
Artix
Version 5.6.4

Management Guide, C++ Runtime

ii

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK

http://www.microfocus.com
Copyright © Micro Focus 2017. All rights reserved.

MICRO FOCUS, the Micro Focus logo, and Micro Focus product names are
trademarks or registered trademarks of Micro Focus Development Limited
or its subsidiaries or affiliated companies in the United States, United
Kingdom, and other countries. All other marks are the property of their
respective owners.

2017-02-20

 Artix Management Guide, C++ Runtime i i i

Contents

Preface..v
Contacting Micro Focus ... vi

Part I Introduction

Artix C++ Runtime Management ...3
Introduction to Artix C++ Management..3
Artix C++ Management Integrations..6

Part II Java Management Extensions

Monitoring and Managing with JMX.....................................13
Introduction ...13
Managed Bus Components ...17
Managed Service Components ..22
Managed Port Components ...28

Configuring JMX in Artix C++ ..33
Artix JMX Configuration..33

Managing Artix Services with JMX Consoles37
Managing Artix Services with JConsole ...37
Managing Artix Services with the JMX HTTP adaptor41

Managing WS-RM Persistence with JMX43
WS-RM Persistence Management...43
Viewing Messages in the WS-RM Persistence Database.................................44

Part III Aurea Actional®

Artix–Actional Integration...53
Artix–Actional Interaction Architecture ...53

Configuring Artix–Actional Integration59
Prerequisites ..59
Configuring Actional for Artix Integration..60
Configuring Artix for Actional Integration..62
Viewing Artix Endpoints in Actional ..63

iv Artix Management Guide, C++ Runtime

Part IV AmberPoint

Integrating with AmberPoint .. 67
AmberPoint Proxy Agent...67
Artix AmberPoint Agent ..69

Configuring the Artix AmberPoint Agent............................. 75
Installing AmberPoint...75
Configuring AmberPoint for Artix Integration ...75
Configuring Artix C++ Services for AmberPoint Integration77

Part V BMC Patrol

Integrating with BMC Patrol™... 85
Introduction ...85
The Artix BMC Patrol Integration ...88

Configuring Artix for BMC Patrol ... 91
Setting up your Artix Environment ...91

Using the Artix BMC Patrol Integration............................... 93
Setting up your BMC Patrol Environment ..93
Using the Artix Knowledge Module ...94

Extending to a BMC Production Environment 101
Configuring an Artix Production Environment...101

Index.. 105

 Artix Management Guide, C++ Runtime v

Preface

What is covered in this book
This guide describes the enterprise management features for Artix
applications that use the C++ runtime. It explains how to
integrate and manage Artix applications with the following:
• Java Management Extensions (JMX)
• Actional
• AmberPoint
• BMC Patrol
This guide applies to Artix applications written using in C++ only.
For information on Artix applications written in JAX-WS (Java
XML-Based APIs for Web Services) or JavaScript, see the Artix
Management Guide, Java Runtime.

Who should read this book
This guide is aimed at system administrators managing distributed
enterprise environments, and developers writing distributed
enterprise applications. Administrators do not require detailed
knowledge of the technology that is used to create distributed
enterprise applications.ns.
This book assumes that you already have a good working
knowledge of at least one of the management technologies
mentioned in “What is covered in this book”.

Organization of this book
This book contains the following parts:

Part I
• “Artix C++ Runtime Management” introduces the Artix C++

management architecture and features.

Part II
• “Monitoring and Managing with JMX” introduces the JMX

features supported by the Artix C++ runtime, and describes
the Artix components that can be managed using JMX.

• “Configuring JMX in Artix C++” explains how to configure an
Artix C++ runtime for JMX.

• “Managing Artix Services with JMX Consoles” explains how to
manage and monitor Artix services using JMX consoles.

• “Managing WS-RM Persistence with JMX” shows how to
manage Web Services Reliable Messaging persistence in Artix
using a JMX console

 vi Artix Management Guide, C++ Runtime

Part III
• “Artix–Actional Integration” describes the architecture of the

Artix C++ runtime integration with Actional.
• “Configuring Artix–Actional Integration” explains how to

configure integration between Artix and Actional SOA
management products.

Part IV
• “Integrating with AmberPoint” describes the architecture of

the Artix C++ runtime integration with AmberPoint.
• “Configuring the Artix AmberPoint Agent” explains how to

configure integration with the Artix AmberPoint Agent, and
shows examples from the Artix AmberPoint integration demo.

Part V
• “Integrating with BMC Patrol™” introduces Enterprise

Management Systems, and the Artix integration with BMC
Patrol.

• “Configuring Artix for BMC Patrol” describes how to configure
your Artix environment for integration with BMC Patrol.

• “Using the Artix BMC Patrol Integration” describes how to
configure your BMC Patrol environment for integration with
Artix.

• “Extending to a BMC Production Environment” describes how
to extend an Artix BMC Patrol integration from a test
environment to a production environment

The Artix Documentation Library
For information on the organization of the Artix library, the
document conventions used, and where to find additional
resources, see Using the Artix Library, available with the Artix
documentation at
https://supportline.microfocus.com/productdoc.aspx.

Contacting Micro Focus
Our Web site gives up-to-date details of contact numbers and
addresses.

Further Information and Product
Support
Additional technical information or advice is available from several
sources.
The product support pages contain a considerable amount of
additional information, such as:
• The WebSync service, where you can download fixes and

documentation updates.
• The Knowledge Base, a large collection of product tips and

workarounds.

https://supportline.microfocus.com/productdoc.aspx

Artix Management Guide, C++ Runtime vii

• Examples and Utilities, including demos and additional
product documentation.

To connect, enter http://www.microfocus.com in your browser to go to
the Micro Focus home page.
Note:
Some information may be available only to customers who have
maintenance agreements.
If you obtained this product directly from Micro Focus, contact us
as described on the Micro Focus Web site, http://www.microfocus.com. If
you obtained the product from another source, such as an
authorized distributor, contact them for help first. If they are
unable to help, contact us.

Information We Need
However you contact us, please try to include the information
below, if you have it. The more information you can give, the
better Micro Focus SupportLine can help you. But if you don't
know all the answers, or you think some are irrelevant to your
problem, please give whatever information you have.
• The name and version number of all products that you think

might be causing a problem.
• Your computer make and model.
• Your operating system version number and details of any

networking software you are using.
• The amount of memory in your computer.
• The relevant page reference or section in the documentation.
• Your serial number. To find out these numbers, look in the

subject line and body of your Electronic Product Delivery
Notice email that you received from Micro Focus.

Contact information
Our Web site gives up-to-date details of contact numbers and
addresses.
Additional technical information or advice is available from several
sources.
The product support pages contain considerable additional
information, including the WebSync service, where you can
download fixes and documentation updates. To connect, enter
http://www.microfocus.com in your browser to go to the Micro Focus
home page.
If you are a Micro Focus SupportLine customer, please see your
SupportLine Handbook for contact information. You can download
it from our Web site or order it in printed form from your sales
representative. Support from Micro Focus may be available only to
customers who have maintenance agreements.
You may want to check these URLs in particular:
• http://www.microfocus.com/products/corba/artix.aspx (trial software

download and Micro Focus Community files)

http://www.microfocus.com
http://www.microfocus.com
http://www.microfocus.com
http://www.microfocus.com/products/corba/artix.aspx

 viii Artix Management Guide, C++ Runtime

• https://supportline.microfocus.com/productdoc.aspx. (documentation
updates and PDFs)

To subscribe to Micro Focus electronic newsletters, use the online
form at:

http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscriptio
n.asp

https://supportline.microfocus.com/productdoc.aspx
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscription.asp

Part I
Introduction

In this part
This part contains the following chapters:

Artix C++ Runtime Management page 3

 2 Artix Management Guide, C++ Runtime

 Artix Management Guide, C++ Runtime 3

Artix C++ Runtime
Management
Artix provides support for integration with a range of management
systems. This chapter introduces the management architecture for the
Artix C++ runtime and the supported integrations.

Introduction to Artix C++ Management
This section introduces the Orbix C++ runtime management
architecture and explains its various components. This applies to
Artix applications written in C++.

Management architecture
The Orbix C++ management architecture provides:
• Integration with third-party enterprise management and SOA

management systems
• Instrumentation used to monitor system status and potential

problems
• Flexible runtime configuration
• Tools for developers without access to management systems.
Figure 1 shows a basic overview of the Artix C++ management
architecture. The Artix C++ runtime uses Artix plug-ins and
interceptors to send management instrumentation data to
third-party management systems.
In addition, the Artix instrumentation data can also be monitored
using JMX-compliant consoles.

Integration with third-party
management systems
Integrations with third-party enterprise management and SOA
management systems are critical to large corporations. Artix
provides integration with the Actional and AmberPoint SOA
management systems, and the BMC Patrol Enterprise
Management System (EMS).
These management systems give a top-to-bottom view of
enterprise infrastructure. For example, this means that instead of
getting 100 different messages when services are not responding,
you get a single message saying your services on these hosts are
not working because the following network segment is dead.

 4 Artix Management Guide, C++ Runtime

If you integrate with an enterprise management or SOA
management system, your product can also be hooked into
higher-level monitoring tools such as Business Activity Monitoring
(BAM), Service Level Agreement monitoring, and impact analysis
tools. For example, when something goes wrong, the relevant
administrators are automatically notified, trouble tickets are
created, and service level impact is analyzed.
For more details on integration with third-party management
systems, see “Artix C++ Management Integrations” on page 6.

Instrumentation
Management instrumentation refers to application code used to
monitor specific components in a system (for example, code that
outputs logging or performance data to a management console).
Instrumentation is used to reflect the state of a system and view
potential problems with the normal operation of the system, while
imposing minimal overhead. If you are using instrumentation to
view problems, it is important that the act of observing the system
causes minimal disturbance.
The main types of instrumentation supported by Artix include:
• Object-based instrumentation (for example, JMX)
• Logging

Object-based instrumentation
Artix supports object-based instrumentation using Java
Management Extensions (JMX). The main purpose of this
object-based instrumentation is to enable monitoring and

Figure 1: Artix C++ Runtime Management Architecture

Artix Management Guide, C++ Runtime 5

management of Artix applications by JMX-aware third-party
management consoles such as JConsole (see Figure 1).
Artix has been instrumented to allow Java runtime components to
be exposed as JMX Managed Beans (MBeans). This enables an
Artix Java runtime to be monitored and managed either in process
or remotely using the JMX Remote API. Managed components are
exposed using an Object interface with attributes and methods.
Artix Java runtime components can be exposed as JMX MBeans
out-of-the-box (for example, Artix C++ service endpoints and
Artix C++ bus). In addition, the Artix C++ runtime supports the
registration of custom MBeans. Java developers can create their
own MBeans and register them either with their JMX MBean server
of choice, or with a default MBean server created by Artix
For more details on JMX object-based instrumentation, see Part II
“Java Management Extensions”.

Logging
Logging in the Artix C++ runtime is controlled by the
event_log:filters configuration variable, and by the log stream
plug-ins. For example, the local_log_stream sends logging to a
text file, and the xmlfile_log_stream directs logging to an XML file.
The event_log:filters configuration variable is used to specify
logging severity levels—for information, warning, error, and fatal
error messages. You can also use the event_log:filters variable
to set fine-grained logging for specific Artix subsystems. For
example, you can set logging for the Artix core, specific
transports, bindings, or services. You can set logging for Artix
services, such as the locator, and for services that you have
implemented.
For more details on Artix C++ runtime logging, see Configuring
and Deploying Artix Solutions, C++ Runtime.

Flexible configuration
The Artix C++ runtime is based on the highly flexible and scalable
Adaptive Runtime (ART). This is a plug-in based architecture in
which runtime behavior is configured using common and
application-specific settings that are applied during application
start up. This means that the same application code can be run,
and can exhibit different capabilities, in different configuration
environments.
You can change default behavior, enable specific functionality, or
fine-tune behavior using a number of different configuration
mechanisms. These include configuration file, command line, or
programmatic configuration.
Artix configuration files are typically organized into a hierarchy of
scopes, whose fully-qualified names map directly to Artix bus
names. By organizing configuration variables into various scopes,
you can provide different settings for individual services, or
common settings for groups of services.
For more details on ART-based configuration, see Configuring
and Deploying Artix Solutions, C++ Runtime.

 6 Artix Management Guide, C++ Runtime

Developer-based tools
Large corporations use third-party enterprise management and
SOA management systems to monitor Artix applications in
production environments. However, the following users need to
use more lightweight management tools:
• Application developers who need to test the effects of their

changes in a running test environment.
• Application developers who do not have access to an

enterprise management or SOA management system.
• Support engineers who need to diagnose or correct problems

raised by customers or management systems.
To facilitate such users, Artix provides out-of-the-box integration
with JConsole. For more details, see “JMX” on page 6.

Artix C++ Management Integrations
Artix has been designed to integrate with a range of third-party
management systems. These include enterprise management
systems, SOA management systems, and developer-focused
tools. This section introduces Artix integrations with the following
systems:
• “JMX”
• “Aurea Actional®”
• “AmberPoint”
• “BMC Patrol”

JMX
The JMX instrumentation provided in Artix enables Artix service
endpoints and the Artix bus to be monitored by any JMX-compliant
management console (for example, JConsole or MC4J).
You can use JMX consoles to monitor and manage key Artix Java
runtime components both locally and remotely. For example,
using any JMX-compliant client, you can perform tasks such as:
• View service status
• View a service endpoint’s address
• Stop or start a service
• Shutdown an Artix Java bus
Artix provides out-of-the-box integration with JConsole, which is
the JMX-based management console provided with the JDK.

Artix Management Guide, C++ Runtime 7

Figure 2 shows an example Artix service endpoint monitored in
JConsole. For more details on Artix integration with JMX, see
Part II.

Aurea Actional®

Integration between Artix and Aurea Actional® Application
Performance Monitoring enables Actional SOA management
systems to monitor Artix services. For example, you can use
Actional monitoring, auditing, and reporting on Artix services. You
can also correlate and track messages through your network to
perform dependency mapping and root cause analysis.
The Artix–Actional integration is deployed on Artix endpoints to
enable reporting of management data back to the Actional server.
The data reported back to Actional includes system administration
metrics such as response time, fault location, auditing, and alerts
based on policies and rules.
This integration uses the following components to monitor your
services and report data back to the Actional SOA management
tools:

Actional agents
An Actional agent is run on each Artix node that you wish to
manage. Actional agents are used to provide instrumentation data
back to the Actional server. Actional agents are provisioned from
the Actional server to establish initial contact and send
configuration to the Actional agent.

