

Artix 5.6.4

Java Router, Defining Routes

Micro Focus

The Lawn

22-30 Old Bath Road

Newbury, Berkshire RG14 1QN

UK

http://www.microfocus.com

Copyright © Micro Focus 2017. All rights reserved.

MICRO FOCUS, the Micro Focus logo and Micro Focus Licensing are trademarks or

registered trademarks of Micro Focus IP Development Limited or its subsidiaries or

affiliated companies in the United States, United Kingdom and other countries.

All other marks are the property of their respective owners.

2017-02-28

http://www.microfocus.com/

Artix Java Router, Defining Routes iii

Contents

Preface ... v
Open Source Project Resources .. v
Document Conventions ... v
The Artix ESB Documentation Library vi
Further Information and Product Support vi

Information We Need ... vii
Contact information ... vii

Defining Routes in Java DSL 1
Implementing a RouteBuilder Class ... 1
Basic Java DSL Syntax .. 2
Processors .. 5
Languages for Expressions and Predicates 10
Transforming Message Content .. 15

Defining Routes in XML .. 21
Using the Router Schema in an XML File 21
Defining a Basic Route in XML .. 22
Processors .. 23
Languages for Expressions and Predicates 28

Elements for expressions and predicates 28
Transforming Message Content .. 30

Basic Principles of Route Building 33
Pipeline Processing ... 33
Multiple Inputs ... 37
Exception Handling ... 41
Bean Integration .. 42

Basic method signatures... 43

Artix Java Router, Defining Routes v

Preface

Open Source Project Resources

Apache Incubator CXF

 Web site: http://cxf.apache.org/

 User's list: <user@cxf.apache.org>

Apache Tomcat

 Web site: http://tomcat.apache.org/

 User's list: <users@tomcat.apache.org>

Apache ActiveMQ

 Web site: http://activemq.apache.org/

 User's list: <users@activemq.apache.org>

Apache Camel

 Web site: http://camel.apache.org

 User's list: <users@camel.apache.org>

Document Conventions

Typographical conventions

This book uses the following typographical conventions:

fixed width Fixed width (Courier New font) in normal text

represents portions of code and literal names

of items such as classes, functions, variables,
and data structures. For example, text might

refer to the javax.xml.ws.Endpoint class.

Constant width paragraphs represent code

examples or information a system displays
on the screen. For example:

import java.util.logging.Logger;

Fixed

width

italic

Fixed width italic words or characters in code
and commands represent variable values you

must supply, such as arguments to
commands or path names for your particular

system. For example:

% cd /users/YourUserName

Italic Italic words in normal text represent
emphasis and introduce new terms.

http://cxf.apache.org/
mailto:user@cxf.apache.org
http://tomcat.apache.org/
mailto:users@tomcat.apache.org
http://activemq.apache.org/
mailto:users@activemq.apache.org
http://camel.apache.org/
mailto:users@camel.apache.org

vi Artix Java Router, Defining Routes

Bold Bold words in normal text represent

graphical user interface components such as
menu commands and dialog boxes. For

example: the User Preferences dialog.

Keying conventions

This book uses the following keying conventions:

No prompt When a command’s format is the same for

multiple platforms, the command prompt is

not shown.

% A percent sign represents the UNIX command

shell prompt for a command that does not

require root privileges.

A number sign represents the UNIX

command shell prompt for a command that

requires root privileges.

> The notation > represents the MS-DOS or

Windows command prompt.

... Horizontal or vertical ellipses in format and
syntax descriptions indicate that material has

been eliminated to simplify a discussion.

[] Brackets enclose optional items in format and
syntax descriptions.

{ } Braces enclose a list from which you must

choose an item in format and syntax
descriptions.

| In format and syntax descriptions, a vertical

bar separates items in a list of choices
enclosed in {} (braces).

The Artix ESB Documentation Library

For information on the organization of the Artix ESB library, the
document conventions used, and where to find additional

resources, see Using the Artix ESB Library.

Further Information and Product Support

Additional technical information or advice is available from

several sources.

The product support pages contain a considerable amount of
additional information, such as:

http://communities.progress.com/pcom/docs/DOC-105909

Artix Java Router, Defining Routes vii

 The WebSync service, where you can download fixes and
documentation updates.

 The Knowledge Base, a large collection of product tips and

workarounds.

 Examples and Utilities, including demos and additional

product documentation.

Note:

Some information may be available only to customers who
have maintenance agreements.

If you obtained this product directly from Micro Focus, contact

us as described on the Micro Focus Web site,
http://www.microfocus.com. If you obtained the product from

another source, such as an authorized distributor, contact

them for help first. If they are unable to help, contact us.

Information We Need

However you contact us, please try to include the information

below, if you have it. The more information you can give, the
better Micro Focus SupportLine can help you. But if you don't

know all the answers, or you think some are irrelevant to
your problem, please give whatever information you have.

 The name and version number of all products that you
think might be causing a problem.

 Your computer make and model.

 Your operating system version number and details of any
networking software you are using.

 The amount of memory in your computer.

 The relevant page reference or section in the
documentation.

 Your serial number. To find out these numbers, look in the

subject line and body of your Electronic Product Delivery

Notice email that you received from Micro Focus.

Contact information

Our Web site gives up-to-date details of contact numbers and

addresses.

Additional technical information or advice is available from
several sources.

The product support pages contain considerable additional
information, including the WebSync service, where you can

http://www.microfocus.com/

viii Artix Java Router, Defining Routes

download fixes and documentation updates. To connect, enter
http://www.microfocus.com in your browser to go to the Micro

Focus home page.

If you are a Micro Focus SupportLine customer, please see

your SupportLine Handbook for contact information. You can
download it from our Web site or order it in printed form from

your sales representative. Support from Micro Focus may be
available only to customers who have maintenance

agreements.

You may want to check these URLs in particular:

 http://www.microfocus.com/products/corba/artix.aspx (trial

software download and Micro Focus Community files)

 https://supportline.microfocus.com/productdoc.aspx
(documentation updates and PDFs)

To subscribe to Micro Focus electronic newsletters, use the
online form at:

http://www.microfocus.com/Resources/Newsletters/infocus/newslett
er-subscription.asp

http://www.microfocus.com/
http://www.microfocus.com/products/corba/artix.aspx
https://supportline.microfocus.com/productdoc.aspx
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscription.asp
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscription.asp

Artix Java Router, Defining Routes 1

Defining Routes in
Java DSL
You can define routing rules in Java, using a domain specific

language (DSL). The routing rules represent the core of a router
application and Java DSL is currently the most flexible way to

define them.

Implementing a RouteBuilder Class

In Java Router, you define routes by implementing a

RouteBuilder class. You must override a single method,

RouteBuilder.configure(), and in this method define the

routing rules you want to associate with the RouteBuilder. The

rules themselves are defined using a Domain Specific
Language (DSL), which is implemented as a Java API.

You can define as many RouteBuilder classes as you like in a

router application. Ultimately, each RouteBuilder class must get

instantiated once and registered with the CamelContext object.

Normally, however, the lifecycle of the RouteBuilder objects is

managed automatically by the container in which you deploy
the router. The core task for a router developer is simply to

implement one or more RouteBuilder classes.

RouteBuilder class

The org.apache.camel.builder.RouteBuilder class is the base

class for implementing your own route builder types. It defines

an abstract method, configure(), that you must override in your

derived implementation class. In addition, RouteBuilder also

defines methods that are used to initiate the routing rules (for

example, from(), intercept(), and onException()).

Implementing a RouteBuilder

Example 1 shows an example of a simpler RouteBuilder

implementation. You need only define a single method,

configure(), which contains a list of routing rules (one Java

statement for each rule).

2 Artix Java Router, Defining Routes

Example 1. Implementation of a RouteBuilder Class

Where the rule of the form from(URL1).to(URL2) instructs the
router to read messages from the file system located in
directory, src/data, and send them to files located in the
directory, target/messages. The option, ?noop=true, specifies
that the source messages are not to be deleted from the
src/data directory.

Basic Java DSL Syntax

What is a DSL?

A Domain Specific Language (DSL) is essentially a mini-

language designed for a special purpose. The DSL is not
required to be logically complete; it need only have enough

expressive power to describe problems adequately in the chosen
domain.

Typically, a DSL does not require a dedicated parser,
interpreter, or compiler. You can piggyback a DSL on top of an
existing object-oriented host language by observing that it is
possible to map an API in a host language to a specialized
language syntax: that is, a sequence of commands in the DSL
maps to a chain of method invocations in the host language.
For example, a sequence of commands in some hypothetical
DSL that might look like this:

Can be mapped to a chain of Java invocations, like this:

command01().command02().command03()

You could even define blocks, for example:

command01().startBlock().command02().command03().endBlock(

)

The syntax of the DSL is implicitly defined by the type system

of the specialized API. For example, the return type of a
method determines which methods can legally be invoked next

(equivalent to the next command in the DSL).

import org.apache.camel.builder.RouteBuilder;

public class MyRouteBuilder extends RouteBuilder {

public void configure() {

// Define routing rules here:

from("file:src/data?noop=true").to("file:target/mess

ages");

// More rules can be included, in you like.

// ...

}

}

command0

1;

command0

2;

command0

3;

Artix Java Router, Defining Routes 3

Router rule syntax

The Java Router defines a router DSL for defining routing rules.
You can use this DSL to define rules in the body of a

RouteBuilder.configure() implementation. Figure 1 shows an

overview of the basic syntax for defining local routing rules.

Figure 1. Local Routing Rules

A local rule always starts with a from("EndpointURL") method, which

specifies the source of messages for the routing rule. You can then add
an arbitrarily long chain of processors to the rule (for example,

filter()), finishing off the rule with a to("EndpointURL") method, which

specifies the target for the messages that pass through the rule. It is not

always necessary to end a rule with to(), however. There are alternative

ways of specifying the message target in a rule.

NOTE: It is also possible to define a global routing rule, by starting the

rule with a special processor type (such as intercept(), onException(),

errorHandler(), and so on). This kind of rule lies outside the scope of the

Getting Started guide..

