus.com/docs/links.asp?mfe=apache
http://www.microfocus.com/docs/links.asp?mfe=apache
http://www.microfocus.com/docs/links.asp?mfe=apache
http://www.microfocus.com/docs/links.asp?mfe=apache

Contents

Chapter: 1 Introducing Component Maker . 1
Componentization Methods . 1

Structure-Based Componentization . 2
Computation-Based Componentization . 2
Domain-Based Componentization . 3
Event Injection . 3
Dead Code Elimination (DCE) . 4
Entry Point Isolation . 4
Language Support . 4

Componentization Outputs . 5
Component Maker Basics . 6

Getting Started in the Components Pane 7
Creating Components . 9
Extracting Components . 10
Converting Components . 10
Deleting Components . 10
Viewing the Text for Generated Files . 10
Restricting the Display to Program-Related Components 11
Working with HyperView Lists . 11
Viewing Audit Reports . 11
Generating Coverage Reports . 12
Exporting Logical Components . 13
Generating CICS Components . 13
1

Chapter: 2 Setting Component Maker Options . 15
Setting General Options . 16
Setting Interface Options . 17
Setting Optimize Options . 18
Setting Document Options . 20
Setting Component Type-Specific Options . 22

Setting Structure-Based Type-Specific Options 22
Setting Computation-Based Type-Specific Options 23
Setting Domain-Based Type-Specific Options 24
Setting Event Injection Type-Specific Options 25

Setting Component Conversion Options . 26

Chapter: 3 Extracting Structure-Based Components . 29
Understanding Ranges . 29

Specifying Ranges for Cobol Programs 30
Specifying Ranges for PL/I Programs . 30
Specifying Ranges for RPG Programs . 31

Understanding Parameterized Slices . 31
Cobol Naming Conventions . 31
Parameterization Example . 32

Extracting Structure-Based Cobol Components 33
Extracting Structure-Based PL/I Components . 35
Extracting Structure-Based RPG Components 36

Chapter: 4 Extracting Computation-Based Components 37
Understanding Variable-Based Extraction . 37
Understanding Blocking . 38
Understanding Parameterized Slices . 38

Cobol Naming Conventions . 39
Parameterization Example . 39

Extracting Computation-Based Cobol Components 40
Extracting Computation-Based Natural Components 42

Chapter: 5 Extracting Domain-Based Components . 43
Understanding Program Specialization in Simplified Mode 44
Understanding Program Specialization in Advanced Mode 46
Understanding Program Specialization Lite . 47
Extracting Domain-Based Cobol Components 48
Extracting Domain-Based PL/I Components . 50

Chapter: 6 Injecting Events . 53
Understanding Event Injection . 53
Extracting Event-Injected Cobol Components 55
 2

Chapter: 7 Eliminating Dead Code . 59
Generating Dead Code Statistics . 59
Understanding Dead Code Elimination . 60
Extracting Optimized Components . 61

Chapter: 8 Performing Entry Point Isolation . 63
Extracting a Cobol Component with Entry Point Isolation 63

Chapter: 9 Technical Details . 65
Verification Options . 65

Use Special IMS Calling Conventions . 65
Override CICS Program Terminations 66
Support CICS HANDLE Statements . 66
Perform Unisys TIP and DPS Calls Analysis 67
Perform Unisys Common-Storage Analysis 67
Relaxed Parsing . 68
PERFORM Behavior for Micro Focus Cobol 69

Keep Legacy Copybooks Extraction Option . 70
How Parameterized Slices Are Generated for Cobol Programs 71
Setting a Specialization Variable to Multiple Values 73
Arithmetic Exception Handling . 74
3

 4

1
 Introducing
Component Maker
The Modernization Workbench Component Maker tool offers a variety of
advanced algorithms for slicing logic from program source: all the code you
need for a computation, for example, or the code you need to “specialize” a
program based on the value of a variable. You can create a self-contained
program, called a component, from the sliced code or simply generate a Hyper-
View list of sliced constructs for further analysis. You can mark and colorize the
constructs in the HyperView Source pane.

Both the component generation and list functions are supported in the full
version of the Component Maker tool available to users of Application Archi-
tect. The list function only is supported in the restricted version of Component
Maker, called Logic Analyzer, available to users of Application Analyzer.

Componentization Methods

Provides an overview of componentization methods.

The supported componentization methods slice logic not only from program
executables but associated include files as well. Dead Code Elimination and
1

INTRODUCING COMPONENT MAKER
COMPONENTIZATION METHODS
Entry Point Isolation are optimization tools built into the main methods and
offered separately in case you want to use them on a standalone basis.

NOTE: Component Maker does not follow CALL statements into other programs
to determine whether passed data items are actually modified by those programs.
It makes the conservative assumption that all passed data items are modified.
That guarantees that no dependencies are lost.

Structure-Based Componentization

Introduces structure-based componentization.

Structure-Based Componentization lets you build a component from a range of
inline code, Cobol paragraphs, for example. Use traditional structure-based
componentization to generate a new component and its complement. A comple-
ment is a second component consisting of the original program minus the code
extracted in the slice. Component Maker automatically places a call to the new
component in the complement, passing it data items as necessary.

For Cobol programs, you can generate parameterized slices, in which the input
and output variables required by the component are organized in group-level
structures. These standard object-oriented data interfaces make it easier to
deploy the transformed component in modern service-oriented architectures.

TIP: You typically repeat structure-based componentization in incremental
fashion until all of the modules you are interested in have been created. For Cobol
programs, you can avoid doing this manually by specifying multiple ranges in the
same extraction. Component Maker automatically processes each range in the
appropriate order.

Computation-Based Componentization

Introduces computation-based componentization.

Computation-Based Componentization lets you build a component that
contains all the code necessary to calculate the value of a variable at a point in
the program where it is used to populate a report attribute or screen. As with
structure-based componentization, you can generate parameterized slices that
make it easy to deploy the transformed component in distributed architectures.

 For Cobol programs, you can use a technique called blocking to produce
smaller, better-defined parameterized components. Component Maker will not
include in the slice any part of the calculation that appears before the blocked
statement. Fields from blocked input statements are treated as input parameters
of the component.
 2

INTRODUCING COMPONENT MAKER
COMPONENTIZATION METHODS
Domain-Based Componentization

Introduces domain-based componentization.

Domain-Based Componentization lets you “specialize” a program based on the
values of one or more variables. The specialized program is typically intended
for reuse “in place,” in the original application, but under new external circum-
stances.

After a change in your business practices, for example, a program that invokes
processing for a “payment type” variable could be specialized on the value
PAYMENT-TYPE = "CHECK". Component Maker isolates every process
dependent on the CHECK value to create a functionally complete program that
processes check payments only.

Two modes of domain-based componentization are offered:

• In simplified mode, you set the specialization variable to its value anywhere
in the program except a data port. The value of the variable is “frozen in
memory.” Operations that could change the value are ignored.

• In advanced mode, you set the specialization variable to its value at a data
port. Subsequent operations can change the value, following the data and
control flow of the program.

Use the simplified mode when you are interested only in the final value of a vari-
able. Use the advanced mode when you need to account for data coming into a
variable.

Event Injection

Introduces event injection.

Event Injection lets you adapt a legacy program to asynchronous, event-based
programming models like MQ Series. You specify candidate locations for event
calls (reads/writes, screen transactions, or subprogram calls, for example), the
type of operation the event call performs (put or get), and the text of the
message. For a put operation, for example, Component Maker builds a compo-
nent that sends the message and any associated variable values to a queue, where
the message can be retrieved by monitoring applications.
3

INTRODUCING COMPONENT MAKER
COMPONENTIZATION METHODS
Dead Code Elimination (DCE)

Introduces dead code elimination.

Dead Code Elimination is an option in each of the main component extraction
methods, but you can also perform it on a standalone basis. For each program
analyzed for dead code, standalone DCE generates a component that consists of
the original source code minus any unreferenced data items or unreachable
procedural statements.

NOTE: Use the batch DCE feature to find dead code across your project. If you are
licensed to use the Batch Refresh Process (BRP), you can use it to perform dead
code elimination across a workspace.

Entry Point Isolation

Introduces entry point isolation.

Entry Point Isolation lets you build a component based on one of multiple entry
points in a legacy program (an inner entry point in a Cobol program, for
example). Component Maker extracts only the functionality and data defini-
tions required for invocation from the selected point.

Entry Point Isolation is built into the main methods as an optional optimization
tool. It's offered separately in case you want to use it on a standalone basis.

Language Support

Describes Component Maker language support.

The following table describes the extraction methods available for Component
Maker-supported languages.

Method COBOL PL/I Natural RPG

Structure-based Yes Yes No Yes

Computation-b
ased

Yes No Yes No

Domain-based Yes Yes No No

Event-Injection Yes No No No
 4

INTRODUCING COMPONENT MAKER
COMPONENTIZATION OUTPUTS
Componentization Outputs

Describes componentization outputs.

The first step in the componentization process, called extraction, generates the
following outputs:

• The source file that comprises the component.

• An abstract repository object, or logical component, that gives you access
to the source file in the workbench.

• A HyperView list of sliced constructs, which you can mark and colorize in
the HyperView Source pane.

NOTE: For Logic Analyzer, sliced data declarations are not marked and colorized.

The second step, called conversion, registers the source files in your repository,
creating repository objects for the generated components and their corre-
sponding copybooks.

Component Maker lets you execute the extraction and conversion steps inde-
pendently or in combination, depending on your needs:

• If you want to analyze the components further, transform them, or even
generate components from them, you will want to register the component
source files in your repository and verify them, just as you would register
and verify a source file from the original legacy application.

• If you are interested only in deploying the components in your production
environment, you can skip the conversion step and avoid cluttering your
repository.

The figure below shows how the componentization outputs are represented in
the Repository Browser after conversion and verification of a structure-based
Cobol component called DaysInYearCalc. PRODUPD is the program the
component was extracted from.

Dead Code
Elimination

Yes Yes Yes Yes

Entry Point
Isolation

Yes No No No

Method COBOL PL/I Natural RPG
5

INTRODUCING COMPONENT MAKER
COMPONENT MAKER BASICS
Component Maker Basics

Provides an overview of the Component Maker window.

Component Maker is a HyperView-based tool that you can invoke on a stand-
alone basis or from within HyperView itself:

• Start the tool in HyperView by selecting the program you want to slice in
the Modernization Workbench Repository Browser and choosing
Analyze > Interactive Analysis. In the HyperView window, choose View
> Components.

NOTE: Choose View > Logic Analyzer if you are using Logic Analyzer.

• Start the standalone tool by selecting the project that contains the
programs you want to slice in the Repository Browser and choosing
Architect > Logical Components. In the HyperView window, select the
program you want to slice in the Objects pane.

The Components pane consists of a hierarchy of views that let you specify the
logical components you want to manipulate:

• The Types view lists the types of logical components you can create: struc-
ture-based, computation-based, domain-based, and so on.

• The List view displays logical components of the selected type.

• The Details view displays the details for the selected logical component in
two tabs, Properties and Components. The Properties tab displays extrac-
tion properties for the logical component. The Components tab lists the
files generated for the logical component.

The figure below shows a typical configuration of the Component Maker
window. For HyperView usage, see Analyzing Programs in the workbench
documentation set.
 6

INTRODUCING COMPONENT MAKER
COMPONENT MAKER BASICS
Getting Started in the Components Pane

Provides an example of Component Maker usage.

You do most of your work in Component Maker in the Components pane. To
illustrate how you extract a logical component in the Components pane, let's
look at the simplest task you can perform in Component Maker, Dead Code
Elimination (DCE).

NOTE: The following exercise deliberately avoids describing the properties and
options you can set for DCE. See the relevant help topics for details.

TASK

1. In the Components pane, double-click Dead Code Elimination. The
view shown in the figure below opens. This view shows the DCE-based
logical components created for the programs in the current project.

TIP: Click the button on the tool bar to restrict the display to logical
components created for the selected program.
7

INTRODUCING COMPONENT MAKER
COMPONENT MAKER BASICS
2. Select the program you want to analyze for dead code in the HyperView
Objects pane and click the button. To analyze the entire project of
which the program is a part, click the button.

3. A dialog opens where you can enter the name of the new component
in the text field. Click OK. Component Maker adds the new components
to the list of components. If you selected batch mode, Component
Maker creates a logical component for each program in the project,
appending _n to the name of the component.

