
Panopticon
Software Version 12.7

Panopticon Programming Guide

Document Release Date: October 2020
Software Release Date: October 2020

Legal notices

Copyright notice

© Copyright 2020 Micro Focus or one of its affiliates.

The only warranties for products and services of Micro Focus and its affiliates and licensors (“Micro Focus”)
are set forth in the express warranty statements accompanying such products and services. Nothing herein
should be construed as constituting an additional warranty. Micro Focus shall not be liable for technical or
editorial errors or omissions contained herein. The information contained herein is subject to change without
notice.

Documentation updates
The title page of this document contains the following identifying information:

l Software Version number, which indicates the software version.
l Document Release Date, which changes each time the document is updated.
l Software Release Date, which indicates the release date of this version of the software.

To check for updated documentation, visit https://www.microfocus.com/support-and-services/documentation/.

Support
Visit the MySupport portal to access contact information and details about the products, services, and
support that Micro Focus offers.

This portal also provides customer self-solve capabilities. It gives you a fast and efficient way to access
interactive technical support tools needed to manage your business. As a valued support customer, you can
benefit by using the MySupport portal to:

l Search for knowledge documents of interest
l Access product documentation
l View software vulnerability alerts
l Enter into discussions with other software customers
l Download software patches
l Manage software licenses, downloads, and support contracts
l Submit and track service requests
l Contact customer support
l View information about all services that Support offers

Many areas of the portal require you to sign in. If you need an account, you can create one when prompted
to sign in. To learn about the different access levels the portal uses, see the Access Levels descriptions.

Panopticon ProgrammingGuide

Panopticon (12.7) Page 2 of 30

https://www.microfocus.com/support-and-services/documentation/
https://softwaresupport.softwaregrp.com/
https://softwaresupport.softwaregrp.com/web/softwaresupport/access-levels

Contents

Chapter 1: Introduction 5
Overview 5

Features 5

Known Limitations 5

Requirements 6
Supported Platforms 6
Supported Compilers 6
Software Dependencies 6

Windows Installation 7

UNIX Installation 7

Package Contents 8

Chapter 2: Use Panopticon 9
Decrypt Microsoft Azure RMS Protected Files 9

Configure the Proxy for RMS 9

Panopticon Sample Program 10

Chapter 3: Panopticon API Functions 12
configureRMS() 13

Syntax 13
Arguments 13
Returns 13

decryptFile() 14
Syntax 14
Arguments 14
Returns 14
Discussion 14

encryptionInfo() 15
Syntax 15
Arguments 15
Returns 15

init() 16
Syntax 16
Arguments 16
Returns 17

Panopticon ProgrammingGuide

Panopticon (12.7) Page 3 of 30

KVPanopticonGetInterface() 18
Syntax 18
Arguments 18
Returns 18
Discussion 18

shutdown() 19
Syntax 19
Arguments 19
Returns 19
Discussion 19

Chapter 4: Panopticon Structures 20
KVPanopticonEncryptionInfo 21

Member Descriptions 21

KVPanopticonInterface 22
Member Descriptions 22

KVRMSCredentials 23
Member Descriptions 23

KVStructHead 24
Member Descriptions 24
Example 24

Chapter 5: Enumerated Types 25
ProgrammingGuidelines 25

KVPanopticonDecryptionSupport 26
Enumerators 26

KVPanopticonError 27
Enumerators 27

KVPanopticonEncryption 29
Enumerators 29

Send documentation feedback 30

Panopticon ProgrammingGuide

Panopticon (12.7) Page 4 of 30

Chapter 1: Introduction

This guide is for developers who want to incorporateMicro Focus KeyView Panopticon into their
applications using a C/C++ development environment. It is intended for readers who are familiar with
C/C++.