Sources and targets

A local rule always starts by defining a source endpoint, using

from("EndpointURL"), and typically (but not always) ends by

defining a target endpoint, using to("EndpointURL"). The

endpoint URLs, EndpointURL, can use any of the components

configured at deploy time. For example, you could use a file

endpoint, file:MyMessageDirectory, a CXF endpoint,

cxf:MyServiceName, or an ActiveMQ endpoint,

activemq:queue:MyQName. For a complete list of component

types, see http://camel.apache.org/components.html

(http://activemq.apache.org/camel/components.html).

Processors

A processor is a method that can access and modify the stream

of messages passing through a rule. If a message is part of a
remote procedure call (InOut call), the processor can

potentially act on the messages flowing in both directions: on

http://activemq.apache.org/camel/components.html
http://activemq.apache.org/camel/components.html

4 Artix Java Router, Defining Routes

the request messages, flowing from source to target, and on the
reply messages, flowing from target back to source (see

Message exchanges). Processors can take expression or
predicate arguments, that modify their behavior. For example,

the rule shown in Figure 1 includes a filter() processor that

takes an xpath() predicate as its argument.

Expressions and predicates

Expressions (evaluating to strings or other data types) and

predicates (evaluating to true or false) occur frequently as
arguments to the built-in processor types. You do not have to

worry much about which type to pass to an expression
argument, because they are usually automatically converted to

the type you need. For example, you can usually just pass a
string into an expression argument. Predicate expressions are

useful for defining conditional behaviour in a route. For example,

the following filter rule propagates In messages, only if the foo

header is equal to the value bar:

Where the filter is qualified by the predicate,

header("foo").isEqualTo("bar"). To construct more

sophisticated predicates and expressions, based on the

message content, you can use one of the expression and
predicate languages (see Languages for Expressions and

Predicates).

Message exchanges

When a router rule is activated, it can process messages

passing in either direction: that is, from source to target or from
target back to source. For example, if a router rule is mediating

a remote procedure call (RPC), the rule would process requests,

replies, and faults. How do you manage message correlation in
this case? One of the most effective and straightforward ways is

to use a message exchange object as the basis for processing
messages. Java Router uses message exchange objects (of

org.apache.camel.Exchange type) in its API for processing

router rules.

The basic idea of the message exchange is that, instead of
accessing requests, replies, and faults separately, you

encapsulate the correlated messages inside a single object (an

Exchange object). Message correlation now becomes trivial from

the perspective of a processor, because correlated messages are

encapsulated in a single Exchange object and processors gain

access to messages through the Exchange object.

Using an Exchange object makes it easy to generalize message

processing to different kinds of message exchange pattern. For
example, an asynchronous protocol might define a message

exchange pattern that consists of a single message that flows

from("seda:a").filter(header("foo").isEqualTo("bar")).to("seda

:b");

Artix Java Router, Defining Routes 5

from the source to the target (an In message). An RPC protocol,
on the other hand, might define a message exchange pattern

that consists of a request message correlated with either a reply
or fault message. Currently, Java Router supports the following

message exchange patterns:

 InOnly

 RobustInOnly

 InOut

 InOptionalOut

 OutOnly

 RobustOutOnly

 OutIn

 OutOptionalIn

Where these message exchange patterns are represented by

constants in the enumeration type,

org.apache.camel.ExchangePattern.

Processors

To enable the router to do something more interesting than
simply connecting a source endpoint to a target endpoint, you

can add processors to your route. A processor is a command you
can insert into a routing rule in order to perform arbitrary

processing of the messages that flow through the rule. Java

Router provides a wide variety of different processors, as
follows:

 Filter

 Choice

 Pipeline

 Recipient list

 Splitter

 Aggregator

 Resequencer

 Throttler

 Delayer

 Load balancer

6 Artix Java Router, Defining Routes

 Custom processor

Filter

The filter() processor can be used to prevent uninteresting

messages from reaching the target endpoint. It takes a single
predicate argument: if the predicate is true, the message

exchange is allowed through to the target; if the predicate is
false, the message exchange is blocked. For example, the

following filter blocks a message exchange, unless the incoming

message contains a header, foo, with value equal to bar:

Choice

The choice() processor is a conditional statement that is used

to route incoming messages to alternative targets. The

alternative targets are each preceded by a when() method, which

takes a predicate argument. If the predicate is true, the following
target is selected, otherwise processing proceeds to the next

when() method in the rule. For example, the following choice()

processor directs incoming messages to either Target1, Target2, or

Target3, depending on the values of Predicate1 and

Predicate2:

Pipeline

The pipeline() processor is used to link together a chain of

targets, where the output of one target is fed into the input of

the next target in the pipeline (analogous to the UNIX pipe

command). The pipeline() method takes an arbitrary

number of endpoint arguments, which specify the sequence

of endpoints in the pipeline. For example, to pass messages

from SourceURL to Target1 to Target2 to Target3 in a pipeline,

you could use the following rule:

from("SourceURL").pipeline("Target1","Target2","Target3");

Recipient list

If you want the messages from a source endpoint,
SourceURL, to be sent to more than one target, there are two

alternative approaches you can use. One approach is to
invoke the to() method with multiple target endpoints (static

recipient list), for example:

from("SourceURL").to("Target1","Target2","Target3");

The alternative approach is to invoke the recipientList()

processor, which takes a list of recipients as its argument

(dynamic recipient list). The advantage of the recipientList()

from("SourceURL").filter(header("foo").isEqualTo("bar")).to("Ta

r getURL");

from("SourceURL").choice().when(Predicate1).to("Target
1")

.when(Predicate2).to("Target2"

)

.otherwise().to("Target3");

Artix Java Router, Defining Routes 7

processor is that the list of recipients can be calculated at
runtime.

For example, the following rule generates a recipient list by

reading the contents of the recipientListHeader from the

incoming message:

from("SourceURL").recipientList(header("recipientListHeader").

tokenize(","));

Splitter

The Splitter processor is used to split a message into parts,

which are then processed as separate messages. The split()

method takes a list argument, where each item in the list
represents a message part that is to be re-sent as a separate

message. For example, the following rule splits the body of an

incoming message into separate lines and then sends each
line to the target in a separate message:

from("SourceURL").split(bodyAs(String.class).tokenize("\n")).

to("TargetURL");

Aggregator

The Aggregateor processor is used to aggregate related

incoming messages into a single message. In order to
distinguish which messages are eligible to be aggregated

together, you need to define a correlation key for the
aggregator. The correlation key is normally derived from a

field in the message (for example, a header field). Messages

that have the same correlation key value are eligible to be
aggregated together. You can also optionally specify an

aggregation algorithm to the aggregate() processor (the

default algorithm is to pick the latest message with a given

value of the correlation key and to discard the older
messages with that correlation key value).

For example, if you are monitoring a data stream that
reports stock prices in real time, you might only be
interested in the latest price of each stock symbol. In this
case, you could configure an aggregator to transmit only the
latest price for a given stock and discard the older (out-of-
date) price notifications. The following rule implements this
functionality, where the correlation key is read from the
stockSymbol header and the default aggregator algorithm is
used:

from("SourceURL").aggregate(header("stockSymbol")).to("TargetURL");

Resequencer

A Resequencer processor is used to re-arrange the order in

which incoming messages are transmitted. The resequence()

method takes a sequence number as its argument (where the

sequence number is calculated from the contents of a field in

the incoming message). Naturally, before you can start re-
ordering messages, you need to wait until a certain number

of messages have been received from the source. There are a

8 Artix Java Router, Defining Routes

couple of different ways to specify how long the resequence()

processor should wait before attempting to re-order the

accumulated messages and forward them to the target, as
follows:

Batch resequencing—(the default) wait until a specified
number of messages have accumulated before starting to
re-order and forward messages. This processing option is
specified by invoking resequence().batch(). For example, the
following resequencing rule would re-order messages based
on the timeOfDay header, waiting until at least 300 messages
have accumulated or 4000 ms have elapsed since the last
message received.

from("SourceURL").resequence(header("timeOfDay").batch(new

BatchResequencerConfig(300, 4000L)).to("TargetURL");

 Stream resequencing—transmit messages as soon as they

arrive unless the resequencer detects a gap in the
incoming message stream (missing sequence numbers),

in which case the resequencer waits until the missing
messages arrive and then forwards the messages in the

correct order. To avoid the resequencer blocking forever,

you can specify a timeout (default is 1000 ms), after
which time the message sequence is transmitted with

unresolved gaps. For example, the following resequencing
rule detects gaps in the message stream by monitoring

the value of the sequenceNumber header, where the

maximum buffer size is limited to 5000 and the timeout is

specified to be 4000 ms:

from("SourceURL").resequence(header("sequenceNumber")).stream

(new StreamResequencerConfig(5000, 4000L)).to("TargetURL");

Throttler

The Throttler processor is used to ensure that a target
endpoint does not get overloaded. The throttler works by

limiting the number of messages that can pass through per
second. If the incoming messages exceed the specified rate,

the throttler accumulates excess messages in a buffer and
transmits them more slowly to the target endpoint. For

example, to limit the rate of throughput to 100 messages per
second, you can define the following rule:

from("SourceURL").throttle(100).to("TargetURL");

Delayer

The Delayer processor is used to hold up messages for a

specified length of time. The delay can either be relative (wait

a specified length of time after receipt of the incoming
message) or absolute (wait until a specific time). For

example, to add a delay of 2 seconds before transmitting
received messages, you can use the following rule:

Artix Java Router, Defining Routes 9

from("SourceURL").delay(2000).to("TargetURL");

To wait until the absolute time specified in the processAfter
header, you can use the following rule:

from("SourceURL").delay(header("processAfter").to

("TargetURL");

The delay() method is overloaded, such that an integer is
interpreted as a relative delay and an expression (for
example, a string) is interpreted as an absolute delay.

Load Balancer

The Load Balancer processor is used to load balance message

exchanges over a list of target endpoints. It is possible to
customize the load balancing strategy. For example, to load

balance incoming messages exchanges using a round robin

algorithm (each endpoint in the target list is tried in
sequence), you can use the following rule:

Alternatively, you can customize the load balancing

algorithm by implementing your own LoadBalancer class, as

follows:

public class MyLoadBalancer implements

org.apache.camel.processor.loadbalancer.LoadBalancer {

...

