
Micro Focus Security
ArcSight Connectors

FlexConnector

Developer's Guide

Document Release Date: July 24, 2019

Software Release Date: July 24, 2019

Legal Notices

Warranty
The only warranties for products and services of Micro Focus and its affiliates and licensors (“Micro Focus”) are set forth in the express
warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. Micro Focus shall not be liable for technical or editorial errors or omissions contained herein. The information contained herein is
subject to change without notice.

Restricted Rights Legend
Confidential computer software. Except as specifically indicated otherwise, a valid license from Micro Focus is required for possession, use
or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical
Data for Commercial Items are licensed to the U.S. Government under vendor's standard commercial license.

Copyright Notice
©copyright 2018 Micro Focus

Trademark Notices
Adobe™ is a trademark of Adobe Systems Incorporated.

Microsoft® and Windows® are U.S. registered trademarks of Microsoft Corporation.

UNIX® is a registered trademark of The Open Group.

Support

Phone A list of phone numbers is available on the Technical Support
Page: https://softwaresupport.softwaregrp.com/support-contact-information

Support Web Site https://softwaresupport.softwaregrp.com/

ArcSight Product Documentation https://community.softwaregrp.com/t5/ArcSight-Product-Documentation/ct-
p/productdocs

Contact Information

Developer's Guide

Micro Focus Connectors (7.13.0) Page 2 of 242

https://softwaresupport.softwaregrp.com/support-contact-information
https://softwaresupport.softwaregrp.com/
https://community.softwaregrp.com/t5/ArcSight-Product-Documentation/ct-p/productdocs
https://community.softwaregrp.com/t5/ArcSight-Product-Documentation/ct-p/productdocs

Revision History

Date Description

04/16/2018 l Added configuration properties for JSON Multiple Folder Follower FlexConnector.

10/17/2017 l Updated "Set Global Parameters" section to include encryption parameters.

l Updated information for downloading SQL Server JDBC drivers.

l In Appendix E: ArcSight Built-in Event Field Mappings, the ArcSight Mappings fields have
been changed to camel case.

l Only non-blocking I/O is available for syslog connectors; therefore, the tcpmaxidletime,
tcpsetsocketlinger, and tcppeeerclosedchecktimeout parameters are no longer relevant
and have been removed from the Advanced Parameters appendix.

l As flexString fields are for the use of customers, examples have been updated to show
deviceCustomString or deviceCustomNumber fields rather than flexString fields.

05/15/2017 l Added a notice about ODBC connections not being supported after release 7.2.1 to the
"ArcSight FlexConnector ID-Based Database", "ArcSight FlexConnector Multiple
Database", and "ArcSight FlexConnector Scanner Database" sections.

02/15/2017 l Added JSON to the list of available extra processors. See "Extra Processors".

l Clarified the configuration file names and locations for vulnerabilities, open ports, and URIs
for scanner FlexConnectors for normal text reports. See "Getting Vulnerabilities for
Scanned Hosts", "Getting Open Ports on Scanned Hosts", and "Getting OS and
Applications (URIs) on Scanned Hosts".

11/30/2016 l Updated installation procedure for setting preferred IP address mode. Updated
FlexConnector information for IPv6-aware parsers.

08/30/2016 l Reorganized and expanded content for increased usability.

l Updated the "Configure the JDBC Driver and Windows Authentication” section.

l In "Advanced Parameters", updated information regarding preservestate parameters.

06/30/2016 l Added parameters to “Parameters Common to all SmartConnectors”.

Developer's Guide

Micro Focus Connectors (7.13.0) Page 3 of 242

Date Description

05/16/2016 l Updates and clarifications in the “Log Rotation Types” section. Added a section on the
unparsed events detection feature: “Unparsed Events Detection”.

l In "Advanced Parameters", clarified the descriptions of several advanced parameters.

03/31/2016 l Added advanced parameters to customize connector behavior as Chapter 5.

l In "Advanced Parameters", noted that for Syslog connectors, the persistenceinterval
parameter must be a positive integer to enable persistence.

l In "Advanced Parameters", noted that the rawlogfolder and usefilequeue parameters
cannot be applied to Syslog Pipe/File Connector.

l Added configuration properties for JSON Folder Follower FlexConnector/JSON Multiple
Folder Follower FlexConnector.

l Noted that only one question mark is supported for time-based database FlexConnector
queries.

l Removed agents[x].maxfilesize parameter.

02/15/2016 l End of life for FlexConnector SNMP (install the SmartConnector for SNMP Unified).

l Added the new feature to detect and log unparsed events.

l Updated the time format for __parseMutableTimeStamp function.

l Updated the wildcard parameter default value to use *.

Developer's Guide

Micro Focus Connectors (7.13.0) Page 4 of 242

Contents

Chapter 1: Overview 14

FlexConnector Development 14
IPv6-Aware Parsers 15

Event Fields 15
Operations 15
Developer Considerations 16

Folder Structure 16
Key Files 17

FlexConnector Management 17
ArcSight Connector Appliance 17
ArcSight Management Center 18

Chapter 2: Choose a FlexConnector Type 20

FlexConnector Types 20

Event Data Format Examples 22
Log File FlexConnector 22
ID-Based Database FlexConnector 22
JSON Folder Follower FlexConnector/JSON Multiple Folder Follower FlexConnector 23
Multiple Database FlexConnector 24
Regex FlexConnectors (Variable-Format File FlexConnectors) 24
Scanner FlexConnector 25
SNMP FlexConnector 25
Syslog FlexConnector 27
Time-Based Database FlexConnector 28
XML File FlexConnector 28

Chapter 3: Install and Configure the FlexConnector 31

FlexConnector Installation 31
Install Core Software 31
Set Global Parameters (Optional) 32
Select Connector and Add Parameter Information 33

ArcSight FlexConnector File 33
ArcSight FlexConnector ID-Based Database 34
ArcSight FlexConnector JSON Multiple Folder Follower 37

Developer's Guide

Micro Focus Connectors (7.13.0) Page 5 of 242

ArcSight FlexConnector Multiple Database 39
ArcSight FlexConnector Multiple Folder File 43
ArcSight FlexConnector Regex File 44
ArcSight FlexConnector Regex Folder File 45
ArcSight FlexConnector REST 46
ArcSight FlexConnector Scanner Database 47
ArcSight FlexConnector Scanner Text Reports 50
ArcSight FlexConnector Scanner XML Reports 51
ArcSight FlexConnector XML File 53
ArcSight FlexConnector Simple Network Management Protocol (SNMP Unified) 54
ArcSight FlexConnector Syslog 54

Select a Destination 55
Complete Installation and Configuration 56

Additional Configuration for Database Connectors 56
Install SQL Server JDBC Driver 57
Install MySQL Driver 58
Add a JDBC Driver to the Connector Appliance/ArcSight Management Center 59
Configure the JDBC Driver and Windows Authentication 60
Oracle 8i Support 61
Troubleshooting Duplicate Events 61

Example 1: ID-based Database Connectors Only 61
Example 2: ID-based and Time-based Connectors 62
Example 3: Complex Main Query with a Join 62

Chapter 4: Create a Configuration File 65

Parser File Locations and Names 65

Example Parser File 66

Parser File Structure 67
Token Declarations 68
Token Types 69
Event Mapping 69
RequestUrl Event Field 69
Operations Table 70
Severity Mapping 71

Examples 71
Extra Processors 72
Key-Value Parsers 74

FlexConnector Creation Wizard for Delimited Log Files 75

Developer's Guide

Micro Focus Connectors (7.13.0) Page 6 of 242

Regex Tool for Regex FlexConnectors 78

Start the FlexConnector 81

Chapter 5: Configuration File Examples 82

Configuration Properties for a Log File FlexConnector 82

Configuration Properties for all Regex FlexConnectors 83

Configuration Properties for a Time-based Database FlexConnector 84
Version 84
Query 85
Timestamp 86
UniqueID 86

Configuration Properties for an ID-based Database FlexConnector 86
Version 87
MaxID 87
Query 87
ID 88
UniqueID 88
Query Limit 88

Configuration Properties for an SNMP Connector 88

Configuration Properties for an XML FlexConnector 90
Namespace 91
Hop Nodes 91
Trigger Nodes 91
Token Mappings 92

Examples of Token Mappings 92
Extra Events 93

Configuration Properties for a JSON Folder Follower FlexConnector/ JSON Multiple Folder
Follower FlexConnector 93

Trigger Node 95
Token Location and Mappings 95
JSON Parsers for Complex Event Schemas 95

Working with Hierarchical Schemas 95
Representing a JSON Array with a Key Element 97
Representing a Token Value in URI Format 98
Sample JSON Array 99

Configuration Properties for Scanner FlexConnectors 99
Scanner FlexConnectors for Normal Text or XML Scan Reports 99

Developer's Guide

Micro Focus Connectors (7.13.0) Page 7 of 242

How Scanner FlexConnectors Parse Scan Reports 100
Parser Files for Normal Text Reports 100
Getting a List of Hosts 101

Ignore or Include Line 101
Regular Expression and Token Mappings 102
Use IP 102
Invalid Vulnerabilities 103
Extra Events 103

Getting Vulnerabilities for Scanned Hosts 104
Token Mappings 105
Event Mappings 105
Severity Mappings 106
Ignore or Include Line 106

Getting Open Ports on Scanned Hosts 107
Token Mappings 108
Event Mappings 108
Ignore or Include Line 108

Getting OS and Applications (URIs) on Scanned Hosts 109
Token Mappings 109
Event Mappings 110
Ignore or Include Line 110

Configuration Files for XML Reports 110
Getting a List of Hosts 110

Token Mappings 111
Use IP 111
Invalid Vulnerabilities 111
Extra Events 112

Getting Vulnerabilities for Scanned Hosts 112
Token Mappings 114
Event Mappings 114
Severity Mappings 115

Getting Open Ports on Scanned Hosts 115
Token Mappings 117
Event Mappings 117

Getting OS and Applications (URIs) on Scanned Hosts 117
Token Mappings 118
Event Mappings 118

Scanner FlexConnectors for Database Scan Reports 119
Getting the Version of the Database 119

Version 119

Developer's Guide

Micro Focus Connectors (7.13.0) Page 8 of 242

Getting the List of Scan Jobs 120
Scan Job 120
Use IP 120
Invalid Vulnerabilities 120
Extra Queries 121
Vulnerability Query 121
Open Ports Query 124

Getting OS and Applications (URIs) on Scanned Hosts 125
Getting Scanned Hosts (Host Query) 125

Chapter 6: Advanced Features 127

Regular Expressions 127
Multi-line Parsing 129

Sub-Messages 132
Default Sub-message 138
Extra Mappings 139
Conditional Mappings 141
Using Conditional Mapping in Sub-messages 143
Additional Data Mapping 144

Using the Get Additional Data Names Command 144
Using the Map Additional Data Name… Command 145
Using the Unmap Additional Data Name… Command 146
Using the Get Status Command 147

Log Rotation Types 147
Name Following Log Rotation 147
Daily Rotation 148
Index Rotation 148
Parameters for Daily and Index Rotation 148

Using rotationschemeparams for Daily Log File Rotation 148
Using rotationschemeparams for Index Log File Rotation 150
Using wildcard for Daily and Index Log File Rotation (File Folder Follower Only) 150

Using wildcard for Date Rotation 150
Using wildcard for Index Rotation 151

Log Internal Events for File-Reading FlexConnectors 151

Unparsed Events Detection 152
Supported Parser Types 152
Unparsed Events Detection Criteria 153

Comment Expressions 155

Developer's Guide

Micro Focus Connectors (7.13.0) Page 9 of 242

Parsing Expressions 156
Token Expressions 156
Mapping Expressions 157
Extra-Processor Expressions 157

Criteria for Unparsed Events 158
Unparsed Events Output File 160

Chapter 7: Map Files 162

What Are Map Files? 162

Map File Examples 162
Multiple "Getters" and "Setters" 163
Using the “No Getter” Trick 164

Map File Details 164
Controlling Map File Operation 164
Basic Map Files 165
AgentInfoAdder1 Map Files 166
Categorizer Map Files 166
Extra Processor Map Files 167

Using Ranges in Map Files 167

Using Regular Expressions in Map Files 168

Using Parser-Like Expressions in Map Files 169
More About Parser-Like Expressions Syntax 170

Operations Containing Commas 170
Backslashes in Expressions Versus in Parsers 170

Real World Examples 171
Adding Country Names to Events 171
Getting Domain Name from Hostname 171

Appendix A: ArcSight Operations 173

Appendix B: ArcSight Built-in Tokens 187

Appendix C: ArcSight Built-in Token Types 188

Appendix D: Date and Time Format Symbols 189

Appendix E: ArcSight Built-in Event Field Mappings 190

Developer's Guide

Micro Focus Connectors (7.13.0) Page 10 of 242

Appendix F: Configuring a Connector for ArcSight ESM Domain Field Sets 196

Appendix G: Advanced Parameters 199

Parameters Common to all SmartConnectors 200

CEF Syslog Parameters 202

File Connector Parameters 204

File Folder Follower Parameters 206

Syslog Parameters 210
Syslog Daemon Parameters 211

Event Parsing (Sub-agents) Parameters 211
Event Reception Parameters 212
Raw Log Parameters 214
Event Queue Parameters 215
Event Processing Parameters 216

Syslog Pipe Parameters 217
Syslog File Parameters 217
Syslog NG Daemon Parameters 219
Raw Syslog Daemon Parameters 219
ArcSight CEF Encrypted Syslog (UDP) Parameters 220
TippingPoint SMS Syslog Extended Parameters 220

Appendix H: FlexConnectors and Categorization 221

Categorization 221
HTTP Status Code Categorization Example 221
Firewall Example 224

Appendix I: Developing a Syslog FlexConnector 225

Appendix J: Developing an XML FlexConnector 227

XML FlexConnector Development 227

XML Tools 227

XML Concepts for FlexConnector Development 228
General XML Concepts 228
XML FlexConnector Concepts 229

Namespace 229
Hop Nodes 229

Developer's Guide

Micro Focus Connectors (7.13.0) Page 11 of 242

Trigger Nodes 230
Token Mappings 230
Extra Events 230
Examples of Token Mappings 231

Prepare to Write the Parser - Identify Namespace, Nodes, and Tokens 231
Find the Trigger Node - the Most Important Step 232
Decide if You Need a Namespace 232
Identify Hop Nodes 233
Identify Tokens 233

Create the XML FlexConnector Parser 234
Parser Development - First Several Lines 234
Parser Development Continued - Tokens 235
Parser Development Continued - Mappings 235
Categorization 236
Copy the Parser Into the Folder 236

Install the FlexConnector 237

Appendix K: Frequently Asked Questions 238

Send Documentation Feedback 242

Developer's Guide

Micro Focus Connectors (7.13.0) Page 12 of 242

Document Revision History
The title page of this document contains the following identifying information:

l Software Version number, which indicates the software version.

l Document Release Date, which changes each time the document is updated.

To check for recent updates or to verify that you are using the most recent edition of a document, go to ArcSight Product Documentation
Community on the Micro Focus Security Community.

Date Product Version Description

Document Changes

About this PDF Version of Online Help
This document is a PDF version of the online help. This PDF file is provided so you can easily print multiple topics from the help information or
read the online help in PDF format. Because this content was originally created to be viewed as online help in a web browser, some topics may not
be formatted properly. Some interactive topics may not be present in this PDF version. Those topics can be successfully printed from within the
online help.

Micro Focus Connectors (7.13.0) Page 13 of 242

https://community.softwaregrp.com/t5/ArcSight-Product-Documentation/ct-p/productdocs
https://community.softwaregrp.com/t5/ArcSight-Product-Documentation/ct-p/productdocs

Chapter 1: Overview
Security ArcSight provides a range of device-specific SmartConnectors with which to gather security event
information. The connectors send normalized security events to the specified destination for storage and
further processing. For information about the possible destination types, see the ArcSight SmartConnector
User Guide.

FlexConnectors are custom connectors you define to gather security events from log files, databases, and
other software and devices. FlexConnectors let you create custom connectors that can read and parse
information from third-party devices and map that information to ArcSight’s event schema.

FlexConnector Development
This guide describes these basic steps for creating a FlexConnector:

l Deciding the type of FlexConnector to develop based on the source data to be collected. (See “Choose a
FlexConnector Type".)

l Providing a log file. For database connectors, this includes developing a query for pulling events.

l Installing and configuring one of the FlexConnector types. For SNMP, you install the SNMP Unified
connector; for syslog, you install the Syslog Daemon connector. (See “Install and Configure
theFlexConnector".)

l Creating your properties file (parser) and mapping events to ArcSight fields. (See “Create a
Configuration File”.)

l Creating the categorization.csv file and assigning appropriate categories. (See “FlexConnectors and
Categorization".)

This guide also describes related topics, such as:

l Log Rotation Types

l Unparsed Events Detection

l Advanced Parameters that can be used to tune the collection process

l Map Files

l ArcSight Operations

l FlexConnectors and Categorization

l Configuring a Connector for ArcSight ESM Domain Field Sets

Micro Focus Connectors (7.13.0) Page 14 of 242

IPv6-Aware Parsers
With only a few exceptions, ArcSight SmartConnectors fully support IPv6 and IPv4 addresses for event
receiving and event processing. An extra mapping used to be required to map IPv6 addresses. In case the
destination is not an IPv6-Aware destination, the IP Address is automatically mapped to the corresponding
Device Custom IPv6 Address fields.

Note: Older versions of FlexConnector and parsers continue to use Device Custom IPv6 Address fields
for IPv6 addresses.

Event Fields

The following ArcSight event fields accept both IPv4 and IPv6 addresses, in case the destination is an IPv6-
Aware destination. For more information, see "ArcSight Built-in Event Field Mappings" on page 190.

l Destination Address

l Destination Translated Address

l Device Address

l Device Translated Address

l Source Address

l Source Translated Address

The Bytes In and Bytes Out event field parameters have been changed to Long Data Type.

For IPv6-aware parsers, the Device Custom IPv6 address 1, 2, and 3 fields can contain either IPv4 or IPv6
addresses. These fields are rarely used, if so, the corresponding labels should be set to with an appropriate
value.

Operations

The behavior of the following operations has been changed to support IPv6-aware parsers,. For more
information, see "ArcSight Operations" on page 173.

l __byteArrayToIPAddress (new parameter)

l __byteArrayToIPv6

l __getIPv4AddressEmbeddedInIPv6Address

l __hexStringToAddress

l __hexStringToIPV6Address

l __oneOfAddress

l __oneOfHostName

o __stringToIPv6Address

Developer's Guide
Chapter 1: Overview

Micro Focus Connectors (7.13.0) Page 15 of 242

Developer Considerations

The main IPv6- aware parser and all of the SmartConnector extra processors should be marked with the
property ipv6.aware=true.

Mixed ranges are not supported (that being, where one end of the ranges is an IPv4 address and the other
is an IPv6 address).

Since the standard IP address fields (such as Device Address, Source Address, Destination Address, and so
on) support both IPv4 and IPv6 addresses, the Device Custom IPv6 Address fields are rarely required in an
IPv6-aware parser. These mappings should be redirected to the standard address fields. If there are any
addresses which do not fall into any of the normal device, source, or destination categories, then the Device
Custom IPv6 Address fields can be used, but that would be a very rare case.

Do not use the __stringToIPv6Address or __byteArrayToIPv6 operations as they are not relevant in IPv6-
aware parsers.

Rename the __byteArrayToIPv6 operation to the new generic __byteArrayToIPAddress operation in the
parser.

- The __oneOfAddress operation returns the first non-null IP address whether an IPv4 or an IPv6, when
that operation is used in an IPv6-aware parser.

- The Bytes In and Bytes Out event fields are now Long Data Type.

Folder Structure
The following table lists the connector folder structure after connector installation and configuration, and
describes the contents of each folder.

Directory Description

$ARCSIGHT_HOME\current\bin Executables and scripts; for example, runagentsetup.bat.

$ARCSIGHT_HOME\current\config\agent Default and base configurations; for example,
agent.defaults.properties.

$ARCSIGHT_HOME\current\logs Generated logs; for example agent.log.

$ARCSIGHT_HOME\current\user\agent Connector property files and destination-specific configurations; for
example, agent.properties.

$ARCSIGHT_HOME\current\user\agent\agentdata Queue, cache, and persistence files.

$ARCSIGHT_
HOME\current\user\agent\acp\categorizer\current

Categorizaton files (ArcSight Content), which provide additional
meaning to events.

$ARCSIGHT_HOME\current\user\agent\flexagent Custom parsers that are developed for the FlexConnector.

$ARCSIGHT_HOME\current\user\agent\map Mapping files that can be used to set fields in the Security Event object;
for example, map.0.properties.

Developer's Guide
Chapter 1: Overview

Micro Focus Connectors (7.13.0) Page 16 of 242

Key Files
During connector installation and configuration, several key files are created. The following table describes
these files, their locations, and their purpose.

File Name Path Description

agent.log $ARCSIGHT_HOME\current
\logs

Generated log that contains information on the running of the
connector; search for ERROR to see any errors that occurred during
the running of the connector. The most current log is agent.log,
but there can be older logs in the folder as well, such as
agent.log.1 or agent.log.2.

agent.properties $ARCSIGHT_HOME\current
\user\agent

Contains configuration parameters and values, created from the
values entered during connector configuration.

agent.default.
properties

$ARCSIGHT_HOME\current\
config\agent

Contains default framework parameters; for example, contains the
syntax for enabling debugging and increasing the agent.log file
size and agent log count. Do not modify
agent.default.properties as it is overwritten when the
connector is upgraded. Make any property changes in
agent.properties.

FlexConnector Management
There are currently two ways to manage SmartConnectors: through ArcSight Management Center (also
referred to as "ArcMC") and through ArcSight Connector Appliance. Eventually, ArcSight Management
Center will replace ArcSight Connector Appliance.

ArcSight Connector Appliance
The ArcSight Connector Appliance is a hardware solution that incorporates a number of onboard ArcSight
SmartConnectors and a web-based user interface that provides centralized management for
SmartConnectors across a potentially large number of hosts.

FlexConnectors can generally be managed by a Connector Appliance and can be hosted on the appliance
if they are compatible with a Linux platform. The Connector Appliance ships with several prototype
FlexConnectors, including the following:

l ArcSight FlexConnector File

l ArcSight FlexConnector ID-Based DB

l ArcSight FlexConnector Multiple DB

l ArcSight FlexConnector Regex File

Developer's Guide
Chapter 1: Overview

Micro Focus Connectors (7.13.0) Page 17 of 242

l ArcSight FlexConnector Regex Folder File

l ArcSight FlexConnector Simple Network Management Protocol (SNMP Unified)

l ArcSight FlexConnector Time-Based DB

l ArcSight FlexConnector XML File

For detailed information and instructions for using the Connector Appliance, see the ArcSight Connector
Appliance Administrator’s Guide.

ArcSight Management Center
ArcSight Management Center includes all of the functions of ArcSight Connector Appliances, and also the
ability to manage and monitor an additional range of ArcSight products, such as Connector Appliances,
Loggers, and other ArcSight Management Centers, as illustrated in the following figure.

ArcSight Management Center uses the concept of nodes to manage various entities. A node is a networked
ArcSight product that can be centrally managed using ArcSight Management Center. Each node is
associated with a single networked host that has been assigned either a hostname, an IP address, or both.

A single host can include multiple nodes. For example, a single Connector Appliance (with a single IP
address or hostname) could have multiple containers, each of which could be a separate node. In addition,
a node can be in a parent or child relationship with other modes.

You can perform any of the following node management tasks:

l View managed nodes by location, host, or node type

l Add, view, edit, and delete locations for hosts

Developer's Guide
Chapter 1: Overview

Micro Focus Connectors (7.13.0) Page 18 of 242

l Add nodes from a host, import hosts from a .csv file, view and delete hosts, view all hosts in a location,
move hosts to different locations, and scan hosts for new connectors or containers

See the ArcSight Management Center Administrator’s Guide for details.

Developer's Guide
Chapter 1: Overview

Micro Focus Connectors (7.13.0) Page 19 of 242

Chapter 2: Choose a FlexConnector Type
The FlexConnector type you choose should be based on the format of the security event data. Examples of
data formats for different FlexConnector types are provided in “Event Data Format Examples”.

FlexConnector Types
The available FlexConnector types are listed in the following table; selection criteria is included.

FlexConnector Type Description

File Choose this type if the event data is in log files that use a fixed, delimited format. In this case, each
line in the text file represents a unique event, and each line contains the same number of fields, in
the same order. Fixed-format log files can be delimited by commas, tabs, or another character,
such as a pipe (‘|’).

All file-reader FlexConnectors can process GZIP and ZIP files. Other compression formats are not
supported. Compressed files are processed in batch mode only. The connectors read the file from
the beginning to the end and then stop monitoring the file. See " Log File FlexConnector" and
"ArcSight FlexConnector File".

ID-Based Database Choose ID-Based Database or Time-Based Database for devices that write security event
information to a database. Each row represents a single event, and the number and meaning of
the columns are fixed. If you use unique IDs to read events from a database, choose ID-Based
Database.

Knowledge of SQL is a prerequisite for coding database FlexConnectors. See " ID-Based Database
FlexConnector" and "ArcSight FlexConnector ID-Based Database".

JSON Folder Follower Choose this type for devices that write event information to JSON files. Event information in these
files is presented in standard JSON format. This type recursively reads events from JSON-based
files in a folder. See "JSON Folder Follower FlexConnector/JSON Multiple Folder Follower
FlexConnector" and "ArcSight FlexConnector JSON Multiple Folder Follower".

Multiple Database Choose this type to retrieve information from multiple databases that use the same query or
retrieve different set of events using different queries from the same database.