4. Double-click a component to edit its properties. The view shown in the
figure below opens. The Component of program field contains the
name of the selected program.

5. In the Entry Point to use field, click the link for the current selection
and choose the entry point you want to use in the pop-up menu. To
unset an entry point, click it and choose Unset in the pop-up menu.

NOTE: This field is shown only for Cobol programs.

6. In the Description field, click the here link to open a text editor where
you can enter a description of the component. The description appears
in the box below the Description field in the Properties tab and in the
Description property for the logical component repository object.
 8

INTRODUCING COMPONENT MAKER
COMPONENT MAKER BASICS
7. Click the button on the tool bar to navigate to the list of compo-
nents, then repeat the procedure for each component you want to
extract.

8. In the list of components, select each component you want to extract
and click the button on the tool bar. You are prompted to confirm
that you want to extract the components. Click OK.

9. The Extraction Options dialog opens. Set extraction options as
described in the relevant help topic. When you are satisfied with your
choices, click Finish.

10. Component Maker performs the extraction. You are notified that the
extraction is complete. If the extraction completed without errors or
warnings, click OK to continue. If the extraction completed with errors
or warnings, click Yes to view the errors or warnings in the Activity Log.
Otherwise, click No.

11. Assuming the extraction executed without errors, the view shown in
the figure below opens. Click the Components tab to display a list of the
component source files that were generated for the logical component
and an audit report if you requested one. Click an item in the list to view
the read-only text for the item.

Creating Components

Describes how to create a component.

To create a component, select the program you want to slice in the HyperView
Objects pane. In the Types view, select the type of logical component you want
to create and click the button on the tool bar. (You can also click the
button in the List or Details view.) A dialog opens where you can enter the name
of the new component in the text field. Click OK.
9

INTRODUCING COMPONENT MAKER
COMPONENT MAKER BASICS
Extracting Components

Describes how to extract a component.

To extract a single logical component, select the component you want to extract
in the List view and click the button on the tool bar. To extract multiple
logical components, select the type of the components you want to extract in the
Types view and click the button. You are prompted to confirm that you
want to continue. Click OK.

TIP: Logical components are converted as well as extracted if the Convert
Resulting Components to Legacy Objects is set in the Component Conversion
Options pane.

Converting Components

Describes how to convert components.

To convert a single logical component, select the component you want to
convert in the List view and click the button on the tool bar. To convert
multiple logical components, select the type of the components you want to
convert in the Types view and click the button. You are prompted to
confirm that you want to continue. Click OK.

Deleting Components

Describes how to delete a component.

To delete a logical component, select it in the List view and click the button
on the tool bar.

NOTE: Deleting a logical component does not delete the component and copybook
repository objects. You must delete these objects manually in the Repository
Browser.

Viewing the Text for Generated Files

Describes how to view the text for generated files.

To view the read-only text for a generated file, click the file in the list of gener-
ated files for in the Components tab.
 10

INTRODUCING COMPONENT MAKER
COMPONENT MAKER BASICS
TIP: You can also view the text for a generated file in the Modernization Work-
bench main window. In the Repository Browser Logical Component folder, click
the component whose generated files you want to view.

Restricting the Display to Program-Related Components

Describes how to restrict the display to program-related components.

To restrict the display to logical components of a given program, select the
program and click the button on the tool bar. The button is a toggle. Click
it again to revert to the generic display.

Working with HyperView Lists

Describes how to work with HyperView lists of sliced constructs.

When you extract a logical component, Component Maker generates a Hyper-
View list of sliced constructs. The list has the same name as the component. You
can view the list in the Logic Analyzer folder in Clipper.

To mark and colorize sliced constructs in the list, select the list in Clipper and
click the button on the tool bar. To mark and colorize sliced constructs in a
single file, select the file in the List view and click the button. To mark and
colorize a single construct, select it in the File view and click the button.
Click the button again to turn off marking and colorizing.

Viewing Audit Reports

Describes how to view audit reports.

An audit report contains a list of changed and deleted lines in the source files
(including copybooks) from which a logical component was extracted. The
report has a name of the form <component>.audit.txt. Click the report in the
Components tab to view its text.

An audit report optionally includes reason codes explaining why a line was
changed or deleted. A reason code is a number keyed to the explanation for a
change (for example, reason code 12 for computation-based componentization
is RemoveUnusedVALUEs).
11

INTRODUCING COMPONENT MAKER
COMPONENT MAKER BASICS
Generating Coverage Reports

Describes how to generate a coverage report.

A coverage report shows the extent to which a source program has been "compo-
nentized":

• The top-left pane lists each component of a given type (structure-based,
computation-based, and so on) extracted from the program.

• The bottom-left pane lists the paragraphs in the program. Click on a para-
graph to navigate to it in the righthand pane.

• The righthand pane displays the text of the program with extracted code
shaded in pink. The numbers to the left of the extracted code identify the
component to which it was extracted.

To generate coverage reports, click the button on the Component Maker
tool bar. The reports are listed in the Generated Document folder in the Repos-
itory Browser. Report names are of the form <program>-<method>-Coverage.
Double-click a report to view it in a Web browser.

NOTE: Reports are created for each program in the current project.
 12

INTRODUCING COMPONENT MAKER
COMPONENT MAKER BASICS
Exporting Logical Components

Describes how to export a logical component.

To move or copy the source files associated with a logical component (including
any complement or copybooks) from the Modernization Workbench area to a
specified location on your file system, select the component In the Repository
Browser Logical Component folder and choose Architect > Export. A standard
dialog appears where you can specify the destination for the source files. Select
Move files if you want to move the files rather than copy them.

Generating CICS Components

Describes how to generate CICS components.

Component Maker let you generate structure- and computation-based Cobol
components as CICS programs, with COMMAREAS for parameter exchange.
That means the component can be called through a CICS LINK or by some
other middleware such as IBM's ECI.

A CICS component can be run directly on mainframes:
13

INTRODUCING COMPONENT MAKER
COMPONENT MAKER BASICS
• The component's parameters, whether original (from USING) or created
by Component Extraction, are packaged under the CICS variable
DFHCOMMAREA. There is no PROCEDURE DIVISION USING phrase
in the component.

• At all program points where the original program could exit, the compo-
nent exits through a CICS RETURN statement. Any STOP RUN is
replaced by CICS RETURN.

To generate CICS components, choose Create CICS Program in the interface
component extraction options.
 14

2
 Setting Component
Maker Options
It's a good idea to become familiar with the component extraction options
before beginning your work in Component Maker. Each extraction method has
a different set of options, and each set differs for the supported object types.
Extraction options are project-based, so they apply to every program in the
current Modernization Workbench project. Only relevant options are displayed
for the restricted version of Component Maker, called Logic Analyzer, available
to users of Application Analyzer.

NOTE: For computation- and domain-based componentization of Cobol
programs, and for structure-based componentization with parameterized slices,
you must set Perform Program Analysis in the project verification options before
verifying the program you want to slice.

You can set Component Maker extraction options in the standard Project
Options window or in the extraction options dialog that opens when you create
a component. To open the standard Project Options window, choose Tools >
Project Options. In the Project Options window, click the Component Maker
tab.
15

SETTING COMPONENT MAKER OPTIONS
SETTING GENERAL OPTIONS
Setting General Options

Describes how to set General extraction options.

The table below describes the Component Maker General extraction options.

Option Language Description

Add Program Name as
Prefix

Cobol, Natural, PL/I,
RPG

 Prepend the name of the sliced
program to the component name
you specified when you created the
component, in the form
<program>$<component>.

Generate Slice Cobol, Natural, PL/I,
RPG

Generate both a HyperView list of
sliced constructs and a component.

Keep Legacy Copybooks Cobol, RPG Do not generate modified
copybooks for the component.
Modified copybooks have names of
the form
<copybook>-<component>-n,
where n is a number ensuring the
uniqueness of the copybook name
when multiple instances of a
copybook are generated for the
same component.

NOTE: Component Maker issues a
warning if including the original
copybooks in the component would
result in an error.

Keep Legacy Includes PL/I Do not generate modified program
include files for the component.
The layout and commentary of the
sliced program is preserved.

Keep Legacy Macros PL/I Do not expand macros for the
component. The layout and
commentary of the sliced program
is preserved.

Preserve Legacy Includes Natural Do not generate modified program
include files for the component.
 16

SETTING COMPONENT MAKER OPTIONS
SETTING INTERFACE OPTIONS
Setting Interface Options

Describes how to set Interface extraction options.

The table below describes the Component Maker Interface extraction options.

 Rename Program Entries Cobol Prepend the name of the
component to inner entry points, in
the form
<component>-<entrypoint>. This
ensures that entry point names are
unique and that the Modernization
Workbench parser can verify the
component successfully. Unset this
option if you need to preserve the
original names of the inner entry
points.

Option Language Description

Option Language Description

Blocking Cobol If you are performing a
parameterized computation-based
extraction and want to use
blocking, click the More button. A
dialog opens, where you can select
the blocking option and the types of
statements you want to block.

NOTE: Choose Use Blocking from
Component Definitions if you want
to block statements in a HyperView
list.

Create CICS Program Cobol Create COMMAREAS for
parameter exchange in generated
slices.

Generate Parameterized
Components

Cobol Extract parameterized slices.

NOTE: If you select this option for a
structure-based extraction, you must
set the Range Only option in the
Component Type Specific pane.
17

SETTING COMPONENT MAKER OPTIONS
SETTING OPTIMIZE OPTIONS
Setting Optimize Options

Describes how to set Optimize extraction options.

The table below describes the Component Maker Optimize extraction options.

Option Language Description

No changes Cobol, Natural, RPG Do not remove unused data items
from the component.

Preserve Original
Paragraphs

Cobol Generate paragraph labels even for
paragraphs that are not actually
used in the source code (for
example, empty paragraphs for
which there are no PERFORMs).

NOTE: This option also affects refac-
toring. When the option is set, para-
graphs in the same "basic block" are
defragmented separately. Otherwise,
they are defragmented as a unit.

Remove Redundant
NEXT SENTENCE

Cobol Remove NEXT SENTENCE clauses
by changing the bodies of
corresponding IF statements, such
that:

IF A=1
 NEXT SENTENCE
ELSE
 ...
END-IF.

is generated as:

IF NOT (A=1)
 ...
END-IF.
 18

SETTING COMPONENT MAKER OPTIONS
SETTING OPTIMIZE OPTIONS
Remove/Replace Unused
Fields with FILLERs

Cobol, Natural, RPG Remove unused any-level
structures and replace unused fields
in a used structure with FILLERs.
Set this option if removing a field
completely from a structure would
adversely affect memory
distribution.

NOTE: If you select Keep Legacy
copybooks in the General component
extraction options, Component
Maker removes or replaces with
FILLERs only unused inline data
items.

Remove Unreachable
Code

Cobol, RPG Remove unreachable procedural
statements.

Remove Unused
Any-Level Structures

Cobol, Natural, RPG Remove unused structures at any
data level, if all their parents and
children are unused. For the
example below, D, E, F, and G are
removed:

DEFINE DATA LOCAL
1 #A
 2 #B
 3 #C
 2 #D
 3 #E
 3 #F
1 #G

Remove Unused Level-1
Structures

Cobol, Natural, RPG Remove only unused level-1
structures, and then only if all their
children are unused. If, in the
following example, only B is used,
only G is removed:

DEFINE DATA LOCAL
1 #A
 2 #B
 3 #C
 2 #D
 3 #E
 3 #F
1 #G

Replace Section
PERFORMs by Paragraph
PERFORMs

Cobol Replace PERFORM section
statements by equivalent
PERFORM paragraph statements.

Option Language Description
19

SETTING COMPONENT MAKER OPTIONS
SETTING DOCUMENT OPTIONS
Setting Document Options

Describes how to set Document extraction options.

The table below describes the Component Maker Document extraction options.

Roll-Up Nested IFs Cobol Roll up embedded IF statements in
the top-level IF statement, such
that:

IF A=1
 IF B=2

is generated as:

IF (A=1) AND (B=2)

Option Language Description

Option Language Description

Comment-out Sliced-off
Legacy Code

Cobol, RPG Retain but comment out unused
code in the component source. In
the Comment Prefix field, enter
descriptive text (up to six
characters) for the commented-out
lines.