};

from("SourceURL").loadBalance().setLoadBalancer(new MyLoadBalancer())

.to("TargetURL_01", "TargetURL_02", "TargetURL_03");

Custom processor

If none of the standard processors described here provide the
functionality you need, you can always define your own custom

processor. To create a custom processor, define a class that

implements the org.apache.camel.Processor interface and

override the process() method in this class. For example, the

following custom processor, MyProcessor, removes the header

named foo from incoming messages:

Example 2. Implementing a Custom Processor Class

from("SourceURL").loadBalance().roundRobin().to

("TargetURL_01", "TargetURL_02", "TargetURL_03");

public class MyProcessor implements org.apache.camel.Processor

{

public void process(org.apache.camel.Exchange exchange)

{

inMessage = exchange.getIn(); if (inMessage != null)

{

inMessage.removeHeader("foo");

}

}

};

10 Artix Java Router, Defining Routes

To insert the custom processor into a router rule, invoke the

process() method, which provides a generic mechanism for

inserting processors into rules. For example, the following rule
invokes the processor defined in Example 2:

Languages for Expressions and Predicates

To provide you with greater flexibility when parsing and processing

messages, Java Router supports language plug-ins for various

scripting languages. For example, if an incoming message is
formatted as XML, it is relatively easy to extract the contents of

particular XML elements or attributes from the message using a
language such as XPath. The Java Router implements script

builder classes, which encapsulate the imported languages.
Each languages is accessed through a static method that takes

a script expression as its argument, processes the current
message using that script, and then returns an expression or a

predicate. In order to be usable as an expression or a predicate,

the script builder classes implement the following interfaces:

In addition to this, the ScriptBuilder class (which wraps scripting
languages such as JavaScript, and so on) inherits from the
following interface:

org.apache.camel.Processor

Which implies that the languages associated with the
ScriptBuilder class can also be used as message processors
(see Custom processor).

Simple

The simple language is a very limited expression language that
is built into the router core. This language can be useful, if you

need to eliminate dependencies on third-party libraries whilst
testing. Otherwise, you should use one of the other languages.

To use the simple language in your application code, include the
following import statement in your Java source files:

The simple language provides various elementary expressions
that return different parts of a message exchange. For
example, the expression, simple("header.timeOfDay"), would
return the contents of a header called timeOfDay from the
incoming message. You can also construct predicates by
testing expressions for equality. For example, the predicate,
simple("header.timeOfDay = '14:30'"), tests whether the
timeOfDay header in the incoming message is equal to 14:30.

org.apache.camel.Processor myProc = new
MyProcessor();

from("SourceURL").process(myProc).to("TargetURL");

org.apache.camel.Expression<E>

org.apache.camel.Predicate<E>

import static

org.apache.camel.language.simple.SimpleLanguage.simple;

Artix Java Router, Defining Routes 11

12 Artix Java Router, Defining Routes

Table 1 shows the list of elementary expressions supported by
the simple language.

Table 1. Properties for Simple Language

Elementary Expression Description

body Access the body of the incoming message.

out.body Access the body of the outgoing message.

Header.HeaderName Access the contents of the HeaderName
header from the incoming message.

out.header.HeaderName Access the contents of the HeaderName

header from the outgoing message

property.PropertyName Access the PropertyName property on the
exchange.

Xpath

The xpath() static method parses message content using the

XPath language (to learn about XPath, see the W3 Schools

tutorial, http://www.w3schools.com/xpath/default.asp). To use
the XPath language in your application code, include the

following import statement in your Java source files:

import static

org.apache.camel.builder.xml.XPathBuilder.xpath;

You can pass an XPath expression to xpath() as a string

argument. The XPath expression implicitly acts on the message

content and returns a node set as its result. Depending on the
context, the return value is interpreted either as a predicate

(where an empty node set is interpreted as false) or an
expression. For example, if you are processing an XML message

with the following content:

You could choose which target endpoint to route the message to,

based on the content of the city element, using the following

rule:

Where the return value of xpath() is treated as a predicate in

this example.

<person user="paddington">

<firstName>Paddington</firstName>

<lastName>Bear</lastName>

<city>London</city>

</person>

from("file:src/data?noop=true").choice().

when(xpath("/person/city =

'London'")).to("file:target/messages/uk").

otherwise().to("file:target/messages/others");

http://www.w3schools.com/xpath/default.asp

Artix Java Router, Defining Routes 13

Xquery

The xquery() static method parses message content using the

XQuery language (to learn about XQuery, see the W3 Schools

tutorial, http://www.w3schools.com/xquery/default.asp). XQuery

is a superset of the XPath language; hence, any valid XPath
expression is also a valid XQuery expression. To use the XQuery

language in your application code, include the following import
statement in your Java source files:

You can pass an XQuery expression to xquery() in several
different ways. For simple expressions, you can pass the
XQuery expressions as a string, java.lang.String. For longer
XQuery expressions, on the other hand, you might prefer to
store the expression in a file, which you can then reference by
passing a java.io.File argument or a java.net.URL argument
to the overloaded xquery() method. The XQuery expression
implicitly acts on the message content and returns a node set
as its result. Depending on the context, the return value is
interpreted either as a predicate (where an empty node set is
interpreted as false) or an expression.

JoSQL

The sql() static method enables you to call on the JoSQL (SQL

for Java objects) language to evaluate predicates and
expressions in Java Router. JoSQL employs a SQL-like query

syntax to perform selection and ordering operations on data
from in-memory Java objects—JoSQL is not a database,

however. In the JoSQL syntax, each Java object instance is
treated like a table row and each object method is treated like a

column name. Using this syntax, it is possible to construct

powerful statements for extracting and compiling data from
collections of Java objects. For details, see

http://josql.sourceforge.net/.

To use the JoSQL language in your application code, include
the following import statement in your Java source files:

import static org.apache.camel.builder.sql.SqlBuilder.sql;

OGNL

The ognl() static method enables you to call on OGNL (Object

Graph Navigation Language) expressions, which can then be used

as predicates and expressions in a router rule. For details, see
http://www.ognl.org/.

To use the OGNL language in your application code, include the

following import statement in your Java source files:

import static

org.apache.camel.builder.saxon.XQueryBuilder.xquery;

import static

org.apache.camel.language.ognl.OgnlExpression.ognl;

http://www.w3schools.com/xquery/default.asp
http://josql.sourceforge.net/
http://www.ognl.org/

14 Artix Java Router, Defining Routes

EL

The el() static method enables you to call on the Unified

Expression Language (EL) to construct predicates and
expressions in a router rule. The EL was originally specified as

part of the JSP 2.1 standard (JSR-245), but is now available as
a standalone language. Java Router integrates with JUEL

(http://juel.sourceforge.net/), which is an open source
implementation of the EL language.

To use the EL language in your application code, include the
following import statement in your Java source files:

import static

org.apache.camel.language.juel.JuelExpression.el;

Groovy

The groovy() static method enables you to call on the Groovy

scripting language to construct predicates and expressions in a
route. To use the Groovy language in your application code,

include the following import statement in your Java source files:

JavaScript

The javaScript() static method enables you to call on the

JavaScript scripting language to construct predicates and
expressions in a route. To use the JavaScript language in your

application code, include the following import statement in your
Java source files:

PHP

The php() static method enables you to call on the PHP scripting

language to construct predicates and expressions in a route. To
use the PHP language in your application code, include the

following import statement in your Java source files:

Python

The python() static method enables you to call on the Python

scripting language to construct predicates and expressions in a
route. To use the Python language in your application code,

include the following import statement in your Java source files:

import static

org.apache.camel.builder.camel.script.ScriptBuilder.*;

import static

org.apache.camel.builder.camel.script.ScriptBuilder.*;

import static

org.apache.camel.builder.camel.script.ScriptBuilder.*;

import static

org.apache.camel.builder.camel.script.ScriptBuilder.*;

http://juel.sourceforge.net/

Artix Java Router, Defining Routes 15

Ruby

The ruby() static method enables you to call on the Ruby

scripting language to construct predicates and expressions in a

route. To use the Ruby language in your application code,

include the following import statement in your Java source files:

Bean

You can also use Java beans to evaluate predicates and
expressions. For example, to evaluate the predicate on a filter

using the isGoldCustomer() method on the bean instance,

myBean, you can use a rule like the following:

A discussion of bean integration in Java Router is beyond the
scope of this Defining Routes guide. For details, see
http://activemq.apache.org/camel/bean-language.html.

Transforming Message Content

Java Router supports a variety of approaches to transforming

message content. In addition to a simple native API for modifying
message content, Java Router supports integration with several

different third-party libraries and transformation standards. The
following kinds of transformation are discussed in this section:

 Simple transformations

 Marshaling and unmarshaling

Simple transformations

The Java DSL has a built-in API that enables you to perform

simple transformations on incoming and outgoing messages.
For example, the rule shown in Example 3 would append the

text, World!, to the end of the incoming message body.

Example 3. Simple Transformation of Incoming Messages

Where the setBody() command replaces the content of the

incoming message's body. You can use the following API classes
to perform simple transformations of the message content in a

router rule:

 org.apache.camel.model.ProcessorDefinition

 org.apache.camel.builder.Builder

import static

org.apache.camel.builder.camel.script.ScriptBuilder.*;

from("SourceURL")

.filter().method("myBean", "isGoldCustomer")

.to("TargetURL");

from("SourceURL").setBody(body().append("

World!")).to("TargetURL");

http://activemq.apache.org/camel/bean-language.html

16 Artix Java Router, Defining Routes

 org.apache.camel.builder.ValueBuilder

ProcessorDefinition class

The org.apache.camel.model.ProcessorDefinition class defines

the DSL commands you can insert directly into a router rule—

for example, the setBody() command in Example 3. Table 2

shows the ProcessorDefinition methods that are relevant to

transforming message content:

Table 2. Transformation Methods from the
ProcessorDefinition Class

Method Description

Type convertBodyTo(Class type) Converts the IN message body to
the specified type.

