

Artix 5.6.4

Java Router, Programmer’s Guide

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK

http://www.microfocus.com

Copyright © Micro Focus 2017. All rights reserved.

MICRO FOCUS, the Micro Focus logo and Micro Focus Licensing are trademarks or
registered trademarks of Micro Focus IP Development Limited or its subsidiaries or
affiliated companies in the United States, United Kingdom and other countries.
All other marks are the property of their respective owners.

2017-02-23

Artix Java Router, Programmer’s Guide iii

Contents

Preface ... v
Open Source Project Resources .. v
Document Conventions ... v
The Artix ESB Documentation Library vi
Further Information and Product Support vi

Information We Need ... vii
Contact information ... vii

Understanding Message Formats 1
Exchanges .. 1
Messages .. 2
Built-In Type Converters ... 6

Implementing a Processor 9
Processing Models .. 9
Implementing a Simple Processor ... 10
Implementing a Delegate Processor .. 11
Accessing Message Content ... 13
The ExchangeHelper Class ... 14

Type Converters ... 17
Type Converter Architecture .. 17
Implementing a Custom Type Converter 19

Implementing a Component 21
Component Architecture .. 21

Factory Patterns for a Component ... 21
Using a Component in a Route .. 23
Consumer Patterns .. 24
Asynchronous Processing ... 27

How to Implement a Component .. 29
Auto-Discovery and Configuration ... 31

Setting Up Auto-Discovery .. 31
Configuring a Component ... 32

Component Interface ... 35
The Component Interface .. 35
Implementing the Component Interface 36

Endpoint Interface ... 41
The Endpoint Interface .. 41
Implementing the Endpoint Interface 44

Consumer Interface .. 51
The Consumer Interface .. 51

iv Artix Java Router, Programmer’s Guide

Implementing the Consumer Interface 55

Producer Interface ... 61
The Producer Interface ... 61
Implementing the Producer Interface 63

Exchange Interface .. 67
The Exchange Interface .. 67
Implementing the Exchange Interface 71

Message Interface ... 73
The Message Interface .. 73
Implementing the Message Interface 75

Artix Java Router, Programmer’s Guide v

Preface
Open Source Project Resources

Apache Incubator CXF
 Web site: http://cxf.apache.org/

 User's list: <user@cxf.apache.org>

Apache Tomcat
 Web site: http://tomcat.apache.org/

 User's list: <users@tomcat.apache.org>

Apache ActiveMQ
 Web site: http://activemq.apache.org/

 User's list: <users@activemq.apache.org>

Apache Camel
 Web site: http://camel.apache.org

 User's list: <users@camel.apache.org>

Document Conventions
Typographical conventions
This book uses the following typographical conventions:

fixed width Fixed width (Courier New font) in normal text
represents portions of code and literal names
of items such as classes, functions, variables,
and data structures. For example, text might
refer to the javax.xml.ws.Endpoint class.

Constant width paragraphs represent code
examples or information a system displays
on the screen. For example:
import java.util.logging.Logger;

Fixed width

italic
Fixed width italic words or characters in code
and commands represent variable values you
must supply, such as arguments to
commands or path names for your particular
system. For example:
% cd /users/YourUserName

Italic Italic words in normal text represent
emphasis and introduce new terms.

vi Artix Java Router, Programmer’s Guide

Bold Bold words in normal text represent
graphical user interface components such as
menu commands and dialog boxes. For
example: the User Preferences dialog.

Keying conventions
This book uses the following keying conventions:

No prompt When a command’s format is the same for
multiple platforms, the command prompt is
not shown.

% A percent sign represents the UNIX command
shell prompt for a command that does not
require root privileges.

A number sign represents the UNIX
command shell prompt for a command that
requires root privileges.

> The notation > represents the MS-DOS or
Windows command prompt.

... Horizontal or vertical ellipses in format and
syntax descriptions indicate that material has
been eliminated to simplify a discussion.

[] Brackets enclose optional items in format and
syntax descriptions.

{ } Braces enclose a list from which you must
choose an item in format and syntax
descriptions.

| In format and syntax descriptions, a vertical
bar separates items in a list of choices
enclosed in {} (braces).

The Artix ESB Documentation Library
For information on the organization of the Artix ESB library, the
document conventions used, and where to find additional
resources, see Using the Artix ESB Library.

Further Information and Product Support
Additional technical information or advice is available from
several sources.

The product support pages contain a considerable amount of
additional information, such as:

 The WebSync service, where you can download fixes and
documentation updates.

Artix Java Router, Programmer’s Guide vii

 The Knowledge Base, a large collection of product tips and
workarounds.

 Examples and Utilities, including demos and additional
product documentation.

Note:
Some information may be available only to customers who
have maintenance agreements.

If you obtained this product directly from Micro Focus, contact
us as described on the Micro Focus Web site,
http://www.microfocus.com. If you obtained the product from
another source, such as an authorized distributor, contact
them for help first. If they are unable to help, contact us.

Information We Need

However you contact us, please try to include the information
below, if you have it. The more information you can give, the
better Micro Focus SupportLine can help you. But if you don't
know all the answers, or you think some are irrelevant to
your problem, please give whatever information you have.

 The name and version number of all products that you
think might be causing a problem.

 Your computer make and model.

 Your operating system version number and details of any
networking software you are using.

 The amount of memory in your computer.

 The relevant page reference or section in the
documentation.

 Your serial number. To find out these numbers, look in the
subject line and body of your Electronic Product Delivery
Notice email that you received from Micro Focus.

Contact information

Our Web site gives up-to-date details of contact numbers and
addresses.

Additional technical information or advice is available from
several sources.

The product support pages contain considerable additional
information, including the WebSync service, where you can
download fixes and documentation updates. To connect, enter
http://www.microfocus.com in your browser to go to the Micro
Focus home page.

viii Artix Java Router, Programmer’s Guide

If you are a Micro Focus SupportLine customer, please see
your SupportLine Handbook for contact information. You can
download it from our Web site or order it in printed form from
your sales representative. Support from Micro Focus may be
available only to customers who have maintenance
agreements.

You may want to check these URLs in particular:

 http://www.microfocus.com/products/corba/artix.aspx
(trial software download and Micro Focus Community files)

 https://supportline.microfocus.com/productdoc.aspx
(documentation updates and PDFs)

To subscribe to Micro Focus electronic newsletters, use the
online form at:

http://www.microfocus.com/Resources/Newsletters/infocus/newslett
er-subscription.asp

Artix Java Router, Programmer’s Guide 1

Understanding
Message Formats
Before you can start to program effectively with Java Router, you
need to have a clear understanding of how messages and
message exchanges are modelled. Because Java Router needs
the capability to process many different kinds of message
format, the basic message type is designed to have an abstract
format. Various programming APIs are provided, however, that
enable you to access and transform the data formats that underly
message bodies and message headers.

Exchanges
Exchange objects provide the primary means of accessing
messages in Java Router: an exchange object is effectively a
wrapper that encapsulates a set of related messages. For
example, you can access In, Out, and Fault messages using the
getIn(), getOut(), and getException() accessors defined on
Exchange. An important feature of exchanges in Java Router is
that they support lazy creation of messages. This can provide a
significant optimization in the case of routes that do not require
explicit access to messages.

Figure 1. Exchange Object Passing through a Route

Figure 1shows an exchange object passing through a route. In
the context of a route, an exchange object gets passed as the
argument of the Processor.process() method, which means that
the exchange object is directly accessible to the source
endpoint, the target endpoint, and all of the processors in
between.

The Exchange interface
The org.apache.camel.Exchange interface defines methods to
access In, Out and Fault messages, as shown in Example 1.

2 Artix Java Router, Programmer’s Guide

Example 1. Exchange Methods

For a complete description of the methods in the Exchange
interface, see Exchange Interface.

Messages
Message objects represent messages using the following abstract
model:

 Message body.

 Message headers.

 Message attachments.

The message body and the message headers can be of arbitrary
type (they are declared as type Object) and the message
attachments are declared to be of type
javax.activation.DataHandler
(http://docs.oracle.com/javase/6/docs/api/javax/activation
/DataHandler.html), which can contain arbitrary MIME types. If
you need to obtain a concrete representation of the message
contents, you can convert the body and headers to another type
using the type converter mechanism (and also, possibly, using
the marshalling and unmarshalling mechanism).

The Message interface
The org.apache.camel.Message interface defines methods to access
the message body, message headers and message
attachments, as shown in Example 2.

// Java
Message getIn();
void setIn(Message in);

Message getOut();
<T> getOut(Class <T> type);
void setOut(Message out);

Exception getException();
<T> T getException (Class<T> type);
void setException(Throwable t);

Artix Java Router, Programmer’s Guide 3

Example 2. Message Interface

For a complete description of the methods in the Message
interface, see The Message Interface.

Lazy creation of bodies, headers, and attachments
Java Router supports lazy creation of bodies, headers, and
attachments. This means that the objects that represent a
message body, a message header, or a message attachment
are not created until the moment they are needed.

For example, consider the following route that accesses the
foo message header from the In message:

In this route, if we assume that the component referenced by
SourceURL supports lazy creation, the In message headers are
not actually parsed until the header("foo") call is executed. At
that point, the underlying message implementation parses the
headers and populates the header map. The message body is
not parsed until you reach the end of the route, at the
to("TargetURL") call. At that point, the body is converted into the
format required for writing to the target endpoint, TargetURL.

By waiting until the last possible moment before populating the
bodies, headers, and attachments, you can ensure that
unnecessary type conversions are avoided. In some cases, you
can avoid parsing altogether: for example, if a route contains no
explicit references to message headers, a message could
traverse the route without parsing the headers at all.

Whether or not lazy creation is implemented in practice
depends on the underlying component implementation. In
general, lazy creation is valuable for those cases where creating
a message body, a message header, or a message attachment is
an expensive operation. If the body is left in the form of a raw

// Java
Object getBody();
<T> T getBody(Class<T> type);
void setBody(Object body);
<T> void setBody(Object body, Class<T> type);

Object getHeader(String name);
<T> T getHeader(String name, Class<T> type);
void setHeader(String name, Object value);
Object removeHeader(String name);
Map<String, Object> getHeaders();
void setHeaders(Map<String, Object> headers);

javax.activation.DataHandler getAttachment(String id);
java.util.Map<String, javax.activation.DataHandler> getAttachments();
java.util.Set<String> getAttachmentNames();
void addAttachment(String id, javax.activation.DataHandler content)

from("SourceURL").filter(header("foo").isEqualTo("bar")).to
 ("TargetURL");

4 Artix Java Router, Programmer’s Guide

buffer, it is probably not an expensive operation; on the other
hand, parsing headers always imposes a bit of an overhead. For
details about implementing a message type that supports lazy
creation, see Implementing the Message Interface.

Initial message format
The initial format of an In message is determined by the source
endpoint and the initial format of an Out message is determined
by the target endpoint. If lazy creation is supported by the
underlying component, the message will remain unparsed until
it is accessed explicitly by the application. Most Java Router
components would create the message body in a relatively raw
form—for example, representing it using types such as byte[],
ByteBuffer, InputStream, or OutputStream. This ensures that the
overhead required for creating the initial message is minimal.
Where more elaborate message formats are required, however,
components usually rely on type converters or marshalling
processors.

Type converters
Normally, it does not matter very much what the initial format of
the message is, because you can easily convert a message from
one format to another using the built-in type converters (see
Built-In Type Converters). There are various methods in the Java
Router API that expose type conversion functionality. For
example, the convertBodyTo(Class type) method can be inserted
into a route in order to convert the body of an In message, as
follows:

from("SourceURL").convertBodyTo(String.class).to("TargetURL");

Where the body of the In message is converted to a
java.lang.String. The following example shows how to append a
string to the end of the In message body:

Where the message body is converted to a string format before
appending a string to the end. As a matter of fact, it is not
necessary to convert the message body explicitly in this
example. You could also write simply:

Where the append() method automatically converts the
message body to a string format before appending its
argument.

Type conversion methods in Message
The org.apache.camel.Message interface exposes some methods
that perform type conversion explicitly:

 getBody(Class<T> type)—return the message body as type, T.

from("SourceURL").setBody(bodyAs(String.class).append("My
Special Signature")).to("TargetURL");

from("SourceURL").setBody(body().append("My Special
Signature")).to("TargetURL");

Artix Java Router, Programmer’s Guide 5

 getHeader(String name, Class<T> type)—return the named
header value as type, T.

For the complete list of supported conversion types, see Built-In
Type Converters.

Converting to XML
In addition to supporting conversion between simple types
(such as byte[], ByteBuffer, String, and so on), the built-in type
converter also supports conversion to XML formats. For
example, you can convert a message body to the
org.w3c.dom.Document type. This conversion is considerably more
expensive than the simple conversions, because it involves
parsing the entire message and creating a tree of nodes to
represent the XML document structure. You can convert to the
following XML document types:

 org.w3c.dom.Document

 javax.xml.transform.sax.SAXSource

XML type conversions necessarily have narrower applicability than
the simpler conversions: not every message body conforms to
an XML structure, so you have to take into account that this
type conversion might fail. On the other hand, there are many
scenarios where a router deals exclusively with XML message
types.

Marshalling and unmarshalling
In general, marshalling involves converting a high-level format
to a low-level format and unmarshalling involves converting a
low-level format to a high-level format. The following two
processors are used to perform marshalling or unmarshalling in
a route:

 marshal()

 unmarshal()

For example, to read a serialized Java object from a file and
unmarshal it into a Java object, you could use the following
route definition:

For details of how to marshal and unmarshal various data
formats, see Transforming Message Content in the Java
Router, Defining Routes guide.