Emphasize
Component/Include in
Coverage Report

Cobol, Natural, PL/I,
RPG

Generate a HyperView list of sliced
constructs and colorize the
constructs in the Coverage Report.

 Generate Audit Report Cobol Generate an audit report.

Generate Support
Comments

Cobol, RPG Include comments in the
component source that identify the
component properties you
specified, such as the starting and
ending paragraphs for a
structure-based Cobol component.
 20

SETTING COMPONENT MAKER OPTIONS
SETTING DOCUMENT OPTIONS
Include Reason Codes Cobol Include reason codes in the audit
report explaining why a line was
changed or deleted.

NOTE: Generating reason codes is
very memory-intensive and may
cause crashes for extractions from
large programs.

List Options in
Component Header and
in Separate Document

Cobol, RPG Include a list of extraction option
settings in the component header
and in a separate text file. The text
file has a name of the form
<component>.BRE.options.txt.

Mark Modified Legacy
Code

Cobol, RPG Mark modified code in the
component source. In the
Comment Prefix field, enter
descriptive text (up to six
characters) for the modified lines.

Print Calculated Values as
Comments

Cobol For domain-based component
extraction only, print the
calculated values of variables as
comments. Alternatively, you can
substitute the calculated values of
variables for the variables
themselves.

Use Left Column for
Marks

Cobol, RPG Place the descriptive text for
commented-out or modified lines
in the lefthand column of the line.
Otherwise, the text appears in the
righthand column.

Option Language Description
21

SETTING COMPONENT MAKER OPTIONS
SETTING COMPONENT TYPE-SPECIFIC OPTIONS
Setting Component Type-Specific Options

Introduces component type--specific extraction options.

Component type-specific extraction options determine how Component
Maker performs tasks specific to each componentization method.

Setting Structure-Based Type-Specific Options

Describes how to set structure-based type-specific extraction options.

The table below describes the Component Maker structure-based type-specific
extraction options.

Option Language Description

Dynamic Call Cobol Generate in the complement a
dynamic call to the component.
The complement will call a string
variable that must later be set
outside the complement to the
name of the component.

Ensure Consistent Access
to External Resources

Cobol Monitor the integrity of data flow
in the ranges you are extracting. If
you select this option, for example,
an extraction will fail if an SQL
cursor used in the component is
open in the complement.

Range Only Cobol Do not generate a complement.
You must set this option to generate
parameterized slices.

Restrict User Ranges to
PERFORMed Ones

Cobol Do not extract paragraphs that do
not have a corresponding
PERFORM statement. This option
is useful if you want to limit
components created with the
Paragraph Pair or Section methods
to PERFORMed paragraphs.
 22

SETTING COMPONENT MAKER OPTIONS
SETTING COMPONENT TYPE-SPECIFIC OPTIONS
Setting Computation-Based Type-Specific Options

Describes how to set computation-based type-specific extraction options.

The table below describes the Component Maker computation-based
type-specific extraction options.

Suppress Errors Cobol Perform a “relaxed extraction,” in
which errors that would ordinarily
cause the extraction to fail are
ignored, and comments describing
the errors are added to the
component source. This option is
useful when you want to review
extraction errors in component
source.

Option Language Description

Option Language Description

Generate HTML Trace Cobol Generate an HTML file with an
extraction trace. The trace has a
name of the form
<component>.trace. To view the
trace, click the logical component
for the extraction in the Repository
Browser Logical Component folder.
Double-click the trace file to view it
in a Web browser.

Statement Cobol Perform statement-based
component extraction.

Variable Cobol Perform variable-based component
extraction.

NOTE: Even if you select vari-
able-based extraction, Component
Maker performs statement-based
extraction if the variable you slice on
is not an input variable for its parent
statement: that is, if the statement
writes to rather than reads from the
variable.
23

SETTING COMPONENT MAKER OPTIONS
SETTING COMPONENT TYPE-SPECIFIC OPTIONS
Setting Domain-Based Type-Specific Options

Describes how to set domain-based component extraction options.

The table below describes the Component Maker domain-based type-specific
extraction options.

Option Language Description

Maximum Number of
Variable's Values

Cobol The maximum number of values to
be calculated for each variable.
Limit is 200. The lower the
maximum, the better performance
and memory usage you can expect.

Maximum Size of
Variable to Be Calculated

Cobol Maximum size in bytes for each
variable value to be calculated. The
lower the maximum, the better
performance and memory usage
you can expect.

Multiple Pass Cobol, PL/I Evaluate conditional logic again
after detecting dead branches.
Because the ELSE branch of the
first IF below is dead, for example,
the second IF statement can be
resolved in a subsequent pass:

MOVE 0 TO X.
IF X EQUAL 0 THEN
 MOVE 1 TO Y
ELSE/p>
 MOVE 2 TO Y.
IF Y EQUAL 2 THEN...
ELSE...

NOTE: Multi-pass processing is very
resource-intensive, and not recom-
mended for extractions from large
programs.

Remove Unused
Assignments

Cobol, PL/I Exclude from the component
assignments that cannot affect the
computation (typically, an
assignment after which the variable
is not used until the next
assignment or port).

Remove Unused
Procedures

PL/I Exclude unused procedures from
the component.
 24

SETTING COMPONENT MAKER OPTIONS
SETTING COMPONENT TYPE-SPECIFIC OPTIONS
Setting Event Injection Type-Specific Options

Describes how to set event injection component extraction options.

The table below describes the Component Maker event injection type-specific
extraction options.

Replace Procedure Calls
by Return Values

PL/I Substitute the return values of
variables for procedure calls in
components.

Replace Variables by
Their Calculated Values

Cobol Substitute the calculated values of
variables for the variables
themselves. Alternatively, you can
print the values as comments.

NOTE: Notice how the options in
Remove Unused Assignments and
Replace Variables by Their Calcu-
lated Values can interact. If both
options are set, then the first assign-
ment in the following fragment will
be removed:

MOVE 1 TO X.
DISPLAY X.
MOVE 2 TO X.

Single Pass Cobol, PL/I Evaluate conditional logic in one
pass.

VALUEs Initialize Data
Items

Cobol Set variables declared with VALUE
clauses to their initial values.
Otherwise, VALUE clauses are
ignored.

Option Language Description

Option Language Description

 Error Handling Cobol The type of statement to execute in
case of an error connecting to
middleware.

MQ Cobol Use an IBM MQ Series template
for event injection.

MQPUT Cobol Use the MQPUT method.
25

SETTING COMPONENT MAKER OPTIONS
SETTING COMPONENT CONVERSION OPTIONS
Setting Component Conversion Options

Describes how to set Component Conversion extraction options.

The table below describes the Component Maker Component Conversion
extraction options.

MQPUT1 Cobol Use the MQPUT1 method.

Queue Manager Cobol The name of the queue manager.

Target Queue Name Cobol The name of the target queue.

User Specified Event Cobol The name of the event to inject at
the specified injection points.

Option Language Description

Option Language Description

Convert Resulting
Components

Cobol, Natural, PL/I,
RPG

Convert as well as extract the
logical component.

Keep Old Legacy Objects Cobol, Natural, PL/I,
RPG

Preserve existing repository objects
for the converted component
(copybooks, for example). If you
select this option, delete the
repository object for the
component itself before
performing the extraction, or the
new component object will not be
created.

Remove Components
after Successful
Conversion

Cobol, Natural, PL/I,
RPG

Remove logical components from
the current project after new
component objects are created.
 26

SETTING COMPONENT MAKER OPTIONS
SETTING COMPONENT CONVERSION OPTIONS
 Replace Old Legacy
Objects

Cobol, Natural, PL/I,
RPG

Replace existing repository objects
for the converted component.

NOTE: This option controls conver-
sion behavior even when you
perform the conversion indepen-
dently from the extraction. If you
are converting a component inde-
pendently and want to change this
setting, select Convert Resulting
Components to Legacy Objects,
specify the behavior you want, and
then deselect Convert Resulting
Components to Legacy Objects.

Option Language Description
27

SETTING COMPONENT MAKER OPTIONS
SETTING COMPONENT CONVERSION OPTIONS
 28

3
 Extracting
Structure-Based

Components
Structure-Based Componentization lets you build a component from a range of
inline code, Cobol paragraphs, for example. Use traditional structure-based
componentization to generate a new component and its complement. A comple-
ment is a second component consisting of the original program minus the code
extracted in the slice. Component Maker automatically places a call to the new
component in the complement, passing it data items as necessary.

Alternatively, you can generate parameterized slices, in which the input and
output variables required by the component are organized in group-level struc-
tures. These standard object-oriented data interfaces make it easy to deploy the
transformed component in modern service-oriented architectures.

Understanding Ranges

Offers background on ranges.

When you extract a structure-based component from a program, you specify
the range of code you want to include in the component. The range varies: for
Cobol programs, a range of paragraphs; for PL/I programs, a procedure; for
RPG programs, a subroutine or procedure.
29

EXTRACTING STRUCTURE-BASED COMPONENTS
UNDERSTANDING RANGES
TIP: You typically repeat Structure-Based Componentization in incremental
fashion until all the modules you are interested in have been created. For Cobol
programs, you can avoid doing this manually by specifying multiple ranges in the
same extraction. Component Maker automatically processes each range in the
appropriate order. No complements are generated.

Specifying Ranges for Cobol Programs

Describes how to specify ranges for Cobol programs.

For Cobol programs, you specify the paragraphs in the range for struc-
ture-based component extraction in one of three ways:

• Select a Paragraph Perform statement to set the range to the performed
paragraph or paragraphs. Component Maker includes each paragraph in
the execution path between the first and last paragraphs in the range,
except when control is transferred by a PERFORM statement or by an
implicit RETURN-from-PERFORM statement.

• Select a Pair of Paragraphs to set the range to the selected paragraphs. You
are responsible for ensuring a continuous flow of control from the first to
the last paragraph in the range.

• Select a Section to set the range to the paragraphs in the section.

NOTE: For traditional structure-based COBOL components, Component Maker
inserts in the complement the labels of the first and last paragraphs in the range.
The first paragraph is replaced in the complement with a CALL statement
followed by a GOTO statement. The last paragraph is always empty.

The GOTO statement transfers control to the last paragraph. If the GOTO state-
ment and its target paragraph are not required to ensure correct call flow, they are
omitted.

Specifying Ranges for PL/I Programs

Describes how to specify ranges for PL/I programs.

For PL/I programs, the range you specify for structure-based component
extraction is an internal procedure that Component Maker extracts as an
external procedure. The slice contains the required parameters for global vari-
ables.
 30

EXTRACTING STRUCTURE-BASED COMPONENTS
UNDERSTANDING PARAMETERIZED SLICES
Specifying Ranges for RPG Programs

Describes how to specify ranges for RPG programs.

For RPG programs, the range you specify for structure-based component
extraction is a subroutine or procedure to extract as a component.

Understanding Parameterized Slices

Offers background on parameterized slices.

For Cobol programs, you can generate parameterized slices, in which the input
and output variables required by the component are organized in group-level
structures. The component contains all the code required for input/output
operations.

To extract a parameterized slice, select the Generate Parameterized Compo-
nents option in the extraction options dialog. Note that you cannot generate a
complement for a parameterized Cobol slice.

NOTE: For parameterized structure- and computation-based componentization
of Cobol programs, you must select the Perform Program Analysis and Enable
Parameterization of Components options in the project verification options.

Cobol Naming Conventions

Describes Cobol naming conventions for parameterized slices.

• Component input structures have names of the form
BRE-INP-<STRUCT-NAME>. Input fields have names of the form
BRE-I-<FIELD-NAME>.

• Component Output structures have names of the form
BRE-OUT-STRUCT-NAME. Output fields have names of the form
BRE-O-<FIELD-NAME>.
31

EXTRACTING STRUCTURE-BASED COMPONENTS
UNDERSTANDING PARAMETERIZED SLICES
Parameterization Example

Provides an example of a parameterized slice.