Type convertFaultBodyTo(Class

type)

Converts the FAULT message body

to the specified type.

Type convertOutBodyTo(Class type) Converts the OUT message body to

the specified type.

Type removeFaultHeader(String

name)

Adds a processor which removes
the header on the FAULT message.

Type removeHeader(String name) Adds a processor which removes

the header on the IN message.

Type removeOutHeader(String name) Adds a processor which removes
the header on the OUT message.

Type removeProperty(String name) Adds a processor which removes

the exchange property.

ExpressionClause<ProcessorType<Typ

e>> setBody()

Adds a processor which sets the
body on the IN message.

ExpressionClause<ProcessorType

<Type>> setBody()

Adds a processor which sets the
body on the IN message.

Type setFaultBody(Expression

expression)

Adds a processor which sets the

body on the FAULT message.

Type setFaultHeader(String name,

Expression expression)

Adds a processor which sets the

header on the FAULT message.

ExpressionClause<ProcessorType<Typ

e>> setHeader(String name)

Adds a processor which sets the

header on the IN message.

Type setHeader(String name,

Expression expression)

Adds a processor which sets the

header on the IN message.

ExpressionClause<ProcessorType<Typ

e>> setOutHeader(String name)

Adds a processor which sets the
header on the OUT message.

Type setOutHeader(String name,

Expression expression)

Adds a processor which sets the
header on the OUT message.

Artix Java Router, Defining Routes 17

Method Description

ExpressionClause<ProcessorType<Typ

e>> setProperty(String name)

Adds a processor which sets the
exchange property.

Type setProperty(String name,

Expression expression)

Adds a processor which sets the

exchange property.

Builder class

The org.apache.camel.builder.Builder class provides access to

message content in contexts where expressions or predicates

are expected. In other words, Builder methods are typically

invoked in the arguments of DSL commands—for example, the

body() command in Example 3. Table 3 summarizes the static

methods available in the Builder class.

Table 3. Methods from the Builder Class

Method Description

static <E extends Exchange>

ValueBuilder<E> body()
Returns a predicate and value

builder for the inbound body on an
exchange.

static <E extends Exchange,T>

ValueBuilder<E> bodyAs(Class<T>

type)

Returns a predicate and value

builder for the inbound message
body as a specific type.

static <E extends Exchange>

ValueBuilder<E> constant(Object

value)

Returns a constant expression.

static <E extends Exchange>

ValueBuilder<E> faultBody()
Returns a predicate and value

builder for the fault body on an
exchange.

static <E extends Exchange,T>

ValueBuilder<E>

faultBodyAs(Class<T> type)

Returns a predicate and value

builder for the fault message body
as a specific type.

static <E extends Exchange>

ValueBuilder<E> header(String

name)

Returns a predicate and value

builder for headers on an
exchange.

static <E extends Exchange>

ValueBuilder<E> outBody()
Returns a predicate and value

builder for the outbound body on
an exchange.

static <E extends Exchange>

ValueBuilder<E> outBody()
Returns a predicate and value

builder for the outbound message
body as a specific type.

static <E extends Exchange>

ValueBuilder<E>

systemProperty(String name)

Returns an expression for the

given system property.

18 Artix Java Router, Defining Routes

Method Description

static <E extends Exchange>

ValueBuilder<E>

systemProperty(String name,

String defaultValue)

Returns an expression for the
given system property.

ValueBuilder class

The org.apache.camel.builder.ValueBuilder class enables you

to modify values returned by the Builder methods. In other

words, the methods in ValueBuilder provide a simple way of

modifying message content.

Table 4 summarizes the methods available in the ValueBuilder

class. That is, the table shows only the methods that are used to
modify the value they are invoked on (for full details, see the

API Reference documentation).

Table 4. Modifier Methods from the ValueBuilder Class

Method Description

ValueBuilder<E> append(Object

value)
Appends the string evaluation of

this expression with the given
value.

ValueBuilder<E> convertTo(Class

type)
Converts the current value to the

given type using the registered
type converters.

ValueBuilder<E> convertToString() Converts the current value a

String using the registered type
converters.

ValueBuilder<E>

regexReplaceAll(String regex,

Expression<E> replacement)

Replaces all occurrencies of the

regular expression with the given
replacement.

ValueBuilder<E>

regexReplaceAll(String regex,

String replacement)

Replaces all occurrencies of the

regular expression with the given
replacement.

ValueBuilder<E>

regexTokenize(String regex)
Tokenizes the string conversion

of this expression using the given
regular expression.

ValueBuilder<E> tokenize()

ValueBuilder<E> tokenize(String

token)
Tokenizes the string conversion of
this expression using the given

token separator.

Marshaling and unmarshaling

You can convert between low-level and high-level message
formats using the following commands:

Artix Java Router, Defining Routes 19

 marshal()—convert a high-level data format to a low-level

data format.

 unmarshal()—convert a low-level data format to a high-level

data format.

Java Router supports marshaling and unmarshaling of the

following data formats:

 Java serialization—enables you to convert a Java object to a

blob of binary data. For this data format, unmarshaling
converts a binary blob to a Java object and marshaling

converts a Java object to a binary blob. For example, to read

a serialized Java object from an endpoint, SourceURL, and

convert it to a Java object, you could use the following rule:

 JAXB—provides a mapping between XML schema types and
Java types (see https://jaxb.dev.java.net/). For JAXB,

unmarshaling converts an XML data type to a Java object
and marshaling converts a Java object to an XML data type.

Before you can use JAXB data formats, you must compile

your XML schema using a JAXB compiler in order to
generate the Java classes that represent the XML data

types in the schema. This is called binding the schema.
After you have bound the schema, you can define a rule to

unmarshal XML data to a Java object, using code like the
following:

org.apache.camel.spi.DataFormat jaxb = new

org.apache.camel.model.dataformat.JaxbDataFormat("Generated PackageName");

from("SourceURL").unmarshal(jaxb)

.<FurtherProcessing>.to("TargetURL");

Where GeneratedPackagename is the name of the Java package

generated by the JAXB compiler, which contains the Java
classes representing your XML schema.

 XMLBeans—provides an alternative mapping between XML

schema types and Java types (see

http://xmlbeans.apache.org/). For XMLBeans, unmarshaling
converts an XML data type to a Java object and marshaling

converts a Java object to an XML data type. For example, to
unmarshal XML data to a Java object using XMLBeans, you

can use code like the following:

 XStream—provides another mapping between XML types
and Java types (see http://xstream.codehaus.org/). XStream

is a serialization library (like Java serialization), enabling
you to convert any Java object to XML. For XStream,

from("SourceURL").unmarshal().serialization()

.<FurtherProcessing>.to("TargetURL");

from("SourceURL").unmarshal().xmlBeans()

.<FurtherProcessing>.to("TargetURL");

https://jaxb.dev.java.net/
http://xmlbeans.apache.org/
http://xstream.codehaus.org/

20 Artix Java Router, Defining Routes

unmarshaling converts an XML data type to a Java object
and marshaling converts a Java object to an XML data type.

For example, to unmarshal XML data to a Java object using
XStream, you can use code like the following:

from("SourceURL").unmarshal().xstream()

.<FurtherProcessing>.to("TargetURL");

Artix Java Router, Defining Routes 21

Defining Routes in XML
You can define routing rules in XML. This approach is not as

flexible as Java DSL, but has the advantage that it is easy to
reconfigure the routing rules at runtime.

Using the Router Schema in an XML File

The root element of the router schema is camelContext, which is

defined in the XML namespace,

http://camel.apache.org/schema/spring. Router configurations

are typically embedded in other XML configuration files (for

example, in a Spring configuration file). In general, whenever a
router configuration is embedded in another configuration file,

you need to specify the location of the router schema (so that
the router configuration can be parsed). For example, Example

4 shows how to embed the router configuration, camelContext,

in an arbitrary document, DocRootElement.

Example 4. Specifying the Router Schema Location

<DocRootElement ...

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation=" http://camel.apache.org/schema/spring

http://camel.apache.org/schema/spring/camel-spring.xsd">

<camelContext id="camel"

xmlns="http://activemq.apache.org/camel/schema/spring">

<!-- Define your routing rules here -->

</camelContext>

</DocRootElement>

Where the schema location is specified to be

http://camel.apache.org/schema/spring/camel-spring.xsd,

which gives the location of the schema on the Apache Web site.

This location always contains the latest, most up-to-date
version of the XML schema.

Example 5 shows an example of embedding a router

configuration, camelContext, in a Spring configuration file.

http://camel.apache.org/schema/spring
http://www.w3.org/2001/XMLSchema-instance
http://camel.apache.org/schema/spring
http://act/
http://camel.apache.org/schema/spring/camel-spring.xsd

22 Artix Java Router, Defining Routes

Example 5. Router Schema in a Spring Configuration File

Defining a Basic Route in XML

Basic concepts

In order to understand how to build a route using XML, you need to
understand some of the basic concepts of the routing

language—for example, sources and targets, processors,
expressions and predicates, and message exchanges. For

definitions and explanations of these concepts see Basic Java

DSL Syntax.

Example of a basic route

Example 6 shows an example of a basic route in XML, which

connects a source endpoint, SourceURL, directly to a destination

endpoint, TargetURL.

Example 6. Basic Route in XML

Where CamelContextID is an arbitrary, unique identifier for the
Camel context. The route is defined by a route element and
there can be multiple route elements under the camelContext
element.