Knowledge of SQL is a prerequisite for coding database FlexConnectors. See "Multiple Database
FlexConnector" and "ArcSight FlexConnector Multiple Database".

Multiple Folder File Choose this type for devices that write log files to multiple folders. This connector type can read
events in real time or in batch mode. See "Multiple Database FlexConnector" and "ArcSight
FlexConnector Multiple Folder File".

Micro Focus Connectors (7.13.0) Page 20 of 242

FlexConnector Type Description

Regex File Choose this type if the source log files have one event per line, but the format of each line varies
based on the type of event information. In this case, each line shares a common section (for
example, the date and hostname), but the number and content of the other fields on the line
varies.

The regular expression-based FlexConnectors require a familiarity with Java-compatible regular
expressions. See "Regex FlexConnectors (Variable-Format File FlexConnectors)" and "ArcSight
FlexConnector Regex File".

Regex Folder File File and Regex File FlexConnectors read events in real time, one line at a time, from a log file.
However, some devices may not write to log files in real time. To read such events, use a Regex
Folder Follower FlexConnector. This connector processes all log files in a specified folder.

The regular expression-based FlexConnectors require a familiarity with Java-compatible regular
expressions. See "Regex FlexConnectors (Variable-Format File FlexConnectors)" and "ArcSight
FlexConnector Regex Folder File".

REST The REST FlexConnector uses REST API endpoints, JSON parser, and OAuth2 authentication to
collect security events from cloud vendors (such as Salesforce or Google Apps). See "ArcSight
FlexConnector REST". For detailed information about this FlexConnector, see the ArcSight REST
FlexConnector Developer’s Guide for details.

Scanner DB
Scanner Text Reports
Scanner XML Reports

Choose a Scanner FlexConnector type to import the results of a scan from a scanner device and
forward the data to ESM so that ESM can model an organization’s assets, open ports, operating
systems, applications, and vulnerabilities. The connector imports periodic scans to ESM, which uses
this information for event prioritization, reporting, and correlation.

Database:

A database contains results for multiple scans where each scan is identified by a job identifier (ID).
The scan results are organized in multiple tables that are linked by job IDs or other IDs. SQL query-
based parsers are used to extract relevant information from the scan results.

Knowledge of SQL is a prerequisite for coding database FlexConnectors. See "Scanner
FlexConnector" and "ArcSight FlexConnector Scanner Database".

Text Reports:
A normal text report contains results for a single scan with each line in the report containing a piece
of information about a host. Regular expression based parsers are used to extract relevant
information from the report.

The regular expression-based FlexConnectors require a familiarity with Java-compatible regular
expressions. See "Scanner FlexConnector" and "ArcSight FlexConnector Scanner Text Reports".

XML Reports:

An XML report contains results for a single scan with scan results organized in the form of nested
XML elements. XQuery/XPath-based parsers are used to extract relevant information from the
report.

The XML FlexConnector require a familiarity with XML, XPath, and XQuery. See "Scanner
FlexConnector" and "ArcSight FlexConnector Scanner XML Reports".

Developer's Guide
Chapter 2: Choose a FlexConnector Type

Micro Focus Connectors (7.13.0) Page 21 of 242

FlexConnector Type Description

Time-Based Database Choose ID-Based Database or Time-Based Database for devices that write security event
information to a database. Each row represents a single event, and the number and meaning of
the columns are fixed. One column represents the event timestamp and can be used to order the
rows. To read events from database table rows, choose Time-Based DB.

Knowledge of SQL is a prerequisite for coding database FlexConnectors. See "Time-Based
Database FlexConnector" and "ArcSight FlexConnector Time-Based DB".

XML File Choose this type for devices that write event information to XML files. Event information in these
files is presented in standard XML format, using namespaces, elements, attributes, text, and cdata.
This connector type recursively reads events from XML-based files in a folder.

The XML FlexConnectors require a familiarity with XML, XPath, and XQuery.

See "XML File FlexConnector" and "ArcSight FlexConnector XML File". See "Developing an XML
FlexConnector" for a description of the development of an example of an XML FlexConnector.

SNMP Unified For SNMP devices, choose the SmartConnector for SNMP Unified. See the SmartConnector
configuration guide for installation and configuration information. See "SNMP FlexConnector" and
"ArcSight FlexConnector Simple Network Management Protocol (SNMP Unified)".

Syslog For reading events from syslog messages, choose the SmartConnector for Syslog Daemon and
define a Syslog FlexConnector sub-connector to parse syslog packets of interest. See "Syslog
FlexConnector" and "ArcSight FlexConnector Syslog".

Event Data Format Examples
You choose a FlexConnector type based on the format of the event data. The following examples illustrate
the kind of source data expected by the various FlexConnector types.

Log File FlexConnector
The following is an example of a fixed-format, delimited log file. In this example, there are three events; each
has the same format composed of six tokens separated by a comma.

01/01/2016-11:33:00,1.1.1.1,52123,2.2.2.2,80,Invalid URL
01/01/2016-12:43:00,3.3.3.3,49123,2.2.2.2,80,Buffer Overflow Attempt
01/01/2016-13:53:00,4.4.4.4,35123,2.2.2.2,80,Web Cgi Access

ID-Based Database FlexConnector
Two rows of a security event table in a database might look like this. This example describes two events:
one with ID 123456 and another with ID 123457.

Developer's Guide
Chapter 2: Choose a FlexConnector Type

Micro Focus Connectors (7.13.0) Page 22 of 242

EventId
Incident
Time Signature SourceIP

Destination
IP Priority Protocol

123456 09/01/16
12:56:00

Port Scan 9.10.11.12 13.14.15.16 1 TCP

123457 09/01/16
12:54:00

ICMP Failure 1.2.3.4 5.6.7.8 3 ICMP

JSON Folder Follower FlexConnector/JSON Multiple Folder
Follower FlexConnector
An JSON file with event information might look like this:

{
"chunk_size":100,
"entries":[{

"source":null,
"created_by":{

"type":"user",
"id":"175265599",
"name":"Mary Jane",
"login":"mary.jane@abc.com"

},
"created_at":"1324497497",
"event_id":"13254621",
"event_type":"FAILED_LOGIN",
"ip_address":"192.168.233.76",
"type":"event",
"session_id":null

},
{

"source":null,
"created_by":{

"type":"user",
"id":"175265599",
"name":"Mary Jane",
"login":"mary.jane@abc.com"

},
"created_at":"1324497544",
"event_id":"13254633",
"event_type":"FAILED_LOGIN",
"ip_address":"192.168.233.76",
"type":"event",

Developer's Guide
Chapter 2: Choose a FlexConnector Type

Micro Focus Connectors (7.13.0) Page 23 of 242

"session_id":null
},
{

"source":null,
"created_by":{

"type":"user",
"id":"175265599",
"name":"Mary Jane",
"login":"mary.jane@abc.com"

},
"created_at":"1324497614",
"event_id":"13254649",
"event_type":"LOGIN",
"ip_address":"192.168.233.76",
"type":"event",
"session_id":null

}
]

}

Multiple Database FlexConnector
The Multi-Database FlexConnector reads events from more than one database or multiple event types
from different tables in the same database. For data format examples, see "ID-Based Database
FlexConnector" and "Time-Based Database FlexConnector".

Regex FlexConnectors (Variable-Format File FlexConnectors)
FlexConnectors , capable of processing variable-format log files, include Regex Log File, Regex Folder
Follower and Regex Multiple Folder Follower. Variable-format log files might look like this:

Aug 21 15:28:49 beach sshd[24939]: Failed password for rajiv from
192.168.10.27 port 33654 ssh2
Aug 21 15:28:51 beach sshd[24939]: Accepted password for rajiv from
192.168.10.27 port 33654 ssh2
Aug 21 15:28:51 beach PAM_unix[24948]: (ssh) session opened for user rajiv by
(uid=525)
Aug 21 15:28:53 beach PAM_unix[24948]: (ssh) session closed for user rajiv
Aug 22 00:13:23 beach sshd[6305]: Did not receive IDentification string from
192.168.10.28

Developer's Guide
Chapter 2: Choose a FlexConnector Type

Micro Focus Connectors (7.13.0) Page 24 of 242

Scanner FlexConnector
The following is an example scan report:

SNMP FlexConnector
SNMP traps contain variables (varbinds) that must be mapped to the ArcSight Database Schema. The
SmartConnector for SNMP Unified supports SNMP traps in versions 1, 2, and 3. The following example is
the output of an SNMP connector when it receives a trap (in this case, generated by SecureNet Pro) for
which it is not yet configured:

[Wed May 21 11:11:17 PDT 2016] [INFO] Unable to process trap (not
configured) :
Received SNMPv1 trap

Port : 162
Generating Agent : 10.0.112.104
Sending Agent : 10.0.112.104
Time Stamp : 412257333
Enterprise OID : 1.3.6.1.4.1.8678.1.1.2
Trap Type : 1
Var Binds:14

VarBind #0
0.0.0.0.0.0.0.0.412257333.0
StringValue: 439228089

Developer's Guide
Chapter 2: Choose a FlexConnector Type

Micro Focus Connectors (7.13.0) Page 25 of 242

TimeStamp: 0
Value: 439228089

VarBind #1
0.0.0.0.0.0.0.0.412257333.0
StringValue: 439228089
TimeStamp: 0
Type: ASN_INTEGER | ASN_INTEGER32
Value: 439228089

VarBind #2
0.0.0.0.0.0.0.0.412257333.0
StringValue: [] - TCP Connection from 10.0.112.132
TimeStamp: 0
Type: ASN_OCTSTR
Value: [B@29e357

VarBind #3
0.0.0.0.0.0.0.0.412257333.0
StringValue: TCP Session Logging
TimeStamp: 0
Type: ASN_OCTSTR
Value: [B@ca470

VarBind #4
0.0.0.0.0.0.0.0.412257333.0
StringValue: Miscellaneous
TimeStamp: 0
Type: ASN_OCTSTR
Value: [B@7fc686

VarBind #5
0.0.0.0.0.0.0.0.412257333.0
StringValue: TCP (Stream)
TimeStamp: 0
Type: ASN_OCTSTR
Value: [B@42bece

VarBind #6
0.0.0.0.0.0.0.0.412257333.0
StringValue: 1
TimeStamp: 0
Type: ASN_INTEGER | ASN_INTEGER32
Value: 1
VarBind #7
0.0.0.0.0.0.0.0.412257333.0
StringValue: 05/21/2003 10:58:26
TimeStamp: 0

Developer's Guide
Chapter 2: Choose a FlexConnector Type

Micro Focus Connectors (7.13.0) Page 26 of 242

Type: ASN_OCTSTR
Value: [B@7cfa52

VarBind #8
0.0.0.0.0.0.0.0.412257333.0
StringValue: 00:b0:d0:61:6c:6e
TimeStamp: 0
Type: ASN_OCTSTR
Value: [B@161dff

VarBind #9
0.0.0.0.0.0.0.0.412257333.0
StringValue: 00:00:d1:ee:c4:2e
TimeStamp: 0
Type: ASN_OCTSTR
Value: [B@b81e3

VarBind #10
0.0.0.0.0.0.0.0.412257333.0
StringValue: 10.0.112.132
TimeStamp: 0
Type: ASN_OCTSTR
Value: [B@7c6e42

VarBind #11
0.0.0.0.0.0.0.0.412257333.0
StringValue: 10.0.111.26
TimeStamp: 0
Type: ASN_OCTSTR
Value: [B@2af0b3

VarBind #12
0.0.0.0.0.0.0.0.412257333.0
StringValue: 60901
TimeStamp: 0
Type: ASN_OCTSTR
Value: [B@2082e2

VarBind #13
0.0.0.0.0.0.0.0.412257333.0
StringValue: 64288
TimeStamp: 0
Type: ASN_OCTSTR
Value: [B@70c85e

Syslog FlexConnector
A security appliance might send syslog messages with the following format:

Developer's Guide
Chapter 2: Choose a FlexConnector Type

Micro Focus Connectors (7.13.0) Page 27 of 242

Myapplication: Intruder Detected from 1.1.1.1 to 2.2.2.2 High

In this case, Myapplication is the name of the security appliance, Intruder Detected is the name of
the event, 1.1.1.1 and 2.2.2.2 are the source and target addresses and High refers to the severity of
the event. This message is not delimited; however, you can identify that this message comes from the
security appliance by the prefix Myapplication. Regular expressions are a simple mechanism to identify
and tokenize the message, so the format of a FlexConnector Syslog configuration file is similar to the
FlexConnector Regex Log-file. The only difference is that the detected time and sending host will
automatically be set by the syslog daemon and only additional mappings need to be specified.

Time-Based Database FlexConnector
Two rows of a security event table in a database might look like this. This example describes two events:
one at 12:56 and another at 12:54.

EventId
Incident
Time Signature SourceIP

Destination
IP Priority Protocol

CCC-DDD 09/01/16
12:56:00

Port Scan 9.10.11.12 13.14.15.16 1 TCP

AAA-BBB 09/01/16
12:54:00

ICMP Failure 1.2.3.4 5.6.7.8 3 ICMP

XML File FlexConnector
An XML file with event information looks like this:

<?xml version="1.0" encoding="UTF-8" ?>
- <mycompanyReport version="1.1">
- <reportHeader>

<copyrightNotice value="Copyright 2016 MyCompany, Inc." />
<trademarkNotice value="MyCompany is a registered trademark of MyCompany,

Inc. All rights reserved." />
<productVersion value="MyCompany for Servers version 1.2.3 for Windows(R)

Operating Systems" />
<reportFile value="Memory Mapped File" />
<reportFileEncrypted value="0" />
<policyFile value="C:\Program Files\MyCompany\MyCompany Trial

Kit\SMTP\policy\mc.pol" />
<configFile value="C:\Program Files\MyCompany\MyCompany Trial

Kit\SMTP\bin\mc.cfg" />
<databaseFile value="C:\Program Files\MyCompany\MyCompany Trial

Kit\SMTP\db\Application.twd" />

Developer's Guide
Chapter 2: Choose a FlexConnector Type

Micro Focus Connectors (7.13.0) Page 28 of 242

<systemName value="HOGWARTS" />
<commandLine value="C:\Program Files\MyCompany\MyCompany Trial

Kit\SMTP\bin\MyCompany.exe --check --no-tty-output --cfgfile C:\Program
Files\MyCompany\MyCompany Trial Kit\SMTP\bin\mc.cfg -- email-report --email-
report-level 3 --report-format xml --twrfile

C:\Program Files\MyCompany\MyCompany Trial Kit\SMTP\report\Report- .twr" />
<ipAddress value="172.16.252.58" />
<creator value="SYSTEM" />
<hostID value="S-1-5-21-3494633144-188423603-1740787705" />
<creationTime raw="1117725227" value="Thu, 02 Jun 2005 10:13:47 -0500" />
<lastDBUpdateTime raw="0" value="Never" />
</reportHeader>

- <section type="NTFS" name="Windows File System">
- <rule name="SMTP Server" startPoint="C:\Program Files\MyCompany\MyCompany
Trial Kit\active_files\SMTP\bin\help">
- <ruleHeader>

<severity value="30" />
<onViolation value="" />
<match value="" />
<emailAddressList />
</ruleHeader>

- <ruleSummary>
<violationCount value="3" />
<addedCount value="0" />
<removedCount value="3" />
<changedCount value="0" />
</ruleSummary>
<errorList />

- <added>
<object name="C:\Program Files\MyCompany\MyCompany Trial Kit\active_

files\SMTP\bin\help\smtpserver.pdf" />
</added>

- <removed>
<object name="C:\Program Files\MyCompany\MyCompany Trial Kit\active_

files\SMTP\bin\help\releasenotes.txt" />
</removed>

- <changed>
<object name="C:\Program Files\MyCompany\MyCompany Trial Kit\active_

files\SMTP\bin\help\xyz.txt" />
</changed>
</rule>

- <sectionSummary>

Developer's Guide
Chapter 2: Choose a FlexConnector Type

Micro Focus Connectors (7.13.0) Page 29 of 242

<objectsScanned value="35" />
<sectionViolationCount value="26" />
<sectionMaxSeverity value="100" />
</sectionSummary>
</section>
</mycompanyReport>

Developer's Guide
Chapter 2: Choose a FlexConnector Type

Micro Focus Connectors (7.13.0) Page 30 of 242

Chapter 3: Install and Configure the
FlexConnector
Installation and configuration consists of installing the FlexConnector core software, and then selecting and
configuring the destination for the log messages.

FlexConnector Installation
The installation process installs the framework, tools, and sample files necessary for configuring a
FlexConnector. Once a FlexConnector is installed, it functions the same as any SmartConnector.

The installation directory (for example, C:\FlexConnector\current) is referred to as $ARCSIGHT_
HOME, regardless of the platform.

To successfully configure a FlexConnector, the ArcSight Manager or Logger and database components
with which the FlexConnector will communicate must be up and running. The FlexConnector tries to
connect to the destination during the configuration process. If it cannot connect, configuration fails.

Install Core Software
A FlexConnector can be installed on all ArcSight supported platforms; for the complete list, see the
SmartConnector Platform Support document, available from the Micro Focus SSO and Protect 724 sites.

1. Download the SmartConnector executable for your operating system from the Micro Focus SSO site.

2. Start the SmartConnector Installer by running the executable for your operating system platform.

Follow the installation wizard through the following folder selection tasks and installation of the core
connector software:

Introduction
Choose Install Folder
Choose Shortcut Folder
Pre-Installation Summary
Installing...

3. When the installation of SmartConnector core component software is finished, the following window is
displayed:

Micro Focus Connectors (7.13.0) Page 31 of 242

Set Global Parameters (Optional)
If you choose to perform any of the operations shown in the following table, do so before adding your
connector. After installing core software, you can set the following parameters:

Global Parameter Setting

FIPS mode Set toEnabled to enable FIPS compliant mode. To enable FIPS Suite B Mode, see the
SmartConnector User Guide under "Modifying Connector Parameters" for instructions.
Initially, this value is set toDisabled.

Remote Management Set toEnabled to enable remote management from ArcSight Management Center.
When queried by the remote management device, the values you specify here for
enabling remote management and the port number will be used. Initially, this value is set to
Disabled.

Remote Management Listener Port The remote management device will listen to the port specified in this field. The default
port number is 9001.

Preferred IP Version When both IPv4 and IPv6 IP addresses are available for the local host (the machine on
which the connector is installed), you can choose which version is preferred. Otherwise,
you will see only one selection. The initial setting is IPv4.

The following parameters should be configured only if you are using Micro Focus SecureData solutions to
provide encryption. See the Micro Focus SecureData Architecture Guide for more information.

Developer's Guide
Chapter 3: Install and Configure the FlexConnector

Micro Focus Connectors (7.13.0) Page 32 of 242

Global Parameter Setting

Format Preserving Encryption Data leaving the connector machine to a specified destination can be encrypted by
selecting ‘Enabled’ to encrypt the fields identified in ‘Event Fields to Encrypt before
forwarding events. If encryption is enabled, it cannot be disabled. Changing any of the
encryption parameters again will require a fresh installation of the connector.

Format Preserving Host URL Enter the URL where theMicro Focus SecureData server is installed.

Proxy Server (https) Enter the proxy host for https connection if any proxy is enabled for this machine.

Proxy Port Enter the proxy port for https connection if any proxy is enabled for this machine.

Format Preserving Identity The Micro Focus SecureData client software allows client applications to protect and
access data based on key names. This key name is referred to as the identity. Enter the
user identity configured for Micro Focus SecureData.

Format Preserving Secret Enter the secret configured for Micro Focus SecureData to use for authentication.

Event Fields to Encrypt Recommended fields for encryption are listed; delete any fields you do not want encrypted
from the list, and add any string or numeric fields you wish to be encrypted. Encrypting
more fields can affect performance, with 20 fields being the maximum recommended. Also,
because encryption changes the value, rules or categorization could also be affected. Once
encryption is enabled, the list of event fields cannot be edited.

After making your selections, click Next. A summary screen is displayed. Review the summary of your
selections and click Next. Click Continue to return to the "Add a Connector" window. Continue the
installation procedure with "Select Connector and Add Parameter Information."

Select Connector and Add Parameter Information
1. Select Add a Connector and click Next. If applicable, you can enable FIPS mode and enable remote

management later in the wizard after connector configuration.

2. Select a specific connector to install. The FlexConnectors are mostly grouped together beginning with
ArcSight FlexConnector. The exceptions are syslog FlexConnectors (choose Syslog Daemon) and
SNMP FlexConnectors (choose SNMP Unified connector). Click Next when you have made your
selection.

3. Enter the required SmartConnector parameters to configure the SmartConnector, then click Next.

The installation wizard prompts for different parameters depending upon the type of FlexConnector
or Syslog SmartConnector selected. In addition to the parameters you can configure through the
installation wizard, you can also configure parameters directly in the agent.properties file. Those
parameters are discussed in "Advanced Parameters".

ArcSight FlexConnector File

Choose this type if the event data is in log files that use a fixed, delimited format. In this case, each line in the
text file represents a unique event, and each line contains the same number of fields, in the same order.

Developer's Guide
Chapter 3: Install and Configure the FlexConnector

Micro Focus Connectors (7.13.0) Page 33 of 242

Fixed-format log files can be delimited by commas, tabs, or another character, such as a pipe (‘|’).

Parameter Description

Log Unparsed Events The default value is false. Select true for the connector to detect and log unparsed events to
$ARCSIGHT_HOME\current\logs\events.log. For more information on unparsed
events, see “Unparsed Events Detection".

Log File Name The absolute path and name of the file that this FlexConnector will read. For example:
c:\temp\sample_data.txt

Configuration File The base name of the configuration file that describes the format of the log file. For a connector
that parses fixed-format files, the suffix .sdkfilereader.properties is appended
automatically.

For a connector that parses variable-format files, the suffix .sdkrfilereader.properties
is appended automatically.

For example, if you specify the following name for a configuration file that parses fixed-format log
files: sample

The filename becomes:

ARCSIGHT_
HOME\user\agent\flexagent\sample.sdkfilereader.properties.

ArcSight FlexConnector ID-Based Database

Choose this type for devices that write security event information to a database. This type will read events
from the database based on unique IDs. (If the connector is to read events from database table rows, you
should select ArcSight FlexConnector Time-Based DB.)

Developer's Guide
Chapter 3: Install and Configure the FlexConnector

Micro Focus Connectors (7.13.0) Page 34 of 242

Note:
l After installing connector core software and before configuring the ArcSight FlexConnector ID-

Based DB, you will need to download an appropriate JDBC driver. See “Additional Configuration for
Database Connectors” for complete information.

l Knowledge of SQL is a prerequisite for coding database FlexConnectors.

l SmartConnector releases since 7.2.1 have implemented Java 8, which does not support ODBC
connections; therefore, database connectors can only use JDBC connections. For the same reason,
the MS Access database, which uses only ODBC connections, is no longer supported.

Developer's Guide
Chapter 3: Install and Configure the FlexConnector

Micro Focus Connectors (7.13.0) Page 35 of 242

Parameter Description

Database JDBC Driver The JDBC driver that will be used to connect to the database.

l For SQL Server, perform the procedure in "Install SQL Server JDBC Driver".

l For MySQL, perform the procedure in "Install MySQL Driver".

l For Oracle, use:
oracle.jdbc.driver.OracleDriver

l This default Oracle JDBC driver works with Oracle 9i, 10g, 11g, and 12c database versions. If
you are using Oracle 8i, see "Oracle 8i Support".

l For PostGreSQL, use:
org.postgresql.Driver

l For DB2 unified driver, use:
com.ibm.db2.jcc.DB2Driver

l For DB2 Legacy CLI-based, use:
COM.ibm.db2.jdbc.net.DB2Driver

l For Sybase, use:
com.sybase.jdbc2.jdbc.SybDriver

Database URL The JDBC URL that identifies the database.

l For Oracle, use:
jdbc:oracle:thin:@hostname_or_IP:1521:database_name

l For MySQL, use:
jdbc:mysql://hostname_or_IP:3306/database_name

l For Microsoft SQL Server 2000, use:
jdbc:microsoft:sqlserver://host:port;databasename=name

l For Microsoft SQL Server 2005 and later, use:
jdbc:sqlserver://host:port;databasename=name

l For PostGreSQL, use:
jdbc:postgresql://host/database

l For DB2 unified driver, use:
jdbc:db2:database_name

l For DB2 Legacy CLI-based, use:
jdbc:db2://host_name: port_number/ database_name

l For Sybase, use:
jdbc:sybase:Tds: hostname_or_IP:5000/sybsecurity

Database User The database user name.

Developer's Guide
Chapter 3: Install and Configure the FlexConnector

Micro Focus Connectors (7.13.0) Page 36 of 242

Parameter Description

Database Password Password for the database user.

Configuration Folder Enter the name of the folder that contains the properties file. Do not enter the full path to the file as
doing so will result in an error.

This is also the root name of the configuration file. If the configuration folder is myfolder, then the
FlexConnector will look for the configuration file in the directory: ARCSIGHT_
HOME\user\agent\flexagent\myfolder

l The configuration file for time-based connectors will be named:

myfolder.sdktbdatabase.properties

l The configuration file for ID-based connectors will be named:

myfolder.sdkibdatabase.properties

Query Frequency Specifies how often, in seconds, to query the database. The default is 5 seconds.

ArcSight FlexConnector JSON Multiple Folder Follower

Choose this type for devices that write event information to JSON files. Event information in these files is
presented in standard JSON format. This connector recursively reads events from JSON-based files in
multiple folders

Developer's Guide
Chapter 3: Install and Configure the FlexConnector

Micro Focus Connectors (7.13.0) Page 37 of 242

Developer's Guide
Chapter 3: Install and Configure the FlexConnector

Micro Focus Connectors (7.13.0) Page 38 of 242

Parameter Description

JSON Configuration File Name Prefix The base name of the configuration file that describes the format of the log file.