Final message format
When an In message reaches the end of a route, the target
endpoint must be able to convert the message body into a
format that can be written to the physical endpoint (the same

from("file://tmp/appfiles/serialized").unmarshal().
serialization().<FurtherProcessing>.to("TargetURL");

6 Artix Java Router, Programmer’s Guide

applies to Out messages that arrive back at the source
endpoint). This conversion is usually performed implicitly, using
the Java Router type converter. Typically, this involves converting
from a low-level format to another low-level format. For
example, converting from a byte[] array to an InputStream type.

Built-In Type Converters
This section describes the conversions supported by the master
type converter. While the conversions described here are built
into the Java Router core, it is also possible to extend the type
conversion with custom converters (see Type Converters).

Usually, the type converter is called indirectly through
convenience functions, such as Message.getBody(Class<T> type)
or Message.getHeader(String name, Class<T> type). It is also
possible to invoke the master type converter directly. For
example, if you have an exchange object, exchange, you could
convert a given value to a String as follows:

Basic type converters
Java Router provides built-in type converters to perform
conversions to and from the following basic types:

 java.io.File

 String

 byte[] and java.nio.ByteBuffer

 java.io.InputStream and java.io.OutputStream

 java.io.Reader and java.io.Writer

 java.io.BufferedReader and java.io.BufferedWriter

 java.io.StringReader

Not all conversions amongst these types are supported, however.
The built-in converter is focused mainly on providing
conversions from the File and String types. The File type can be
converted to any of the preceding types, apart from Reader,
Writer, and StringReader. The String type can be converted to
File, byte[], ByteBuffer, InputStream, or StringReader. The
conversion from String to File works by interpreting the string
as a file name. The trio of String, byte[], and ByteBuffer are
completely inter-convertible.

// Java
org.apache.camel.TypeConverter tc = exchange.getContext().get
TypeConverter();
String str_value = tc.convertTo(String.class, value);

Artix Java Router, Programmer’s Guide 7

Collection type converters
Java Router provides built-in type converters to perform
conversions to and from the following collection types:

 Object[]

 java.util.Set

 java.util.List

All permutations of conversions between the preceding
collection types are supported.

Map type converters
Java Router provides built-in type converters to perform
conversions to and from the following map types:

 java.util.Map

 java.util.HashMap

 java.util.Hashtable

 java.util.Properties

In addition to converting amongst themselves, the preceding
map types can also be converted into a set, of java.util.Set type,
where the set elements are of MapEntry<K,V> type.

DOM type converters
You can perform type conversions to the following Document
Object Model (DOM) types:

 org.w3c.dom.Document—convertible from byte[], String,
java.io.File, and java.io.InputStream.

 org.w3c.dom.Node.

 javax.xml.transform.dom.DOMSource—convertible from
String.

 javax.xml.transform.Source—convertible from byte[] and
String.

All permutations of conversions between the preceding DOM
types are supported.

SAX type converters
You can also perform conversions to the
javax.xml.transform.sax.SAXSource type, which supports the SAX
event-driven XML parser (see the SAX Web site at
http://www.saxproject.org/ for details). You can convert to
SAXSource from the following types: String, InputStream, Source,
StreamSource, and DOMSource.

8 Artix Java Router, Programmer’s Guide

Custom type converters
Java Router also enables you to implement your own custom type
converters. For details of how to implement a custom type
converter, see Type Converters.

Artix Java Router, Programmer’s Guide 9

Implementing a
Processor
Java Router allows you to implement a custom processor, which
you can then insert into a route in order to perform operations on
exchange objects as they pass through the route.

Processing Models
Before you start to implement a processor, you need to consider
how the processor is meant to fit into a Java Router route. The
most important processing models are, as follows:

 Pipelining model.

 Chaining model.

Pipelining model
The pipelining model describes the way in which processors are
arranged in Pipes and Filters in the Implementing Enterprise
Integration Patterns guide. This is the most common way to
process a sequence of endpoints (a producer endpoint is just a
special type of processor). When the processors are arranged in
this way, the exchange's In and Out messages are processed as
shown in Figure 2.

Figure 2. Pipelining Model

The processors in the pipeline look like services, where the In
message is analogous to a request and the Out message is
analogous to a reply. In fact, in a realistic pipeline, the nodes in
the pipeline are often implemented by Web service endpoints
(for example, using the CXF component).

For example, the following Java DSL route shows an example of
a pipeline constructed from a sequence of two processors,
ProcessorA, ProcessorB, and a producer endpoint, TargetURI:

from(SourceURI).pipeline(ProcessorA, ProcessorB, TargetURI);

10 Artix Java Router, Programmer’s Guide

Chaining model
The chaining model describes an alternative model for arranging
processors in a route. In this model, the processors are
arranged in a linked list or chain, where each processor calls the
process() method of the next processor in the chain. When the
processors are arranged in this way, the exchange's In and Out
messages are normally processed as shown in Figure 3.

Figure 3. Chaining Model

Because each processor processes the In message before
delegating the exchange to the next node, the In message gets
processed in the order shown in Figure 3 (left to right). In
addition, because each processor process the Out message
after delegating the exchange to the next node, the Out
message gets processed in the reverse order (right to left).

Implementing a Simple Processor
If you need to write code that executes before an exchange is
delegated to the next processor, you can implement a simple
processor, as explained in this section. This kind of processor is
suitable for use in a pipeline route.

Processor interface
Example 3 shows the definition of the
org.apache.camel.Processor interface, which must be
implemented by a simple processor. The interface defines a
single method, process(), which processes the exchange object.

Example 3. Processor Interface

Implementing the Processor interface
You implement a simple processor by inheriting from
org.apache.camel.Processor and implementing the process()
method. Example 4 shows the outline of a simple processor
implementation.

// Java
package org.apache.camel;

public interface Processor {

void process(Exchange exchange) throws Exception;
}

Artix Java Router, Programmer’s Guide 11

Example 4. Simple Processor Implementation

Where all of the code in the body of the process() method gets
executed before the exchange object is delegated to the next
processor in the chain. Typically, this means that you cannot
access the reply (if any) from the endpoint of the route,
because the exchange object does not reach the end of the route
until after the exchange is delegated to the next processor in the
route. This limitation can be overcome by implementing a
delegate processor instead—see Implementing a Delegate
Processor.

For examples of how to access the message body and header
values inside a simple processor, see Accessing Message
Content.

Inserting the simple processor into a route
To insert a simple processor into a route, use the process() DSL
command. Create an instance of your custom processor and
then pass this instance as an argument to the process() method,
as follows:

Implementing a Delegate Processor
If you need to write code that executes both before and after an
exchange is delegated to the next processor, you can implement
a delegate processor, as explained in this section. Delegate
processors conform to the chaining model for building routes.

DelegateProcessor class
Example 5 shows a partial outline of the
org.apache.camel.processor.DelegateProcessor class. The main
difference between the DelegateProcessor class and the Processor
class is that the DelegateProcessor class has a bean property,
processor, which holds a reference to the next processor in the
chain. This makes it possible for you to call the next processor
explicitly when you write the code for the process() method. The

// Java
import org.apache.camel.Processor;

public class MyProcessor implements Processor {
 public MyProcessor() { }

public void process(Exchange exchange) throws Exception
{

// Insert code that gets executed *before* delegating

// to the next processor in the chain.
...

}
}

// Java
org.apache.camel.Processor myProc = new MyProcessor();

from("SourceURL").process(myProc).to("TargetURL");

12 Artix Java Router, Programmer’s Guide

most convenient way to call the next processor in the chain is to
call the processNext() method.

Example 5. DelegateProcessor Class
package org.apache.camel.processor;

import org.apache.camel.Exchange;
import org.apache.camel.Processor;
import org.apache.camel.Navigate;
import org.apache.camel.impl.ServiceSupport;
import org.apache.camel.util.ServiceHelper;

public class DelegateProcessor extends ServiceSupport implements
 org.apache.camel.DelegateProcessor, Processor, Navigate<Processor> {

protected Processor processor;

public DelegateProcessor() {
}

public Processor getProcessor() {
 return processor;
}

public void setProcessor(Processor processor) { this.processor =

processor;
}
...
public void process(Exchange exchange) throws Exception

{
 processNext(exchange);

}
...
protected void processNext(Exchange exchange) throws Exception {

if (processor != null) { processor.process(exchange);
}

}
}

Where the setProcessor() method enables the route builder to
inject a reference to the next processor in the chain and the
process() method must be overridden by your custom delegate
processor class.

Extending the DelegateProcessor class
You implement a delegate processor by extending
DelegateProcessor and implementing the process() method.
Example 6 shows the outline of a delegate processor
implementation.

Artix Java Router, Programmer’s Guide 13

Example 6. Delegate Processor Implementation

Where the process() method contains code that gets executed
before delegating to the next processor in the chain, as well as
code that gets executed after delegating. If the processors in your
route are chained according to the chaining model (see Chaining
model), this means that you can access request messages
before the call to processNext() and access reply messages after
the call.

For examples of how to access the message body and header
values inside a simple processor, see Accessing Message
Content.

Inserting the delegate processor into a route
To insert a delegate processor into a route, use the intercept()
DSL command. Create an instance of your custom processor
and then pass this instance as an argument to the intercept()
method, as follows:

Accessing Message Content
Accessing message headers
Message headers typically contain the most useful message
content from the perspective of a router, because headers are
often intended to be processed in a router service. To access
header data, first of all obtain the message from the exchange
object (for example, using Exchange.getIn()) and then use the
Message interface to retrieve the individual headers (for example,
using Message.getHeader()).

// Java
import org.apache.camel.processor.DelegateProcessor;

public class MyDelegateProcessor extends DelegateProcessor {

public MyProcessor() { }

public void process(Exchange exchange) throws Exception
{

// Insert code that gets executed *before* delegating

// to the next processor in the chain.
...
processNext(exchange);

// Insert code that gets executed *after* delegating
// to the next processor in the chain.
...

}
}

// Java
org.apache.camel.processor.DelegateProcessor myProc = new
MyDelegateProcessor();

from("SourceURL").intercept(myProc).to("TargetURL");

14 Artix Java Router, Programmer’s Guide

Example 7 shows an example of a custom processor that access
the value of a header named Authorization (which, for example,
might represent HTTP Basic Authentication credentials). This
example uses the ExchangeHelper.getMandatoryHeader() method,
which saves you having to test for a null header value.

Example 7. Accessing an Authorization Header

For full details of the Message interface, see Messages.

Accessing the message body
You can also access the message body. For example, to append
a string to the end of the In message, you could use the
processor shown in Example 8.

Example 8. Accessing the Message Body

Accessing message attachments
You can access a message's attachments using either the
Message.getAttachment() method or the Message.getAttachments()
method. See Example 2 for more details.

The ExchangeHelper Class
The org.apache.camel.util.ExchangeHelper
(http://camel.apache.org/maven/current/camel-
core/apidocs/org/apache/camel/util/ExchangeHelper.html)

class is a Java Router utility class that provides methods that
typically come in useful when implementing a processor.

Resolve an endpoint
The static resolveEndpoint() method is one of the most useful
methods in the ExchangeHelper class, because you can use it
inside a processor to create a new Endpoint instance on the fly.

// Java
import org.apache.camel.*;
import org.apache.camel.util.ExchangeHelper;

public class MyProcessor implements Processor {
 public void process(Exchange exchange) {

String auth = ExchangeHelper.getMandatoryHeader(exchange,
"Authorization", String.class);

// process the authorization string...
// ...

}
}

// Java
import org.apache.camel.*;
import org.apache.camel.util.ExchangeHelper;

public class MyProcessor implements Processor {

public void process(Exchange exchange) {
Message in = exchange.getIn();
in.setBody(in.getBody(String.class) + " World!");

}
}

Artix Java Router, Programmer’s Guide 15

The first argument to resolveEndpoint() is an exchange instance
and the second argument is usually an endpoint URI string. For
example, given an exchange instance, exchange, you could create
a new file endpoint as follows:

Wrapping the exchange accessors
The ExchangeHelper class provides several static methods of the
form getMandatoryBeanProperty(), which wrap the corresponding
getBeanProperty() methods on the Exchange class. The essential
difference between them is that the original getBeanProperty()
accessors return null, if the corresponding property is
unavailable, whereas the getMandatoryBeanProperty() wrapper
methods throw a Java exception. The following wrapper
methods are implemented in ExchangeHelper:

Testing the exchange pattern
There are several different exchange patterns for which an
exchange object is capable of holding an In message. Likewise,
several different exchange patterns are compatible with

public final class ExchangeHelper {
...
@SuppressWarnings({"unchecked" })
public static <E extends Exchange> Endpoint<E>

 resolveEndpoint(E exchange, Object value)
throws NoSuchEndpointException { ... }

...
}

// Java
Endpoint file_endp = ExchangeHelper.resolveEndpoint(exchange,
"file://tmp/messages/in.xml");

public final class ExchangeHelper {
...
public static <T> T getMandatoryProperty(Exchange exchange,

String propertyName, Class<T> type)
throws NoSuchPropertyException { ... }

public static <T> T getMandatoryHeader(Exchange exchange,
String propertyName, Class<T> type)

throws NoSuchHeaderException { ... }

public static Object getMandatoryInBody(Exchange exchange)

throws InvalidPayloadException { ... }

public static <T> T getMandatoryInBody(Exchange exchange,
Class<T> type)

throws InvalidPayloadException { ... }

public static Object getMandatoryOutBody(Exchange exchange)

throws InvalidPayloadException { ... }

public static <T> T getMandatoryOutBody(Exchange exchange,
Class<T> type)

throws InvalidPayloadException { ... }
...

}

16 Artix Java Router, Programmer’s Guide

holding an Out message. To provide a quick way of checking
whether or not an exchange object is capable of holding an Out
message, the ExchangeHelper class provides the following
methods:

Get the In message's MIME content type
If you want to find out the MIME content type of the exchange's
In message, you can access it quickly by calling
ExchangeHelper.getContentType(exchange). To implement this, the
ExchangeHelper looks up the value of the In message's Content-
Type header (hence, this method relies on the underlying
component to populate the header value).

public final class ExchangeHelper {
...

public static boolean isOutCapable(Exchange exchange) {

... }
...