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="

http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd

http://camel.apache.org/schema/spring

http://camel.apache.org/schema/spring/camel-spring.xsd">

<camelContext id="camel"

 xmlns= "http://camel.apache.org/schema/spring">

<!-- Define your routing rules in here -->

</camelContext>

<!-- Other Spring configuration -->

<!-- ... -->

</beans>

<camelContext id="CamelContextID"

 xmlns="http://camel.apache.org/schema/spring">

<route>

<from uri="SourceURL"/>

<to uri="TargetURL"/>

</route>

</camelContext>

http://www.springframework.org/schema/beans
http://www.w3.org/2001/XMLSchema-instance
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://camel.apache.org/schema/spring

Artix Java Router, Defining Routes 23

Processors

To enable the router to something more interesting than simply

connecting a source endpoint to a target endpoint, you can add

processors to your route. A processor is a command you can
insert into a routing rule in order to perform arbitrary processing

of the messages that flow through the rule. Java Router
provides a wide variety of different processors, as follows:

 Filter

 Choice

 Recipient list

 Splitter

 Aggregator

 Resequencer

 Throttler

 Delayer

Filter

The filter processor can be used to prevent uninteresting

messages from reaching the target endpoint. It takes a single

predicate argument: if the predicate is true, the message
exchange is allowed through to the target; if the predicate is

false, the message exchange is blocked. For example, the
following filter blocks a message exchange, unless the incoming

message contains a header, foo, with value equal to bar:

Choice

The choice processor is a conditional statement that is used to

route incoming messages to alternative targets. The alternative

targets are each enclosed in a when element, which takes a

predicate argument. If the predicate is true, the current target

is selected, otherwise processing proceeds to the next when

element in the rule. For example, the following choice()

processor directs incoming messages to either Target1,

Target2, or Target3, depending on the values of the predicates:

<camelContext id="filterRoute"

 xmlns="http://camel.apache.org/schema/spring">

<route>

<from uri="SourceURL"/>

<filter>

<simple>header.foo = 'bar'</simple>

<to uri="TargetURL"/>

</filter>

</route>

</camelContext>

24 Artix Java Router, Defining Routes

Recipient list

If you want the messages from a source endpoint, SourceURL, to

be sent to more than one target, there are two alternative

approaches you can use. One approach is to include multiple to

elements in the route, for example:

The alternative approach is to add arecipientList element,

which takes a list of recipients as its argument (dynamic

recipient list). The advantage of using the recipientList

element is that the list of recipients can be calculated at

runtime. For example, the following rule generates a recipient

list by reading the contents of the recipientListHeader from the

incoming message:

<camelContext id="buildSimpleRouteWithChoice"

 xmlns="http://camel.apache.org/schema/spring">

<route>

<from uri="SourceURL"/>

 <choice>

<when>

<!-- First predicate -->

<simple>header.foo = 'bar'</simple>

<to uri="Target1"/>

</when>

<when>

<!-- Second predicate -->

<simple>header.foo = 'manchu'</simple>

<to uri="Target2"/>

</when>

<otherwise>

<to uri="Target3"/>

</otherwise>

 </choice>

</route>

</camelContext>

<camelContext id="staticRecipientList"

 xmlns="http://camel.apache.org/schema/spring">

<route>

<from uri="SourceURL"/>

<to uri="Target1"/>

<to uri="Target2"/>

<to uri="Target3"/>

</route>

</camelContext>

<camelContext id="dynamicRecipientList"

 xmlns="http://camel.apache.org/schema/spring">

<route>

<from uri="SourceURL"/>

<recipientList>

<!-- Requires XPath 2.0 -->

<xpath>tokenize(/headers/recipientListHeader,"\s+")</xpath>

</recipientList>

</route>

</camelContext>

Artix Java Router, Defining Routes 25

Splitter

The splitter processor is used to split a message into parts,

which are then processed as separate messages. The splitter

element must contain an expression that returns a list, where

each item in the list represents a message part that is to be re-
sent as a separate message. For example, the following rule

splits the body of an incoming message into separate sections

(represented by a top-level section element) and then sends

each section to the target in a separate message:

Aggregator

The aggregator processor is used to aggregate related incoming

messages into a single message. In order to distinguish which
messages are eligible to be aggregated together, you need to

define a correlation key for the aggregator.

The correlation key is normally derived from a field in the
message (for example, a header field). Messages that have the
same correlation key value are eligible to be aggregated
together. You can also optionally specify an aggregation
algorithm to the aggregator processor (the default algorithm is
to pick the latest message with a given value of the correlation
key and to discard the older messages with that correlation key
value).

For example, if you are monitoring a data stream that reports
stock prices in real time, you might only be interested in the
latest price of each stock symbol. In this case, you could
configure an aggregator to transmit only the latest price for a
given stock and discard the older (out-of-date) price
notifications. The following rule implements this functionality,
where the correlation key is read from the stockSymbol header
and the default aggregator algorithm is used:

<camelContext id="splitterRoute"

 xmlns="http://camel.apache.org/schema/spring">

<route>

<from uri="seda:a"/>

<splitter>

<xpath>/section</xpath>

<to uri="seda:b"/>

</splitter>

</route>

</camelContext>

<camelContext id="aggregatorRoute"

 xmlns="http://camel.apache.org/schema/spring">

<route>

<from uri="SourceURL"/>

<aggregator>

<simple>header.stockSymbol</simple>

<to uri="TargetURL"/>

</aggregator>

</route>

</camelContext>

26 Artix Java Router, Defining Routes

Resequencer

A resequencer processor is used to re-arrange the order in which

incoming messages are transmitted. The resequencer element

needs to be provided with a sequence number (where the

sequence number is calculated from the contents of a field in the
incoming message). Naturally, before you can start re-ordering

messages, you need to wait until a certain number of messages
have been received from the source. There are a couple of

different ways to specify how long the resequencer processor

should wait before attempting to re-order the accumulated
messages and forward them to the target, as follows:

 Batch resequencing—(the default) wait until a specified

number of messages have accumulated before starting to re-
order and forward messages. For example, the following

resequencing rule would re-order messages based on the

timeOfDay header, waiting until at least 300 messages have

accumulated or 4000 ms have elapsed since the last

message received.

 Stream resequencing—transmit messages as soon as they

arrive unless the resequencer detects a gap in the incoming
message stream (missing sequence numbers), in which

case the resequencer waits until the missing messages
arrive and then forwards the messages in the correct order.

To avoid the resequencer blocking forever, you can specify a

timeout (default is 1000 ms), after which time the message
sequence is transmitted with unresolved gaps. For example,

the following resequencing rule detects gaps in the message

stream by monitoring the value of the sequenceNumber

header, where the maximum buffer size is limited to 5000
and the timeout is specified to be 4000 ms:

<camelContext id="batchResequencer"

 xmlns="http://camel.apache.org/schema/spring">

<route>

<from uri="SourceURL" />

<resequencer>

<!-- Sequence ordering based on timeOfDay header -->

<simple>header.timeOfDay</simple>

<to uri="TargetURL" />

<!--

batch-config can be omitted for default (batch)

resequencer settings

-->

<batch-config batchSize="300" batchTimeout="4000" />

</resequencer>

</route>

</camelContext>

Artix Java Router, Defining Routes 27

Throttler

The throttler processor is used to ensure that a target

endpoint does not get overloaded. The throttler works by
limiting the number of messages that can pass through per

second. If the incoming messages exceed the specified rate, the

throttler accumulates excess messages in a buffer and transmits
them more slowly to the target endpoint. For example, to limit

the rate of throughput to 100 messages per second, you can
define the following rule:

Delayer

The delayer processor is used to hold up messages for a

specified length of time. The delay can either be relative (wait a

specified length of time after receipt of the incoming message)
or absolute (wait until a specific time). For example, to add a

delay of 2 seconds before transmitting received messages, you
can use the following rule:

<camelContext id="streamResequencer"

 xmlns="http://camel.apache.org/schema/spring">

<route>

<from uri="SourceURL"/>

<resequencer>

<simple>header.sequenceNumber</simple>

<to uri="TargetURL" />

<stream-config capacity="5000" timeout="4000"/>

</resequencer>

</route>

</camelContext>

<camelContext id="throttlerRoute"

 xmlns="http://camel.apache.org/schema/spring">

<route>

<from uri="SourceURL"/>

<throttler maximumRequestsPerPeriod="100"

 timePeriodMillis="1000">

 <to uri="TargetURL"/>

</throttler>

</route>

</camelContext>

<camelContext id="delayerRelative"

 xmlns="http://camel.apache.org/schema/spring">

<route>

<from uri="SourceURL"/>

<delayer>

<delay>2000</delay>

<to uri="TargetURL"/>

</delayer>

</route>

</camelContext>

28 Artix Java Router, Defining Routes

To wait until the absolute time specified in the processAfter
header, you can use the following rule:

Load balancer

The loadBalance processor is used to load balance message

exchanges over a list of target endpoints. For example, to load
balance incoming messages exchanges using a round robin

algorithm (each endpoint in the target list is tried in sequence),

you can use the following rule:

Currently, it is not possible to customize the load balancing

algorithm in XML.

Languages for Expressions and Predicates

In the definition of a route, it is frequently necessary to evaluate

expressions and predicates. For example, if a route includes a
filter processor, you need to evaluate a predicate to determine

whether or not a message is to be allowed through the filter. To

facilitate the evaluation of expressions and predicates, Java
Router supports multiple language plug-ins, which can be

accessed through XML elements.

Elements for expressions and predicates

Table 5 lists the elements that you can insert whenever the

context demands an expression or a predicate. The content of
the element must be a script written in the relevant language. At

runtime, the return value of the script is read by the parent

element.

<camelContext id="delayerRelative"

 xmlns="http://camel.apache.org/schema/spring">

<route>

<from uri="SourceURL"/>

<delayer>

<simple>header.processAfter</simple>

<to uri="TargetURL"/>

</delayer>

</route>

</camelContext>

<camelContext id="loadBalancer"

 xmlns="http://camel.apache.org/schema/spring">

<route>

<from uri="SourceURL"/>

<loadBalance>

<to uri="TargetURL_01"/>

<to uri="TargetURL_02"/>

<roundRobin/>

</loadBalance>

</route>

</camelContext>

Artix Java Router, Defining Routes 29

Table 5. Elements for Expression and Predicate Languages

Element Language Description

simple N/A A simple expression language, native

to Java Router (see Simple).

xpath XPath The XPath language, which is used to
select element, attribute, and text

nodes from XML documents (see
http://www.w3schools.com/xpath/default.asp).

The XPath expression is applied to the
current message.

xquery XQuery The XQuery language, which is an

extension of XPath (see
http://www.w3schools.com/xquery/default.asp).

