
Micro Focus
®

Modernization Workbench™

Batch Refresh Process

Copyright © 2010 Micro Focus (IP) Ltd. All rights reserved.
Micro Focus (IP) Ltd. has made every effort to ensure that this book is cor-
rect and accurate, but reserves the right to make changes without notice
at its sole discretion at any time. The software described in this document
is supplied under a license and may be used or copied only in accordance
with the terms of such license, and in particular any warranty of fitness
of Micro Focus software products for any particular purpose is expressly
excluded and in no event will Micro Focus be liable for any consequential
loss.
Micro Focus, the Micro Focus Logo, Micro Focus Server, Micro Focus Stu-
dio, Net Express, Net Express Academic Edition, Net Express Personal
Edition, Server Express, Mainframe Express, Animator, Application Serv-
er, AppMaster Builder, APS, Data Express, Enterprise Server, Enterprise
View, EnterpriseLink, Object COBOL Developer Suite, Revolve, Revolve
Enterprise Edition, SOA Express, Unlocking the Value of Legacy, and XDB
are trademarks or registered trademarks of Micro Focus (IP) Limited in the
United Kingdom, the United States and other countries.
IBM®, CICS® and RACF® are registered trademarks, and IMS™ is a trade-
mark, of International Business Machines Corporation.
Copyrights for third party software used in the product:
• The YGrep Search Engine is Copyright (c) 1992-2004 Yves Rou-

mazeilles
• Apache web site (http://www.microfocus.com/docs/

links.asp?mfe=apache)
• Eclipse (http://www.microfocus.com/docs/links.asp?nx=eclp)
• Cyrus SASL license
• Open LDAP license
All other trademarks are the property of their respective owners.
No part of this publication, with the exception of the software product user
documentation contained on a CD-ROM, may be copied, photocopied, re-
produced, transmitted, transcribed, or reduced to any electronic medium
or machine-readable form without prior written consent of Micro Focus
(IP) Ltd. Contact your Micro Focus representative if you require access to
the modified Apache Software Foundation source files.
Licensees may duplicate the software product user documentation con-
tained on a CD-ROM, but only to the extent necessary to support the us-
ers authorized access to the software under the license agreement. Any
reproduction of the documentation, regardless of whether the documen-
tation is reproduced in whole or in part, must be accompanied by this
copyright statement in its entirety, without modification.
U.S. GOVERNMENT RESTRICTED RIGHTS. It is acknowledged that the
Software and the Documentation were developed at private expense, that
no part is in the public domain, and that the Software and Documentation
are Commercial Computer Software provided with RESTRICTED RIGHTS
under Federal Acquisition Regulations and agency supplements to them.
Use, duplication or disclosure by the U.S. Government is subject to re-
strictions as set forth in subparagraph (c)(1)(ii) of The Rights in Technical
Data and Computer Software clause at DFAR 252.227-7013 et. seq. or
subparagraphs (c)(1) and (2) of the Commercial Computer Software Re-
stricted Rights at FAR 52.227-19, as applicable. Contractor is Micro Focus
(IP) Ltd, 9420 Key West Avenue, Rockville, Maryland 20850. Rights are re-
served under copyright laws of the United States with respect to unpub-
lished portions of the Software.

http://www.microfocus.com/docs/links.asp?mfe=apache
http://www.microfocus.com/docs/links.asp?mfe=apache
http://www.microfocus.com/docs/links.asp?mfe=apache
http://www.microfocus.com/docs/links.asp?mfe=apache
http://www.microfocus.com/docs/links.asp?mfe=apache

Contents

Chapter: 1 Using the Batch Refresh Process . 1
Understanding the Batch Refresh Process . 1
Configuring the Batch Refresh Process . 2
Preparing Files for Batch Refresh Processing . 8
Enabling Parallel Verification . 8
Executing the Batch Refresh Process . 9
Producing Utilities for BRP . 12
Guidelines for BRP Utilities . 13

Chapter: 2 Using Batch Scripts . 23
AddNew.bj . 24
AffectedCodeReport.bj . 25
AnalyzeProgram.bj . 26
ApplyPCF.bj . 28
BusinessRulesReport.bj . 29
 BusinessRulesValidation.bj . 30
CheckQueue.bj . 31
ClipperDetails.bj . 32
ClipperMetrics.bj . 34
ClipperMultiSearch.bj . 35
ClipperSearch.bj . 36
ComplexityReport.bj . 38
CreatePCF.bj . 39
CreateWS.bj . 40
CRUDReport.bj . 41
DBA.Cobol.bj . 42
1

DCE.bj . 44
DiagramBAV.bj . 45
DiagramCallie.bj . 47
DiagramFlowchart.bj . 48
DiagramTS.bj . 50
EffortReport.bj . 52
ExecutiveReport.bj . 53
ExportDescriptions.bj . 54
ExportRules.bj . 55
ExportScreens.bj . 56
GenCopybooks.bj . 57
GenScreens.bj . 59
ImpactReport.bj . 60
ImpactReportFromList.bj . 61
ImpExBAV.bj . 63
ImportRules.bj . 64
IMS Analysis.bj . 65
Invalidate.bj . 68
InventoryReport.bj . 69
Populate.bj . 70
ReferenceReport.bj . 71
Refresh.bj . 73
Register.bj . 75
Related.bj . 76
ResolveDecisions.bj . 79
RestoreDecisions.bj . 81
RXP.bj . 82
SaveDecisions.bj . 83
SetProject.bj . 84
Unregister.bj . 85
UpdateOnly.bj . 87
Upgrade.bj . 89
Verify.bj . 90
Executing Batch Scripts . 93
 2

3

 4

1
 Using the Batch Refresh
Process
The Modernization Workbench (MW) Batch Refresh Process (BRP) lets you
register and verify source files in batch mode. You typically use this process
when sources on the mainframe have changed, and you need to synchronize the
modified sources with the sources you are working with in MW. You can also
use BRP to perform analysis and reporting functions.

Understanding the Batch Refresh Process

Provides an overview of the Batch Refresh Process.

The Batch Refresh Process (BRP) is a utility that supports the synchronization
of sources from a mainframe or enterprise server with the MW repositories
representing those sources. BRP is installed with the MW server.

BRP is responsible for updating the workspace with sources provided to it from
the mainframe and verifying all unverified sources. Optionally, BRP can be
configured to run any required source code pre-processing, as well as certain
analysis and reporting functions.

When sources are updated to a workspace, the workbench determines whether
or not to load the file. When the name of the incoming file matches the name of
a file currently in the workspace, the two files are compared. If they are different,
1

USING THE BATCH REFRESH PROCESS
CONFIGURING THE BATCH REFRESH PROCESS
the incoming file will replace the existing file. If they are the same, no change is
made. If the incoming file does not currently have a match in the workspace, the
file is added to the default project. The default project is a project with the same
name as the workspace. If this project does not exist, it is automatically created.

Updating a source in a workspace causes that source to be invalidated. Any
sources that are dependent upon the updated file will also be invalidated. For
example, an update to a copybook will cause all the COBOL files that use the
copybook to become invalidated. That, in turn, will cause all JCL files that
execute the programs in the source files to become invalidated. Once the update
phase is completed, all invalidated and unverified sources in the workspace will
be verified.

Configuring the Batch Refresh Process

Describes how to configure the Batch Refresh Process.

The Batch Refresh Process is installed with the MW server. For each workspace
it processes, BRP refers to an initialization file containing configuration
settings. Use the BRP Configurator in the workbench Administration tool on
the workbench server to modify the initialization file settings.

TASK

1. In the MW Administration tool, choose Administer > Configure BRP.
The BRP Configurator opens.

2. In the Current BRP Configurations pane, choose the BRP configuration
file you want to edit and click Edit.

NOTE: If the BRP configuration you want to edit is not listed in the pane,
click Find to locate the file in the file system.

3. To create a new configuration, click Add. A Select Workspace dialog
box opens, where you can specify the workspace (.rwp) file you want to
configure for BRP.

NOTE: To copy a configuration, select it and click Copy. To delete a config-
uration, select it and click Delete.
 2

USING THE BATCH REFRESH PROCESS
CONFIGURING THE BATCH REFRESH PROCESS
4. The main BRP Configurator window opens, with a tab for each configu-
ration task:
• On the General tab, set basic BRP initialization values (required).

• On the User Exit tab, identify any user exits you have created to extend
or modify BRP functionality (optional).

• On the Advanced tab, enable BRP support for IMS Analysis, Executive
Report, and WebGen (optional).

5. When you are satisfied with you entries on each tab, click OK.

Configuring General Settings

Describes how to configure BRP settings on the General tab.

Set required BRP initialization values on the General tab. The settings are
described in the table below.

Setting Description

BRP Run Type Must be set to "Master".

RMW Install Path Specifies the path of the MW installation folder.

BRP Install Path Specifies the path of the BRP installation folder. This folder
must contain the Reports, PreparedSources, Staging, Utility,
and Working folders. Use override parameters for folders in a
different location.

Workspace Path Specifies the path of the folder for the workspace to be
refreshed. This folder is at the same level as the workspace
(.rwp) file.

Site Specifies the site name for this BRP install. This value is written
out to the main BRP log and is used for documentation
purposes only.

Obsolete Processing Check this box to turn on obsolete processing. Obsolete
processing automatically determines which source files are no
longer part of a "live" application and moves them to another
project. Sources are determined to be obsolete by virtue of
being absent from the set of incoming sources for a BRP run.

Obsolete Project If Obsolete Processing is selected, specifies the project to
which obsolete source files will be moved.
3

USING THE BATCH REFRESH PROCESS
CONFIGURING THE BATCH REFRESH PROCESS
Configuring User Exits

Introduces BRP Configurator settings on the User Exits tab.

Identify user exits you have created to extend or modify BRP functionality on
the User Exit tab. A user exit is a point in the standard BRP processing when a
user-supplied set of commands is executed. Typically the commands execute
utilities that accomplish tasks ranging from source code pre-processing to
specialized report generation.

Understanding Exits

Provides an overview of BRP exits.

There are seven user exits in BRP. Each is named and corresponds to a major
division of processing, or step, in a BRP run. The names are listed below in the
order they are executed:

• Setup

• Init (Initialization)

• Staging

• Update

• Verification

• Generation

• End

With the exception of the Setup and End user exits, each is executed as the very
first task of the corresponding BRP step. For example, in the Generation step the
Generation user exit is executed followed by executive report generation and
WebGen generation.

Obsolete Exclusions File If Obsolete Processing is selected, specifies a text file that lists
files that should be ignored during obsolete processing. This
mechanism is intended to avoid having MW generated or
provided files classified as obsolete. For example,
MW-provided system copybooks or DASDL generated
copybooks. The text file should be formatted with a single file
name per line. This mechanism is also useful when there are
sources that are particularly difficult to provide on an ongoing
basis or if a source is generated during runtime in the
application.
 4

USING THE BATCH REFRESH PROCESS
CONFIGURING THE BATCH REFRESH PROCESS
There are some essential tasks that occur during the Setup step that make it
impractical for user exit execution to be first. The Setup step is where the main
BRP log is opened and all parameter values are generated, if necessary, and
checked for validity. The Setup user exit occurs after the log file is created, but
before parameter values are generated and checked.

The End user exit occurs at the very end of the BRP run. There are no tasks that
occur after it other than closing the main BRP log file.

Which user exit should be used to execute a particular piece of functionality
depends upon the task that needs to be accomplished. For example, source code
pre-processing usually needs to occur prior to the sources being loaded into the
workspace. This would make the Staging or Update user exits ideal. However, it
is best to do source code pre-processing once all sources are in a single spot and
are guaranteed to have proper file extensions. That would eliminate the Staging
user exit, since it is during Staging that file extensions are added, if necessary.
Therefore, the best place to execute source code pre-processing utilities is the
Update user exit.

Other common uses of user exits are to run specific reporting or analysis func-
tions. These typically require that the verification step has been completed.
Therefore, the Generation user exit will typically work best for these situations.

Configuring Exits

Describes how to configure BRP Configurator settings on the User Exits tab.

Configuring a user exit involves two separate tasks:

• Creating a BRP-enabled utility to accomplish the task at hand.

• Pointing the user exit to that utility.

Creating a BRP-enabled utility is a non-trivial task. Guidelines and information
on this subject can be found in the section Producing Utilities for BRP. Use the
User Exit tab of the BRP Configurator to point a user exit to the corresponding
BRP-enabled utility.

NOTE: In the default configuration the Generation user exit is configured and
provides a useful example.

BRP contains anchor points for all seven user exits. The DOS batch file should
be named for the user exit it corresponds to and it should be located in the BRP
Utilities folder. Be sure to specify a full and complete path to the DOS file. Rela-
tive paths may not work properly in this context.

The DOS batch file must contain the actual commands that the user exit will
execute. This also provides the opportunity to do more than one task in any
given user exit.
5

USING THE BATCH REFRESH PROCESS
CONFIGURING THE BATCH REFRESH PROCESS
BRP checks any enabled user exit INI file parameter value for validity during the
Setup step. If the value does not point to an existing file, BRP will quit with a
severe error.

Configuring Advanced Settings

Describes how to configure BRP Configurator settings on the Advanced tab.

Configure settings on the Advanced tab to improve verification performance
and enable support for IMS Analysis, Executive Report, and WebGen. The
settings are described in the table below.

Setting Description

Launch standalone
HyperCode Converter

 Check this box to launch the HyperCode Converter. Using the
HyperCode Converter generally improves verification
performance.