• Overview 5
• Features 5
• Known Limitations 5
• Requirements 6
• Windows Installation 7
• UNIX Installation 7
• Package Contents 8

Overview

Micro Focus Panopticon enables you to decrypt files that have been protected by Microsoft Azure
Rights Management System (RMS), which is part of Azure Information Protection, allowing your
workflow to operate on the original, unencrypted file. You can use Panopticon with existing workflows
to allow complete access to protected data for which the service has permission.

Panopticon is part of the KeyView suite of products. KeyView provides high-speed text extraction,
conversion to web-ready HTML and well-formed XML, and high-fidelity document viewing.

Features

KeyView Panopticon enables the following features:

l Automatic detection of encryption type.

l Decryption of most file formats protected with RMS (text-only for PDF).

Known Limitations

Panopticon decrypts most RMS encrypted documents, with the following known limitations:

l Text is decrypted from RMS protected PDFs, but not text formatting, images or subfiles.

l Email clients such as Microsoft Outlook can protect email messages as rights-managed email
messages. In these cases, it stores the contents of the original message as an encrypted rpmsg
attachment. Panopticon does not support decryption of these encrypted attachments.

Panopticon (12.7) Page 5 of 30

Requirements

This section describes the supported platforms, compilers, and dependencies for Panopticon.

Supported Platforms

Panopticon is supported on the following platforms:

Microsoft Windows x86 64

l Windows Server 2019

l Windows Server 2016

l Windows Server 2012

l Windows 10

l Windows 7 SP1

l Windows Server 2008 R2

l Windows Server 2008 SP2

Linux x86 64

Theminimum supported versions of particular Linux distributions are:

l RedHat Enterprise Linux (RHEL) 6

l CentOS 6

l SuSE Linux Enterprise Server (SLES) 12

Supported Compilers

Platform Architecture Compiler
Name

Compiler Version

Microsoft
Windows

x86 64 cl Microsoft C/C++ Optimizing Compiler for x64 Version 17
(Visual Studio 2012) to Version 19 (Visual Studio 2019).

Linux x86 64 gcc/g++ 4.1.0 to 4.9.2

Software Dependencies

Some components require specific third-party software:

Panopticon ProgrammingGuide
Chapter 1: Introduction

Panopticon (12.7) Page 6 of 30

l Microsoft Visual C++ 2019 Redistributables (Windows only)

Windows Installation

To install the Panopticon SDK onWindows, use the following procedure.

To install the Panopticon SDK

1. Run the installation program, Panopticon_VersionNumber_Platform.exe, where
VersionNumber is the product version number, and Platformis the operating system platform.

For example:

Panopticon_12.7_Windows_X86_64.exe

The installation wizard opens.

2. Read the instructions and click Next.

The License Agreement page opens.

3. Read the agreement. If you agree to the terms, click I accept the agreement, and then click Next.

The Installation Directory page opens.

4. Select the directory in which to install Panopticon. To specify a directory other than the default,
click , and then specify another directory. After choosing where to install Panopticon, click Next.

The Pre-Installation Summary opens.

5. Review the settings, and then click Next.

The SDK is installed.

6. Click Finish.

UNIX Installation

To install the Panopticon SDK, use one of the following procedures.

To install the Panopticon SDK from the graphical interface

l Run the installation program and follow the on-screen instructions.

To install the Panopticon SDK from the console

1. Run the installation program from the console as follows:

./Panopticon_VersionNumber_Platform.exe --mode text

where:

Panopticon ProgrammingGuide
Chapter 1: Introduction

Panopticon (12.7) Page 7 of 30

VersionNumber is the product version number.

Platform is the name of the platform

2. Read the welcomemessage and instructions and press Enter.

The first page of the license agreement is displayed.

3. Read the license information, pressing Enter to continue through the text. After you finish
reading the text, and if you accept the agreement, typeY and press Enter.

You are asked to choose an installation folder.

4. Type an absolute path or press Enter to accept the default location.

The Pre-Installation summary is displayed.

5. If you are satisfied with the information displayed in the summary, press Enter.

The SDK is installed.