The suffix .jsonparser.properties is appended automatically. For example,

if you specify:

vendor_product

The filename becomes:

$ARCSIGHT_HOME\user\agent\flexagent\vendor_product.jsonparser.properties

Folder The absolute path of the directory where log files for the FlexConnector
are located. For example: c:\logs

Wildcard Enter a Wildcard that identifies the files to process. The default wildcard
is *.json

Note: Click 'Export' to copy the host name data you entered in the table to a CSV file. Click 'Import' to
select a CSV file and copy it into the table rather than adding the data manually. See the
"SmartConnector User's Guide" for more information.

ArcSight FlexConnector Multiple Database

Choose this type to retrieve information from multiple databases that use the same query or retrieve
different set of events using different queries from the same database.

Developer's Guide
Chapter 3: Install and Configure the FlexConnector

Micro Focus Connectors (7.13.0) Page 39 of 242

Note:
l After installing connector core software and before configuring the ArcSight FlexConnector ID-

Based DB, you will need to download an appropriate JDBC driver. See “Additional Configuration for
Database Connectors” for complete information.

l Knowledge of SQL is a prerequisite for coding database FlexConnectors.

l SmartConnector releases since 7.2.1 have implemented Java 8, which does not support ODBC
connections; therefore, database connectors can only use JDBC connections. For the same reason,
the MS Access database, which uses only ODBC connections, is no longer supported.

Developer's Guide
Chapter 3: Install and Configure the FlexConnector

Micro Focus Connectors (7.13.0) Page 40 of 242

Developer's Guide
Chapter 3: Install and Configure the FlexConnector

Micro Focus Connectors (7.13.0) Page 41 of 242

Parameter Description

JDBC/ODBC Driver The JDBC driver that will be used to connect to the database.

l For SQL Server, perform the procedure in "Install SQL Server JDBC Driver".

l For MySQL, perform the procedure in "Install MySQL Driver".

l For Oracle, use: oracle.jdbc.driver.OracleDriver

This default Oracle JDBC driver works with Oracle 9i, 10g, 11g, and 12c database versions. If
you are using Oracle 8i, see "Oracle 8i Support".

l For PostGreSQL, use: org.postgresql.Driver

l For DB2 unified driver, use: com.ibm.db2.jcc.DB2Driver

l For DB2 Legacy CLI-based, use: COM.ibm.db2.jdbc.net.DB2Driver

l For Sybase, use: com.sybase.jdbc2.jdbc.SybDriver

URL The JDBC URL that identifies the database.

l For Oracle, use: jdbc:oracle:thin:@hostname_or_IP:1521:database_name

l For MySQL, use: jdbc:mysql://hostname_or_IP:3306/database_name

l For Microsoft SQL Server 2000, use:
jdbc:microsoft:sqlserver://host:port;databasename=name

l For Microsoft SQL Server 2005 and later, use:
jdbc:sqlserver://host:port;databasename=name

l For PostGreSQL, use: jdbc:postgresql://host/database

l For DB2 unified driver, use: jdbc:db2:database_name

l For DB2 Legacy CLI-based, use: jdbc:db2://host_name: port_number/
database_name

l For Sybase, use: jdbc:sybase:Tds: hostname_or_IP:5000/sybsecurity

User The database user name.

Password Password for the database user.

Frequency Specifies how often, in seconds, to query the database. The default is 5 seconds.

Config Folder Enter the name of the folder that contains the properties file. Do not enter the full path to the file as
doing so will result in an error.

This is also the root name of the configuration file. If the configuration folder is myfolder, then the
FlexConnector will look for the configuration file in the directory:

ARCSIGHT_HOME\user\agent\flexagent\myfolder

l The configuration file for time-based connectors will be named:

myfolder.sdktbdatabase.properties

l The configuration file for ID-based connectors will be named:

myfolder.sdkibdatabase.properties

Developer's Guide
Chapter 3: Install and Configure the FlexConnector

Micro Focus Connectors (7.13.0) Page 42 of 242

ArcSight FlexConnector Multiple Folder File

This type parses files (fixed, delimited, or using regular expressions) that are written to multiple folders.
Events can be read in real time or in batch mode.

Developer's Guide
Chapter 3: Install and Configure the FlexConnector

Micro Focus Connectors (7.13.0) Page 43 of 242

Parameter Description

Log Unparsed Events? The default value is false. Select true for the connector to detect and log unparsed events to
$ARCSIGHT_HOME\current\logs\events.log. For more information on unparsed events, see
“Unparsed Events Detection”.

Folder The absolute path of the directory where log files for the FlexConnector are located. For example:
c:\logs

Processing Mode If the files in the folder are not being written to in real time and are complete, select batch. If the
files are open and new log lines are being added to them, select realtime.

Configuration File The base name of the configuration file that describes the format of the log file.

l For a connector that parses fixed-format files, the suffix .sdkfilereader.properties is
appended automatically.

l For a connector that parses variable-format files, the suffix
.sdkrfilereader.properties is appended automatically.

For example, if you specify the following name for a configuration file that parses fixed-format log
files: sample

The filename becomes:

ARCSIGHT_
HOME\user\agent\flexagent\sample.sdkfilereader.properties

Configuration Type l If the file is a fixed-format log file, select sdkfilereader.

l If the file is a variable-format log file, select sdkrfilereader.

l If the file is a keyvalue-format log file, select sdkkeyvalue.

l If the file is a CEF-format log file, select cef.

ArcSight FlexConnector Regex File

This type reads variable-format log files. Choose this type if the source log files have one event per line, but
the format of each line varies based on the type of event information. In this case, each line shares a
common section (for example, the date and hostname), but the number and content of the other fields on
the line varies. For devices that may not write to log files in real time, use the "ArcSight FlexConnector Regex
Folder File".

Note: The regular expression-based FlexConnectors require a familiarity with Java-compatible
regular expressions.

Developer's Guide
Chapter 3: Install and Configure the FlexConnector

Micro Focus Connectors (7.13.0) Page 44 of 242

Parameter Description

Log Unparsed Events The default value is false. Select true for the connector to detect and log unparsed events to
$ARCSIGHT_HOME\current\logs\events.log. For more information on unparsed events,
see “Unparsed Events Detection”.

Log File Name The absolute path and name of the file that this FlexConnector will read. For example:
c:\temp\sample_data.txt

Configuration File The base name of the configuration file that describes the format of the log file.

l For a connector that parses fixed-format files, the suffix .sdkfilereader.properties is
appended automatically.

l For a connector that parses variable-format files, the suffix
.sdkrfilereader.properties is appended automatically.

For example, if you specify the following name for a configuration file that parses fixed-format log
files: sample

The filename becomes:

ARCSIGHT_HOME\user\agent\flexagent\sample.sdkfilereader.properties

ArcSight FlexConnector Regex Folder File

Choose this type to parse log files using regular expressions to which data is not written in real time. This
type recursively reads variable-format log files in a folder or multiple folders.

Note: The regular expression-based FlexConnectors require a familiarity with Java-compatible
regular expressions.

Developer's Guide
Chapter 3: Install and Configure the FlexConnector

Micro Focus Connectors (7.13.0) Page 45 of 242

Parameter Description

Log Unparsed Events? The default value is false. Select true for the connector to detect and log unparsed events to
$ARCSIGHT_HOME\current\logs\events.log. For more information on unparsed events,
see “Unparsed Events Detection”.

Log Folder The absolute path of the directory where log files for the FlexConnector are located. For example:
c:\logs

Configuration File The base name of the configuration file describing the format of the log file.

l For a connector that parses fixed-format files, the suffix .sdkfilereader.properties is
appended automatically.

l For a connector that parses variable-format files, the suffix
.sdkrfilereader.properties is appended automatically.

For example, if you specify the following name for a configuration file that parses fixed-format log
files: sample

The filename becomes:

ARCSIGHT_HOME\user\agent\flexagent\sample.sdkfilereader.properties

ArcSight FlexConnector REST

This type uses REST API endpoints, JSON parser, and OAuth2 authentication to collect security events
from cloud vendors (such as Salesforce or Google Apps). This FlexConnector is not documented in this
guide. See the ArcSight FlexConnector REST Developer’s Guide for details.

Developer's Guide
Chapter 3: Install and Configure the FlexConnector

Micro Focus Connectors (7.13.0) Page 46 of 242

ArcSight FlexConnector Scanner Database

Choose this type to import the results of a scan from a scanner device and forward the data to ESM so that
ESM can model an organization’s assets, open ports, operating systems, applications, and vulnerabilities.
The connector imports periodic scans to ESM, which uses this information for event prioritization, reporting,
and correlation.

A database contains results for multiple scans where each scan is identified by a job identifier (ID). The
scan results are organized in multiple tables that are linked by job IDs or other IDs. SQL query-based
parsers are used to extract relevant information from the scan results.

Note:

l After installing connector core software and before configuring the ArcSight FlexConnector ID-
Based Database, you will need to download an appropriate JDBC driver. See “Additional
Configuration for Database Connectors” for complete information.

l Knowledge of SQL is a prerequisite for coding database FlexConnectors.

l SmartConnector releases since 7.2.1 have implemented Java 8, which does not support ODBC
connections; therefore, database connectors can only use JDBC connections. For the same reason,
the MS Access database, which uses only ODBC connections, is no longer supported.

Developer's Guide
Chapter 3: Install and Configure the FlexConnector

Micro Focus Connectors (7.13.0) Page 47 of 242

Developer's Guide
Chapter 3: Install and Configure the FlexConnector

Micro Focus Connectors (7.13.0) Page 48 of 242

Parameter Description

Database JDBC Driver The JDBC driver that will be used to connect to the database.

l For SQL Server, perform the procedure in "Install SQL Server JDBC Driver".

l For MySQL, perform the procedure in "Install MySQL Driver".

For Oracle, use:
oracle.jdbc.driver.OracleDriver

This default Oracle JDBC driver works with Oracle 9i, 10g, 11g, and 12c database versions. If
you are using Oracle 8i, see "Oracle 8i Support".

l For PostGreSQL, use:
org.postgresql.Driver

l For DB2 unified driver, use:
com.ibm.db2.jcc.DB2Driver

l For DB2 Legacy CLI-based, use:
COM.ibm.db2.jdbc.net.DB2Driver

l For Sybase, use:
com.sybase.jdbc2.jdbc.SybDriver

Database URL The JDBC URL that identifies the database.

l For Oracle, use:
jdbc:oracle:thin:@hostname_or_IP:1521:database_name

l For MySQL, use:
jdbc:mysql://hostname_or_IP:3306/database_name

l For Microsoft SQL Server 2000, use:
jdbc:microsoft:sqlserver://host:port;databasename=name

l For Microsoft SQL Server 2005 and later, use:
jdbc:sqlserver://host:port;databasename=name

l For PostGreSQL, use:
jdbc:postgresql://host/database

l For DB2 unified driver, use:
jdbc:db2:database_name

l For DB2 Legacy CLI-based, use:
jdbc:db2://host_name: port_number/ database_name

l For Sybase, use:
jdbc:sybase:Tds: hostname_or_IP:5000/sybsecurity

Database User The database user name.

Developer's Guide
Chapter 3: Install and Configure the FlexConnector

Micro Focus Connectors (7.13.0) Page 49 of 242

Parameter Description

Database Password Password for the database user.

Configuration Folder Enter the name of the folder that contains the properties file. Do not enter the full path to the file as
doing so will result in an error.

This is also the root name of the configuration file. If the configuration folder is “myfolder,” the
FlexConnector will look for the configuration file in the directory:

ARCSIGHT_HOME\user\agent\flexagent\myfolder

l The configuration file for time-based connectors will be named:

myfolder.sdktbdatabase.properties

l The configuration file for ID-based connectors will be named:

myfolder.sdkibdatabase.properties

Mode l If the files in the folder are not being written to in real time and are complete, select batch.

l If the files are open and new log lines are being added to them, select realtime.

ArcSight FlexConnector Scanner Text Reports

Choose this type to import the results of a scan from a scanner device and forward the data to ESM so that
ESM can model an organization’s assets, open ports, operating systems, applications, and vulnerabilities.
The connector imports periodic scans to ESM, which uses this information for event prioritization, reporting,
and correlation.

A normal text report contains results for a single scan with each line in the report containing a piece of
information about a host. Regular expression based parsers are used to extract relevant information from
the report

Developer's Guide
Chapter 3: Install and Configure the FlexConnector

Micro Focus Connectors (7.13.0) Page 50 of 242

Parameter Description

Log Unparsed Events The default value is false. Select true for the connector to detect and log unparsed events to
$ARCSIGHT_HOME\current\logs\events.log. For more information on unparsed events,
see “Unparsed Events Detection”.

Mode l If the files in the folder are not being written to in real time and are complete, select batch.

l If the files are open and new log lines are being added to them, select realtime.

Scan Report Folder The folder in which the scanner reports are located.

Configuration File The base name of the configuration file describing the format of the log file.

l For a connector that parses fixed-format files, the suffix .sdkfilereader.properties is
appended automatically.

l For a connector that parses variable-format files, the suffix
.sdkrfilereader.properties is appended automatically.

For example, if you specify the following name for a configuration file that parses fixed-format log files:
sample

The filename becomes:

ARCSIGHT_HOME\user\agent\flexagent\sample.sdkfilereader.properties

ArcSight FlexConnector Scanner XML Reports

Choose this type to import the results of a scan from a scanner device and forward the data to ESM so that
ESM can model an organization’s assets, open ports, operating systems, applications, and vulnerabilities.

Developer's Guide
Chapter 3: Install and Configure the FlexConnector

Micro Focus Connectors (7.13.0) Page 51 of 242

The connector imports periodic scans to ESM, which uses this information for event prioritization, reporting,
and correlation.

An XML report contains results for a single scan with scan results organized in the form of nested XML
elements. XQuery/XPath-based parsers are used to extract relevant information from the report.

Note: The XML FlexConnectors require a familiarity with XML, XPath, and XQuery.

Parameter Description

Mode l If the files in the folder are not being written to in real time and are complete, select batch.

l If the files are open and new log lines are being added to them, select realtime.

Report Folder The folder in which the SAINT scanner reports are located.

Configuration File The base name of the configuration file describing the format of the log file.

l For a connector that parses fixed-format files, the suffix .sdkfilereader.properties is
appended automatically.

l For a connector that parses variable-format files, the suffix
.sdkrfilereader.properties is appended automatically.

For example, if you specify the following name for a configuration file that parses fixed-format log
files: sample

The filename becomes:

ARCSIGHT_HOME\user\agent\flexagent\sample.sdkfilereader.properties

Developer's Guide
Chapter 3: Install and Configure the FlexConnector

Micro Focus Connectors (7.13.0) Page 52 of 242

ArcSight FlexConnector XML File

Choose this type for devices that write event information to XML files. Event information in these files is
presented in standard XML format, using namespaces, elements, attributes, text, and cdata. The connector
recursively reads the events from the XML-based files in a folder.

Note: The XML FlexConnectors require a familiarity with XML, XPath, and XQuery.

Parameter Description

Folder The absolute path of the directory where log files for the FlexConnector are located. For example:
c:\logs

Configuration File The base name of the configuration file describing the format of the log file.

l For a connector that parses fixed-format files, the suffix .sdkfilereader.properties is
appended automatically.

l For a connector that parses variable-format files, the suffix
.sdkrfilereader.properties is appended automatically.

For example, if you specify the following name for a configuration file that parses fixed-format log files:
sample

The filename becomes:

ARCSIGHT_HOME\user\agent\flexagent\sample.sdkfilereader.properties

Developer's Guide
Chapter 3: Install and Configure the FlexConnector

Micro Focus Connectors (7.13.0) Page 53 of 242

ArcSight FlexConnector Simple Network Management Protocol (SNMP
Unified)

To install a connector to collect event information from SNMP traps, select SNMP Unified from the list of
SmartConnector to install. The SmartConnector for SNMP Unified requires that you create a specific folder
and copy your parser into that folder. After installation of core connector software, under $ARCSIGHT_
HOME/current/user/agent, create the following subfolder if it does not already exist. This folder is for
the various trap OIDs.

flexagent/snmp/subfolder

For example:

$ARCSIGHT_HOME/current/user/agent/flexagent/snmp/<trap OID>

For complete connector installation and configuration information, see the configuration guide for the
SmartConnector for SNMP Unified.

ArcSight FlexConnector Syslog

Select the Syslog Daemon connector from the list of SmartConnector to install if you want to create a
Syslog FlexConnector.

Developer's Guide
Chapter 3: Install and Configure the FlexConnector

Micro Focus Connectors (7.13.0) Page 54 of 242

Parameter Description

Network Port The port the connector listens to for syslog events.

IP The connector listens for syslog events only from this IP address. Enter (ALL) for all IP addresses in
the specified port address.

Protocol Select UDP or Raw TCP as the protocol to be used to receive events.

Forwarder The CEFForwarder mode parameter is false by default. If the destination is a Syslog Daemon
connector and you want to preserve information about the original connector, then the CEF
Forwarder mode should be set to true both in this destination and in the receiving connector. That
is, if you have a chain of connectors connected by syslog, syslog NG, or CEF encrypted syslog (UDP),
and you want to preserve information about the original connector, the destinations should all have
the CEF Forwarder mode set to true (which is implicitly true for CEF Encrypted Syslog (UDP)), and
the connectors receiving from them should also have the CEF Forwarder mode set to true.

For example, you can configure a number of connectors to all send events using the CEF Syslog
destination type to one Syslog Daemon connector, which then sends to ESM . In order for the events
arriving at ESM to retain information about the specific connector that collected the event, the
connector’s CEF Syslog destinations should have the Forwarder mode set to true, and the Syslog
Daemon connector should also set the Forwarder mode to true. The information will display in the
original agent fields of the events.

Select a Destination
This section describes selecting the ArcSight Manager (encrypted) destination. For information about this
destination or any of the other possible destinations, see the ArcSight SmartConnector User Guide.

Developer's Guide
Chapter 3: Install and Configure the FlexConnector

Micro Focus Connectors (7.13.0) Page 55 of 242

1. The next window asks for the destination type; make sure ArcSight Manager (encrypted) is
selected and click Next.

2. Enter values for the Manager Host Name, Manager Port, User, and Password required
parameters. This is the same ArcSight user name and password you created during the ArcSight
Manager installation. Click Next.

3. Enter a name for the SmartConnector and provide other information identifying the connector's use in
your environment. Click Next. The connector starts the registration process.

4. The certificate import window for the ArcSight Manager is displayed. Select Import the certificate to
the connector from destination and click Next. (If you select Do not import the certificate to
connector from destination, the connector installation will end.) The certificate is imported and the
Add connector Summary window is displayed.

Complete Installation and Configuration
1. Review the Add Connector Summary and click Next. If the summary is incorrect, click Previous to

make changes.

2. The wizard now prompts you to choose whether you want to run the SmartConnector as a stand-alone
process or as a service. If you choose to run the connector as a stand-alone process, select Leave as a
standalone application, click Next, and continue with step 5.

3. If you chose to run the connector as a service, with Install as a service selected, click Next. The
wizard prompts you to define service parameters. Enter values for Service Internal Name and
Service Display Name and select Yes or No for Start the service automatically. The Install
Service Summary window is displayed when you click Next.

4. Click Next on the summary window.

5. To complete the installation, choose Exit and click Next.

Additional Configuration for Database Connectors
For database connectors, connection to the database through a JDBC driver is required. The following
sections provide instructions for downloading and installing JDBC drivers, instructions for adding JDBC
drivers to Connector Appliance/ArcSight Management Center, and how to use a JDBC driver with
connectors that connect to Microsoft SQL Servers using Windows Authentication only:

l Install SQL Server JDBC Driver

l Install MySQL Driver

l Add a JDBC Driver to the Connector Appliance/ArcSight Management Center

l Configure the JDBC Driver and Windows Authentication

Some changes are required if you are using an Oracle 8i database. See:

l Oracle 8i Support

Developer's Guide
Chapter 3: Install and Configure the FlexConnector

Micro Focus Connectors (7.13.0) Page 56 of 242

To avoid duplicate events when developing a new connector, see:

l Troubleshooting Duplicate Events

See "Why does my connection to SQL Server fail/hang?" in "Frequently Asked Questions" for information on
possible database connection issues that can result from certain Java versions.

Install SQL Server JDBC Driver
There are a number of steps that must be completed outside of FlexConnector setup before the connector
will be able to establish a connection with an SQL Server.

First, a Microsoft SQL Server JDBC Driver must be downloaded. For information about and to download the
MS SQL Server JDBC Driver, see:

http://msdn.microsoft.com/en-us/sqlserver/aa937724

Different versions of the JDBC driver are required for different SQL Server database versions; be sure to
use the correct driver for your database version. The name of the jar file may be different for some JDBC
driver versions.

When you download the JDBC driver, the version of the jar file depends on the version of the JRE the
connector uses:

Version 7.2.1 and later use JRE 1.8 and require sqljdbc42.jar (available with JDBC Driver 6.0 for SQL
Server)

Version 7.1.2 and later use JRE 1.7 and require sqljdbc41.jar (available with JDBC Driver 6.0 for SQL
Server)

Prior versions, which run JRE 1.6, require sqljdbc4.jar (available with JDBC Driver 4.0 for SQL Server)

Install the JDBC driver:

After installation of SmartConnector core software, when the “Add a Connector” window is displayed,
perform the following tasks:

1. Copy the sqljdbc jar file to $ARCSIGHT_HOME\current\user\agent\lib. The version of the
jar file depends on the version of the Java Runtime Environment (JRE) the connector uses.
SmartConnector versions 7.1.2 and later use JRE 1.7 (also referred to as Java 7) and require
sqljdbc41.jar. Prior versions of connectors that run JRE 1.6 (also referred to as Java 6) require
sqljdbc4.jar.

2. If using Windows authentication copy sqljdbc_auth.dll to $ARCSIGHT_
HOME\current\jre\bin. Note that there are additional prerequisites that are outside the scope of
ArcSight for Windows authentication to work, and confirming connectivity with an SQL Server user
might prove easier during the initial setup (Microsoft recommends Windows Authentication).

3. Copy the FlexConnector Configuration File (such as .sdkibdatabase.properties) to
$ARCSIGHT_HOME\user\agent\flexagent\<Configuration Folder> (the FlexConnector

Developer's Guide
Chapter 3: Install and Configure the FlexConnector

Micro Focus Connectors (7.13.0) Page 57 of 242

http://msdn.microsoft.com/en-us/sqlserver/aa937724

database parameter configuration folder). The setup will run queries in the FlexConnector
configuration file as part of verification of the connector parameters. One of the queries is
maxid.query for id-based connectors and lastdate.query for time-based connectors, which will
set MaxID or lastdate.query for the FlexConnector; when the FlexConnector is started, it will only
process rows added after MaxID or lastdate.query.

4. From the $ARCSIGHT_HOME/current/bin directory, double-click runagentsetup to return to
the SmartConnector Configuration Wizard At this point FlexConnector setup can be completed. Below
are some additional things to consider when configuring the following connector parameters.

l The database JDBC Driver must be

com.microsoft.sqlserver.jdbc.SQLServerDriver

l The database URL should be similar to

jdbc:sqlserver://host:port;databasename=db (append
;integratedSecurity=true if using Windows authentication).

For Microsoft SQL Server 2000, use:

jdbc:microsoft:sqlserver://host:port;databasename=name

For Microsoft SQL Server 2005 and later, use:

jdbc:sqlserver://host:port;databasename=name

l The database user must include the domain if using Windows authentication and the connector
host and the SQL Server host are in different domains.

l The database Password must correspond to the database user (SQL Server or Windows).

l The configuration folder must correspond to the folder where the FlexConnector configuration file
is placed (see step 3 above).

When using the ArcSight Connector Appliance or ArcSight Management Center, after downloading and
extracting the JDBC driver, upload the driver into the repository and apply it to the appropriate container
or containers. See “Add a JDBC Driver to the Connector Appliance/ArcSight Management Center" for
detailed information.

Install MySQL Driver
After installing connector core software and before configuring the ArcSight FlexConnector ID-based DB,
you will need to follow these instructions to download an appropriate JDBC driver.

1. Click Cancel to leave the configuration wizard at this point.

2. The following steps are required when you use the MySQL JDBC driver, required for Connector
Appliance/ArcSight Management Center and Linux systems.

a. For connector versions 7.2.4 and later, download the latest MySQL JDBC Driver from:

http://dev.mysql.com/downloads/connector/j

For connector versions 7.2.3 and earlier, download the MySQL 5.0.8 JDBC Driver from:

Developer's Guide
Chapter 3: Install and Configure the FlexConnector

Micro Focus Connectors (7.13.0) Page 58 of 242

http://dev.mysql.com/downloads/connector/j

https://dev.mysql.com/downloads/connector/j/5.0.html

Install the driver.

b. For software connectors, copy the appropriate jar file to $ARCSIGHT_
HOME\current\user\agent\lib, where $ARCSIGHT_HOME refers to the connector install
folder, such as c:\ArcSight\SmartConnectors. For Connector Appliance/ArcSight
Management Center users, see "Add a JDBC Driver to the Connector Appliance/ArcSight
Management Center".

c. From $ARCSIGHT_HOME/current/bin, double-click runagentsetup to return to the
SmartConnector Configuration Wizard.

Add a JDBC Driver to the Connector Appliance/ArcSight
Management Center

1. After downloading and extracting the JDBC driver, upload the driver into the repository and apply it to
the appropriate container or containers, as described in this section.