The XQuery expression is applied to
the current message.

sql JoSQL The JoSQL language, which is a

language for extracting and
manipulating data from collections of

Java objects, using a SQL-like syntax

(see http://josql.sourceforge.net/).

ognl OGNL The OGNL (Object Graph Navigation

Language) language (see

http://www.ognl.org/).

el EL The Unified Expression Language (EL),

originally developed as part of the JSP

standard (see
http://juel.sourceforge.net/).

groovy Groovy The Groovy scripting language (see

http://groovy.codehaus.org/).

javaScript JavaScript The JavaScript scripting language (see

http://developer.mozilla.org/en/docs/JavaScript),

also known as ECMAScript (see
http://www.ecmascript.org/).

php PHP The PHP scripting language (see

http://www.php.net/).

python Python The Python scripting language (see

http://www.python.org/).

ruby Ruby The Ruby scripting language (see
http://www.ruby-lang.org/).

bean Bean Not really a language. The bean

element is actually a mechanism for
integrating with Java beans. You use

the bean element to obtain an

expression or predicate by invoking a
method on a Java bean.

http://www.w3schools.com/xpath/default.asp
http://www.w3schools.com/xquery/default.asp
http://josql.sourceforge.net/
http://www.ognl.org/
http://juel.sourceforge.net/
http://groovy.codehaus.org/
http://developer.mozilla.org/en/docs/JavaScript
http://www.ecmascript.org/
http://www.php.net/
http://www.python.org/
http://www.ruby-lang.org/

30 Artix Java Router, Defining Routes

Transforming Message Content

This section describes how you can transform messages using
the features provided in XML configuration.

Marshaling and unmarshaling

You can convert between low-level and high-level message
formats using the following elements:

 marshal—convert a high-level data format to a low-level

data format.

 unmarshal—convert a low-level data format to a high-level

data format.

Java Router supports marshaling and unmarshaling of the
following data formats:

 Java serialization—enables you to convert a Java object to a
blob of binary data. For this data format, unmarshaling

converts a binary blob to a Java object and marshaling
converts a Java object to a binary blob. For example, to read

a serialized Java object from an endpoint, SourceURL, and

convert it to a Java object, you could use the following rule:

 JAXB—provides a mapping between XML schema types and

Java types (see https://jaxb.dev.java.net/). For JAXB,

unmarshaling converts an XML data type to a Java object
and marshaling converts a Java object to an XML data type.

Before you can use JAXB data formats, you must compile
your XML schema using a JAXB compiler in order to

generate the Java classes that represent the XML data
types in the schema. This is called binding the schema.

After you have bound the schema, you can define a rule to
unmarshal XML data to a Java object, as follows:

<camelContext id="serialization"

 xmlns="http://camel.apache.org/schema/spring">

<route>

<from uri="SourceURL"/>

<unmarshal>

 <serialization/>

</unmarshal>

<to uri="TargetURL"/>

</route>

</camelContext>

https://jaxb.dev.java.net/

Artix Java Router, Defining Routes 31

Where GeneratedPackagename is the name of the Java package

generated by the JAXB compiler, which contains the Java
classes representing your XML schema.

 XMLBeans—provides an alternative mapping between XML
schema types and Java types (see

http://xmlbeans.apache.org/). For XMLBeans, unmarshaling
converts an XML data type to a Java object and marshaling

converts a Java object to an XML data type. For example, to
unmarshal XML data to a Java object using XMLBeans,

define a rule like the following:

 XStream—You can set the XML encoding to XStream
DataFormat either by setting the Exchange's property with

the key Exchange.CHARSET_NAME, or by setting the

encoding property on XStream from DSL or Spring

configuration.

from("activemq:My.Queue").

 marshal().xstream("UTF-8").

 to("mqseries:Another.Queue");>

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">

 <!- define the json xstream data formats to be used (xstream is default) ->

 <dataFormats>

 <xstream id="xstream-utf8" encoding="UTF-8"/>

 <xstream id="xstream-default"/>

 </dataFormats>

 <route>

<camelContext id="jaxb"

 xmlns="http://camel.apache.org/schema/spring">

<route>

<from uri="SourceURL"/>

<unmarshal>

<jaxb prettyPrint="true"

 contextPath="GeneratedPackage Name"/>

</unmarshal>

<to uri="TargetURL"/>

</route>

</camelContext>

<camelContext id="xmlBeans"

 xmlns="http://camel.apache.org/schema/spring">

<route>

<from uri="SourceURL"/>

<unmarshal>

<xmlBeans prettyPrint="true"/>

</unmarshal>

<to uri="TargetURL"/>

</route>

</camelContext>

http://xmlbeans.apache.org/

32 Artix Java Router, Defining Routes

 <from uri="direct:in"/>

 <marshal ref="xstream-default"/>

 <to uri="mock:result"/>

 </route>

 <route>

 <from uri="direct:in-UTF-8"/>

 <marshal ref="xstream-utf8"/>

 <to uri="mock:result"/>

 </route>

</camelContext>

See http://camel.apache.org/xstream.html for further details.

http://camel.apache.org/xstream.html

Artix Java Router, Defining Routes 33

Basic Principles of
Route Building
Java Router provides a great number of different processors and

components, which you can link together to build a route. This
chapter aims to give you some basic orientation by explaining

the principles of building a route using the provided building

blocks.

Pipeline Processing

In Java Router, pipelining is the dominant paradigm for
connecting nodes in a route definition. The pipeline concept is

probably most familiar from the UNIX operating system, where

it is used to join together operating system commands. For

example, ls | more is an example of a command that pipes a

directory listing, ls, to a page scrolling utility, more. The basic

idea of a pipeline is that the output of one command is fed into

the input of the next. The natural analogy in the case of a route
is for the Out message from one processor to be copied to the In

message of the next processor.

Processor nodes

Every node in a route, except for the initial endpoint, is a

processor (in the sense that they inherit from the

org.apache.camel.Processor interface). In other words,

processors make up the basic building blocks of a DSL route. For

example, DSL commands such as filter(), delayer(),

setBody(), setHeader(), to(), and so on, all represent

processors. When considering how processors connect
together to build up a route, it is important to distinguish two

different processing approaches.

The first approach is where the processor simply modifies the
exchange's In message, as shown in Figure 2. The exchange's
Out message remains null in this case.

Figure 2. Processor Modifying an In Message

For example, the following route shows a setHeader()
command that modifies the current In message by adding (or
modifying) the BillingSystem heading:

from("activemq:orderQueue")

.setHeader("BillingSystem",

xpath("/order/billingSystem"))

.to("activemq:billingQueue");

34 Artix Java Router, Defining Routes

The second approach is where the processor creates an Out
message to represent the result of the processing, as shown in
Figure 3.

Figure 3. Processor Creating an Out Message

For example, the following route shows a transform() command

that creates an Out message with a message body containing

the string, DummyBody:

Where constant("DummyBody") represents a constant expression

(you cannot pass the string, DummyBody, directly, because the

argument to transform() must be an expression type).

Pipeline for InOnly exchanges

Figure 4 shows an example of a processor pipeline for InOnly

exchanges. Processor A acts by modifying the In message, while

processors B and C create an Out message. The route builder
links the processors together as shown. In particular, processors

B and C are linked together in the form of a pipeline: that is,
processor B's Out message is moved to the In message before

feeding the exchange into processor C, and processor C's Out
message is moved to the In message before feeding the

exchange into the producer endpoint. Thus the processors'
outputs and inputs are joined into a continuous pipeline, as

shown in Figure 4.

Figure 4. Sample Pipeline for InOnly Exchanges

from("activemq:orderQueue")

.transform(constant("DummyBody"))

.to("activemq:billingQueue");

Artix Java Router, Defining Routes 35

Java Router employs the pipeline pattern by default. Hence, you
do not need to use any special syntax to create a pipeline in your

routes. For example, the following route pulls messages from a

userdataQueue queue, pipes the message through a Velocity

template (to produce a customer address in text format), and
then sends the resulting text address to the queue,

envelopeAddressQueue:

Where the Velocity endpoint, velocity:file:AdressTemplate.vm,

specifies the location of a Velocity template file,

file:AdressTemplate.vm, in the file system.

Pipeline for InOut exchanges

Figure 5 shows an example of a processor pipeline for InOut
exchanges, which you typically use to support remote

procedure call (RPC) semantics. Processors A, B, and C are
linked together in the form of a pipeline, with the output of each

processor being fed into the input of the next. The final Out
message produced by the producer endpoint is sent all the way

back to the consumer endpoint, where it provides the reply to

the original request.

Figure 5. Sample Pipeline for InOut Exchanges

Note that in order to support the InOut exchange pattern, it is

essential that the last node in the route (whether it is a
producer endpoint or some other kind of processor) creates an

Out message. Otherwise, any client that connects to the
consumer endpoint would hang, waiting indefinitely for a reply

message. In particular, you should be aware that not all
producer endpoints create Out messages.

For example, consider the following route that processes
payment requests, by processing incoming HTTP requests:

Where the incoming payment request is processed by passing it

through a pipeline of Web services,

from("activemq:userdataQueue")

.to("velocity:file:AdressTemplate.vm")

.to("activemq:envelopeAddresses");

from("jetty:http://localhost:8080/foo")

.to("cxf:bean:addAccountDetails")

.to("cxf:bean:getCreditRating")

.to("cxf:bean:processTransaction");

36 Artix Java Router, Defining Routes

cxf:bean:addAccountDetails, cxf:bean:getCreditRating, and

cxf:bean:processTransaction. The final Web service,

processTransaction, generates a response (Out message) that is

sent back through the JETTY endpoint.

When the pipeline consists of just a sequence of endpoints, it is
also possible to use the following alternative syntax:

Comparison of pipelining and interceptor chaining

An alternative paradigm for linking together the nodes of a route is

interceptor chaining, where a processor in the route processes
the exchange both before and after dispatching the exchange to

the next processor in the chain. This style of processing is also
supported by Java Router, but it is not the usual approach to

use. Figure 6 shows an example of an interceptor processor

that implements a custom encryption algorithm.