Package Contents

The Panopticon installation contains:

l Libraries and executable files necessary for detecting the encryption type and decrypting files.

l The include files that define the functions and structures used by applications to establish an
interface with Panopticon.

l A sample program that demonstrate Panopticon functionality. See Panopticon Sample Program,
on page 10.

l (Windows only) Microsoft Visual C++ 2019 redistributable files.

Panopticon ProgrammingGuide
Chapter 1: Introduction

Panopticon (12.7) Page 8 of 30

Chapter 2: Use Panopticon

This section describes how to perform some basic tasks using Panopticon.

• Decrypt Microsoft Azure RMS Protected Files 9
• Configure the Proxy for RMS 9
• Panopticon Sample Program 10

Decrypt Microsoft Azure RMS Protected Files

This section describes the steps required to use Panopticon to decrypt files protected with Microsoft
Azure Rights Management System (RMS).

To use Panopticon

1. Dynamically load the panopticon shared library.

2. Obtain a handle to KVPanopticonGetInterface().

3. Obtain function pointers for the library methods by calling KVPanopticonGetInterface().

4. Initialise Panopticon by calling init().

5. Configure Panopticon to use the RMS credentials for your application by calling configureRMS().

6. Determine the level of support for decrypting a particular file by calling encryptionInfo().

7. If decryption is supported, decrypt the file by calling decryptFile().

8. Repeat steps 6 and 7 for any additional files.

9. Terminate the Panopticon session by calling shutdown().

10. Free the panopticon shared library.

Configure the Proxy for RMS

When Panopticon needs to access contents that are protected by RMS, it must make HTTP requests.
By default, Panopticon uses the system proxy settings for these requests.

To use different proxy settings, you can configure them in the [RMS] section of the
cryptographyservices.cfg configuration file. The following table describes the available options.

Parameter Description

UseSystemProxy Whether to obtain details about your HTTP proxy from the system. By default,

Panopticon (12.7) Page 9 of 30

Parameter Description

this parameter is set to TRUE, whichmeans:

l OnMicrosoft Windows platforms, KeyView reads the proxy settings that
are configured in theWindows Control Panel.

l On Linux, KeyView reads the proxy settings from environment variables
such as HTTP_PROXY and HTTPS_PROXY.

You can use UseSystemProxy instead of setting the other proxy parameters
(ProxyHost, ProxyPort, ProxyUsername, and ProxyPassword). When
UseSystemProxy is set to TRUE, youmust remove these other parameters from
your configuration.

Set UseSystemProxy to FALSE to use different proxy settings. In this case you
must set at least ProxyHost and ProxyPort.

ProxyHost The host name or IP address of the proxy server.

ProxyPassword The password to use to authenticate with the proxy server.

ProxyPort The port of the proxy server to use to access the repository. This port must be
greater than 0, and less than 65535.

ProxyUsername The user name to use to authenticate with the proxy server.

Panopticon Sample Program

Panopticon includes a sample program, written in C++, which demonstrates how to use Panopticon to
decrypt RMS protected files. The sample program is called panopticon_test. It is intended to provide
a starting point or reference for your own applications.

The source code andmakefiles are provided in the samples/panopticon_test directory of your
Panopticon installation directory.

The sample program passes license information to Panopticon by using init(). Before you can
compile, youmust replace the parameters YOUR_LICENSE_ORGANIZATION and YOUR_LICENSE_KEY in
the init() function call with your license information.

To compile the sample program, use themakefiles provided in the program directory. Youmust ensure
that the Panopticon include directory is in the include path of the project.

After you compile and build the executable, youmust place it in the same directory as the Panopticon
library.

NOTE: A compiled executable is provided in the PLATFORM/bin directory. This sample has an
embedded trial license, which expires approximately fivemonths after release.

The panopticon_test sample program gets the encryption information for a file. If decryption is
supported, it then decrypts the file.