The example below illustrates how Component Maker generates parameterized
slices. Consider a COBOL program that contains the following structures:

WORKING-STORAGE SECTION.
 01 A
 03 A1
 03 A2
 01 B
 03 B1
 03 B2
 03 B4

Suppose that only A1 has been determined by Component Maker to be an input
parameter, and only B1 and B2 to be output parameters. Suppose further that
the component is extracted with input and output data structures that use the
default names, BRE-INP-INPUT-STRUCTURE and
BRE-OUT-OUTPUT-STRUCTURE, respectively, and with the default Optimi-
zation options set. The component contains the following code:

WORKING-STORAGE SECTION.
 01 A
 03 A1
 03 A2
 01 B
 03 B1
 03 B2
 03 B4
LINKAGE SECTION.
 01 BRE-INP-INPUT-STRUCTURE
 03 BRE-I-A
 06 BRE-I-A1
01 BRE-OUT-OUTPUT-STRUCTURE
 03 BRE-O-B
 06 BRE-O-B1
 06 BRE-O-B2
PROCEDURE DIVISION
 USING BRE-INP-INPUT-STRUCTURE BRE-OUT-OUTPUT-STRUCTURE.
BRE-INIT-SECTION SECTION.
 PERFORM BRE-COPY-INPUT-DATA.

 (Business Logic)....

 *Modernization Workbench added statement
 GO TO BRE-EXIT-PROGRAM.
BRE-EXIT-PROGRAM-SECTION SECTION.
 BRE-EXIT-PROGRAM.
 PERFORM BRE-COPY-OUTPUT-DATA.
 GOBACK.
 32

EXTRACTING STRUCTURE-BASED COMPONENTS
EXTRACTING STRUCTURE-BASED COBOL COMPONENTS
BRE-COPY-INPUT-DATA.
 MOVE BRE-I-A TO A.
BRE-COPY-OUTPUT-DATA.
 MOVE B TO BRE-O-B.

Extracting Structure-Based Cobol Components

Describes how to extract structure-based Cobol components.

Follow the instructions below to extract structure-based Cobol components.

TASK

1. Select the program you want to slice in the HyperView Objects pane
and click the button. A dialog opens where you can enter the name
of the new component in the text field. Click OK. Component Maker
adds the new component to the list of components. Double-click the
component to edit its properties.

2. In the Paragraphs field, click the here link. Choose one of the following
methods in the pop-up menu:
• Paragraph Perform to set the range to the paragraph or paragraphs

performed by the selected PERFORM statement. Select the PERFORM
statement in the Source pane, then click the link for the current
selection and choose Set in the pop-up menu.

• Pair of Paragraphs to set the range to the selected paragraphs. Select
the first paragraph in the pair in the Source pane, then click the link for
the current selection in the From field and choose Set in the drop-down
menu. Select the second paragraph in the pair, then click the link for the
current selection in the To field and choose Set in the pop-up menu.

TIP: You can set the From and To fields to the same paragraph.

• Section to set the range to the paragraphs in the section. Select the
section in the Source pane, then click the link for the current selection
and choose Set in the pop-up menu.

NOTE: To delete a range, select the link for the numeral that identifies the
range and choose Delete in the pop-up menu. To unset a PERFORM, para-
graph, or section, click it and choose Unset in the pop-up menu. To navigate
quickly to a PERFORM, paragraph, or section in the source, click it and
choose Locate in the pop-up menu.

3. Repeat this procedure for each range you want to extract. You can use
any combination of methods. The figure below shows how the proper-
ties tab might look for a multi-range extraction.
33

EXTRACTING STRUCTURE-BASED COMPONENTS
EXTRACTING STRUCTURE-BASED COBOL COMPONENTS
4. In the Entry Point to use field, click the link for the current selection
and choose the entry point you want to use in the pop-up menu. To
unset an entry point, click it and choose Unset in the pop-up menu.

5. In the Description field, click the here link to open a text editor where
you can enter a description of the component. The description appears
in the box below the Description field in the Properties tab and in the
Description property for the logical component repository object.

6. Click the button on the tool bar to start extracting the logical
component. You are prompted to confirm that you want to continue.
Click OK.

7. The Extraction Options dialog opens. Set options for the extraction and
click Finish.

8. Component Maker performs the extraction. You are notified that the
extraction is complete. If the extraction completed without errors or
warnings, click OK to continue. If the extraction completed with errors
or warnings, click Yes in the notification dialog to view the errors or
warnings in the Activity Log. Otherwise, click No.
 34

EXTRACTING STRUCTURE-BASED COMPONENTS
EXTRACTING STRUCTURE-BASED PL/I COMPONENTS
Extracting Structure-Based PL/I Components

Describes how to extract structure-based PL/I components.

Follow the instructions below to extract structure-based PL/I components.

TASK

1. Select the program you want to slice in the HyperView Objects pane
and click the button. A dialog opens where you can enter the
name of the new component in the text field. Click OK. Component
Maker adds the new component to the list of components. Double-click
the component to edit its properties.

2. Select the program entry point in the Source pane. In the Point field,
click the link for the current selection and choose Set in the pop-up
menu.

NOTE: To unset an entry point, click it and choose Unset in the pop-up
menu. To navigate quickly to an entry point in the source, click it and choose
Locate in the pop-up menu.

3. In the Description field, click the here link to open a text editor where
you can enter a description of the component. The description appears
in the box below the Description field in the Properties tab and in the
Description property for the logical component repository object.

4. Click the button on the tool bar to start extracting the logical
component. You are prompted to confirm that you want to continue.
Click OK.

5. The Extraction Options dialog opens. Set options for the extraction and
click Finish.

6. Component Maker performs the extraction. You are notified that the
extraction is complete. If the extraction completed without errors or
warnings, click OK to continue. If the extraction completed with errors
or warnings, click Yes in the notification dialog to view the errors or
warnings in the Activity Log. Otherwise, click No.
35

EXTRACTING STRUCTURE-BASED COMPONENTS
EXTRACTING STRUCTURE-BASED RPG COMPONENTS
Extracting Structure-Based RPG Components

Describes how to extract structure-based RPG components.

Follow the instructions below to extract structure-based RPG components.

TASK

1. Select the program you want to slice in the HyperView Objects pane
and click the button. A dialog opens where you can enter the
name of the new component in the text field. Click OK. Component
Maker adds the new component to the list of components. Double-click
the component to edit its properties.

2. Select the subroutine or procedure you want to slice in the Source
pane. In the Point field, click the link for the current selection and
choose Set in the pop-up menu.

NOTE: To unset an entry point, click it and choose Unset in the pop-up
menu. To navigate quickly to an entry point in the source, click it and choose
Locate in the pop-up menu.

3. In the Description field, click the here link to open a text editor where
you can enter a description of the component. The description appears
in the box below the Description field in the Properties tab and in the
Description property for the logical component repository object.

4. Click the button on the tool bar to start extracting the logical
component. You are prompted to confirm that you want to continue.
Click OK.

5. The Extraction Options dialog opens. Set options for the extraction and
click Finish.

6. Component Maker performs the extraction. You are notified that the
extraction is complete. If the extraction completed without errors or
warnings, click OK to continue. If the extraction completed with errors
or warnings, click Yes in the notification dialog to view the errors or
warnings in the Activity Log. Otherwise, click No.
 36

4
 Extracting
Computation-Based

Components
Computation-Based Componentization lets you build a component that
contains all the code necessary to calculate the value of a variable at a point in
the program where it is used to populate a report attribute or screen. You can
generate parameterized computation-based slices that make it easy to deploy
the transformed component in distributed architectures.

Understanding Variable-Based Extraction

Offers background on variable-based extraction.

When you perform a computation-based extraction, you can slice by statement
or by variable. What's the difference? Suppose you are interested in calculations
involving the variable X in the example below:

MOVE 1 TO X
MOVE 1 TO Y
DISPLAY X Y.

If you perform statement-based extraction (if you slice on the statement
DISPLAY X Y), all three statements will be included in the component. If you
37

EXTRACTING COMPUTATION-BASED COMPONENTS
UNDERSTANDING BLOCKING
perform variable-based extraction (if you slice on the variable X), only the first
and third statements will be included. In variable-based extraction, that is,
Component Maker tracks the dependency between X and Y, and having deter-
mined that the variables are independent, excludes the MOVE 1 to Y statement.

NOTE: If you slice on a variable for a Cobol component, you must select Variable
in the Component Type Specific options for computation-based extraction.

Understanding Blocking

Offers background on blocking.

For Cobol programs, you can use a technique called blocking to produce
smaller, better-defined parameterized components. Component Maker will not
include in the slice any part of the calculation that appears before the blocked
statement. Fields from blocked input statements are treated as input parameters
of the component.

Consider the following fragment:

INP1.
 DISPLAY "INPUT YEAR (1600-2099)".
 ACCEPT YEAR.
 CALL 'PROG' USING YEAR.
 IF YEAR > 2099 OR YEAR < 1600 THEN
 DISPLAY "WRONG YEAR".

 If the CALL statement is selected as a block, then both the CALL and ACCEPT
statements from the fragment are not included in the component, and YEAR is
passed as a parameter to the component.

TIP: Specify blocking in the blocking dialog accessed from the Interface options
pane.

Understanding Parameterized Slices

Offers background on parameterized slices.

For Cobol programs, you can generate parameterized slices, in which the input
and output variables required by the component are organized in group-level
 38

EXTRACTING COMPUTATION-BASED COMPONENTS
UNDERSTANDING PARAMETERIZED SLICES
structures. The component contains all the code required for input/output
operations.

To extract a parameterized slice, select the Generate Parameterized Compo-
nents option in the extraction options dialog. Note that you cannot generate a
complement for a parameterized Cobol slice.

NOTE: For parameterized structure- and computation-based componentization
of Cobol programs, you must select the Perform Program Analysis and Enable
Parameterization of Components options in the project verification options.

Cobol Naming Conventions

Describes Cobol naming conventions for parameterized slices.

• Component input structures have names of the form
BRE-INP-<STRUCT-NAME>. Input fields have names of the form
BRE-I-<FIELD-NAME>.

• Component Output structures have names of the form
BRE-OUT-STRUCT-NAME. Output fields have names of the form
BRE-O-<FIELD-NAME>.

Parameterization Example

Provides an example of a parameterized slice.

The example below illustrates how Component Maker generates parameterized
slices. Consider a COBOL program that contains the following structures:

WORKING-STORAGE SECTION.
 01 A
 03 A1
 03 A2
 01 B
 03 B1
 03 B2
 03 B4

Suppose that only A1 has been determined by Component Maker to be an input
parameter, and only B1 and B2 to be output parameters. Suppose further that
the component is extracted with input and output data structures that use the
default names, BRE-INP-INPUT-STRUCTURE and
BRE-OUT-OUTPUT-STRUCTURE, respectively, and with the default Optimi-
zation options set. The component contains the following code:

WORKING-STORAGE SECTION.
39

EXTRACTING COMPUTATION-BASED COMPONENTS
EXTRACTING COMPUTATION-BASED COBOL COMPONENTS
 01 A
 03 A1
 03 A2
 01 B
 03 B1
 03 B2
 03 B4
LINKAGE SECTION.
 01 BRE-INP-INPUT-STRUCTURE
 03 BRE-I-A
 06 BRE-I-A1
01 BRE-OUT-OUTPUT-STRUCTURE
 03 BRE-O-B
 06 BRE-O-B1
 06 BRE-O-B2
PROCEDURE DIVISION
 USING BRE-INP-INPUT-STRUCTURE BRE-OUT-OUTPUT-STRUCTURE.
BRE-INIT-SECTION SECTION.
 PERFORM BRE-COPY-INPUT-DATA.

 (Business Logic)....

 *Modernization Workbench added statement
 GO TO BRE-EXIT-PROGRAM.
BRE-EXIT-PROGRAM-SECTION SECTION.
 BRE-EXIT-PROGRAM.
 PERFORM BRE-COPY-OUTPUT-DATA.
 GOBACK.
BRE-COPY-INPUT-DATA.
 MOVE BRE-I-A TO A.
BRE-COPY-OUTPUT-DATA.
 MOVE B TO BRE-O-B.

Extracting Computation-Based Cobol
Components

Describes how to extract computation-based Cobol components.

Follow the instructions below to extract computation-based Cobol compo-
nents.

TASK

1. Select the program you want to slice in the HyperView Objects pane
and click the button. A dialog opens where you can enter the
name of the new component in the text field. Click OK. Component
 40

EXTRACTING COMPUTATION-BASED COMPONENTS
EXTRACTING COMPUTATION-BASED COBOL COMPONENTS
Maker adds the new component to the list of components. Double-click
the component to edit its properties.