2. From the Connector Appliance/ArcSight Management Center, select Setup > Repositories.

3. Select JDBC Drivers from the left pane and click the JDBC Drivers tab.

4. Click Upload to Repository.

5. From the Repository File Creation Wizard, select Individual Files, then click Next.

6. Retain the default selection and click Next.

7. Click Upload and locate and select the .jar file you downloaded in step 3 of SmartConnector
Installation.

8. Click Submit to add the specified file to the repository and click Next to continue.

9. After adding all files you require, click Next.

10. In the Name field, enter a descriptive name for the zip file (JDBCdriver, for example). Click Next.

11. Click Done to complete the process; the newly added file is displayed in the Name field under Add
Connector JDBC Driver File.

12. To apply the driver file, select the driver .zip file and click the up arrow to invoke the Upload
Container Files wizard. Click Next.

13. Select the container or containers into which the driver is to be uploaded; click Next.

14. Click Done to complete the process.

15. Add the connector through the Connector Appliance/ArcSight Management Center interface; see the
Connector Appliance/ArcSight Management Center Online Help for detailed information.
Descriptions of parameters to be entered during connector configuration are provided in "Select
Connector and Add Parameter Information".

Developer's Guide
Chapter 3: Install and Configure the FlexConnector

Micro Focus Connectors (7.13.0) Page 59 of 242

https://dev.mysql.com/downloads/connector/j/5.0.html

Configure the JDBC Driver and Windows Authentication
This section provides guidance on how to use a JDBC driver with SmartConnectors that connect to
Microsoft SQL Servers using Windows Authentication only. As previously described, download the SQL
JDBC drivers from Microsoft and install the driver before beginning this procedure.

Note:
l The JDBC driver does not provide function to supply Windows authentication credentials such as

user name and password. In such cases, the applications must use SQL Server Authentication.
When installing the connector on a non-Windows platform, configure the Microsoft SQL Server for
Mixed Mode Authentication or SQL Server Authentication.

l Microsoft Type 4 JDBC drivers (versions 4.0 or later) support integrated authentication. Windows
Authentication works only when using one of these drivers. You also must add
;integratedSecurity=true to the JDBC URL entry for the connection to your database.

1. Copy the sqljdbc_auth.dll file from the JDBC driver download to the $ARCSIGHT_
HOME\jre\bin directory. For example, the JDBC driver download path for SQL JDBC driver version
4.0 for 32-bit environment would be sqljdbc_4.0\enu\auth\x86\sqljdbc_auth.dll and, for
64-bit environment, sqljdbc_4.0\enu\auth\x64\sqljdbc_auth.dll.

Note: When upgrading a connector, the $ARCSIGHT_HOME\jre\bin directory is overwritten,
therefore, you must copy the sqljdbc_auth.dll authentication file to this folder again after
update.

2. Go to $ARCSIGHT_HOME\current\bin and double-click runagentsetup to continue the
SmartConnector installation.

3. When entering the connector parameters, in the JDBC Database URL field, append
;integratedSecurity=true to the end of the URL string. In the following example, note that the
name or instance of the database configured at installation/audit time should be used.

jdbc:sqlserver://mysqlserver:1433;DatabaseName=mydatabase;integratedSecuri
ty=true

4. Complete the remaining connector wizard configuration steps.

5. After completing the connector installation, if running on a Windows Server, change the service
account to use the Windows account that should login to the database. The connector will use the
account used to start the service, regardless of the account value setting entered in the connector
setup process.

Developer's Guide
Chapter 3: Install and Configure the FlexConnector

Micro Focus Connectors (7.13.0) Page 60 of 242

Oracle 8i Support
With the addition of Oracle 11g support, ArcSight replaced the 10.2.0.1 oracle-jdbc driver in
$ARCSIGHT_HOME\current\lib\agent with the oracle-jdbc-11.1.0.6.jar. This driver no
longer connects to Oracle 8i databases; therefore, before upgrading the connector:

1. Go to $ARCSIGHT_HOME\Current\lib\agent and locate the oracle-jdbc-10.2.0.1.jar file.
Copy it to a temporary location.

2. After completing connector upgrade and before running the connector, replace the 11.1.0.6.jar
file with the 10.2.0.1.jar file.

Troubleshooting Duplicate Events
This section provides guidelines that can be used to troubleshoot duplicate events or to avoid duplicate
events when developing a new connector

Duplicate events are ignored and not forwarded to ESM or other destinations. Duplicate events caused by
the connector can result in lost events. Reasons for connector-caused duplicate events include: primary key
not used as ID field, uniqueid.fields that are not unique to only one event, and incorrect queries.

Typical parser queries can be divided into two groups:

l simple main query - queries one event table or view.

l complex main query - queries one event table or view with left outer join to secondary tables, views and
sub-queries.

Some duplicate events can originate in the connector’s parser with either of the following:

l Main query

l Id.field and unique.idfields for the ID-based DB connector or the timestamp.field and
unique.idfields for the time-based DB connector

If the combination of fields is not unique for each event, then duplicate events will occur.

A uniqueid.field can be one or more table fields separated by commas.

You can identify duplicate events by errors in the agent log file such as the following:

[..][ERROR][…][processQuery] Event with duplicate ID …, ignoring

Example 1: ID-based Database Connectors Only

This example is for ID-based database connectors only and shows a simple main query with id field.

query= select evt. ID, evt.SourceHost,… FROM Events as evt
WHERE evt.ID > ? order by ID
id.field=ID

Developer's Guide
Chapter 3: Install and Configure the FlexConnector

Micro Focus Connectors (7.13.0) Page 61 of 242

Usually, the ID used in the where clause condition and the id.field should be the table’s primary key.

If a duplicate event occurs, that means the id.field is not the primary key. To fix the issue:

l If possible, change the id.field to be the primary key.

l If the id.field cannot be changed to become a unique primary key for each event, add one or more
table fields to the uniqueid.field so that the id.field and uniqueid.field combination is
unique for each event.

Example 2: ID-based and Time-based Connectors

For ID-based database connectors:

query= select evt. ID, evt.IDX,… FROM Events as evt
WHERE evt.ID > ? order by ID
id.field=ID
uniqueid.field=IDX

If duplicate events occur, then the id.field is not the primary key and the combination of id.field and
unique.idfield is also not unique to each event. To fix the issue, you should extend uniqueid.field
to add more fields to it. Add one more field to uniqueid.field and then test the connector until the
Event with duplicate ID error messages do not occur.

For time-based database connectors:

query=select evt.ReceivedTime, evt.IDX,… FROM Events as evt
WHERE evt.ReceivedTime >= ? order by evt.ReceivedTime
timestamp.field= ReceivedTime
uniqueid.field=IDX

If duplicate events occur, then the timestamp.field is not the primary key and the combination of
timestamp.field and unique.idfield is also not unique to each event. To fix the issue, you should
extend uniqueid.field to add more fields to it. Add one more field to uniqueid.field and then test
the connector until the Event with duplicate ID error messages do not occur.

Example 3: Complex Main Query with a Join

This example is for a complex main query with a join.

select evt. ID, etype. EventTypeID ,etype.EventName FROM Events as evt
Left Join EventType as etype on evt.EventTypeID=etype.EventTypeID
WHERE evt.AutoID > 0 order by ID

The following tables shows the join condition relationship between evt.EventTypeID and
etype.EventTypeID.

If evt.EventTypeID is a "many-to-one" or "one-to-one" relationship with etype.EventTypeID as shown
in the following table:

Developer's Guide
Chapter 3: Install and Configure the FlexConnector

Micro Focus Connectors (7.13.0) Page 62 of 242

evt.EventTypeID etype.EventTypeID etype.EventName

1 1 select

1 2 update

2

The query result will be the same number of events as in the Events table and no duplicate events as
shown in the following table.

evt.EventTypeID etype.EventTypeID etype.EventName

1 1 select

1 1 select

2 2 update

However, if evt.EventTypeID is “one-to-many” relationship to etype.EventTypeID as shown in the
following table:

evt.EventTypeID etype.EventTypeID etype.EventName

1 1 select

2 1 insert

2 update

The query result will be one more event as compared to the Events table and a duplicate event will happen
as shown in the following table:

evt.EventTypeID etype.EventTypeID etype.EventName

1 1 select

1 1 insert

2 2 update

One way to find out, if the duplicate event is caused by the join condition, is to run two queries: the
original query and the query without the join:

select evt. ID, etype. EventTypeID ,etype.EventName FROM Events as evt
Left Join EventType as etype on evt.EventTypeID=etype.EventTypeID
WHERE evt.AutoID > 0 order by ID

Without the join:

select evt. ID FROM Events as evt WHERE evt.AutoID > 0 order by ID

Developer's Guide
Chapter 3: Install and Configure the FlexConnector

Micro Focus Connectors (7.13.0) Page 63 of 242

If the total number of rows returned by the original query is equal to the query without the join, then the
duplicate event is not caused by the join condition. You can then debug the duplicate event error using
Example 1: ID-based Database Connectors Only and Example 2: ID-based and Time-based Connectors.

If the total number of rows returned by the original query is greater than the query without the join, then
the issue is caused by join condition and the query must be modified to fix the duplicate event.

Developer's Guide
Chapter 3: Install and Configure the FlexConnector

Micro Focus Connectors (7.13.0) Page 64 of 242

Chapter 4: Create a Configuration File
The configuration file (also referred to as a parser) is a text file containing properties (name, value pairs)
that describe how the FlexConnector parses event data. Blank lines and lines beginning with the comment
character ‘#’ are ignored. Other lines consist of a name, an equal sign, and a value.

Note: Parsers are obfuscated for security reasons. Contact Customer Support for assistance with
parser overrides.

The REST FlexConnector is documented in the ArcSight REST FlexConnector Developer’s Guide.

This chapter contains the following information:

l Parser File Locations and Names

l Example Parser File

l Parser File Structure

l FlexConnector Creation Wizard for Delimited Log Files

l Regex Tool for Regex FlexConnectors

l Start the FlexConnector

Parser File Locations and Names
The following table describes the location and filename of the configuration file used for each type of
FlexConnector. The vendor or database is usually named for the device vendor (such as “superSecure”).

Type Location Filename

Log file ARCSIGHT_HOME\user\agent\ flexagent vendor.sdkfilereader.properties

Regex Log file ARCSIGHT_HOME\user\agent\ flexagent vendor.sdkrfilereader.properties

Regex Folder
Follower

ARCSIGHT_HOME\user\agent\ flexagent vendor.sdkrfilereader.properties

Time-based
Database

ARCSIGHT_HOME\user\agent\ flexagent\vendor
or product_name

database.sdktbdatabase.properties

ID-based Database ARCSIGHT_HOME\user\agent\ flexagent\vendor
or product_name

database.sdkibdatabase.properties

Multi-Database ARCSIGHT_HOME\user\agent\ flexagent\vendor
or product_name

database.sdktbdatabase.properties

Micro Focus Connectors (7.13.0) Page 65 of 242

Type Location Filename

SNMP For the SmartConnector for SNMP Unified, create
folders for your various trap OIDs as follows:
ARCSIGHT_HOME\user\agent\
flexagent\snmp\<various trap OIDs>

sdksnmp.#.snmptrap properties

(# = trap type, such as ‘1’) and

sdksnmp.#.sdksnmptrap properties

(varies from the type sdksnmp.#.snmptrap in that
trap types must be defined in the parser using the
token trap.types)

Syslog ARCSIGHT_HOME\user\agent\flexagent\syslog vendor.subagent.sdkrfilereader.properties

XML Folder Follower ARCSIGHT_HOME\user\agent\flexagent vendor.xqueryparser.properties

JSON Folder
Follower

ARCSIGHT_HOME\user\agent\flexagent vendor.jsonparser.properties

Scanner (for normal
text)

ARCSIGHT_HOME\user\agent\flexagent vendor.scanner.sdkrfilereader.properties

vendor.vulns.sdkrfilereader.properties
See also "Getting Vulnerabilities for Scanned
Hosts".

vendor.openports.sdkrfilereader.properties
See also "Getting Open Ports on Scanned Hosts".

vendor.uris.sdkrfilereader.properties
See also "Getting OS and Applications (URIs) on
Scanned Hosts".

Scanner (for XML) ARCSIGHT_HOME\user\agent\flexagent vendor.scanner.xqueryparser.properties

vendor.vulns.xqueryparser.properties

vendor.openports.xqueryparser.properties

vendor.uris.xqueryparser.properties

Scanner (for
database)

ARCSIGHT_HOME\user\agent\flexagent\vendor or
product_name

database.sdkdatabase.properties

Example Parser File
FlexConnectors are controlled by a configuration file, which is described in more detail the examples shown
in “Configuration File Examples”. The following example illustrates a simple Log File FlexConnector
configuration file:

comments.start.with=#
delimiter=,
token.count=5
token[0].name=Time_of_the_event
token[0].type=TimeStamp
token[0].format=yyyy-MM-dd HH:mm:ss

Developer's Guide
Chapter 4: Create a Configuration File

Micro Focus Connectors (7.13.0) Page 66 of 242

token[1].name=ClientIp
token[1].type=IPAddress
token[2].name=Method
token[2].type=String
token[3].name=URL
token[3].type=String
token[4].name=Status
token[4].type=String

event.deviceReceiptTime=Time_of_the_event
event.sourceAddress=ClientIp
event.deviceSeverity=Status
event.requestUrl=URL
event.requestMethod=Method

event.deviceVendor=__getVendor(“MyVendor”)
event.deviceProduct=__stringConstant(“MyProduct”)

severity.map.veryhigh.if.deviceSeverity=404,500
severity.map.medium.if.deviceSeverity=303,302
severity.map.low.if.deviceSeverity=200..204

Parser File Structure
The type of information a configuration file contains depends on its FlexConnector type. However, the
following information types are common to all types of FlexConnectors:

l Token Declarations (Tokenization)

l Event Mapping (Normalization)

l Severity Mapping

l Extra Processors

Here is an example of a configuration file that contains the most common information types.

Developer's Guide
Chapter 4: Create a Configuration File

Micro Focus Connectors (7.13.0) Page 67 of 242

Token Declarations
The Token Declarations section specifies the tokens that will be parsed from each input record. Each token
has a name and a type. Depending on the type, some tokens (such as TimeStamp) have a format, as well.
XML FlexConnectors also have a path expression and a context node, which are described in
“Configuration Properties for an XML FlexConnector”.

In addition to assigning parsed tokens to events, you can also assign built-in tokens, which are described in
“Event Mapping”.

Parameter Description

token.count This property specifies the number of tokens that each line of the file contains. For
example, token.count=7 indicates there are seven tokens. Token declarations are
numbered from 0 to token.count-1.

Developer's Guide
Chapter 4: Create a Configuration File

Micro Focus Connectors (7.13.0) Page 68 of 242

token[x].name This property specifies a user-defined name for the token, this can be a friendly
name used to identify the token. For example, token[0].name=Time_of_the_event
would set the name of the token of index 0 to Time_of_the_event. Use this friendly
name to identify how to map it to the event object.

token[x].type This property specifies the data type of the object. It is important to set the correct
type so the mapping to the event object can be correctly performed. For a list of
supported types, see "Token Types".

token[x].format This property modifies the type of the token, for example, when using the
TimeStamp type, the format defines the actual format of the timestamp. See "Date
and Time Format Symbols".

Token Types
Token types are important because tokens can only be mapped to ArcSight event fields with matching
types. See "ArcSight Built-in Token Types" for descriptions of the token types. They also listed in the
ArcSight Console User’s Guide, in the Reference Guide, under "Data Fields".

Event Mapping
The Event Mapping section lists tokens by name, which are mapped to ArcSight event fields, such as
event.sourceAddress. The type of the token must match the type of the ArcSight Event field.

In addition to the tokens that are parsed from each input record, you can also configure built-in tokens for
specific FlexConnector. Built-in tokens are predefined strings that assign values associated with them to
events. For example, if you want to set the event.deviceHostName to the name of the syslog sender,
you can set event.deviceHostName=_SYSLOG_SENDER.

For a complete list of built-in tokens available for each type of FlexConnector, see "ArcSight Built-in Tokens".
For a complete list of the ArcSight event fields, see "ArcSight Built-in Event Field Mappings".

See “RequestUrl Event Field” for information on how to use requestUrl.

RequestUrl Event Field
The connector returns a URL when the requestUrl event field is invoked. The URL is stored in the event
table. ESM can then parse the URL to derive the following URIs:

l requestProtocol

l requestUrlAuthority

l requestUrlHost

l requestUrlPort

Developer's Guide
Chapter 4: Create a Configuration File

Micro Focus Connectors (7.13.0) Page 69 of 242

l requestUrlFileName

l requestUrlQuery

The requestUrl event field has the following format:

<protocol>://<authority>@<host>:<port>/<filename>?<query>

Note: Do not set a value for the requestUrl event field and set a value for one or more of the URIs.

Setting a value for the requestUrl event field and one or more of the URI fields will result in error
messages such as: Attempting to set the _URL_ when _URI_ is already set.. or
Attempting to set the _URIcomponent_ when _URL_ is already set.. Set values for
either the requestUrl event field or for one or more of the other URI event fields.

Operations Table
Operations are used primarily when tokens are mapped to Micro Focus ArcSight event fields. The following
list contains the essential operations. "ArcSight Operations" describes all of the operations that can be used
when tokens are mapped toMicro Focus ArcSight event fields.

IP Address Operations

l __doubleToAddress

l __noDot4QuadStringsToAddress

l __numberToAddress

l __regexTokenAsAddress

Number Operations

l __regexTokenAsInteger

l __safeToInteger

l __safeToLong

String Operations

l __concatenate

l __stringConstant

l __simpleMap

l __toLowerCase

l __toUpperCase

TimeStamp Operations

l __createLocalTimeStampFromGMTSecondsMillis

l __createLocalTimeStampFromSecondsSinceEpoch

Developer's Guide
Chapter 4: Create a Configuration File

Micro Focus Connectors (7.13.0) Page 70 of 242

l __createTimeStamp

l __useCurrentYear

Severity Mapping
The Severity Mapping section provides a severity mapping capability in order to further categorize (or
normalize) each event. For example, severity.map.low.if.deviceSeverity.

FlexConnector severity mapping must be flexible because not all devices will report severity, or use the
same format even with devices of the same type. Some use a scale of 0 to 10 levels. Devices that don’t really
provide a severity-oriented field require that you map severity to an action, or some other event-specific
field.

Your severity mappings can also reflect your environment. You might want to consider what would
normally be a Medium or Low severity event as Very-High simply because it shouldn’t be there to begin
with. Or, the opposite: you might lower the severity because the event represents a normal situation on your
network. As a general rule, map severity as accurately as possible and use Filters to ignore noise and Rules
to respond to specific incidents.

Given the possibilities for Connector Severity mapping mentioned above you should cover all of the
possible values of a device severity with a severity map line. All of the mappings follow the same syntax:

severity.map.agent_severity.if.deviceSeverity=value

In this case, agent_severity will be one of very high, high, medium or low and value can either be a
comma-separated list of values or use the “..” notation for ranges of values.

Examples

severity.map.veryhigh.if.deviceSeverity=OPEN-INBOUND
severity.map.low.if.deviceSeverity=DROP
severity.map.medium.if.deviceSeverity=OPEN,CLOSE
severity.map.high.if.deviceSeverity=400..599
severity.map.medium.if.deviceSeverity=300..399
severity.map.low.if.deviceSeverity=100..299

This table lists severity mappings:

ArcSight Severity Property

Very High severity.map.veryhigh.if.deviceSeverity

High severity.map.high.if.deviceSeverity

Medium severity.map.medium.if.deviceSeverity

Low severity.map.low.if.deviceSeverity

Developer's Guide
Chapter 4: Create a Configuration File

Micro Focus Connectors (7.13.0) Page 71 of 242

These properties cause the ArcSight Severity to be set to a specific level if the Device Severity is one of the
values specified. For example:

severity.map.veryhigh.if.deviceSeverity=404,500

This would cause a Very High severity event when the status of the request was 404 or 500.

severity.map.medium.if.deviceSeverity=303,302

This would cause a Medium severity event when the status of the request was 303 or 302.

severity.map.low.if.deviceSeverity=200..204

This would cause a Low severity event when the status of the request was 200, 201, 202, 203, or 204.

Extra Processors
Optional. You can use the extra processor property to chain two configuration files together. This property
is useful if you need to use two or more different types of FlexConnectors for the same data. Extra
processors are particularly useful when an event has more than one type of data in it and cannot be parsed
by a single parser. This property is also referred to as parser linking.

Extra processor definition:

extraprocessor.count= <the number of extra processors>
#index start from 0
extraprocessor[<index>].type= <extra processor type>
extraprocessor[<index>].filename= <extra process file name>
extraprocessor[<index>].<extra processor variable>=
<extra processor parameter or conditional value>
…

This example illustrates properties that can be added to a time-based database FlexConnector, which
cause it to invoke a Regex configuration file for further processing of the event.message:

extraprocessor.count=1
extraprocessor[0].type=regex
extraprocessor[0].filename=netiq/netiq
extraprocessor[0].field=event.message
extraprocessor[0].flexagent=true
extraprocessor[0].clearfieldafterparsing=false

One configuration file can link with many other configuration files (by setting the
extraprocessor.count to a number greater than one). In addition, there is no limit to the number of
configuration files, each containing one or more extraprocessor properties that can be chained together.

The following table lists the extra processor types you can specify.

Developer's Guide
Chapter 4: Create a Configuration File

Micro Focus Connectors (7.13.0) Page 72 of 242

Extra Processor Type Description

delimited For any of the delimited parsers

json For JSON parsers

keyvalue For key-value parsers

map For a map file

ntsubparser For supported Windows application parsers

regex For any regular expression parsers

standardkeyvalue For key-value parsers with “=” as the key-value separator and “,” as the key value pair
separator

xml For XML parsers

Except for the map extra processor configuration file, all extra processor configuration files should be
placed in the \user\agent\flexagent folder. The map extra processor file should be placed in
\user\agent\fcp or \user\agent\aup\fcp. If a map configuration file exists in both the paths, the
one in \user\agent\aup\fcp overrides the one in \user\agent\fcp.

The following table lists the fields that can be used with an extra processor:

Field Name Description

field The value of this field is the input to the extra processor.

flexagent true or false

l true: The connector uses the parsers in the flexagent directory.

l false: The connector uses the parsers in the fcp directory.

clearfieldafterparsing Clear the input field after completion of parsing.

charencoding Specifies the type of character encoding.

overrideeventmappings true or false

l true: Override the mapping event field.

l false: Do not override the mapping event field.

conditionfield Specifies the condition field the extra processor uses.

conditiontype Specifies how the condition field relates to the condition values.

Developer's Guide
Chapter 4: Create a Configuration File

Micro Focus Connectors (7.13.0) Page 73 of 242

conditionvalues Specifies condition values. Use commas to separate multiple values.

Casesensitive true or false

l True = Use case sensitive parsing.

l False = Do not use case sensitive parsing.

concatenatevalues true or false

Applies to key-value parsers.

l If true and there is a duplicate key, do not override the value, but concatenate the values.

l If false and there is a duplicate key, override the value.

Key-Value Parsers
Key-value parsers divide log lines into key-value pairs (key=value), extract the key-value pairs into tokens,
and then the tokens are mapped to event fields. An example of a key-value log event:

TIME=28/09/11 08:15:00 SRC=194.168.0.12 DST=195.172.0.12 SPT=4236 DPT=80

Key-value parsers are used with keyvalue extra processors and syslog subagents use key-value parsers
for secondary processing. The configuration file name for key-value parsers is
vendor.subagent.sdkkeyvaluefilereader.properties. Key-value parsers have the following
properties:

Property Description

key.delimiter Regular expression consisting of single character or string that specifies how
key value pairs are separated on a log line. For example,

key.delimiter=\\s

key.value.delimiter Regular expression consisting of single character or string that specifies how
keys and values are separated into a single key value pair. For example,

key.value.delimiter==

key.regexp Regular expression to capture a key. For example,

key.regexp=([^\\s]+)

text.qualifier Regular expression consisting of a single character or string that specifies how
text is separated in a log line. For example,

text.qualifier=“

trim.message true or false - True trims the leading and trailing white spaces of the log line.

trim.tokens true or false - True trims the leading and trailing white spaces of each token.

trim.keys true or false - True trims the leading and trailing white spaces of each key.

Developer's Guide
Chapter 4: Create a Configuration File

Micro Focus Connectors (7.13.0) Page 74 of 242

FlexConnector Creation Wizard for Delimited Log Files
The FlexConnector Creation Wizard is a GUI program that guides you through the process of creating the
configuration file for a FlexConnector that read events from comma-delimited or tab-delimited log-files. The
file generated by the wizard can be manually edited to include any FlexConnector features or special
operations that the wizard does not support. To illustrate how the wizard works, assume that you have a log
file named sample.log on drive W: that contains the following content:

2003-09-23 12:07:57,Customer Zone Accessed,
38.1.123.206,192.168.10.100,POST,/search,?ID=apple,302
2003-09-23 12:07:57,Home Page Accessed,
38.41.123.206,192.168.10.100,GET,/search,?ID=candy,302

This is a comma-separated file, so you would select the Log-file FlexConnector.

1. Start the Log-file FlexConnector Wizard by executing the following command from the ARCSIGHT_
HOME/bin folder:

arcsight flexagentwizard

The following screen displays:

2. Enter or browse to the log file you want to parse and enter the name of the configuration file. Click
Next.

3. The wizard displays the following screen, on which you specify the format of the log-file:

Developer's Guide
Chapter 4: Create a Configuration File

Micro Focus Connectors (7.13.0) Page 75 of 242

Field Description

Delimiter Choose the delimiter that the file is using, in this case ','

Other delimiter Use this option if your file contains a delimiter not listed in the “Delimiter” options

Text qualifier Sometimes the format contains a character such as a double-quote (") surrounding the text
fields. If that is the case, enter that character here. If the character is not found it will be ignored;
so for this example, use the default.