Figure 2: Artix Service Endpoint in JConsole

 8 Artix Management Guide, C++ Runtime

Artix interceptors
Artix interceptors are added to an endpoint's messaging chain that
send the instrumentation data to the Actional agent using an
Actional-specific API. These interceptors essentially push events to
the Actional agent. The data is analyzed and stored in the Actional
agent for retrieval by the Actional server.
Figure 3 shows an example system monitored in the Actional
Server Administration Console.

For more details on Artix integration with Actional, see Part III.

AmberPoint
Integration between Artix and AmberPoint enables the AmberPoint
SOA management system to monitor Artix services. An Artix
AmberPoint Agent can be deployed in Artix endpoints that use
SOAP over HTTP to enable reporting of performance metrics back
to AmberPoint.
The Artix AmberPoint Agent enables the use of the following
AmberPoint features:
• Dynamic discovery of Artix clients and services using SOAP

over HTTP.
• Monitoring of Artix client and service invocations, and

reporting them back to AmberPoint.
• Mapping Qualities of Service to customer Service Level

Agreements (SLAs).
• Monitoring of Artix invocation flow dependencies, which

enables AmberPoint to draw Web service dependency
diagrams.

Figure 3: Actional Server Administration Console

Artix Management Guide, C++ Runtime 9

• Centralized logging and performance statistics.
For more details on Artix integration with AmberPoint, see Part IV.

BMC Patrol
Integration between Artix and BMC Patrol enables the BMC Patrol
Enterprise Management System (EMS) to monitor Artix services.
You can use the Artix integration with BMC Patrol to track key
server metrics, such as server response times. You can also set up
alarms and post events when a server crashes to enable specific
recovery actions to be taken.
The Orbix C++ runtime integration with BMC Patrol, key server
metrics are logged by the Artix performance logging plug-ins. Log
file interpreting utilities are then used to analyze the logged data.
Artix provides BMC Knowledge Modules (KM), which conform to
standard BMC Patrol KM design and operation. These modules tell
the BMC Patrol console how to interpret the data obtained from
the Artix interceptors.
The Artix server metrics tracked by the Artix BMC Patrol
integration include the number of invocations received, and the
average, maximum and minimum response times. The Artix BMC
Patrol integration also enables you to track these metrics for
individual operations. Events can be generated when any of these
parameters go out of bounds.
For more details on Artix integration with BMC Patrol, see Part V.

 10 Artix Management Guide, C++ Runtime

Part II
Java Management

Extensions

In this part
This part contains the following chapters:

Monitoring and Managing with JMX page 13

Configuring JMX in Artix C++ page 33

Managing Artix Services with JMX Consoles page 37

 12 Artix Management Guide, C++ Runtime

 Artix Management Guide, C++ Runtime 13

Monitoring and
Managing with JMX
This chapter explains how to monitor and manage an Artix C++ runtime
using Java Management Extensions (JMX).

Introduction
You can use Java Management Extensions (JMX) to monitor and
manage key Artix runtime components both locally and remotely.
For example, using any JMX-compliant client, you can perform the
following tasks:
• View bus status.
• Stop or start a service.
• Change bus logging levels dynamically.
• Monitor service performance details.
• View the interceptors for a selected port.

How it works
Artix has been instrumented to allow runtime components to be
exposed as JMX Managed Beans (MBeans). This enables an Artix
runtime to be monitored and managed either in process or
remotely with the help of the JMX Remote API.
Artix runtime components can be exposed as JMX MBeans,
out-of-the-box. In addition, support for registering custom
MBeans is also available. Java developers can create their own
MBeans and register them either with their MBeanServer of
choice, or with a default MBeanServer created by Artix (see
“Relationship between runtime and custom MBeans” on page 15).

 14 Artix Management Guide, C++ Runtime

Figure 4 shows an overview of how the various components
interact. The Java custom MBeans are optional components that
can be added as required.

What can be managed
Artix C++ servers can have their runtime components exposed as
JMX MBeans. The following components can be managed:
• Bus
• Service
• Port
All runtime components are registered with an MBeanServer as
Open Dynamic MBeans. This ensures that they can be viewed by
third-party management consoles without any additional
client-side support libraries.
All MBeans for Artix runtime components conform with Sun’s JMX
Best Practices document on how to name MBeans (see
http://www.oracle.com/technetwork/java/javase/tech/best-practi

Figure 4: Artix JMX Architecture

http://www.oracle.com/technetwork/java/javase/tech/best-practices-jsp-136021.html

Artix Management Guide, C++ Runtime 15

ces-jsp-136021.html). Artix runtime MBeans use
com.iona.instrumentationas their domain name when creating
ObjectNames.

See also “Further information” on page 16 for details of how to
access MBean Server hosting runtime MBeans either locally and
remotely.

Relationship between runtime and
custom MBeans
The Artix runtime instrumentation provides an out-of-the-box JMX
view of C++ and JAX-RPC services. Java developers can also
create custom JMX MBeans to manage Artix Java components
such as services.
You may choose to write custom Java MBeans to manage a service
because the Artix runtime is not aware of the current service's
application semantics. For example, the Artix runtime can check
service status and update performance counters, while a custom
MBean can provide details on the status of a business loan request
processing.
It is recommended that custom MBeans are created to manage
application-specific aspects of a given service. Ideally, such
MBeans should not duplicate what the runtime is doing already
(for example, calculating service performance counters).
It is also recommended that custom MBeans use the same naming
convention as Artix runtime MBeans. Specifically, runtime MBeans
are named so that containment relationships can be easily
established. For example:

Using these names, you can infer the relationships between ports,
services and buses, and display or process a complete tree in the
correct order. For example, assuming that you write a custom
MBean for a loan approval Java service, you could name this
MBean as follows:

Note: An MBeanServerConnection, which is an interface
implemented by the MBeanServer is used in the examples
in this chapter. This ensures that the examples are correct
for both local and remote access.

// Bus :
com.iona.instrumentation:type=Bus,name=demos.jmx_runtime

Service :
com.iona.instrumentation:type=Bus.Service,name="{http://ws.iona.com}SOAPService",Bus=demos

.jmx_runtime

// Port :
com.iona.instrumentation:type=Bus.Service.Port,name=SoapPort,Bus.Service="{http://ws.iona.

com}SOAPService",Bus=demos.jmx_runtime

com.iona.instrumentation:type=Bus.Service.LoanApprovalManager,name=LoanApprovalManager,
Bus.Service="{http://ws.iona.com}SOAPService",Bus=demos.jmx_runtime

http://www.oracle.com/technetwork/java/javase/tech/best-practices-jsp-136021.html

 16 Artix Management Guide, C++ Runtime

Accessing the MBeanServer
programmatically
Artix runtime support for JMX is enabled using configuration
settings only. You do not need to write any additional Artix code.
When configured, you can use any third party console that
supports JMX Remote to monitor and manage Artix servers.
If you wish to write your own JMX client application, this is also
supported. To access Artix runtime MBeans in a JMX client, you
must first get a handle to the MBeanServer. The following code
extract shows how to access the MBeanServer locally:

The following shows how to access the MBeanServer remotely:

Please see the following demo for a complete example on how to
access, monitor and manage Artix runtime MBeans remotely:

Further information
For further information, see the following URLs:

JMX
http://www.oracle.com/technetwork/java/javase/tech/javamanag
ement-140525.html

JMX Remote
http://www.jcp.org/aboutJava/communityprocess/final/jsr160/

Open Dynamic MBeans
http://docs.oracle.com/javase/8/docs/api/javax/management/op
enmbean/package-summary.html

ObjectName
http://docs.oracle.com/javase/8/docs/api/javax/management/Ob
jectName.html

Bus bus = Bus.init(args);
MBeanServer mbeanServer =

(MBeanServer)bus.getRegistry().getEntry(ManagementCons
tants.MBEAN_SERVER_INTERFACE_NAME);

// The address of the connector server
String url = "service:jmx:rmi://host:1099/jndi/artix";
JMXServiceURL address = new JMXServiceURL(url);

// Create the JMXConnectorServer
JMXConnector cntor = JMXConnectorFactory.connect(address,

null);

// Obtain a "stub" for the remote MBeanServer
MBeanServerConnection mbsc =

cntor.getMBeanServerConnection();

InstallDir\cxx_java\samples\advanced\management\jmx_runtime

http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://www.jcp.org/aboutJava/communityprocess/final/jsr160/
http://docs.oracle.com/javase/8/docs/api/javax/management/openmbean/package-summary.html
http://docs.oracle.com/javase/8/docs/api/javax/management/ObjectName.html
http://docs.oracle.com/javase/8/docs/api/javax/management/ObjectName.html

Artix Management Guide, C++ Runtime 17

MBeanServerConnection
http://docs.oracle.com/javase/8/docs/api/javax/management/MB
eanServerConnection.html

MBeanServer
http://docs.oracle.com/javase/8/docs/api/javax/management/MB
eanServer.html

Managed Bus Components
This section describes the attributes and methods that you can
use to manage JMX MBeans representing Artix bus components.
For example, you can use any JMX client to perform the following
tasks:
• View bus attributes.
• Enable monitoring of bus services.
• Dynamically change logging levels for known subsystems.
If you wish to write your own JMX client, this section describes
methods that you can use to access Artix logging levels and
subsystems, and provides a JMX code example.

Bus MBean registration
When an Artix bus is initialized, a corresponding JMX MBean is
created and registered for that bus with an MBeanServer.
For example, in an Artix C++ application, this occurs after the
following call:

When a bus is shutdown, a corresponding MBean is unregistered
from the MBeanServer.

Bus naming convention
An Artix bus ObjectName uses the following convention:

Bus_var server_bus = Bus.init(argc, argv);

com..instrumentation:type=Bus,name=busIdentifier

http://docs.oracle.com/javase/8/docs/api/javax/management/MBeanServerConnection.html

 18 Artix Management Guide, C++ Runtime

Bus attributes
The following bus component attributes can be managed by any
JMX client:

servicesMonitoring is a global attribute which applies to all
services and can be used to change a performance monitoring
status.

services is a list of object names that can be used by JMX clients
to build a tree of components. Given this list, you can find all other
registered service MBeans that belong to this bus.
For examples of bus attributes displayed in a JMX console, see
“Managing Artix Services with JMX Consoles” on page 37.

Table 1: Managed Bus Attributes

Name Description Type Read/
Write

scope Bus scope used to initialize a
bus.

String No

identifier Bus identifier, typically the same
as its scope.

String No

arguments Bus arguments, including the
executable name.

String[] No

servicesMonitoring Used to enable/disable services
performance monitoring.

Boolean Yes

services A list of object names
representing services on this
bus.

ObjectName[] No

Note: By default, service performance monitoring is
enabled when JMX management is enabled in a standalone
server, and disabled in an it_container process.
When using a JMX console to manage a it_container
server, you can enable performance monitoring by setting
the serviceMonitoring attribute to true.

Artix Management Guide, C++ Runtime 19

Bus methods
If you wish to write your own JMX client, you can use the following
bus methods to access logging levels and subsystems:

All the attributes and methods described in this section can be
determined by introspecting MBeanInfo for the Bus component (see
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBe
anInfo.htm)

Example JMX client
The following code extract from an example JMX client application
shows how to access bus attributes and logging levels:

Table 2: Managed Bus Methods

Name Description Parameters Return
Type

getLoggingLevel Returns a logging
level for a
subsystem.

subsystem (String) String

setLoggingLevel Sets a logging level
for a subsystem.

subsystem (String), level
(String)

 Boolean

setLoggingLevelPropagate Sets a logging level
for a subsystem with
propagation.

subsystem (String), level
(String), propagate
(Boolean)

 Boolean

MBeanServerConnection mbsc = ...;
String busScope = ...;
ObjectName busName = new ObjectName("com..instrumentation:type=Bus,name=" +

busScope);

if (mbsc.isRegistered(busName)) {
 throw new MBeanException("Bus mbean is not registered");
}

// MBeanInfo can be used to check for all known attributes and methods
MBeanInfo info = mbsc.getMBeanInfo(busName);

// bus scope
String scope = (String)mbsc.getAttribute(busName, "scope");
// bus identifier
String identifier = (String)mbsc.getAttribute(busName, "identifier");
// bus arguments
String[] busArgs = (String[])mbsc.getAttribute(busName, "arguments");

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanInfo.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanInfo.html

 20 Artix Management Guide, C++ Runtime

// check servicesMonitoring attribute, then disable and reenable it
Boolean status = (Boolean)mbsc.getAttribute(busName, "servicesMonitoring");
if (!status.equals(Boolean.TRUE)) {
 throw new MBeanException("Service monitoring should be enabled by default");
}

mbsc.setAttribute(busName, new Attribute("servicesMonitoring", Boolean.FALSE));
status = (Boolean)mbsc.getAttribute(busName, "servicesMonitoring");
if (!status.equals(Boolean.FALSE)) {
 throw new MBeanException("Service monitoring should be disabled now");
}

mbsc.setAttribute(busName, new Attribute("servicesMonitoring", Boolean.TRUE));
status = (Boolean)mbsc.getAttribute(busName, "servicesMonitoring");
if (!status.equals(Boolean.TRUE)) {
 throw new MBeanException("Service monitoring should be reenabled now");
}

// list of service MBeans
ObjectName[] serviceNames = (ObjectName[])mbsc.getAttribute(busName, "services");

// logging
String level = (String)mbsc.invoke(
 busName,
 "getLoggingLevel",
 new Object[] {"IT_BUS"},
 new String[] {"subsystem"});
if (!level.equals("LOG_ERROR")) {
 throw new MBeanException("Wrong IT_BUS logging level");
}

level = (String)mbsc.invoke(
 busName,
 "getLoggingLevel",
 new Object[] {"IT_BUS.INITIAL_REFERENCE"},
 new String[] {"subsystem"});
if (!level.equals("LOG_ERROR")) {
 throw new MBeanException("Wrong IT_BUS.INITIAL_REFERENCE logging level");
}
level = (String)mbsc.invoke(
 busName,
 "getLoggingLevel",
 new Object[] {"IT_BUS.CORE"},
 new String[] {"subsystem"});
if (!level.equals("LOG_INFO_LOW")) {
 throw new MBeanException("Wrong IT_BUS.CORE logging level");
}

Artix Management Guide, C++ Runtime 21

Boolean result = (Boolean)mbsc.invoke(
 busName,
 "setLoggingLevel",
 new Object[] {"IT_BUS", "LOG_WARN"},
 new String[] {"subsystem", "level"});

level = (String)mbsc.invoke(
 busName,
 "getLoggingLevel",
 new Object[] {"IT_BUS"},
 new String[] {"subsystem"});
if (!level.equals("LOG_WARN")) {
 throw new MBeanException("IT_BUS logging level has not been set properly");
}

level = (String)mbsc.invoke(
 busName,
 "getLoggingLevel",
 new Object[] {"IT_BUS.INITIAL_REFERENCE"},
 new String[] {"subsystem"});
if (!level.equals("LOG_WARN")) {
 throw new MBeanException("IT_BUS.INITIAL_REFERENCE logging level has not been set

properly");
}

level = (String)mbsc.invoke(
 busName,
 "getLoggingLevel",
 new Object[] {"IT_BUS.CORE"},
 new String[] {"subsystem"});
if (!level.equals("LOG_INFO_LOW")) {
 throw new MBeanException("IT_BUS.CORE logging level should not be changed");
}

// propagate
result = (Boolean)mbsc.invoke(
 busName,
 "setLoggingLevelPropagate",
 new Object[] {"IT_BUS", "LOG_SILENT", Boolean.TRUE},
 new String[] {"subsystem", "level", "propagate"});

level = (String)mbsc.invoke(
 busName,
 "getLoggingLevel",
 new Object[] {"IT_BUS"},
 new String[] {"subsystem"});
if (!level.equals("LOG_SILENT")) {
 throw new MBeanException("IT_BUS logging level has not been set properly");
}

level = (String)mbsc.invoke(
 busName,
 "getLoggingLevel",
 new Object[] {"IT_BUS.INITIAL_REFERENCE"},
 new String[] {"subsystem"});
if (!level.equals("LOG_SILENT")) {
 throw new Exception("IT_BUS.INITIAL_REFERENCE logging level has not been set

properly");
}

 22 Artix Management Guide, C++ Runtime

Further information
For information on Artix logging levels and subsystems, see
Configuring and Deploying Artix Solutions, C++ Runtime.