2. Select the variable or statement you want to slice on in the Source pane.
In the Point field, click the link for the current selection and choose Set
in the pop-up menu.

NOTE: If you slice on a variable, you must select Variable in the Component
Type Specific options for computation-based extraction.

To unset a variable or statement, click it and choose Unset in the pop-up menu.
To navigate quickly to a variable or statement in the source, click it and choose
Locate in the pop-up menu.

3. In the Entry Point to use field, click the link for the current selection
and choose the entry point you want to use in the pop-up menu. To
unset an entry point, click it and choose Unset in the pop-up menu.

4. If you plan to specify Use Blocking from Component Definitions in
the Interface options, select the list of statements to block in Clipper,
then click the link for the current selection in the Block statements
field and choose Set in the drop-down menu.

NOTE: Choose Show to display the current list in Clipper. Choose (none) to
unset the list. For Clipper usage, see Analyzing Programs in the workbench
documentation set.

5. In the Description field, click the here link to open a text editor where
you can enter a description of the component. The description appears
in the box below the Description field in the Properties tab and in the
Description property for the logical component repository object.

6. Click the button on the tool bar to start extracting the logical
component. You are prompted to confirm that you want to continue.
Click OK.

7. The Extraction Options dialog opens. Set options for the extraction and
click Finish.

8. Component Maker performs the extraction. You are notified that the
extraction is complete. If the extraction completed without errors or
warnings, click OK to continue. If the extraction completed with errors
or warnings, click Yes in the notification dialog to view the errors or
warnings in the Activity Log. Otherwise, click No.
41

EXTRACTING COMPUTATION-BASED COMPONENTS
EXTRACTING COMPUTATION-BASED NATURAL COMPONENTS
Extracting Computation-Based Natural
Components

Describes how to extract computation-based Natural components.

Follow the instructions below to extract computation-based Natural compo-
nents.

TASK

1. Select the program you want to slice in the HyperView Objects pane
and click the button. A dialog opens where you can enter the
name of the new component in the text field. Click OK. Component
Maker adds the new component to the list of components. Double-click
the component to edit its properties.

2. Select the variable or statement you want to slice on in the Source pane.
In the Point field, click the link for the current selection and choose Set
in the pop-up menu.

NOTE: If you slice on a variable, you must select Variable in the Component
Type Specific options for computation-based extraction.

To unset a variable or statement, click it and choose Unset in the pop-up menu.
To navigate quickly to a variable or statement in the source, click it and choose
Locate in the pop-up menu.

3. In the Description field, click the here link to open a text editor where
you can enter a description of the component. The description appears
in the box below the Description field in the Properties tab and in the
Description property for the logical component repository object.

4. Click the button on the tool bar to start extracting the logical
component. You are prompted to confirm that you want to continue.
Click OK.

5. The Extraction Options dialog opens. Set options for the extraction and
click Finish.

6. Component Maker performs the extraction. You are notified that the
extraction is complete. If the extraction completed without errors or
warnings, click OK to continue. If the extraction completed with errors
or warnings, click Yes in the notification dialog to view the errors or
warnings in the Activity Log. Otherwise, click No.
 42

5
 Extracting
Domain-Based

Components
Domain-Based Componentization lets you “specialize” a program based on the
values of one or more variables. The specialized program is typically intended
for reuse “in place,” in the original application but under new external circum-
stances.

After a change in your business practices, for example, a program that invokes
processing for a “payment type” variable could be specialized on the value
PAYMENT-TYPE = "CHECK". Component Maker isolates every process
dependent on the CHECK value to create a functionally complete program that
processes check payments only.

Two modes of domain-based componentization are offered:

• In simplified mode, you set the specialization variable to its value
anywhere in the program except a data port. The value of the variable is
“frozen in memory.” Operations that could change the value are ignored.

• In advanced mode, you set the specialization variable to its value at a data
port. Subsequent operations can change the value, following the data and
control flow of the program.

Use the simplified mode when you are interested only in the final value of a vari-
able, or when a variable never receives a value from outside the program. Use
the advanced mode when you need to account for data coming into a variable
43

EXTRACTING DOMAIN-BASED COMPONENTS
UNDERSTANDING PROGRAM SPECIALIZATION IN SIMPLIFIED MODE
(when the variable's value is repeatedly reset, for example). The next two
sections describe these modes in detail.

TIP: Component Maker lets you set the specialization variable to a range of values
(between 1 and 10 inclusive, for example) or to multiple values (not only CHECK
but CREDIT-CARD, for example). You can also set the variable to all values not
in the range or set of possible values (every value but CHECK and
CREDIT-CARD, for example).

Understanding Program Specialization in
Simplified Mode

Offers background on program specialization in simplified mode.

In the simplified mode of program specialization, you set the specialization
variable to its value anywhere in the program except a data port. The value of
the variable is “frozen in memory.” The table below shows the result of using the
simplified mode to specialize on the values CURYEAR = 1999, MONTH = 1,
CURMONTH = 12, DAY1 = 4, and CURDAY = 7.

Source Program Specialized Program Comment

INP3.
DISPLAY "INPUT
DAY".
ACCEPT DAY1.
MOVE YEAR TO tmp1.
PERFORM ISV.
IF DAY1 > tt of
MONTHS
(MONTH) OR DAY1 <
1
THEN
DISPLAY "WRONG
DAY".

INP3.
DISPLAY "INPUT
DAY".
MOVE YEAR TO tmp1.
PERFORM ISV.
IF 0004 > TT OF
MONTHS(MONTH)
THEN
DISPLAY "WRONG DAY"
END-IF.

ACCEPT removed.
No changes in these
statements (YEAR is a "free"
variable).
Value for DAY1 substituted.
The 2nd condition for DAY1
is removed as always false.
END-IF added.
 44

EXTRACTING DOMAIN-BASED COMPONENTS
UNDERSTANDING PROGRAM SPECIALIZATION IN SIMPLIFIED MODE
MAINCALC.
IF YEAR > CURYEAR
THEN
MOVE YEAR TO
INT0001
MOVE CURYEAR TO
INT0002
MOVE 1 TO direction
ELSE
MOVE YEAR TO
INT0002
MOVE 2 TO direction
MOVE CURYEAR TO
INT0001.

MAINCALC.
IF YEAR > 1999
THEN
MOVE YEAR TO
INT0001
MOVE 1999 TO
INT0002
MOVE 1 TO direction
ELSE
MOVE YEAR TO
INT0002
MOVE 2 TO direction
MOVE 1999 TO
INT0001.

Value for CURYEAR
substituted.

MOVE int0001 TO
tmp3.
MOVE int0002 TO
tmp4.
IF YEAR NOT EQUAL
CURYEAR THEN
PERFORM YEARS.

MOVE int0002 TO
tmp4.
IF YEAR NOT = 1999
THEN
PERFORM YEARS.

Component Maker removes
the first line for tmp3,
because this variable is
never used again. Value for
CURYEAR substituted.

IF MONTH > CURMONTH
THEN
MOVE MONTH TO
INT0001
MOVE CURMONTH TO
INT0002
MOVE 1 TO direction

 Value for MONTH
substituted, making the
condition (1>12) false, so
Component Maker removes
the IF branch and then the
whole conditional statement
as such.

ELSE
MOVE MONTH TO
INT0002
MOVE 2 TO direction
MOVE CURMONTH TO
INT0001.

MOVE 0001 TO
INT0002
MOVE 2 TO direction
MOVE 0012 TO
INT0001.

The three unconditional
statements remain from the
former ELSE branch. Value
for CURMONTH
substituted.

IF MONTH NOT EQUAL
CURMONTH THEN
PERFORM MONTHS.

PERFORM MONTHS. The condition is true, so the
statement is made
unconditional.

IF DAY1 > CURDAY
THEN
MOVE DAY1 TO
INT0001
MOVE CURDAY TO
INT0002
MOVE 1 TO direction

 This condition (4>7) is false,
so Component Maker
removes the IF branch and
then the whole conditional
statement as such.

Source Program Specialized Program Comment
45

EXTRACTING DOMAIN-BASED COMPONENTS
UNDERSTANDING PROGRAM SPECIALIZATION IN ADVANCED MODE
Understanding Program Specialization in
Advanced Mode

Offers background on program specialization in advanced mode.

In the advanced mode of program specialization, you set the specialization vari-
able to its value at a data port: any statement that allows the program to receive
the variable's value from a keyboard, database, screen, or other input source.
Subsequent operations can change the value, following the data and control
flow of the program. The table below shows the result of using the advanced
mode to specialize on the values MONTH = 1 and DAY1 = 4.

ELSE
MOVE DAY1 TO
INT0002
MOVE 2 TO direction
MOVE CURDAY TO
INT0001.

MOVE 4 TO INT0002
MOVE 2 TO direction
MOVE 0007 TO
INT0001.

The three unconditional
statements remain from the
former ELSE branch. Values
for DAY1 and CURDAY
substituted.

IF day1 NOT EQUAL
CURDAY THEN
PERFORM DAYS.

PERFORM DAYS. The condition is true, so the
statement is made
unconditional.

Source Program Specialized Program Comment

Source Program Specialized Program Comment

INP1.
DISPLAY "INPUT YEAR
(1600-2099)".
ACCEPT YEAR.
IF YEAR > 2099 OR
YEAR
< 1600 THEN
DISPLAY "WRONG
YEAR".

INP1.
DISPLAY "INPUT YEAR
(1600-2099)".
ACCEPT YEAR.
IF YEAR > 2099 OR
YEAR
< 1600 THEN
DISPLAY "WRONG
YEAR".

No changes in these
statements (YEAR is a "free"
variable).
 46

EXTRACTING DOMAIN-BASED COMPONENTS
UNDERSTANDING PROGRAM SPECIALIZATION LITE
Understanding Program Specialization Lite

Offers background on program specialization lite.

Ordinarily, you must turn on the Perform Program Analysis option in the
project verification options before verifying the Cobol program you want to
specialize. If your application is very large, however, and you know that the
specialization variable is never reset, you can save time by skipping program
analysis during verification and using the simplified mode to specialize the
program, so-called “program specialization lite.”

Component Maker gives you the same result for a lite extraction as it would for
an ordinary domain extraction in simplified mode, with one important excep-
tion. Domain extraction lite cannot calculate the value of a variable that depends
on the value of the specialization variable. Consider the following example:

01 X Pic 99.
 01 Y Pic 99.
 ...
 MOVE X To Y.
 IF X = 1

INP2.
DISPLAY "INPUT
MONTH".
ACCEPT MONTH.
IF MONTH > 12 OR
MONTH
< 1 THEN
DISPLAY "WRONG
MONTH".

INP2.
DISPLAY "INPUT
MONTH".
MOVE 0001 TO MONTH.

ACCEPT is replaced by
MOVE with the set value for
MONTH.
With the set value, this IF
statement can never be
reached, so Component
Maker removes it.

INP3.
DISPLAY "INPUT
DAY".
ACCEPT DAY1.
MOVE YEAR TO tmp1.
PERFORM ISV.
IF DAY1 > tt of
MONTHS
(MONTH) OR DAY1 <
1
THEN
DISPLAY "WRONG
DAY".

INP3.
DISPLAY "INPUT
DAY".
MOVE 0004 TO DAY1.
MOVE YEAR TO tmp1.
PERFORM ISV.
IF 0004 > TT OF
MONTHS(MONTH)
THEN
DISPLAY "WRONG DAY"
END-IF.

ACCEPT is replaced by
MOVE with the set value for
DAY1.
No changes in these
statements (YEAR is a "free"
variable).
The 2nd condition for DAY1
is removed as always false.
END-IF added.

Source Program Specialized Program Comment
47

EXTRACTING DOMAIN-BASED COMPONENTS
EXTRACTING DOMAIN-BASED COBOL COMPONENTS
 THEN ...
 ELSE ...
 END-IF.
 ...
 IF Y = 1
 THEN ...
 ELSE ...
 END-IF.

If you set X to 1, both simplified mode and domain extraction lite resolve the IF
X = 1 condition correctly. Only simplified mode, however, resolves the IF Y = 1
condition.