Comment identifier Lines that start with this character will be ignored (the parser will assume that they are
comments). For this case, use the default as #.

Trim fields Set to true if the fields contain leading and/or trailing spaces and you want to remove them
from the field

Contains empty fields Set to true if you are expecting to receive empty tokens. The default (true) will work for most
cases.

When you are finished entering parameters, click Next.

4. The wizard reads the specified log file and displays the field mappings. Map each of the parsed fields
to a field in the ArcSight Schema. Click Next.

5. If some of the fields contain dates, the wizard will prompt you for the correct date format in a separate
screen. If the format you need does not appear in the list, choose any format and modify it in the
generated configuration file. Choose the format and Click Next.

6. Select a vendor (or unknown) and specify a product name. If you don’t see the vendor for your device,
select Unknown and then edit the entry manually in the configuration file. Click Next to continue.

Developer's Guide
Chapter 4: Create a Configuration File

Micro Focus Connectors (7.13.0) Page 76 of 242

7. The wizard displays the following screen. Click Next to finish or to launch the connector configuration
wizard.

At this point, the FlexConnector configuration-file has been created, so you can edit it directly to make
further changes, if required.

Note: If you choose to continue with registration and configuration of the connector, the wizard will
remove any existing connector and launch the FlexConnector configuration wizard again, where you
can complete the configuration of your connector with your newly-created FlexConnector log-file

Developer's Guide
Chapter 4: Create a Configuration File

Micro Focus Connectors (7.13.0) Page 77 of 242

configuration file. One benefit of this is that the wizard will make sure that your connector is configured
properly with the configuration file that you just created.

Regex Tool for Regex FlexConnectors
The FlexConnector Development Kit includes the FlexConnector Regex Tester (Regex Tool) that analyzes
.log (event data) files using configuration files (parsers, or .properties files), and can also generate
regular expressions to use as properties in configuration files that you create.

Use the Regex Tool only with Regex (regular expression) parsers.

See "Developing a Syslog FlexConnector for general instructions on using the Regex Tool to create a syslog
FlexConnector.

To analyze log files using a parser in the Regex Tool:

1. Copy the parser file and log file you wish to analyze into this location:

ARCSIGHT_HOME\current\user\agent\flexagent

2. Run the Regex Tool by executing:

ARCSIGHT_HOME\current\bin\arcsight regex

3. Select File > Load FlexAgent Regex File and browse to ARCSIGHT_
HOME\current\user\agent\flexagent to select and load the parser file (the .properties
file).

4. Select File > Load Log File and browse to ARCSIGHT_HOME\current\user\agent\flexagent
to select and load the corresponding .log file. The first line of the file appears in the Message field,
and the number of lines in the file displays on the window title bar.

Developer's Guide
Chapter 4: Create a Configuration File

Micro Focus Connectors (7.13.0) Page 78 of 242

Also, you can load .csv files instead of a .log file for analysis. in this case, choose File > Load CSV
Export with Raw Event rather than File > Load Log File. The .csv file you load must contain a
header as well as the raw event data. Use this feature to parse and test raw events that did not initially
parse correctly, and that you have exported to a .csv file.

5. If you are working with a syslog connector, select Options > Treat as Syslog Subagent. Click the
check box to select.

6. Click Generate to produce a regular expression that will parse the line shown in the Message field, as
shown below:

Developer's Guide
Chapter 4: Create a Configuration File

Micro Focus Connectors (7.13.0) Page 79 of 242

Notice that literals, such as the square brackets around the date and time, are preserved in the
generated regular expression.

Use the navigation buttons to view different lines in the log file.

7. Analyze the log file line by line using the navigation buttons.

8. Select File > Exit when data analysis is compete.

When you use the Regex Tool to analyze data, two files are generated:

l regextester.properties

l registrycache.properties

Delete these generated files when you are done with your data analysis. If you do not delete these files,
data will persist in the Regex Tool interface.

To create lines for use in configuration files (parsers):

1. Run the Regex Tool by executing:

ARCSIGHT_HOME\current\bin\arcsight regex

2. Select File > New FlexAgent Regex File.

3. Enter a name for the new .properties file. This file is generated in the location:

ARCSIGHT_HOME\current\user\agent\flexagent

The new Regex .properties file is generated containing generic Regex you can use to begin creating a
configuration file. This Regex is generated one line at a time, and does not generate an entire parser.
The Regex tool lists recommended fields to tokenize and map that are associated with the generated
Regex. For example:

4. When you are done, select FlexConnectorFile > Save FlexConnector Regex File.

The Regex tool can also be used to edit existing configuration files by choosing File > Load
FlexConnector Regex File.

If changes do not work as expected, revert to the previously saved version of the file by clicking
ReloadParser.

Caution: The Regex tool is designed for single-line use only. You can load the entire log file into
the tool, but can only process one event at a time.

5. Select File > Exit when data analysis is compete.

Developer's Guide
Chapter 4: Create a Configuration File

Micro Focus Connectors (7.13.0) Page 80 of 242

Start the FlexConnector
Once the FlexConnector is installed and the configuration file is created, start the FlexConnector and test it.
Before starting the new connector, make sure that the ArcSight Manager and database or Logger are up
and running.

Start the FlexConnector by opening a command window on ARCSIGHT_HOME/bin and running:

arcsight agents

For more information about running SmartConnectors, including how to establish a SmartConnector as a
service or daemon, refer to the SmartConnector User’s Guide.

The new FlexConnectorshould begin sending any events it receives from its device to the ArcSight
Manager. In the case of database types, note that only records created after the connector starts will be sent
as events.

Developer's Guide
Chapter 4: Create a Configuration File

Micro Focus Connectors (7.13.0) Page 81 of 242

Chapter 5: Configuration File Examples
The following sections describe examples of configuration files for the various connector types.

l Configuration Properties for a Log File FlexConnector

l Configuration Properties for all Regex FlexConnectors

l Configuration Properties for a Time-based Database FlexConnector

l Configuration Properties for an ID-based Database FlexConnector

l Configuration Properties for an SNMP Connector

l Configuration Properties for an XML FlexConnector

l Configuration Properties for a JSON Folder Follower FlexConnector/ JSON Multiple Folder Follower
FlexConnector

l JSON Parsers for Complex Event Schemas

l Configuration Properties for Scanner FlexConnectors

Configuration Properties for a Log File FlexConnector
You can create a configuration properties file for a Log File FlexConnector in two ways:

l Use a text editor to add properties you need.

l Use the FlexConnector Creation Wizard, which is discussed in detail in "FlexConnector Creation Wizard
for Delimited Log Files".

In addition to the properties described earlier, a Log File FlexConnector must also contain Source Log File
Format declarations. The Source Log File Format section describes how the FlexConnector will read the
source information. The following table lists the properties that you can specify:

Property Description

comments.start.with This property specifies which lines of the log file should be ignored and which ones are
comments. In this example, you would set this property to a pound sign (#) since every
comment begins with this symbol.

contains.empty.tokens Set this property to “false” only if you are sure that the file being parsed will never contain
empty tokens. For example, in the following line:

token1,token2,,token4

token3 is empty (there are two commas together), so this flag should be set to true. By
default, this flag is set to true.

Micro Focus Connectors (7.13.0) Page 82 of 242

Property Description

delimiter This property specifies which character delimits each of the tokens of the file. In this
example, you would set this property to a comma (,) since the tokens are separated by a
comma. Other possible values are:

delimiter= backslash (\); note that there is a space after the backslash (\)

delimiter= pipe (|)

delimiter= comma (,)

start.at.line Some files will contain a fixed number of lines as a header before the actual content starts.
Using this property you can have the FlexConnector ignore those lines before the actual
processing starts. For example, the property:

start.at.line=10

would ignore the first 9 lines of the file.

text.qualifier Sometimes the tokens in a file will be surrounded by “ or another character (for example,
Excel CSV). For example, in the line:

"token1","token2","token3"

All tokens are surrounded by " so you can set this property as:

text.qualifier="

and the " will not be part of the token value.

trim.message Removes leading and trailing spaces or tab characters from the full message before
sending it to the parser.

trim.tokens Set this flag to true if you want to remove leading and trailing spaces and tab characters
from the token values. By default, this flag is false.

Configuration Properties for all Regex FlexConnectors
For Regex FlexConnectors, the regex property must be set to the regular expression:

regex=(.*) ([^\\]*) ([^\\]*)\\[\\d+\\]: (.*) password for (.*) from
(\\d+.\\d+.\\d+.\\d+) port (\\d+) ssh2

Additionally, you can configure these:

l The trim.message and trim.submessage properties that trim (remove leading and trailing spaces
or tab characters) the full message and sub-message before sending it to the parser.

l Sub-messages that allow a Regex-based FlexConnector to switch intelligently between regular
expressions. For more information about sub-messages, see "Sub-Messages".

l Optional properties in the agent.properties file that when configured allow you to control which log
files to process in a folder, whether to process the folder and subfolders recursively, and so on. These
properties are discussed in Log Internal Events for File-Reading FlexConnectors.

Developer's Guide
Chapter 5: Configuration File Examples

Micro Focus Connectors (7.13.0) Page 83 of 242

Configuration Properties for a Time-based Database
FlexConnector
The following is an example of a time-based Database FlexConnector configuration file:

Note: Ensure that queries conform with the schema definition so as to avoid errors such as case
sensitivity. For example, if the database fields are using all uppercase, column names in the queries
and the values in the timestamp.field and the uniqueid.field should use uppercase:

timestamp.field=TIME_STAMP

uniqueid.field=UNIQUE_ID

In addition to the common properties listed in "Parser File Structure", the following properties need to be
configured for time-based database FlexConnectors:

Version
Mandatory. The version properties enable you to define the order in which the parser files will be
sequentially processed. If there are multiple parser files there should be one for each version of the
database with which the FlexConnector communicates.

Note: If you are not concerned about the connector adjusting to new versions, you can skip the
version check by doing the following: set version.order=1 and omit version.query and

Developer's Guide
Chapter 5: Configuration File Examples

Micro Focus Connectors (7.13.0) Page 84 of 242

version.id. Note that this will remove the safeguard of checking the schema version.

l version.order—Specifies the order in which versions are checked, from the lowest number to the
highest; for example, if you have two parser files parserA and parserB and you want to process parserB
before parserA, set parserB’s version.order=1 and parserA’s version.order=2.

l version.query—This property enables you to perform a test query against the database to validate
the database version. Specify a unique entity in the database schema that differentiates it from other
database versions. For example, version.query=SELECT idAlert from AlertView.

l version.id—If the version.query succeeds, the deviceVersion token (described in "ArcSight
Built-in Event Field Mappings") is set to the version.id. Typically, you would assign the database
version as the value for this property. However, you can assign any integer value. For example, if the
product version is 8.1, assign version.id=8.1.

Query
Mandatory. This property retrieves the rows that were inserted between the last time the query was run
and the current time. The query is executed every five seconds, but the frequency can be configured.

For example:

query = \
SELECT \

ComputerName, ComputerDomain, Culprit, DNSName, Name, idAlert,\
Description, RepeatCount, AlertLevel, TimeRaised, TimeOfFirstEvent, \
TimeOfLastEvent, TimeResolved, CustomField1, CustomField2, \

CustomField3, CustomField4, CustomField5 \
FROM \

AlertView \
WHERE \

TimeRaised >= ? \
ORDER BY \

TimeRaised

To change the frequency at which the query is executed, set the agent[x].frequency property in
ARCSIGHT_HOME\current\user\agent\agent.properties.

All syntactically and semantically correct SQL statements are supported in SELECT queries with the
following exception:

l Only one question mark is supported in a time-based Database FlexConnector query.

Developer's Guide
Chapter 5: Configuration File Examples

Micro Focus Connectors (7.13.0) Page 85 of 242

Timestamp
Mandatory. Specifies the field to use to determine when to run the next query; for example, for the query
specified earlier in this section, you can set the timestamp field to timestamp.field=TimeRaised.

UniqueID
Mandatory. Specifies the fields to use to distinguish rows with the same timestamp field; for example, for the
query specified earlier in this section, you can set the unique ID field to uniqueid.fields=idAlert.
Use a comma-separated list to specify multiple values for this field.

Configuration Properties for an ID-based Database
FlexConnector
The following is an example of the ID-based Database FlexConnector configuration file:

Note: Ensure that queries conform with the schema definition so as to avoid errors such as case
sensitivity. For example, if the database fields are using all uppercase, the column names in the queries
and the values in the id.field and the uniqueid.field should use uppercase:
id.field=ID

uniqueid.field=UNIQUE_ID

Developer's Guide
Chapter 5: Configuration File Examples

Micro Focus Connectors (7.13.0) Page 86 of 242

In addition to the common properties listed in "Parser File Structure", the following properties should be
configured for an ID-based database FlexConnectors.

Version
Mandatory. The version properties enable you to define the order in which the parser files will be
sequentially processed. If there are multiple parser files there should be one for each version of the
database with which the FlexConnector communicates.

Note: If you are not concerned about the connector adjusting to new versions, you can skip the
version check by doing the following: set version.order=1 and omit version.query and
version.id. Note that this will remove the safeguard of checking the schema version.

l version.order—Specifies the order in which versions are checked, from the lowest number to the
highest; for example, if you have two parser files parserA and parserB and you want to process parserB
before parserA, set parserB’s version.order=1 and parserA’s version.order=2.

l version.query—This property enables you to perform a test query against the database to validate
the database version. Specify a unique entity in the database schema that differentiates it from other
database versions. For example, version.query=SELECT idAlert from AlertView.

l version.id—If the version.query succeeds, the deviceVersion token (described in "ArcSight
Built-in Event Field Mappings") is set to the version.id. Typically, you would assign the database
version to which the configuration file pertains as the value to this property; however, you can assign any
integer value. For example, if the product version is 8.1, assign version.id=8.1.

MaxID
Mandatory. Specifies the query to use to retrieve the maximum ID present in the database when the query
is run; for example, maxid.query=select max(end_time) from events.summary.

Query
Mandatory. This property retrieves the rows that were inserted between the last checked ID and the
maximum ID (maxid) at the current time. The query is executed every five seconds, but this frequency is
configurable.

For example:

query=SELECT events.summary.eid, hostid, hostid_b, start_time, end_time, \
alert_level \

FROM events.summary, events.host \
WHERE type=0 and events.summary.eid = events.host.eid and end_time is \

Developer's Guide
Chapter 5: Configuration File Examples

Micro Focus Connectors (7.13.0) Page 87 of 242

not null and end_time > ? \
ORDER BY end_time

To change the frequency at which the query is executed, set the agent[x].frequency property in
ARCSIGHT_HOME\current\user\agent\agent.properties.

All syntactically and semantically correct SQL statements are supported in SELECT queries.

ID
Mandatory. Specifies the field to use to determine when to run the next query; for example, for the query
specified earlier in this section, you can set the ID field to id.field=end_time.

UniqueID
Optional. Specifies the field to use to distinguish rows with the same ID field; for example, for the query
specified earlier in this section, you can set the unique ID field to uniqueid.fields=eid,start_
time,end_time,hostid,hostid_b.

Use a comma-separated list to specify multiple values for this field.

Note: The IDs for two events might be identical if the ID field is set to an entity such as a timestamp.
For example, if the ID field is set to end_time, two events may have the same ID. The Unique ID field is
used to distinguish such events.

Query Limit
Optional. Specifies the maximum number of rows to return when a query is run; for example,
query.limit=3. If default value for query.limit is set to unlimited; that is, there is no limit imposed on
the number of rows that will be returned when a query is run.

Configuration Properties for an SNMP Connector
The information in this section is applicable to the SmartConnector for SNMP Unified.

You can create one of these types of configuration files:

l one configuration file per trap, with the tokens specified in the same order as the variables (varbinds)
that appear in the trap packet, or

l a single configuration file with a trap.types property that lists the trap types to capture

Example of token mapping in a configuration file per each trap
(sdksnmp.0.snmptrap.properties)

Developer's Guide
Chapter 5: Configuration File Examples

Micro Focus Connectors (7.13.0) Page 88 of 242

Note: When a trap with the trap type=0 is received, the first varbind (in the trap) would be parsed as
the first token variable regardless of the oid. The second varbind is parsed as the second token
variable, and so on through the varbinds and token variables.

token.count=5
token[0].name=ApplicationId
token[0].type=String

token[1].name=IncidentName
token[1].type=String

token[2].name=IncidentSourceNodeHostname
token[2].type=String

token[3].name=IncidentSourceNodeMgmtAddr
token[3].type=String

token[4].name=IncidentOtherNodeMgmtAddr
token[4].type=String

Example of token mapping in a configuration file for a list of trap types
(sdksnmp.0.sdksnmptrap.properties)

Note that the trap types must be listed in the trap.types variable before the token.count in the
sdksnmp.0.sdksnmptrap.properties configuration file. In this example, this is specified as
trap.types=0,1,2 (0, 1, 2 are the trap types in this example). Also, you must define an .oid for each
token listed in the parser.

trap.types=0,1,2
token.count=4

token[0].name=ApplicationId
token[0].oid=1.3.6.1.4.1.11.2.17.19.2.2.1
token[0].type=String

token[1].name=NmsUrl
token[1].oid=1.3.6.1.4.1.11.2.17.19.2.2.2
token[1].type=String

token[2].name=Reserved1
token[2].oid=1.3.6.1.4.1.11.2.17.19.2.2.3
token[2].type=String

token[3].name=Reserved2

Developer's Guide
Chapter 5: Configuration File Examples

Micro Focus Connectors (7.13.0) Page 89 of 242

token[3].oid=1.3.6.1.4.1.11.2.17.19.2.2.4
token[3].type=String

Configuration Properties for an XML FlexConnector
The XML FlexConnector parser builds a tree representation of the XML log file. A root node is at the top of
the tree, hop nodes are in between, and trigger nodes are at the bottom (where they generate events). The
following is an example of an XML FlexConnector configuration file:

In addition to the common properties listed in "Parser File Structure", the following sections list the optional
and mandatory properties for an XML FlexConnector configuration file.

Note: You can also configure optional properties in the agent.properties file that when
configured allow you to control which log files to process in a folder, whether to process the folder and
subfolders recursively, and so on. These properties are discussed in "Log Internal Events for File-
Reading FlexConnectors".

Developer's Guide
Chapter 5: Configuration File Examples

Micro Focus Connectors (7.13.0) Page 90 of 242

Namespace
Optional. However, if your XML log file uses explicit namespaces or a default namespace, you must specify
those namespaces using these properties:

l namespace.count—Specifies the number of namespaces that your XML log file uses; for example,
namespace.count=2.

l namespace.prefix—Specifies the namespace prefix to use; for example, namespace
[1].prefix=ac.

l namespace[x].prefix=default—Use when your XML file specifies a namespace but does not use
any prefixes in the file. That is, your XML file uses a default namespace.

l namespace.uri—Specifies the Uniform Resource Identifier (URI) for the namespace; for example,
namespace[0].uri=http://example.org/2003/08/sdee

Hop Nodes
Optional. Hop nodes are the nodes in the path from the root node to the event triggering node. These
nodes are necessary when tokens need to be captured from nodes other than the triggering node or when
events pertaining to a particular node need to be grouped in one block.

Multiple hop node levels can be defined with each new level of hop nodes defined in reference to the
previously defined level. Hop nodes can also reference root nodes directly as variables.

To define hop nodes, use these properties:

l hop.node.count—Specifies the number of hop nodes; for example, hop.node.count=1

l hop.node.name—Specifies the names for the hop nodes; for example, hop.node[0].name=host

l hop.node.expression—Specifies the XPath/XQuery path expressions to select the nodes; for
example, hop.node[1].expression=/audits/audit/hosts/host

Trigger Nodes
Mandatory. These are the nodes that trigger events. An XPath/XQuery path expression for a trigger node
can be the last defined hop node or the root node if no hop nodes are available.

To define trigger nodes, use this property:

trigger.node.expression=$host/applications/application

Developer's Guide
Chapter 5: Configuration File Examples

Micro Focus Connectors (7.13.0) Page 91 of 242

Token Mappings
Mandatory. In addition to the token properties listed in "Token Declarations", you must specify these two
properties for the XML parser:

l token[x].expression—Specifies the XPath/XQuery path expression that is traversed to obtain the
value for the token. This is a mandatory property. For example,

token[0].expression=audits/audit/startDate

l token[x].node—Specifies the context node—root node, hop node, or trigger node—relative to which
the path expression is evaluated. A context node can be a hop node or a root node. If this property is not
specified, it defaults to the trigger node. For example,

token[0].node=host

Examples of Token Mappings

l A token captured from the root node:

token[0].expression=audits/audit/startDate

l A token captured from the hop node 1:

token[2].name=ip
token[2].type=IPAddress
token[2].expression=ip
token[2].node=host

l A token captured from the hop node 2:

token[5].name=protocol
token[5].expression=protocol
token[5].node=vulnref

l A token captured from the trigger node, when token[x].node is specified:

token[8].name=name
token[8].expression=name
token[8].node=

l A token captured from the trigger node, when token[x].node is not specified:

token[13].name=descr
token[13].expression=description

Developer's Guide
Chapter 5: Configuration File Examples

Micro Focus Connectors (7.13.0) Page 92 of 242

Extra Events
Optional. If you need your FlexConnector to collect different event types for the same trigger node or from
different trigger nodes, you can use this property to specify other XQuery configuration files in the current
configuration file.

To specify extra events, use these properties:

l extraevent.count—Specifies the number of extra events; for example, extraevent.count=2

l extraevent[x].filename—Specifies the file name of the additional configuration file that this
parser should use; for example, extraevent[0].filename=ncircle_xml_file/ncircle_xml_
file.xml3.uri

l extraevent[x].name—Specifies a name to associate with the extra events; for example,
extraevent[0].name=/scanner/device/uri/aggregated

Configuration Properties for a JSON Folder Follower
FlexConnector/ JSON Multiple Folder Follower
FlexConnector
The JSON Folder Follower FlexConnector parser builds a tree representation of the JSON log file. A root
node is at the top of the tree and trigger nodes are at the bottom (where they generate events). There may
be multiple root nodes in each file. The following is an example of a JSON Folder Follower FlexConnector/
JSON Multiple Folder Follower FlexConnector configuration file:

trigger.node.location=/entries

token.count=5

token[0].name=type
token[0].type=String
token[0].location=type

token[1].name=eventId
token[1].type=String
token[1].location=event_id

token[2].name=eventType
token[2].type=String
token[2].location=event_type

Developer's Guide
Chapter 5: Configuration File Examples

Micro Focus Connectors (7.13.0) Page 93 of 242

token[3].name=sessionId
token[3].type=String
token[3].location=session_id

token[4].name=ipAddress
token[4].type=String
token[4].location=ip_address

additionaldata.enabled=true

event.deviceVendor=__stringConstant("Box")
event.deviceProduct=__stringConstant("Box.net")
event.deviceEventClassId=eventType

event.name=eventType

event.sourceUserName=created_by_name
event.sourceUserId=created_by_user_id
event.sourceHostName=ipAddress

#The code uses event.externalId to get the eventId to persist. Please don't
change this mapping. You may get duplicates if you do that

event.externalId=eventId

event.deviceReceiptTime=__createOptionalTimeStampFromString(created_at,"YYYY-
MM-DDThh:mm:ss.SSSX")

event.fileName=__oneOf(source_item_name,source_folder_name)
event.fileId=__oneOf(source_folder_id,source_item_id)
event.fileType=__oneOf(source_item_type,__ifThenElse(source_folder_
id,,,"folder"))

event.destinationUserName=__oneOf(source_name,source_user_name)
event.destinationUserId=__oneOf(source_id,source_user_id)

event.deviceCustomString1=__oneOf(created_by_login,source_login)
event.deviceCustomString1Label=__stringConstant("Source User Email Address")

event.deviceCustomString2=source_type
event.deviceCustomString2Label=__stringConstant("Source Type")

Developer's Guide
Chapter 5: Configuration File Examples

Micro Focus Connectors (7.13.0) Page 94 of 242

Note: You can also configure optional properties in the agent.properties file that when
configured allow you to control which log files to process in a folder, whether to process the folder and
subfolders recursively, and so on. These properties are discussed in "Log Internal Events for File-
Reading FlexConnectors".

Trigger Node
Mandatory. This is the node that triggers events.

To define trigger nodes, use this property:

trigger.node.location=/entries

Token Location and Mappings
Mandatory. In addition to the token properties listed in "Token Declarations", you must specify this property
for the JSON parser:

token[x].location—Specifies the JSON path expression that is traversed to obtain the value for the
token. This is a mandatory property.

For example, token[2].location=event_type

Examples of token mappings:

l token[2].name=eventType

l token[2].type=String

l token[2].location=event_type

JSON Parsers for Complex Event Schemas
For more complex event schemas, the JSON parser can:

l Handle a hierarchical schema

l Handle an array with a key element

l Represent the value of a token in URI format

Working with Hierarchical Schemas

In some cases, a web application can have a common schema and product-specific schemas, as illustrated
in the following figure.

Developer's Guide
Chapter 5: Configuration File Examples

Micro Focus Connectors (7.13.0) Page 95 of 242

l The product-specific schemas could in turn have product base schemas and more specific schemas.

l The main parser will contain the token specification for the common schema.

l The main parser will have sub-parsers that contain the token specification for the product-specific base
schemas.

l Each product base schema sub-parser will, in turn, have its own sub-parsers that contain the token
specification for the more specific product schemas.

l Each parser file will have its own event mapping specification.