Number of extra
HyperCode
Converters

 If Launch standalone HyperCode Converter is selected, click
the arrow buttons to specify the number of additional HyperCode
Converters you want to launch.

Wait HyperCode
Converter queue

 Check this box to force BRP to wait until the HyperCode
Converter(s) queue is empty.

Timeout in minutes If Wait HyperCode Converter queue is selected, click the arrow
buttons to specify the time in minutes BRP should wait for the
count on the HyperCode Converter(s) queue to change. If the
count does not change within the specified time, BRP resumes.
Sixty minutes is recommended.

Drop and restore
indices

 Dropping repository indexes generally improves verification
performance when a large number of files need to be verified.
Select:
• Auto if you want BRP to drop repository indexes based on the

number of files that need to be verified.
• Yes if you want BRP to drop repository indexes.
• No if you do not want BRP to drop repository indexes.
• Dropped indexes are restored when the verification process

completes.

Run IMS Analysis Check this box to enable IMS Analysis.

Run WebGen Check this box to enable WebGen.

Run Executive Report Check this box to enable Executive Report.
 6

USING THE BATCH REFRESH PROCESS
CONFIGURING THE BATCH REFRESH PROCESS
BRP Logging

Describes BRP logging.

At the beginning of every BRP run a timestamp value is generated, consisting of
the date and time. That timestamp is used throughout the run in order to
uniquely identify and group the logs and information generated. Each run
creates log files as well as other pieces of information. The timestamp for the run
is added to the beginning of the filename for each log. All logs and information
files are typically written to the Reports folder of the BRP install directory.

The main BRP log is, by default, named BRP log.txt, although the name can be
altered by changing the command that is found in the runBRP.bat file in the
BRP install directory. If more than one BRP installation is present, add the name
of the workspace being refreshed to the main BRP log name.

The main BRP log contains basic information on when each major step of the
run starts and finishes, as well as any relevant summary or diagnostic informa-
tion. This is the log to check to determine whether the BRP run completed
successfully or not. A run to completion will result in the last message in the log
indicating the process finished successfully. Log messages marked "ERROR"
should be reviewed. These are problems that were encountered, but they are not
bad enough to cause BRP to abend. Messages marked as "SEVERE" are issues
encountered that required BRP to abend. These should be investigated and
corrected.

In addition to the main BRP log, the Update Log.txt and Verify Log.txt are also
generated. These, as their names indicate, document the results of the update
and verification steps respectively. The update log contains an entry for each file
that is added to the workspace, whether by virtue of being different (updated)
or new (added). Files that are processed during update that have unknown file
extensions will also be documented in this log. Files that are processed and
rejected because they are not different from the version in the workspace are not
documented. The verification log lists the verification status of each file that is
processed during verification. Summary statistics appear at the end of the log.

The remainder of the logs and files that are generated during a BRP run are
there to provide in-depth information for troubleshooting if there is a problem
during the run. If there is a problem that requires the attention of support

Report Folder Specifies the folder to store the Executive Report in. Use the
Browse button to locate the folder.

 Debug Check this box to enable debug mode, in which additional
messages are written to the BRP log.

Setting Description
7

USING THE BATCH REFRESH PROCESS
PREPARING FILES FOR BATCH REFRESH PROCESSING
services, please be sure to include all the logs and files from a run. Sorting the
file names in the Reports directory by name will naturally group them together.

Preparing Files for Batch Refresh Processing

Describes how to prepare source files for BRP.

The incoming sources must be placed in the BRP PreparedSources folder with
appropriate file extensions.

If files do not have appropriate file extensions, they must be separated, by type,
into individual folders in the PreparedSources folder. Each subfolder must be
named for the type of source it contains. Source names must match those used
in the Sources folder in the workspace directory. For example, if Cobol sources
do not have file extensions they must be placed in PreparedSources\Cobol.

Enabling Parallel Verification

Describes how to enable parallel verification.

Parallel verification typically improves verification performance for very large
workspaces by using multiple execution agents, called HyperCode Converters, to
process source files concurrently. You can start any number of converters on the
local machine, remote machines, or some combination of local and remote
machines. You can run parallel verification online in the Modernization Work-
bench or in batch mode with the Batch Refresh Process (BRP).

You enable parallel verification in three steps:

• Select the parallel verification method and the minimum number of
concurrent converters on the Verification > Parallel Verification tab of the
Workspace Options.

• Start the converters on the local and/or remote machines. If you start
fewer than the minimum number of converters specified on the Parallel
Verification tab, the verification process starts the needed converters
automatically on the local machine.

• Verify the workspace online in the Modernization Workbench or in batch
mode using the Batch Refresh Process (BRP).
 8

USING THE BATCH REFRESH PROCESS
EXECUTING THE BATCH REFRESH PROCESS
NOTE: Verification results are reported in the Activity Log History window. They
are not reported in the Activity Log itself (for online verification) or BRP log files
(for batch verification). You can also use a Verification Report to view the results.

 Follow the instructions below to launch HyperCode Converters and to specify
the type of work the converters perform. You can launch multiple converters on
the same machine. Once the minimum number of converters has been started,
you can launch the converters at any point in the verification process.

TASK

1. In the Modernization Workbench Administration window, choose
Administer > Launch HyperCode Converter. The Launch HyperCode
Converter window opens.

2. In the Serve workspace combo box, specify the workspace to be
processed.

3. In the Processing Mode pane, select any combination of:
• Conversion to perform operations used to generate a HyperView

construct model.

• Verification to perform verification operations.

4. Select Produce Log File to generate a log file for parallel verification.
The log file has a name of the form
<workspace_name>HCC.<random_number>.log and is stored at the
same level as the workspace (.rwp) file.

5. Click OK.
STEP RESULT: The workbench launches the HyperCode Converter. Click the
button on the Windows toolbar to view the HyperCode Converter window.

NOTE: Once verification has started, you can change the processing mode
for a converter by selecting the appropriate choice in the Processing menu
in the HyperCode Converter window.

Executing the Batch Refresh Process

Describes how to execute BRP.

The BRP Configurator creates a runBRP.bat file and saves it to the location
specified in the BRPInstallPath configuration option. Executing this batch file
will start a BRP run.
9

USING THE BATCH REFRESH PROCESS
EXECUTING THE BATCH REFRESH PROCESS
The batch file executes the runBRP.exe executable file with appropriate param-
eters. The command format is as follows:

runBRP.exe <INI file> <log file>

where INI file is the path to the BRP initialization file and log file is a path to the
main BRP log file.

NOTE: The workspace is locked while BRP runs. It cannot be accessed by users. In
the event of BRP failure, you can unlock the workspace by choosing Administer >
Unlock Workspace in the Administration tool.

A full BRP run will produce several detailed log files in addition to the main BRP
log. These detail files will always be written to the Reports folder. The main BRP
log also is written to the Reports folder by default.

NOTE: Running multiple BRP processes simultaneously on the same workspace is
not supported.

Adding Source File Extensions

Describes how to BRP add source file extensions.

It is recommended that source files coming into BRP have proper file extensions
already in place. In some cases, however, this is not possible and BRP can add
them if needed. There is no need to configure initialization file parameters to
use the functionality.

To have BRP add the file extensions, you must separate the sources, by type, into
separate folders in the PreparedSources directory. Each folder must be named
for the source type it contains and the source type name must correspond to
MW source type names.

MW source type names can be determined by examining the folder names
found in the Sources folder of a workspace directory. If the workspace already
contains a source of a particular type, there will be a folder in the Sources direc-
tory corresponding to that source type. For example, Cobol files are found in the
Cobol folder. The precise file extension that is added for any particular source
type is determined by the configuration of the Registration Extensions tab in the
target workspace's workspace options. The first defined file extension for each
source type will be the extension that is added by BRP. For example, Cobol File
has three default file extensions listed: .cbl, .cob, and .ccp. Since .cbl is listed first,
that is the extension used by BRP. The order that these values appear in the
workspace options can be changed by removing extensions and adding them
back in.

Note that file extensions are added onto the file without regard for any currently
existing file extension if this functionality is used. For example, if the files in a
folder named Cobol currently have a .txt extension (which is commonly added
 10

USING THE BATCH REFRESH PROCESS
EXECUTING THE BATCH REFRESH PROCESS
by some mainframe FTP applications), each file would end up having an exten-
sion like .txt.cbl. Various source file naming conventions include multiple
"dots" in the source name. Since this scenario is unpredictable and varies widely,
it is risky and impractical to have BRP strip any possible existing file extensions.

If there is a mix of sources with and without file extensions, BRP can handle this.
Any files with proper extensions should be placed in the PreparedSources direc-
tory directly, as normal. Any files that need extensions should be dealt with as
described above.

BRP Logging

Describes BRP logging.

At the beginning of every BRP run a timestamp value is generated, consisting of
the date and time. That timestamp is used throughout the run in order to
uniquely identify and group the logs and information generated. Each run
creates log files as well as other pieces of information. The timestamp for the run
is added to the beginning of the filename for each log. All logs and information
files are typically written to the Reports folder of the BRP install directory.

The main BRP log is, by default, named BRP log.txt, although the name can be
altered by changing the command that is found in the runBRP.bat file in the
BRP install directory. If more than one BRP installation is present, add the name
of the workspace being refreshed to the main BRP log name.

The main BRP log contains basic information on when each major step of the
run starts and finishes, as well as any relevant summary or diagnostic informa-
tion. This is the log to check to determine whether the BRP run completed
successfully or not. A run to completion will result in the last message in the log
indicating the process finished successfully. Log messages marked "ERROR"
should be reviewed. These are problems that were encountered, but they are not
bad enough to cause BRP to abend. Messages marked as "SEVERE" are issues
encountered that required BRP to abend. These should be investigated and
corrected.

In addition to the main BRP log, the Update Log.txt and Verify Log.txt are also
generated. These, as their names indicate, document the results of the update
and verification steps respectively. The update log contains an entry for each file
that is added to the workspace, whether by virtue of being different (updated)
or new (added). Files that are processed during update that have unknown file
extensions will also be documented in this log. Files that are processed and
rejected because they are not different from the version in the workspace are not
documented. The verification log lists the verification status of each file that is
processed during verification. Summary statistics appear at the end of the log.
11

USING THE BATCH REFRESH PROCESS
PRODUCING UTILITIES FOR BRP
The remainder of the logs and files that are generated during a BRP run are
there to provide in-depth information for troubleshooting if there is a problem
during the run. If there is a problem that requires the attention of support
services, please be sure to include all the logs and files from a run. Sorting the
file names in the Reports directory by name will naturally group them together.

Producing Utilities for BRP

Introduces BRP utilities.

The following are guidelines for producing utilities for BRP. These guidelines
apply for any utility. Currently these utilities are normally written by support
services and partners.

Versioning

Describes how to assign a version to a BRP utility.

Each utility needs a version number. The version number should be the date of
the last modification made to the utility, formatted as follows:

yyyymmdd

The version number must appear in the first line of the log file that the utility
produces.

Logging

Describes logging for BRP utilities.

 Log files are often the only way to get reliable data. The task of analyzing output
can become easier when the log files are used and recording appropriate levels
of output.

At a minimum log files need to contain:

• Utility name

• Utility version

• Parameter names and values

• Record of files modified/written (when appropriate)
 12

USING THE BATCH REFRESH PROCESS
GUIDELINES FOR BRP UTILITIES
• Record of individual changes made to modified files (when appropriate)

The log message format should be as follows:

hh:mm:ss<tab>message type<tab>message

 Message types can include INFO, WARN, ERROR, SEVERE or DEBUG. These
are generally self-explanatory, but SEVERE should not be used unless there is
an abend (in Perl the die() command). Add new message types if the situation
calls for it. For example, BRP has a SETUP message type.

Source, Executable, and CFG Files

Describes how utilities are delivered.

 Utilities are produced by support services and partners and are delivered as a
compiled executable with documentation and, if necessary, a CFG file.

Guidelines for BRP Utilities

Introduces utilities that need to be enabled for BRP.

This section focuses on guidelines for utilities that need to be "enabled" for BRP.
The only difference is where input is coming from, output is going to, and how
parameters are provided.

BRP and Non-BRP Modes

Explains BRP and non-BRP modes.

 In general, any utility created for BRP should also be able to be run in a stand-
alone manner; that is, it should run outside of and separate from BRP as well.
Typically this means getting parameters from a CFG file. This is already being
done for all pre-processing type utilities right now. There are occasional situa-
tions where this is not practical. The utility needs to be able to determine
whether it is being executed in a BRP context or not. If the stand-alone mode
requires a CFG file, the absence of a CFG file parameter can serve as a trigger for
BRP-mode execution. Where this will not work, the first parameter of the utility
should be "BRP" to trigger BRP-mode execution.
13

USING THE BATCH REFRESH PROCESS
GUIDELINES FOR BRP UTILITIES
Using User Exits

Describes exit usage

 There are several user exit points in BRP. At different user exits potential input
files are in different places and output requirements are different as well.
Knowing which user exit a utility is going to be run from is crucial. It is recom-
mended that support services be consulted regarding which user exit to employ
for a particular task. The majority of user exit utilities are source code
pre-processors and all use the Update user exit.

Parameter Data

Describes parameter data for BRP utilities.