Managed Service Components
This section describes the attributes and methods that you can
use to manage JMX MBeans representing Artix service
components. For example, you can use any JMX client to perform
the following tasks:
• View managed services.
• Dynamically change a service status.
• Monitor service performance data.
• Manage service ports.
The Artix locator and session manager services, have also been
instrumented. These provide an additional set of attributes on top
of those common to all services. For information on WS-RM
persistence instrumentation, see Chapter 1.
If you wish to write your own JMX client, this section describes
methods that you can use and provides a JMX code example.

Service MBean registration
When an Artix servant is registered for a service, a JMX Service
MBean is created and registered with an MBeanServer.
For example, in an Artix C++ application, this happens after the
following call:

When a service is removed, a corresponding MBean is
unregistered from the MBeanServer.

level = (String)mbsc.invoke(
 busName,
 "getLoggingLevel",
 new Object[] {"IT_BUS.CORE"},
 new String[] {"subsystem"});
if (!level.equals("LOG_SILENT")) {
 throw new MBeanException("IT_BUS.CORE logging level shouldve been set to

LOG_SILENT");
}

Bus_var server_bus = Bus.init(argc, argv);

BankServiceImpl servant;
bus->register_servant(
 servant,
 wsdl_location,
 QName("http://www.iona.com/bus/tests", "BankService")
);

Artix Management Guide, C++ Runtime 23

Service naming convention
An Artix service ObjectName uses the following convention:

In this format, a name has an expanded service QName as its
value. This value includes double quotes to permit for characters
that otherwise would not be allowed.

Service attributes
The following service component attributes can be managed by
any JMX client:

name is an expanded QName, such as
{http://www.iona.com/bus/tests}BankService.
state represents a current service state that can be manipulated
by stop and start methods.
ports is a list of ObjectNames that can be used by JMX clients to
build a tree of components. Given this list, you can find all other
registered Port MBeans which happen to belong to this Service.

serviceCounters attributes
The following service performance attributes can be retrieved from
the serviceCounters attribute:

com..instrumentation:type=Bus.Service,name="{namespace}lo
calname",Bus=busIdentifier

Table 3: Managed Service Attributes

Name Description Type Read/
Write

name Service QName in expanded
form.

String No

state Service state. String No

serviceCounters Service performance data. CompositeData No

ports A list of ObjectNames
representing ports for this
service.

ObjectName[] No

Table 4: serviceCounters Attributes

Name Description Type

averageResponseTime Average response time in
milliseconds.

Float

requestsOneway Total number of oneway
requests to this service.

Long

requestsSinceLastCheck Number of requests
happened since last check.

Long

 24 Artix Management Guide, C++ Runtime

For examples of service attributes displayed in a JMX console, see
“Managing Artix Services with JMX Consoles” on page 37

Service methods
If you wish to write your own JMX client, you can use the following
service methods to manage a specific service:

All the attributes and methods described in this section can be
accessed by introspecting MBeanInfo for the Service component.

requestsTotal Total number of requests
(including oneway) to this
service.

Long

timeSinceLastCheck Number of seconds elapsed
since last check.

Long

totalErrors Total number of
request-processing errors.

Long

Table 4: serviceCounters Attributes

Name Description Type

Table 5: Managed Service Attributes

Name Description Parameters Return
Type

name Start (activate) a
service.

None Void

state Stop (deactivate) a
service.

None Void

Artix Management Guide, C++ Runtime 25

Example JMX client
The following code extract from an example JMX client application
shows how to access service attributes and methods:

MBeanServerConnection mbsc = ...;

String busScope = ...;
ObjectName serviceName = new ObjectName("com..instrumentation:type=Bus.Service"

+

",name=\"{http://www.iona.com/hello_world_soap_http}SOAPService\"" +",Bus=" +
busScope);

if (!mbsc.isRegistered(serviceName)) {
 throw new MBeanException("Service MBean should be registered");
}

// MBeanInfo can be used to check for all known attributes and methods
MBeanInfo info = mbsc.getMBeanInfo(serviceName);

// service name
String name = (String)mbsc.getAttribute(serviceName, "name");

// check service state attribute then reset it by invoking stop and start methods

String state = (String)mbsc.getAttribute(serviceName, "state");
if (!state.equals("ACTIVATED")) {
 throw new MBeanException("Service should be activated");
}

mbsc.invoke(serviceName, "stop", null, null);
state = (String)mbsc.getAttribute(serviceName, "state");
if (!state.equals("DEACTIVATED")) {
 throw new MBeanException("Service should be deactivated now");
}

mbsc.invoke(serviceName, "start", null, null);

state = (String)mbsc.getAttribute(serviceName, "state");
if (!state.equals("ACTIVATED")) {
 throw new MBeanException("Service should be activated again");
}

// check service counters

CompositeData counters = (CompositeData)mbsc.getAttribute(serviceName,

"serviceCounters");
Long requestsTotal = (Long)counters.get("requestsTotal");
Long requestsOneway = (Long)counters.get("requestsOneway");
Long totalErrors = (Long)counters.get("totalErrors");
Float averageResponseTime = (Float)counters.get("averageResponseTime");
Long requestsSinceLastCheck = (Long)counters.get("requestsSinceLastCheck");
Long timeSinceLastCheck = (Long)counters.get("timeSinceLastCheck");

// ports
ObjectName[] portNames = (ObjectName[])mbsc.getAttribute(serviceName, "ports");

 26 Artix Management Guide, C++ Runtime

Further information
MBeanInfo
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBe
anInfo.html

CompositeData
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/ope
nmbean/CompositeData.html

Artix Locator Service
The Artix locator can also be exposed as a JMX MBean. A locator
managed component is a service managed component that can be
managed like any other bus service with the same set of attributes
and methods. The Artix locator also exposes it own specifc set of
attributes.

Locator attributes
An Artix locator MBean exposes the following locator-specific
attributes:

Table 6: Locator MBean Attributes

Name Description Type

registeredEndpoints Number of registered
endpoints.

Integer

registeredServices Number of registered
services, less or equal to
number of endpoints.

Integer

serviceLookups Number of service lookup
requests.

Integer

serviceLookupErrors Number of service lookup
failures.

Integer

registeredNodeErrors Number of node (peer ping)
failures.

Integer

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/MBeanInfo.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/management/openmbean/CompositeData.html

Artix Management Guide, C++ Runtime 27

Example JMX client
The following code extract from an example JMX client application
shows how to access locator attributes and methods:

Artix Session Manager Service
The Artix session manager can also be exposed as a JMX MBean. A
session manager component is a service managed component that
can be managed like any other bus service with the same set of
attributes and methods. The Artix session manager also exposes it
own specifc set of attributes.

Session manager attributes
An Artix session manager MBean exposes the following session
manager-specific attributes:

MBeanServerConnection mbsc = ...;
String busScope = ...;
ObjectName serviceName = new ObjectName("com.iona.instrumentation:type=Bus.Service" +
 ",name=\"{http://ws..com/2005/11/locator}LocatorService\""

 +",Bus=" + busScope);

// use common attributes and methods, see an example above

// Locator specific attributes
Integer regServices = (Integer)mbsc.getAttribute(serviceName, "registeredServices");
Integer endpoints = (Integer)mbsc.getAttribute(serviceName, "registeredEndpoints");
Integer nodeErrors = (Integer)mbsc.getAttribute(servicetName,

"registeredNodeErrors");
Integer lookupErrors = (Integer)mbsc.getAttribute(serviceName,

"serviceLookupErrors");
Integer lookups = (Integer)mbsc.getAttribute(serviceName, "serviceLookups");

Table 7: Session Manager MBean Attributes

Name Description Type

registeredEndpoints Number of registered
endpoints.

Integer

registeredServices Number of registered
services, less or equal to
number of endpoints.

Integer

serviceGroups Number of service groups. Integer

serviceSessions Number of service
sessions

Integer

 28 Artix Management Guide, C++ Runtime

Example JMX client
The following code extract from an example JMX client application
shows how to access session manager attributes and methods:

Managed Port Components
This section describes the attributes that you can use to manage
JMX MBeans representing Artix port components. For example,
you can use any JMX client to perform the following tasks:
• Monitor managed ports.
• View message and request interceptors.
If you wish to write your own JMX client, this section also shows
an example of accessing these attributes in JMX code.

Port MBean registration
Port managed components are typically created as part of a
service servant registration. When service is activated, all
supported ports will also be registered as MBeans.
When a service is removed, a corresponding Service MBean, as
well as all its child Port MBeans are unregistered from the
MBeanServer.

Naming convention
An Artix port ObjectName uses the following convention:

MBeanServerConnection mbsc = ...;
String busScope = ...;
ObjectName serviceName = new

ObjectName("com.iona.instrumentation:type=Bus.Service" +

",name=\"{http://ws..com/sessionmanager}SessionManagerService\"" +",Bus="
+ busScope);

// use common attributes and methods, see an example above

// SessionManager specific attributes
Integer regServices = (Integer)mbsc.getAttribute(serviceName,

"registeredServices");
Integer endpoints = (Integer)mbsc.getAttribute(serviceName,

"registeredEndpoints");
Integer serviceGroups = (Integer)mbsc.getAttribute(serviceName,

"serviceGroups");
Integer serviceSessions = (Integer)mbsc.getAttribute(serviceName,

"serviceSessions");

com..instrumentation:type=Bus.Service.Port,name=portName,
Bus.Service="{namespace}localname",Bus=busIdentifier

Artix Management Guide, C++ Runtime 29

Port attributes
The following bus component attributes can be managed by any
JMX client:

interceptors
The interceptors attribute is a list of interceptors for a given port.
Internally, interceptors is an instance of TabularData that can be
considered an array/table of CompositeData. However, due to a
current limitation of CompositeData, (no insertion order is
maintained, which makes it impossible to show interceptors in the
correct order), the interceptors are currently returned as a list of
strings, where each String has the following format:

In this format, type can be CPP or Java; level can be Message or
Request.
It is most likely that this limitation will be fixed in a future JDK
release, probably JDK 1.7 because the enhancement request has
been accepted by Sun. In the meantime, interceptors details can
be retrieved by parsing a returned String array.
For examples of port attributes displayed in a JMX console, see
“Managing Artix Services with JMX Consoles” on page 37

Table 8: Supported Service Attributes

Name Description Type Read/
Write

name Port name. String No

address Transport specific
address representing
an endpoint.

String No

interceptors List of interceptors for
this port.

String[] No

transport An optional attribute
representing a
transport for this port.

ObjectName[] No

[name]: name [type]: type [level]: level [description]: optional
description

 30 Artix Management Guide, C++ Runtime

Example JMX client
The following code extract from an example JMX client application
shows how to access port attributes and methods:

MBeanServerConnection mbsc = ...;

String busScope = ...;
ObjectName portName = new ObjectName("com..instrumentation:type=Bus.Service.Port" +
 ",name=SoapPort" +

",Bus.Service=\"{http://www.iona.com/hello_world_soap_http}SOAPService\"" +",Bus=" +
busScope);

if (!mbsc.isRegistered(portName)) {
 throw new MBeanException("Port MBean should be registered");
}

// MBeanInfo can be used to check for all known attributes and methods
MBeanInfo info = mbsc.getMBeanInfo(portName);

// port name
String name = (String)mbsc.getAttribute(portName, "name");

// port address
String address = (String)mbsc.getAttribute(portName, "address");

// check interceptors

String[] interceptors = (String[])mbsc.getAttribute(portName, "interceptors");
if (interceptors.length != 6) {
 throw new MBeanException("Number of port interceptors is wrong");
}

handleInterceptor(interceptors[0],
 "MessageSnoop",
 "Message",
 "CPP");
handleInterceptor(interceptors[1],
 "MessagingPort",
 "Request",
 "CPP");
handleInterceptor(interceptors[2],
 "http://schemas.xmlsoap.org/wsdl/soap/binding",
 "Request",
 "CPP");
handleInterceptor(interceptors[3],
 "TestInterceptor",
 "Request",
 "Java");
handleInterceptor(interceptors[4],
 "bus_response_monitor_interceptor",
 "Request",
 "CPP");
handleInterceptor(interceptors[5],
 "ServantInterceptor",
 "Request",
 "CPP");

Artix Management Guide, C++ Runtime 31

For example, the handleInterceptor() function may be defined as
follows:

private void handleInterceptor(String interceptor,
 String name,
 String level,
 String type) throws Exception {
 if (interceptor.indexOf("[name]: " + name) == -1 ||
 interceptor.indexOf("[type]: " + type) == -1 ||
 interceptor.indexOf("[level]: " + level) == -1) {

 throw new MBeanException("Wrong interceptor details");
 }
 // analyze this interceptor further
}

 32 Artix Management Guide, C++ Runtime

 Artix Management Guide, C++ Runtime 33

Configuring JMX in
Artix C++
This chapter explains how to configure an Artix C++ runtime to be
managed with Java Management Extensions (JMX).

Artix JMX Configuration
This section explains the Artix configuration variable settings that
you must configure to enable JMX monitoring of the Artix runtime,
and access for remote JMX clients.