The sample program includes the following files:

Panopticon ProgrammingGuide
Chapter 2: Use Panopticon

Panopticon (12.7) Page 10 of 30

l panopticon_test.cpp. Contains the command-line interface.

l panopticon_interface.cpp. Contains a C++ class, which wraps the Panopticon C interface.

l utils.cpp. Contains utility functions used by panopticon_interface.cpp.

To run panopticon_test

1. Open a command prompt in the bin folder that contains the Panopticon library.

2. Type the following command:

panopticon_test [options] credentialsfile inputfile outputfile

The following table describes these arguments.

options Zero or more of the options listed in the table Options for the panopticon_
test sample program, below.

credentialsfile The full path and file name of a file that contains the RMS credentials to
use. This file must contain just the tenant ID, client ID, and client secret,
in that order, separated by new lines.

inputfile The full path and file name of the file to decrypt.

outputfile The full path and file name to use for the decrypted file.

The following table describes the optional command-line arguments for the panopticon_test sample
program.

Option Description

-t
tempdir

A temporary directory where Panopticon stores the temporary files that it generates. By
default, it uses the system default temporary directory.

Options for the panopticon_test sample program

Panopticon ProgrammingGuide
Chapter 2: Use Panopticon

Panopticon (12.7) Page 11 of 30

Chapter 3: Panopticon API Functions

This section describes the functions available in the Panopticon C API.

• configureRMS() 13
• decryptFile() 14
• encryptionInfo() 15
• init() 16
• KVPanopticonGetInterface() 18
• shutdown() 19

Panopticon (12.7) Page 12 of 30

configureRMS()

This function provides a way to set the credentials required to access RMS protected files. After you
set these credentials, the decryptFile() function is able to produce an unencrypted version of the RMS
file.

CAUTION:When Panopticon functions access the protected contents of RMS protected files,
KeyView might place decrypted contents into the temporary directory. You can specify the
temporary directory when you call init().

Syntax

KVPanopticonError configureRMS(
KVPanopticonContext* const context,
const KVRMSCredentials* const rmsCredentials

);

Arguments

context A pointer to KVPanopticonContext, initialized by calling init().

rmsCredentials A pointer to a KVRMSCredentials structure that contains the required credentials.

You can store only one set of credentials at a time. You can call the function again
with new credentials to override the existing configuration.

Set this value to NULL to discard the existing credentials.

Before you fill out the KVRMSCredentials structure, initialize the KVStructHead
structure by using themacro KVStructInit.

Returns

If the function was successful, it returns KVP_Success. Otherwise, it returns a KVPanopticonError
value describing the problem.

Panopticon (12.7) Page 13 of 30

decryptFile()

This function removes the encryption on a protected file, giving access to the original, unencrypted file.

Syntax

KVPanopticonError decryptFile(
KVPanopticonContext* const context,
const char* const inputFilePath,
const char* const outputFilePath

);

Arguments

context A pointer to KVPanopticonContext, initialized by calling init().

inputFilePath A null-terminated C string that contains the path of the file to decrypt.

outputFilePath A null-terminated C string that contains the path of the output file to create. If a file
already exists at this location, Panopticon overwrites it.

Returns

If the function was successful, it returns KVP_Success. Otherwise, it returns a KVPanopticonError
value describing the problem.

Discussion

l To decrypt a protected file, Panopticonmust make an HTTP request.

l By default, Panopticon uses the system proxy when it makes HTTP requests. You can also
specify the proxy manually in the cryptographyservices.cfg. See Configure the Proxy for
RMS, on page 9.

l This function returns an error if decryption is not supported for the inputFile you provide. You
can obtain information about the level of support provided by using encryptionInfo().

Panopticon (12.7) Page 14 of 30

encryptionInfo()

This function detects the type of encryption applied to a document, and information about the level to
which Panopticon supports decryption. This information can be used to determine whether this file
should be passed to decryptFile().