 Parameter data typically comes from any of three general sources: command
line, CFG file, or DOS environment variables. The first two are straightforward.
DOS environment variables are easily acquired by capturing the output of the
DOS set command with the following line of Perl code:

$dos_env_vars_str = `set`;

NOTE: The special characters preceding and following the word "set" are not single
quote characters; they are "backtick" characters.

The parameter values that drive a BRP run are made available to a user exit via
DOS environment variables. BRP generates a DOS batch file that contains
commands to set DOS environment variables. The user exit command is added
to the end of the generated batch file and the batch file is executed using the
backtick operator in Perl. The backtick operator executes a DOS command (in
BRP the path to a batch file) in a shell "nested" inside of the shell of the BRP
executable. The environment variables set up for a user exit only exist during the
execution of that user exit. The environment variable commands are re-gener-
ated and run for each user exit.

In general, the format of parameter names and values should be standardized.
BRP job parameters are of the form:

Parameter Name = Parameter Value

DOS environment variables and CFG file parameters are formatted in the same
way. Command line parameters should follow the same standard. In general,
command line parameters need to override the same named parameter from a
CFG file or DOS environment. This allows a way to alter behavior in cases
where the user may not have direct control over all the values.
 14

USING THE BATCH REFRESH PROCESS
GUIDELINES FOR BRP UTILITIES
Logging

Describes logging for BRP-mode utilities.

In addition to the general logging guidelines, the name of the log file and where
it is written need to be addressed in BRP-mode utilities.

The log file name pattern is:

(timestamp)UtilityName Log.txt

where UtilityName is obvious and timestamp is a BRP environment parameter
(BRP_TIMESTAMP) that identifies all logs for a BRP run.

Input/Output

Describes input/output for BRP utilities.

Input and output locations will change depending on what files are needed and
which user exit the utility is run from. Most utilities (source code
pre-processing) will be running from the Update user exit.

The sources coming into the BRP process will be in the following path:

BRP_STAGINGDIR\BRP_TIMESTAMP

where BRP_STAGINGDIR is a full path referring to the Staging folder of a BRP
install and BRP_TIMESTAMP holds the timestamp value for the current BRP
run.

Output sources must be written back to this same location. However, to main-
tain integrity should the user-exit utility fail or otherwise not finish, it is recom-
mended that output sources be written to the BRP Working folder
(BRP_WORKINGDIR) and only when processing is completed should they
then be copied back to the proper output location. A subfolder should be
created in the Working folder for this purpose using the following format:

timestamp_UtilityName

This naming convention is required.

Returning Values

Describes returning values for BRP utilities.

BRP determines the return state of a user exit by examining all the output
written to the "console" (STDOUT in Perl terminology) by the commands
executed by the user exit. The examination is done after the user exit completes
15

USING THE BATCH REFRESH PROCESS
GUIDELINES FOR BRP UTILITIES
execution and control returns back to the BRP run. If there is no output BRP
assumes the user exit commands completed successfully. If there is any output
found BRP assumes there was a SEVERE level error and will immediately stop
the run.

BRP will include any output it finds in a SEVERE level message in the main BRP
log. Any user exit executed utility should be sure to make effective use of this
behavior. User exits do not have any knowledge of what commands or utilities
they are executing. Therefore a message written to the console should contain
the utility or command name along with an appropriately brief message. The
details behind a utility failure can be included in the utility's own log.

BRP Environment Parameters

Describes BRP environment parameters.

BRP parameter values are split into two groups. Ones prefixed with "BRP_" are
for BRP specific values. Those prefixed with "EXT_" are for source file extension
definitions. The table below lists all variables that are set by BRP for use by user
exits along with a short description. Any path value will be fully qualified unless
otherwise noted.

Category Name Description

Timestamp BRP_TIMESTAMP Timestamp value that uniquely
identifies a BRP run and the logs that
are generated during that run.

BRP Logs These parameters are the paths to log
files from running various BRP. Note
that all the references to specific jobs
are default settings only. There are
very few cases where these exact jobs
will not be used, but they do exist.

BRP_APPLYOBSOLETEPCFLOGFILE Log from ApplyPCF.bj job for
applying the BRP_OBSOLETEPCF
file.

 BRP_BWGLOGFILE Log from BWG.exe (Batch WebGen).

BRP_CREATEBEGINPCFLOGFILE Log from CreatePCF.bj job. This is
run at the beginning of the BRP run
and creates the file BRP_BEGINPCF.

BRP_CREATEENDPCFLOGFILE Log from CreatePCF.bj job. This is
run just before verification and
creates the file BRP_ENDPCF.
 16

USING THE BATCH REFRESH PROCESS
GUIDELINES FOR BRP UTILITIES
BRP_EXECREPORTLOGFILE Log for the ExecutiveReport.bj job.

BRP_GETEXTLOGFILE Log for the GetExtensions2.mbu job.
This is run at the beginning of the
BRP and creates the file
BRP_FILEEXTFILE. See the section
below on extension values for more
information.

BRP_IMSANALYSISLOGFILE Log for the IMS Analysis.bj job.

BRP_UPDATELOGFILE Log for the UpdateOnly.bj job.

BRP_VERIFYLOGFILE Log for the VerifyOnly2.bj job.

PCF files These are parameters for the various
PCF files that are generated and used
during a BRP run.

 BRP_BEGINPCF Generated at the beginning of a BRP
run. Used for many purposes in BRP
including determining obsolete
sources.

 BRP_ENDPCF Generated toward the end of a BRP
run, after the BRP_OBSOLETEPCF
is applied and before verification.

 BRP_OBSOLETEPCF Generated during a Master BRP run
if BRP_OBSOLETEPROCESSING is
set to 1. This will shift sources
missing from the current incoming
set of files to the project specified in
BRP_OBSOLETEPROJECT.

BRP Files,
Folders,
Flags, and
Log

These parameters are data files that
BRP uses, flags that turn certain
processing on or off, BRP install
folders and other various values.

BRP_DROPIND Flag (1/0) that drops database
indexes to improve verification and
IMS Analysis performance.

 BRP_LAUNCHHCC Flag (1/0) that launches the
HyperCode Converter to improve
verification performance.

 BRP_WAITHCC Time in minutes to wait for
HyperCode Converter to respond.

Category Name Description
17

USING THE BATCH REFRESH PROCESS
GUIDELINES FOR BRP UTILITIES
BRP_BRPLOGFILE Main log file for a BRP run.

BRP_BRPINSTALLPATH Path where BRP is installed. This is
specified in the BRP initialization
file. BRP will derive the path values
for the six BRP folders
(PreparedSources, Reports, Staging,
Utilities and Working) based off this
path if they are not specified in the
initialization file.

BRP_PREPAREDSOURCESDIR Path where sources coming into BRP
start off. In cases where a utility is in
place to handle getting the sources
off a server or mainframe this is the
location where those sources are
copied to.

BRP_REPORTDIR Path to the folder where all log files
are written to. Other resource files
created during a BRP run are also
written here including all PCF files,
file extension data file and all
generated user exit batch files.

BRP_RMWINSTALLPATH Path to the install folder for MW.

BRP_STAGINGDIR Folder where sources reside for
updating to the workspace. Sources
will actually be in a subfolder that is
named with the BRP timestamp and
not the Staging folder directly. This
is also where the majority of source
pre-processing utilities will look for
inputs and write outputs.

BRP_UTILITIESDIR Path to directory that contains all the
executables the BRP will need along
with extra resource files and the
static user exit batch files.

BRP_WORKINGDIR Folder user exit utilities should use
for any work they need to perform.

BRP_WORKSPACEDIR Path to the target workspace.

BRP_FILEEXTFILE File containing the file extension
definitions for the target workspace.

Category Name Description
 18

USING THE BATCH REFRESH PROCESS
GUIDELINES FOR BRP UTILITIES
BRP_LASTRUNFILE Text file containing the timestamp of
the last BRP run that completed
execution.

BRP_OBSOLETEEXCLUSIONSFILE File that lists any files that should be
excluded from obsolete processing.
Typically this includes files
generated by MW (ex. DASDL
copybooks), but is often used for
client-specific sources as well.

BRP_BRPRUNTYPE Must be set to "Master".

BRP_DEBUG Flag (1/0) that will increase the
amount of messaging written to the
main BRP log. Typically this is
always set to 1.

BRP_LASTRUNTIMESTAMP The timestamp value of the last BRP
run that completed execution.

BRP_OBSOLETEPROCESSING Flag (1/0) that turns obsolete
processing on or off. When it is
turned on the incoming set of files
will be compared against the set of
file currently in the target
workspace. Any files currently in the
workspace, but not in the incoming
set of files will be moved to an
obsolete project (named in the
BRP_OBSOLETEPROJECT
parameter).

BRP_OBSOLETEPROJECT Name of a project where obsolete
sources will be moved to.

BRP_SITE Documentation parameter that is set
in the BRP initialization file. The
value here will be written to the
beginning of the main BRP log file. It
is used mainly for support purposes
to ensure that initialization and log
files produced by a client match up.

Category Name Description
19

USING THE BATCH REFRESH PROCESS
GUIDELINES FOR BRP UTILITIES
User Exits BRP_USEREXIT_SETUP
BRP_USEREXIT_STAGING
BRP_USEREXIT_INIT
BRP_USEREXIT_UPDATE
BRP_USEREXIT_VERIFICATION
BRP_USEREXIT_GENERATION
BRP_USEREXIT_END

These parameters contain the
command that will be executed by
BRP. Typically this will specify a
static DOS batch file (as opposed to
the generated batch file BRP
generates for each user exit). The
static batch file is used so that
multiple commands can be executed
in a single user exit. These
parameters will only exist if the user
exit is being used. Below is a
complete list of all user exit
parameters, but it will be rare to see
them all at once. They are listed in
the order they would be executed in
a BRP run. There is one user exit for
each major step of the BRP. They
always are the first task that is done
in each step.

File
Extensions

These parameters contain
information on the source file
extensions that are valid for each
legacy file type for the target
workspace. The exact parameters
that will be here depend upon what
options are activated for the target
workspace.

Parameter Names The general format of the parameter
names is EXT_type, where type is the
name of the corresponding directory
in the workspace Sources folder.
Note that in the past this name is not
necessarily the same as the type
name found in a PCF file. For
example, PL/I-included sources are
contained in the Sources folder
PLIInclude, but that source type is
named "PLINC" in PCF files.

Parameter Values The extension values are separated
by a single space and will be in the
same order they appear in the
workspace options window.
Example: EXT_COBOL = cbl cob
ccp C74
.

Category Name Description
 20

USING THE BATCH REFRESH PROCESS
GUIDELINES FOR BRP UTILITIES
Testing

Provides guidance for testing BRP utilities.

Testing user exit utilities can be challenging. The easiest way to do this is to use
one of the DOS batch files generated for each enabled user exit during a BRP
run. These files will contain all the parameters and the values can be changed to
suit the needs of the testing requirements. Replace the last command in the file
with whatever command is necessary. In a Perl context we would use:

perl -d myUtility.pl

Note that a DOS command window will not execute one of these generated
batch files when they have same filename the BRP run assigns (for example,
(timestamp)UserExit.bat). This is due to some intrinsic interpretation of the
leading "(timestamp)" in the file name. Simply delete this portion of the file
name and the batch file will work normally.
21

USING THE BATCH REFRESH PROCESS
GUIDELINES FOR BRP UTILITIES
 22

2
 Using Batch Scripts
 Use the batch job scripts supplied with Modernization Workbench in BRP user
exits or on a standalone basis. The scripts are located in \<Workbench
Home>\Scripts\BRP.

Only scripts recommended for use by clients are described. Unless otherwise
specified, tool options set in the Modernization Workbench govern the
behavior of the scripts.

The notification file available in some scripts summarizes job execution. A
sample notification file for the Verify.bj script follows. The notification file indi-
cates that eight source files were verified successfully and two were verified with
errors.

Date: 10/28/2009
Workspace C:\Workspaces\Training
Status of the Verification step:
successful - 8
with errors - 2
failed - 0
23

USING BATCH SCRIPTS
ADDNEW.BJ
AddNew.bj

Register new source files only.

Action

 Register new source files only. Use:

• Register.bj to register new source files and refresh updated source files.

• UpdateOnly.bj to refresh updated source files only.

• Refresh.bj to register and verify new and updated source files.

• Verify.bj to verify registered source files.

Syntax

AddNew Workspace Dir [Entity] [Project] [Detailed]

Example

AddNew C:\Workspaces\Training.rwp E:\StagingArea COBOL
C:\log.txt

 Required Parameters Description

Workspace Workspace file (.rwp).

Dir Staging directory for incoming source files.

 Optional Parameters Description

Entity * or entity type of source files to register.
Default is *.

Project Project to register source files in.

Detailed Log file.
 24

USING BATCH SCRIPTS
AFFECTEDCODEREPORT.BJ
AffectedCodeReport.bj

Generate an Affected Code Report.

Action

 Generate an Affected Code Report in MS Word format. The report shows code
that would be impacted by changing a data item's definition or usage. The data
item is called a seed field.

Syntax

AffectedCodeReport Workspace Model SearchPattern CriterionName
[Accumulate] [Detailed]

Example

AffectedCodeReport C:\Workspaces\Training.rwp COBOL "Name LIKE
*CUSTMAS" Custmas C:\log.txt

 Required Parameters Description

Workspace Workspace file (.rwp).

Model HyperView model for the source files to be
searched.

SearchPattern Search criterion for the seed field.

 CriterionName Name of the search criterion for the seed
field.

 Accumulate Whether to append the report to existing
reports, True or False. Default is False.