}

Artix Java Router, Programmer’s Guide 17

Type Converters
Java Router has a built-in type conversion mechanism, which is
mainly used for the purpose of converting message bodies and
message headers to different types. This chapter explains how to
extend the type conversion mechanism by adding your own
custom converter methods.

Type Converter Architecture
This section describes the overall architecture of the type
converter mechanism, which you need to understand, if you are
going to write a custom type converter. If all you want to do is
use the build-in type converters, see Understanding Message
Formats instead.

TypeConverter interface
Example 9 shows the definition of the
org.apache.camel.TypeConverter interface, which all type converter
classes must implement.

Example 9. TypeConverter Interface

Master type converter
The Java Router type converter mechanism follows a
master/slave pattern. There are many slave type converters,
which are each capable of performing a limited number of type
conversions, and a single master type converter, which
aggregates the type conversions performed by the slaves. That
is, the master type converter acts as a front-end for the slave
type converters: when you request the master to perform a type
conversion, it selects the appropriate slave and delegates the
conversion task to the slave.

For users of the type conversion mechanism, the master type
converter is the most important. It provides the entry point for
accessing the conversion mechanism. While starting up, Java
Router automatically associates a master type converter
instance with the CamelContext object. Hence, to obtain a
reference to the master type converter, you can call the
CamelContext.getTypeConverter() method. For example, if you have
an exchange object, exchange, you could obtain a reference to
the master type converter as follows:

// Java
package org.apache.camel;

public interface TypeConverter {

<T> T convertTo(Class<T> type, Object value);
}

// Java
org.apache.camel.TypeConverter tc = exchange.getContext().get
TypeConverter();

18 Artix Java Router, Programmer’s Guide

Type converter loader
The master type converter uses a type converter loader to populate
the registry of slave type converters. A type converter loader is
any class that implements the TypeConverterLoader interface. In
practice, Java Router currently uses only one kind of type
converter loader, the annotation type converter loader (of
AnnotationTypeConverterLoader type).

Type conversion process
Figure 4 gives an overview of the type conversion process,
showing the steps involved in converting a given data value,
value, to a specified type, toType.

Figure 4. Type Conversion Process

Type conversion steps
The type conversion mechanism proceeds as follows:

1. The CamelContext object holds a reference to the master
TypeConverter instance. Normally, the first step in the
conversion process is to retrieve the master type converter
by calling CamelContext.getTypeConverter().

2. Type conversion is initiated by calling convertTo() on the
master type converter. This method requests the type
converter to convert the data object, value, from its original
type to the type specified by the toType argument.

Artix Java Router, Programmer’s Guide 19

3. Because the master type converter is just a front end for
many different slave type converters, it tries to find the
appropriate slave type converter by checking a registry of
type mappings The registry of type converters is keyed by a
type mapping pair (toType, fromType). If a suitable type
converter is found in the registry, the master type converter
calls the slave's convertTo() method and returns the result.

4. f a suitable type converter cannot be found in the registry, the
master type converter resorts to loading a new type
converter, using the type converter loader.

5. The type converter loader searches the available JAR
libraries on the classpath in order to find a suitable type
converter. Currently, the loader strategy that is used is
implemented by the annotation type converter loader,
which attempts to load a class annotated by the
org.apache.camel.Converter annotation (see Create a
TypeConverter file).

6. If the type converter loader is successful, a new slave type
converter is loaded and entered into the type converter
registry. This type converter is then used to convert the
value argument to the toType type.

7. The converted data value is returned or null, if the
conversion does not succeed.

Implementing a Custom Type Converter
The type conversion mechanism can easily be customized by
adding a new slave type converter. This section describes how
to implement a slave type converter and how to integrate it
with Java Router, so that it is automatically loaded by the
annotation type converter loader.

How to implement a type converter
To implement a custom type converter, perform the following
steps:

1. Implement an annotated converter class.

2. Create a TypeConverter file.

3. Package the type converter.

Implement an annotated converter class
You can implement a custom type converter class using the
@Converter annotation. You must annotate the class itself and
each of the methods intended to perform type conversion. Each
converter method must take a single argument, which defines
the from type, and a non-void return value, which defines the to
type. The type converter loader uses Java reflection to find the

20 Artix Java Router, Programmer’s Guide

annotated methods and integrate them into the type converter
mechanism. Example 10 shows an example of an annotated
converter class that defines a single converter method for
converting from java.io.File to java.io.InputStream.

Example 10. Example of an Annotated Converter Class

Where the toInputStream() method is responsible for performing
the conversion from the File type to the InputStream type.

NOTE: The method name is unimportant, and can be anything you like.
What matters are the argument type, the return type, and the presence
of the @Converter annotation.

Create a TypeConverter file
To enable the discovery mechanism (which is implemented by the
annotation type converter loader) for your custom converter,
create a TypeConverter file at the following location:

META-INF/services/org/apache/camel/TypeConverter

The TypeConverter file must contain a comma-separated list of
package names identifying the packages that contain type
converter classes. For example, if you want the type converter
loader to search the com.YourDomain.YourPackageName package for
annotated converter classes, the TypeConverter file would have the
following contents:

com.YourDomain.YourPackageName

Package the type converter
Normally, you package the type converter as a JAR file
containing the compiled classes of your custom type converters
and the META-INF directory. Put this JAR file on your classpath to
make it available to your Java Router application.

// Java
package com.YourDomain.YourPackageName; import

org.apache.camel.Converter; import java.io.*;

@Converter
public class IOConverter {

private IOConverter() {
}

@Converter
public static InputStream toInputStream(File file) throws

FileNotFoundException {
return new BufferedInputStream(new FileInput

Stream(file));
}

}

Artix Java Router, Programmer’s Guide 21

Implementing a
Component
This chapter provides a general overview of the approaches you
can use to implement a Java Router component.

Component Architecture

Factory Patterns for a Component

A Java Router component consists of a set of classes that are
related to each other through a factory pattern. The primary
entry point to a component is the Component object itself (an
instance of org.apache.camel.Component type). You can use the
Component object as a factory to create Endpoint objects, which in
turn acts as factories for creating Consumer, Producer, and Exchange
objects. These relationships are summarized in Figure 5.

Figure 5. Component Factory Patterns

Component
A component implementation is essentially an endpoint factory.
Hence, the main task of a component implementor is to
implement the Component.createEndpoint() method, which is
responsible for creating new endpoints on demand.

Each kind of component must be associated with a component
prefix that appears in an endpoint URI. For example, the file
component is usually associated with the file prefix, which can
be used in an endpoint URI as follows: file://tmp/messages/input.
When you install a new component in Java Router, you must
define the association between a particular component prefix
and the name of the class that implements the component.

Endpoint
Each endpoint instance encapsulates a particular endpoint URI.
So, every time Java Router encounters a new endpoint URI, it
creates a new endpoint instance.

22 Artix Java Router, Programmer’s Guide

The class that implements an endpoint must inherit from the
org.apache.camel.Endpoint interface. The Endpoint interface
defines the following factory methods:

 createConsumer() and createPollingConsumer()—create a
consumer endpoint, which represents the source endpoint at
the beginning of a route.

 createProducer()—create a producer endpoint, which
represents the target endpoint at the end of a route.

 createExchange()—create an exchange object, which
encapsulates the messages passed up and down the route.

An endpoint object is, therefore, also a factory for creating
consumer endpoints and producer endpoints.

Consumer
A consumer endpoint always appears at the start of a route and it
encapsulates the code responsible for receiving incoming
requests and dispatching outgoing replies (that is, it consumes
requests). Another way of expressing this is to say that a
consumer represents a service.

An implementation of a consumer class must inherit from the
org.apache.camel.Consumer interface. There are, in fact, a
number of different patterns you can follow when
implementing a consumer class, as is described in detail in
Consumer Patterns.

Producer
A producer endpoint always appears at the end of a route and it
encapsulates the code responsible for dispatching outgoing
requests and receiving incoming replies (it produces requests).
Expressed in the terminology of a Service Oriented
Architecture, the producer could also be identified as a service
consumer (beware of the potential for confusion, however, with
the term consumer as it is used in Java Router).

An implementation of a producer class must inherit from the
org.apache.camel.Producer interface. If you want, you can
optionally implement the producer to support an asynchronous
style of processing—see Asynchronous Processing for details.

Exchange
An exchange object encapsulates a related set of messages. For
example, one kind of message exchange is a synchronous
invocation, which consists of a request message and its related
reply.

An implementation of an exchange class must inherit from the
org.apache.camel.Exchange interface. Often a component
implementation can simply use the default implementation,
DefaultExchange. Sometimes it can be useful to customize the

Artix Java Router, Programmer’s Guide 23

exchange implementation—for example, if you want to
associate some extra properties or data with the exchange object.

Message
There are three different kinds of messages, In messages, Out
messages, and Fault messages, all of which are represented by
the same message type, org.apache.camel.Message. You do not
always need to customize the message implementation—the
default implementation, DefaultMessage, is often adequate.

Using a Component in a Route

A Java Router route is essentially a chain of processors, of
org.apache.camel.Processor type. Messages are encapsulated in
an exchange object, E, which gets passed from node to node by
invoking the process() method. The architecture of the
processor chain is illustrated in Figure 6.

Figure 6. Consumer and Producer Instances in a Route

Source endpoint
At the start of the route, you have the source endpoint, which is
represented by an org.apache.camel.Consumer object. The source
endpoint is responsible for accepting incoming request messages
and dispatching replies. When constructing the route, Java
Router creates the appropriate Consumer type based on the
component prefix from the endpoint URI, as described in
Factory Patterns for a Component.

Processors
Each intermediate node in the chain is represented by a
processor object (implementing the org.apache.camel.Processor
interface). You can insert either standard processors (for
example, filter, throttler, delayer, and so on) or insert your own
custom processor implementations.

Target endpoint
At the end of the route you have the target endpoint, which is
represented by an org.apache.camel.Producer object. Because it
comes at the end of a processor chain, the producer is also a
processor object (implementing the org.apache.camel.Processor
interface). The target endpoint is responsible for sending outgoing
request messages and receiving incoming replies. When

24 Artix Java Router, Programmer’s Guide

constructing the route, Java Router creates the appropriate
Producer type based on the component prefix from the endpoint
URI.

Consumer Patterns

As a consequence of its position at the start of a route, the
consumer plays an especially important role. Many important
features of the route are determined by the consumer. For
example, the consumer gets to determine the threading model
for processing the exchanges that pass through the route. The
consumer is also responsible for determining the format of
incoming request messages.

Threading
In order to accommodate different kinds of threading models for
processing incoming requests, Java Router supports a variety of
different consumer implementation patterns: the event-driven
pattern allows the consumer to be driven by an external thread;
the scheduled poll pattern creates a dedicated thread pool to drive
the consumer; and the polling pattern leaves the threading model
undefined.

Alternative consumer patterns
You can implement a consumer based on one of the following
patterns:

 Event-driven pattern.

 Scheduled poll pattern.

 Polling pattern.

Event-driven pattern
In the event-driven pattern, processing of an incoming request
is initiated when another part of the application (typically a
third-party library) calls a method implemented by the
consumer. A good example of an event-driven consumer is the
Java Router JMX component, where events are initiated by the
JMX library, which calls the handleNotification() method to
initiate request processing—see Example 22 for details.

Figure 7 shows an outline of the event-driven consumer
pattern. In this example, it is assumed that processing is
triggered by a call to the notify() method.

Figure 7. Event-Driven Consumer

Artix Java Router, Programmer’s Guide 25

The event-driven consumer processes incoming requests as
follows:

1. The consumer must implement a method to receive the
incoming event (in the figure, this is represented by the
notify() method). The thread that calls notify() is normally a
separate part of the application. Hence, the consumer's
threading policy is externally driven.

For example, in the case of the JMX consumer
implementation, the consumer implements the
NotificationListener.handleNotification() method in order to
receive notifications from JMX. The threads that drive the
consumer processing are created within the JMX layer.

2. In the body of the notify() method, the consumer first
converts the incoming event into an exchange object, E,
and then calls process() on the next processor in the route,
passing the exchange object as its argument.

Scheduled poll pattern
In the scheduled poll pattern, the consumer retrieves incoming
requests by checking at regular time intervals whether or not a
request has arrived. Checking for requests is scheduled
automatically by a built-in timer class, the scheduled executor
service, which is a standard pattern provided by the
java.util.concurrent library. The scheduled executor service is
capable of executing a particular task at timed intervals and it
also manages a pool of threads, which it uses to run the task
instances.

Figure 8 shows an outline of the scheduled poll consumer
pattern.

Figure 8. Scheduled Poll Consumer

The scheduled poll consumer processes incoming requests as
follows:

1. The scheduled executor service has a pool of threads at its
disposal, which it can use to initiate consumer processing.

26 Artix Java Router, Programmer’s Guide

After each scheduled time interval has elapsed, the
scheduled executor service tries to get hold of a free thread
from its pool (there are five threads in the pool by default). If
a free thread is available, it uses the thread to call the poll()
method on the consumer.

2. The consumer's poll() method is intended to trigger
processing of an incoming request. In the body of the poll()
method, the consumer should attempt to retrieve an
incoming message. If no request is available, the poll()
method should return right away.

3. If a request message is available, the consumer inserts it into
an exchange object and then calls process() on the next
processor in the route, passing the exchange object as its
argument.

Polling pattern
In the polling pattern, processing of an incoming request is
initiated when a third-party calls one of the consumer's polling
methods, receive(), receiveNoWait(), and receive(long timeout).
In general, it is up to the component implementation to define
the precise mechanism for initiating calls on the polling methods.
This mechanism is not specified by the polling pattern.