Syntax

KVPanopticonError encryptionInfo(
KVPanopticonContext* const context,
const char* const inputFilePath,
KVPanopticonEncryptionInfo* const encryptionInfo /*out*/

);

Arguments

context A pointer to KVPanopticonContext, initialized by calling init().

inputFilePath A null-terminated C string that contains the path of the file to get encryption info
for.

encryptionInfo A pointer to a KVPanopticonEncryptionInfo. If the function completes
successfully, it fills this structure out with the encryption information.

Youmust initialize the KVStructHead structure by using themacro
KVStructInit.

Returns

If the function was successful, it returns KVP_Success. Otherwise, it returns a KVPanopticonError
value describing the problem.

Panopticon (12.7) Page 15 of 30

init()

This function initializes a Panopticon session. If initialization is successful, the pointer that context
points to is set to a valid context identifier. Youmust pass this context identifier as the first parameter
to all other Panopticon functions.

Syntax

KVPanopticonError init(
const char* const binDir,
const char* const tempFolder,
const char* const licenseOrganisation,
const char* const licenseKey,
KVPanopticonContext** const context /*out*/

);

Arguments

binDir A null-terminated C string that contains the path of the directory where the
Panopticon components are located.

tempFolder (Optional) A null-terminated C string that contains the path of directory to
use to store temporary files. Set this value to NULL to default to the system
temporary directory.

licenseOrganisation A pointer to a string that contains the organization name under which this
installation of Panopticon is licensed. This value is the company name that
appears at the top of the license key that Micro Focus provides. Add the
text exactly as it appears in this file.

licenseKey A pointer to a string that contains the license key for this installation of
KeyView. This value is the appropriate license key provided by Micro
Focus. The key is a string that contains 31 characters, for example
2TAD22D-2M6FV66-2KBF23S-2QEM5AB. Supply these characters
exactly as they appear in the license key file, including the dashes. Do not
include any leading or trailing spaces.

context A valid pointer to a NULL pointer of type KVPanopticonContext. If
initialization is successful, this target is set to a context-identifying value,
which youmust supply to subsequent Panopticon functions.

Panopticon (12.7) Page 16 of 30

Returns

If the function was successful, it returns KVP_Success. Otherwise, it returns a KVPanopticonError
value describing the problem.

Panopticon ProgrammingGuide
Chapter 3: Panopticon API Functions

Panopticon (12.7) Page 17 of 30

KVPanopticonGetInterface()

This function is exported by the panopticon shared library. It supplies function pointers to the other
Panopticon functions. When you call KVPanopticonGetInterface(), it assigns the function pointers
to the structure pointed to by panopticonInterface.

Syntax

KVPanopticonError KVPanopticonGetInterface(KVPanopticonInterface* const
panopticonInterface);

Arguments

panopticonInterface A pointer to the structure KVPanopticonInterface.

Youmust initialize the KVStructHead structure by using themacro
KVStructInit. This process sets the version number of the Panopticon
API, and supports binary compatibility with future releases.

Returns

If the function was successful, it returns KVP_Success. Otherwise, it returns a KVPanopticonError
value describing the problem.

Discussion

When you load this function from the Panopticon shared library, you can use the typedef KV_
PANOPTICON_GET_INTERFACE, which is provided in panopticon.h.

Panopticon ProgrammingGuide
Chapter 3: Panopticon API Functions

Panopticon (12.7) Page 18 of 30

shutdown()

This function terminates a Panopticon session that was initialized by init(), and frees allocated system
resources. Youmust call this function when the Panopticon context is no longer required.

Syntax

KVPanopticonError shutdown(KVPanopticonContext** const context);

Arguments

context A pointer to a pointer of type KVPanopticonContext, initialized by calling init(). This
function sets the target to NULL to prevent accidental reuse of the context value that it
contained, whichmust not be subsequently passed to any Panopticon function.

Returns

If the function was successful, it returns KVP_Success. Otherwise, it returns a KVPanopticonError
value describing the problem.

Discussion

l The context value pointed to by context can be NULL.