 Optional Parameters Description

Detailed Log file.
25

USING BATCH SCRIPTS
ANALYZEPROGRAM.BJ
AnalyzeProgram.bj

Generate HyperView information.

Action

 Generate HyperView information for the workspace.

Syntax

AnalyzeProgram Workspace [Project] [Notify] [Detailed] [Drop]
[LaunchHHC] [ExtraHHC] [StopHHC] [Wait]

 Required Parameters Description

Workspace Workspace file (.rwp).

 Optional Parameters Description

Project Project to generate HyperView information
for.

Notify Notification file.

Detailed Log file.
 26

USING BATCH SCRIPTS
ANALYZEPROGRAM.BJ
Example

AnalyzeProgram C:\Workspaces\Training.rwp C:\log.txt Auto Yes
Yes 3600

 Oracle Only Parameters Description

Drop Whether to drop repository indexes.
Specify:
• Auto, to let the script determine whether

to drop repository indexes based on the
number of files to be processed.

• Yes, to drop repository indexes.
• No, to not drop repository indexes.
Dropping repository indexes generally
improves performance when a large number
of files need to be processed. Dropped
indexes are restored when processing is
complete.

LaunchHHC Whether to launch the HyperCode
Converter, Yes or No. Launching the
HyperCode Converter generally improves
performance.

ExtraHHC If LaunchHHC is specified, the number of
additional HyperCode Converters to
launch.

StopHHC Whether to stop the HyperCode
Converter(s) when processing is complete,
Yes or No.

Wait Whether to wait until the HyperCode
Converter(s) queue is empty. Specify:
• Yes, to wait indefinitely.
• No, to not wait.
• The number of seconds to wait for the

count on the queue to change. If the
count does not change within the speci-
fied time, BRP resumes. Sixty minutes is
recommended. 0 means no timeout.
27

USING BATCH SCRIPTS
APPLYPCF.BJ
ApplyPCF.bj

Assign source files to projects based on a project control file (PCF).

Action

Assign source files to projects based on a project control file (PCF). A project
control file identifies the projects to which source files belong.

ApplyPCF.bj differs from SetProject.bj in that it does not allow you to assign
source files to projects additively. Use CreatePCF.bj or Related.bj to create a
project control file.

Syntax

ApplyPCF Workspace ProjectCF [Detailed]

Example

ApplyPCF C:\Workspaces\Training.rwp E:\Training.pcf C:\log.txt

 Required Parameters Description

Workspace Workspace file (.rwp).

ProjectCF Project control file (.pcf).

 Optional Parameters Description

Detailed Log file.
 28

USING BATCH SCRIPTS
BUSINESSRULESREPORT.BJ
BusinessRulesReport.bj

Generate a Business Rules Report.

Action

 Generate a Business Rules Report. The report lists the business functions, rule
sets, segments, attributes, data elements, and control conditions of business
rules in the workspace.

Syntax

BusinessRulesReport Workspace File [Project] [Detailed]

Example

BusinessRulesReport C:\Workspaces\Training.rwp
C:\BusinessRules.htm C:\log.txt

 Required Parameters Description

Workspace Workspace file (.rwp).

File Output file. The format of the report
depends on the extension. Supported
extensions are .html, .htm, .xls, .rtf, .doc,
.txt, and .csv.

 Optional Parameters Description

Project Project to generate the report for.

Detailed Log file.
29

USING BATCH SCRIPTS
BUSINESSRULESVALIDATION.BJ
 BusinessRulesValidation.bj

Validate business rules.

Action

 Indicate whether business rule segments no longer are valid. An invalid
segment is out of synch with the rule, typically because lines of code have been
added or deleted during a refresh or edit. Optionally, specify how to handle
invalid segments.

Syntax

BusinessRulesValidation Workspace [Action] [Project] [Detailed]

 Required Parameters Description

Workspace Workspace file (.rwp).
 30

USING BATCH SCRIPTS
CHECKQUEUE.BJ
Example

BusinessRulesValidation C:\Workspaces\Training.rwp leave
C:\log.txt

CheckQueue.bj

Check whether the HyperCode Converter(s) queue is empty.

Action

 Check whether the HyperCode Converter(s) queue is empty.

Syntax

CheckQueue Workspace [Project] [Detailed] [Wait]

 Optional Parameters Description

Action How to handle invalid segments. Specify:
• leave, to retain the invalid segment but set

the rule Segment Validity attribute to
Invalid.

• delete, to delete the invalid segment and
set the rule Segment Validity attribute to
Invalid.

• valid, to resynchronize the segment,
subject to the limitations described in
Analyzing Programs in the workbench
documentation set.

The values are case-sensitive.

Project Project to validate business rules for.

Detailed Log file.
31

USING BATCH SCRIPTS
CLIPPERDETAILS.BJ
Example

CheckQueue C:\Workspaces\Training.rwp C:\log.txt 3600

ClipperDetails.bj

Generate a Clipper Details Report.

Action

Generate a Clipper Details Report. For each source file in the specified Clipper
list, the report shows the constructs in the list, their type, and their location in
the file. You can customize the report to include any HyperView attribute
related to the constructs.

 Required Parameters Description

Workspace Workspace file (.rwp).

 Optional Parameters Description

Project Project to check queue for.

 Oracle Only Parameters Description

Wait Whether to wait until the HyperCode
Converter(s) queue is empty. Specify:
• Yes, to wait indefinitely.
• No, to not wait.
• The number of seconds to wait for the

count on the queue to change. If the
count does not change within the speci-
fied time, BRP resumes. Sixty minutes is
recommended. 0 means no timeout.
 32

USING BATCH SCRIPTS
CLIPPERDETAILS.BJ
Syntax

ClipperDetails Workspace Model ListName Category FileName Attrs
[Project] [Detailed]

Example

ClipperDetails C:\Workspaces\Training.rwp COBOL Miscellaneous
General C:\ClipperDetails.htm Faked|NestingLevel C:\log.txt

 Required Parameters Description

Workspace Workspace file (.rwp).

Model HyperView model for the source files in the
list.

ListName Name of the list. The list is assumed to be
owned by the current user. If it is owned by
another user, append a vertical bar (|) and
the user name.

Category Category of the list.

 FileName Output file. The format of the report
depends on the extension. Supported
extensions are .html, .htm, .xls, .rtf, .doc,
.txt, and .csv.

 Attrs String containing HyperView attributes to
include in the report, separated by a vertical
line (|).

 Optional Parameters Description

Project Project to generate report for.

Detailed Log file.
33

USING BATCH SCRIPTS
CLIPPERMETRICS.BJ
ClipperMetrics.bj

Generate a Clipper Metrics Report.

Action

Generate a Clipper Metrics Report. For each list in the specified Clipper cate-
gory, the Metrics Report shows the number of list items in each program in the
workspace.

Syntax

ClipperMetrics Workspace Model Category FileName [Project]
[Detailed]

Example

ClipperMetrics C:\Workspaces\Training.rwp COBOL General
C:\ClipperMetrics.htm C:\log.txt

 Required Parameters Description

Workspace Workspace file (.rwp).

Model HyperView model for the source files in the
lists.

Category Category of the list.

 FileName Output file. The format of the report
depends on the extension. Supported
extensions are .html, .htm, .xls, .rtf, .doc,
.txt, and .csv.

 Optional Parameters Description

Project Project to generate report for.

Detailed Log file.
 34

USING BATCH SCRIPTS
CLIPPERMULTISEARCH.BJ
ClipperMultiSearch.bj

Execute a Clipper search with multiple criteria.

Action

Execute a Clipper search with multiple criteria. The results are displayed in the
specified Clipper list.

Syntax

ClipperMultiSearch Workspace Criteria Model ListName Category
[Project] [Accumulate] [Detailed]

 Required Parameters Description

Workspace Workspace file (.rwp).

Criteria Full path name of the search criterion in the
HyperView Advanced Search tool, including
the tab name (General) and any folder
names. For example, General > Coding
Standards\MOVE Statements\Possible Data
Padding. Follow the notation specified
exactly.

Model HyperView model for the source files to be
searched.

ListName Name of the list. The list is assumed to be
owned by the current user. If it is owned by
another user, append a vertical bar (|) and
the user name.

Category Category of the list.
35

USING BATCH SCRIPTS
CLIPPERSEARCH.BJ
Example

ClipperMultiSearch C:\Workspaces\Training.rwp C:\Program
Files\\Modernization Workbench\Data\CodeDefects.xml COBOL
Miscellaneous General C:\log.txt

ClipperSearch.bj

Execute a Clipper search.

Action

Execute a Clipper search. The results are displayed in the specified Clipper list.

Syntax

ClipperSearch Workspace Criterion Model ListName Category
[Project] [Accumulate] [Detailed]

 Optional Parameters Description

Project Project to execute search for.

 Accumulate Whether to append the results to existing
results, True or False. Default is False.

Detailed Log file.

 Required Parameters Description

Workspace Workspace file (.rwp).
 36

USING BATCH SCRIPTS
CLIPPERSEARCH.BJ
Example

ClipperSearch C:\Workspaces\Training.rwp General:Coding
Standards\MOVE
Statements\Possible Data Padding COBOL Miscellaneous General
C:\log.txt

Criterion Full path name of the search criterion in the
HyperView Advanced Search tool, including
the tab name (General) and any folder
names. For example, General > Coding
Standards\MOVE Statements\Possible Data
Padding. Follow the notation specified
exactly.

Model HyperView model for the source files to be
searched.

ListName Name of the list. The list is assumed to be
owned by the current user. If it is owned by
another user, append a vertical bar (|) and
the user name.

Category Category of the list.

 Optional Parameters Description

Project Project to execute search for.

 Accumulate Whether to append the results to existing
results, True or False. Default is False.

Detailed Log file.

 Required Parameters Description
37

USING BATCH SCRIPTS
COMPLEXITYREPORT.BJ
ComplexityReport.bj

Generate a Complexity Metrics Report.

Action

 Generate a Complexity Metrics Report. The report shows complexity metrics
for objects of the specified type.

Syntax

ComplexityReport Workspace File [Entity] [Project] [Detailed]

Example

ComplexityReport C:\Workspaces\Training.rwp
C:\ComplexityMetrics.htm C:\log.txt

 Required Parameters Description

Workspace Workspace file (.rwp).

File Output file. The format of the report
depends on the extension. Supported
extensions are .html, .htm, .xls, .rtf, .doc,
.txt, and .csv.

 Optional Parameters Description

Entity Entity type of objects to report on. Default
is program.

Project Project to generate the report for.

Detailed Log file.
 38

USING BATCH SCRIPTS
CREATEPCF.BJ
CreatePCF.bj

Create a project control file (PCF).

Action

Create a project control file (PCF) for a workspace. A project control file identi-
fies the projects to which source files belong. Use ApplyPCF.bj or SetProject.bj
to assign source files to projects based on the project control file.

Syntax

CreatePCF Workspace Out [Detailed]

Example

CreatePCF C:\Workspaces\Training.rwp E:\Training.pcf C:\log.txt

 Required Parameters Description

Workspace Workspace file (.rwp).

Out Output file (.pcf).

 Optional Parameters Description

Detailed Log file.
39

USING BATCH SCRIPTS
CREATEWS.BJ
CreateWS.bj

Create a workspace.

Action

 Create a workspace.

Syntax

CreateWS Workspace DSN Schema Password [User] [TableSpace]
[IndexSpace] [DB] [Detailed]

 Required Parameters Description

Workspace Workspace file (.rwp).

DSN ODBC data source name (DSN) for the
database that holds the repository.

Schema Database schema name for the repository.

Password Database password that gives access to the
schema.
 40

USING BATCH SCRIPTS
CRUDREPORT.BJ
Example

CreateWS C:\Workspaces\Training.rwp OracleLab lab labuserpwd
labuser C:\log.txt

CRUDReport.bj

Generate a CRUD Report.

Action

 Generate a CRUD Report. The report shows the data operations programs
perform (Insert, Read, Update, or Delete) and the data objects on which the
programs operate.

Syntax

CRUDReport Workspace File [Project] [Detailed]

 Optional Parameters Description

User Database user name that gives access to the
schema.

TableSpace Name of the tablespace for the repository.

IndexSpace Name of the tablespace for database indexes.

DB Database type.

Detailed Log file.

 Required Parameters Description

Workspace Workspace file (.rwp).
41

USING BATCH SCRIPTS
DBA.COBOL.BJ
Example

CRUDReport C:\Workspaces\Training.rwp C:\CRUD.htm C:\log.txt

DBA.Cobol.bj

Perform Cobol domain-based analysis.

Action

 Perform domain-base analysis of Cobol programs. Domain-based analysis
"slices out" a specialized program based on the values of one or more variables.

An input file in CSV format identifies the slice parameters. Each line contains
the following information:

ProgName,SliceName,DataItem,FileName,Row,Col,Comparison,Value,L
owerValue,UpperValue

where:

• ProgName is the name of the program from which the slice will be
extracted.

• SliceName is the name of the slice.

• DataItem is the name of the specialization variable.

File Output file. The format of the report
depends on the extension. Supported
extensions are .html, .htm, .xls, .rtf, .doc,
.txt, and .csv.

 Optional Parameters Description

Project Project to generate the report for.

Detailed Log file.

 Required Parameters Description
 42

USING BATCH SCRIPTS
DBA.COBOL.BJ
• FileName is the name of the source file containing the specialization vari-
able.

• Row is the row number of the specialization variable in the source file.