Figure 6. Example of Interceptor Chaining

In this example, incoming messages are encrypted in a custom

format. The interceptor first decrypts the In message, then

dispatches it to the Web services endpoint, cxf:bean:processTxn,

and finally, the reply (Out message) is encrypted using the
custom format, before being sent back through the consumer

endpoint. Using the interceptor chaining approach, therefore, a
single interceptor instance can modify both the request and the

response.

For example, if you want to define a route with a HTTP port that

services incoming requests encoded using custom encryption,
you could define a route like the following:

Where the class, MyDecryptEncryptInterceptor, is

implemented by inheriting from the class,
org.apache.camel.processor.DelegateProcessor.

Although it is possible to implement this kind of functionality

using an interceptor processor, this is not a very idiomatic way of

programming in Java Router. A more typical approach is shown
in Figure 7.

from("jetty:http://localhost:8080/foo")

.pipeline("cxf:bean:addAccountDetails",

"cxf:bean:getCreditRating",

"cxf:bean:processTransaction");

from("jetty:http://localhost:8080/foo")

.intercept(new MyDecryptEncryptInterceptor())

.to("cxf:bean:processTxn");

Artix Java Router, Defining Routes 37

Figure 7. Pipeline Alternative to Interceptor Chaining

In this example, the encrypt functionality is implemented in a
separate processor from the decrypt functionality. The resulting

processor pipeline is semantically equivalent to the original

interceptor chain shown in Figure 6. One slight complication of
this route, however, is that it turns out to be necessary to add a

transform processor at the end of the route, in order to copy the

In message to the Out message. This processor ensures that

the reply message is available to the HTTP consumer endpoint
(an alternative solution to this problem would be to implement

the encrypt processor such that it creates an Out message
directly).

For example, to implement the pipeline approach shown in
Figure 7, you could define a route like the following:

Where the final processor node, transform(body()), has the

effect of copying the In message to the Out message (the In
message body is copied explicitly and the In message headers

are copied implicitly).

Multiple Inputs

A standard route takes its input from just a single endpoint,

using the from(EndpointURL) syntax in the Java DSL. But what

if you need to define multiple inputs for your route? For example,

you might want to merge incoming messages from two different
messaging systems and process them using the same route. In

most cases, you can deal with multiple inputs by dividing your

route into segments, as shown in Figure 8.

Figure 8. Processing Multiple Inputs with Segmented Routes

from("jetty:http://localhost:8080/foo")

.process(new MyDecryptProcessor())

.to("cxf:bean:processTxn")

.process(new MyEncryptProcessor())

.transform(body());

38 Artix Java Router, Defining Routes

The initial segments of the route take their inputs from some

external queues—for example, activemq:Nyse and

activemq:Nasdaq—and send the incoming exchanges to an

internal endpoint, InternalUrl. The second route segment

merges the incoming exchanges, taking them from the internal

endpoint and sending them to the destination queue,

activemq:USTxn. The InternalUrl is the URL for a kind of

endpoint that is intended only for use within a router
application. The following types of endpoint are suitable for

internal use:

 Direct endpoints

 SEDA endpoints

 VM endpoints

The main purpose of these endpoints is to enable you to glue
together different segments of a route. In particular, they all

provide an effective way of merging multiple inputs into a single

route.

NOTE: The direct, SEDA, and VM components work only for the InOnly
exchange pattern. If one of your inputs requires an InOut exchange

pattern, you should take a look at the Content enricher pattern
instead.

Direct endpoints

The direct component provides the simplest mechanism for
linking together routes. The event model for the direct

component is synchronous, so that subsequent segments of the

route run in the same thread as the first segment. The general

format of a direct URL is direct:EndpointID, where the endpoint

ID, EndpointID, is simply a unique alphanumeric string that

identifies the endpoint instance.

For example, say you want to take the input from two message
queues, activemq:Nyse and activemq:Nasdaq, and merge them
into a single message queue, activemq:USTxn, you could do this
by defining the following set of routes:

Where the first two routes take the input from the message
queues, Nyse and Nasdaq, and send them to the endpoint,
direct:mergeTxns. The last queue combines the inputs from
the previous two queues and sends the combined message
stream into the activemq:USTxn queue.

The implementation of the direct endpoint is very simple:
whenever an exchange arrives at a producer endpoint (for
example, to("direct:mergeTxns")), the direct endpoint passes

from("activemq:Nyse").to("direct:mergeTxns");

from("activemq:Nasdaq").to("direct:mergeTxns");

from("direct:mergeTxns").to("activemq:USTxn");

Artix Java Router, Defining Routes 39

the exchange directly to all of the consumers endpoints that
have the same endpoint ID (for example,
from("direct:mergeTxns")). Direct endpoints can only be used
to communicate between routes that belong to the same
CamelContext in the same Java virtual machine (JVM) instance.

NOTE: If you connect multiple consumers to a direct endpoint, every

exchange that passes through the endpoint will be processed by all of
the attached consumers (multicast). Hence, each exchange would be

processed more than once. If you don't want this to happen, consider

using a SEDA endpoint, which behaves differently.

SEDA endpoints

The SEDA component provides an alternative mechanism for

linking together routes. You can use it in a similar way to the
direct component, but it has a different underlying event and

threading model, as follows:

 Processing of a SEDA endpoint is not synchronous. That is,
when you send an exchange to a SEDA producer endpoint,

control immediately returns to the preceding processor in

the route.

 SEDA endpoints contain a queue buffer (of

java.util.concurrent.BlockingQueue type), which stores all

of the incoming exchanges prior to processing by the next
route segment.

 Each SEDA consumer endpoint creates a thread pool
(default size is 5) to process exchange objects from the

blocking queue.

 The SEDA component supports the competing consumers

pattern, which guarantees that each incoming exchange is
processed only once, even if there are multiple consumers

attached to a specific endpoint.

One of the main advantages of using a SEDA endpoint is that
the routes can be more responsive, owing to the built-in

consumer thread pool. For example, the stock transactions

example can be re-written to use SEDA endpoints instead of
direct endpoints, as follows:

The main difference between this example and the direct

example is that when using SEDA, the second route segment

(from seda:mergeTxns to activemq:USTxn) is processed by a pool

of five threads.

from("activemq:Nyse").to("seda:mergeTxns");

from("activemq:Nasdaq").to("seda:mergeTxns");

from("seda:mergeTxns").to("activemq:USTxn");

40 Artix Java Router, Defining Routes

NOTE: There is more to SEDA than simply pasting together route
segments. The staged event-driven architecture (SEDA) encompasses a

design philosophy for building more manageable multi-threaded
applications. The purpose of the SEDA component in Java Router is

simply to enable you to apply this design philosophy to your

applications. For more details about SEDA, see
http://www.eecs.harvard.edu/~mdw/ proj/seda/.

VM endpoints

The VM component is very similar to the SEDA endpoint. The
only difference is that, whereas the SEDA component is limited

to linking together route segments from within the same

CamelContext, the VM component enables you to link together

routes from distinct Java Router applications, as long as they
are running within the same Java virtual machine.

For example, the stock transactions example can be re-written
to use VM endpoints instead of SEDA endpoints, as follows:

And in a separate router application (running in the same Java
VM), you can define the second segment of the route:

from("vm:mergeTxns").to("activemq:USTxn");

Content enricher pattern

The content enricher pattern defines a fundamentally different

way of dealing with multiple inputs to a route. A content enricher
is a kind of processor that you can insert into a route, as shown

in Figure 9. When an exchange enters the enricher processor,
the enricher contacts an external resource to retrieve

information, which is then added to the original message. In this

pattern, the external resource effectively represents a second
input to the message.

Figure 9. Processing Multiple Inputs with a Content Enricher

The key difference between the content enricher approach and the
segmented route approach is that the content enricher is based

on a radically different event model. In the segmented route

from("activemq:Nyse").to("vm:mergeTxns");

from("activemq:Nasdaq").to("vm:mergeTxns");

http://www.eecs.harvard.edu/~mdw/proj/seda/
http://www.eecs.harvard.edu/~mdw/proj/seda/

Artix Java Router, Defining Routes 41

public class MyRouteBuilder extends RouteBuilder {

public void configure() {

errorHandler(deadLetterChannel("activemq:deadLetter"));

 // The preceding error handler applies to all of the

 // following routes:

from("activemq:orderQueue").to("pop3://fulfillment@acme.com");

from("file:src/data?noop=true").to("file:target/messages");

// ...

}

}

approach, each of the input sources independently generate new
message events. Whereas, in the content enricher approach, only

one input source generates new message events, while a
second resource (accessed by the enricher) is effectively a slave

of the first stream of events. That is, the enricher's resource is
only polled for input whenever a message arrives on the main

route.

Exception Handling

Two exception handling methods are provided for catching

exceptions in Java DSL routes, as follows:

 errorHandler() clause—is a simple catch-all mechanism

that re-routes the current exchange to a dead letter
channel, if an error occurs. This mechanism is not able to

discriminate between different exception types.

 onException() clause—enables you to discriminate between

different exception types, performing different kinds of
processing for different exception types.

Dead letter channel pattern

This section provides a brief introduction to exception handling
in Java Router.

errorHandler clause

The errorHandler() clause is defined in a RouteBuilder class and

applies to all of the routes in that RouteBuilder class. It is

triggered whenever an exception of any kind occurs in one of
the applicable routes. For example, to define an error handler

that routes all failed exchanges to the ActiveMQ deadLetter

queue, you could define a RouteBuilder as follows:

Redirection to the dead letter channel does not occur, however,

until attempts at redelivery have been exhausted (see
Redelivery policy).

onException clause

The onException(Class exceptionType) clause is defined in a

RouteBuilder class and applies to all of the routes in that

mailto:ment@acme.com%22);

42 Artix Java Router, Defining Routes

RouteBuilder class. It is triggered whenever an exception of the

specified type, exceptionType, occurs in one of the applicable

routes. For example, you can define onException clauses for

catching NullPointerException, IOException, and Exception

exceptions as follows:

public class MyRouteBuilder extends RouteBuilder {

public void configure() {

 onException(NullPointerException.class).to("activemq:ex.npex");

onException(IOException.class).to("activemq:ex.ioex");

onException(Exception.class).to("activemq:ex");

 // The preceding onException() clauses apply to all of the following routes:

from("activemq:orderQueue").to("pop3://fulfillment@acme.com");

from("file:src/data?noop=true").to("file:target/messages");

// ...