Extracting Domain-Based Cobol Components

Describes how to extract domain-based Cobol components.

Follow the instructions below to extract domain-based Cobol components.

TASK

1. Select the program you want to slice in the HyperView Objects pane
and click the button. A dialog opens where you can enter the
name of the new component in the text field. Click OK. Component
Maker adds the new component to the list of components. Double-click
the component to edit its properties.

2. In the Data Item Value field, click the here link. Choose one of the
following methods in the pop-up menu:
• HyperCode List to set the specialization variable to the constant

values in a list of constants.

• User Specified Value(s) to set the specialization variable to a value or
values you specify.

3. Select the specialization variable or its declaration in the Source pane.
Click the link for the current selection in the Data Item field and choose
Set in the drop-down menu. For advanced program specialization, you
can enter a structure in Data Item and a field inside the structure in
Field.

NOTE: To delete an entry, select the link for the numeral that identifies it
and choose Delete in the pop-up menu. To unset an entry, click it and
choose Unset in the pop-up menu. To navigate quickly to a variable or
declaration in the source, click it and choose Locate in the pop-up menu.
 48

EXTRACTING DOMAIN-BASED COMPONENTS
EXTRACTING DOMAIN-BASED COBOL COMPONENTS
4. In the Comparison field, click the link for the current comparison oper-
ator and choose:
• equals to set the specialization variable to the specified values.

• not equals to set the specialization variable to every value but the spec-
ified values.

5. If you chose HyperCode List, select the list of constants in Clipper, then
click the link for the current selection in the List Name field and choose
Set in the drop-down menu.

NOTE: Choose Show to display the current list in Clipper. Choose (none) to
unset the list. For Clipper usage, see Analyzing Programs in the workbench
documentation set.

6. If you chose User Specified Value(s), click the here link in the Values
field. Choose one of the following methods in the pop-up menu:
• Value to set the specialization variable to one or more values. In the

Value field, click the link for the current selection. A dialog opens where
you can enter a value in the text field. Click OK.

NOTE: Put double quotation marks around a string constant with blank
spaces at the beginning or end.

• Value Range to set the specialization variable to a range of values. In
the Lower field, click the link for the current selection. A dialog opens
where you can enter a value for the lower range end in the text field.
Click OK. Follow the same procedure for the Upper field.

NOTE: For value ranges, the specialization variable must have a numeric
data type. Only numeric values are supported.

7. Repeat this procedure for each value or range of values you want to set
and for each variable you want to specialize on. For a given specializa-
tion variable, you can specify the methods in any combination. For a
given extraction, you can specify simplified and advanced modes in any
combination.

NOTE: To delete a value or range, select the link for the numeral that iden-
tifies it and choose Delete in the pop-up menu.

8. In the Entry Point to use field, click the link for the current selection
and choose the entry point you want to use in the pop-up menu. To
unset an entry point, click it and choose Unset in the pop-up menu.

9. In the Description field, click the here link to open a text editor where
you can enter a description of the component. The description appears
in the box below the Description field in the Properties tab and in the
Description property for the logical component repository object.
49

EXTRACTING DOMAIN-BASED COMPONENTS
EXTRACTING DOMAIN-BASED PL/I COMPONENTS
10. Click the button on the tool bar to start extracting the logical
component. You are prompted to confirm that you want to continue.
Click OK.

11. The Extraction Options dialog opens. Set options for the extraction and
click Finish.

12. Component Maker performs the extraction. You are notified that the
extraction is complete. If the extraction completed without errors or
warnings, click OK to continue. If the extraction completed with errors
or warnings, click Yes in the notification dialog to view the errors or
warnings in the Activity Log. Otherwise, click No.

Extracting Domain-Based PL/I Components

Describes how to extract domain-based PL/I components.

Follow the instructions below to extract domain-based PL/I components.

NOTE: Not-equals comparisons and value ranges are not supported in PL/I.

TASK

1. Select the program you want to slice in the HyperView Objects pane
and click the button. A dialog opens where you can enter the
name of the new component in the text field. Click OK. Component
Maker adds the new component to the list of components. Double-click
the component to edit its properties.

2. In the Data Item Value field (to set a single specialization variable) or
the Value for Data Item List (to set a list of specialization variables),
click the here link. Choose one of the following methods in the pop-up
menu:
• HyperCode List to set the specialization variable(s) to the constant

values in a list of constants.

• User Specified Value(s) to set the specialization variable(s) to a value or
values you specify.

3. If you are setting:
• A single specialization variable, select the specialization variable or its

declaration in the Source pane. Click the link for the current selection in
the Data Item field and choose Set in the drop-down menu. For
 50

EXTRACTING DOMAIN-BASED COMPONENTS
EXTRACTING DOMAIN-BASED PL/I COMPONENTS
advanced program specialization, you can enter a structure in Data
Item and a field inside the structure in Field.

• A list of specialization variables, click the link for the current selection
and choose the list of variables or declarations to use in the pop-up
menu.

NOTE: To delete an entry, select the link for the numeral that identifies it
and choose Delete in the pop-up menu. To unset an entry, click it and
choose Unset in the pop-up menu. To navigate quickly to a variable or
declaration in the source, click it and choose Locate in the pop-up menu.

4. If you chose HyperCode List, select the list of constants in Clipper, then
click the link for the current selection in the List Name field and choose
Set in the drop-down menu.

NOTE: Choose Show to display the current list in Clipper. Choose (none) to
unset the list. For Clipper usage, see Analyzing Programs in the workbench
documentation set.

5. If you chose User Specified Value(s), click the here link in the Values
field. Choose one of the following methods in the pop-up menu:
• Value to set the specialization variable to one or more values. In the

Value field, click the link for the current selection. A dialog opens
where you can enter a value in the text field. Click OK.

NOTE: Put double quotation marks around a string constant with blank
spaces at the beginning or end.

• Value Range to set the specialization variable to a range of values. In
the Lower field, click the link for the current selection. A dialog opens
where you can enter a value for the lower range end in the text field.
Click OK. Follow the same procedure for the Upper field.

NOTE: For value ranges, the specialization variable must have a numeric
data type. Only numeric values are supported.

6. Repeat this procedure for each value or range of values you want to set
and for each variable you want to specialize on. For a given specializa-
tion variable, you can specify the methods in any combination. For a
given extraction, you can specify simplified and advanced modes in any
combination.

NOTE: To delete a value or range, select the link for the numeral that iden-
tifies it and choose Delete in the pop-up menu.

7. In the Description field, click the here link to open a text editor where
you can enter a description of the component. The description appears
in the box below the Description field in the Properties tab and in the
Description property for the logical component repository object.
51

EXTRACTING DOMAIN-BASED COMPONENTS
EXTRACTING DOMAIN-BASED PL/I COMPONENTS
8. Click the button on the tool bar to start extracting the logical
component. You are prompted to confirm that you want to continue.
Click OK.

9. The Extraction Options dialog opens. Set options for the extraction and
click Finish.

10. Component Maker performs the extraction. You are notified that the
extraction is complete. If the extraction completed without errors or
warnings, click OK to continue. If the extraction completed with errors
or warnings, click Yes in the notification dialog to view the errors or
warnings in the Activity Log. Otherwise, click No.
 52

6
 Injecting Events
Event Injection lets you adapt a legacy program to asynchronous, event-based
programming models like MQ Series. You specify candidate locations for event
calls (reads/writes, screen transactions, or subprogram calls, for example); the
type of operation the event call performs (put or get); and the text of the
message.

For a put operation, for example, Component Maker builds a component that
sends the message and any associated variable values to a queue, where the
message can be retrieved by monitoring applications.

TIP: The HyperView Clipper pane lets you create lists of candidate locations for
event injection. Use the predefined searches for file ports, screen ports, and subpro-
gram calls, or define your own searches. For Clipper pane usage, see Analyzing
Programs in the workbench document set.

Understanding Event Injection

Offers background on event injection.

Suppose that you have a piece of code that checks whether the variables YEAR
and MONTH belong to admissible ranges:

IF YEAR > 2099 OR YEAR < 1600 THEN
 MOVE "WRONG YEAR" TO DOW1
53

INJECTING EVENTS
UNDERSTANDING EVENT INJECTION
 ELSE
 IF MONTH > 12 OR MONTH < 1 THEN
 MOVE "WRONG MONTH" TO DOW1
 ELSE
 MOVE YEAR TO tmp1
 PERFORM ISV

 Suppose further that you want to send a message to your MQ Series middleware
each time valid dates are entered in these fields, along with the value that was
entered for YEAR. Here, in schematic form, is the series of steps you would
perform in Component Maker to accomplish these tasks.

1) In HyperView, create a list that contains the MOVE YEAR TO tmp1 state-
ment in Clipper.

2) In Component Maker, create a logical component with the following
properties:

• Component of program: select the program that contains the frag-
ment.

• List: select the HyperView list.

• Insert: specify where you want event-handling code to be injected,
before or after the injection point. In our case, after the MOVE state-
ment.

• Operation: select the type of operation you want the event-handling
code to perform, put or get. Since we want to send a message to
middleware, we choose put.

• Include Values: specify whether you want the values of variables at
the injection point to be included with the generated message. Since
we want to send the value of YEAR with the message, we choose true.

• Message: specify the text of the message you want to send. In our
case, the text is “Valid dates entered”.

3) In Component Maker, extract the logical component, making sure to set
the Use Middleware drop-down in the Component Type Specific options
for the extraction to MQ.

The result of the extraction appears below. Notice that Component Maker has
arranged to insert the text of the message and the value of the YEAR variable
into the buffer, and added the appropriate PERFORM PUTQ statements to the
code.

IF YEAR > 2099 OR YEAR < 1600 THEN
 MOVE "WRONG YEAR" TO DOW1
 ELSE
 IF MONTH > 12 OR MONTH < 1 THEN
 MOVE "WRONG MONTH" TO DOW1
 ELSE
 54

INJECTING EVENTS
EXTRACTING EVENT-INJECTED COBOL COMPONENTS
 MOVE '<TEXT Value= "Valid dates
 entered"></TEXT>' TO BUFFER
 PERFORM PUTQ
 STRING '<VAR Name= "YEAR" Value=
 "' YEAR '"></VAR>'
 '<VAR Name= "TMP1" Value= "' TMP1 '"></VAR>'
 DELIMITED BY SIZE
 INTO BUFFER END-STRING
 PERFORM PUTQ
 MOVE YEAR TO tmp1
 PERFORM ISV

Extracting Event-Injected Cobol Components

Describes how to extract event-injected Cobol components.

Follow the instructions below to extract event-injected Cobol components.

TASK

1. Select the program you want to slice in the HyperView Objects pane
and click the button. A dialog opens where you can enter the
name of the new component in the text field. Click OK. Component
Maker adds the new component to the list of components. Double-click
the component to edit its properties.

2. In the Insertion Points field, click the here link. In Clipper, select the list
of injection points, then click the link for the current selection in the List
field and choose Set in the drop-down menu.

NOTE: Choose Show to display the current list in Clipper. Choose (none) to
unset the list. For Clipper usage, see Analyzing Programs in the workbench
documentation set.
55

INJECTING EVENTS
EXTRACTING EVENT-INJECTED COBOL COMPONENTS
3. In the Insert field, click the link for the current selection and choose:
• after to inject event-handling code after the selected injection point.

• before to inject event-handling code before the selected injection
point.

4. In the Operation field, click the link for the current selection and
choose:
• put to send a message to middleware.

• get to receive a message from middleware.

5. In the Include Values field, click the link for the current selection and
choose true if you want the values of variables at the injection point to
be included with the generated message, false otherwise.

6. In the Message field, click the link for the current message. A dialog
opens where you can enter the text for the event message in the text
field. Click OK.

7. Repeat this procedure for each list of candidate injection points. For a
given extraction, you can specify the properties for the selected lists in
any combination. The figure below shows how the properties tab
might look for an extraction with multiple lists.

8. In the Entry Point to use field, click the link for the current selection
and choose the entry point you want to use in the pop-up menu. To
unset an entry point, click it and choose Unset in the pop-up menu.

9. In the Description field, click the here link to open a text editor where
you can enter a description of the component. The description appears
in the box below the Description field in the Properties tab and in the
Description property for the logical component repository object.
 56

INJECTING EVENTS
EXTRACTING EVENT-INJECTED COBOL COMPONENTS
10. Click the button on the tool bar to start extracting the logical
component. You are prompted to confirm that you want to continue.
Click OK.