• Col is the column number of the specialization variable in the source file.

• Comparison is the comparison type: "equals" sets the specialization vari-
able to the values specified in Value; "not equals" sets the specialization
variable to every value but the values specified in Value.

• Value is the value to set the specialization variable to.

• If Value is omitted, LowerValue is the lower value of the range of values to
set the specialization variable to.

• If Value is omitted, UpperValue is the upper value of the range of values to
set the specialization variable to.

 Multiple locations can be specified for a slice. Multiple conditions can be set for
a location. All content is case-sensitive.

Input File Sample

DAYOFWEEK,Domain1,YEAR,DayOfWeek.cbl,12,12,equals,2000,,
DAYOFWEEK,Domain1,YEAR,DayOfWeek.cbl,12,12,equals,,2002,2005
DAYOFWEEK,Domain1,MONTH,DayOfWeek.cbl,13,12,equals,4,,
DAYOFWEEK,Domain1,MONTH,DayOfWeek.cbl,13,12,equals,5,,
DAYOFWEEK,Domain1,MONTH,DayOfWeek.cbl,65,19,equals,5,,
DAYOFWEEK,Domain1,MONTH,DayOfWeek.cbl,65,19,equals,6,,
DAYOFWEEK,Domain1,MONTH,DayOfWeek.cbl,95,15,equals,7,,
DAYOFWEEK,Domain1,MONTH,DayOfWeek.cbl,95,15,equals,,1,3
DAYOFWEEK,Domain2,YEAR,DayOfWeek.cbl,81,15,equals,,2001,2010
GSS,Domain3,GSS1003-CMD-CODE-I,GSS.cbl,186,16,equals,"ENTER",,

Syntax

DBA.Cobol Workspace List [Options] [Export] [Notify] [Detailed]

 Required Parameters Description

Workspace Workspace file (.rwp).

List CSV file with slice parameters.
43

USING BATCH SCRIPTS
DCE.BJ
Example

DBA.Cobol C:\Workspaces\Training.rwp C:\Slices.csv C:\log.txt

DCE.bj

Perform dead-code elimination.

Action

 Perform dead-code elimination (DCE) for programs in source files of the spec-
ified type. For each program analyzed for dead code, DCE generates a compo-
nent that consists of the original source code minus any unreferenced data items
or unreachable procedural statements.

Syntax

DCE Workspace Entity [Options] [Pattern] [Project] [Detailed]

 Optional Parameters Description

Options Options script file. Default values for
options usually are acceptable. Contact
support services for special needs.

Export Destination folder for slices. Results
normally are viewed in MW Component
Maker.

Notify Notification file.

Detailed Log file.

 Required Parameters Description

Workspace Workspace file (.rwp).
 44

USING BATCH SCRIPTS
DIAGRAMBAV.BJ
Example

DCE C:\Workspaces\Training.rwp COBOL *-DCE C:\log.txt

DiagramBAV.bj

Generate Batch Application Viewer (BAV) Diagrams.

Action

 Generate Batch Application Viewer (BAV) Diagrams for the workspace. The
diagrams show the relationships between jobs, procedures and programs, and
data stores.

Entity HyperView model for the source files to be
analyzed for dead code. Valid values are
COBOL, PLI1, NATURAL, and
NATSUBROUTINE.

 Optional Parameters Description

Options Options script file. Default values for
options usually are acceptable. Contact
support services for special needs.

Pattern Pattern for naming generated components.
The pattern may contain any valid symbols.
An asterisk (*) is replaced with the name of
the analyzed program. If the argument is
omitted, component names are generated in
the form BREnn, where nn is an
incrementing number.

Project Project to analyze source files in.

Detailed Log file.

 Required Parameters Description
45

USING BATCH SCRIPTS
DIAGRAMBAV.BJ
Syntax

DiagramBAV Workspace [Pattern] [Project] [Detailed]

Example

DiagramBAV C:\Workspaces\Training.rwp D:*.bmp C:\log.txt

 Required Parameters Description

Workspace Workspace file (.rwp).

 Optional Parameters Description

Pattern Pattern for naming generated diagrams,
consisting of the output folder, file name
pattern, and extension. For example,
D:*.bmp. The file name pattern may contain
any valid symbols. An asterisk (*) is replaced
with the name of the analyzed program.
The format of the diagrams depends on the
extension. Supported extensions are
.dgm.xml, .bmp, .jpg, .vsd, .vdx, and .emf. If
the argument is omitted, diagram names are
generated in the form
\WorkspaceFolder\Output\ProgramName.dg
m.xml.

Project Project to generate the diagrams for.

Detailed Log file.
 46

USING BATCH SCRIPTS
DIAGRAMCALLIE.BJ
DiagramCallie.bj

Generate Callie Diagrams.

Action

 Generate Callie Diagrams for the workspace. The diagrams show the call flow
for paragraphs in a Cobol program, subroutines in an RPG program, or proce-
dures in a PL/I or Natural program.

The subgraph mode offers a cyclic representation of the information in the
diagram. Items are drawn once. Relationship lines cross. Subgraph views are
often easier to understand than subtree views.

The subtree mode offers a linear representation of the information in the
diagram. Items are drawn as many times as necessary. Relationship lines do not
cross. Use this view if too many intersecting lines make a subgraph view hard to
read.

Syntax

DiagramCallie Workspace [Pattern] [Mode] [Project] [Detailed]

 Required Parameters Description

Workspace Workspace file (.rwp).
47

USING BATCH SCRIPTS
DIAGRAMFLOWCHART.BJ
Example

DiagramCallie C:\Workspaces\Training.rwp D:*.bmp subgraph
C:\log.txt

DiagramFlowchart.bj

Generate Flowchart Diagrams.

Action

 Generate Flowchart Diagrams for the workspace. The diagrams show the flow
of control between statements in a Cobol paragraph or PL/I procedure, or
between steps in a job or JCL procedure.

 Optional Parameters Description

Pattern Pattern for naming generated diagrams,
consisting of the output folder, file name
pattern, and extension. For example,
D:*.bmp. The file name pattern may contain
any valid symbols. An asterisk (*) is replaced
with the name of the analyzed program.
The format of the diagrams depends on the
extension. Supported extensions are
.dgm.xml, .bmp, .jpg, .vsd, .vdx, and .emf. If
the argument is omitted, diagram names are
generated in the form
\WorkspaceFolder\Output\ProgramName.dg
m.xml.

Mode Mode of the diagram, subgraph or subtree.

Project Project to generate the diagrams for.

Detailed Log file.
 48

USING BATCH SCRIPTS
DIAGRAMFLOWCHART.BJ
Syntax

DiagramFlowchart Workspace [Pattern] [Project] [Detailed]

Example

DiagramFlowchart C:\Workspaces\Training.rwp D:*.bmp C:\log.txt

 Required Parameters Description

Workspace Workspace file (.rwp).

 Optional Parameters Description

Pattern Pattern for naming generated diagrams,
consisting of the output folder, file name
pattern, and extension. For example,
D:*.bmp. The file name pattern may contain
any valid symbols. An asterisk (*) is replaced
with the name of the analyzed program.
The format of the diagrams depends on the
extension. Supported extensions are
.dgm.xml, .bmp, .jpg, .vsd, .vdx, and .emf. If
the argument is omitted, diagram names are
generated in the form
\WorkspaceFolder\Output\ProgramName.dg
m.xml.

Project Project to generate the diagrams for.

Detailed Log file.
49

USING BATCH SCRIPTS
DIAGRAMTS.BJ
DiagramTS.bj

Generate relationship flow diagrams.

Action

 Generate relationship flow diagrams for the workspace. The diagrams show the
relationship flow for every object of the specified type in the specified scope.

Syntax

DiagramTS Workspace Scope [Pattern] [Entity] [Tag] [Layout]
[Project] [Detailed]

 Required Parameters Description

Workspace Workspace file (.rwp).

Scope Scope of the diagrams (including
user-defined scopes).
 50

USING BATCH SCRIPTS
DIAGRAMTS.BJ
Example

DiagramTS C:\Workspaces\Training.rwp Data Flow D:*.emf program
circular C:\log.txt

 Optional Parameters Description

Pattern Pattern for naming the generated diagrams,
consisting of the output folder, file name
pattern, and extension. For example,
D:*.emf. The file name pattern may contain
any valid symbols. An asterisk (*) is replaced
with the name of the analyzed program.
The format of the diagrams depends on the
extension. Supported extensions are
.dgm.xml, .bmp, .jpg, .vsd, .vdx, and .emf. If
the argument is omitted, diagram names are
generated in the form
\WorkspaceFolder\Output\ProgramName.dg
m.xml.

Entity * or entity type of objects to diagram.
Default is *.

Tag Tag used to "black-box" objects in the
diagrams.

Layout Diagram layout: circular, hierarchical,
orthogonal, symmetric, or tree.

Project Project to generate the diagrams for.

Detailed Log file.
51

USING BATCH SCRIPTS
EFFORTREPORT.BJ
EffortReport.bj

Generate an Effort Estimation Report.

Action

 Generate an Effort Estimation Report. The report compares source files based
on weighted values for selected complexity metrics.

Syntax

EffortReport Workspace File [Project] [Detailed]

Example

EffortReport C:\Workspaces\Training.rwp C:\EffortEstimation.htm
C:\log.txt

 Required Parameters Description

Workspace Workspace file (.rwp).

File Output file. The format of the report
depends on the extension. Supported
extensions are .html, .htm, .xls, .rtf, .doc,
.txt, and .csv.

 Optional Parameters Description

Project Project to generate the report for.

Detailed Log file.
 52

USING BATCH SCRIPTS
EXECUTIVEREPORT.BJ
ExecutiveReport.bj

Generate an Executive Report.

Action

 Generate an Executive Report. The report provides HTML views of application
inventories that a manager can use to assess the risks and costs of supporting the
application.

Syntax

ExecutiveReport Workspace Folder [Project] [Detailed]

Example

ExecutiveReport C:\Workspaces\Training.rwp C:\Executive Reports
C:\log.txt

 Required Parameters Description

Workspace Workspace file (.rwp).

Folder Output folder.

 Optional Parameters Description

Project Project to generate the report for.

Detailed Log file.
53

USING BATCH SCRIPTS
EXPORTDESCRIPTIONS.BJ
ExportDescriptions.bj

Export object descriptions to an ERD file.

Action

Export object descriptions to an ERD file.

Syntax

ExportDescriptions Workspace ERD [Entity] [Project] [Detailed]

Example

ExportDescriptions C:\Workspaces\Training.rwp C:\ObjectsERD.xml
COBOL C:\log.txt

 Required Parameters Description

Workspace Workspace file (.rwp).

ERD ERD file.

 Optional Parameters Description

Entity * or entity type of the objects to export
descriptions for. Default is *.
Use the flag attribute of an entity type to
specify all entity types with that flag, for
example:

*LEGACY

 which specifies all entity types with the
LEGACY flag. For more on flags, see
Software Development Toolkit, available from
support services.

Project Project to export object descriptions from.

Detailed Log file.
 54

USING BATCH SCRIPTS
EXPORTRULES.BJ
ExportRules.bj

Export business rules to an ERD file.

Action

Export business rules to an ERD file.

Syntax

ExportRules Workspace FileName [Detailed]

Example

ExportRules C:\Workspaces\Training.rwp C:\RulesERD.xml
C:\log.txt

 Required Parameters Description

Workspace Workspace file (.rwp).

FileName ERD file.

 Optional Parameters Description

Detailed Log file.
55

USING BATCH SCRIPTS
EXPORTSCREENS.BJ
ExportScreens.bj

Export renderings for screens in the workspace.

Action

Export renderings for screens in the workspace.

Syntax

ExportScreens Workspace [Pattern] [Output] [Project] [Detailed]

Example

ExportScreens C:\Workspaces\Training.rwp D:*.rtf C:\log.txt

 Required Parameters Description

Workspace Workspace file (.rwp).

 Optional Parameters Description

Pattern Pattern for naming screen renderings,
consisting of the output folder, file name
pattern, and extension. For example, D:*.rtf.
The file name pattern may contain any valid
symbols. An asterisk (*) is replaced with the
name of the screen. The format of the
renderings depends on the extension.
Supported extensions are .rtf and .doc.

Output Output folder if not specified in Pattern.

Project Project to export screen renderings from.

Detailed Log file.
 56

USING BATCH SCRIPTS
GENCOPYBOOKS.BJ
GenCopybooks.bj

Generate copybooks from Database Description, Device Description, or DMSII
DASDL files.

Action

 Generate copybooks from Database Description, Device Description, or DMSII
DASDL files. RPG programs and Cobol programs that execute in the AS/400
environment often use copy statements that reference Database Description or
Device Description files rather than copybooks. MCP Cobol programs use copy
statements that reference DMSII DASDL files. If your application uses copy
statements to reference these types of files, you need to verify the files and
generate copybooks for the application before you verify program files.

Syntax

GenCopybooks Workspace [Entity] [Condition] [Convert]
[Overwrite] [Options] [Project] [Notify] [Detailed]

 Required Parameters Description

Workspace Workspace file (.rwp).
57

USING BATCH SCRIPTS
GENCOPYBOOKS.BJ
Example

GenCopybooks C:\Workspaces\Training.rwp DBFILE C:\log.txt Auto

 Optional Parameters Description

Entity * or entity type of source files to generate
copybooks from. Default is *.