Figure 9 shows an outline of the polling consumer pattern.

Figure 9. Polling Consumer

The polling consumer processes incoming requests as follows:

1. Processing of an incoming request is initiated whenever one
of the consumer's polling methods (receive(),
receiveNoWait(), or receive(long timeout)) are called. The
mechanism for calling these polling methods is
implementation defined.

2. In the body of the receive() method, the consumer attempts
to retrieve an incoming request message. If no message is
currently available, the behavior depends on which receive
method was called: if the method is receiveNoWait(), return
immediately; if the method is receive(long timeout), wait for
the specified timeout (usually specified in milliseconds)

Artix Java Router, Programmer’s Guide 27

before returning; and if the method is receive(), wait until a
message is received (possibly indefinitely).

3. If a request message is available, the consumer inserts it into
an exchange object and then calls process() on the next
processor in the route, passing the exchange object as its
argument.

Asynchronous Processing

Producer endpoints normally follow a synchronous pattern when
processing an exchange. That is, when the preceding processor
in a chain calls process() on a producer, the process() method
blocks until a reply is received. In this case, the processor's
thread remains blocked until the producer has completed the
cycle of sending the request and receiving the reply.

Sometimes, however, you might prefer to decouple the
preceding processor from the producer, so that the processor's
thread is freed up immediately and the process() call does not
block. In this case, you should implement the producer using an
asynchronous pattern, which gives the preceding processor the
option of invoking a non-blocking version of the process()
method.

To give you an overview of the different implementation options,
this section describes both the synchronous and asynchronous
patterns for implementing a producer endpoint.

Synchronous producer

Figure 10 shows an outline of a synchronous producer, where
the preceding processor blocks until the producer has finished
processing the exchange.

Figure 10. Synchronous Producer

The synchronous producer processes an exchange as follows:

1. The preceding processor in the chain calls the synchronous
process() method on the producer to initiate synchronous
processing. The synchronous process() method takes a single
exchange argument.

2. In the body of the process() method, the producer sends the
request (In message) to the endpoint.

28 Artix Java Router, Programmer’s Guide

3. If required by the exchange pattern, the producer waits for
the reply (Out or Fault message) to arrive from the
endpoint. Potentially, this step could cause the process()
method to block indefinitely. If the exchange pattern does
not mandate a reply, however, the process() method could
return immediately after sending the request.

4. When the process() method returns (potentially after having
been blocked for some time), the exchange object contains
the reply from the synchronous call (either an Out message
or a Fault message).

Asynchronous producer
Figure 11 shows an outline of an asynchronous producer, where
the producer processes the exchange in a sub-thread and the
preceding processor is not blocked for any significant length of
time.

Figure 11. Asynchronous Producer

The synchronous producer processes an exchange as follows:

1. Before the processor can call the asynchronous process()
method, it must create an asynchronous callback object,
which is responsible for processing the exchange on the
return leg of the route. For the asynchronous callback, the
processor must implement a class that inherits from the
AsyncCallback interface.

2. The processor calls the asynchronous process() method on the
producer to initiate asynchronous processing. The
asynchronous process() method takes two arguments: an
exchange object and a synchronous callback object.

3. In the body of the process() method, the producer creates a
Runnable object that encapsulates the processing code. The
producer then delegates the execution of this Runnable object
to a sub-thread.

Artix Java Router, Programmer’s Guide 29

4. The asynchronous process() method returns, thereby freeing
up the processor's thread.

5. Processing of the exchange now takes place in the separate
sub-thread. First of all, the Runnable object sends the In
message to the endpoint.

6. If required by the exchange pattern, the Runnable object waits
for the reply (Out or Fault message) to arrive from the
endpoint. The Runnable object remains blocked until the
reply is received.

7. After the reply arrives, the Runnable object inserts the reply
(Out or Fault message) into the exchange object and then
calls done() on the asynchronous callback object. The
asynchronous callback is then responsible for processing the
reply message (executed in the sub-thread).

How to Implement a Component
This section gives a brief overview of the steps required to
implement a Java Router custom component.

Which interfaces do you need to implement?
When implementing a component, it is almost always necessary
to implement the following Java interfaces:

 org.apache.camel.Component

 org.apache.camel.Endpoint

 org.apache.camel.Consumer

 org.apache.camel.Producer

In addition, it is sometimes also necessary to implement the
following Java interfaces:

 org.apache.camel.Exchange

 org.apache.camel.Message

Implementation steps
In outline, you would typically implement a custom component
as follows:

1. Implement the Component interface—a component object
acts as an endpoint factory. Derive from the DefaultComponent
class and implement the createEndpoint() method.

See Component Interface.

2. Implement the Endpoint interface—an endpoint represents a
resource identified by a specific URI. The approach you take

30 Artix Java Router, Programmer’s Guide

to implementing an endpoint depends on whether your
consumers follow an event-driven pattern, a scheduled poll
pattern, or a polling pattern.

For an event-driven pattern, implement the endpoint by
inheriting from DefaultEndpoint and implementing the
following methods:

 createProducer().

 createConsumer().

For a scheduled poll pattern, implement the endpoint by
inheriting from ScheduledPollEndpoint and implementing the
following methods:

 createProducer().

 createConsumer().

For a polling pattern, implement the endpoint by inheriting
from DefaultPollingEndpoint and implementing the following
methods:

 createProducer().

 createPollConsumer().

See Endpoint Interface.

3. Implement the Consumer interface—there are several
different approaches you can take to implementing a
consumer, depending on whether you need to implement an
event-driven pattern, a scheduled poll pattern, or a polling
pattern. The consumer implementation is also crucially
important for determining the threading model used for
processing a message exchange.

See Implementing the Consumer Interface.

4. Implement the Producer interface—to implement a producer,
derive from the DefaultProducer class and implement the
process() method.

See Producer Interface.

5. (Optionally) Implement Exchange or Message interfaces—
frequently, the default implementations of Exchange and
Message can be used directly. Occasionally, you might find it
necessary to customize these types.

See Exchange Interface and Message Interface.

Artix Java Router, Programmer’s Guide 31

Installing and configuring the component
You can install a custom component in one of the following
ways:

 Add the component directly to the CamelContext—use the
CamelContext.addComponent() method to add a component
programatically. For more details, see Adding Components
to the Camel Context in the Java Router, Deployment
Guide.

 Add the component using Spring configuration—use the
standard Spring bean element to create a component
instance. The bean's id attribute implicitly defines the
component prefix. For details, see Configuring a
Component.

 Configure Java Router to auto-discover the component—using
auto-discovery, you can ensure that Java Router
automatically loads the component on demand. For details,
see Setting Up Auto-Discovery.

Auto-Discovery and Configuration

Setting Up Auto-Discovery

Auto-discovery is a mechanism that enables you to add
components dynamically to your Java Router application. The
component URI prefix is used as a key to load components on
demand. For example, if Java Router encountered the endpoint
URI, activemq://MyQName, and the ActiveMQ endpoint was not yet
loaded, Java Router would search for the component identified
by the activemq prefix and load the component dynamically.

Availability of component classes
Before configuring auto-discovery, you must ensure that your
custom component classes are accessible from your current
classpath. Typically, you bundle the custom component classes
into a JAR file and add the JAR file to your classpath.

Configuring auto-discovery
To enable auto-discovery of your component, create a Java
properties file named after the component prefix, component-
prefix, and store it in the following location:

/META-INF/services/org/apache/camel/component/component-prefix

The component-prefix properties file must contain the following
property setting:

class=component-class-namr

32 Artix Java Router, Programmer’s Guide

Where component-class-name is the fully-qualified name of your
custom component class. You can also define additional
system property settings to this file.

Example
For example, you could enable auto-discovery for the Java
Router FTP component by creating the following Java properties
file:

/META-INF/services/org/apache/camel/component/ftp

Which contains the following Java property setting:

NOTE: The Java properties file for the FTP component is already
defined in the JAR file, camel-ftp-Version.jar.

Configuring a Component

Alternatively, you can add a component by configuring it in the
Java Router Spring configuration file, META-INF/spring/camel-
context.xml. To find the component, the component's URI prefix
is matched against the ID attribute of a bean element in the
Spring configuration. If the component prefix matches a bean
element ID, Java Router instantiates the referenced class and
injects the properties specified in the Spring configuration.

NOTE: This mechanism has priority over auto-discovery. That is, if the
CamelContext can find a Spring bean with the requisite ID, it will not
attempt to find the component using auto-discovery.

Define bean properties on your component class
If there are any properties that you would like to inject into your
component class, define them as bean properties. For example:

Where getProperty() and setProperty() access the value of
property.

Configure the component in Spring
To configure a component in Spring, edit the configuration file,
META-INF/spring/camel-context.xml, as shown in Example 11.

class=org.apache.camel.component.file.remote.RemoteFileComponent

// Java
public class CustomComponent extends DefaultComponent<CustomEx change> {

...
PropType getProperty() { ... }
void setProperty(PropType v) { ... }

}

Artix Java Router, Programmer’s Guide 33

Example 11. Configuring a Component in Spring

Where the bean element with ID, component-prefix, configures the
component-class-name component. You can inject properties into
the component instance using property elements. For example,
the property element in the preceding example would inject the
value, propertyValue, into the property property by calling
setProperty() on the component.

Examples

Example 12 shows an example of how to configure the Java
Router JMS component by defining a bean element with ID
equal to jms. These settings are added to the Spring configuration
file, camel-context.xml.

Example 12. JMS Component Configuration in camel-
context.xml

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-
beans-3.0.xsd

http://camel.apache.org/schema/spring

http://camel.apache.org/schema/spring/camel-spring.xsd">

<camelContext id="camel"

xmlns="http://camel.apache.org/schema/spring">
<package>RouteBuilderPackage</package>

</camelContext>

<bean id="component-prefix" class="component-class-name">

<property name="property" value="propertyValue"/>
</bean>

</beans>

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd

http://camel.apache.org/schema/spring
http://camel.apache.org/schema/spring/camel-spring.xsd">

<camelContext id="camel" xmlns="http://activemq.apache.org/camel/schema/spring">
<package>org.apache.camel.example.spring</package> ❶

</camelContext>

<bean id="jms" class="org.apache.camel.component.jms.JmsCom ponent"> ❷

<property name="connectionFactory"> ❸
<bean class="org.apache.activemq.ActiveMQConnectionFactory">

 <property name="brokerURL"

value="vm://localhost?broker.persistent=false&broker.useJmx=false"/> ❹
</bean>

</property>
</bean>

</beans>

34 Artix Java Router, Programmer’s Guide

❶ The CamelContext will automatically instantiate any
RouteBuilder classes that it finds in the specified Java
package, org.apache.camel.example.spring.

❷ The bean element with the ID jms configures the JMS
component. The bean ID corresponds to the component's
URI prefix. For example, if a route specifies an endpoint
with the URI jms://MyQName Java Router would
automatically load the JMS component using the settings
from the jms bean element.

❸ JMS is just a wrapper for a messaging service. You need
to specify the concrete implementation of the messaging
system by setting the connectionFactory property on the
JmsComponent class.

❹ In this example, the concrete implementation of the JMS
messaging service is Apache ActiveMQ. The brokerURL
property initializes a connection to an ActiveMQ broker
instance, where the message broker is embedded in the
local Java virtual machine (JVM). If a broker is not already
present in the JVM, ActiveMQ will instantiate it with the
options broker.persistent=false (meaning that messages in
the broker are not stored persistently) and
broker.useJmx=false (meaning that the broker does not open a
JMX port).

Artix Java Router, Programmer’s Guide 35

Component Interface
This chapter describes in detail how to implement the Component
interface.

The Component Interface
To implement a Java Router component, you must implement
the org.apache.camel.Component interface. An instance of Component
type provides the entry point into a custom component. That is,
all of the other objects in a component are ultimately accessible
through the Component instance. Figure 12 shows the relevant
Java interfaces and classes that make up the Component
inheritance hierarchy.

Figure 12. Component Inheritance Hierarchy

The Component interface
Example 13 shows the definition of the
org.apache.camel.Component interface.

Example 13. Component Interface

Component methods
The Component interface defines the following methods:

 getCamelContext() and setCamelContext()—reference the
CamelContext to which this Component belongs. The
setCamelContext() method is automatically called when you
add the component to a CamelContext. These two methods
are implemented on CamelContextAware interface.

 createEndpoint()—a factory method that gets called to create
Endpoint instances for this component. The uri parameter is

// Java
package org.apache.camel;

public interface Component extends CamelContextAware {
Endpoint createEndpoint(String uri) throws Exception;

}
}

36 Artix Java Router, Programmer’s Guide

the endpoint URI, which contains the details needed to
create the endpoint.

Implementing the Component Interface
The DefaultComponent class
Normally, you implement a new component by extending the
org.apache.camel.impl.DefaultComponent class, which provides
some standard functionality and default implementations for
some of the methods. In particular, the DefaultComponent class
provides support for URI parsing and for creating a scheduled
executor (which is used for the scheduled poll pattern).

URI parsing
The createEndpoint(String uri) method defined in the base
Component interface takes a complete, unparsed endpoint URI as
its sole argument. The DefaultComponent class, on the other hand,
defines a three-argument version of the createEndpoint()
method with the following signature:

Where uri is the original, unparsed URI; remaining is the part of
the URI that remains after stripping off the component prefix
at the start and cutting off the query options at the end; and
parameters contains the parsed query options. It is this version
of the createEndpoint() method that you must override when
inheriting from DefaultComponent. This has the advantage that
the endpoint URI is already parsed for you.