Enabling the management plugin
To expose the Artix runtime using JMX MBeans, you must enable a
bus_management plug-in as follows:

This setting enables local access to JMX runtime MBeans. The
bus_management plug-in wraps runtime components into Open
Dynamic MBeans and registers them with a local MBeanServer.

Configuring remote JMX clients
To enable remote JMX clients to access runtime MBeans, use the
following configuration settings:

These settings allow for both local and remote access.

Specifying a remote access URL
Remote access is performed through JMX Remote, using an RMI
Connector on a default port of 1099. Using this configuration, you
can use the following JNDI-based JMXServiceURL to connect
remotely:

Configuring a remote access port
To specify a different port for remote access, use the following
configuration variable:

jmx_local
{
 plugins:bus_management:enabled="true";
};

jmx_remote
{
 plugins:bus_management:enabled="true";
 plugins:bus_management:connector:enabled="true";
};

service:jmx:rmi:///jndi/rmi://host:1099/artix

plugins:bus_management:connector:port="2000";

 34 Artix Management Guide, C++ Runtime

You can then use the following JMXServiceURL:

Configuring a stub-based
JMXServiceURL
You can also configure the connector to use a stub-based
JMXServiceURL as follows:

See the javax.management.remote.rmi package for more details
on remote JMX.

Publishing the JMXServiceURL to a local
file
You can also request that the connector publishes its
JMXServiceURL to a local file:

The following entry can be used to override the default file name:

service:jmx:rmi:///jndi/rmi://host:2000/artix

jmx_remote_stub
{
 plugins:bus_management:enabled="true";
 plugins:bus_management:connector:enabled="true";

plugins:bus_management:connector:registry:required="fa
lse";

};

plugins:bus_management:connector:url:publish="true";

plugins:bus_management:connector:url:file="../../service.url";

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/remote/rmi/package-summary.html

Artix Management Guide, C++ Runtime 35

Further information
For further information, see the following:

RMI Connector
http://docs.oracle.com/javase/1.5.0/docs/api/javax/management
/remote/rmi/RMIConnector.html

JMXServiceURL
http://docs.oracle.com/javase/1.5.0/docs/api/javax/management
/remote/JMXServiceURL.html
http://docs.oracle.com/javase/1.5.0/docs/api/javax/management
/remote/rmi/package-summary.html

http://docs.oracle.com/javase/1.5.0/docs/api/javax/management/remote/rmi/package-summary.html
http://docs.oracle.com/javase/1.5.0/docs/api/javax/management/remote/rmi/RMIConnector.html
http://docs.oracle.com/javase/1.5.0/docs/api/javax/management/remote/JMXServiceURL.html

 36 Artix Management Guide, C++ Runtime

 Artix Management Guide, C++ Runtime 37

Managing Artix
Services with JMX
Consoles
You can use third-party management consoles that support JMX Remote
to monitor and manage Artix services (for example, JConsole). You can
view the status of a bus instance, stop or start a service, change bus
logging levels, or view interceptor chains.

Managing Artix Services with JConsole
You can use JConsole, which is provided with JDK, to monitor and
manage Artix applications. JConsole displays Artix runtime
managed components in a hierarchical tree, as shown in Figure 5.

Using JConsole
To use JConsole:
1. Start up JConsole using the following command:

JDK_HOME/bin/jconsole
2. Select the Advanced tab.
3. Enter or paste a JMXServiceURL (either the default URL, or

one copied from a published connector.url file).

 38 Artix Management Guide, C++ Runtime

Managing services
Figure 5 shows the attributes displayed for a managed service
component (for example, the serviceCounters performance metrics
displayed in the right pane). For detailed information on these
attributes, see “Service attributes” on page 23.

Figure 5: Managed Service in JConsole

Artix Management Guide, C++ Runtime 39

Managing ports
Figure 6 shows the attributes displayed for a managed port
component (for example, the interceptors list displayed in the
right pane). For detailed information on these attributes, see “Port
attributes” on page 29.

Figure 6: Managed Port in JConsole

 40 Artix Management Guide, C++ Runtime

Managing containers
Figure 7 shows an example of a locator service deployed into an
Artix container. For more information, see “Locator attributes” on
page 26.

Further information
For more information on using JConsole, see the following:
http://docs.oracle.com/javase/8/docs/technotes/guides/manage
ment/jconsole.html

Managing Artix Services with the JMX HTTP adaptor
You can also manage Artix services using the default HTTP
adaptor console that is provided with the JMX reference
implementation. This console is browser-based, as shown in

Figure 7: Managed Locator in JConsole

Note: When using a JMX console to manage a service
running in an Artix container, set the serviceMonitoring
attribute to true to enable service performance monitoring
(see “Bus attributes” on page 18).

http://docs.oracle.com/javase/8/docs/technotes/guides/management/jconsole.html

Artix Management Guide, C++ Runtime 41

Figure 8.

Using the JMX HTTP adaptor
To use the JMX HTTP adaptor:
1. Specify following configuration settings:

2. Enter the following URL in your browser:
http://localhost:7659

This displays the main HTTP adaptor management view, as
shown in Figure 8.

plugins:bus_management:http_adaptor:enabled="true";
plugins:bus_management:http_adaptor:port="7659";

Figure 8: HTTP Adaptor Main View

 42 Artix Management Guide, C++ Runtime

Figure 9 shows the attributes displayed for a managed bus
component (for example, the services that it includes). For
detailed information on these attributes, see “Bus attributes” on
page 18.

Further information
For further information on using the HTTP JMX adaptor, see the
following:
http://www.oracle.com/technetwork/articles/javase/jmx-138825.
html

Figure 9: HTTP Adaptor Bus View

http://www.oracle.com/technetwork/articles/javase/jmx-138825.html

 Artix Management Guide, C++ Runtime 43

Managing WS-RM
Persistence with JMX
You can manage Web Services Reliable Messaging persistence in Artix
using any JMX console.

WS-RM Persistence Management
You can use any JMX console to view messages in the WS-RM
persistence database both locally and remotely. You also can
monitor the WS-RM persistence enabled endpoint, the WS-RM
acksTo endpoint URI, and the client’s RM source endpoint. This
section explains the WS-RM persistence information that can be
managed in a JMX console.

Managed WS-RM persistence
components
The following WS-RM persistence components can be managed in
a JMX console:
• Managed WS-RM persistence endpoints

(RMEndpointPersistentStore)
• Managed WS-RM persistence sequences (RMSequencePersistentStore)

Managed WS-RM persistence endpoints
WS-RM persistence endpoint managed components are used to
represent WS-RM persistence enabled endpoints. When a WS-RM
persistence destination endpoint is created, it is registered as an
MBean. When an WS-RM persistence destination endpoint is
closed, the MBean is unregistered from the MBeanServer.
The MBean naming convention is as follows:

WS-RM persistence endpoint attributes
You can view the following attributes for a WS-RM persistence
endpoint in a JMX console:

com..instrumentation:type=Bus.Service.Port.EndpointPersiste
nt,

name=WSRM_ENDPOINT_PERSISTENCE,
Bus.Service.Port=portName,
Bus.Service="{namespace}localname",
Bus=busIdentifier

Name Description Type
service name WS-RM persistence enabled service name String

port name WS-RM persistence enabled port String

 44 Artix Management Guide, C++ Runtime

Managed WS-RM persistence sequences
WS-RM persistence sequence managed components are used to
represent WS-RM sequences. A destination sequence with a
unique ID is created for each client. When a WS-RM persistence
destination sequence is created, it is registered as an MBean.
When a WS-RM persistence destination sequence is recovered
from database, it is also registered as an MBean. When a WS-RM
persistence destination sequence is terminated, it is unregistered
from the MBeanServer.
The MBean naming convention is as follows:

In this syntax, sequenceName includes the string sequence_id and the
sequence ID.

WS-RM persistence sequence attributes
You can view the following attributes for a WS-RM persistence
sequence in a JMX console:

The messages attribute is a list of messages in the WS-RM
persistence database. The messages are returned as a list of
strings, where each string has the following format:

Viewing Messages in the WS-RM Persistence
Database

Before you start viewing in the WS-RM persistence database, you
must set your Artix configuration to enable JMX management for
WS-RM persistence. This section uses the Artix WS-RM sample
application to explain how to view and monitor messages in the
WS-RM persistence database.

com..instrumentation:type=Bus.Service.Port.EndpointPersistent.SequencePersi
stent,

name=sequenceName,
Bus.Service.Port.EndpointPersistent=WSRM_ENDPOINT_PERSISTENCE,
Bus.Service.Port=portName,
Bus.Service="{namespace}localName",
Bus=busIdentifier

Name Description Type
acksto uri WS-RM acknowledgement URI String

messages Messages in the WS-RM persistence
database

String[]

sequence id Sequence unique ID representing a
client

String

[message id]: messageId [message]: soapMessage

Artix Management Guide, C++ Runtime 45

Enable JMX management for WS-RM
persistence
To enable JMX management for WS-RM persistence in your Artix
configuration file, perform the following steps:
1. Open the following file:

2. Edit the demos.wsrm_persistence_enabled.server scope as
follows:

Start the server
3. To start the server, go to the following directory:

4. Run the following command:
run_cxx_server_persistence.bat

This starts the server using following example command:

When the server runs, a file named connector.url is created in the
...samples\advanced\wsrm\etc\ directory.

Start a JMX console
You can start any JMX console. For example, to start JConsole,
execute the following command:

ArtixInstallDir\samples\advanced\wsrm\etc\wsrm.cfg

server {
 plugins:artix:db:home = "./server_db";
 plugins:bus_management:enabled="true";
 plugins:bus_management:connector:enabled="true";

plugins:bus_management:connector:url:file="../../etc/connecto
r.url";

 # optional port, default is 1099
 plugins:bus_management:connector:port="5008";
};

Note: Enabling JMX management for WS-RM persistence
is similar to enabling JMX management for other Artix
components.

InstallDir\samples\advanced\wsrm\bin\

start server.exe -ORBname
demos.wsrm_persistence_enabled.server

%JAVA_HOME%\bin\jconsole.exe

 46 Artix Management Guide, C++ Runtime

This displays the JConsole: Connect to Agent dialog, as shown
in Figure 10.

Copy the contents of the connector.url file into the JMX URL field,
and click Connect. This displays the J2SE 5.0 Monitoring and
Management Console, as shown in Figure 11.

View WS-RM persistence enabled
endpoints
You can view a WS-RM persistence enabled endpoint in the
MBeans tab of the JMX console, as shown in Figure 11:

In this example, PingPort is a WS-RM persistence enabled port.
You can view the port and service name in the Attributes tab on
the right of the console.

Figure 10: Connecting to a JMX Agent

Figure 11: WS-RM Persistence Enabled Endpoint

Artix Management Guide, C++ Runtime 47

View messages in the WS-RM
persistence database
To view messages in the WS-RM persistence database, perform
the following steps:
1. Edit the client code in

...\samples\advanced\wsrm\cxx\client\PingClientSample.cxx as
follows:

This adds a loop to the client that invokes the server 10 times
in order to easily view messages in WS-RM persistence
database.

2. Start the client. For example, go to the
...\samples\advanced\wsrm\bin directory, and run the following
command:
run_cxx_client_persistence.bat

int
 run_persistence_client(
 int argc,
 char* argv[]
)
...
 for (int i=0; i < 10; i++)
 {
 cout << "Invoking PingOneway " << i << endl;
 PingType param1;
 param1.setText("PingOneway message from client");
 client1.PingOneway(param1);
 cout << i << " PingOneway invoked" << endl;
 }
...

 48 Artix Management Guide, C++ Runtime

3. You can view the attributes for the WS-RM sequence in the
JMX console, as shown in Figure 12. The WS-RM sequence
name consists of the sequence_guid string and a sequence ID.

Figure 12: WS-RM Sequence Attributes

Artix Management Guide, C++ Runtime 49

4. You can view all the messages in WS-RM persistence database
by clicking in the Attributes tab on the right of the console,
as shown in Figure 13. Each message consists of a message
ID and a SOAP message.

You can click the Refresh button to view the current
messages in WS-RM persistence database.

Figure 13: Messages in the WS-RM Persistence database

 50 Artix Management Guide, C++ Runtime

Part III
Aurea Actional®

In this part
This part contains the following chapters:

Artix–Actional Integration page 53

Configuring Artix–Actional Integration page 59

 52 Artix Management Guide, C++ Runtime

 Artix Management Guide, C++ Runtime 53

Artix–Actional
Integration
Artix provides support for integration with Aurea Actional® Application
Performance Monitoring.

Artix–Actional Interaction Architecture
Integration between Artix and Actional enables Artix services to be
monitored by Actional. For example, you can use Actional
management tools to perform discovery, monitoring, auditing,
and reporting on Artix services and consumers. You can also
correlate and track all messages through your SOA network to
perform dependency mapping and root cause analysis.
The Artix–Actional integration is deployed on Artix systems to
enable reporting of management data back to the Actional server.
The data reported back to Actional includes system administration
metrics such as response time, fault location, auditing, and alerts
based on policies and rules.
This guide explains how to integrate Artix applications written in
C++.

Artix–Actional integration architecture
The Actional SOA management system includes an Actional server
and an Actional agent. The Actional agent is run on each node that
you wish to manage. A node is defined as a system on the current
network. A node with an Actional agent installed is referred to as
an instrumented node or a managed node.
The managed node uses Actional’s interceptor API to send
monitoring data to the Actional agent. The Actional server pings
the Actional agent periodically to retrieve the monitoring data. It
analyzes this data and represents it in the Actional SOA
management GUI tools. In addition, any alerts triggered at the
Actional agent are sent immediately to the Actional server.

 54 Artix Management Guide, C++ Runtime

Figure 14 shows how Artix Web service applications are integrated
with Actional using this architecture.

The main components in this architecture are:
• “Actional server”
• “Actional agent”
• “Artix interceptors”
• “Actional agent interceptor API”
• “Artix service endpoints”
• “Service consumers”

Figure 14: Artix–Actional Integration Architecture

Artix Management Guide, C++ Runtime 55

Actional server
The Actional server is a central management server that manages
nodes containing an Actional agent.
The Actional server hosts a database and pings Actional agents to
obtain management data at configured time intervals. It analyzes
the management data and displays it in an Actional console—for
example, the Actional Server Administration Console. This is
a Web application deployed on Apache Tomcat, runtime
management and agent configuration modes.
By default, the Actional server uses port 4040. The default Actional
server database is Apache Derby.

Actional agent
An Actional agent is run on each Artix node that you wish to
manage. Actional agents are used to provide instrumentation data
back to the Actional server.
Actional agents are provisioned from the Actional server to
establish initial contact and send configuration to the Actional
agent. There is one Actional agent per managed node. By default,
the Actional agent uses port 4041.