Condition Scope of source. Use the Repository
Exchange Protocol (RXP) to code the
condition. For more information, see
Analyzing Projects in the workbench
documentation set. Default is project.

Convert Specify this argument with an empty value
to generate target copybooks and convert
them to physical copybooks in the same
step.

Overwrite Specify this argument with an empty value
to overwrite existing physical copybooks
with the same name.

Options Options script file. Default values for
options usually are acceptable. Contact
support services for special needs.

Project Project to generate copybooks for.

Notify Notification file.

Detailed Log file.
 58

USING BATCH SCRIPTS
GENSCREENS.BJ
GenScreens.bj

Generate screens from Device Description files.

Action

 Generate screens from Device Description files.

Syntax

GenScreens Workspace [Entity] [Condition] [Project] [Notify]
[Detailed]

Example

GenScreens C:\Workspaces\Training.rwp DEVICEFILE C:\log.txt Auto

 Required Parameters Description

Workspace Workspace file (.rwp).

 Optional Parameters Description

Entity * or entity type of source files to generate
screens from. Default is *.

Condition Scope of source. Use the Repository
Exchange Protocol (RXP) to code the
condition. For more information, see
Analyzing Projects in the workbench
documentation set. Default is project.

Project Project to generate screens for.

Notify Notification file.

Detailed Log file.
59

USING BATCH SCRIPTS
IMPACTREPORT.BJ
ImpactReport.bj

Generate an Impact Subtree Report.

Action

 Generate an Impact Subtree Report. The report shows the impact trace subtree
for the specified data item occurrence in XML format or in a database.

Syntax

ImpactReport Workspace Entity Name HCID FileName [Direction]
[Project] [Detailed]

 Required Parameters Description

Workspace Workspace file (.rwp).

Entity Entity type of the data item.

Name Name of the data item.

HCID HCID of the data item occurrence.
Alternatively, use the following arguments:
• Var, to specify the data item name.
• Source, to specify the relative path of the

source file containing the data item
occurrence.

• Row, to specify the row number of the
data item occurrence in the source file.

• Col, to specify the column number of the
data item occurrence in the source file.

FileName Output file. The format of the report
depends on the extension. Supported
extensions are .xml and .mdb.
 60

USING BATCH SCRIPTS
IMPACTREPORTFROMLIST.BJ
Example

ImpactReport C:\Workspaces\Training.rwp variable CATALOG-MASTER
S91 C:\Impact.xml B C:\log.txt

ImpactReportFromList.bj

Generate an Impact Subtree Report from a Clipper list.

Action

 Generate an Impact Subtree Report from a Clipper list. The report shows the
impact trace subtrees for occurrences of data items in the list in XML format or
in a database.

Syntax

ImpactReportFromList Workspace Model ListName Category Output
[Direction] [Split] [Project] [Detailed]

 Optional Parameters Description

Direction Direction of the trace:
• F or 1, to specify a forward trace.
• B or 0, to specify a backward trace.
Forward is the default.

Project Project to generate the report for.

Detailed Log file.

 Required Parameters Description

Workspace Workspace file (.rwp).
61

USING BATCH SCRIPTS
IMPACTREPORTFROMLIST.BJ
Example

ImpactReportFromList C:\Workspaces\Training.rwp COBOL Impacts
Impact Report C:\Impacts.xml C:\log.txt

Model HyperView model for the source files
containing the data item occurrences in the
list.

ListName Name of the list.

Category Category of the list.

 Output Output file. The format of the report
depends on the extension. Supported
extensions are .xml and .mdb. When Split is
set to Y, the path of the folder for .mdb
output files.

 Optional Parameters Description

Direction Direction of the trace:
• F or 1, to specify a forward trace.
• B or 0, to specify a backward trace.
Forward is the default.

Split Whether to use the split program method, Y
or N. The split program method generates a
separate .mdb output file for each program
that contains a data item occurrence in the
list. N is the default.

Project Project to generate the report for.

Detailed Log file.

 Required Parameters Description
 62

USING BATCH SCRIPTS
IMPEXBAV.BJ
ImpExBAV.bj

Import or export batch job dependencies or user names.

Action

Import or export batch job dependencies or user names from Batch Application
Viewer (BAV).

Syntax

ImpExBAV Workspace Op FileName [Project] [Notify] [Detailed]

Example

ImpExBAV C:\Workspaces\Training.rwp ImportDeps
C:\Dependencies.xml C:\log.txt

 Required Parameters Description

Workspace Workspace file (.rwp).

Op Operation. Specify:
• ImportDeps, to import dependencies.
• ExportDeps, to export dependencies.
• ImportUsers, to import user names.
• ExportUsers, to export user names.

FileName Output file.

 Optional Parameters Description

Project Project to import/export from/to.

Notify Notification file.

Detailed Log file.
63

USING BATCH SCRIPTS
IMPORTRULES.BJ
ImportRules.bj

Import business rules from an ERD file.

Action

Import business rules from an ERD file.

Syntax

ImportRules Workspace FileNames [Mode] [Detailed]

 Required Parameters Description

Workspace Workspace file (.rwp).

FileNames File name of ERD file, or a pattern to match
ERD file names.
 64

USING BATCH SCRIPTS
IMS ANALYSIS.BJ
Example

ImportRules C:\Workspaces\Training.rwp C:\RulesERD.xml Updating
C:\log.txt

IMS Analysis.bj

Perform IMS Analysis.

Action

 Perform IMS Analysis. IMS Analysis determines the types of database opera-
tion (insert, read, update, or delete) IMS programs perform, and lists in the
browser each of the database segments or screens the operations are performed
on.

Syntax

IMS Analysis Workspace [WorkspaceWide] [Project] [Notify]
[Detailed] [Drop] [LaunchHHC] [StopHHC] [Wait]

 Optional Parameters Description

Mode How to handle rules that have the same
internal names as existing rules. Specify:
• Creating, to create rules with unique

internal names, whether or not they have
the same internal names.

• Replacing, to replace existing rules
whether or not they have been updated.

• Updating, to replace existing rules only
when they have been updated.

The update test is against the Last Validation
Time attribute. Replacing is the default.

Detailed Log file.
65

USING BATCH SCRIPTS
IMS ANALYSIS.BJ
 Required Parameters Description

Workspace Workspace file (.rwp).

 Optional Parameters Description

WorkspaceWide Whether to perform IMS Analysis across
the workspace, Yes or No. Default is Yes.

Project If WorkspaceWide is set to No, project to
perform IMS Analysis for.

Notify Notification file.

Detailed Log file.
 66

USING BATCH SCRIPTS
IMS ANALYSIS.BJ
Example

IMS Analysis C:\Workspaces\Training.rwp C:\log.txt Auto Yes Yes
3600

 Oracle Only Parameters Description

Drop Whether to drop repository indexes.
Specify:
• Auto, to let the script determine whether

to drop repository indexes based on the
number of files to be analyzed.

• Yes, to drop repository indexes.
• No, to not drop repository indexes.
Dropping repository indexes generally
improves analysis performance when a large
number of files need to be analyzed.
Dropped indexes are restored when the
analysis is complete.

LaunchHHC Whether to launch the HyperCode
Converter, Yes or No. Launching the
HyperCode Converter generally improves
performance.

StopHHC Whether to stop the HyperCode
Converter(s) when the analysis is complete,
Yes or No.

Wait Whether to wait until the HyperCode
Converter(s) queue is empty. Specify:
• Yes, to wait indefinitely.
• No, to not wait.
• The number of seconds to wait for the

count on the queue to change. If the
count does not change within the speci-
fied time, BRP resumes. Sixty minutes is
recommended. 0 means no timeout.
67

USING BATCH SCRIPTS
INVALIDATE.BJ
Invalidate.bj

Invalidate source files.

Action

 Invalidate source files. Invalidating some or all of the source files in a workspace
before reverifying can save time when you reverify very large workspaces.

Syntax

Invalidate Workspace [Entity] [Cond] [ObjList] [Detailed] [Drop]

 Required Parameters Description

Workspace Workspace file (.rwp).

 Optional Parameters Description

Entity * or entity type of source files to invalidate.
Default is *.

Cond Source files to invalidate. Use the
Repository Exchange Protocol (RXP) to
code the condition. For more information,
see Analyzing Projects in the workbench
documentation set.

ObjList When Cond is not set, a control file with a
list of source files to invalidate. Each line of
the control file contains the following
information:

"EntityType" "EntityName"

where:
• EntityType is the entity type of the source

file to invalidate, COBOL, for example.
• EntityName is the name of the source file

to invalidate, DayOfWeek.cbl, for
example.
 68

USING BATCH SCRIPTS
INVENTORYREPORT.BJ
Example

Invalidate C:\Workspaces\Training.rwp COBOL ControlFile.txt
C:\log.txt Auto

InventoryReport.bj

Generate an Inventory Report.

Action

 Generate an Inventory Report. The report shows high-level statistics for source
file types in the current workspace: number of files of each type, whether veri-
fied, number of lines of code (verified files only), and the like.

Detailed Log file.

 Oracle Only Parameters Description

Drop Whether to drop repository indexes.
Specify:
• Auto, to let the script determine whether

to drop repository indexes based on the
number of files to be processed.

• Yes, to drop repository indexes.
• No, to not drop repository indexes.
Dropping repository indexes generally
improves performance when a large number
of files need to be processed. Dropped
indexes are restored when processing is
complete.

 Optional Parameters Description
69

USING BATCH SCRIPTS
POPULATE.BJ
Syntax

InventoryReport Workspace File [Project] [Detailed]

Example

InventoryReport C:\Workspaces\Training.rwp C:\Inventory.htm
C:\log.txt

Populate.bj

Populate a workspace from an ERD file.

Action

Populate a workspace from an ERD file.

Syntax

Populate Workspace ERD [Detailed]

 Required Parameters Description

Workspace Workspace file (.rwp).

File Output file. The format of the report
depends on the extension. Supported
extensions are .html, .htm, .xls, .rtf, .doc,
.txt, and .csv.

 Optional Parameters Description

Detailed Log file.
 70

USING BATCH SCRIPTS
REFERENCEREPORT.BJ
Example

Populate C:\Workspaces\Training.rwp C:\TrainingERD.xml
C:\log.txt

ReferenceReport.bj

Generate Reference Reports.

Action

 Generate Reference Reports. The reports identify missing or unneeded files or
objects in the workspace:

• An Unresolved Report identifies missing application elements.

• An Unreferred Report identifies unreferenced application elements.

• A Cross-reference Report identifies all application references.

• An External Reference Report identifies references in object-oriented
applications to external files that are not registered in the workspace, such
as .java, Java Archive (JAR), or C++ include files (assuming you have iden-
tified the locations of these files in the Workspace Verification options

 Required Parameters Description

Workspace Workspace file (.rwp).

ERD ERD file, or a file that contains a list of ERD
files. If the latter, the list file name must be
preceded by an @ symbol, for example,
@ERDs.txt. Each line of the list file specifies
the full path name of an ERD file.

 Optional Parameters Description

Detailed Log file.
71

USING BATCH SCRIPTS
REFERENCEREPORT.BJ
window for the source files). These references are not reported as unre-
solved in the Unresolved Report.

Syntax

ReferenceReport Workspace Type File [Entities] [Restrict]
[Project] [Detailed]

Example

ReferenceReport C:\Workspaces\Training.rwp CrossRef
C:\CrossRef.htm No C:\log.txt

 Required Parameters Description

Workspace Workspace file (.rwp).

Type The type of report, Unresolved, Unreferred,
CrossRef, or ExternalRef.

File Output file. The format of the report
depends on the extension. Supported
extensions are .html, .htm, .xls, .rtf, .doc,
.txt, and .csv.

 Optional Parameters Description

Entities * or a comma-separated list of entity types
to report on. Default is *.

Restrict Whether to restrict references to the
specified project, Yes or No. Default is Yes.

Project Project to generate the report for. Default is
the current project.

Detailed Log file.
 72

USING BATCH SCRIPTS
REFRESH.BJ
Refresh.bj

Register and verify new source files, refresh and verify updated source files.

Action

 Register and verify new source files, refresh and verify updated source files.

NOTE: The Refresh2.bj variant also autoresolves decisions.

Syntax

Refresh Workspace StageDir [Project] [Notify] [Detailed] [Drop]
[LaunchHHC] [ExtraHHC] [StopHHC] [Wait]

 Required Parameters Description

Workspace Workspace file (.rwp).

StageDir Staging directory for incoming source files.

 Optional Parameters Description

Project Project to refresh.

Notify Notification file.

Detailed Log file.
73

USING BATCH SCRIPTS
REFRESH.BJ
Example

Refresh C:\Workspaces\Training.rwp E:\StagingArea C:\log.txt
Auto Yes Yes 3600

 Oracle Only Parameters Description

Drop Whether to drop repository indexes.
Specify:
• Auto, to let the script determine whether

to drop repository indexes based on the
number of files to be processed.

• Yes, to drop repository indexes.
• No, to not drop repository indexes.
Dropping repository indexes generally
improves performance when a large number
of files need to be processed. Dropped
indexes are restored when processing is
complete.

LaunchHHC Whether to launch the HyperCode
Converter, Yes or No. Launching the
HyperCode Converter generally improves
performance.

ExtraHHC If LaunchHHC is specified, the number of
additional HyperCode Converters to
launch.

StopHHC Whether to stop the HyperCode
Converter(s) when processing is complete,
Yes or No.