To see how URI parsing works in practice, consider the
following sample endpoint URI for the file component:

file:///tmp/messages/foo?delete=true&moveNamePostfix=.old

For this URI, the following arguments would be passed to the
three-argument version of createEndpoint():

Header 1 Header 2

uri file:///tmp/messages/foo?delete=true&moveNamePostfix=.old

remaining /tmp/messages/foo

parameters Two entries are set in java.util.Map: parameter
delete is boolean true, and parameter
moveNamePostfix has the string value, .old.

Parameter injection
You can use the parameters extracted from the URI query
options to perform parameter injection on the endpoint's bean
properties. The DefaultComponent class provides a helper method,
setProperties(), that performs the parameter injection for you.

// Java
protected abstract Endpoint<E> createEndpoint(String uri,
String remaining, Map parameters) throws Exception;

Artix Java Router, Programmer’s Guide 37

For example, imagine that you want to define a custom endpoint
that supports two URI query options: delete and moveNamePostfix.
First of all, you need to define the corresponding bean methods
(getters and setters) in the endpoint class:

Then, in the implementation of createEndpoint(), call
setProperties(Object bean, Map parameters), passing the endpoint
instance as the bean argument and passing the URI query
options as the parameters argument (see Example 14). This is
all you need to do in order to ensure that URI query options get
injected into your custom endpoint instance.

It is also possible to inject URI query options into consumer
parameters. For details, see Consumer parameter injection.

Creating an endpoint
Example 14 outlines how to implement the
DefaultComponent.createEndpoint() method, which is responsible
for creating endpoint instances on demand.

Example 14. Implementation of createEndpoint()

❶ The CustomComponent is the name of your custom component
class, which you define in the standard way by extending
DefaultComponent. The type argument, CustomExchange, could

// Java
public class FileEndpoint extends

ScheduledPollEndpoint<FileExchange> {
...
public boolean isDelete() {

return delete;
}
public void setDelete(boolean delete) {

this.delete = delete;
}
...
public String getMoveNamePostfix() {

return moveNamePostfix;
}
public void setMoveNamePostfix(String moveNamePostfix) {

this.moveNamePostfix = moveNamePostfix;
}

}

// Java
public class CustomComponent extends DefaultComponent<CustomExchange>
{ ❶

...
protected Endpoint<CustomExchange> createEndpoint(String uri,

String remaining, Map parameters) throws Exception { ❷
 CustomEndpoint result = new CustomEndpoint(uri, this);
❸

setProperties(result, parameters); ❹
// ...
return result;

 }
}

38 Artix Java Router, Programmer’s Guide

be a custom exchange implementation, but often you can
just use Exchange here.

❷ When inheriting from DefaultComponent, you must implement
the createEndpoint() method with three arguments (see URI
parsing).

❸ Create an instance of your custom endpoint type,
CustomEndpoint, by calling its constructor. At a minimum, this
constructor should take a copy of the original URI string,
uri, and a reference to this component instance, this.

❹ The setProperties() method is defined in DefaultComponent
and is responsible for performing parameter injection on the
endpoint instance. It uses introspection (Java reflection) to
identify each CustomEndpoint bean parameter that matches a
corresponding parameter name and then calls the relevant
setter method to inject the parameter value.

Example
Example 15 shows the complete implementation of the
FileComponent class, which is taken from the Java Router file
component implementation.

Example 15. FileComponent Implementation
// Java
package org.apache.camel.component.file;

import java.io.File;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;

import org.apache.camel.CamelContext;
import org.apache.camel.ComponentConfiguration;
import org.apache.camel.spi.EndpointCompleter;
import org.apache.camel.util.FileUtil;
import org.apache.camel.util.ObjectHelper;
import org.apache.camel.util.StringHelper;
public class FileComponent extends public static final String
 FILE_EXCHANGE_FILE = "CamelFileExchangeFile";
public static final String DEFAULT_LOCK_FILE_POSTFIX = ".camelLock";

public FileComponent() { ❶
 setEndpointClass(FileEndpoint.class);
}

public FileComponent(CamelContext context) { ❷
 super(context);
 setEndpointClass(FileEndpoint.class);
}

 protected GenericFileEndpoint<File> buildFileEndpoint(String uri, String
remaining, Map<String, Object> parameters) throws Exception {

 // the starting directory must be a static (not containing dynamic

Artix Java Router, Programmer’s Guide 39

expressions)
 if (StringHelper.hasStartToken(remaining, "simple")) {
 throw new IllegalArgumentException("Invalid directory: " + remaining
 + ". Dynamic expressions with ${ } placeholders is not allowed."
 + " Use the fileName option to set the dynamic expression.");
 }

 File file = new File(remaining);

 FileEndpoint result = new FileEndpoint(uri, this);
 result.setFile(file);

 GenericFileConfiguration config = new GenericFileConfiguration();
 config.setDirectory(FileUtil.isAbsolute(file) ? file.getAbsolutePath() :
 file.getPath());
 result.setConfiguration(config);

 return result;
 }
...

❶ Always define a no-argument constructor for the component
class, in order to facilitate automatic instantiation of the
class.

❷ A constructor that takes the parent CamelContext
instance as an argument is convenient when creating a
component instance by programming.

Artix Java Router, Programmer’s Guide 41

Endpoint Interface
This chapter describes in detail how to implement the Endpoint
interface, which is an essential step in the implementation of a
Java Router component.

The Endpoint Interface
An instance of org.apache.camel.Endpoint type encapsulates an
endpoint URI and it also serves as a factory for Consumer,
Producer, and Exchange objects. Three different approaches to
implementing an endpoint are described here: event-driven,
scheduled poll, and polling. These endpoint implementation
patterns complement the corresponding patterns for
implementing a consumer—see Implementing the Consumer
Interface.

Figure 13 shows the relevant Java interfaces and classes
that make up the Endpoint inheritance hierarchy.

Figure 13. Endpoint Inheritance Hierarchy

The Endpoint interface
Example 16 shows the definition of the
org.apache.camel.Endpoint interface.

42 Artix Java Router, Programmer’s Guide

Example 16. Endpoint Interface

Endpoint methods
The Endpoint interface defines the following methods:

 isSingleton()—returns true, if you want to ensure that each
URI maps to a single endpoint within a CamelContext.
When this property is true, multiple references to the same
(that is, identical) URI within your routes always refer to a
single endpoint instance. When this property is false, on the
other hand, multiple references to the same URI within your
routes refer to distinct endpoint instances. That is, each time
you refer to the URI in a route, a new endpoint instance
would be created. This method is implemented on
isSingleton interface that is inherited from Endpoint.

 getEndpointUri()—returns the endpoint URI of this endpoint.

 getEndpointKey()—returns a string key of this endpoint.

 getCamelContext()—returns a reference to the CamelContext
instance to which this endpoint belongs.

 createExchange()—is an overloaded method with the following
variants:

 Exchange createExchange()—creates a new exchange
instance with a default exchange pattern setting.

 Exchange createExchange(ExchangePattern pattern)—
creates a new exchange instance with the specified
exchange pattern for communicating with this end point.

 Exchange createExchange(Exchange exchange)—converts the
given exchange argument to the type of exchange needed
for this endpoint. If the given exchange is not already of
the correct type, this method should copy it into a new

//Java
package org.apache.camel;
import java.util.Map;
public interface Endpoint extends IsSingleton, Service {

String getEndpointUri(); String getEndpointKey();

Exchange createExchange();
Exchange createExchange(ExchangePattern pattern); Exchange
createExchange(Exchange exchange);

CamelContext getCamelContext();
Producer createProducer() throws Exception;
Consumer createConsumer(Processor processor) throws Exception;

PollingConsumer createPollingConsumer() throws Exception;
void configureProperties(Map<String, Object> options);
void setCamelContext(CamelContext context);
boolean isLenientProperties();

}

Artix Java Router, Programmer’s Guide 43

instance of the correct type (a default implementation of
this method is provided in the DefaultEndpoint class).

 getCamelContext()—returns the context which created the
endpoint.

 createProducer()—factory method to create a new Producer
instance.

 createConsumer()—factory method to create a new event-
driven consumer instance. The processor argument is a
reference to the first processor in the route.

 createPollingConsumer()—factory method to create a new
polling consumer instance.

 configureProperties ()—configure properties on this
endpoint.

 setCamelContext ()—sets the camel context.

 isLenientProperties()—should all properties be known or
does the endpoint allow unknown options?

If Lenient = false, the endpoint should validate that all
given options are known and configured properly.

If Lenient = true, the endpoint allows additional unknown
options to be passed to it but does not throw a
ResolveEndpointFailedException when creating the
endpoint.

Endpoint singletons
In order to avoid unnecessary overheads, it is a good idea to
create just a single endpoint instance for all endpoints that
have the same URI (within a CamelContext). You can enforce
this condition by implementing isSingleton() to return true.

NOTE: In this context, same URI means that two URIs are the same
when compared using string equality. In principle, it is possible to have
two URIs that are equivalent, though represented by different strings. In
that case, the URIs would be treated as not the same.

44 Artix Java Router, Programmer’s Guide

Implementing the Endpoint Interface
Alternative ways of implementing an endpoint
The following alternative endpoint implementation patterns are
supported:

 Event-driven endpoint implementation

 Scheduled poll endpoint implementation

 Polling endpoint implementation

Event-driven endpoint implementation
If your custom endpoint conforms to the event-driven pattern
(see Consumer Patterns), implement it by inheriting from the
abstract class, org.apache.camel.impl.DefaultEndpoint, as shown
in Example 17.

Example 17. Implementing DefaultEndpoint

❶ Implement an event-driven custom endpoint, CustomEndpoint,
by extending the DefaultEndpoint class.

// Java
import java.util.Map;
import java.util.concurrent.BlockingQueue;

import org.apache.camel.Component;
import org.apache.camel.Consumer;
import org.apache.camel.Exchange;
import org.apache.camel.Processor;
import org.apache.camel.Producer;
import org.apache.camel.impl.DefaultEndpoint;

public class CustomEndpoint extends DefaultEndpoint {❶

public CustomEndpoint(String endpointUri, Component compon ent) {❷
super(endpointUri, component);
// Do any other initialization...

}

public Producer createProducer() throws Exception { ❸
return new CustomProducer(this);

}

public Consumer createConsumer(Processor processor) throws
Exception { ❹

return new CustomConsumer(this, processor);
}

public boolean isSingleton() { return true;
}

// Implement the following two methods, only if you need
// a custom exchange class.

public CustomExchange createExchange() { ❺

return new CustomExchange(getContext(), getExchangePattern());
}

public CustomExchange createExchange(ExchangePattern pat tern) {

return new CustomExchange(getContext(), pattern);
}

}

Artix Java Router, Programmer’s Guide 45

❷ You need to have at least one constructor that takes the
endpoint URI, endpointUri, and the parent component
reference, component, as arguments.

❸ Implement the createProducer() factory method, in order to
create a producer endpoint.

❹ Implement the createConsumer() factory method, in order to
create an event-driven consumer instance. Do not override
the createPollingConsumer() method.

❺ If you intend to customize the exchange implementation,
you should override the createExchange() and
createExchange(ExchangePattern) methods, to ensure that the
correct exchange type is created. If you do not override
these methods, the implementations inherited from
DefaultEndpoint will create a DefaultExchange instance by
default.

The DefaultEndpoint class provides default implementations of the
following methods, which you might find useful when writing
your custom endpoint code:

 getEndpointUri()—returns the endpoint URI.

 getContext()—returns a reference to the CamelContext.

 getComponent()—returns a reference to the parent component.

 getExecutorService()—return a reference to a scheduled
executor service (of
java.util.concurrent.ScheduledExecutorService type).

 createPollingConsumer()—creates a polling consumer, whose
functionality is based on the event-driven consumer. In other
words, if you override the event-driven consumer method,
createConsumer(), you get a polling consumer implementation
for free.

 createExchange(Exchange e)—converts the given exchange
object, e, to the type required for this endpoint. This method
creates a new endpoint using the overridden createExchange()
endpoints, which ensures that the method also works for
custom exchange types.

Scheduled poll endpoint implementation
If your custom endpoint conforms to the scheduled poll pattern
(see Consumer Patterns), implement it by inheriting from the
abstract class, org.apache.camel.impl.ScheduledPollEndpoint, as
shown in Example 18.

46 Artix Java Router, Programmer’s Guide

Example 18. ScheduledPollEndpoint Implementation
// Java
import org.apache.camel.Consumer;
import org.apache.camel.Processor;
import org.apache.camel.Producer;
import org.apache.camel.ExchangePattern;
import org.apache.camel.Message;
import org.apache.camel.impl.ScheduledPollEndpoint;

public class CustomEndpoint extends ScheduledPollEndpoint { ❶

protected CustomEndpoint(String endpointUri, CustomComponent component) {
❷

super(endpointUri, component);
// Do any other initialization...

}

public Producer createProducer() throwsException { ❸
Producer result = new CustomProducer(this);
return result;

}

public Consumer <createConsumer(Processor processor) throws Exception
{ ❹

Consumer result = new CustomConsumer(this, processor);
configureConsumer(result); ❺
return result;

}

public boolean isSingleton() { return true;
}

// Implement the following two methods, only if you need a
// custom exchange class.
//
public CustomExchange createExchange() { ❻

return new (...);
}

public CustomExchange createExchange(ExchangePattern pattern) {

return new CustomExchange(getContext(), pattern);
}

}

❶ Implement a scheduled poll custom endpoint,
CustomEndpoint, by extending the ScheduledPollEndpoint class.

❷ You need to have at least one constructor that takes the
endpoint URI, endpointUri, and the parent component
reference, component, as arguments.

❸ Implement the createProducer() factory method, in order to
create a producer endpoint.

❹ Implement the createConsumer() factory method, in order to
create a scheduled poll consumer instance. Do not override
the createPollingConsumer() method.