Artix interceptors
At the level of a managed node, Artix interceptors send the
instrumentation data to the Actional agent using an
Actional-specific API. These interceptors essentially push events to
the Actional agent.
The data is analyzed and stored in the Actional agent for retrieval
later by the Actional server. However, any alerts triggered at the
Actional agent are sent immediately to the Actional server.

Actional agent interceptor API
The Actional Agent Interceptor C++ SDK is an Actional-specific
API used to send the management instrumentation data from the
service endpoint to the Actional agent.
The Artix service application to be managed by Actional must use
the Actional Agent Interceptor C++ SDK to send monitoring data
to the Actional agent. For detailed information on how to use this
API, see the Actional product documentation.

Artix service endpoints
An Artix service endpoint is a service built using Artix, and
described using WSDL. The endpoint can be implemented in C++.
However, the main characteristic of an Artix service endpoint is
that it can be described in WSDL, and classified as a service, which
can be consumed.

 56 Artix Management Guide, C++ Runtime

Service consumers
Service consumers are clients that consume service endpoints by
exchanging messages based on the service interface. Consumers
can be built using Artix, or any product that supports the
technology used by the endpoint. For example, a pure CORBA
client could be a consumer for a CORBA endpoint. A.NET client
could be a consumer for an Artix SOAP endpoint.

Actional SOA management system
In this document, Actional is the general term used to describe the
Actional SOA management system in which all data is stored and
viewed. This simplifies the architecture of Actional for the sake of
this discussion.
Figure 15 shows an example of the Actional Server
Administration Console. Managed nodes are displayed as
orange boxes, and unmanaged nodes are displayed as gray boxes.
The green arrow indicates the message flow through various
nodes.
Clicking on each of the nodes shows more in-depth information
regarding the response time, alerts and warnings, and so on. The
organization of the information in this web console is in the form
of Node–Group–Service–Operation. In Artix, this translates to
Node–Service–Port–Operation.

Figure 15: Actional Server Administration Console

Artix Management Guide, C++ Runtime 57

Further information
For detailed information on using Actional features, see the
Actional product documentation.

 58 Artix Management Guide, C++ Runtime

 Artix Management Guide, C++ Runtime 59

Configuring Artix–
Actional Integration
This chapter explains how to configure integration between Artix and
Actional SOA management products, and shows examples from
Artix-Actional integration demos.

Prerequisites
This section describes prerequisites for integration between Artix
and Actional SOA management products.
The Actional for SOA Operations product is aimed at a technical
audience (for example, system administrators managing services
on the network). While the Actional for Continuous Service
Optimization (Actional CSO) product is aimed at a business
audience.

Supported product versions
Artix supports integration with the following Actional product
versions:
• Actional Point of Operational Visibility 8.1 and above.
• Actional Management Server 8.1 and above.

Supported protocols and transports
The following protocols and transports are supported:
• SOAP over HTTP
• SOAP over JMS

Actional agents
The Actional agent component is also known as the Actional Point
of Operational Visibility.
You must ensure that Actional agents have been set up on each
Artix node that you wish to manage. The provisioning of Actional
agents is performed using the Actional server. For some basic
details, see “Configuring Actional for Artix Integration” on
page 60.
For information on how to set up Actional agents on managed
nodes, see the Actional product documentation.

Further information
For information on the full range of platform versions and
database versions supported by Actional, see the Actional product
documentation.

 60 Artix Management Guide, C++ Runtime

This Artix integration with Actional supports the full range of
operating system platforms supported by Artix. For more details,
see the Artix Installation Guide, C++.

Configuring Actional for Artix Integration
These section provides some basic configuration guidelines for
Actional agent and server configuration. For full details, see the
Actional product documentation.
This basic configuration will help to set up the Artix–Actional
integration demos. For information on how to run these demos,
see the readme.txt files in the following directories:

Actional agent configuration
No specific Actional agent configuration settings are required for
integration with Artix. For example, for the purposes of the
Actional-Artix integration demos, the Actional agent can be
started with the default configuration settings.

Actional server configuration
The following sample configuration steps describe how to set up
the Actional server to run an simple Artix-Actional demo:
1. Install the Actional server with typical installation options, and

select the Apache Derby database.
2. Specify the following URL in your browser:

http://localhost:4040/lgserver
3. If this is a new installation click Start, and follow new the

Actional server setup steps.
Otherwise, if the Actional server is already installed, perform
the following steps:
i. In the Actional console Web interface, select the

Configure radio button in the top left of the screen.
ii. Select Platform tab. This displays the general

configuration settings.

Creating a managed node
To create a managed node for a simple Artix demo, perform the
following steps:
1. In the Actional Configure view menu bar, open the Network

tab. This displays the Network Nodes.
2. Select Add. This displays Node Creation / Managing

Agents.
3. Click Managed Node.

ArtixInstallDir/samples/advanced/management/actional/soap_over_http
ArtixInstallDir/samples/advanced/management/actional/soap_over_jms

Artix Management Guide, C++ Runtime 61

Configuring a new node
To configure a managed node for the demo, perform the following
steps in the wizard:

Step 1: New Node - Identification
1. Specify the Name as agent1.
2. Specify the Display icon as auto-discover (you can select

Artix from the drop down list, if desired).
3. Click Next.

Step 2: New Node - Management
1. Specify the Transport as HTTP/S.
2. Supply the Actional agent user name and password.
3. Ensure that Override Agent Database is checked.
4. Click Next.

Step 3: New Node - Agents
1. Specify the following URL:

http://HostName:4041/lgagent

You can specify a host name or an IP_ADDRESS.
2. Click Add. The agent URL is added.
3. Click Next.

Step 4: New Node - Endpoints
1. For Endpoints, add the hostname, fully qualified hostname,

and IP address.
2. Click Next.

Step 5: New Node - Filters
1. Do not specify any filters for the demo.
2. Click Next.

Step 6: New Node - Trust Zone
1. Do not specify a trust zone the demo.
2. Click Finish
The node is created, and needs to be provisioned.

Provisioning a new node
To provision the new node, perform the following steps:
1. Select the Deployment tab from the Configure menu bar.
2. The Provisioning page is displayed, and agent1 is listed as

not provisioned.
3. Select the agent1 check box.
4. Click Provision. This displays a message when complete:

Successfully provisioned.
5. Click the Manage radio button on the Actional Web interface.

You should see agent1 added to the Network Overview
screen.

 62 Artix Management Guide, C++ Runtime

Configuring Artix for Actional Integration
This section explains how to configure Artix services for
integration with Actional. It shows some examples from the Artix–
Actional integration demos:

Configuring the Artix Actional plug-in
Configuring basic Artix Actional plug-in includes the following
steps:

Specifying the plug-in name:

Adding Actional to the interceptor chain
You must specify the Actional interceptor to the request-level
interceptor lists. If payload needs to be captured, the Actional
interceptor is also required on message interceptor list. Actional
interceptor can be added to client and server interceptor list
depends on which one or both needs to be monitored.

For more details on configuring binding lists and interceptors, see
Artix Configuration Reference, C++ Runtime.

Optimizing your Actional integration
Artix provides the following configuration options to enable you to
fine-tune the behavior of the monitoring plug-in.

Capturing the message payload
You can choose to enable capturing of the message payload (for
example, a SOAP message over HTTP). If this option is set to
false, only the payload size is reported. The default values are:

ArtixInstallDir/cxx_java/samples/advanced/management/monitoring/actional_http_handler
ArtixInstallDir/cxx_java/samples/advanced/management/monitoring/actional_jms_handler

orb_plugins = ["actional"];

Add actional to the client interceptors chain.
binding:artix:client_request_interceptor_list= "actional";
binding:artix:client_message_interceptor_list= "actional";

Add actional to server interceptors chain.
binding:artix:server_request_interceptor_list= "actional";
binding:artix:server_message_interceptor_list= "actional";

plugins:actional:client:capture_request_payload = "false";
plugins:actional:client:capture_response_payload = "false";
plugins:actional:server:capture_request_payload = "false";
plugins:actional:server:capture_response_payload = "false";

Artix Management Guide, C++ Runtime 63

Viewing Artix Endpoints in Actional
When your Artix service endpoints and consumers have been
configured for integration with Actional, they can be monitored
using the Actional SOA management tools.
For example, when you run the Artix–Actional SOAP over HTTP
demo, the Actional Server Administration Console displays
the agent nodes. Invocations are displayed as arrows flowing to
and from the node. For details on how to run this demo, see the
readme.txt file in the following directory:

Network overview
Figure 16 shows a running SOAP over HTTP demo displayed in the
Network Overview screen of the Actional Server
Administration Console.
In Figure 16, interactions between the client and server
applications are recorded by agent100, which is installed on the
machine that runs the demo. This agent reports monitoring data
back to the Actional server.

ArtixInstallDir/samples/advanced/management/actional/soap_over_http

Figure 16: Actional Server Network Overview

 64 Artix Management Guide, C++ Runtime

Path Explorer
Figure 17 shows the example invocation displayed in the Path
Explorer screen of the Actional Server Administration
Console.

 Further information
Actional
For information on how to set up and run the Actional server,
Actional agent, and Actional Server Administration Console, see
the Actional product documentation.

Artix
For more information on Artix configuration, see the following:
• Configuring and Deploying Artix Solutions, C++

Runtime
• Artix Configuration Reference, C++ Runtime

Figure 17: Actional Server Path Explorer

Part IV
AmberPoint

In this part
This part contains the following chapters:

Integrating with AmberPoint page 67

Configuring the Artix AmberPoint Agent page 75

 66 Artix Management Guide, C++ Runtime

 Artix Management Guide, C++ Runtime 67

Integrating with
AmberPoint
Artix provides support for integration with the AmberPoint SOA
management system. This chapter describes two approaches to
integrating Artix services with AmberPoint.

AmberPoint Proxy Agent
There are two possible approaches to integrating Artix with the
AmberPoint SOA management system:
• AmberPoint Proxy Agent
• Artix AmberPoint Agent

AmberPoint Proxy Agent architecture
AmberPoint provides the AmberPoint Proxy Agent, which acts as a
proxy for Web service endpoints by making the service endpoint
WSDL available to the service consumer (client). Figure 18 shows
a simple AmberPoint Proxy Agent architecture:

Figure 18: AmberPoint Proxy Agent Integration

 68 Artix Management Guide, C++ Runtime

In this architecture, the following restrictions apply:
• All messages between the service consumer and service

endpoint must be routed through the AmberPoint Proxy
Agent.

• All messages must use SOAP over HTTP.
• The service consumer is unaware of the back-end service

endpoint, and views its relationship as being with the proxy
only.

If you can work within these limits, the AmberPoint monitoring
and management features can be used out-of-the box with Artix.
However, if you require a more flexible integration (for example,
with increased performance and scalability), you should use the
Artix AmberPoint Agent.

AmberPoint Proxy Agent in a service
network
Figure 19 shows the AmberPoint Proxy Agent deployed in a
service network with multiple service consumers and service
endpoints.

Figure 19: AmberPoint Proxy Agent Service Network

Artix Management Guide, C++ Runtime 69

Because all messages are routed through the AmberPoint Proxy
Agent, the additional network hops may impact on performance.
In addition, the proxy involves the risk of a single point of failure.
If these are important issues for your system, you should use the
Artix AmberPoint Agent instead.

Further information
For information on using the AmberPoint Proxy Agent, see the
AmberPoint product documentation.

Artix AmberPoint Agent
The Artix AmberPoint Agent enables Artix endpoints to be
discovered and monitored by AmberPoint. This is the
recommended approach to integrating Artix services with
AmberPoint, and can be used with Artix services.
The Artix AmberPoint Agent can be deployed with Artix endpoints
that use SOAP over HTTP to enable reporting of performance
metrics back to AmberPoint. The Artix AmberPoint Agent offers
significant benefits over the AmberPoint Proxy Agent. For
example, these include increased performance and scalability,
dynamic discovery, and the use of callbacks. This section
describes the Artix AmberPoint Agent in detail.

Artix AmberPoint Agent architecture
Figure 20 shows how Artix can be integrated with AmberPoint
using the Artix AmberPoint Agent.

Figure 20: Artix AmberPoint Agent Integration

 70 Artix Management Guide, C++ Runtime

The main components in this architecture are:
• “Artix AmberPoint Agent”
• “Artix interceptor”
• “Artix service endpoints”
• “Service consumers”
• “AmberPoint SOA Management System”
• “AmberPoint Nano Agent API”

Artix AmberPoint Agent
An Artix AmberPoint Agent consists of components developed by
and AmberPoint (the Artix interceptor, and the AmberPoint Nano
Agent API). You can deploy multiple agents into your SOA network
to capture data for the AmberPoint management system. Artix
AmberPoint Agents gather performance data for all Artix endpoint
types, as well as normal Web service endpoints.

Deployment modes
Artix AmberPoint Agents can be deployed in different ways in your
system, for example:
• Embedded in Artix consumers intercepting traffic. This is

suitable if Artix is deployed on the client side only, and the
service endpoints do not support AmberPoint. This requires
configuration for the consumer only.

• Embedded in Artix service endpoints intercepting traffic. This
is suitable if Artix is used to implement the service endpoint.
This works even when the consumers are third party products.
This requires configuration for the service endpoint only. This
is the most common and recommended approach, as shown in
Figure 21.

• Deployed as standalone Artix intermediaries (proxies) on your
service network. This option is suitable if you do not want
touch your existing system and you do not want to update
your endpoints or consumers. This approach is also necessary
if Artix is not deployed at either the consumer or service
endpoints.

Note: Integration with the Artix AmberPoint Agent currently
applies to SOAP over HTTP, and services that have one endpoint
only.

Figure 21: Artix AmberPoint Agent Embedded in Service Endpoint

Artix Management Guide, C++ Runtime 71

Artix interceptor
An Artix interceptor is deployed on the dispatch path of all
messages exchanged between Artix service endpoints and
consumers. It may be deployed in the same process as the
consumer and/or the endpoint, or as an intermediary between the
consumer and service.
The Artix interceptor captures all data in the dispatch path. The
Artix interceptor then reports performance metrics using the
AmberPoint nano agent API.

Artix service endpoints
An Artix service endpoint is a service built using Artix, and
described using WSDL. The endpoint can be implemented using
C++. However, its main characteristic is that it can be described
in WSDL, and classified as a service, which can therefore be
consumed. The Artix AmberPoint Agent provides a WSDL contract
describing the endpoint that is being monitored.