Wait Whether to wait until the HyperCode
Converter(s) queue is empty. Specify:
• Yes, to wait indefinitely.
• No, to not wait.
• The number of seconds to wait for the

count on the queue to change. If the
count does not change within the speci-
fied time, BRP resumes. Sixty minutes is
recommended. 0 means no timeout.
 74

USING BATCH SCRIPTS
REGISTER.BJ
Register.bj

Register new source files, refresh updated source files.

Action

 Register new source files, refresh updated source files. Use:

• AddNew.bj to register new source files only.

• UpdateOnly.bj to refresh updated source files only.

• Refresh.bj to register and verify new and updated source files.

• Verify.bj to verify registered source files.

Syntax

Register Workspace StageDir [Project] [Entity] [Detailed] [Drop]

 Required Parameters Description

Workspace Workspace file (.rwp).

StageDir Staging directory for incoming source files.

 Optional Parameters Description

Entity * or entity type of source files to register or
refresh. Default is *.

Project Project to register or refresh source files in.

Detailed Log file.
75

USING BATCH SCRIPTS
RELATED.BJ
Example

Register C:\Workspaces\Training.rwp E:\StagingArea C:\log.txt
Auto Yes Yes 3600

Related.bj

Create a project control file (PCF) based on the relationships between source
files.

Action

Create a project control file (PCF) based on the relationships between source
files. The source file on the left side of the relationship is called the startup object.
The source file on the right side of the relationship is called the target object.

A project control file identifies the projects to which source files belong. Use
ApplyPCF.bj or SetProject .bjto assign source files to projects based on a project
control file.

 Oracle Only Parameters Description

Drop Whether to drop repository indexes.
Specify:
• Auto, to let the script determine whether

to drop repository indexes based on the
number of files to be processed.

• Yes, to drop repository indexes.
• No, to not drop repository indexes.
Dropping repository indexes generally
improves performance when a large number
of files need to be processed. Dropped
indexes are restored when processing is
complete.
 76

USING BATCH SCRIPTS
RELATED.BJ
Syntax

Related Workspace Out [List] [Project] [Startup] [Target]
[Include] [Detailed]

 Required Parameters Description

Workspace Workspace file (.rwp).

Out Output file (.pcf).
77

USING BATCH SCRIPTS
RELATED.BJ
 Optional Parameters Description

List A control file with a list of startup objects.
Each line of the control file contains the
following information:

"EntityType" "EntityName"

where:
• EntityType is the entity type of the startup

object, COBOL, for example.
• EntityName is the name of the startup

object, DayOfWeek.cbl, for example.

Project When List is not specified, the project
containing the startup objects.

Startup When List is not specified, the entity type of
the startup objects. Enclose multiple entity
types in parentheses in a
vertical-line-separated list, for example:

(COBOL|COPYBOOK|BMS)

Use the flag attribute of an entity type to
specify all entity types with that flag, for
example:

*LEGACY

 which specifies all entity types with the
LEGACY flag, the default. For more on
entity flags, see Software Development
Toolkit, available from support
services.NOTE: Additional operators are
available for special needs. Contact support
services for details.

Target The entity type of the target objects. The
notation is as for Startup. Default is
(BMS|PSB|DBD|CSD).

Include Whether to include source files related to
other source files in relationships flagged
R_USE, such as Cobol Includes Copybook
File. Default is Yes. Specify NONE for No.
Restrict the result to source files of given
types by specifying the types, for example:

Include=(COBOL|JCL)

 The notation is as for Startup. For more on
relationship flags, see Software Development
Toolkit, available from support services.
 78

USING BATCH SCRIPTS
RESOLVEDECISIONS.BJ
Example

Related C:\Workspaces\Training.rwp E:\Training.pcf
ControlFile.txt BMS C:\log.txt

ResolveDecisions.bj

Resolve decisions automatically.

Action

Resolve decisions automatically.

Syntax

ResolveDecisions Workspace [Project] [Notify] [Detailed] [Drop]
[LaunchHHC] [ExtraHHC] [StopHHC] [Wait]

Detailed Log file.

 Optional Parameters Description

 Required Parameters Description

Workspace Workspace file (.rwp).

 Optional Parameters Description

Project Project to resolve decisions for.

Notify Notification file.

Detailed Log file.
79

USING BATCH SCRIPTS
RESOLVEDECISIONS.BJ
Example

ResolveDecisions C:\Workspaces\Training.rwp C:\log.txt Auto Yes
Yes 3600

 Oracle Only Parameters Description

Drop Whether to drop repository indexes.
Specify:
• Auto, to let the script determine whether

to drop repository indexes based on the
number of files to be processed.

• Yes, to drop repository indexes.
• No, to not drop repository indexes.
Dropping repository indexes generally
improves performance when a large number
of files need to be processed. Dropped
indexes are restored when processing is
complete.

LaunchHHC Whether to launch the HyperCode
Converter, Yes or No. Launching the
HyperCode Converter generally improves
performance.

ExtraHHC If LaunchHHC is specified, the number of
additional HyperCode Converters to
launch.

StopHHC Whether to stop the HyperCode
Converter(s) when processing is complete,
Yes or No.

Wait Whether to wait until the HyperCode
Converter(s) queue is empty. Specify:
• Yes, to wait indefinitely.
• No, to not wait.
• The number of seconds to wait for the

count on the queue to change. If the
count does not change within the speci-
fied time, BRP resumes. Sixty minutes is
recommended. 0 means no timeout.
 80

USING BATCH SCRIPTS
RESTOREDECISIONS.BJ
RestoreDecisions.bj

Restore resolved decisions.

Action

Restore resolved decisions. Reverifying a file invalidates resolved decisions. Use
RestoreDecisions.bj with a decisions control file (DCF) to restore resolved deci-
sions. Use SaveDecisions.bj to create a decisions control file before reverifying.

Syntax

RestoreDecisions Workspace DecisionsCF [Detailed]

Example

RestoreDecisions C:\Workspaces\Training.rwp C:\ControlFile.txt
C:\log.txt

 Required Parameters Description

Workspace Workspace file (.rwp).

DecisionsCF Decisions control file (DCF).

 Optional Parameters Description

Detailed Log file.
81

USING BATCH SCRIPTS
RXP.BJ
RXP.bj

Restore manually resolved decisions.

Action

Execute a Repository Exchange Protocol (RXP) query. RXP is an XML-based
API that you can use to interact with application-level information in the work-
space repository. For more information, see Analyzing Projects in the work-
bench documentation set.

Syntax

RXP Workspace RXP [Query] [Output] [Project] [Detailed]

Example

RXP C:\Workspaces\Training.rwp C:\Queries.xml C:\log.txt

 Required Parameters Description

Workspace Workspace file (.rwp).

RXP File that contains RXP queries.

 Optional Parameters Description

Query * or name of query to execute. Default is *.

Output Output file. The format of the file depends
on the extension. Supported extensions are
.html, .htm, .xml, .xls, .rtf, .doc, .txt, and .csv.

Project Project to execute queries against.

Detailed Log file.
 82

USING BATCH SCRIPTS
SAVEDECISIONS.BJ
SaveDecisions.bj

Create a decisions control file (DCF).

Action

Create a decisions control file (DCF) for a workspace. A decisions control file
identifies the decisions in the workspace and the objects they have been resolved
to. After reverification (which invalidates decisions), use RestoreDecisions.bj to
restore the resolved decisions to the workspace.

Syntax

SaveDecisions Workspace DecisionsCF [Decisions] [Rels]
[Detailed]

 Required Parameters Description

Workspace Workspace file (.rwp).

DecisionsCF Output file (.txt).
83

USING BATCH SCRIPTS
SETPROJECT.BJ
Example

SaveDecisions C:\Workspaces\Training.rwp C:\ControlFile.txt All
Yes C:\log.txt

SetProject.bj

Assign source files to projects based on a project control file (PCF).

Action

Assign source files to projects based on a project control file (PCF). A project
control file identifies the projects to which source files belong.

SetProject.bj differs from ApplyPCF.bj in that it allows you to assign source files
to projects additively, without deleting their links to existing projects. Use
CreatePCF.bj or Related.bj to create a project control file.

Syntax

SetProject Workspace ProjectCF [Incremental] [Detailed]

 Optional Parameters Description

Decisions Type of decisions to include. Specify:
• All, to include all decision types.
• Uncompleted, to include uncompleted

decisions.
• Unresolved, to include unresolved deci-

sions.
Default is Unresolved.

Rels Whether to include relationships in the
DCF, Yes or No. Default is No.

Detailed Log file.
 84

USING BATCH SCRIPTS
UNREGISTER.BJ
Example

SetProject C:\Workspaces\Training.rwp E:\Training.pcf
Incremental C:\log.txt

Unregister.bj

Unregister source files.

Action

 Unregister source files.

Syntax

Unregister Workspace [Entity] [Cond] [ObjList] [Detailed] [Drop]

 Required Parameters Description

Workspace Workspace file (.rwp).

ProjectCF Project control file (.pcf).

 Optional Parameters Description

Incremental Assign source files to projects additively,
without deleting their links to existing
projects. Use the argument with no value to
specify additive assignment. Omit the
argument to specify overwrite assignment.

Detailed Log file.
85

USING BATCH SCRIPTS
UNREGISTER.BJ
 Required Parameters Description

Workspace Workspace file (.rwp).

 Optional Parameters Description

Entity * or entity type of source files to unregister.
Default is *.

Cond Source files to unregister. Use the
Repository Exchange Protocol (RXP) to
code the condition. For more information,
see Analyzing Projects in the workbench
documentation set.

ObjList When Cond is not set, a control file with a
list of source files to unregister. Each line of
the control file contains the following
information:

"EntityType" "EntityName"

where:
• EntityType is the entity type of the source

file to unregister, COBOL, for example.
• EntityName is the name of the source file

to unregister, DayOfWeek.cbl, for
example.

Detailed Log file.
 86

USING BATCH SCRIPTS
UPDATEONLY.BJ
Example

Unregister C:\Workspaces\Training.rwp COBOL ControlFile.txt
C:\log.txt Auto

UpdateOnly.bj

Refresh updated source files only.

Action

 Refresh updated source files only, optionally based on a project control file
(PCF). A project control file identifies the projects to which source files belong.
Use:

• CreatePCF.bj or Related.bj to create a project control file.

• Register.bjto register new source files and refresh updated source files.

• Refresh.bj to register and verify new and updated source files.

• Verify.bj to verify registered source files.

 Oracle Only Parameters Description

Drop Whether to drop repository indexes.
Specify:
• Auto, to let the script determine whether

to drop repository indexes based on the
number of files to be processed.

• Yes, to drop repository indexes.
• No, to not drop repository indexes.
Dropping repository indexes generally
improves performance when a large number
of files need to be processed. Dropped
indexes are restored when processing is
complete.
87

USING BATCH SCRIPTS
UPDATEONLY.BJ
Syntax

UpdateOnly Workspace StageDir [ProjectCF] [Notify] [Detailed]
[Drop]

Example

UpdateOnly C:\Workspaces\Training.rwp E:\StagingArea
C:\Training.txt C:\log.txt Auto

 Required Parameters Description

Workspace Workspace file (.rwp).

StageDir Staging directory for incoming source files.

 Optional Parameters Description

ProjectCF Project control file (PCF).

Notify Notification file.

Detailed Log file.

 Oracle Only Parameters Description

Drop Whether to drop repository indexes.
Specify:
• Auto, to let the script determine whether

to drop repository indexes based on the
number of files to be processed.

• Yes, to drop repository indexes.
• No, to not drop repository indexes.
Dropping repository indexes generally
improves performance when a large number
of files need to be processed. Dropped
indexes are restored when processing is
complete.
 88

USING BATCH SCRIPTS
UPGRADE.BJ
Upgrade.bj

Upgrade a workspace.

Action

 Upgrade a workspace. Upgrading a workspace synchronizes the workspace
with a new MW configuration.

Syntax

Upgrade Workspace [Detailed]

Example

Upgrade C:\Workspaces\Training.rwp C:\log.txt

 Required Parameters Description

Workspace Workspace file (.rwp).

 Optional Parameters Description

Detailed Log file.
89

USING BATCH SCRIPTS
VERIFY.BJ
Verify.bj

Verify source files.

Action

 Verify registered source files. Use Refresh to register and verify new and
updated source files.

Syntax

Verify Workspace [Entity] [Status] [Cond] [Project] [Notify]
[Detailed] [Drop] [LaunchHHC] [ExtraHHC] [StopHHC] [Wait]

 Required Parameters Description

Workspace Workspace file (.rwp).

 Optional Parameters Description

Entity * or entity type of source files to verify.
Default is *.

Status Verification status of source files to verify.
Specify:
• *, to verify all source files.
• !, to verify unverified source files.
• R, to verify source files verified under the

relaxed parsing option.
• E, to verify source files that verified with

an error.
• S, to verify source files that verified

successfully.

Cond Source files to verify. Use the Repository
Exchange Protocol (RXP) to code the
condition. For more information, see
Analyzing Projects in the workbench
documentation set.
 90

USING BATCH SCRIPTS
VERIFY.BJ
Project Project to verify source files in.

Notify Notification file.

Detailed Log file.

 Optional Parameters Description
91

USING BATCH SCRIPTS
VERIFY.BJ
Example

Verify C:\Workspaces\Training.rwp COBOL R C:\log.txt Auto Yes
Yes 3600

 Oracle Only Parameters Description

Drop Whether to drop repository indexes.
Specify:
• Auto, to let the script determine whether

to drop repository indexes based on the
number of files to be processed.