❺ The configureConsumer() method (defined in the
ScheduledPollEndpoint base class) is responsible for injecting

Artix Java Router, Programmer’s Guide 47

consumer query options into the consumer. See Consumer
parameter injection.

❻ If you intend to customize the exchange implementation,
you should override the createExchange() and
createExchange(ExchangePattern) methods, to ensure that the
correct exchange type is created. If you do not override these
methods, 4the implementations inherited from
DefaultEndpoint will create a DefaultExchange instance by
default.

Polling endpoint implementation
If your custom endpoint conforms to the polling consumer
pattern (see Consumer Patterns), implement it by inheriting
from the abstract class,
org.apache.camel.impl.DefaultPollingEndpoint, as shown in
Example 19.

Example 19. DefaultPollingEndpoint Implementation
// Java
import org.apache.camel.Consumer;
import org.apache.camel.Processor;
import org.apache.camel.Producer;
import org.apache.camel.ExchangePattern;
import org.apache.camel.Message;
import org.apache.camel.impl.DefaultPollingEndpoint;

public class CustomEndpoint extends DefaultPollingEndpoint {

...
public PollingConsumer createPollingConsumer() throws Exception {

PollingConsumer result = new CustomConsumer(this);
configureConsumer(result); return result;

}

// Do NOT implement createConsumer(). It is already
// implemented in DefaultPollingEndpoint.
...

}

Because this CustomEndpoint class is a polling endpoint, you
must implement the createPollingConsumer() method instead of
the createConsumer() method. The consumer instance returned
from createPollingConsumer() must inherit from the
PollingConsumer interface—for details of how to implement a
polling consumer, see Polling consumer implementation.

Apart from the implementation of the createPollingConsumer()
method, the steps for implementing a DefaultPollingEndpoint
are similar to the steps for implementing a
ScheduledPollEndpoint—see Example 18 for details.

Implementing the BrowsableEndpoint interface
If you want to expose the list of exchange instances that are
pending in the current endpoint, you can optionally implement
the org.apache.camel.spi.BrowsableEndpoint interface, as shown in
Example 20. It makes sense to implement this interface, if the

48 Artix Java Router, Programmer’s Guide

endpoint performs some sort of buffering of incoming events. For
example, the Java Router SEDA endpoint implements the
BrowsableEndpoint interface—see Example 21.

Example 20. BrowsableEndpoint Interface

Example
Example 21 shows the implementation of SedaEndpoint, which is
taken from the Java Router SEDA component implementation.
The SEDA endpoint is an example of an event-driven endpoint.
Incoming events are stored in a FIFO queue (an instance of
java.util.concurrent.BlockingQueue) and a SEDA consumer starts
up a thread to read and process the events. The events
themselves are represented by org.apache.camel.Exchange
objects.

Example 21. SedaEndpoint Implementation
// Java
package org.apache.camel.component.seda;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import java.util.concurrent.BlockingQueue;

import org.apache.camel.Component;
import org.apache.camel.Consumer;
import org.apache.camel.Exchange;
import org.apache.camel.Processor;
import org.apache.camel.Producer;
import org.apache.camel.impl.DefaultEndpoint;
import org.apache.camel.spi.BrowsableEndpoint;

public class SedaEndpoint extends DefaultEndpointimplements BrowsableEndpoint,
MultipleConsumersSupport { ❶

private BlockingQueue<Exchange> queue;

public SedaEndpoint(String endpointUri, Component component,
 BlockingQueue<Exchange> queue) { ❷
 super(endpointUri, component);
 this.queue = queue;

 }

public SedaEndpoint(String endpointUri, Component component,
 BlockingQueueFactory<Exchange> queueFactory,
 int concurrentConsumers){ ❸	
 this(endpointUri, component, concurrentConsumers);
 this.queueFactory = queueFactory;

 }
public Producer createProducer() throws Exception { ❹

// Java
package org.apache.camel.spi;

import java.util.List;

import org.apache.camel.Endpoint;
import org.apache.camel.Exchange;

public interface BrowsableEndpoint extends Endpoint {

List<Exchange> getExchanges();
}

Artix Java Router, Programmer’s Guide 49

 return new SedaProducer(this, getWaitForTaskToComplete(),
getTimeout(), isBlockWhenFull());

 }

public Consumer createConsumer(Processor processor) throws Exception {❺
 return new SedaConsumer(this, processor);

 }
public BlockingQueue<Exchange> getQueue() { ❻

 return queue;
 }

public boolean isSingleton() { ❼
 return true;
 }

public List<Exchange> getExchanges() { ❽
 return new ArrayList<Exchange>(getQueue());

 }
}

❶ The SedaEndpoint class follows the pattern for implementing

an event-driven endpoint, by extending the DefaultEndpoint
class. The SedaEndpoint class also implements the
BrowsableEndpoint interface, which provides access to the list
of exchange objects in the queue.

❷ Following the usual pattern for an event-driven consumer,
SedaEndpoint defines a constructor that takes an endpoint
argument, endpointUri, and a component reference
argument, component.

❸ Another constructor is provided, which delegates queue
creation to the parent component instance.

❹ The createProducer() factory method creates an instance of
CollectionProducer, which is a producer implementation that
adds events to the queue.

❺ The createConsumer() factory method creates an instance of
SedaConsumer(), which is responsible for pulling events off the
queue and processing them.

➏ The getQueue() method returns a reference to the queue.

❼ The isSingleton() method returns true, indicating that just a
single endpoint instance should be created for each unique
URI string.

❽ The getExchanges() method implements the corresponding
abstract method from BrowsableEndpoint.

Artix Java Router, Programmer’s Guide 51

Consumer Interface
This chapter describes in detail how to implement the Consumer
interface, which is an essential step in the implementation of a
Java Router component.

The Consumer Interface
An instance of org.apache.camel.Consumer type represents a
source endpoint in a route. There are several different ways of
implementing a consumer (see Consumer Patterns) and this
degree of flexibility is reflected in the inheritance hierarchy
(Figure 14), which includes several different base classes for
implementing a consumer.

Figure 14. Consumer Inheritance Hierarchy

Consumer parameter injection
For consumers that follow the scheduled poll pattern (see
Scheduled poll pattern), Java Router provides support for
injecting parameters into consumer instances. For example,
consider the following endpoint URI for a component identified
by the custom prefix:

custom:destination?consumer.myConsumerParam

Java Router provides support for automatically injecting query
options of the form consumer.*. For the consumer.myConsumerParam

52 Artix Java Router, Programmer’s Guide

parameter, you would need to define corresponding setter and
getter methods on the Consumer implementation class, as
follows:

Where the getter and setter methods follow the usual Java bean
conventions (including capitalizing the first letter of the property
name).

In addition to defining the bean methods in your Consumer
implementation, you must also remember to call the
configureConsumer() method in the implementation of
Endpoint.createConsumer() (see Scheduled poll endpoint
implementation). For example, here is an example of a
createConsumer() method implementation, taken from the
FileEndpoint class in the file component:

// Java
...
public class FileEndpoint extends GenericFileEndpoint<File> {
...
 public FileConsumer createConsumer(Processor processor) throws Exception {
 ObjectHelper.notNull(operations, "operations");
 ObjectHelper.notNull(file, "file");

 // auto create starting directory if needed
 if (!file.exists() && !file.isDirectory()) {
 if (isAutoCreate()) {
 log.debug("Creating non existing starting directory: {}", file);
 boolean absolute = FileUtil.isAbsolute(file);
 boolean created = operations.buildDirectory(file.getPath(),
 absolute);
 if (!created) {
 log.warn("Cannot auto create starting directory: {}", file);
 }
 } else if (isStartingDirectoryMustExist()) {
 throw new FileNotFoundException("Starting directory does not
 exist: " + file);
 }
 }

 FileConsumer result = newFileConsumer(processor, operations);

 if (isDelete() && getMove() != null) {
 throw new IllegalArgumentException("You cannot set both delete=true
 and move options");
 }

 // if noop=true then idempotent should also be configured
 if (isNoop() && !isIdempotentSet()) {
 log.info("Endpoint is configured with noop=true so forcing endpoint
 to be idempotent as well");
 setIdempotent(true);
 }

 // if idempotent and no repository set then create a default one
 if (isIdempotentSet() && isIdempotent() && idempotentRepository == null) {

// Java
public class CustomConsumer extends
 ScheduledPollConsumer {

...
String getMyConsumerParam() { ... }
void setMyConsumerParam(String s) { ... }
...

}

Artix Java Router, Programmer’s Guide 53

 log.info("Using default memory based idempotent repository with cache
 max size: " + DEFAULT_IDEMPOTENT_CACHE_SIZE);
 idempotentRepository =
MemoryIdempotentRepository.memoryIdempotentRepository(DEFAULT_IDEMPOTENT_CACHE_SIZE);
 }

 // set max messages per poll
 result.setMaxMessagesPerPoll(getMaxMessagesPerPoll());
 result.setEagerLimitMaxMessagesPerPoll(isEagerMaxMessagesPerPoll());

 configureConsumer(result);
 return result;
 }...
}

At run time, consumer parameter injection works as follows:

 When the endpoint is created, the default implementation of
DefaultComponent.createEndpoint(String uri) parses the URI to
extract the consumer parameters and stores them in the
endpoint instance by calling
ScheduledPollEndpoint.configureProperties().

 When createConsumer() is called, the method implementation
calls configureConsumer() in order to inject the consumer
parameters (see preceding Java example).

 The configureConsumer() method uses Java reflection to call
the setter methods whose names match the relevant
options, after the consumer. prefix has been stripped off.

Scheduled poll parameters
A consumer that follows the scheduled poll pattern
automatically supports the consumer parameters shown in
Table 1 (which can appear as query options in the endpoint
URI).

Table 1. Scheduled Poll Parameters

Name Default Description

initialDelay 1000 Delay, in milliseconds, before the first
poll.

delay 500 Depends on the value of the
useFixedDelay flag (time unit is
milliseconds).

54 Artix Java Router, Programmer’s Guide

useFixedDelay false If false, the delay parameter is
interpreted as the polling periodicity.
That is, polls will occur at initialDelay,
initialDelay+delay,
initialDelay+2*delay, and so on.

If true, the delay parameter is
interpreted as the time elapsed
between the previous execution and
the next execution. That is, polls will
occur at initialDelay,
initialDelay+[ProcessingTime]+delay, and
so on. Where ProcessingTime is the time
taken to process an exchange object in
the current thread.

Converting between event-driven and polling
consumers
Java Router provides two special consumer implementations,
which can be used to convert back and forth between an event-
driven consumer and a polling consumer. The following
conversion classes are provided:

 org.apache.camel.impl.EventDrivenPollingConsumer—converts
an event-driven consumer into a polling consumer instance.

 org.apache.camel.impl.DefaultScheduledPollConsumer—converts
a polling consumer into an event-driven consumer instance.

In practice, these classes are used to simplify the task of
implementing an Endpoint type. The Endpoint interface defines
the following two methods for creating a consumer instance:

Where createConsumer() returns an event-driven consumer and
createPollingConsumer() returns a polling consumer. Normally, you
would implement only one or other of these methods. For
example, if you are following the event-driven pattern for your
consumer, you would implement the createConsumer() method.
But what about the other consumer creation method? One
possibility would be to provide a method implementation that
simply raises an exception. With the help of the conversion
classes, however, Java Router is able to provide a more useful
default implementation.

For example, assume you want to implement your consumer
according to the event-driven pattern. In this case, you would

// Java
package org.apache.camel;

public interface Endpoint {

...
Consumer createConsumer(Processor processor) throws

Exception;
PollingConsumer createPollingConsumer() throws

Exception;
}

Artix Java Router, Programmer’s Guide 55

implement the endpoint by extending DefaultEndpoint and
implementing the createConsumer() method. The
implementation of createPollingConsumer() is inherited from
DefaultEndpoint, where it is defined as follows:

The EventDrivenPollingConsumer constructor takes a reference to
the event-driven consumer, this, effectively wrapping it and
converting it into a polling consumer. To implement the
conversion, the EventDrivenPollingConsumer instance buffers
incoming events and makes them available on demand
through the receive(), receive(long timeout), and
receiveNoWait() methods.

Analogously, if you are implementing your consumer according
to the polling pattern, you would implement the endpoint by
extending DefaultPollingEndpoint and implementing the
createPollingConsumer() method. In this case, the
implementation of the createConsumer() method is inherited from
DefaultPollingEndpoint and the default implementation returns a
DefaultScheduledPollConsumer instance (which converts the polling
consumer into an event-driven consumer).

Implementing the Consumer Interface
Alternative ways of implementing a consumer
You can implement a consumer in one of the following ways:

 Event-driven consumer implementation

 Scheduled poll consumer implementation

 Polling consumer implementation

Event-driven consumer implementation
In an event-driven consumer, processing is driven explicitly by
external events. The events are normally received through an
event-listener interface, where the listener interface is specific
to the particular event source.

Example 22 shows the implementation of the JMXConsumer
class, which is taken from the Java Router JMX component
implementation. The JMXConsumer class is an example of an
event-driven consumer, which is implemented by inheriting
from the org.apache.camel.impl.DefaultConsumer class. In the case
of the JMXConsumer example, events are represented by calls on
the NotificationListener.handleNotification() method, which is a
standard way of receiving JMX events. In order to receive these
JMX events, it is therefore necessary to implement the

// Java
public PollingConsumer createPollingConsumer() throws
Exception {

return new EventDrivenPollingConsumer(this);
}

56 Artix Java Router, Programmer’s Guide

NotificationListener interface and override the
handleNotification() method, as shown in Example 22.

Example 22. JMXConsumer Implementation

❶ The JMXConsumer pattern follows the usual pattern for event-
driven consumers by extending the DefaultConsumer class.
Additionally, because this consumer is designed to receive
events from JMX (which are represented by JMX
notifications), it is necessary to implement the
NotificationListener interface.