11. The Extraction Options dialog opens. Set options for the extraction and
click Finish.

12. Component Maker performs the extraction. You are notified that the
extraction is complete. If the extraction completed without errors or
warnings, click OK to continue. If the extraction completed with errors
or warnings, click Yes in the notification dialog to view the errors or
warnings in the Activity Log. Otherwise, click No.
57

INJECTING EVENTS
EXTRACTING EVENT-INJECTED COBOL COMPONENTS
 58

7
 Eliminating Dead Code
Dead Code Elimination (DCE) is an option in each of the main component
extraction methods, but you can also perform it on a standalone basis. For each
program analyzed for dead code, DCE generates a component that consists of
the original source code minus any unreferenced data items or unreachable
procedural statements. Optionally, you can have DCE comment out dead code
in Cobol and Natural applications, rather than remove it.

NOTE: Use the batch DCE feature to find dead code across your project. If you are
licensed to use the Batch Refresh Process (BRP), you can use it to perform dead
code elimination across a workspace.

Generating Dead Code Statistics

Describes how to generate dead code statistics.

Set the Perform Dead Code Analysis option in the project verification options
if you want the parser to collect statistics on the number of unreachable state-
ments and dead data items in a program, and to mark the constructs as dead in
HyperView. You can view the statistics in the Legacy Estimation tool, as
described in Analyzing Projects in the workbench documentation set.

NOTE: You do not need to set this option to perform dead code elimination in
Component Maker.
59

ELIMINATING DEAD CODE
UNDERSTANDING DEAD CODE ELIMINATION
For Cobol programs, you can use a DCE coverage report to identify dead code
in a source program. The report displays the text of the source program with its
“live,” or extracted, code shaded in pink.

Understanding Dead Code Elimination

Offers background on dead code elimination.

Let's look at a simple before-and-after example to see what you can expect from
Dead Code Elimination.

 Before:

WORKING-STORAGE SECTION.
 01 USED-VARS.
 05 USED1 PIC 9.
 01 DEAD-VARS.
 05 DEAD1 PIC 9.
 05 DEAD2 PIC X.
 PROCEDURE DIVISION.
 FIRST-USED-PARA.
 MOVE 1 TO USED1.
 GO TO SECOND-USED-PARA.
 MOVE 2 TO USED1.
 DEAD-PARA1.
 MOVE 0 TO DEAD2.

 SECOND-USED PARA.
 MOVE 3 TO USED1.
 STOP RUN.

After:

WORKING-STORAGE SECTION.
 01 USED-VARS.
 05 USED1 PIC 9.
 PROCEDURE DIVISION.
 FIRST-USED-PARA.
 MOVE 1 TO USED1.
 GO TO SECOND-USED-PARA.

 SECOND-USED PARA.
 MOVE 3 TO USED1.
 STOP RUN.
 60

ELIMINATING DEAD CODE
EXTRACTING OPTIMIZED COMPONENTS
Extracting Optimized Components

Describes how to extract optimized components.

Follow the instructions below to extract optimized components for all
supported languages.

TASK

1. Select the program you want to analyze for dead code in the HyperView
Objects pane and click the button. To analyze the entire project of
which the program is a part, click the button.

2. A dialog opens where you can enter the name of the new component
in the text field. Click OK. Component Maker adds the new components
to the list of components. If you selected batch mode, Component
Maker creates a logical component for each program in the project,
appending _n to the name of the component.

3. In the Entry Point to use field, click the link for the current selection
and choose the entry point you want to use in the pop-up menu. To
unset an entry point, click it and choose Unset in the pop-up menu.

4. In the Description field, click the here link to open a text editor where
you can enter a description of the component. The description appears
in the box below the Description field in the Properties tab and in the
Description property for the logical component repository object.

5. Click the button on the tool bar to start extracting the logical
component. You are prompted to confirm that you want to continue.
Click OK.

6. The Extraction Options dialog opens. Set options for the extraction and
click Finish.

7. Component Maker performs the extraction. You are notified that the
extraction is complete. If the extraction completed without errors or
warnings, click OK to continue. If the extraction completed with errors
or warnings, click Yes in the notification dialog to view the errors or
warnings in the Activity Log. Otherwise, click No.
61

ELIMINATING DEAD CODE
EXTRACTING OPTIMIZED COMPONENTS
 62

8
 Performing Entry Point
Isolation
Entry Point Isolation lets you build a component based on one of multiple entry
points in a legacy program (an inner entry point in a Cobol program, for
example) rather than the start of the Procedure Division. Component Maker
extracts only the functionality and data definitions required for invocation from
the selected point.

Entry Point Isolation is built into the main methods as an optional optimization
tool. It's offered separately in case you want to use it on a stand-alone basis.

Extracting a Cobol Component with Entry Point
Isolation

Describes how to extract a Cobol Component with entry point isolation.

Follow the instructions below to extract a Cobol Component with entry point
isolation.

TASK

1. Select the program you want to slice in the HyperView Objects pane
and click the button. A dialog opens where you can enter the
name of the new component in the text field. Click OK. Component
63

PERFORMING ENTRY POINT ISOLATION
EXTRACTING A COBOL COMPONENT WITH ENTRY POINT ISOLATION
Maker adds the new component to the list of components. Double-click
the component to edit its properties.

2. In the Entry Point to use field, click the link for the current selection
and choose the entry point you want to use in the pop-up menu. To
unset an entry point, click it and choose Unset in the pop-up menu.

3. In the Description field, click the here link to open a text editor where
you can enter a description of the component. The description appears
in the box below the Description field in the Properties tab and in the
Description property for the logical component repository object.

4. Click the button on the tool bar to start extracting the logical
component. You are prompted to confirm that you want to continue.
Click OK.

5. The Extraction Options dialog opens. Set options for the extraction and
click Finish.

6. Component Maker performs the extraction. You are notified that the
extraction is complete. If the extraction completed without errors or
warnings, click OK to continue. If the extraction completed with errors
or warnings, click Yes in the notification dialog to view the errors or
warnings in the Activity Log. Otherwise, click No.
 64

9
 Technical Details
This chapter gives technical details of Component Maker behavior for a handful
of narrowly focused verification and extraction options; for Cobol parameter-
ized slice generation; for domain-based extraction when the specialization vari-
able is set to multiple values; and for Cobol arithmetic exception handling.

Verification Options

Provides an overview of the technical details for verification options.

This section describes how a number of verification options may affect compo-
nent extraction. For more information on the verification options, see Preparing
Projects in the workbench document set.

Use Special IMS Calling Conventions

Describes the Use Special IMS Calling Conventions option.

Select Use Special IMS Calling Conventions in the project verification options
if you want to show dependencies and analyze CALL 'CBLTDLI' statements for
65

TECHNICAL DETAILS
VERIFICATION OPTIONS
the CHNG value of their first parameter, and if the value of the third parameter
is known, then generate Calls relationship in the repository.

 For example:

MOVE 'CHNG' TO WS-IMS-FUNC-CODE
MOVE 'MGRW280' TO WS-IMS-TRANSACTION
CALL 'CBLTDLI' USING WS-IMS-FUNC-CODE
 LS03-ALT-MOD-PCB
 WS-IMS-TRANSACTION

When both WS-IMS-FUNC-CODE = 'CHNG' and WS-IMS-TRANSACTION
have known values, the repository is populated with the CALL relationship
between the current program and the WS-IMS-TRANSACTION <value>
program (in the example, 'MGRW280').

Override CICS Program Terminations

Describes the Override CICS Program Terminations option.

Select Override CICS Program Terminations in the project verification
options if you want the parser to interpret CICS RETURN, XCTL, and ABEND
commands in Cobol files as not terminating program execution.

 If the source program contains CICS HANDLE CONDITION handlers, for
example, some exceptions can arise only on execution of CICS RETURN. For
this reason, if you want to see the code of the corresponding handler in the
component, you need to check the override box. Otherwise, the call of the
handler and hence the handler's code are unreachable.

Support CICS HANDLE Statements

Describes the Support CICS HANDLE statements option.

Select Support CICS HANDLE statements in the project verification options
if you want the parser to recognize CICS HANDLE statements in Cobol files.
EXEC CICS HANDLE statements require processing to detect all dependencies
with error-handling statements. That may result in adding extra paragraphs to
a component.
 66

TECHNICAL DETAILS
VERIFICATION OPTIONS
Perform Unisys TIP and DPS Calls Analysis

Describes the Perform Unisys TIP and DPS Calls Analysis option.

Select Perform Unisys TIP and DPS Calls Analysis in the project verification
options if you are working on a project containing Unisys 2200 Cobol files and
need to perform TIP and DPS calls analysis.

This analysis tries to determine the name (value of the data item of size 8 and
offset 20 from the beginning of form-header) of the screen form used in
input/output operation (at CALL 'D$READ', 'D$SEND', 'D$SENDF',
'D$SENDF1') and establish the repository relationships ProgramSendsMap and
ProgramReadsMap between the program being analyzed and the detected
screen.

 For example:

01 SCREEN-946.
 02 SCREEN-946-HEADER.
 05 FILLER PIC X(2)VALUE SPACES.
 05 FILLER PIC 9(5)COMP VALUE ZERO.
 05 FILLER PIC X(4)VALUE SPACES.
 05 S946-FILLER PIC X(8) VALUE 'DPSSWS'
 05 S946-NUMBER PIC 9(4) VALUE 946.
 05 S946-NAME PIC X(8) VALUE 'SCRN946'.
CALL 'D$READ USING DPS-STATUS, SCREEN-946.

Relationship ProgramSendsMap is established between program and Screen
'SCRN946'.

NOTE: Select DPS routines may end with error if you want to perform call anal-
ysis of DPS routines that end in an error.

Perform Unisys Common-Storage Analysis

Describes the Perform Unisys Common-Storage Analysis option.

Select Perform Unisys Common-Storage Analysis in the project verification
options if you want the system to include in the analysis for Unisys Cobol files
variables that are not explicitly declared in CALL statements. This analysis adds
implicit use of variables declared in the Common Storage Section to every CALL
statement of the program being analyzed, as well as for its PROCEDURE DIVI-
SION USING phrase. That could lead to superfluous data dependencies
between the caller and called programs in case the called program does not use
data from Common Storage.
67

TECHNICAL DETAILS
VERIFICATION OPTIONS
Relaxed Parsing

Describes the Relaxed Parsing option.

The Relaxed Parsing option in the workspace verification options lets you
verify a source file despite errors. Ordinarily, the parser stops at a statement
when it encounters an error. Relaxed parsing tells the parser to continue to the
next statement.

 For code verified with relaxed parsing, Component Maker behaves as follows:

• Statements included in a component that contain errors are treated as
CONTINUE statements and appear in component text as comments.

• Dummy declarations for undeclared identifiers appear in component text
as comments.

• Declarations that are in error appear in component text as they were in the
original program. Corrected declarations appear in component text as
comments.

• Commented-out code is identified by an extra comment line: “Modern-
ization Workbench assumption”.

For Domain-Based Componentization, in particular:

• Data items with errors in declarations are treated as data items with
unknown values.

• Statements with errors are treated as statements that do not change values.

• Whenever a calculation error occurs, the comment “Calculation has not
been completed successfully by Modernization Workbench” is generated
in the component before the erroneous operator, along with an error
message.

• Component Maker ignores user values for duplicated identifiers (which
may have an association with a wrong DECL); structures with fields
marked with errors; and undeclared identifiers are ignored. A list of
ignored values appears at the top of the component.

• Users cannot specify values for VARs with attribute errors (duplicated
identifiers); VARs without DECLs (undeclared identifiers); and DECLs
with attribute errors.
 68

TECHNICAL DETAILS
VERIFICATION OPTIONS
PERFORM Behavior for Micro Focus Cobol

Describes the PERFORM behavior option for MF Cobol.

For Micro Focus Cobol applications, use the PERFORM behavior option in the
workspace verification options window to specify the type of PERFORM
behavior the application was compiled for. You can select:

• Stack if the application was compiled with the PERFORM- type option set
to allow recursive PERFORMS.

• All exits active if the application was compiled with the PERFORM- type
option set to not allow recursive PERFORMS.