The __subParse(mapFileName) format in the JSON parser supports this scenario.

When the JSON parser encounters this format specified for a token, it looks for the sub-parser. The
mapFileName points to a map file with a key and a value. The key will be matched with the token value.
The value points to the sub-parser file. The sub-parser, if found, will be processed and the resulting
SecurityEvent will be merged into the parent SecurityEvent. An error will be logged if no sub-
parser is found. The token itself will still be included in the current token map.

For example, the following common schema has a RecordType determining the type of operation, which
can be used to determine the sub-parser file:

token[5].name=RecordType
token[5].type=string
token[5].format=__subParse(recordtype-map.csv)
token[5].location=RecordType

The parameter for __subParse is the recordtype-map file path, which is a relative path to
$ARCSIGHT_HOME\user\agent\flexagent.

Developer's Guide
Chapter 5: Configuration File Examples

Micro Focus Connectors (7.13.0) Page 96 of 242

The main parser is located in $ARCSIGHT_HOME\user\agent\flexagent. The sub-parsers (the
.json.properties files) and the sub-parser map (the .csv files) can locate in any sub-folder of that
folder.

Also assume that the recordtype-map.csv has the following content:

1,product_admin
2,product_item
...

If the RecordType value is 2, then the product_item.jsonparser.properties file will be
processed.

Representing a JSON Array with a Key Element

Some event schemas have collections, which are arrays of JSON objects. Some of the collections have a
significant element in a JSON object that should be used to identify the rest of the JSON elements.

For example, assume that the value of the Name field used in the JSON array illustrated in "Sample JSON
Array" is significant, and its value should be used to identify the element. A desirable output of the token
map could be something like the following:

ForwardTo alias1@mail.com

From

MoveToFolder

SentTo alias2@mail.com

The __collection(keyField, withPrefix, withPostfix, keyFieldMapFileName) format
in the JSON parser supports this scenario. The arguments to the __collection format have the follow
definitions:

l keyField (required)—points to the significant field.

l withPrefix (optional)—indicates if the target token names should be prefixed with the parent key.
Default value is true.

l withPostfix (optional)—indicates if the target token names should be postfixed with the key of the
value elements. Default value is true.

l keyFieldMapFileName (optional)—points to a map file which will be used to map a more meaningful
target token name.

The delimiter for the prefix and postfix is "->" .

The __collection format can be used only on an array node. The array node itself is not part of the
current token map. The array is processed to generate a token map, which is merged into the current token
map. This format is ignored if it is applied to a non-array node, and the node is handled as normal.

Using the JSON array in Sample JSON Array as an example, the Parameters token will be as follows:

Developer's Guide
Chapter 5: Configuration File Examples

Micro Focus Connectors (7.13.0) Page 97 of 242

token[5].name=Parameters
token[5].type=String
token[5].format=__collection(Name,false,false)
token[5].location=Parameters

The format value __collection (Name,false,false) produces the following token map:

ForwardTo alias1@mail.com

From

MoveToFolder

SentTo alias2@mail.com

Changing the format value to __collection(Name) produces the following token map:

Parameters->ForwardTo->Value alias1@mail.com

Parameters->From->Value

Parameters->MoveToFolder->Value

Parameters->SentTo->Value alias2@mail.com

Changing the format value to __collection(Name,,false) produces the following token map:

Parameters->ForwardTo alias1@mail.com

Parameters->From

Parameters->MoveToFolder

Parameters->SentTo alias2@mail.com

Representing a Token Value in URI Format

There are times when it is desirable to translate a JSON node into a URI format string. The __uri() format
in the JSON parser supports this scenario.

This format can be applied to any node.

Using the JSON array in "Sample JSON Array " as an example, the Parameters token will be as follows:

token[5].name=Parameters
token[5].type=String
token[5].format=__uri()
token[5].location=Parameters

The token specification above produces the following token map:

Parameters Name:"ForwardTo"|/Value:"alias1@mail.com"|/Name:"From"|/Value:""|
/Name:"MoveToFolder"|/Value:""|/Name:"SentTo"|/Value:"alias2@mail.com"

Developer's Guide
Chapter 5: Configuration File Examples

Micro Focus Connectors (7.13.0) Page 98 of 242

Sample JSON Array

The following code represents a JSON array.

"Parameters": [
{

"Name": "ForwardTo",
"Value": "alias1@mail.com"

},
{

"Name": "From",
"Value": "" },

{
"Name": "MoveToFolder",
"Value": ""

},
{

"Name": "SentTo",
"Value": "alias2@mail.com"

}"
]

Configuration Properties for Scanner FlexConnectors
The configuration properties you can set depend on the type of source report that the FlexConnector will
process. These source report types are described in the following sections:

l "Scanner FlexConnectors for Normal Text or XML Scan Reports"

l "Configuration Files for XML Reports"

l "Scanner FlexConnectors for Database Scan Reports"

Scanner FlexConnectors for Normal Text or XML Scan Reports
Scanner FlexConnectors that process normal text or XML scan reports are parsers that make several
passes through the scan report to extract relevant information. The first pass must be to get a list of hosts
scanned. Subsequent passes for extracting vulnerability, open ports, operating system, and applications
information can be run in any order.

Note: Avoid using // symbols which can have a huge impact on performance. For example,
$root//@startTime -- scans every node in the entire document for the startTime attribute.

Developer's Guide
Chapter 5: Configuration File Examples

Micro Focus Connectors (7.13.0) Page 99 of 242

To define a scanner FlexConnector for normal text or XML scan reports, you must define parser files to
retrieve the following information:

l A list of hosts scanned

l The vulnerabilities for each scanned host

l The open ports for each scanned host

l The operating system and applications running on each scanned host

The name of the configuration files and properties required for each depend on whether the configuration
file is for processing a normal text scan report or an XML report.

How Scanner FlexConnectors Parse Scan Reports
A scanner FlexConnector obtains the following information from a scan report:

l List of hosts scanned

l List of open ports

l List of vulnerabilities

l Operating systems and applications on each host

l Any other information such as users, shares, and so on

This information is obtained by making several passes over the report. The first pass obtains a list of hosts
while subsequent passes, which can be done in any order, obtain the remaining information.

Scanner FlexConnectors retrieve information from scan reports that provide data in normal text or XML
form use multiple parsers to obtain information in which each parser extracts information specific to its
function. That is, the first parser extracts the list of hosts and defines the other parsers and the order in
which they will run. The subsequent parsers extract the open ports, vulnerabilities, operating system, and
applications information for each host.

Scanner FlexConnectors that scan results in a database use one database parser that defines the SQL
queries required to extract information from the database. Each SQL query represents a single pass that
extracts information specific to its function as described for scanner FlexConnectors for normal text or XML
form reports. A few additional SQL queries are also included in this FlexConnector to obtain the version of
the database, obtain a list of scan jobs in the database, and so on.

Parser Files for Normal Text Reports

To create parser files for normal text reports, see the following sections:

l "Getting a List of Hosts "

l "Getting Vulnerabilities for Scanned Hosts"

l "Getting Open Ports on Scanned Hosts"

l "Getting OS and Applications (URIs) on Scanned Hosts"

Developer's Guide
Chapter 5: Configuration File Examples

Micro Focus Connectors (7.13.0) Page 100 of 242

Getting a List of Hosts

The configuration file for getting a list of scanned hosts must be named
vendor.scanner.sdkrfilereader.properties, where vendor is usually the name of the scanner
device vendor.

The following is an example configuration file for getting a list of hosts from a scan report:

line.include.regex=[\\w\\.-]+\\|.*

regex=([\\w\\.-]+)\\|(.*?)\\|(.*?)\\|.*

token.count=3
token[0].name=ip
token[0].type=IPAddress
token[1].name=hostname
token[2].name=mac
token[2].type=MacAddress

event.destinationAddress=ip
event.destinationHostName=hostname
event.destinationMacAddress=mac

use.ip=false

invalid.vulnerability.ids=CVE|null,CVE|NOCVE,CVE|,Nessus|

extraevent.count=3>
extraevent[0].filename=nessus_nsr_osuris
extraevent[0].name=/scanner/device/uri/aggregated
extraevent[1].filename=nessus_nsr_openports
extraevent[1].name=/scanner/device/openport/aggregated
extraevent[2].filename=nessus_nsr_vulnerabilities
extraevent[2].name=/scanner/device/vulnerability/aggregated

In addition to the common properties listed in "Parser File Structure", the following properties need to be
configured:

Ignore or Include Line

Optional. This property enables you to specify filters (as regular expressions) that help identify lines in a
scan report that need to be processed to obtain information about scanned hosts. Lines that do not meet
the criteria specified in the filter are not processed.

Developer's Guide
Chapter 5: Configuration File Examples

Micro Focus Connectors (7.13.0) Page 101 of 242

The include filter specifies a regular expression that a line must match for it to be processed for
extracting scanned hosts.

The ignore filter specifies a regular expression that, when matched to a line, that line is excluded and not
processed for extracting scanned hosts.

The following is the syntax for the include and ignore filters:

line.include.regex=<regular_expression>
line.ignore.regex=<regular_expression>

For example:

line.include.regex=[\\w\\.-]+\\|.*
line.ignore.regex=[\\w\\.-]+\\|.*?\\|.*

Regular Expression and Token Mappings

Mandatory. At a minimum, IP address or host name must be extracted from the scan report. In addition, if a
MAC address and other information are available, they should also be extracted.

The following regular expression extracts IP address, host name, and MAC address into these tokens:

regex=([\\w\\.-]+)\\|(.*?)\\|(.*?)\\|.*

token.count=3

token[0].name=ip
token[0].type=IPAddress
token[1].name=hostname
token[2].name=mac
token[2].type=MacAddress

event.destinationAddress=ip
event.destinationHostName=hostname
event.destinationMacAddress=mac

Use IP

Optional. Some scanners report only the IP addresses or host names of hosts scanned, while others might
report both. The Use IP property indicates whether the scan reports contain IP addresses. When this
property is set to false, it indicates that the scan report does not contain IP addresses.

use.ip=false

If this property is not set, the scanner FlexConnector expects IP addresses in the scan report.

Developer's Guide
Chapter 5: Configuration File Examples

Micro Focus Connectors (7.13.0) Page 102 of 242

Invalid Vulnerabilities

Optional. This property specifies the vulnerability identifiers (IDs) that the FlexConnector should ignore
when processing the scan report. If you want to specify multiple vulnerability IDs, separate them with a pipe
(|) character.

The syntax for this property is as follows:

invalid.vulnerability.ids=<vulnerability_ids>

For example:

invalid.vulnerability.ids=CVE|null,CVE|NOCVE,CVE|,Nessus

Extra Events

Mandatory. These properties specify the names and locations of other configuration files required for
parsing the scan report to extract the vulnerabilities, open ports, operating system, and applications
information.

l extraevent[x].filename—Specifies the file name of the additional configuration file; for example,
extraevent[0].filename=nessus_nsr_osuris

l extraevent[x].name—Specifies a name to associate with the extra events; for example,
extraevent[0].name=/scanner/device/uri/aggregated

Although you can specify the extra events in any order, you must use the following event names
(extraevent[x].name):

l Vulnerabilities: /scanner/device/vulnerability/aggregated

l Open ports:/scanner/device/openport/aggregated

l URIs (for operating system and applications): /scanner/device/uri/aggregated

For example:

extraevent.count=3
extraevent[0].filename=nessus_nsr_osuris
extraevent[0].name=/scanner/device/uri/aggregated

extraevent[1].filename=nessus_nsr_openports
extraevent[1].name=/scanner/device/openport/aggregated

extraevent[2].filename=nessus_nsr_vulnerabilities
extraevent[2].name=/scanner/device/vulnerability/aggregated

Developer's Guide
Chapter 5: Configuration File Examples

Micro Focus Connectors (7.13.0) Page 103 of 242

Getting Vulnerabilities for Scanned Hosts

The configuration file for getting vulnerabilities for the scanned hosts must be named
<vendor>.vulns.sdkrfilereader.properties, where vendor is usually the name of the scanner
device vendor. This configuration file is used to extract the following information for the scanned hosts:

l Vulnerabilities as indicated by the vendor vulnerability IDs

l Name, description, risk or severity, solution or recommendation, if available

l External references such as CVE, Bugtraq, and so on

l Any other relevant information that is available

Note: Typically, FlexConnectors look for extra processor configurations in {ARCSIGHT_
HOME}/current/user/agent/flexagent/. The Normal Text Report Scan FlexConnector is an
exception. FlexConnectors will look for these configurations in {ARCSIGHT_
HOME}/current/user/agent/aup/<agents[0].entityid>/fcp/.

Also, instead of looking for a <vendor>.vulns.sdkrfilereader.properties file,
FlexConnectors look for a <vendor>.sdkrfilereader.properties file.

To work around these problems:

l Copy the vulnerability file from current/user/agent/flexagent/ to
current/user/agent/aup/<agents[0].entityid>/fcp/.

l Rename the file from <vendor>.vulns.sdkrfilereader.properties to
<vendor>.sdkrfilereader.properties.

The following is an example configuration file for getting vulnerabilities from a scan report:

regex=([\\w\\.-]+)\\|((\\w+).*?(\\d+)?.*?)\\|(\\d+)\\|(.*?)\\|(.*)

token.count=7

token[0].name=ScannedHostNameOrIp
token[1].name=ServiceDescription
token[2].name=ServiceName
token[3].name=Port
token[3].type=Integer
token[4].name=PluginId
token[5].name=Severity
token[6].name=Description

event.destinationHostName=ScannedHostNameOrIp
event.destinationServiceName=ServiceName
event.destinationPort=Port

Developer's Guide
Chapter 5: Configuration File Examples

Micro Focus Connectors (7.13.0) Page 104 of 242

event.transportProtocol=__regexToken(ServiceDescription,"^.*?/(\\w+).*$")
event.deviceEventClassId=__concatenateDeleting
("Nessus=",NessusID,"#",Name,"#",Risk,"#",INFO,"%CVE=",CVE,"%Bugtraq=",Bugtra
q,"%|#=/@")
event.name=__concatenate(ServiceName," - ",Severity)
event.deviceSeverity=Severity
event.message=Description

event.categoryTechnique=__stringConstant("/scanner/device/vulnerability")
event.deviceVendor=__stringConstant(Nessus)
event.deviceProduct=__stringConstant(Nessus)

severity.map.veryhigh.if.deviceSeverity=Security Hole,HOLE
severity.map.high.if.deviceSeverity=Security Warning
severity.map.medium.if.deviceSeverity=Security Note,NOTE,INFO,REPORT

In addition to the common properties listed in "Parser File Structure", the following properties need to be
configured.

Token Mappings

Mandatory. At a minimum, IP address or host name must be extracted from the scan report. In addition, if a
MAC address and other information are available, they should also be extracted, as shown in the previous
example.

Event Mappings

Mandatory. The following event mappings must be defined in the configuration file:

l event.name

l event.deviceSeverity

l event.categoryTechnique

The value for this property must be set to the value shown in the previous example.

event.deviceEventClassId = __concatenateDeleting(“<vendor_vulnerability_
name>=”, vendor_vuln_id, “#”, Name, “#”, Severity, “#”, Description, “%”,
“<ref_name1>=”, ref_id1,”%’,”<ref_name2>=”, ref_id2, "%|#=/@")

Note: Use __concatenateDeleting() instead of __concatenate() only if the Description
field contains characters such as %, |, #, =, @, which are used as delimiters in parsers. For information
about __concatenateDeleting(), see "ArcSight Operations".

The value for this property is obtained by concatenating the following vulnerability information (as
indicated by the syntax above):

Developer's Guide
Chapter 5: Configuration File Examples

Micro Focus Connectors (7.13.0) Page 105 of 242

l Vendor vulnerability collection name

For example, “Nessus=” in the example illustrated previously in this section.

l Vendor vulnerability ID

For example, NessusID in the example illustrated previously in this section.

l Vendor vulnerability name

For example, Name in the example illustrated previously in this section.

l Risk or severity

For example, Risk in the example illustrated previously in this section.

l List of description, recommendation, and remediation (separated by the ‘#’ character)

For example, INFO in the example illustrated previously in this section.

l List of external references (separated by the ‘%’ character)

For example, "%CVE=",CVE,"%Bugtraq=",Bugtraq in the example illustrated previously in this
section.

l event.destinationHostName, event.destinationAddress,
event.destinationMACAddress, and event.destinationPort (whichever is available)

If you are setting the event.destinationPort field, it must contain the open port that the scanner
reported.

Severity Mappings

Mandatory. You must define the device severity to FlexConnector severity mapping as shown in section #6
of the example that follows in this section.

Ignore or Include Line

Optional. This property enables you to specify filters (as regular expressions) that help identify lines in a
scan report that need to be processed to obtain vulnerability information about scanned hosts. Lines that
do not meet the criteria specified in the filter are not processed.

l The include filter specifies a regular expression that a line must match for it to be processed for
extracting vulnerability information about scanned hosts.

l The ignore filter specifies a regular expression that when matches a line, the line is excluded and not
processed for extracting vulnerability information.

The syntax for the include and ignore filters is as follows:

line.include.regex=<regular_expression>
line.ignore.regex=<regular_expression>

For example:

line.include.regex= [\\w\\.-]+\\|.*?\\|\\d+\\|.*?\\|.*

Developer's Guide
Chapter 5: Configuration File Examples

Micro Focus Connectors (7.13.0) Page 106 of 242

Getting Open Ports on Scanned Hosts

The configuration file for getting the open ports and protocols on each scanned host should be named
vendor.openports.sdkrfilereader.properties, where vendor is usually the name of the
scanner device vendor.

Note: Typically, FlexConnectors look for extra processor configurations in {ARCSIGHT_
HOME}/current/user/agent/flexagent/. The Normal Text Report Scan FlexConnector is an
exception. FlexConnectors will look for these configurations in {ARCSIGHT_
HOME}/current/user/agent/aup/<agents[0].entityid>/fcp/.

Also, instead of looking for a <vendor>.openports.sdkrfilereader.properties file,
FlexConnectors look for a <vendor>.sdkrfilereader.properties file.

To work around these problems:

l Copy the vulnerability file from current/user/agent/flexagent/ to
current/user/agent/aup/<agents[0].entityid>/fcp/.

l Rename the file from <vendor>.openports.sdkrfilereader.properties to
<vendor>.sdkrfilereader.properties.

The following is an example configuration file for getting an open port on each scanned host from a scan
report:

regex=([\\w\\.-]+)\\|((.*?) \\((\\d+)/(\\w+)\\)).*

token.count=5

token[0].name=ScannedHostNameOrIp
token[1].name=Name
token[2].name=ServiceName
token[3].name=Port
token[3].type=Integer
token[4].name=TransportProtocol

event.destinationHostName=ScannedHostNameOrIp
event.name=Name
event.destinationServiceName=ServiceName
event.destinationPort=Port
event.transportProtocol=TransportProtocol
event.categoryTechnique=__stringConstant("/scanner/device/openport")
event.deviceVendor=__stringConstant(Nessus)
event.deviceProduct=__stringConstant(Nessus)

Developer's Guide
Chapter 5: Configuration File Examples

Micro Focus Connectors (7.13.0) Page 107 of 242

In addition to the common properties listed in "Parser File Structure", the following properties need to be
configured:

Token Mappings

Mandatory. At a minimum, the IP address or host name must be extracted from the scan report. In addition,
if a MAC address and other information are available, it should also be extracted, as shown in the example
above.

Event Mappings

Mandatory. The following event mappings must be defined in the configuration file:

l event.name

l event.categoryTechnique

The value for this property must be set to the value shown in the previous example.

l event.transportProtocol

l event.destinationPort

The event.destinationPort field must contain the open port that the scanner reported.

l event.destinationHostName, event.destinationAddress, and
event.destinationMacAddress (whichever is available)

Ignore or Include Line

Optional. This property enables you to specify filters (as regular expressions) that help identify lines in a
scan report that need to be processed to obtain open ports (and protocols) information about scanned
hosts. Lines that do not meet the criteria specified in the filter are not processed.

l The include filter specifies a regular expression that a line must match for it to be processed for
extracting open ports information about scanned hosts.

l The ignore filter specifies a regular expression that when matches a line, the line is excluded and not
processed for extracting open ports information.

The syntax for the include and ignore filters is as follows:

line.include.regex=<regular_expression>
line.ignore.regex=<regular_expression>

For example:

line.include.regex= [\\w\\.-]+\\|.*? \\(\\d+/\\w+\\).*

Developer's Guide
Chapter 5: Configuration File Examples

Micro Focus Connectors (7.13.0) Page 108 of 242

Getting OS and Applications (URIs) on Scanned Hosts

The configuration file for getting the operating system and applications on each scanned host must be
named <vendor>.uris.sdkrfilereader.properties, where vendor is usually the name of the
scanner device vendor.

Note: Typically, FlexConnectors look for extra processor configurations in {ARCSIGHT_
HOME}/current/user/agent/flexagent/. The Normal Text Report Scan FlexConnector is an
exception. FlexConnectors will look for these configurations in {ARCSIGHT_
HOME}/current/user/agent/aup/<agents[0].entityid>/fcp/.

Also, instead of looking for a <vendor>.uris.sdkrfilereader.properties file, FlexConnectors
look for a <vendor>.sdkrfilereader.properties file.

To work around these problems:

l Copy the vulnerability file from current/user/agent/flexagent/ to
current/user/agent/aup/<agents[0].entityid>/fcp/.

l Rename the file from <vendor>.uris.sdkrfilereader.properties to
<vendor>.sdkrfilereader.properties.

The following is an example configuration file for getting operating system and applications on each
scanned host from a scan report:

regex=([\\w\\.-]+)\\|.*?\\|(10336|10785|11936|18261)\\|.*?\\|(.*)
token.count=3

token[0].name=ScannedHostOrIp
token[1].name=PluginId
token[2].name=Description

event.destinationHostName=ScannedHostOrIp
event.deviceEventClassId=PluginId
event.message=Description
event.categoryTechnique=__stringConstant("/scanner/device/uri")
event.deviceVendor=__stringConstant(Nessus)
event.deviceProduct=__stringConstant(Nessus)
event.filePath=__getNormalizedOS(OS)

Token Mappings

Mandatory. At a minimum, IP address or host name must be extracted from the scan report. In addition, if a
MAC address and other information is available, it should also be extracted, as shown in the example
above.

Developer's Guide
Chapter 5: Configuration File Examples

Micro Focus Connectors (7.13.0) Page 109 of 242

Event Mappings

Mandatory. The following event mappings must be defined in the configuration file:

l event.name

l event.categoryTechnique

The value for this property must be set to the value shown in the previous example.

l event.filePath

Use the __getNormalizedOS() operation to ensure that the operating system information is translated
to a normalized OS asset category, as shown in the example above.

Ignore or Include Line

Optional. This property enables you to specify filters (as regular expressions) that help identify lines in a
scan report that need to be processed to obtain the operating system and applications information about
scanned hosts. Lines that do not meet the criteria specified in the filter are not processed.

l The include filter specifies a regular expression that a line must match for it to be processed for
extracting the operating system and applications information about scanned hosts.

l The ignore filter specifies a regular expression that when matches a line, the line is excluded and not
processed for extracting the operating system and applications information.

The syntax for the include and ignore filters is as follows:

line.include.regex=<regular_expression>
line.ignore.regex=<regular_expression>

For example:

line.include.regex= [\\w\\.-]+\\|.*?\\|(?:10336|10785|11936|18261) \\|.*?\\|
(.*)

Configuration Files for XML Reports

Getting a List of Hosts

The configuration file for getting a list of scanned hosts needs to be named
vendor.scanner.xqueryparser.properties, where vendor is usually the name of the scanner
device vendor. In addition, this configuration file specifies the other configuration files to use to extract
information and the order in which they need to run.

The following is an example configuration file for getting a list of hosts from a scan report:

Developer's Guide
Chapter 5: Configuration File Examples

Micro Focus Connectors (7.13.0) Page 110 of 242

trigger.node.expression=/report/details/host_info

token.count=3

token[0].name=hostname
token[0].expression=hostname
token[1].name=ipaddr
token[1].type=IPAddress
token[1].expression=ipaddr
token[2].name=macaddr
token[2].type=MacAddress
token[2].expression=macaddr

event.destinationAddress=ipaddr
event.destinationHostName=hostname
event.destinationMacAddress=macaddr

In addition to the common properties listed in "Parser File Structure", the following properties must be
configured:

Token Mappings

Mandatory. At a minimum, IP address or host name must be extracted from the scan report. In addition, if a
MAC address and other information is available, it should also be extracted, as shown in the example
above.

Use IP

Optional. Some scanners report only the IP addresses or host names of hosts scanned, while others might
report both. The Use IP property indicates whether the scan reports contain IP addresses. When this
property is set to false, it indicates that the scan report does not contain IP addresses.

use.ip=false

If this property is not set, the scanner FlexConnector expects IP addresses in the scan report.

Invalid Vulnerabilities

Optional. This property specifies the vulnerability identifiers (IDs) that the FlexConnector should ignore
when processing the scan report. If you want to specify multiple vulnerability IDs, separate them with a pipe
(|) character.

The syntax for this property is:

invalid.vulnerability.ids=<vulnerability_ids>

For example:

Developer's Guide
Chapter 5: Configuration File Examples

Micro Focus Connectors (7.13.0) Page 111 of 242

invalid.vulnerability.ids=CVE|null,CVE|NOCVE,CVE|,Nessus

Extra Events

Mandatory. These properties specify the names and locations of other configuration files required for
parsing the scan report to extract the vulnerabilities, open ports, operating system, and applications
information.

l extraevent[x].filename—Specifies the file name of the additional configuration file; for example,
extraevent[0].filename=nessus_nsr_osuris

l extraevent[x].name—Specifies a name to associate with the extra events; for example,
extraevent[0].name=/scanner/device/uri/aggregated.