❷ You must implement at least one constructor that takes a
reference to the parent endpoint, endpoint, and a reference
to the next processor in the chain, processor, as arguments.

❸ The handleNotification() method (which is defined in
NotificationListener) is automatically invoked by JMX
whenever a JMX notification arrives. The body of this
method should contain the code that performs the
consumer's event processing. Because the
handleNotification() call originates from the JMX layer, it
follows that the consumer's threading model is implicitly
controlled by the JMX layer, not by the JMXConsumer class.

NOTE: The handleNotification() method is specific to the JMX example.
When implementing your own event-driven consumer, you will need to
identify an analogous event listener method to implement in your
custom consumer.

// Java
package org.apache.camel.component.jmx;

import javax.management.Notification;
import javax.management.NotificationListener;
import org.apache.camel.Processor;
import org.apache.camel.impl.DefaultConsumer;

public class JMXConsumer extends DefaultConsumer implements
NotificationListener { ❶

JMXEndpoint jmxEndpoint;

public JMXConsumer(JMXEndpoint endpoint, Processor processor)
{ ❷

super(endpoint, processor);
this.jmxEndpoint = endpoint;

}

public void handleNotification(Notification notification,
Object handback) { ❸

try {
getProcessor().process(jmxEndpoint.createExchange(noti

fication)); ❹
} catch (Throwable e) {
handleException(e); ❺
}

}
}

Artix Java Router, Programmer’s Guide 57

❹ This line of code combines two steps. First of all, the JMX

notification object is converted into an exchange object,
which is the generic representation of an event in Java
Router. The newly created exchange object is then passed to
the next processor in the route (invoked synchronously).

❺ The handleException() method is implemented by the
DefaultConsumer base class. By default, it handles exceptions
using the org.apache.camel.impl.LoggingExceptionHandler
class.

Scheduled poll consumer implementation
In a scheduled poll consumer, polling events are automatically
generated by a timer class,
java.util.concurrent.ScheduledExecutorService. To receive the
generated polling events, you must implement the
ScheduledPollConsumer.poll() method (see Consumer Patterns).

Example 23 outlines how to implement a consumer that follows
the scheduled poll pattern, which is implemented by extending
the ScheduledPollConsumer class.

58 Artix Java Router, Programmer’s Guide

Example 23. ScheduledPollConsumer Implementation

❶ Implement a scheduled poll consumer class, CustomConsumer,
by extending the org.apache.camel.impl.ScheduledPollConsumer
class.

❷ You must implement at least one constructor that takes a
reference to the parent endpoint, endpoint, and a reference
to the next processor in the chain, processor, as arguments.

❸ Override the poll() method in order to receive the scheduled
polling events. This is where you should put the code that
retrieves and processes incoming events (represented by
exchange objects).

❹ In this example, the event is processed synchronously. If
you want to process events asynchronously, you should use
a reference to an asynchronous processor instead, by calling
getAsyncProcessor(). For details of how to process events
asynchronously, see Asynchronous Processing.

// Java
import java.util.concurrent.ScheduledExecutorService;

import org.apache.camel.Consumer;
import org.apache.camel.Endpoint;
import org.apache.camel.Exchange;
import org.apache.camel.Message;
import org.apache.camel.PollingConsumer;
import org.apache.camel.Processor;

import org.apache.camel.impl.ScheduledPollConsumer;

public class CustomConsumer extends ScheduledPollConsumer { ❶

private final CustomEndpoint endpoint;

public CustomConsumer(CustomEndpoint endpoint, Processor processor) { ❷
super(endpoint, processor); this.endpoint = endpoint;

}

protected void poll() throws Exception { ❸
E exchange = /* Receive exchange object ... */;

// Example of a synchronous processor.
getProcessor().process(exchange); ❹

}

@Override
protected void doStart() throws Exception { ❺

// Pre-Start:
// Place code here to execute just before start of processing.
super.doStart();
// Post-Start:
// Place code here to execute just after start of processing.

}

@Override
protected void doStop() throws Exception { ❻

// Pre-Stop:
// Place code here to execute just before processing stops.
super.doStop();
// Post-Stop:
// Place code here to execute just after processing stops.

}
}

Artix Java Router, Programmer’s Guide 59

❺ (Optional) If you want some lines of code to execute as the
consumer is starting up, override the doStart() method as
shown.

❻ (Optional) If you want some lines of code to execute as the
consumer is stopping, override the doStop() method as
shown.

Polling consumer implementation
Example 24 outlines how to implement a consumer that follows
the polling pattern, which is implemented by extending the
PollingConsumerSupport class.

Example 24. PollingConsumerSupport Implementation

❶ Implement your polling consumer class, CustomConsumer, by
extending the org.apache.camel.impl.PollingConsumerSupport
class.

❷ You must implement at least one constructor that takes a
reference to the parent endpoint, endpoint, as an argument.
A polling consumer does not need a reference to a processor
instance.

// Java
import org.apache.camel.Exchange;
import org.apache.camel.RuntimeCamelException;
import org.apache.camel.impl.PollingConsumerSupport;

public class CustomConsumer extends PollingConsumerSupport {

❶
private final CustomEndpoint endpoint;

public CustomConsumer(CustomEndpoint endpoint) { ❷
super(endpoint); this.endpoint = endpoint;

}

public Exchange receiveNoWait() { ❸
Exchange exchange = /* Obtain an exchange object. */;

// Further processing ... return exchange;

}

public Exchange receive() { ❹
// Blocking poll ...

}

public Exchange receive(long timeout) { ❺
// Poll with timeout ...

}

protected void doStart() throws Exception { ❻
// Code to execute whilst starting up.

}

protected void doStop() throws Exception {
// Code to execute whilst shutting down.

}
}

60 Artix Java Router, Programmer’s Guide

❸ The receiveNoWait() method should implement a non-
blocking algorithm for retrieving an event (exchange
object). If no event is available, return null.

❹ The receive() method should implement a blocking
algorithm for retrieving an event. This method can block
indefinitely, if events remain unavailable.

❺ The receive(long timeout) method implements an algorithm
that can block for as long as the specified timeout (typically
specified in units of milliseconds).

❻ If you want to insert code that executes while a consumer is
starting up or shutting down, implement the doStart()
method and the doStop() method, respectively.

Artix Java Router, Programmer’s Guide 61

Producer Interface
This chapter describes in detail how to implement the Producer
interface, which is an essential step in the implementation of a
Java Router component.

The Producer Interface
An instance of org.apache.camel.Producer type represents a target
endpoint in a route. The role of the producer is to send requests
(In messages) to a specific physical endpoint and to receive the
corresponding response (Out or Fault message). A Producer
object is essentially a special kind of Processor that appears at
the end of a processor chain (equivalent to a route). Figure 15
shows the inheritance hierarchy for producers.

Figure 15. Producer Inheritance Hierarchy

The Producer interface
Example 25 shows the definition of the org.apache.camel.
Producer interface.

Example 25. Producer Interface

Producer methods
The Producer interface defines the following methods:

 process() (inherited from Processor)—is the most important
method. A producer is essentially a special type of
processor that happens to send a request to an endpoint,
instead of forwarding the exchange object to another
processor. By overriding the process() method, you define

// Java
package org.apache.camel;

public interface Producer extends Processor, Service, IsSingleton {

Endpoint getEndpoint();
E createExchange();
E createExchange(ExchangePattern pattern);
E createExchange(E exchange);

}

62 Artix Java Router, Programmer’s Guide

how the producer sends and receives messages to and from
the relevant endpoint.

 getEndpoint()—return a reference to the parent endpoint
instance.

 createExchange()—these overloaded methods are analogous
to the corresponding methods defined in the Endpoint
interface. Normally, these methods just delegate to the
corresponding methods defined on the parent Endpoint
instance (this is what the DefaultEndpoint class does by
default). Occasionally, you might need to override these
methods.

Asynchronous processing
Processing an exchange object in a producer—which usually
involves sending a message to a remote destination and waiting
for a reply—can potentially block for a significant length of time.
If you want to avoid blocking the current thread, you could opt to
implement the producer as an asynchronous processor. The
asynchronous processing pattern decouples the preceding
processor from the producer, so that the process() method
returns without delay—see Asynchronous Processing.

When implementing a producer, you can support the
asynchronous processing model by implementing the
org.apache.camel.AsyncProcessor interface. On its own, this is not
enough to ensure that the asynchronous processing model will
be used: it is also necessary for the preceding processor in the
chain to call the asynchronous version of the process() method.
The definition of the AsyncProcessor interface is shown in
Example 26.

Example 26. AsyncProcessor Interface

Where the asynchronous version of the process() method takes
an extra argument, callback, of org.apache.camel.AsyncCallback
type. The corresponding AsyncCallback interface is defined as
shown in Example 27.

Example 27. AsyncCallback Interface

// Java
package org.apache.camel;

public interface AsyncProcessor extends Processor {

boolean process(Exchange exchange, AsyncCallback callback);
}

// Java
package org.apache.camel;

public interface AsyncCallback {

void done(boolean doneSynchronously);
}

Artix Java Router, Programmer’s Guide 63

The caller of AsyncProcessor.process() must provide an
implementation of AsyncCallback to receive the notification that
processing has finished. The AsyncCallback.done() method takes a
boolean argument that indicates whether the processing was
performed synchronously or not. Normally, the flag would be
false, to indicate asynchronous processing. In some cases,
however, it can make sense for the producer not to process
asynchronously (in spite of being asked to do so). For example,
if the producer knows that the processing of the exchange will
complete rapidly, it could optimise the processing by doing it
synchronously. In this case, the doneSynchronously flag should be
set to true.

ExchangeHelper class
When implementing a producer, you might find it helpful to call
some of the methods in the org.apache.camel.util.ExchangeHelper
utility class. For full details of the ExchangeHelper class, see The
ExchangeHelper Class.

Implementing the Producer Interface
Alternative ways of implementing a producer
You can implement a producer in one of the following ways:

 How to implement a synchronous producer.

 How to implement an asynchronous producer.

How to implement a synchronous producer
Example 28 outlines how to implement a synchronous producer.
In this case, call to Producer.process() blocks until a reply (either
an Out message or a Fault message) has been received.

Example 28. DefaultProducer Implementation

// Java
import org.apache.camel.Endpoint;
import org.apache.camel.Exchange;
import org.apache.camel.Producer;
import org.apache.camel.impl.DefaultProducer;
public class CustomProducer extends DefaultProducer { ❶

public CustomProducer(Endpoint endpoint) { ❷
super(endpoint);
// Perform other initialization tasks...

}

public void process(Exchange exchange) throws Exception
{ ❸

// Process exchange synchronously.
// ...

}
}

64 Artix Java Router, Programmer’s Guide

❶ Implement a custom synchronous producer class,
CustomProducer, by extending the
org.apache.camel.impl.DefaultProducer class.

❷ Implement a constructor that takes a reference to the parent
endpoint.

❸ The process() method implementation represents the core of
the producer code. The implementation of the process()
method is entirely dependent on the type of component that
you are implementing. In outline, the process() method is
normally implemented as follows:

 If the exchange contains an In message and if this is
consistent with the specified exchange pattern, send the
In message to the designated endpoint.

 If the exchange pattern anticipates the receipt of an Out
message or a Fault message, wait until the Out message
or the Fault message has been received. This typically
causes the process() method to block for a significant
length of time.

 When a reply is received, call exchange.setOut() or
exchange.setFault() to attach the reply to the exchange
object and then return.

How to implement an asynchronous producer
Example 29 outlines how to implement an asynchronous
producer. In this case, you must implement both a synchronous
process() method and an asynchronous process() method (which
takes an additional AsyncCallback argument).

Artix Java Router, Programmer’s Guide 65

Example 29. CollectionProducer Implementation

❶ Implement a custom asynchronous producer class,
CustomProducer, by extending the
org.apache.camel.impl.DefaultProducer class and
implementing the AsyncProcessor interface.

❷ Implement a constructor that takes a reference to the parent
endpoint.

❸ Implement the synchronous process() method.

❹ Implement the asynchronous process() method. You can
implement the asynchronous method in a variety of ways.
The approach shown here is to create a java.lang.Runnable
instance, task, that represents the code that runs in a sub-
thread. You then use the Java threading API to run the task
in a sub-thread (for example, by creating a new thread or by
allocating the task to an existing thread pool).

❺ Normally, you would return false from the asynchronous
process() method, to indicate that the exchange was
processed asynchronously.

// Java
import org.apache.camel.AsyncCallback;
import org.apache.camel.AsyncProcessor;
import org.apache.camel.Endpoint;
import org.apache.camel.Exchange;
import org.apache.camel.Producer;
import org.apache.camel.impl.DefaultProducer;

public class CustomProducer extends DefaultProducer implements

AsyncProcessor { ❶

public CustomProducer(Endpoint endpoint) { ❷
super(endpoint);
// ...

}

public void process(Exchange exchange) throws Exception { ❸
// Process exchange synchronously.
// ...

}

public boolean process(Exchange exchange, AsyncCallback

callback) { ❹
// Process exchange asynchronously.

CustomProducerTask task = new CustomProducerTask(exchange,
callback);

// Process 'task' in a separate thread...
// ...

return false; ❺
}

}

66 Artix Java Router, Programmer’s Guide

➏ The CustomProducerTask class encapsulates the processing code
that runs in a sub-thread. This class must store a copy of
the Exchange object, exchange, and the AsyncCallback object,
callback, as private member variables.

❼ The run() method contains the code that sends the In
message to the producer endpoint and waits to receive the
reply, if any. After receiving the reply (Out message or Fault
message) and inserting it into the exchange object, you
must then call callback.done() to notify the caller that
processing is complete.