Panopticon ProgrammingGuide
Chapter 3: Panopticon API Functions

Panopticon (12.7) Page 19 of 30

Chapter 4: Panopticon Structures

This section describes the data structures used by the Panopticon API.

• KVPanopticonEncryptionInfo 21
• KVPanopticonInterface 22
• KVRMSCredentials 23
• KVStructHead 24

Panopticon (12.7) Page 20 of 30

KVPanopticonEncryptionInfo

This structure is filled out by encryptionInfo(), and provides information about what type of encryption
the document has, and the level of support Panopticon provides for that document.

typedef struct tag_KVPanopticonEncryptionInfo
{

KVStructHeader;
KVPanopticonEncryption encryptionType;
KVPanopticonDecryptionSupport decryptionSupport;

} KVPanopticonEncryptionInfo;

Member Descriptions

KVStructHeader The KeyView version of the structure. See KVStructHead, on page 24.

encryptionType A KVPanopticonEncryption value describing the type of encryption used to
protect the document.

decryptionSupport A KVPanopticonDecryptionSupport value describing the level of support
Panopticon provides for this document.

Panopticon (12.7) Page 21 of 30

KVPanopticonInterface

This structure contains pointers to the Panopticon API functions. You can set the pointers by calling
the KVPanopticonGetInterface() function.

typedef struct tag_KVPanopticonInterface
{

KVStructHeader;
KV_PANOPTICON_INIT init;
KV_PANOPTICON_CONFIGURE_RMS configureRMS;
KV_PANOPTICON_ENCRYPTION_INFO encryptionInfo;
KV_PANOPTICON_DECRYPT_FILE decryptFile;
KV_PANOPTICON_SHUTDOWN shutdown;

} KVPanopticonInterface;

Member Descriptions

KVStructHeader The KeyView version of the structure. See KVStructHead, on page 24.

The subsequent members of this structure are the pointers to the API functions. See Panopticon
API Functions, on page 12.

Panopticon (12.7) Page 22 of 30

KVRMSCredentials

This structure defines each element of the RMS credentials. This structure is defined in
kvdecryptionsettings.h.

typedef struct _KVRMSCredentials
{

KVStructHeader;

const char* tenantID;
const char* clientID;
const char* clientSecret;

}
KVRMSCredentials;

Member Descriptions

KVStructHeader The Panopticon version of the structure. See KVStructHead, on the next page.

tenantID The tenant ID of the domain.

clientID The client ID of the application.

clientSecret The client secret for the application.

For Panopticon to access the protected contents of Microsoft Azure Rights Management System
(RMS) protected files, your end-user applicationmust be registered on the relevant Azure domain. For
more information about how to register an app, refer to theMicrosoft
documentation: https://docs.microsoft.com/en-us/azure/active-directory/develop/quickstart-register-
app.

After you register an application, you can find the client and tenant IDs in the Azure Portal, in the
Overview section. You can find the client secret in the Certificates & Secrets section.

CAUTION: This information is linked to the domain itself, rather than to a specific user. Providing
this information allows Panopticon to access the contents of all files protected by this domain.
Therefore youmust handle these three pieces of information securely.

Panopticon (12.7) Page 23 of 30

https://docs.microsoft.com/en-us/azure/active-directory/develop/quickstart-register-app
https://docs.microsoft.com/en-us/azure/active-directory/develop/quickstart-register-app

KVStructHead

This structure contains the current KeyView version number, and is the first member of other
structures. It enables Micro Focus tomodify the structures in future releases, but to maintain backward
compatibility. Before you initialize a structure that contains the KVStructHead structure, use themacro
KVStructInit to initialize KVStructHead. The structure andmacro are defined in kvstructhead.h.

typedef struct _KVStructHead
{

WORD version;
WORD size;
DWORD reserved;
void *internal;

}
KVStructHeadRec, *KVStructHead;

Member Descriptions

version The current KeyView version number. This is a symbolic constant (KeyviewVersion)
defined in kvstructhead.h. This constant is updated for each KeyView release.

size The size of the KVStructHeadRec.

reserved Reserved for internal use.

internal Reserved for internal use.