Although you can specify the extra events in any order, you must use the following event names
(extraevent[x].name):

l Vulnerabilities: /scanner/device/vulnerability/aggregated

l Open ports: /scanner/device/openport/aggregated

l URIs (for operating system and applications): /scanner/device/uri/aggregated

For example:

extraevent.count=3

extraevent[0].filename=saint_xml_file.vulns
extraevent[0].name=/scanner/device/vulnerability/aggregated

extraevent[1].filename=saint_xml_file.openports
extraevent[1].name=/scanner/device/openport/aggregated

extraevent[2].filename=saint_xml_file.uris
extraevent[2].name=/scanner/device/uri/aggregated

Getting Vulnerabilities for Scanned Hosts

The configuration file for getting vulnerabilities for the scanned hosts needs to be named
vendor.vulns.xqueryparser.properties, where vendor is usually the name of the scanner device
vendor. This configuration file is used to extract the following information for the scanned hosts:

Vulnerabilities as indicated by the vendor vulnerability IDs

l Name, description, risk or severity, solution or recommendation, if available

l External references such as CVE, Bugtraq, and so on

l Any other relevant information that is available

The following is an example configuration file for getting vulnerabilities from a scan report:

Developer's Guide
Chapter 5: Configuration File Examples

Micro Focus Connectors (7.13.0) Page 112 of 242

hop.node.count=2

hop.node[0].name=scan_information
hop.node[0].expression=/report/scan_information

hop.node[1].name=host_info
hop.node[1].expression=/report/details/host_info

trigger.node.expression=$host_info/vulnerability[severity!=
"Service"]

token.count=11

token[0].name=scanner_version
token[0].expression=$scan_information/scanner_version

token[1].name=hostname
token[1].expression=$host_info/hostname

token[2].name=ipaddr
token[2].type=IPAddress
token[2].expression=$host_info/ipaddr

token[3].name=hosttype
token[3].expression=$host_info/hosttype

token[4].name=scan_time
token[4].type=TimeStamp
token[4].format=MMM dd HH:mm:ss yyyy
token[4].expression=$host_info/scan_time

token[5].name=description
token[5].expression=description

token[6].name=severity
token[6].expression=severity

token[7].name=cve
token[7].expression=fn:replace(cve," ","%CVE=")

token[8].name=impact
token[8].expression=impact

Developer's Guide
Chapter 5: Configuration File Examples

Micro Focus Connectors (7.13.0) Page 113 of 242

token[9].name=resolution
token[9].expression=resolution

token[10].name=reference
token[10].expression=reference

event.categoryTechnique=__stringConstant("/scanner/device/
vulnerability")
event.destinationAddress=ipaddr
event.destinationHostName=hostname
event.deviceEventClassId=__concatenate(__concatenateDeleting
("Saint=",description,"#",description,"#",severity,"#","Impact",
impact,"Resolution",resolution," Reference",reference, "%|#=/@"),"%CVE=",cve)
event.deviceProduct=__stringConstant(SAINT Vulnerability Scanner)
event.deviceReceiptTime=scan_time
event.deviceSeverity=severity
event.deviceVendor=__stringConstant(SAINT)
event.deviceVersion=scanner_version
event.name=description

severity.map.veryhigh.if.deviceSeverity=critical,Critical Problem
severity.map.high.if.deviceSeverity=concern,Area of Concern
severity.map.medium.if.deviceSeverity=potential,Potential Problem
severity.map.low.if.deviceSeverity=info,service,Service

In addition to the common properties listed in "Parser File Structure", the following properties must be
configured.

Token Mappings

Mandatory. At a minimum, IP address or host name must be extracted from the scan report. In addition, if a
MAC address and other information is available, it should also be extracted, as shown in the example
above.

Event Mappings

Mandatory. The following event mappings must be defined in the configuration file:

l event.name

l event.deviceSeverity

l event.categoryTechnique

The value for this property must be set to the value shown in the previous example.

Developer's Guide
Chapter 5: Configuration File Examples

Micro Focus Connectors (7.13.0) Page 114 of 242

l event.deviceEventClassId = __concatenateDeleting(“<vendor_vulnerability_
name>=”, vendor_vuln_id, “#”, Name, “#”, Severity, “#”, Description, “%”,
“<ref_name1>=”, ref_id1,”%’,”<ref_name2>=”, ref_id2, "%|#=/@")

Note: Use __concatenateDeleting() instead of __concatenate() only if the Description
field contains characters such as %, |, #, =, @, which are used as delimiters in parsers. For information
about __concatenateDeleting(), see "ArcSight Operations".

The value for this property is obtained by concatenating the following vulnerability information (as
indicated by the syntax above):

l Vendor vulnerability collection name=vendor vulnerability ID

l Vendor vulnerability name

l Risk or severity

l List of description, recommendation, and remediation (separated by the ‘#’ character)

l List of external references (separated by the ‘%’ character)

l event.destinationHostName, event.destinationAddress, and destinationMACAddress
(whichever is available)

Severity Mappings

Mandatory. You must define the device severity to FlexConnector severity mapping as shown in section #6
of the example presented earlier in this section.

Getting Open Ports on Scanned Hosts

The configuration file for getting the open ports and protocols on each scanned host needs to be named
vendor.openports.xqueryparser.properties, where vendor is usually the name of the scanner
device vendor.

The following is an example configuration file for getting open port on each scanned host from a scan
report:

hop.node.count=2

hop.node[0].name=scan_information
hop.node[0].expression=/report/scan_information

hop.node[1].name=host_info
hop.node[1].expression=/report/details/host_info

trigger.node.expression=$host_info/vulnerability[severity="Service"]

token.count=7

Developer's Guide
Chapter 5: Configuration File Examples

Micro Focus Connectors (7.13.0) Page 115 of 242

token[0].name=scanner_version
token[0].expression=$scan_information/scanner_version

token[1].name=hostname
token[1].expression=$host_info/hostname

token[2].name=ipaddr
token[2].type=IPAddress
token[2].expression=$host_info/ipaddr

token[3].name=hosttype
token[3].expression=$host_info/hosttype

token[4].name=scan_time
token[4].type=TimeStamp
token[4].format=MMM dd HH:mm:ss yyyy
token[4].expression=$host_info/scan_time

token[5].name=description
token[5].expression=description

token[6].name=severity
token[6].expression=severity

event.applicationProtocol=__regexToken(description,"(?:([a-zA-Z]+) ?)?\\(?
(?:\\d+/\\w+)?\\)?")
event.destinationServiceName=__regexToken(description,"(.*?) .*")

event.categoryTechnique=__stringConstant("/scanner/device/
openport")

event.destinationAddress=ipaddr
event.destinationHostName=hostname
event.destinationPort=__regexTokenAsInteger(description,"
\\D*(\\d*).*?")
event.deviceProduct=__stringConstant(SAINT Vulnerability Scanner)
event.deviceReceiptTime=scan_time
event.deviceSeverity=severity

event.deviceVendor=__stringConstant(SAINT)
event.deviceVersion=scanner_version

Developer's Guide
Chapter 5: Configuration File Examples

Micro Focus Connectors (7.13.0) Page 116 of 242

event.name=__concatenate("Service: ",description)
event.transportProtocol=__regexToken(description,"(?:[a-zA-Z]+ ?)?\\(?
(?:\\d+/(\\w+))?\\)?")

In addition to the common properties listed in "Parser File Structure", the following properties need to be
configured:

Token Mappings

Mandatory. At a minimum, IP address or host name must be extracted from the scan report. In addition, if a
MAC address and other information is available, it should also be extracted, as shown in the example
above.

Event Mappings

Mandatory. The following event mappings must be defined in the configuration file:

l event.name

l event.categoryTechnique

The value for this property needs to be set to the value shown in the previous example.

l event.transportProtocol

l event.destinationPort

The event.destinationPort field must contain the open port that the scanner reported.

l event.destinationHostName, event.destinationAddress, and
event.destinationMacAddress (whichever is available)

Getting OS and Applications (URIs) on Scanned Hosts

The configuration file for getting the operating system and applications on each scanned host needs to be
named vendor.uris.sdkrfilereader.properties, where vendor is usually the name of the
scanner device vendor.

The following is an example configuration file for getting operating system and applications on each
scanned host from a scan report:

hop.node.count=2

hop.node[0].name=scan_information
hop.node[0].expression=/report/scan_information

hop.node[1].name=host_info
hop.node[1].expression=/report/details/host_info

Developer's Guide
Chapter 5: Configuration File Examples

Micro Focus Connectors (7.13.0) Page 117 of 242

trigger.node.expression=$host_info

token.count=5

token[0].name=scanner_version
token[0].expression=$scan_information/scanner_version

token[1].name=hostname
token[1].expression=$host_info/hostname

token[2].name=ipaddr
token[2].type=IPAddress
token[2].expression=$host_info/ipaddr

token[3].name=hosttype
token[3].expression=$host_info/hosttype

token[4].name=scan_time
token[4].type=TimeStamp
token[4].format=MMM dd HH:mm:ss yyyy
token[4].expression=$host_info/scan_time

event.categoryTechnique=__stringConstant("/scanner/device/uri")
event.destinationAddress=ipaddr
event.destinationHostName=hostname
event.deviceProduct=__stringConstant(SAINT Vulnerability Scanner)

event.deviceReceiptTime=scan_time
event.deviceVendor=__stringConstant(SAINT)
event.deviceVersion=scanner_version
event.filePath=__getNormalizedOS(hosttype)
event.name=__concatenate("OS: ",hosttype)

Token Mappings

Mandatory. At a minimum, IP address or host name must be extracted from the scan report. In addition, if a
MAC address and other information is available, it should also be extracted, as shown in the example
above.

Event Mappings

Mandatory. The following event mappings must be defined in the configuration file:

Developer's Guide
Chapter 5: Configuration File Examples

Micro Focus Connectors (7.13.0) Page 118 of 242

l event.name

l event.categoryTechnique

The value for this property must be set to the value shown in the previous example.

l event.filePath

Use the __getNormalizedOS() operation to ensure that the operating system information is translated
to a normalized OS asset category, as shown in the example above.

Scanner FlexConnectors for Database Scan Reports
Unlike the scanner FlexConnectors that process normal text or XML scan reports, the scanner
FlexConnector that processes database scan reports is a single configuration file. This file must be named
vendor.sdkdatabase.properties, where vendor is usually the name of the scanner device vendor.

This file contains properties that extract the following information from a scan report:

l Version of the database

l List of scan jobs stored in the database

l List of hosts scanned in a scan job

l Vulnerabilities, open ports, operating system, and applications for each scanned host in a scan job

Getting the Version of the Database

Version

The following version properties are used to detect and identify the version of the database or product:

l version.id

l version.query

l version.order

For a detailed explanation of these properties, see "Configuration Properties for a Time-based Database
FlexConnector".

Example for FoundScan:

version.id=5.x
version.query=select Version from Version where (Name='Database') and
(Version like '5%')
version.order=3

Example for eEye Retina:

Developer's Guide
Chapter 5: Configuration File Examples

Micro Focus Connectors (7.13.0) Page 119 of 242

version.id=5.x
version.order=0
version.query=select count(id_) from eeye_Groups

Getting the List of Scan Jobs

Scan Job

The scan job properties obtain a list of scan job IDs for various scan results stored in the database.

l Query—Obtains a list of scan job IDs for the scan jobs that have completed.

l scanjob.column—Enables you to specify the fields to display in the GUI for scan jobs when the
scanner FlexConnector is used in the interactive mode.

l scanjob.jobid.column.index, timestamp.field, uniqueid.fields, and event.name—
Required by the database parsing framework; therefore, these need to be configured.

For example:

query=select jobID,startTime,stopTime,jobDesc from jobs where jobID>? and
termStatus='Finished' order by JobId
scanjob.column.names=jobID,startTime,stopTime,jobDesc
scanjob.column.types=String,String,Integer,TimeStamp,TimeStamp
scanjob.jobid.column.index=3
timestamp.field=stopTime
uniqueid.fields=jobID
event.name=jobDesc

Use IP

Optional. Some scanners report only the IP addresses or host names of hosts scanned, while others might
report both. The use.ip property indicates whether the scan reports contain IP addresses. When this
property is set to false, it indicates that the scan report does not contain IP addresses.

use.ip=false

If this property is not set, the scanner FlexConnector expects IP addresses in the scan report.

Invalid Vulnerabilities

Optional. This property specifies the vulnerability identifiers (IDs) that the FlexConnector should ignore
when processing the scan report. If you want to specify multiple vulnerability IDs, separate them with a pipe
(|) character.

The syntax for this property is as follows:

invalid.vulnerability.ids=<vulnerability_ids>

Developer's Guide
Chapter 5: Configuration File Examples

Micro Focus Connectors (7.13.0) Page 120 of 242

For example:

invalid.vulnerability.ids=CVE|null,CVE|NOCVE,CVE|,Nessus

Extra Queries

Mandatory. Extra queries are used to extract the list of hosts from a scan job, their open ports,
vulnerabilities, operating system and applications on those hosts.

extraevent[x].name—Specifies a name to associate with the extra events; for example, extraevent
[0].name=/scanner/device/uri/aggregated.

Although you can specify the extra events in any order, you must use the following event names
(extraevent[x].name):

l Vulnerabilities: /scanner/device/vulnerability/aggregated

l Open ports: /scanner/device/openport/aggregated

l URIs (for operating system and applications):/scanner/device/uri/aggregated

The extra queries that you must configure are:

l extra.queries.count

The number of queries in the configuration file. The number is one less than the total number of queries
because the first query starts at 0. For example, if you have three queries defined to extract operating
system, open ports, and vulnerabilities, then set this property to 2.

l last.data.query.index

The highest index number for the query that will generate events. For example, if you have 6
extra.queries configured and you set this number to 4, any queries with index number 5, 6, and 7 will
not generate events; all others will do so.

l host.query.index

The index number of the query that generates a list of scanned hosts.

The property extra.queries.count determines the number of different queries that will be executed.
The order of the extra queries is important. The extra queries that generate events should be placed first,
followed by the ones that do not. There are two query index properties: host.query.index determines
the query that is used to find the hosts in the scan and last.data.query.index determines which is
the last data query that generates an event that is displayed on the console. The rest of the queries may be
used for different purposes, but they do not generate events that are displayed on the console. For
example:

extra.queries.count=4
last.data.query.index=2
host.query.index=3

Vulnerability Query

The vulnerability query extracts the following information:

Developer's Guide
Chapter 5: Configuration File Examples

Micro Focus Connectors (7.13.0) Page 121 of 242

l Vulnerabilities as indicated by the vendor vulnerability IDs

l Name, description, risk or severity, solution or recommendation, if available

l External references such as CVE, Bugtraq, and so on

l Any other relevant information

This query uses the order by clause to sort the results by host ID.

The following is an example of the vulnerability query defined in a configuration file:

extra.queries[0].name=/scanner/device/vulnerability/aggregated

extra.queries[0].query=select
Jobs.JobID,Jobs.EndTime,JobName,Organizations.Name \

as \
CompanyName,Hosts.IPAddress,OSName,NBName,NBWorkGroup, DNSName,Alive, \
Virtual,ICMP,IdentifyWith,Wireless,Subscan,Batch,VulnFoundID, \
VulnsFound.FaultlineID,CVE,Type,Vulns.Name \
as \
VulnName,Vulns.Description \
as \

VulnDescription,Observation,RiskText,Risk,Recommendation,ExploitDate,Simplici
ty, \
Popularity,Impact,ExploitLink,
Person,LHF,ExploitDataType,Intrusive,SANS,Vulns.Status, \
ScanConfigurations.ConfigurationName \
from \
Jobs,Organizations,Hosts,VulnsFound,Vulns, ScanConfigurations \
where \
Jobs.CustomerID = Organizations.OrgId and \
Jobs.CustomerID = Hosts.CustomerID and Jobs.ConfigurationID =
Hosts.ConfigurationID and \
Jobs.JobID = Hosts.JobID and Jobs.CustomerID = VulnsFound.CustomerID and \
Jobs.ConfigurationID = VulnsFound.ConfigurationID and Jobs.JobID =
VulnsFound.JobId \
and Hosts.HostID = VulnsFound.HostID and VulnsFound.FaultlineID =
Vulns.FaultlineID and \
Jobs.CustomerID = ScanConfigurations.CustomerID and \
Jobs.ConfigurationID = ScanConfigurations.ConfigurationID and Jobs.JobId = ?
\
order by Hosts.HostID

from Vulns and VulnsFound table
extra.queries[0].event.name=VulnName

Developer's Guide
Chapter 5: Configuration File Examples

Micro Focus Connectors (7.13.0) Page 122 of 242

extra.queries[0].event.deviceSeverity=Risk
extra.queries[0].severity.map.high.if.deviceSeverity=7,8,9,10
extra.queries[0].severity.map.medium.if.deviceSeverity=4,5,6
extra.queries[0].severity.map.low.if.deviceSeverity=0,1,2,3
extra.queries[0].event.categoryTechnique=__stringConstant
("/scanner/device/vulnerability")
extra.queries[0].event.deviceEventClassId=__concatenateDeleting
("Faultline=",FaultlineID,"#",VulnName,"#",Risk,"#","Description",VulnDescrip
tion,"Observation",Observation," RiskText",
RiskText,"Recommendation",Recommendation, "%CVE=",CVE,"%|#=/@")
extra.queries[1].event.destinationAddress=IPAddress
extra.queries[1].event.destinationHostName=DNSName

The following event mappings must be defined in the configuration file for the vulnerability query:

l event.name

l event.deviceSeverity

l event.categoryTechnique

The value for this property must be set to the value shown in the previous example.

l event.deviceEventClassId = __concatenateDeleting(“<vendor_vulnerability_
name>=”, vendor_vuln_id, “#”, Name, “#”, Severity, “#”, Description, “%”,
“<ref_name1>=”, ref_id1,”%’,”<ref_name2>=”, ref_id2, "%|#=/@")

Note: Use __concatenateDeleting() instead of __concatenate() only if the
Description field contains characters such as %, |, #, =, @, which are used as delimiters in parsers.
For information about __concatenateDeleting(), see "ArcSight Operations".

The value for this property is obtained by concatenating the following vulnerability information (as
indicated by the syntax above):

o Vendor vulnerability collection name=vendor vulnerability ID

o Vendor vulnerability name

o Risk or severity

o List of description, recommendation, and remediation (separated by the ‘#’ character)

o List of external references (separated by the ‘%’ character)

l event.destinationHostName, event.destinationAddress, and destinationMACAddress
(whichever is available)

l Device severity to FlexConnector severity mapping:

extra.queries[x].severity.map.high.if.deviceSeverity
extra.queries[x].severity.map.medium.if.deviceSeverity
extra.queries[x].severity.map.low.if.deviceSeverity

Developer's Guide
Chapter 5: Configuration File Examples

Micro Focus Connectors (7.13.0) Page 123 of 242

Open Ports Query

The open ports query extracts the ports open on the scanned hosts and transport protocols allowed on
those ports.

This query uses the order by clause to sort the results by host ID.

The following is an example of the open ports query defined in a configuration file:

extra.queries[1].name=/scanner/device/openport/aggregated
extra.queries[1].query=select
Jobs.JobID,Jobs.EndTime,JobName,Organizations.Name as \
CompanyName,Hosts.IPAddress,OSName,NBName,NBWorkGroup, \

DNSName,Alive,Virtual,ICMP,IdentifyWith,Wireless,Subscan,Batch,ServicesFound.
Banner, \
ServiceName,Services.Port,Protocol,Services.Description, \
Detail, ServicesFound.ServiceID \
from \
Jobs,Hosts,Organizations,ServicesFound,Services where \
Jobs.CustomerID = Organizations.OrgId and \>
Jobs.CustomerID = Hosts.CustomerID and Jobs.ConfigurationID =
Hosts.ConfigurationID and \
Jobs.JobID = Hosts.JobID and \
Jobs.CustomerID = ServicesFound.CustomerID and Jobs.ConfigurationID =
ServicesFound.ConfigurationID \
and Jobs.JobID = ServicesFound.JobId and Hosts.HostID = ServicesFound.HostID
and \
ServicesFound.ServiceID = Services.ServiceID and Jobs.JobId = ? \
order by Hosts.HostID

extra.queries[1].event.name=Service
extra.queries[1].event.destinationPort=Port
extra.queries[1].event.transportProtocol=Protocol
extra.queries[1].event.destinationAddress=IPAddress
extra.queries[1].event.destinationHostName=DNSName

The following event mappings must be defined in the configuration file:

l event.name

l event.categoryTechnique

The value for this property needs to be set to the value shown in the previous example.

l event.transportProtocol

l event.destinationPort

Developer's Guide
Chapter 5: Configuration File Examples

Micro Focus Connectors (7.13.0) Page 124 of 242

The event.destinationPort field must contain the open port that the scanner reported.

l event.destinationHostName, event.destinationAddress, and destinationMacAddress
(whichever is available)

Getting OS and Applications (URIs) on Scanned Hosts

The OS and applications (URIs) query extracts the operating systems and applications found on the
scanned hosts.

This query uses the order by clause to sort the results by host ID.

The following is an example of the OS and applications query defined in a configuration file:

extra.queries[2].name=/scanner/device/uri/aggregated
extra.queries[2].query=Select IPAddress, DNSName, NBWorkGroup, \
OSName, EndTime from Hosts, Jobs \
where \
Jobs.CustomerID=Hosts.CustomerID and
Jobs.ConfigurationID=Hosts.ConfigurationID and \
Jobs.JobID=Hosts.JobID and Jobs.JobID=?

extra.queries[2].event.name=OSName
extra.queries[2].event.categoryTechnique=__stringConstant("/
scanner/device/uri")
extra.queries[2].event.filePath=__getNormalizedOS(OSName)
extra.queries[2].event.destinationAddress=IPAddress
extra.queries[2].event.destinationHostName=DNSName
extra.queries[2].event.destinationNtDomain=NBWorkGroup

The following event mappings must be defined in the configuration file:

l event.name

l event.categoryTechnique

The value for this property needs to be set to the value shown in the previous example.

l event.filePath

Use the __getNormalizedOS() operation to ensure that the operating system information is
translated to a normalized OS asset category, as shown in the example above.

Getting Scanned Hosts (Host Query)

This query extracts the IP addresses, host names, MAC addresses of the hosts in a scan job. Because all
scanners do not provide all three pieces of information, the query extracts whatever information is
available.

Developer's Guide
Chapter 5: Configuration File Examples

Micro Focus Connectors (7.13.0) Page 125 of 242

This query does not generate events, but generates a list of hosts that the connector uses to create assets
and update their information in ESM.

The following is an example of the query:

extra.queries[3].name=HostList
extra.queries[3].query= \
SELECT DISTINCT Hosts.IPAddress, Hosts.DNSName, ServicesFound.Banner \
FROM Jobs INNER JOIN Hosts ON Jobs.CustomerID = Hosts.CustomerID AND
Jobs.ConfigurationID \
= Hosts.ConfigurationID AND Jobs.JobID = Hosts.JobID \
LEFT OUTER JOIN ServicesFound ON Hosts.JobID = ServicesFound.JobID AND
Hosts.HostID \
= ServicesFound.HostID AND ServicesFound.ServiceID = 236 \
WHERE Jobs.JobID = ?

>extra.queries[3].event.destinationAddress=IPAddress
extra.queries[3].event.destinationHostName=DNSName
extra.queries[3].event.destinationMacAddress=__getLongMACAddressByString(__
regexToken(Banner,"(?s)MAC Address:\\s*(\\S+)"))

Developer's Guide
Chapter 5: Configuration File Examples

Micro Focus Connectors (7.13.0) Page 126 of 242

Chapter 6: Advanced Features
This chapter contains the following information:

l Regular Expressions

l Sub-Messages

l Log Rotation Types

l Log Internal Events for File-Reading FlexConnectors

l Unparsed Events Detection

Regular Expressions
Regular expression-based FlexConnector parse fields from a line-based text log file. The Regex
FlexConnector will not manipulate binary files or text files that aren’t line based. Multiple line based regex
parsers are addressed later in this document.

This table lists meta-characters:

MChar Definition Pattern Sample Matches

. Any character (except \n new-line) a.c abc, aac, acc, adc, aec, ...

| Alternation. bill|ted ed, bill

{...} Explicit quantifier notation. ab{2}c abbc

[...] Explicit set of characters to match. a[bB]c abc, aBc

(...) Logical grouping of part of an expression. (abc){2} abcabc

* 0 or more of previous expression. ab*c ac, abc, abbc, abbbc, ...

+ 1 or more of previous expression. ab+c abc, abbc, abbbc, ...

? 0 or 1 of previous expression; also forces minimal matching
when an expression might match several strings within a
search string.

ab?c ac, abc

\ Preceding one of the above, it makes it a literal instead of a
special character. Preceding a special matching character,
see below.

a\sc a c

Micro Focus Connectors (7.13.0) Page 127 of 242

This table lists escape characters:

Escaped Char Description

ordinary characters Characters other than . $ ̂ { [(|)] } * + ? \ match themselves.

\t Matches a tab \u0009.

\r Matches a carriage return \u000D.

\n Matches a new line \u000A.

\x20 Matches an ASCII character using hexadecimal representation (exactly two digits).

* When followed by a character that is not recognized as an escaped character, matches that
character. For example, * is the same as \x2A.

This table lists character classes:

Char Class Description

[aeiou] Matches any single character included in the specified set of characters.

[^aeiou] Matches any single character not in the specified set of characters.

[0-9a-fA-F] Use of a hyphen (–) allows specification of contiguous character ranges.