Artix Java Router, Programmer’s Guide 67

Exchange Interface
This chapter describes in detail how to implement the Exchange
interface, which is an optional step in the implementation of a
Java Router component.

The Exchange Interface
An instance of org.apache.camel.Exchange type encapsulates all of
the messages belonging to a single message exchange (for
example, a typical synchronous invocation would consist of an In
message and an Out message). Figure 16 shows the inheritance
hierarchy for the exchange type. You do not always need to
implement a custom exchange type for a component. In many
cases, the default implementation, DefaultExchange, is adequate.

Figure 16. Exchange Inheritance Hierarchy

The Exchange interface
Example 30 shows the definition of the
org.apache.camel.Exchange interface.

Example 30. Exchange Interface
//Java
package org.apache.camel;

import java.util.Map;

import org.apache.camel.spi.UnitOfWork;

public interface Exchange {

ExchangePattern getPattern();

void setPattern(ExchangePattern pattern);
Object getProperty(String name);
Object getProperty(String name,
Object defaultValue);
<T> T getProperty(String name, Class<T> type);
<T> T getProperty(String name, Object defaultValue, Class<T> type);
void setProperty(String name, Object value); Object removeProperty(String
name); Map<String, Object> getProperties();
boolean hasProperties();

Message getIn();
<T> T getIn(Class<T> type); void setIn(Message in);

68 Artix Java Router, Programmer’s Guide

Message getOut();
<T> T getOut(Class<T> type);

boolean hasOut();
void setOut(Message out);

Exception getException();
<T> T getException(Class<T> type);

void setException(Throwable t); boolean isFailed();

boolean isTransacted(); boolean isRollbackOnly();

CamelContext getContext(); Exchange copy();

Endpoint getFromEndpoint();
void setFromEndpoint(Endpoint fromEndpoint);

String getFromRouteId();
void setFromRouteId(String fromRouteId);

UnitOfWork getUnitOfWork();
void setUnitOfWork(UnitOfWork unitOfWork);

String getExchangeId();
void setExchangeId(String id);

void addOnCompletion(Synchronization onCompletion);
void handoverCompletions(Exchange target);

List<Synchronization> handoverCompletions();

}

Exchange methods
The Exchange interface defines the following methods:

 getPattern()—the exchange pattern can be one of the values
enumerated in org.apache.camel.ExchangePattern. The
following exchange pattern values are supported:

InOnly
RobustInOnly
InOut
InOptionalOut
OutOnly
RobustOutOnly
OutIn
OutOptionalIn

Normally, you specify the exchange pattern value in the
constructor of your custom exchange class.

 getPattern()—returns the ExchangePattern (MEP) of this
exchange.

Artix Java Router, Programmer’s Guide 69

 setPattern()—allows the ExchangePattern (MEP) of this
exchange to be customized. This typically is not required as
an exchange can be created with a specific MEP by calling
Endpoint.createExchange(ExchangePattern) but it is here
just in case if it is needed.

 setProperty(), getProperty(), getProperties(),
removeProperty()—use the property setter and getter methods
to associate named properties with the exchange instance.
The properties consist of miscellaneous metadata that you
might need for your custom exchange implementation.

 hasProperties()—returns whether any properties are set.

 setIn(), getIn()—setter and getter methods for the In
message. These methods are used only for exchange
patterns that can have an In message.

The getIn() implementation provided by the DefaultExchange
class implements lazy creation semantics: if the In message
is null when getIn() is called, the DefaultExchange class
creates a default In message.

 setOut(), getOut()—setter and getter methods for the Out
message. These methods are used only for exchange
patterns that can have an Out message.

There are two varieties of getOut() method in the
DefaultExchange class:

 getOut() with no arguments enables lazy creation of an
Out message (that is, if the current Out message is null,
a new message would automatically be created);

 getOut(boolean lazyCreate) with a boolean argument
triggers lazy creation, if the argument is true, but
otherwise returns the current (possibly null) value.

 hasOut()—returns whether or not an OUT message has been
set.

 getFault()—getter message for the fault message. There are
two varieties of getFault() method in the DefaultExchange
class:

 getFault() with no arguments enables lazy creation of a
Fault message;

 getFault(boolean lazyCreate) with a boolean argument
triggers lazy creation, if the argument is true, but
otherwise returns the current (possibly null) value.

The DefaultExchange class also defines a setFault() method.

70 Artix Java Router, Programmer’s Guide

 setException(), getException()—getter and setter methods for
an exception object (of Throwable type).

 isFailed()—returns true, if the exchange failed either due to
an exception or due to a fault.

 isTransacted()—returns true, if this exchange is transacted.

 isRollBackOnly()—returns true, if this exchange is marked for
rollback.

 getContext()—return a reference to the associated
CamelContext instance.

 copy()—create a new, identical (apart from the exchange ID)
copy of the current custom exchange object. The body and
headers of the In message, the Out message (if any), and
the Fault message (if any) are also copied by this operation.

 fromEndpoint—the endpoint which is originating this
message exchange.

 getFromEndpoint()—returns the endpoint which originated this
message exchange if a consumer on an endpoint created the
message exchange, otherwise this property will be null.

 setFromEndpoint()—sets the endpoint which originated this
message exchange. This method should typically only be
called by Endpoint implementations.

 getFromRouteId()—returns the route id which originated this
message exchange if a route consumer on an endpoint created
the message exchange, otherwise this property will be null.

 setFromRouteId()—sets the route id which originated this
message exchange. This method should typically only be
called by the internal framework.

 setUnitOfWork(), getUnitOfWork()—getter and setter methods
for the org.apache.camel.spi.UnitOfWork bean property. This
property is needed only for exchanges that can participate
in a transaction.

 setExchangeId(), getExchangeId()—getter and setter methods
for the exchange ID. It is an implementation detail, whether
or not you need to use an exchange ID in your custom
component.

 addOnCompletion()—adds a Synchronization to be invoked as
callback when this exchange is completed.

 handoverOnCompletion()—handover all the on completions
from this exchange to the target exchange.

Artix Java Router, Programmer’s Guide 71

Implementing the Exchange Interface
How to implement a custom exchange
Example 31 outlines how to implement an exchange by extending
the DefaultExchange class.

Example 31. Custom Exchange Implementation
// Java
import org.apache.camel.CamelContext;
import org.apache.camel.Exchange;
import org.apache.camel.ExchangePattern;
import org.apache.camel.impl.DefaultExchange;

public class CustomExchange extends DefaultExchange { ❶

public CustomExchange(CamelContext camelContext, Exchange Pattern pattern)

{ ❷
super(camelContext, pattern);
// Set other member variables...

}

public CustomExchange(CamelContext camelContext) { ❸
super(camelContext);
// Set other member variables...

}

public CustomExchange(DefaultExchange parent) { ❹
super(parent);
// Set other member variables...

}

@Override

public Exchange newInstance() { ❺
Exchange e = new CustomExchange(this);
// Copy custom member variables from current instance...
return e;

}

@Override

protected Message createInMessage() { ❻
return new CustomMessage();

}

@Override
protected Message createOutMessage() {

return new CustomMessage();
}

@Override
protected Message createFaultMessage() { return new CustomMessage();
}

@Override

protected void configureMessage(Message message) { ❼
super.configureMessage(message);
// Perform custom message configuration...

}
}

❶ Implement a custom exchange class, CustomExchange, by
extending the org.apache.camel.impl.DefaultExchange class.

72 Artix Java Router, Programmer’s Guide

❷ You usually need a constructor that lets you specify the
exchange pattern explicitly, as shown here.

❸ This constructor, taking only a CamelContext argument,
context, implicitly sets the exchange pattern to InOnly
(defined in the DefaultExchange constructor).

❹ This constructor copies the exchange pattern and unit of
work from the specified exchange object, parent.

❺ The newInstance() method is called from inside the
DefaultExchange.copy() method. Your customization of the
newInstance() method should focus on copying all of the
custom properties of the current exchange instance into the
new exchange instance. The DefaultExchange.copy() method
takes care of copying the generic exchange properties (by
calling copyFrom()).

➏ (Optional) Needed only if you implement a custom message
type. The createInMessage(), createOutMessage(), and
createFaultMessage() methods are implemented in order to
support lazy message creation when you are using a custom
message type, CustomMessage. For example, if you want to
lazily create an In message by calling getIn(), you would
implement createInMessage() to ensure that a message of
type, CustomMessage, is created (DefaultExchange.getIn() calls
createInMessage() to create the new message).

❼ In the body of configureMessage() you can put code to
configure all message types (In, Out, and Fault). The
DefaultExchange class uses configureMessage() to configure a
message whenever you call setIn(), setOut(), or setFault()
and whenever a message is created by lazy instantiation.

Artix Java Router, Programmer’s Guide 73

Message Interface
This chapter describes in detail how to implement the
Message interface, which is an optional step in the
implementation of a Java Router component.

The Message Interface
An instance of org.apache.camel.Message type can represent any
kind of message (In, Out, or Fault). Figure 17 shows the
inheritance hierarchy for the message type. You do not always
need to implement a custom message type for a component. In
many cases, the default implementation, DefaultMessage, is
adequate.

Figure 17. Message Inheritance Hierarchy

The Message interface
Example 32 shows the definition of the org.apache.camel.Message
interface.

Example 32. Message Interface
// Java
package org.apache.camel;

import java.util.Map;
import java.util.Set;

import javax.activation.DataHandler;

public interface Message {

String getMessageId();
void setMessageId(String messageId);

Exchange getExchange();
Object getHeader(String name);
<T> T getHeader(String name, Class<T> type);
void setHeader(String name, Object value);
Object removeHeader(String name);
Map<String, Object> getHeaders();
void setHeaders(Map<String, Object> headers);

Object getBody();
<T> T getBody(Class<T> type);
void setBody(Object body);
<T> void setBody(Object body, Class<T> type);

74 Artix Java Router, Programmer’s Guide

DataHandler getAttachment(String id);
Map<String, DataHandler> getAttachments();
Set<String> getAttachmentNames();
void removeAttachment(String id);
void addAttachment(String id, DataHandler content);
void setAttachments(Map<String, DataHandler> attachments);

boolean hasAttachments();

Message copy();

void copyFrom(Message message);

}

Message methods
The Message interface defines the following methods:

 setMessageId(), getMessageId()—getter and setter methods for
the message ID. It is an implementation detail, whether or
not you need to use a message ID in your custom
component.

 getExchange()—returns a reference to the parent exchange
object.

 getHeader(), getHeaders(), setHeader(), setHeaders(),
removeHeader()—getter and setter methods for the message
headers. In general, these message headers can be used
either to store actual header data or to store miscellaneous
metadata.

 getBody(), setBody()—getter and setter methods for the
message body.

 getAttachment(), getAttachments(),
getAttachmentNames(), removeAttachment(),
addAttachment(), setAttachments(), hasAttachments()—
methods to get, set, add, and remove attachments.

 copy()—create a new, identical (including the message ID)
copy of the current custom message object.

 copyFrom()—copy the complete contents (including the
message ID) of the specified generic message object,
message, into the current message instance. Because this
method has to be able to copy from any message type, it
copies the generic message properties, but not the custom
properties.

Artix Java Router, Programmer’s Guide 75

Implementing the Message Interface
How to implement a custom message
Example 33 outlines how to implement a message by extending
the DefaultMessage class.

Example 33. Custom Message Implementation

❶ Implement a custom message class, CustomMessage, by
extending the org.apache.camel.impl.DefaultMessage class.

❷ Typically, you need a default constructor that creates a
message with default properties.

❸ Override the toString() method in order to customize
message stringification.

// Java
import org.apache.camel.Exchange;
import org.apache.camel.impl.DefaultMessage;

public class CustomMessage extends DefaultMessage { ❶

public CustomMessage() { ❷
// Create message with default properties...

}

@Override

public String toString() { ❸
// Return a stringified message...

}

public CustomExchange getExchange() { ❹
return (CustomExchange)super.getExchange();

}

@Override

public CustomMessage newInstance() { ❺
return new CustomMessage(...);

}

@Override

protected Object createBody() { ❻
// Return message body (lazy creation).

}

@Override

protected void populateInitialHeaders(Map<String, Object> map) { ❼
// Initialize headers from underlying message (lazy creation).

}

@Override

protected void populateInitialAttachments(Map<String, DataHandler>

map) { ❽
// Initialize attachments from underlying message (lazy

creation).
}

}

76 Artix Java Router, Programmer’s Guide

❹ (Optional) This is a convenient method that returns a
reference to the parent exchange instance, cast to the
correct type.

❺ The newInstance() method is called from inside the
MessageSupport.copy() method. Your customization of the
newInstance() method should focus on copying all of the
custom properties of the current message instance into the
new message instance. The MessageSupport.copy() method
takes care of copying the generic message properties (by
calling copyFrom()).

The createBody() method works in conjunction with the
MessageSupport.getBody() method to implement lazy access to
the message body. By default, the message body is null. It
is only when the application code tries to access the body
(by calling getBody()), that the body should be created. The
MessageSupport.getBody() automatically calls createBody(),
when the message body is accessed for the first time.

❼ The populateInitialHeaders() method works in conjunction
with the header getter and setter methods to implement
lazy access to the message headers. This method should
parse the message to extract any message headers and
insert them into the hash map, map. The
populateInitialHeaders() method will automatically be called
when a user attempts to access a header (or headers) for
the first time (by calling getHeader(), getHeaders(),
setHeader(), or setHeaders()).

❽ The populateInitialAttachments() method works in
conjunction with the attachment getter and setter methods
to implement lazy access to the attachments. This method
should extract the message attachments and insert them into
the hash map, map. The populateInitialAttachments() method
will automatically be called when a user attempts to access
an attachment (or attachments) for the first time (by calling
getAttachment(), getAttachments(), getAttachmentNames(), or
addAttachment()).