Example

KVPanopticonEncryptionInfo encryptionInfo;
KVStructInit(&encryptionInfo);

Panopticon (12.7) Page 24 of 30

Chapter 5: Enumerated Types

This section provides information on some of the enumerated types used by the Panopticon API.

• ProgrammingGuidelines 25
• KVPanopticonDecryptionSupport 26
• KVPanopticonError 27
• KVPanopticonEncryption 29

Programming Guidelines

In future releases of KeyView Panopticon, some enumerated types might be expanded. For example,
new encryption types might be added to KVPanopticonEncryption, or new error codes might be added
to KVPanopticonError. When you use these expandable types, your codemust ensure binary
compatibility with future releases.

Panopticon (12.7) Page 25 of 30

KVPanopticonDecryptionSupport

typedef enum tag_KVPanopticonDecryptionSupport
{

DecryptionNotSupported,
TextOnlyDecryption,
FullDecryption

} KVPanopticonDecryptionSupport;

Enumerators

DecryptionNotSupported Decryption is not supported

TextOnlyDecryption Panopticon cannot decrypt the file to an unencrypted file. Instead it can
decrypt any text content in the file and write it to a file of the same type
as the original.

FullDecryption Panopticon can decrypt the file.

Panopticon (12.7) Page 26 of 30

KVPanopticonError

This enumerated type defines the type of error generated if Panopticon fails.

typedef enum tag_KVPanopticonError
{

KVP_Success = 0,
KVP_ERR_GeneralError = 1,
KVP_ERR_MemoryError = 2,
KVP_ERR_InvalidArguments = 3,
KVP_ERR_StructureNotInitialised = 4,
KVP_ERR_LicenseInvalid = 5,
KVP_ERR_LicenseExpired = 6,
KVP_ERR_DllNotFound = 7,
KVP_ERR_DllLoadFailed = 8,
KVP_ERR_TempFolderDoesNotExist = 9,
KVP_ERR_CreateTempFileFailed = 10,
KVP_ERR_InputFileNotFound = 11,
KVP_ERR_FormatNotRecognised = 12,
KVP_ERR_ParseEncryptedFileError = 13,
KVP_ERR_WriteDecryptedFileError = 14,
KVP_ERR_CannotCreateOutputFile = 15,
KVP_ERR_DecryptionNotSupported = 16,
KVP_ERR_InvalidConfig = 17,
KVP_ERR_ConnectionFailure = 18,
KVP_ERR_RMS_DecryptionFailed = 100,
KVP_ERR_RMS_NotConfigured = 101,
KVP_ERR_RMS_InvalidFileStructure = 102,
KVP_ERR_RMS_MicrosoftServerError = 103

} KVPanopticonError;

Enumerators

KVP_Success The function completed successfully.

KVP_ERR_GeneralError General error.

KVP_ERR_MemoryError A memory error occurred.

KVP_ERR_InvalidArgument An argument to a Panopticon API function was invalid. For example, a
required pointer was NULL.

KVP_ERR_
StructureNotInitialised

A structure passed to a Panopticon API function was invalid. All
structures containing a KVStructHeadmembermust be initialized with
KVStructInit.

Panopticon (12.7) Page 27 of 30

KVP_ERR_LicenseInvalid The license provided to init() was invalid.

KVP_ERR_LicenseExpired The license provided to init() has expired.

KVP_ERR_DllNotFound A DLL or shared library was not found.

KVP_ERR_DllLoadFailed A DLL or shared library failed to load correctly.

KVP_ERR_
TempFolderDoesNotExist

The specified temp folder does not exist.

KVP_ERR_
CreateTempFileFailed

Panopticon was unable to create a temporary file in the temp folder.

KVP_ERR_
InputFileNotFound

The specified input file was not found.