Service consumers
Service consumers are clients that consume service endpoints by
exchanging messages based on the service interface. Consumers
can be built using Artix, or any product that supports the
technology used by the endpoint. For example, a pure CORBA
client could be a consumer for a CORBA endpoint. A .NET client
could be a consumer for an Artix SOAP endpoint.

AmberPoint SOA Management System
In this document, AmberPoint is the general term used to describe
the system in which all performance metrics are stored and
viewed. For the purposes of this document, all interactions are
made using the AmberPoint Nano Agent API, and the AmberPoint
graphical tools are used to view the Artix data. This simplifies the
architecture of AmberPoint for the sake of this discussion.

AmberPoint Nano Agent API
The AmberPoint Nano Agent API is a Java public API provided by
AmberPoint that enables customers to monitor their endpoints.
This is the API that Artix uses to notify AmberPoint of the
existence of the service endpoint. Artix also uses the AmberPoint
nano agent API at runtime to report performance metrics about a
previously registered endpoint.
The AmberPoint Nano Agent API enables the Artix interceptor to
do the following:
• Allow dynamic discovery of new Artix endpoints without

manual registration of the endpoints by the user. This
registration process assumes that the Artix interceptor has

 72 Artix Management Guide, C++ Runtime

the required configuration for the nano agent to contact
AmberPoint. When the Artix AmberPoint Agent becomes
active, it uses the Nano Agent API to register a new endpoint.

• Allow periodic reporting of messages using the Artix
interceptor. These reports contain performance data about the
endpoint and the messages being exchanged.

Artix AmberPoint Agent in a service
network
Figure 22 shows the Artix AmberPoint Agent deployed in a service
network with multiple service consumers and service endpoints.

This loosely-coupled architecture has the following benefits:
• Because the Artix AmberPoint Agent is collocated and

embedded in the service endpoint, there are no additional
network hops, so performance is maximized.

• Unlike with the AmberPoint Proxy Agent, there is no risk of a
single point of failure, so reliability and scalability are also
improved.

• An Artix AmberPoint Agent can be embedded into an Artix
router.This enables it to dynamically discover and monitor the
Artix service endpoints and consumers that the router creates
and manages.

• Because the client is aware of the back-end service endpoint,
the use of callbacks is supported.

Figure 22: Artix AmberPoint Agent Service Network

Artix Management Guide, C++ Runtime 73

Supported AmberPoint features
The Artix AmberPoint Agent enables the use of the following
AmberPoint features:
• Dynamic discovery of Artix clients and services using SOAP

over HTTP.
• Monitoring of Artix client and service invocations, and

reporting them back to AmberPoint.
• Mapping Qualities of Service (QoS) to customer Service Level

Agreements (SLAs).
• Monitoring of Artix invocation flow dependencies, which

enables AmberPoint to draw Web service dependency
diagrams.

• Centralized logging and performance statistics.

Further information
For detailed information on using AmberPoint features, see the
AmberPoint product documentation.

 74 Artix Management Guide, C++ Runtime

 Artix Management Guide, C++ Runtime 75

Configuring the Artix
AmberPoint Agent
This chapter explains how to set up integration with the Artix AmberPoint
Agent, and shows examples from the Artix AmberPoint integration demos.

Installing AmberPoint
The Orbix C++ runtime supports integration with version 5.1 of
the AmberPoint SOA management system. This section explains
how to install AmberPoint to enable integration with the Artix
AmberPoint Agent.

Installation steps
When installing the AmberPoint runtime, perform the following
steps:
1. In the AmberPoint installation wizard, choose a suitable HTTP

port number for the J2EE application server in which the
AmberPoint server will be deployed (for example, 9090).

2. AmberPoint comes bundled with Tomcat application server, so
for the demo purposes, choose to install Tomcat.

3. Select Deploy AmberPoint into the container.
4. Select Install a Java VM specifically for this application.
5. Select Deploy a new sphere with the SOA Management

System. This deploys the persistence runtime into the J2EE
application server, and configures it to use the embedded
Tomcat HSQL relational database management system.

6. You can also install AmberPoint sample Web services, but
these are not required.

7. Provide a user name and password with administrative
privileges (for example, admin/admin).

8. When installation is complete, copy the AmberPoint Nano
Agent Server into the deployment directory of the application
server. For example, for Tomcat, use the following command:

If you are not using Tomcat, use the vendor’s visual tools to
deploy apsocketconverter.war into the application server.

Configuring AmberPoint for Artix Integration
This section explains how to configure the AmberPoint SOA
management system for integration with Artix.

copy
AP_InstallDir/add_ons/socket_converter/apsocketconverter.war
AP_InstallDir/server/webapps

 76 Artix Management Guide, C++ Runtime

Starting the AmberPoint Server
When you have completed the AmberPoint installation steps, run
the AmberPoint server using Window's Start menu.
Alternatively, execute the following script:

You can see how your application server starts up and deploys the
AmberPoint server in the log files in the AP_InstallDir/server/logs
directory.

Configuring the AmberPoint Nano Agent
Sever
When the application server has started and deployed all the
AmberPoint .war files, perform the following steps:
1. Open a web browser and specify the following URL:

http://hostname:port/apasc/
2. Login using the admin user name and password that you

provided when installing AmberPoint.
3. When logged in, click Network|Infrastructure in the tabbed

menu. This displays a list of registered Deployments with
this application server's container.

4. Ensure that one of the deployed items is named
apsocketconverter and has a green button beside it This
indicates that the AmberPoint Nano Agent Server has been
successfully deployed and is ready to be configured.

5. In the left pane, click the Register button.
From the drop-down menu, select Message Source|Simple
Message Source: This displays the Register Message
Source form.

6. In the Register Message Source form, enter the following:

The source Name can be any string value. The Location
specifies the location of the log file for incoming messages.
The default Criteria for this policy applies this message
source to all active services that this AmberPoint system is
aware of.

7. Without modifying the Criteria for this policy, click Preview
Services to see which services this message Source applies
to. If you have no services currently registered, only one
service named MonitorEnabler is displayed.

Windows AP_InstallDir\server\bin\startup.bat

UNIX AP_InstallDir/server/bin/startup.sh

Name Artix Message Source

Type of Message
Source

File

Start At At present

Location AmberPointInstallDir\server\amberpoint\
apsocketconverter\logdir

Artix Management Guide, C++ Runtime 77

8. Click the Go button at the top left of the screen, and wait until
the Policy Status is Applied.

9. Return to a command window to build an Artix AmberPoint
demo (see “Configuring Artix C++ Services for AmberPoint
Integration” on page 77).

Configuring the AmberPoint port
If the default AmberPoint Nano Agent Server port (33333) does not
suit your setup, change the following attributes to the new port
number:
• messageLogWriter logLocation in your Artix

apobserver.configuration file
• messageLogReader logLocation in:

Whenever you update values in the Artix apobserver.configuration
file, you must restart the services already being monitored by the
Artix AmberPoint Agent for the changes to take effect.
If you update the Nano Agent Server port, you may need to
restart the application server for changes to take effect (except for
those servers that support hot deployment).
For example, these settings appear as follows in the Artix
apobserver.configuration file:

Configuring Artix C++ Services for AmberPoint
Integration

This section explains how to configure Artix C++ services to
support the Artix AmberPoint Agent. It describes Artix AmberPoint
demo configuration settings in detail. However, if your AmberPoint
installation and demo run on the same host, you do not need to
make any configuration changes to run the demo. If you wish to
run the demo now, skip this section, and see the readme.txt in the
following directory:

AP_InstallDir/server/webapps/apsocketconverter.war@/WEB-INF/
application/resources/readerConfig.xml

...
<ap:messageLogWriter

logWriterImplClass="com.amberpoint.msglog.socketimpl.SocketLogWriter"
 logName="{hostname}" <!-- default = localhost -->
 logLocation="{port}" <!-- default = 33333 -->
 syncEverySoManyEntries="50">
</ap:messageLogWriter>
 ...
<ap:hostMapper algorithm="asSent" urlProperty="ap:requestURL"/>
 ...
<ap:hostMapper algorithm="asSent" urlProperty="ap:wsdlUrl"/>
 ...

ArtixInstallDir/samples/integration/amberpoint

 78 Artix Management Guide, C++ Runtime

This amberpoint demo is based on the
.../samples/routing/content_based demo, with some modifications
to enable Artix and AmberPoint integration.

Configuring the AmberPoint Nano Agent
plug-in
You must enable the AmberPoint Nano Agent plug-in for the Artix
runtime. For example, the configuration scope in which the demo
servers run includes an Artix plug-in named ap_nano_agent. This is
loaded into the Artix runtime, and enables discovery and
monitoring by AmberPoint of services and consumers running
inside Artix processes.

In this demo, there are three server instances, each exposing the
same interface but running under different service and endpoint
name pairs. These are as follows:

Configuring the Artix router
To enable router support, you must also add the AmberPoint Nano
Agent plug-in to the router’s configuration. For example, the demo
configuration scope in which the Artix router runs includes
additional configuration for the Artix routing plug-in. Its
orb_plugins list includes the ap_nano_agent plug-in, which enables
the router’s endpoints and consumers to be discovered and
monitored by AmberPoint.

demos {
 content_based {
 orb_plugins = ["xmlfile_log_stream", "soap", "at_http",

"ap_nano_agent"];
 ...
 }
 ...
}

{TargetService1, TargetPort1}
{TargetService2, TargetPort2}
{TargetService3, TargetPort3}

demos {
 content_based {
 ...
 router {
 orb_plugins = ["xmlfile_log_stream", "ap_nano_agent",

"routing"];
 plugins:routing:use_pass_through="false";
 ...
 }
 }
}

Artix Management Guide, C++ Runtime 79

The ap_nano_agent plug-in must precede the routing plug-in. This is
because the Artix AmberPoint Agent must register itself in the
interceptor chain before the routing plug-in instantiates and
activates the services that it manages.
Setting plugins:routing:use_pass_through to false disables passing
data through the router without parsing. The ap_nano_agent plug-in
requires that the underlying payload is parsed in the Artix type
format.

Configuring the consumer hostname
plugins:ap_nano_agent:hostname_address:publish_hostname specifies
the form in which the Artix AmberPoint Agent resolves the host
address that an Artix service consumer (proxy) runs on. This
variable takes the following values:

plugins:ap_nano_agent:hostname_address:local_hostname is an
arbitrary string used as the client hostname instead of trying to
resolve it using the underlying IP runtime. This is undefined by
default.
To report the correct service consumer address invoking to an
Artix service monitored by this agent, specify the following setting
in the client and server configuration scope:

Configuring the service hostname
The server-side host name resolution is driven by the specific
transport. Because the HTTP transport is the only one currently
supported the following variables must be configured:
• policies:soap:server_address_mode_policy:publish_hostname
• policies:at_http:server_address_mode_policy:publish_hostname

Possible values are the same as those for
plugins:ap_nano_agent:hostname_address:publish_hostname.
These variables specify the format that a service endpoint address
is published to service consumers. AmberPoint discovers Artix
services by consuming a published WSDL contract. It correlates
the address in the WSDL with the inflow of log messages that
describe operations invoked on an endpoint. This means that you
must synchronize these configuration values with the
configuration values of the AmberPoint Client Nano Agent.

unqualified The host name in short form, without the
domain name (hostname).

ipaddress The host name in the form of an IP address
(for example, 123.4.56.789). This is the
default.

canonical The host name takes a fully qualified form
(hostname.domainname).

true same as unqualified
false same as ipaddress

plugins:bus:register_client_context="true";

 80 Artix Management Guide, C++ Runtime

Configuring the AmberPoint hostname
The default Artix hostname resolution setting is ipaddress, which is
the same as that for the configuration of AmberPoint Client Nano
Agent. However, if you change the Artix hostname resolution, you
must also update the AmberPoint Client Nano Agent configuration
file. For example:

To update the hostname resolutions setting, open the file in a text
editor and find the two occurrences of the hostMapper algorithm
attribute.
You must update the value of hostMapper algorithm attribute if you
change the value of
policies:soap:server_address_mode_policy:publish_hostname and
policies:at_http:server_address_mode_policy:publish_hostname
configuration variables.
The equivalent AmberPoint values are as follows:

To avoid updating the AmberPoint Nano Agent Client configuration
each time you change the Artix configuration, simply use
hostMapper algorithm="asSent".
If you are running your Artix services and the AmberPoint Nano
Agent Server on different machines, you must also update the
messageLogWriter logName attribute to point the host name or IP
address where the Nano Agent Server is running.

Configuring the AmberPoint port
If the default AmberPoint Nano Agent Server port (33333) does not
suit your setup, you can update your AmberPoint configuration file
to the new port number. For more details, see “Configuring the
AmberPoint port” on page 77.

Viewing Artix services in AmberPoint
When you run the demo, and start the Artix router and servers,
and make client invocations to the router, these calls are in turn
forwarded on to the servers.

AmberPoint dependency diagrams
While the demo is running, in the AmberPoint GUI, select the
Network|Services|Dependencies screen. AmberPoint tracks
the call flow, as it happens, between Artix services with the Artix

ArtixInstallDir/etc/amberpoint/5.1/nanoagent/conf/apobserver.configuration

Artix publish_hostname
variable

AmberPoint hostMapper
algorithm

ipaddress useIpAddr or asSent

canonical useFQN or asSent

unqualified asSent

Artix Management Guide, C++ Runtime 81

AmberPoint Agent in their runtime. The dependency flow diagram
is a directed graph, and can be of any complexity. For example, a
client makes three calls to the source service implemented by the
router. Each call is routed to the intended destination service,
defined by the routing rules. Each TargetService receives a single
call out of the three made. And each dependency tracking is
shown in relation to the service selected in the Selector list,
which is referred as a primary service.You can manually create
dependencies between services using the AmberPoint tools if so
desired. See the AmberPoint user documentation for details on
what you can do with dependency diagrams (for example, using
the Network|Services|Dependencies screen).

AmberPoint performance diagrams
You can use the AmberPoint Performance|Activity screen to
view performance statistics. See the AmberPoint user
documentation for details on what you can do with performance
statistics.

AmberPoint logging policies
You can collect call logs by adding an AmberPoint logging policy
using the Exceptions|Services screen. To add an AmberPoint
logging policy, click the Add Logging Policy button at the top of
the screen. This displays the Add Policy form,. Use this form to
specify a meaningful name, and tune its parameters to your
needs. If you wish to log messages for all available services, edit
the policy rules at the bottom of this form.
When the log policy is created, you must wait until it is applied,
like when you created a Message Source (see “Configuring the
AmberPoint Nano Agent Sever” on page 76). After the log policy
has been applied and turns green, send some more traffic using
the demo. You can then watch the Message Log using the
Exceptions|Services|Message Log tab.