• Yes, to drop repository indexes.
• No, to not drop repository indexes.
Dropping repository indexes generally
improves performance when a large number
of files need to be processed. Dropped
indexes are restored when processing is
complete.

LaunchHHC Whether to launch the HyperCode
Converter, Yes or No. Launching the
HyperCode Converter generally improves
performance.

ExtraHHC If LaunchHHC is specified, the number of
additional HyperCode Converters to
launch.

StopHHC Whether to stop the HyperCode
Converter(s) when processing is complete,
Yes or No.

Wait Whether to wait until the HyperCode
Converter(s) queue is empty. Specify:
• Yes, to wait indefinitely.
• No, to not wait.
• The number of seconds to wait for the

count on the queue to change. If the
count does not change within the speci-
fied time, BRP resumes. Sixty minutes is
recommended. 0 means no timeout.
 92

USING BATCH SCRIPTS
EXECUTING BATCH SCRIPTS
Executing Batch Scripts

Overview of the Batch Refresh and Verification (Brave) utility.

 Use the Batch Refresh and Verification (Brave) utility to execute batch scripts.
Brave.exe is located in \<Workbench Home>\Bin.

The examples in this section illustrate how to run the scripts with Brave.exe. The
examples can be adapted for use programmatically or in a batch file.

Example: Generating Reports

Describes how to generate an Unresolved Report in batch mode.

 Follow the steps below to generate an Unresolved Report in Excel format. Refer
to ReferenceReport.bj for argument details.

1) From a command prompt, enter the following command, substituting file
names and paths as appropriate:

C:\Program Files\Modernization Workbench\Bin>Brave.exe
"C:\Program Files\Moderni
zation Workbench\Scripts\BRP\ReferenceReport.bj"
"C:\UnresolvedLog.txt" "Workspa
ce=C:\Workspaces\sdkworkspace.rwp" "Type=Unresolved"
"File=C:\Workspaces\sdkwork
space\Output\UnresolvedReport.xls"

 The command consists of:

• The path to Brave.exe.

• The path to the ReferenceReport.bj file.

• The path to the output log file generated on execution of the
command.

• The path to the workspace.

• The type of reference report to generate.

• The path to the output report. The format of the report depends on
the extension.

2) Check the output log file for errors or warnings. Here is the log file for the
command:

Batch Registration and Verification. Version 2.1.02.2860 (build
2.1.02.2860)
Date: 8/8/2008 Computer: D620-JEREMYW
93

USING BATCH SCRIPTS
EXECUTING BATCH SCRIPTS
Cmd: "C:\Program Files\Modernization
Workbench\Scripts\BRP\ReferenceReport.bj"
"C:\UnresolvedLog.txt"
"Workspace=C:\Workspaces\sdkworkspace.rwp" "Type=Unresolved"
"File=C:\Workspaces\sdkworkspace\Output\UnresolvedReport.xls"
Job: C:\Program Files\Modernization
Workbench\Scripts\BRP\ReferenceReport.bj
13:43:13 >Open C:\Workspaces\sdkworkspace.rwp
13:43:15 >Report Unresolved
C:\Workspaces\sdkworkspace\Output\UnresolvedReport.xls
13:43:23 C:\Workspaces\sdkworkspace\Output\UnresolvedReport.xls
has been prepared
13:43:23 >Close
13:43:24 ---Finished—

Example: Executing Repository Queries

Describes how to execute an RXP query in batch mode

 Follow the steps below to execute a Repository Exchange Protocol (RXP) query.
RXP is an XML-based API that you can use to interact with application-level
information in the workspace repository. Refer to RXP.bj for argument details.

1) From a command prompt, enter the following command, substituting file
names and paths as appropriate:

C:\Program Files\Modernization Workbench\Bin>Brave.exe
"C:\Program Files\Moderni
zation Workbench\Scripts\BRP\RXP.bj" "C:\QueryLog.txt"
"Workspace=C:\Workspaces\
sdkworkspace.rwp" "RXP=C:\Program Files\Modernization
Workbench\Scripts\BRP\RXP\
Repository.rxp" "Query=Used Sources"
"Output=C:\Workspaces\sdkworkspace\Output\U
sedSources.xml"

 The command consists of:

• The path to Brave.exe.

• The path to the RXP.bj file.

• The path to the output log file generated on execution of the
command.

• The path to the workspace.

• The path to the .rxp file containing RXP queries.

• The query to execute in the .rxp file, "Used Sources".

• The path to the output file. The format of the file depends on the
extension.
 94

USING BATCH SCRIPTS
EXECUTING BATCH SCRIPTS
2) Check the output log file for errors or warnings. Here is the log file for the
command:

Batch Registration and Verification. Version 2.1.02.2860 (build
2.1.02.2860)
Date: 8/8/2008 Computer: D620-JEREMYW
Cmd: "C:\Program Files\Modernization
Workbench\Scripts\BRP\RXP.bj" "C:\QueryLog.txt"
"Workspace=C:\Workspaces\sdkworkspace.rwp" "RXP=C:\Program
Files\Modernization Workbench\Scripts\BRP\RXP\Repository.rxp"
"Query=Used Sources"
"Output=C:\Workspaces\sdkworkspace\Output\UsedSources.xml"
Job: C:\Program Files\Modernization
Workbench\Scripts\BRP\RXP.bj
14:03:32 >Open C:\Workspaces\sdkworkspace.rwp
14:03:33 Cuter .ExecuteRXP (Prm.RXP, Prm.Query, Prm.Output,
Prm.Project)
14:03:34 File C:\Workspaces\sdkworkspace\Output\UsedSources.xml
has been prepared
14:03:34 >Close
14:03:34 ---Finished—

Example: Creating Diagrams

Describes how to generate Call Map diagrams in batch mode.

 Follow the steps below to generate Call Map diagrams in EMF format for every
program in a workspace. Refer to DiagramTS.bj for argument details.

1) From a command prompt, enter the following command, substituting file
names and paths as appropriate:

C:\Program Files\Modernization Workbench\Bin>Brave.exe
"C:\Program Files\Moderni
zation Workbench\Scripts\BRP\DiagramTS.bj" "C:\DiagramLog.txt"
"Workspace=C:\
Workspaces\sdkworkspace.rwp" "Scope=Call Map"
"Pattern=C:\Workspaces\sdkworkspac
e\Output*.emf"

 The command consists of:

• The path to Brave.exe.

• The path to the DiagramTS.bj file.

• The path to the output log file generated on execution of the
command.

• The path to the workspace.

• The diagram scope, "Call Map".
95

USING BATCH SCRIPTS
EXECUTING BATCH SCRIPTS
• The pattern for naming the generated diagrams, consisting of the
output folder, file name pattern, and extension. The format of the
diagrams depends on the extension.

2) Check the output log file for errors or warnings. Here is the log file for the
command:

Batch Registration and Verification. Version 2.1.02.2860 (build
2.1.02.2860)
Date: 8/8/2008 Computer: D620-JEREMYW
Cmd: "C:\Program Files\Modernization
Workbench\Scripts\BRP\DiagramTS.bj" "C:\DiagramLog.txt"
"Workspace=C:\Workspaces\sdkworkspace.rwp" "Scope=Call Map"
"Pattern=C:\Workspaces\sdkworkspace\Output*.emf"
Job: C:\Program Files\Modernization
Workbench\Scripts\BRP\DiagramTS.bj
13:22:41 >Open C:\Workspaces\sdkworkspace.rwp
13:22:41 >Diagram Quick * "Call Map"
"C:\Workspaces\sdkworkspace\Output*.emf"
 Destination directory is
C:\Workspaces\sdkworkspace\Output
 Diagrams have been generated successfully
13:23:06 >Close
13:23:06 ---Finished—

Example: Performing an Advanced Search

Describes how to perform an advanced search in batch mode.

 Follow the steps below to search for all declarations of computational data
items in a workspace. Refer to ClipperSearch.bj for argument details.

1) From a command prompt, enter the following command, substituting file
names and paths as appropriate:

C:\Program Files\Modernization Workbench\Bin>Brave.exe
"C:\Program Files\Moderni
zation Workbench\Scripts\BRP\ClipperSearch.bj"
"C:\ClipperSearchLog.txt" "Worksp
ace=C:\Workspaces\sdkworkspace.rwp" "Criteria=General:Data
Queries\Computational
 Data" "Model=COBOL" "ListName=Miscellaneous" "Category=General"

 The command consists of:

• The path to Brave.exe.

• The path to the ClipperSearch.bj file.

• The path to the output log file generated on execution of the
command.
 96

USING BATCH SCRIPTS
EXECUTING BATCH SCRIPTS
• The path to the workspace.

• The path to the search criterion in the HyperView Advanced Search
tool, including the tab name and folder names.

• The HyperView model for the source files to be searched, "COBOL".

• The Clipper list where the search results will be displayed.

• The Clipper category that contains the list.

2) Check the output log file for errors or warnings. Here is the log file for the
command:

Batch Registration and Verification. Version 2.1.02.2860 (build
2.1.02.2860)
Date: 8/8/2008 Computer: D620-JEREMYW
Cmd: "C:\Program Files\Modernization
Workbench\Scripts\BRP\ClipperSearch.bj"
"C:\ClipperSearchLog.txt"
"Workspace=C:\Workspaces\sdkworkspace.rwp"
"Criteria=General:Data Queries\Computational Data"
"Model=COBOL" "ListName=Miscellaneous" "Category=General"
Job: C:\Program Files\Modernization
Workbench\Scripts\BRP\ClipperSearch.bj
10:33:25 >Open C:\Workspaces\sdkworkspace.rwp
10:33:26 Cuter .ClipperSearch (Prm.Criterion, Prm.Model,
Prm.ListName, Prm.Category, Prm.Accumulate)
10:33:27 (success) 236 construct(s) found.
10:33:27 >Close
10:33:27 ---Finished—
97

USING BATCH SCRIPTS
EXECUTING BATCH SCRIPTS
 98

	Contents
	Using the Batch Refresh Process
	Understanding the Batch Refresh Process
	Configuring the Batch Refresh Process
	Configuring General Settings
	Configuring User Exits
	Understanding Exits
	Configuring Exits

	Configuring Advanced Settings
	BRP Logging

	Preparing Files for Batch Refresh Processing
	Enabling Parallel Verification
	Executing the Batch Refresh Process
	Adding Source File Extensions
	BRP Logging

	Producing Utilities for BRP
	Versioning
	Logging
	Source, Executable, and CFG Files

	Guidelines for BRP Utilities
	BRP and Non-BRP Modes
	Using User Exits
	Parameter Data
	Logging
	Input/Output
	Returning Values
	BRP Environment Parameters
	Testing

	Using Batch Scripts
	AddNew.bj
	Action
	Syntax

	AffectedCodeReport.bj
	Action
	Syntax

	AnalyzeProgram.bj
	Action
	Syntax

	ApplyPCF.bj
	Action
	Syntax

	BusinessRulesReport.bj
	Action
	Syntax

	BusinessRulesValidation.bj
	Action
	Syntax

	CheckQueue.bj
	Action
	Syntax

	ClipperDetails.bj
	Action
	Syntax

	ClipperMetrics.bj
	Action
	Syntax

	ClipperMultiSearch.bj
	Action
	Syntax

	ClipperSearch.bj
	Action
	Syntax

	ComplexityReport.bj
	Action
	Syntax

	CreatePCF.bj
	Action
	Syntax

	CreateWS.bj
	Action
	Syntax

	CRUDReport.bj
	Action
	Syntax

	DBA.Cobol.bj
	Action
	Syntax

	DCE.bj
	Action
	Syntax

	DiagramBAV.bj
	Action
	Syntax

	DiagramCallie.bj
	Action
	Syntax

	DiagramFlowchart.bj
	Action
	Syntax

	DiagramTS.bj
	Action
	Syntax

	EffortReport.bj
	Action
	Syntax

	ExecutiveReport.bj
	Action
	Syntax

	ExportDescriptions.bj
	Action
	Syntax

	ExportRules.bj
	Action
	Syntax

	ExportScreens.bj
	Action
	Syntax

	GenCopybooks.bj
	Action
	Syntax

	GenScreens.bj
	Action
	Syntax

	ImpactReport.bj
	Action
	Syntax

	ImpactReportFromList.bj
	Action
	Syntax

	ImpExBAV.bj
	Action
	Syntax

	ImportRules.bj
	Action
	Syntax

	IMS Analysis.bj
	Action
	Syntax

	Invalidate.bj
	Action
	Syntax

	InventoryReport.bj
	Action
	Syntax

	Populate.bj
	Action
	Syntax

	ReferenceReport.bj
	Action
	Syntax

	Refresh.bj
	Action
	Syntax

	Register.bj
	Action
	Syntax

	Related.bj
	Action
	Syntax

	ResolveDecisions.bj
	Action
	Syntax

	RestoreDecisions.bj
	Action
	Syntax

	RXP.bj
	Action
	Syntax

	SaveDecisions.bj
	Action
	Syntax

	SetProject.bj
	Action
	Syntax

	Unregister.bj
	Action
	Syntax

	UpdateOnly.bj
	Action
	Syntax

	Upgrade.bj
	Action
	Syntax

	Verify.bj
	Action
	Syntax

	Executing Batch Scripts
	Example: Generating Reports
	Example: Executing Repository Queries
	Example: Creating Diagrams
	Example: Performing an Advanced Search