KVP_ERR_
FormatNotRecognised

Panopticon did not recognize the file format of the specified input.

KVP_ERR_
ParseEncryptedFileError

During text-only decryption, Panopticon was unable to obtain the text
content from the file.

KVP_ERR_
WriteDecryptedFileError

During text-only decryption, Panopticon was unable to write the
decrypted content to a new file.

KVP_ERR_
CannotCreateOutputFile

An output file could not be created at the specified location.

KVP_ERR_
DecryptionNotSupported

Decryption of the specified input file is not supported.

KVP_ERR_InvalidConfig The Panopticon configuration file is invalid.

KVP_ERR_
ConnectionFailure

A required HTTP call was not successful.

KVP_ERR_RMS_
DecryptionFailed

Decryption of the RMS encrypted file failed.

KVP_ERR_RMS_
NotConfigured

decryptFile() was called on an RMS encrypted file, without credentials
being supplied through configureRMS().

KVP_ERR_RMS_
InvalidFileStructure

The structure of the input file was not valid.

KVP_ERR_RMS_
MicrosoftServerError

Microsoft Server Error (Request returned HTTP 500).

Panopticon ProgrammingGuide
Chapter 5: Enumerated Types

Panopticon (12.7) Page 28 of 30

KVPanopticonEncryption

This enumerated type defines the type of encryption used to protect the file.

typedef enum tag_KVPanopticonEncryption
{

NoEncryptionDetected,
OtherEncryption,
RMSEncryption,
SecloreEncryption

} KVPanopticonEncryption;

Enumerators

NoEncryptionDetected No encryption was detected.

OtherEncryption The file is encrypted.

RMSEncryption The file is encrypted using RMS.

SecloreEncryption The file is encrypted using Seclore encryption.

Panopticon ProgrammingGuide
Chapter 5: Enumerated Types

Panopticon (12.7) Page 29 of 30

Send documentation feedback

If you have comments about this document, you can contact the documentation team by email. If an
email client is configured on this system, click the link above and an email window opens with the
following information in the subject line:

Feedback on Panopticon Programming Guide (Micro Focus Panopticon 12.7)

Add your feedback to the email and click Send.

If no email client is available, copy the information above to a new message in a webmail client, and
send your feedback to swpdl.idoldocsfeedback@microfocus.com.

We appreciate your feedback!

Panopticon (12.7) Page 30 of 30

mailto:swpdl.idoldocsfeedback@microfocus.com?subject=Feedback on Panopticon Programming Guide (Micro Focus Panopticon 12.7)

	Chapter 1: Introduction
	Overview
	Features
	Known Limitations
	Requirements
	Supported Platforms
	Supported Compilers
	Software Dependencies

	Windows Installation
	UNIX Installation
	Package Contents

	Chapter 2: Use Panopticon
	Decrypt Microsoft Azure RMS Protected Files
	Configure the Proxy for RMS
	Panopticon Sample Program

	Chapter 3: Panopticon API Functions
	configureRMS()
	Syntax
	Arguments
	Returns

	decryptFile()
	Syntax
	Arguments
	Returns
	Discussion

	encryptionInfo()
	Syntax
	Arguments
	Returns

	init()
	Syntax
	Arguments
	Returns

	KVPanopticonGetInterface()
	Syntax
	Arguments
	Returns
	Discussion

	shutdown()
	Syntax
	Arguments
	Returns
	Discussion

	Chapter 4: Panopticon Structures
	KVPanopticonEncryptionInfo
	Member Descriptions

	KVPanopticonInterface
	Member Descriptions

	KVRMSCredentials
	Member Descriptions

	KVStructHead
	Member Descriptions
	Example

	Chapter 5: Enumerated Types
	Programming Guidelines
	KVPanopticonDecryptionSupport
	Enumerators

	KVPanopticonError
	Enumerators

	KVPanopticonEncryption
	Enumerators

	Send documentation feedback