Further information
There are many other AmberPoint features that you can use with
Artix. For example, when AmberPoint has captured the Artix
traffic, you can use its runtime to define customers and their
SLAs, and map these SLAs to the services in the network. You can
also create reactions (alerts) if an SLA violation has occurred and
so on. See the AmberPoint user documentation for more details.
Artix AmberPoint demo
For more details on the Artix AmberPoint integration demo, see:

Artix C++ configuration
• Configuring and Deploying Artix Solutions, C++

Runtime
• Artix Configuration Reference, C++ Runtime

ArtixInstallDir\samples\integration\amberpoint\README.txt

 82 Artix Management Guide, C++ Runtime

Part V
BMC Patrol

In this part
This part contains the following chapters:

Integrating with BMC Patrol™ page 85

Configuring Artix for BMC Patrol page 91

Using the Artix BMC Patrol Integration page 93

Extending to a BMC Production Environment page 101

 84 Artix Management Guide, C++ Runtime

 Artix Management Guide, C++ Runtime 85

Integrating with BMC
Patrol™
This chapter introduces Orbix’s integration with the BMC Patrol™
Enterprise Management System. It describes the requirements and main
components of this integration.

Introduction
Orbix supports integration with Enterprise Management Systems
such as BMC Patrol. This section includes the following topics:
• “The application life cycle”
• “Enterprise Management Systems”
• “Artix BMC Patrol features”
• “How it works”

The application life cycle
Most enterprise applications go through a rigorous development
and testing process before they are put into production. When
applications are in production, developers rarely expect to manage
those applications. They usually move on to new projects, while
the day-to-day running of the applications is managed by a
production team. In some cases, the applications are deployed in
a data center that is owned by a third party, and the team that
monitors the applications belongs to a different organization.

Enterprise Management Systems
Different organizations have different approaches to managing
their production environment, but most will have at least one
Enterprise Management System (EMS).
For example, the main Enterprise Management Systems include
BMC Patrol™ and IBM Tivoli™. These systems are popular because
they give a top-to-bottom view of every part of the IT
infrastructure.
This means that if an application fails because the /tmp directory
fills up on a particular host, for example, the disk space is
reported as the fundamental reason for the failure. The various
application errors that arise are interpreted as symptoms of the
underlying problem with disk space. This is much better than
being swamped by an event storm of higher-level failures that all
originate from the same underlying problem. This is the
fundamental strength of integrated management.

 86 Artix Management Guide, C++ Runtime

Artix BMC Patrol features
The Orbix BMC Patrol integration performs the following key
enterprise management tasks:
• Posting an event when a server crashes. This enables

programmed recovery actions to be taken.
• Tracking key server metrics (for example, server response

times). Alarms are triggered when these go out of bounds.
The server metrics tracked by the Artix BMC Patrol integration
include the number of invocations received, and the average,
maximum and minimum response times. The Artix BMC Patrol
integration also enables you to track these metrics for individual
operations. Events can be generated when any of these
parameters go out of bounds. You can also perform a number of
actions on servers including stopping, starting and restarting.

How it works
In the BMC Patrol integration, key server metrics are logged by
the Artix performance logging plug-ins. Log file interpreting
utilities are then used to analyze the logged data.
Artix also provides Knowledge Modules, which conform to
standard BMC Knowledge Module design and operation. These
modules tell the BMC Patrol console how to interpret the logging
data received from the Artix services. Figure 23 on page 87 shows
a simplified view of how the Knowledge Modules work. In this
example, an alarm is triggered in the BMC Patrol console when a
locator becomes unresponsive, and this results in an action to
restart the locator.

Artix Management Guide, C++ Runtime 87

Figure 23: Overview of the Artix BMC Patrol Integration

 88 Artix Management Guide, C++ Runtime

The performance logging plug-ins collect data relating to server
response times and log it periodically in the performance logs. The
Knowledge Module executes parameter collection periodically on
each host, using the log file interpreter running on each host to
collect and summarize the logged data.
The Knowledge Module compares the response times and other
values against the defined alarm ranges, and issues an alarm
event if a threshold has been breached. These events can be
analyzed and appropriate action taken automatically (for example,
restart a server). Alternatively, the user can intervene manually
and execute a BMC Patrol menu command to stop, start or restart
the offending server.

The Artix BMC Patrol Integration
This section describes the requirements and main components of
the Artix BMC Patrol integration. It includes the following topics:
• “BMC Patrol requirements”
• “Main components”
• “Example metrics”
• “Further information”

BMC Patrol requirements
To use the Artix BMC Patrol integration, you must have BMC Patrol
3.4 or higher. The BMC Patrol integration is compatible with the
BMC Patrol 7 Central Console.

Main components
The BMC Patrol integration consists of the following Knowledge
Modules (KM):
• IONA_SERVERPROVIDER
• IONA_OPERATIONPROVIDER

IONA_SERVERPROVIDER.km tracks key metrics associated with your
Artix servers on a particular host. It also enables servers to be
started, stopped, or restarted, if suitably configured.
IONA_OPERATIONPROVIDER.km tracks key metrics associated with
individual operations on each server.

Artix Management Guide, C++ Runtime 89

Example metrics
Figure 24 shows an example of the IONA_SERVERPROVIDER
Knowledge Module displayed in BMC Patrol. The window in focus
shows the Artix performance metrics that are available for an
operation named query_reservation, running on a machine named
stimulator.

The server performance metrics include the following:
• IONAAvgResponseTime
• IONAMaxResponseTime
• IONAMinResponseTime
• IONANumInvocations
• IONAOpsPerHour

For more details, see “Using the Artix Knowledge Module” on
page 94.

Figure 24: Artix Server Running in BMC Patrol

 90 Artix Management Guide, C++ Runtime

Figure 25 shows alarms for server metrics, for example,
IONAAvgResponseTime. This measures the average response time of
all operations on this server during the last collection cycle.

Further information
For a detailed description of Knowledge Modules, see your BMC
Patrol documentation.

Figure 25: BMC Patrol Displaying Alarms

 Artix Management Guide, C++ Runtime 91

Configuring Artix for
BMC Patrol
This chapter explains the steps that you need to perform in Artix to
configure integration with BMC Patrol.

Setting up your Artix Environment
The best way to learn how to use the BMC Patrol integration is to
start with a host that has both BMC Patrol and Artix installed. This
section explains how to make your Artix servers visible to BMC
Patrol. It includes the following topics:
• “EMS configuration files”
• “Creating a servers.conf file”
• “Creating a server_commands.txt file”
• “Further information”

EMS configuration files
You need to create two text files that are used to configure the
BMC Patrol integration:
• servers.conf
• server_commands.txt

These files are used to track your Artix applications in BMC Patrol.
You will find starting point files in the IONA_km.zip located in the
following directory of your Artix installation:

When you unzip, the starting point files are located in the
lib//conf directory.

Creating a servers.conf file
The servers.conf file is used to instruct BMC Patrol to track your
Artix servers. It contains the locations of performance log files for
specified applications. Each entry must take the following format:

This example entry instructs BMC Patrol to track the myapplication
server, and reads performance data from the following log file:

ArtixInstallDir\management\BMC\IONA_km.zip

my_application, 1,
/path/to/myproject/log/myapplication_perf.log

/path/to/myproject/log/myapplication_perf.log

 92 Artix Management Guide, C++ Runtime

You must add entries for the performance log file of each Artix
server on this host that you wish BMC Patrol to track. BMC Patrol
uses the servers.conf file to locate these log files, and then scans
the logs for information about the server's key performance
indicators.
The following example is taken from the Artix ESB for Java
product sample application for BMC Patrol integration:

Creating a server_commands.txt file
The server_commands.txt file is used to instruct BMC Patrol how to
start, stop, and restart your Artix servers. It contains the locations
of the relevant scripts for specified servers. Each entry must take
the following format:

In this example, each entry specifies a script that can be used to
stop, start, or restart the myapplication server. When BMC Patrol
receives an instruction to start myapplication, it looks up the
server_commands.txt file, and executes the script specified in the
appropriate entry.
You must add entries that specify the relevant scripts for each
server on this host that you wish BMC Patrol to track.

Copy the EMS files to your BMC
installation
When you have added content to your servers.conf and
server_commands.txt files, copy these files into your BMC
installation, for example:

This enables tracking of Artix server applications in BMC Patrol.

Further information
For details of how to configure your Artix servers to use
performance logging, see “Configuring an Artix Production
Environment” on page 101.
For a complete explanation of configuring performance logging,
see Configuring and Deploying Artix Solutions, C++
Runtime.

management-bmc-patrol-demo-server,1,%ARTIX_HOME%\java\samples\
advanced\management\bmc-patrol\BMCCounterServer.log

management-bmc-patrol-demo-client,1,%ARTIX_HOME%\java\samples\
advanced\management\bmc-patrol\BMCCounterClient.log

myapplication,start=/path/to/myproject/bin/start_myapplication.
sh

myapplication,stop=/path/to/myproject/bin/stop_myapplication.sh
myapplication,restart=/path/to/myproject/bin/restart_myapplicat

ion.sh

$PATROL_HOME/lib//conf

 Artix Management Guide, C++ Runtime 93

Using the Artix BMC
Patrol Integration
This chapter explains the steps the that you must perform in your BMC
Patrol environment to monitor Artix applications. It also describes the
Artix Knowledge Module and how to use it to monitor servers and
operations. It assumes that you already have a good working knowledge
of BMC Patrol.

Setting up your BMC Patrol Environment
To enable monitoring of the Artix servers on your host, you must
first perform the following steps in your BMC Patrol environment:
1. “Install the Knowledge Module”
2. “Set up your Java environment”
3. “Set up your EMS configuration files”
4. “View your servers in the BMC Console”

Install the Knowledge Module
The Artix BMC Patrol Knowledge Module is shipped in two formats:

To install the Artix Knowledge Module:

Windows
Use WinZip to unzip IONA_km.zip. Extract this file into your
%PATROL_HOME% directory.
If this is successful, the following directory is created:

UNIX
Copy the IONA_km.tgz file into $PATROL_HOME, and enter the following
commands:

Windows ArtixInstallDir\management\BMC\IONA_km.zip

UNIX ArtixInstallDir/management/BMC/IONA_km.tgz

%PATROL_HOME%\lib\iona

$ cd $PATROL_HOME
$ gunzip IONA_km.tgz
$ tar xvf IONA_km.tar

 94 Artix Management Guide, C++ Runtime

Set up your Java environment
The Artix Knowledge Module requires a Java Runtime Environment
(JRE). If your BMC Patrol installation already has a
$PATROL_HOME/lib/jre directory, it should work straightaway. If
not, you must setup a JRE (version 1.3.1 or later) on your
machine as follows:
1. Copy the jre directory from your Java installation into

$PATROL_HOME/lib. You should now have a directory structure
that includes $PATROL_HOME/lib/jre.

2. Confirm that you can run $PATROL_HOME/lib/jre/bin/java.

Set up your EMS configuration files
In Chapter 1, you generated the following EMS configuration files:
• servers.conf
• server_commands.txt

Copy these generated files to $PATROL_HOME/lib/iona/conf.

View your servers in the BMC Console
To view your servers in the BMC Console, and check that your
setup is correct:
1. Start your BMC Console and connect to the BMC Patrol

Agent on the host where you have installed the IONA
Knowledge Module.

2. In the Load KMs dialog, open the $PATROL_HOME/lib/knowledge
directory, and select the IONA_SERVER.kml file. This will load the
IONA_SERVERPROVIDER.km and IONA_OPERATIONPROVIDER.km
Knowledge Modules.

3. In your Main Map, the list of servers that were configured in
the servers.conf file should be displayed. If they are not
currently running, they are shown as offline.

You are now ready to manage these servers using BMC Patrol.

Using the Artix Knowledge Module
This section describes the Artix Knowledge Module and explains
how to use it to monitor servers and operations. It includes the
following topics:
• “Server Provider parameters”
• “Monitoring servers”
• “Monitoring operations”
• “Operation parameters”
• “Starting, stopping and restarting servers”
• “Troubleshooting”

Artix Management Guide, C++ Runtime 95

Server Provider parameters
The IONA_SERVERPROVIDER class represents instances of Artix server
or client applications. The parameters exposed in the Knowledge
Module are shown in Table 9.

Monitoring servers
You can use the parameters shown in Table 9 to monitor the load
and response times of your Artix servers.
The Default Alarm ranges can be overridden on any particular
instance, or on all instances, using the BMC Patrol 7 Central
console. You can do this as follows:
1. In the PATROL Central console’s Main Map, right click on

the selected parameter and choose the Properties menu
item.

2. In the Properties pane, select the Customization tab.
3. In the Properties drop-down list, select ranges.

Table 9: Artix Server Provider Parameters

Parameter Name Default Warning Default Alarm Description

IONAAvgResponseTime 1000–5000 > 5000 The average response time
(in milliseconds) of all
operations on this server
during the last collection
cycle.

IONAMaxResponseTime 1000–5000 > 5000 The slowest operation
response time (in
milliseconds) during the last
collection cycle.

IONAMinResponseTime 1000–5000 > 5000 The quickest operation
response time (in
milliseconds) during the last
collection cycle.

IONANumInvocations 10000–100000 > 100000 The number of invocations
received during the last
collection period.

IONAOpsPerHour 1000000–
10000000

> 10000000 The throughput (in
Operations Per Hour) based
on the rate calculated from
the last collection cycle.

 96 Artix Management Guide, C++ Runtime

4. You can customize the alarm ranges for this parameter on this
instance. If you want to apply the customization to all
instances, select the Override All Instances checkbox.

Monitoring operations
In the same way that you can monitor the overall performance of
your servers and clients, you can also monitor the performance of
individual operations. In Artix, an operation relates to a WSDL
operation defined on a port.
In many cases, the most important metrics relate to the execution
of particular operations. For example, it could be that the
make_reservation(), query_reservation() calls are the operations
that you are particularly interested in measuring. This means
updating your servers.conf file as follows:

In this example, the addition of the bold text enables the
make_reservation and query_reservation operations to be tracked
by BMC Patrol.

Operation parameters
Table 10 shows the Artix parameters that are tracked for each
operation instance:

Note: The IONANumInvocations parameter is a raw,
non-normalized metric and can be subject to sampling
errors. To minimize this, keep the performance logging
period relatively short, compared to the poll time for the
parameter collector.

mydomain_myserver,1,/var/mydomain/logs/myserver_perf.log,[make_reservation,query_reser
vation]

Table 10: Artix Operation Provider Parameters

Parameter Name Default Warning Default
Alarm

Description

IONAAvgResponseTime 1000–5000 > 5000 The average response
time (in milliseconds) for
this operation on this
server during the last
collection cycle.