}

}

When an exception occurs, Java Router selects the onException

clause that matches the given exception type most closely. If no

other clause matches the raised exception, the

onException(Exception.class) clause (if present) matches by

default, because java.lang.Exception is the base class of all

Java exceptions. The applicable onException clause does not

initiate processing, however, until attempts at redelivery have
been exhausted (see Redelivery policy).

Redelivery policy

Both the errorHandler clause and the onException clause

support a redelivery policy that specifies how often Java Router
attempts to redeliver the failed exchange before giving up and

triggering the actions defined by the relevant error handler. The
most important redelivery policy setting is the maximum

redeliveries value, which specifies how many times redelivery is
attempted. The default value is 6.

Bean Integration

Bean integration provides a general purpose mechanism for
processing messages using arbitrary Java objects. By inserting

a bean reference into a route, you can call an arbitrary method
on a Java object, which can then access and modify the

incoming exchange. The mechanism that maps an exchange's
contents to the parameters and return values of a bean method

is known as bean binding. Bean binding can use either or both of
the following approaches in order to initialize a method's

parameters:

 Conventional method signatures—if the method signature

conforms to certain conventions, the bean binding can use
Java reflection to determine what parameters to pass.

Artix Java Router, Defining Routes 43

 Annotations and dependency injection—for a more flexible
binding mechanism, employ Java annotations to specify

what to inject into the method's arguments. This dependency
injection mechanism relies on Spring component scanning.

Normally, if you are deploying your Java Router application
into a Spring container, the dependency injection

mechanism will work automatically.

Accessing a bean created in Java

To process exchange objects using a Java bean (which is just a

plain old Java object or POJO), use the bean() processor, which

binds the inbound exchange to a method on the Java object. For
example, to process inbound exchanges using the class,

MyBeanProcessor, define a route like the following:

Where the bean() processor creates an instance of
MyBeanProcessor type and invokes the processBody() method to
process inbound exchanges. This approach is adequate, if you
only want to access the MyBeanProcessor instance from a
single route. If you want to access the same MyBeanProcessor
instance from multiple routes, however, use the variant of
bean() that takes the Object type as its first argument, as
follows:

Basic method signatures

In order to bind exchanges to a bean method, you can define a

method signature that conforms to certain conventions. In

particular, there are two basic conventions for method
signatures:

 Method signature for processing message bodies.

 Method signature for processing exchanges.

Method signature for processing message bodies

If you want to implement a bean method that access or modifies

the incoming message body, define a method signature that

takes a single String argument and returns a String value.

from("file:data/inbound")

.bean(MyBeanProcessor.class, "processBody")

.to("file:data/outbound");

MyBeanProcessor myBean = new MyBeanProcessor();

from("file:data/inbound")

.bean(myBean, "processBody")

.to("file:data/outbound");

from("activemq:inboundData")

.bean(myBean, "processBody")

.to("activemq:outboundData");

44 Artix Java Router, Defining Routes

 For example:

Method signature for processing exchanges

For greater flexibility, you can implement a bean method that

accesses the incoming exchange. This enables you to access or
modify all headers, bodies, and exchange properties. For

processing exchanges, the method signature takes a single

org.apache.camel.Exchange parameter and returns void. For

example:

Accessing a bean created in Spring XML

Instead of creating a bean instance in Java, you can create an

instance using Spring XML. This is the only feasible approach,
in fact, if you are defining your routes in XML. To define a bean

in XML, use the standard Spring bean element. For example, to

create an instance of MyBeanProcessor:

It is also possible to pass data to the bean's constructor

arguments using Spring syntax.

 For full details of how to use the Spring bean element, see The

IoC Container from the Spring reference guide

(http://docs.spring.io/spring/docs/3.2.11.RELEASE/spring-

framework-reference/html/beans.html).

When you create an object instance using the bean element, you

can reference it later using the bean's ID (the value of the bean

element's id attribute). For example, given the bean element

with ID equal to myBeanId, you can reference the bean in a Java

DSL route using the beanRef() processor, as follows:

// Java

package com.acme;

public class MyBeanProcessor {

public String processBody(String body) {

// Do whatever you like to 'body'...

return newBody;

}

}

// Java

package com.acme;

public class MyBeanProcessor {

public void processExchange(Exchange exchange) {

// Do whatever you like to 'exchange'...

exchange.getIn().setBody("Here is a new

message body!");

}

}

<beans ...>

...

<bean id="myBeanId"

class="com.acme.MyBeanProcessor"/>

</beans>

http://docs.spring.io/spring/docs/3.2.6.RELEASE/spring-framework-reference/html/beans.html
http://docs.spring.io/spring/docs/3.2.6.RELEASE/spring-framework-reference/html/beans.html

Artix Java Router, Defining Routes 45

Where the beanRef() processor invokes the

MyBeanProcessor.processBody() method on the specified bean

instance. You can also invoke the bean from within a Spring XML

route, using the Camel schema's bean element. For example:

Bean binding annotations

The basic bean bindings described in Basic method signatures

might not always be convenient to use. For example, if you have

a legacy Java class that performs some data manipulation, you
might want to extract data from an inbound exchange and map

it to the arguments of an existing method signature. For this
kind of bean binding, Java Router provides the following kinds

of Java annotation:

 Basic annotations

 Expression language annotations

Basic annotations

Table 6 shows the annotations from the org.apache.camel

Java package that you can use to inject message data into the

arguments of a bean method.

Table 6. Basic Bean Annotations

Annotation Meaning Parameter?

@Body Binds to an inbound message

body.

@Header Binds to an inbound message
header.

String name of
the header.

@Headers Binds to a java.util.Map of the

inbound message headers.

@OutHeaders Binds to a java.util.Map of the

outbound message headers.

@Property Binds to a named exchange

property.

String name of

the property.

@Properties Binds to a java.util.Map of the

exchange properties.

from("file:data/inbound").beanRef("myBeanId",

"process Body").to("file:data/outbound");

<camelContext id="CamelContextID"

xmlns="http://camel.apache.org/schema/spring">

<route>

<from uri="file:data/inbound"/>

<bean ref="myBeanId" method="processBody"/>

<to uri="file:data/outbound"/>

</route>

</camelContext>

46 Artix Java Router, Defining Routes

For example, the following class shows you how to use basic

annotations to inject message data into the processExchange()

method arguments.

Notice how you are able to mix the annotations with the default

conventions: as well as injecting the annotated arguments, the

bean binding also automatically injects the exchange object into

the org.apache.camel.Exchange argument.

Expression language annotations

The expression language annotations provide a powerful
mechanism for injecting message data into a bean method's

arguments. Using these annotations, you can invoke an
arbitrary script, written in the scripting language of your choice,

in order to extract data from an inbound exchange and inject
this data into a method argument. Table 7 shows the

annotations from the org.apache.camel.language package (and

sub-packages, for the non-core annotations) that you can use to
inject message data into the arguments of a bean method.

Table 7. Expression Language Annotations

Annotation Description

@Bean Inject a Bean expression.

@BeanShell Inject a BeanShell expression.

@Constant Inject a Constant expression

@EL Inject an EL expression.

@Groovy Inject a Groovy expression.

@Header Inject a Header expression.

@JavaScript Inject a JavaScript expression.

@OGNL Inject an OGNL expression.

@PHP Inject a PHP expression.

@Python Inject a Python expression.

// Java

import org.apache.camel.*;

public class MyBeanProcessor {

 public void processExchange(

@Header(name="user") String user,

@Body String body, Exchange exchange

) {

// Do whatever you like to 'exchange'...

exchange.getIn().setBody(body + "UserName = " + user);

}

}

Artix Java Router, Defining Routes 47

Annotation Description

@Ruby Inject a Ruby expression.

@Simple Inject a Simple expression.

@XPath Inject an XPath expression.

@XQuery Inject an XQuery expression.

For example, the following class shows you how to use the @XPath

annotation to extract a username and a password from the body

of an incoming message in XML format:

The @Bean annotation is a special case. It enables you to inject

the result of invoking a registered bean. For example, to inject a

correlation ID into a method argument, you could use the @Bean

annotation to invoke an ID generator class, as follows:

Where the string, myCorrIdGenerator, is the bean ID of the ID

generator instance. The ID generator class can be instantiated

using the spring bean element, as follows:

// Java

import org.apache.camel.language.*;

public class MyBeanProcessor {

 public void checkCredentials(

@XPath("/credentials/username") String user,

@XPath("/credentials/password") String pass

) {

// Check the user/pass credentials...

...

 }

}

// Java

import org.apache.camel.language.*;

public class MyBeanProcessor {

public void processCorrelatedMsg(

@Bean("myCorrIdGenerator") String corrId,

@Body String body

) {

// Check the user/pass credentials...

...

}

}

<beans ...>

...

<bean id="myCorrIdGenerator"

class="com.acme.MyIdGenerator"/>

</beans>

48 Artix Java Router, Defining Routes

Where the MySimpleIdGenerator class could be defined as

follows:

Notice that you can also use annotations in the referenced bean

class, MyIdGenerator. The only restriction on the generate()

method signature is that it must return the correct type to inject

into the argument annotated by @Bean. Because the @Bean

annotation does not let you specify a method name, the
injection mechanism simply invokes the first method in the

referenced bean that has the matching return type.

NOTE: Some of the language annotations are available in the core

component (@Bean, @Constant, @Simple, and @XPath). For non-core

components, however, you will have to make sure that you load the

relevant component. For example, to use the OGNL script, you would

have to load the camel-ognl component.

// Java

package com.acme;

public class MyIdGenerator {

private UserManager userManager; public String generate(

@Header(name = "user") String user,

@Body String payload

) throws Exception {

User user = userManager.lookupUser(user);

String userId = user.getPrimaryId();

String id = userId + generateHashCodeForPayload(payload);

return id;

}

}