For non-recursive PERFORM behavior, a COBOL program can contain
PERFORM mines. In informal terms, a PERFORM mine is a place in a program
that can contain an exit point of some active but not current PERFORM during
program execution.

The program below, for example, contains a mine at the end of paragraph C.
When the end of paragraph C is reached during PERFORM C THRU D execu-
tion, the mine “snaps” into action: control is transferred to the STOP RUN
statement of paragraph A.

A.
 PERFORM B THRU C.
 STOP RUN.
 B.
 PERFORM C THRU D.
 C.
 DISPLAY 'C'.
 * mine
 D.
 DISPLAY 'D'.

Setting the compiler option to allow non-recursive PERFORM behavior where
appropriate allows the Modernization Workbench parser to detect possible
mines and determine their properties. That, in turn, lets Component Maker
analyze control flow and eliminate dead code with greater precision. To return
to our example, the mine placed at the end of paragraph C snaps each time it is
reached: such a mine is called stable. Control never falls through a stable mine.
Here it means that the code in paragraph D is unreachable.
69

TECHNICAL DETAILS
KEEP LEGACY COPYBOOKS EXTRACTION OPTION
Keep Legacy Copybooks Extraction Option

Describes the Keep Legacy Copybooks extraction option.

Select Keep Legacy Copybooks in the General extraction options for Cobol if
you want Component Maker not to generate modified copybooks for the
component. Component Maker issues a warning if including the original copy-
books in the component would result in an error.

Example 1:

[COBOL]
01 A PIC X.
PROCEDURE DIVISION.
COPY CP.
[END-COBOL]
[COPYBOOK CP.CPY]
STOP RUN.
DISPLAY A.
[END-COPYBOOK CP.CPY]

 For this example, Component Maker issues a warning for an undeclared iden-
tifier after Dead Code Elimination.

Example 2:

[COBOL]
PROCEDURE DIVISION.
COPY CP.
STOP RUN.
P.
[END-COBOL]
[COPYBOOK CP.CPY]
DISPLAY "QA is out there"
STOP RUN.
PERFORM P.
[END-COPYBOOK CP.CPY]

 For this example, Component Maker issues a warning for an undeclared para-
graph after Dead Code Elimination.

Example 3:

[COBOL]
working-storage section.
copy file.
PROCEDURE DIVISION.
p1.
 move 1 to a.
p2.
 display b.
 display a.
 70

TECHNICAL DETAILS
HOW PARAMETERIZED SLICES ARE GENERATED FOR COBOL PROGRAMS
p3.
 stop run.
[END-COBOL]
[COPYBOOK file.cpy]
01 a pic 9.
01 b pic 9.
[END-COPYBOOK file.cpy]

 For this example, the range component on paragraph p2 looks like this:

[COBOL]
WORKING-STORAGE SECTION.
 COPY FILE1.
 LINKAGE SECTION.
 PROCEDURE DIVISION USING A.
[END-COBOL]
while, with the option turned off, it looks like this:
[COBOL]
WORKING-STORAGE SECTION.
 COPY FILE1-A$RULE-0.
 LINKAGE SECTION.
 COPY FILE1-A$RULE-1.
[END-COBOL]

That is, turning the option on overrides the splitting of the copybook file into
two files. Component Maker issues a warning if that could result in an error.

How Parameterized Slices Are Generated for
Cobol Programs

Describes how parameterized slices are generated for Cobol programs.

The specifications for input and output parameters are:

• Input

A variable of an arbitrary level from the LINKAGE section or PROCE-
DURE DIVISION USING is classified as an input parameter if one or
more of its bits are used for reading before writing.

A system variable (field of DFHEIB/DFHEIBLK structures) is classified as
an input parameter if the Create CICS Program option is turned off and
the variable is used for writing before reading.
71

TECHNICAL DETAILS
HOW PARAMETERIZED SLICES ARE GENERATED FOR COBOL PROGRAMS
• Output

A variable of an arbitrary level from the LINKAGE section or PROCE-
DURE DIVISION USING is classified as an output parameter if it is
modified during component execution.

A system variable (a field of DFHEIB/DFHEIBLK structures) is classified
as an output parameter if the Create CICS Program option is turned off
and the variable is modified during component execution.

• For each input parameter, the algorithm finds its first usage (it does not
have to be unique, the algorithm processes all of them), and if the variable
(parameter from the LINKAGE section) is used for reading, code to copy
its value from the corresponding field of BRE-INPUT-STRUCTURE is
inserted as close to this usage as possible.

• The algorithm takes into account all partial or conditional assignments for
this variable before its first usage and places PERFORM statements before
these assignments.

If a PERFORM statement can be executed more than once (as in the case
of a loop), then a flag variable (named BRE-INIT-COPY-FLAG-[<n>] of
the type PIC 9 VALUE 0 is created in the WORKING-STORAGE section,
and the parameter is copied into the corresponding variable only the first
time this PERFORM statement is executed.

• For all component exit points, the algorithm inserts code to copy all
output parameters from working-storage variables to the corresponding
fields of BRE-OUTPUT-STRUCTURE.

Variables of any level (rather than only 01-level structures together with
all their fields) can act as parameters. This allows exclusion of unnecessary
parameters, making the resulting programs more compact and clear.

For each operator for which a parameter list is generated, the following
transformations are applied to the entire list:

– All FD entries are replaced with their data descriptions.

– All array fields are replaced with the corresponding array declara-
tions.

– All upper-level RENAMES clauses are replaced with the renamed
declarations.

– All upper-level REDEFINES clauses with an object (including the
object itself, if it is present in the parameter list) are replaced with a
clause of a greater size.

– All REDEFINES and RENAMES entries of any level are removed
from the list.
 72

TECHNICAL DETAILS
SETTING A SPECIALIZATION VARIABLE TO MULTIPLE VALUES
– All variable-length arrays are converted into fixed-length of the
corresponding maximal size.

– All keys and indices are removed from array declarations.

– All VALUE clauses are removed from all declarations.

– All conditional names are replaced with the corresponding data
items.

Setting a Specialization Variable to Multiple
Values

Describes Component Maker behavior when a specialization variable is set to
multiple values.

For Domain-Based Componentization, Component Maker lets you set the
specialization variable to a range of values (between 1 and 10 inclusive, for
example) or to multiple values (not only CHECK but CREDIT-CARD, for
example). You can also set the variable to all values not in the range or set of
possible values (every value but CHECK and CREDIT-CARD, for example).

Component Maker uses multiple values to predict conditional branches intelli-
gently. In the following code fragment, for example, the second IF statement
cannot be resolved with a single value, because of the two conflicting values of
Z coming down from the different code paths of the first IF. With multiple
values, however, Component Maker correctly resolves the second IF, because all
the possible values of the variable at the point of the IF are known:

IF X EQUAL Y
 MOVE 1 TO Z
ELSE
 MOVE 2 TO Z
DISPLAY Z.
IF Z EQUAL 3
 DISPLAY "Z=3"
ELSE
 DISPLAY "Z<>3"

Keep in mind that only the following COBOL statements are interpreted with
multiple values:

• COMPUTE

• MOVE
73

TECHNICAL DETAILS
ARITHMETIC EXCEPTION HANDLING
• ADD

• SUBTRACT

• MULTIPLY

• DIVIDE

That is, if the input of such a statement is defined, then, after interpretation, its
output can be defined as well.

Single-Value Example:

MOVE 1 TO Y.
MOVE 1 TO X.
ADD X TO Y.
DISPLAY Y.
IF Y EQUAL 2 THEN...

In this fragment of code, the value of Y in the IF statement (as well as in
DISPLAY) is known, and so the THEN branch can be predicted.

Multiple-Value Example:

IF X EQUAL 0
 MOVE 1 TO Y
ELSE
 MOVE 2 TO Y.
ADD 1 TO Y.
IF Y = 10 THEN... ELSE...

In this case, Component Maker determines that Y in the second IF statement
can equal only 2 or 3, so the statement can be resolved to the ELSE branch.

The statement interpretation capability is available only when you define the
specialization variable “positively” (as equalling a range or set of values), not
when you define the variable “negatively” (as not equalling a range or set of
values).

Arithmetic Exception Handling

Describes Component Maker arithmetic exception handling.

For Cobol, the ADD, COMPUTE, DIVIDE, MULTIPLY, and SUBTRACT
statements can have ON SIZE ERROR and NOT ON SIZE ERROR phrases. The
phrase ON SIZE ERROR contains an arithmetic exception handler.

Statements in the ON SIZE ERROR phrase are executed when one of the
following arithmetic exception conditions take place:
 74

TECHNICAL DETAILS
ARITHMETIC EXCEPTION HANDLING
• The value of an arithmetic operation result is larger than the resul-
tant-identifier picture size.

• Division by zero.

• Violation of the rules for the evaluation of exponentiation.

For MULTIPLY arithmetic statements, if any of the individual operations
produces a size error condition, the statements in the ON SIZE ERROR phrase
is not executed until all of the individual operations are completed.

Control is transferred to the statements defined in the phrase NOT ON SIZE
ERROR when a NOT ON SIZE ERROR phrase is specified and no exceptions
occurred. In that case, the ON SIZE ERROR is ignored.

Component Maker specialization processes an arithmetic statement with
exception handlers in the following way:

• If a (NOT) ON SIZE ERROR condition occurred in some interpreting
pass, then the arithmetic statement is replaced by the statements in the
corresponding phrase.

• Those statements will be interpreted at the next pass.
75

TECHNICAL DETAILS
ARITHMETIC EXCEPTION HANDLING
 76

	Contents
	Introducing Component Maker
	Componentization Methods
	Structure-Based Componentization
	Computation-Based Componentization
	Domain-Based Componentization
	Event Injection
	Dead Code Elimination (DCE)
	Entry Point Isolation
	Language Support

	Componentization Outputs
	Component Maker Basics
	Getting Started in the Components Pane
	Creating Components
	Extracting Components
	Converting Components
	Deleting Components
	Viewing the Text for Generated Files
	Restricting the Display to Program-Related Components
	Working with HyperView Lists
	Viewing Audit Reports
	Generating Coverage Reports
	Exporting Logical Components
	Generating CICS Components

	Setting Component Maker Options
	Setting General Options
	Setting Interface Options
	Setting Optimize Options
	Setting Document Options
	Setting Component Type-Specific Options
	Setting Structure-Based Type-Specific Options
	Setting Computation-Based Type-Specific Options
	Setting Domain-Based Type-Specific Options
	Setting Event Injection Type-Specific Options

	Setting Component Conversion Options

	Extracting Structure-Based Components
	Understanding Ranges
	Specifying Ranges for Cobol Programs
	Specifying Ranges for PL/I Programs
	Specifying Ranges for RPG Programs

	Understanding Parameterized Slices
	Cobol Naming Conventions
	Parameterization Example

	Extracting Structure-Based Cobol Components
	Extracting Structure-Based PL/I Components
	Extracting Structure-Based RPG Components

	Extracting Computation-Based Components
	Understanding Variable-Based Extraction
	Understanding Blocking
	Understanding Parameterized Slices
	Cobol Naming Conventions
	Parameterization Example

	Extracting Computation-Based Cobol Components
	Extracting Computation-Based Natural Components

	Extracting Domain-Based Components
	Understanding Program Specialization in Simplified Mode
	Understanding Program Specialization in Advanced Mode
	Understanding Program Specialization Lite
	Extracting Domain-Based Cobol Components
	Extracting Domain-Based PL/I Components

	Injecting Events
	Understanding Event Injection
	Extracting Event-Injected Cobol Components

	Eliminating Dead Code
	Generating Dead Code Statistics
	Understanding Dead Code Elimination
	Extracting Optimized Components

	Performing Entry Point Isolation
	Extracting a Cobol Component with Entry Point Isolation

	Technical Details
	Verification Options
	Use Special IMS Calling Conventions
	Override CICS Program Terminations
	Support CICS HANDLE Statements
	Perform Unisys TIP and DPS Calls Analysis
	Perform Unisys Common-Storage Analysis
	Relaxed Parsing
	PERFORM Behavior for Micro Focus Cobol

	Keep Legacy Copybooks Extraction Option
	How Parameterized Slices Are Generated for Cobol Programs
	Setting a Specialization Variable to Multiple Values
	Arithmetic Exception Handling