IONAMaxResponseTime 1000–5000 > 5000 The slowest invocation of
this operation (in
milliseconds) during the
last collection cycle.

IONAMinResponseTime 1000–5000 > 5000 The quickest invocation
(in milliseconds) during
the last collection cycle.

Artix Management Guide, C++ Runtime 97

Figure 26 shows BMC Patrol graphing the value of the
IONAAvgResponseTime parameter on a query_reservation operation
call.

IONANumInvocations 10000–100000 > 100000 The number of
invocations of this
operation received during
the last collection period.

IONAOpsPerHour 1000000–
100000000

> 10000000 The number of operations
invoked in a one hour
period based on the rate
calculated from the last
collection cycle.

Table 10: Artix Operation Provider Parameters

Parameter Name Default Warning Default
Alarm

Description

Figure 26: Graphing for IONAAvgResponseTime

 98 Artix Management Guide, C++ Runtime

Figure 27 shows warnings and alarms issued for the
IONAAvgResponseTime parameter.

Starting, stopping and restarting servers
The server_commands.txt file contains the details about the
commands for services that you are deploying on your host (see
“Configuring Artix for BMC Patrol”). To execute commands in this
file, perform the following steps:
1. Right click on an instance in the BMC Patrol Console Main

Map.
2. Select Knowledge Module Commands|Artix|Commands.
3. Select one of the following commands:

Troubleshooting
If you have difficulty getting the Artix BMC Patrol integration
working, you can use the menu commands to cause debug output
to be sent to the system output window.
To view the system output window for a particular host, right click
on the icon for your selected host in the BMC Patrol Main Map,
and choose System Output Window.

Figure 27: Alarms for IONAAvgResponseTime

Start Starts a server.
Stop Stops a server.
Restart Executes a stop followed by a start.

Artix Management Guide, C++ Runtime 99

You can change the level of diagnostics for a particular instance by
right clicking on that instance and choosing:
Knowledge Module Commands|Artix|Log Levels
You can choose from the following levels:
• Set to Error
• Set to Info
• Set to Debug
Set to Debug provides the highest level of feedback and Set to
Error provides the lowest.

 100 Artix Management Guide, C++ Runtime

 Artix Management Guide, C++ Runtime 101

Extending to a BMC
Production
Environment
This section describes how to extend an Artix BMC Patrol integration
from a test environment to a production environment.

Configuring an Artix Production Environment
This section describes the steps that you need to take when
extending the BMC Patrol integration from an Artix test
environment to a production environment. It includes the
following sections:
• “Monitoring your Artix applications”
• “Monitoring Artix applications on multiple hosts”
• “Monitoring multiple Artix applications on the same host”

Monitoring your Artix applications
You must add configuration settings to your Artix server
configuration files.
For C++ applications, add the following example configuration
settings to your Artix application’s .cfg file:

// my_app.cfg

my_application {

Ensure that it_response_time_collector is in your orb_plugins
list.

orb_plugins = [...,"it_response_time_collector"];

Enable performance logging.
use_performance_logging = true;

Collector period (in seconds). How often performance information
is logged.

plugins:it_response_time_collector:period = "60";

Set the name of the file which holds the performance log
plugins:it_response_time_collector:filename =

"/opt/myapplication/log/myapplication_perf.log"

};

Note: The specified
plugins:it_response_time_collector:period should divide
evenly into your cycle time (for example, a period of 20 and
a cycle time of 60).

 102 Artix Management Guide, C++ Runtime

Monitoring Artix applications on multiple
hosts
To monitor your Artix applications on multiple hosts, you must
distribute the Artix KM to your hosts. The best approach to
distributing the Artix Knowledge Module to a large number of
machines is to use the Knowledge Module Distribution Service
(KMDS).

Using the KMDS to distribute the KM
To create a deployment set for machines that run Patrol Agents
(but not the Patrol Console), perform the following steps:
1. Choose a machine with the Patrol Developer Console installed.

Follow the procedure for installing the Artix KM on this
machine (see “Setting up your BMC Patrol Environment” on
page 93).

2. Start the Patrol Developer Console and choose Edit Package
from the list of menu Items.

3. Open the following file:

You will see a list of all the files that need to be installed on
machines that run the Patrol Agent.

4. Now select Check In Package from the File menu to check
the package into the KMDS.

5. You can now use the KMDS Manager to create a deployment
set based on this KM package, and distribute it to all the
machines that Artix installed and that also have a Patrol
Agent.

6. You repeat this process for the
IONA_Server_KM_Console_Resources.pkg file.

This creates a deployment set for all machines that have both the
Patrol Agent and Patrol Console installed, and which will be used
to monitor Artix applications.
For further details about using the KMDS, see your BMC Patrol
documentation.

Monitoring multiple Artix applications on
the same host
Sometimes you may need to deploy multiple Artix applications on
the same host. The solution is simply to merge the servers.conf
and server_commands.txt files from each of the applications into
single servers.conf and server_commands.txt files.
For example, if the servers.conf file from the UnderwriterCalc
application looks as follows:

$PATROL_HOME/archives/IONA_Server_KM_Agent_Resources.pkg
file

UnderwriterCalc,1,/opt/myAppUnderwritierCalc/log/UnderwriterCalc_
perf.log

Artix Management Guide, C++ Runtime 103

And the servers.conf file for the ManagePolicy application looks as
follows:

The merged servers.conf file will then include the following two
lines:

You can now copy this merged file to your $PATROL_HOME/lib//conf
directory and BMC Patrol will monitor both applications.
Exactly the same procedure applies to the server_commands.txt file.

Further information
For more detailed information on the BMC Patrol consoles, see
your BMC Patrol documentation.

ManagePolicy, 1, /opt/ManagePolicyApp/log/ManagePolicy_perf.log

UnderwriterCalc,1,/opt/myAppUnderwritierCalc/log/UnderwriterCalc_
perf.logManagePolicy, 1,
/opt/ManagePolicyApp/log/ManagePolicy_perf.log

 104 Artix Management Guide, C++ Runtime

Artix Management Guide, C++ Runtime 105

Index

A
acksto uri 44
Actional agent 55, 59
Actional Agent Interceptor SDK 55
Actional CSO 59
Actional for Continuous Service
Optimization 59

Actional for SOA Operations 59
Actional Point of Operational Visibility 59
Actional server 55
Actional server, configuration 60
Actional Server Administration Console 8,

55, 56, 63
Add Logging Policy 81
Add Policy 81
address 29
alarms 86, 88, 98
alerts 53, 55
AmberPoint Nano Agent API 71
AmberPoint Nano Agent Client 80
AmberPoint Nano Agent Server 75, 80
AmberPoint Proxy Agent 67
AmberPoint server 76
Apache Derby 55, 60
Apache Tomcat 55
ap_nano_agent 78, 79
apobserver.configuration 77, 80
application server 75
apsocketconverter 76
apsocketconverter.war 75
arguments 18
Artix AmberPoint agent 69, 70
Artix interceptor 71
Artix interceptors 55
Artix Java handlers 55
Artix router 72, 78
Artix service endpoint 55, 71
asSent 80
Attributes tab 46
averageResponseTime 23

B
binding:artix:client_message_interceptor
_list 62

binding:artix:client_request_interceptor_l
ist 62

binding:artix:server_message_intercepto
r_list 62

binding:artix:server_request_interceptor
_list 62

BMC Console 94
BMC Patrol Agent 94
bus

attributes 18
ObjectName 17

bus_management 33

C
callbacks 72
canonical 79
Check In Package 102
collector 96
commands 98
CompositeData 29
connector.url 37
consumer 56, 71
Criteria for this policy 76
Customization tab 95
custom JMX MBeans 15
cycle time 101

D
database 55, 60
Dependencies 80, 81
dependency diagrams 73
dependency mapping 53
deployment modes 70
Deployments 76
diagnostics 99
documentation

.pdf format viii
updates on the web viii

dynamic discovery 71, 73

E
Edit Package 102
EMS 85
endpoint 55, 71
Enterprise Management System 85
event_log:filters 5

F
File menu 102

G
getLoggingLevel 19
Go 77

H
hostMapper algorithm 80
HSQL 75
HTTP adaptor 41
HTTP port 75

 106 Artix Management Guide, C++ Runtime

I
identifier 18
Infrastructure 76
instrumented node 53
interceptor 71
interceptors 29, 39
IONAAvgResponseTime 89, 95, 96, 97, 98
IONA_km.tgz 93
IONA_km.zip 91, 93
IONAMaxResponseTime 89, 95, 96
IONAMinResponseTime 89, 95, 96
IONANumInvocations 89, 95, 96, 97
IONA_OPERATIONPROVIDER 88, 94
IONAOpsPerHour 89, 95, 97
IONA_SERVER.kml 94
IONA_Server_KM_Agent_Resources.pkg

102
IONA_Server_KM_Console_Resources.pk
g 102

IONA_SERVERPROVIDER 88, 94, 95
ipaddress 79
it_response_time_collector 101

J
J2SE 5.0 Monitoring and Management
Console 46

Java, requirements 94
Java Management Extensions 13, 33
JConsole 37, 45

Connect to Agent 46
JMX 13, 33
JMX HTTP adaptor 41
JMX Remote 16
JMXServiceURL 33

K
KMDS 102
Knowledge Module Distribution
Service 102

Knowledge Modules 90

L
Load KMs dialog 94
local_log_stream 5
locator

managed attributes 26
log file interpreter 88
logging

levels 19
subsystems 19

logging period 96
logging policies 81
Log Levels 99

M
Main Map 94, 98
Managed Beans 5, 13
managed node 60
managed node, configuration 61
management consoles 37

MBeans 5, 13
MBeanServer 13, 43
MBeanServerConnection 15
MBeans tab 46
menu commands 88, 98
Message Log 81
messageLogReader logLocation 77
messageLogWriter logLocation 77
messages 44
MonitorEnabler 76
monitoring 73

N
Nano Agent API 71
Network Overview 61, 63

O
operation

parameters 96
WSDL 96

orb_plugins 62, 101
Override All Instances checkbox 96

P
parameter collector 96
parameters 95, 96
Path Explorer 64
Patrol Agents 102
PATROL Central 95
Patrol Developer Console 102
Performance 72
performance log files 91
performance logging

period 96
plugins 88

persistence endpoint 43
plugins:ap_nano_agent:hostname_addre
ss:local_hostname 79

plugins:ap_nano_agent:hostname_addre
ss:publish_hostname 79

plugins:artix:db
home 45

plugins:bus:register_client_context 79
plugins:bus_management:connector:ena
bled 33, 45

plugins:bus_management:connector:port
45

plugins:bus_management:connector:regi
stry:required 34

plugins:bus_management:connector:url:f
ile 34, 45

plugins:bus_management:connector:url:
publish 34

plugins:bus_management:enabled 33, 45
plugins:bus_management:http_adaptor:e
nabled 41

plugins:bus_management:http_adaptor:p
ort 41

plugins:it_response_time_collector:filena
me 101

Artix Management Guide, C++ Runtime 107

plugins:it_response_time_collector:period
101

plugins:routing:use_pass_through 79
policies:at_http:server_address_mode_p
olicy:publish_hostname 79

policies:soap:server_address_mode_polic
y:publish_hostname 79

Policy Status 77
port 75

name 29
ObjectName 28

port, WSDL 96
port name 43
ports 23
Preview Services 76
Properties 95
Properties menu 95
provisioning 61
proxy agent 67

R
Register 76
registeredEndpoints 26, 27
registeredNodeErrors 26
registeredServices 26, 27
Register Message Source 76
relational database 75
remote access port 33
remote JMX clients 33
reporting 72
requestsOneway 23
requestsSinceLastCheck 23
requestsTotal 24
response time 53
response times 9, 86
Restart 98
RMEndpointPersistentStore 43
RMI Connector 33
RMSequencePersistentStore 43
router 72, 78
runtime MBeans 15

S
scope 18
Selector 81
sequence_guid 48
sequence ID 48
sequence id 44
server_commands.txt 92, 102
server parameters 95
servers.conf 91, 102
service

attributes 23
managed components 22
methods 24
name 23
ObjectName 23

service consumer 56, 71
serviceCounters 23
service endpoint 55, 71
serviceGroups 27

Service Level Agreements 73, 81
serviceLookupErrors 26
serviceLookups 26
service name 43
services 18
serviceSessions 27
servicesMonitoring 18
session manager

managed attributes 27
setLoggingLevel 19
setLoggingLevelPropagate 19
Set to Debug 99
Set to Error 99
Set to Info 99
Simple Message Source 76
SLAs 73, 81
SOA management 67
SOAP/HTTP 68
SOAP over HTTP 59
SOAP over JMS 59
Start 98
state 23
Stop 98
System Output Window 98

T
TabularData 29
timeSinceLastCheck 24
Tomcat 55, 75
totalErrors 24
transport 29
troubleshooting 98

U
UNIX 93
unqualified 79
useFQN 80
useIpAddr 80
use_performance_logging 101

W
warnings 98
Windows 93
WSDL

operation 96
port 96

WS-RM persistence 43

X
xmlfile_log_stream 5

 108 Artix Management Guide, C++ Runtime

	Preface
	Contacting Micro Focus

	Introduction
	Artix C++ Runtime Management
	Introduction to Artix C++ Management
	Artix C++ Management Integrations

	Java Management Extensions
	Monitoring and Managing with JMX
	Introduction
	Managed Bus Components
	Managed Service Components
	Managed Port Components

	Configuring JMX in Artix C++
	Artix JMX Configuration

	Managing Artix Services with JMX Consoles
	Managing Artix Services with JConsole
	Managing Artix Services with the JMX HTTP adaptor

	Managing WS-RM Persistence with JMX
	WS-RM Persistence Management
	Viewing Messages in the WS-RM Persistence Database

	Aurea Actional®
	Artix–Actional Integration
	Artix–Actional Interaction Architecture

	Configuring Artix– Actional Integration
	Prerequisites
	Configuring Actional for Artix Integration
	Configuring Artix for Actional Integration
	Viewing Artix Endpoints in Actional

	AmberPoint
	Integrating with AmberPoint
	AmberPoint Proxy Agent
	Artix AmberPoint Agent

	Configuring the Artix AmberPoint Agent
	Installing AmberPoint
	Configuring AmberPoint for Artix Integration
	Configuring Artix C++ Services for AmberPoint Integration

	BMC Patrol
	Integrating with BMC Patrol™
	Introduction
	The Artix BMC Patrol Integration

	Configuring Artix for BMC Patrol
	Setting up your Artix Environment

	Using the Artix BMC Patrol Integration
	Setting up your BMC Patrol Environment
	Using the Artix Knowledge Module

	Extending to a BMC Production Environment
	Configuring an Artix Production Environment

	Index