\w Matches any word character.

\W Matches any non-word character.

\s Matches any white-space character.

\S Matches any non-white-space character.

\d Matches any decimal digit. Equivalent to [0-9]

\D Matches any non-digit. Equivalent to [^0-9]

This table lists common Regex :

Data Type Regex for FlexConnector Example

IPAddress (\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}\\.\\d
{1,3})

123.45.67.89

IPAddress:Port (\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}\\.\\d
{1,3})\:(\\d{1,5})

123.45.67.89:25

Date & Time HTTP \\[(\\d{2}\\/\\w+\\/\\d{4}:\\d{2}:\\d
{2}:\\d{2} [+|-]\\d{4})\\]

[04/Dec/2004:00:21:37 +0000]

Date & Time (\\d{2}\\/\\d{2}\\/\\d{4} \\d{2}:\\d
{2}:\\d{2}) 01/31/2005 10:45:50

31/01/2005 22:15:10

Developer's Guide
Chapter 6: Advanced Features

Micro Focus Connectors (7.13.0) Page 128 of 242

Multi-line Parsing
Some files may contain events that are split into multiple lines. Some types parse files in which each line is
an event, but FlexConnector Regex Log file FlexConnectors also support reading multi-line files.

FlexConnectors will try to concatenate all the lines belonging to a single event separated by a space. The
problem becomes simpler because the events go back to being one line.

When events are split across several lines, there is typically a way to identify the message start and end. To
support multi-line messages, you need to define the message start and end in the configuration file. The
properties, in the following table, can be used for this purpose.

This table lists multi-line properties:

Property Description

multiline.starts.regex This property can be set to a regular expression that identifies when the multi-line event
starts. (This is required for multi-line files.)

multiline.ends.regex This property can be set to a regular expression that identifies when the multi-line event
ends. (This property is optional. If it is not present, it is assumed that when a new event
begins the previous one has ended.)

multiline.max.count This is an overflow protection that is not required but is recommended. The FlexConnector
will truncate the message if it reaches this specified number of lines plus one.

multiline.delimiter By default, lines are concatenated with a space (' ') between, but this can be changed by
setting this property to a different character.

multiline.singleline.
nowaiting=(True or False)

If True, the connector does not wait for another line when the log file has a single line
without a second line. It proceeds to the next multi-line and continues processing.

Note: Multi-line regular expression support is available only for Log File agents.

A log file that requires a multi-line FlexConnector might look like this:

|01/01/2005 11:00:50|1.1.1.1|7663|2.2.2.2|80|this
is
a
message
that
takes
multiple
lines|
|01/01/2005 11:00:51|1.1.1.1|7663|2.2.2.2|80|this
is another large message that takes
multiple lines|

Developer's Guide
Chapter 6: Advanced Features

Micro Focus Connectors (7.13.0) Page 129 of 242

To parse this message with a simple FlexConnector Regex Log file, add the following multiline
property to the configuration file:

multiline.starts.regex=\|\d+/\d+/\d+ \d+:\d+:\d+\|.*

The FlexConnector will concatenate multiple lines into a single line. The events will look like this:

|01/01/2005 11:00:50|1.1.1.1|7663|2.2.2.2|80|this is a message that takes
multiple lines|
|01/01/2005 11:00:51|1.1.1.1|7663|2.2.2.2|80|this is another large message
that takes multiple lines|

Such a log can be parsed by a standard FlexConnector Regex Log file. Another example:

multiline.ends.regex=.*\|$

In this case, the ends property is not required because an expression was defined that will always match
the start of a message.

The full FlexConnector Regex Logfile configuration file that can parse this message looks like this:

FlexConnector Regex Configuration File

multiline.starts.regex=\\|\\d+/\\d+/\\d+ \\d+\:\\d+\:\\d+\\|.*

regex=\\|(.*?)\\|(\\S+)\\|(\\d+)\\|(\\S+)\\|(\\d+)\\|(.*)\\|

token.count=6
token[0].name=Timestamp
token[0].type=TimeStamp
token[0].format=MM/dd/yyyy HH\:mm\:ss

token[1].name=SourceAddress
token[1].type=IPAddress

token[2].name=SourcePort
token[2].type=Integer

token[3].name=DestinationAddress
token[3].type=IPAddress

token[4].name=DestinationPort
token[4].type=Integer

token[5].name=Message
token[5].type=String

Developer's Guide
Chapter 6: Advanced Features

Micro Focus Connectors (7.13.0) Page 130 of 242

#submessage.messageid.token=
#submessage.token=

event.sourceAddress=SourceAddress
event.destinationAddress=DestinationAddress
event.sourcePort=SourcePort
event.destinationPort=DestinationPort
event.deviceVendor=__getVendor("MyVendor")
event.message=Message
event.deviceProduct=__stringConstant("MyProduct")

This is an example of a log file that requires multi-line processing:

Multi-Line Virus Wall Log File
Date: 11/29/2004 09:44:11
Method: HTTP
From: http://www.nextern.net/downloads/pgtaff/pgtaff.cab
To: 10.0.1.19
File: pgtaff.cab
Action: The uncleanable file is deleted.
Virus: ADW_SCANPORTAL.A

Date: 11/29/2004 11:34:37
Method: HTTP
From: http://www.nextern.net/downloads/pgtaff/pgtaff.cab
To: 10.0.1.19
File: pgtaff.cab
Action: The uncleanable file is deleted.
Virus: ADW_SCANPORTAL.A

Date: 11/29/2004 12:21:32
Method: HTTP
From: http://192.168.176.227/webplugin.cab
To: 10.0.1.9
File: webplugin.cab
Action: The uncleanable file is deleted.
Virus: TROJ_ONECLICK.A

The regular expression portion of the configuration file that defines this "Virus Wall" FlexConnector looks
like this:

multiline.starts.regex=Date:.*
multiline.ends.regex=----------------------------------

Developer's Guide
Chapter 6: Advanced Features

Micro Focus Connectors (7.13.0) Page 131 of 242

regex=Date:\\s(\\d{2}\\/\\d{2}\\/\\d{4} \\d{2}:\\d{2}:\\d{2}).Method:\\s
(\\w+).From:\\s(\\S+).To:\\s(\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}\\.\\d
{1,3}).File:\\s(\\S+).Action:\\s([^\\.]+)\\..Virus:\\s(\\S+).*

The following is another example of a multi-line log file:

BEA WebLogic Log File
####<30-mar-04 9:04:34 PST> <Info> <HTTP> <bcnproo41> <myserver>
<ExecuteThread: '9' for queue: 'default'> <> <> <101047> <
[WebAppServletContext(206735,Scort,/Scort)] SmartDemo
TerminalNewSessionServlet: web application context path=[/Scort]>
####<30-mar-04 9:10:35 PST> <Info> <HTTP> <bcnproo41> <myserver>
<ExecuteThread: '7' for queue: 'default'> <> <> <101047> <
[WebAppServletContext(206735,Scort,/Scort)] [2004.03.30 09:10:35.468]:Thread
Group for Queue: 'default'.ExecuteThread: '7' for queue:
'default'@565cd0:aa4:[Apn2T1cX5PWUVbP4nVXhHM6U714NKT2vVLXhPid1eYtCWY602fn4!-
1600671479!169410899!3001!7002!1080666038968] !!!
com.scort.agent.terminal.servlet.ServletHelper.traceOrError Timeout on
receiving response

receive timeout=60000
mode=send and receive
>

####<30-mar-04 9:10:57 PST> <Info> <HTTP> <bcnproo41> <myserver>
<ExecuteThread: '9' for queue: 'default'> <> <> <101047> <
[WebAppServletContext(206735,Scort,/Scort)] SmartDemo
TerminalNewSessionServlet: web application context path=[/Scort]>
####<30-mar-04 9:11:24 PST> <Info> <HTTP> <bcnproo41> <myserver>
<ExecuteThread: '9' for queue: 'default'> <> <> <101047> <
[WebAppServletContext(206735,Scort,/Scort)]

In this case, the regular expression portion of the configuration file looks like this:

multiline.starts.regex=####<.*
multiline.ends.regex=####
regex=####<([^>]*)> <([^>]*)> <([^>]*)> <([^>]*)> <([^>]*)> <([^>]*)> <
([^>]*)> <([^>]*)> <([^>]*)> <([^>]*)>(.*)

Sub-Messages
In some cases, the files being parsed by FlexConnectors may contain more than one message format. For
example:

Developer's Guide
Chapter 6: Advanced Features

Micro Focus Connectors (7.13.0) Page 132 of 242

Nov 28 22:02:42 10.0.111.2 %PIX-6-106015: Deny TCP (no connection) from
3.3.3.3/4532 to 4.4.4.4/80 flags RST on interface outside
Nov 28 22:06:10 10.0.111.2 %PIX-3-305005: No translation group found for tcp
src inside:10.0.112.9/37 dst outside:4.5.6.7/3562
Nov 29 01:46:42 10.0.111.2 %PIX-6-305005: Translation built for gaddr 1.2.3.4
to laddr 10.0.111.9
Nov 29 01:35:15 10.0.111.2 %PIX-4-500004: Invalid transport field for
protocol=6, from 2.2.2.2/0 to 3.3.3.3/0
Nov 28 12:03:21 10.0.111.2 %PIX-6-106015: Deny TCP (no connection) from
1.1.1.1/3564 to 2.2.2.2/80 flags RST on interface outside
Nov 29 04:11:32 10.0.111.2 %PIX-4-500004: Invalid transport field for
protocol=6, from 5.5.5.5/0 to 6.6.6.6/0

There is no easy way to define a regular expression that could match all four possible formats in this
example. For this reason, the FlexConnector Regex log-file supports using multiple regular expressions,
one for each format, by defining sub-messages.

Almost every message can be divided in two portions, one that is common to all messages and one that
varies with each message format. The common, or standard, portion requires only one regular expression.
A sub-message is defined as the non-standard portion of the message being parsed. In the example
above, divide the message:

Nov 28 22:02:42 10.0.111.2 %PIX-6-106015: Deny TCP (no connection) from
199.248.65.116/3564 to 10.0.111.22/80 flags RST on interface outside

Into:

Nov 28 22:02:42 10.0.111.2 %PIX-6-106015:

And:

Deny TCP (no connection) from 199.248.65.116/3564 to 10.0.111.22/80 flags RST
on interface outside

Identify that the first portion of the message is common to all messages; it contains the month, the day of the
month, the time, an IP address and an identifier (in this case formed by the mnemonic %PIX (which comes
from a Cisco Pix device) followed by a single digit that specifies the device severity and finally message ID).
The second portion of the message varies between each of the messages in the example.

Usually one or more sub-messages can be identified by a message ID or format identifier. A message ID, if
available, will improve performance of the FlexConnector engine.

In the example, the message ID is the last portion of the identifier provided with each message. Determine
that all messages with message ID 106015 have the same format; likewise message identifier 500004.
Messages with message ID 305005 have slightly different formats, but they both refer to translations.

Developer's Guide
Chapter 6: Advanced Features

Micro Focus Connectors (7.13.0) Page 133 of 242

The file described above must be parsed using a FlexConnector Regex Log file and sub-messages. The
first thing to do is to define a regular expression that will match all messages using knowledge of the
standard and non-standard part of the messages:

regex=(\S+ \d+ \d+:\d+:\d+) (\S+) %PIX-(\d)-(\d+): (.*)

This regular expression matches all the messages above and separates the standard part of the message
into tokens. The last (.*) matches everything after the %PIX identifier; that expression group will become
the sub-message to parse further.

With a common expression for all messages, now define the common tokens that are captured:

token.count=5

token[0].name=Timestamp
token[0].type=TimeStamp
token[0].format=MMM dd HH\:mm\:ss

token[1].name=PixIP
token[1].type=IPAddress

token[2].name=PixSeverity
token[2].type=String

token[3].name=SubmessageIdToken
token[3].type=String

token[4].name=SubmessageToken
token[4].type=String

Now add the common mappings:

event.deviceReceiptTime=Timestamp
event.deviceAddress=PixIp
event.deviceSeverity=PixSeverity
event.deviceEventClassId=SubmessageIdToken
event.deviceVendor=__getVendor(“CISCO”)
event.deviceProduct=__stringConstant(“PIX”)

Notice that the timestamp does not contain the year (this is typical in a syslog message). Use a
FlexConnector operation to add the current year to avoid all of the messages defaulting to the year 1970.
The operation to use is __useCurrentYear(). The corrected mappings should be:

event.deviceReceiptTime=__useCurrentYear(Timestamp)
event.deviceAddress=PixIp

Developer's Guide
Chapter 6: Advanced Features

Micro Focus Connectors (7.13.0) Page 134 of 242

event.deviceSeverity=PixSeverity
event.deviceEventClassId=SubmessageIdToken
event.deviceVendor=__getVendor(“CISCO”)
event.deviceProduct=__stringConstant(“PIX”)

Map the severity, which is also common:

severity.map.veryhigh.if.deviceSeverity=0,1
severity.map.high.if.deviceSeverity=2,3
severity.map.medium.if.deviceSeverity=4,5
severity.map.low.if.deviceSeverity=6,7

Having parsed the standard part of the message, define which token will contain the message ID and which
token will contain the sub-message to be parsed. This is accomplished by defining the following properties:

l submessage.messageid.token=SubmessageIdToken

l submessage.token=SubmessageToken

The (submessage.messageid.token) property identifies the token that will hold the message
identifier. The (submessage.token) property identifies the token that contains the actual sub-message.

Now define the additional regular expressions for each sub-message ID. To do this, define the number of
sub-messages that are required. In this case, there are three sub-message IDs (106015, 305005, 500004).
Define the sub-message count as 3:

submessage.count=3

Follow these steps to define the sub-message:

1. Define the corresponding sub-message ID.

2. Define the regular expression(s) to use.

3. Define the mappings to event fields.

To define the first sub-message for message ID 106015, first define the message ID:

submessage[0].messageid=106015

Next, define the number of regular expressions (also known as patterns) needed. Message 305005 will
require two regular expressions but the other messages will require only one:

submessage[0].pattern.count=1

Define the regular expression to use for this message ID:

submessage[0].pattern[0].regex=Deny (\\S+) \\(no connection\\) from
(\\d+\\.\\d+\\.\\d+\\.\\d+)/(\\d+) to (\\d+\\.\\d+\\.\\d+\\.\\d+)/(\\d+)
flags RST on interface (\\S+)

The expression captures the protocol, the source address and source port, the destination address and
destination port and finally the interface. Now define how these tokens will map into event fields:

Developer's Guide
Chapter 6: Advanced Features

Micro Focus Connectors (7.13.0) Page 135 of 242

submessage[0].pattern[0].fields=event.transportProtocol,
event.sourceAddress,event.sourcePort,
event.destinationAddress,event.destinationPort,
event.deviceInboundInterface

However, you may have noticed that the type of each token was not defined; nor were any possible token
formats. Because you can have several of these sub-messages for each file, the sub-message engine tries
to deduce the type based on the mapping. This may not always work, so there is a way to explicitly set the
types and the formats. Internally, the sub-message engine labels each token by its position in the regular
expression (like Perl). In the engine, the tokens are named $1, $2, $3, $4, and so on, and you can set their
type and format explicitly by defining the following properties:

submessage[0].pattern[0].types=String,IPAddress,Integer,
IPAddress,Integer,String

The format can also be defined using one sub-message property (in this case, formats are not needed for
the types specified. Use the keyword null):

submessage[0].pattern[0].formats=null,null,null,null,null,null

The combination of these last three properties:

submessage[0].pattern[0].fields=event.transportProtocol,
event.sourceAddress,event.sourcePort,
event.destinationAddress,event.destinationPort,
event.deviceInboundInterface
submessage[0].pattern[0].types=String,IPAddress,Integer,
IPAddress,Integer,String
submessage[0].pattern[0].formats=null,null,null,null,null,null

Will be internally equivalent to:

Six tokens

token.count=6

token[0].name=$1
token[0].type=String
token[0].format=null

token[1].name=$2
token[1].type=IPAddress
token[1].format=null

token[2].name=$3
token[2].type=Integer

Developer's Guide
Chapter 6: Advanced Features

Micro Focus Connectors (7.13.0) Page 136 of 242

token[2].format=null

token[3].name=$4
token[3].type=IPAddress
token[3].format=null

token[4].name=$5
token[4].type=Integer
token[4].format=null

token[5].name=$6
token[5].type=String
token[5].format=null

event.transportProtocol=$1
event.sourceAddress=$2
event.sourcePort=$3
event.destinationAddress=$4
event.destinationPort=$5
event.deviceInboundInterface=$6

Using FlexConnector operations with the mapping properties of the sub-message is also possible. The
following is an example with the sub-message for message ID 500004. The definition of that sub-message
is as follows:

submessage[1].messageid=500004
submessage[1].pattern.count=1
submessage[1].pattern[0].regex=Invalid transport field for protocol\=(\\d+),
from (\\d+\\.\\d+\\.\\d+\\.\\d+)/(\\d+) to (\\d+\\.\\d+\\.\\d+\\.\\d+)/(\\d+)
submessage[1].pattern
[0].fields=event.applicationProtocol,event.sourceAddress,event.sourcePort,eve
nt.destinationAddress,event.destinationPort

Recall the original message:

Nov 29 01:35:15 10.0.111.2 %PIX-4-500004: Invalid transport field for
protocol=6, from 2.2.2.2/0 to 3.3.3.3/0

Notice that the event.applicationProtocol is mapped to $1 which has the value 6. The
FlexConnector operation __getProtocolName translates protocol numbers into their description (for
example, protocol number 6 is TCP). To use this operation, define a custom mappings property, so
instead of event.applicationProtocol=$1 use event.applicationProtocol =__
getProcotolName($1). Use the following property:

submessage[1].pattern[0].mappings=__getProtocolName($1)|$2|$3|$4|$5

Developer's Guide
Chapter 6: Advanced Features

Micro Focus Connectors (7.13.0) Page 137 of 242

In this case, each of the mappings is separated by a pipe (‘|’) instead of a comma (‘,’) because some
operations could contain a comma. You can customize the delimiter if needed by setting the property
submessage[1].pattern[0].mappings.delimiter. For example:

submessage[1].pattern[0].mappings.delimiter=@
submessage[1].pattern[0].mappings=
__getProtocolName($1)@$2@$3@$4@$5

Moving on to message ID 305005, notice that the same message ID has two slightly different formats. As
mentioned before, sub-messages also support multiple regular expressions for a single message ID. The
expressions are evaluated in order and the first match that succeeds wins. Try to order your expressions
from the most specific to the most generic. The sub-message properties for message 305005 are as follows:

submessage[2].messageid=305005
submessage[2].pattern.count=2
submessage[2].pattern[0].regex=No translation group found for (\\S+) src
inside\:(\\d+\\.\\d+\\.\\d+\\.\\d+)/(\\d+) dst outside\:
(\\d+\\.\\d+\\.\\d+\\.\\d+)/(\\d+)
submessage[2].pattern[0].fields=event.transportProtocol,
event.sourceAddress,event.sourcePort,

event.destinationAddress,event.destinationPort
submessage[2].pattern[1].regex=Translation built for gaddr
(\\d+\\.\\d+\\.\\d+\\.\\d+) to laddr (\\d+\\.\\d+\\.\\d+\\.\\d+)
submessage[2].pattern[1].fields=
event.destinationTranslatedAddress,event.destinationAddress

Default Sub-message
There is one more sub-message feature that can be useful situations where you do not know every single
message ID that can be received, but still want to try to parse them. In this case, define a default sub-
message to use for any message with a message ID that is not defined (anything other than 106015,
305005, 500004, in this example, will be sent to the default sub-message). The default sub-message can
also contain multiple patterns so that you can use several regular expressions to see if one of them
matches.

The default sub-message is the same as a normal sub-message with no messageid property. The
definition of a default sub-message for the current example configuration file will be:

submessage[3].pattern.count=1
submessage[3].pattern[0].regex=(.*)
submessage[3].pattern[0].fields=event.message

Of course, since new sub-message is added (the default sub-message is still a sub-message), increase the
submessage.count to 4:

submessage.count=4

Developer's Guide
Chapter 6: Advanced Features

Micro Focus Connectors (7.13.0) Page 138 of 242

The default sub-message defined here will simply map the event.message to the full sub-message. You
might want to alert the user that the particular message was not fully parsed; to do that, you can set the
event.name to a fixed string, such as Unparsed message and the deviceProduct to Unknown so
that separate statistics are kept for all these messages. See "Extra Mappings” for details.

Extra Mappings
Extra mappings (extramappings) is another property of the sub-message that can be used to directly
add additional mapping properties. For the example described above, the extramappings property
must be defined as:

submessage[3].pattern[0].extramappings=event.name=
__stringConstant("Unparsed event")
|event.deviceProduct=__stringConstant("Unknown")

Notice that you can add as many mappings as you require; each separated by ‘|’. The ‘|’ can also be
replaced with a different delimiter (just like the mappings delimiter):

submessage[3].pattern[0].extramappings.delimiter=@
submessage[3].pattern[0].extramappings=event.name=
__stringConstant("Unparsed event")
@event.deviceProduct=__stringConstant("Unknown")

Now the example FlexConnector with sub-messages is complete. The full FlexConnector configuration file
looks like this:

FlexConnector Regex Configuration File

regex=(\\S+ \\d+ \\d+\:\\d+\:\\d+) (\\S+) %PIX-(\\d)-(\\d+)\: (.*)

token.count=5

token[0].name=Timestamp
token[0].type=TimeStamp
token[0].format=MMM dd HH\:mm\:ss

token[1].name=PixIP
token[1].type=IPAddress

token[2].name=PixSeverity
token[2].type=String

token[3].name=SubmessageIDToken
token[3].type=String

Developer's Guide
Chapter 6: Advanced Features

Micro Focus Connectors (7.13.0) Page 139 of 242

token[4].name=SubmessageToken
token[4].type=String

submessage.messageid.token=SubmessageIdToken
submessage.token=SubmessageToken

event.deviceReceiptTime=__useCurrentYear(Timestamp)
event.deviceAddress=PixIP
event.message=SubmessageToken
event.deviceVendor=__stringConstant(CISCO)
event.deviceSeverity=PixSeverity
event.deviceProduct=__stringConstant(PIX)
event.deviceEventClassId=SubmessageIDToken

severity.map.veryhigh.if.deviceSeverity=0,1
severity.map.high.if.deviceSeverity=2,3
severity.map.medium.if.deviceSeverity=4,5
severity.map.low.if.deviceSeverity=6,7

submessage.count=4

submessage[0].messageid=106015
submessage[0].pattern.count=1
submessage[0].pattern[0].regex=Deny (\\S+) \\(no connection\\) from
(\\d+\\.\\d+\\.\\d+\\.\\d+)/(\\d+) to (\\d+\\.\\d+\\.\\d+\\.\\d+)/(\\d+)
flags RST on interface (\\S+)
submessage[0].pattern[0].fields=event.transportProtocol,
event.sourceAddress,event.sourcePort,
event.destinationAddress,event.destinationPort,
event.deviceInboundInterface
submessage[0].pattern[0].types=String,IPAddress,Integer,
IPAddress,Integer,String
submessage[0].pattern[0].formats=null,null,null,null,null,null
submessage[1].messageid=500004
submessage[1].pattern.count=1
submessage[1].pattern[0].regex=Invalid transport field for protocol\=(\\d+),
from (\\d+\\.\\d+\\.\\d+\\.\\d+)/(\\d+) to (\\d+\\.\\d+\\.\\d+\\.\\d+)/(\\d+)
submessage[1].pattern[0].mappings.delimiter=@

submessage[1].pattern[0].fields=event.applicationProtocol,
event.sourceAddress,event.sourcePort,
event.destinationAddress,event.destinationPort
submessage[1].pattern[0].mappings=

Developer's Guide
Chapter 6: Advanced Features

Micro Focus Connectors (7.13.0) Page 140 of 242

__getProtocolName($1)@$2@$3@$4@$5
submessage[2].messageid=305005
submessage[2].pattern.count=2
submessage[2].pattern[0].regex=No translation group found for (\\S+) src
inside\:(\\d+\\.\\d+\\.\\d+\\.\\d+)/(\\d+) dst outside\:
(\\d+\\.\\d+\\.\\d+\\.\\d+)/(\\d+)
submessage[2].pattern[0].fields=event.transportProtocol,

event.sourceAddress,event.sourcePort,
event.destinationAddress,event.destinationPort
submessage[2].pattern[1].regex=Translation built for gaddr
(\\d+\\.\\d+\\.\\d+\\.\\d+) to laddr (\\d+\\.\\d+\\.\\d+\\.\\d+)
submessage[2].pattern[1].fields=
event.destinationTranslatedAddress,event.destinationAddress
Default sub-message descriptor
submessage[3].pattern.count=1
submessage[3].pattern[0].regex=(.*)
submessage[3].pattern[0].extramappings.delimiter=@
submessage[3].pattern[0].fields=event.message
submessage[3].pattern[0].extramappings=
event.name\=__stringConstant("Unparsed event")
@event.deviceProduct\=__stringConstant("Unknown")

Conditional Mappings
Conditional mappings enable you to map tokens that can contain different types of information, based on
the characteristic of the event.

For example, assume the following event:

Event id is 532 type A with parameter 3.3.3.3
Event id is 533 type A with parameter root
Event id is 534 type A with parameter 3.3.3.3

In this example, the parameter token can be either an IP address or a user name.

The regular expression to parse this event is:

Event id is (\\d+) type (\\S+) with parameter (\\S+)

You can define three tokens for the above events: EVENTID, TYPE, and PARAMETER. If the event id is 532
or 534, set the ArcSight event field event.sourceAddress to 3.3.3.3 and if the event id is 533, set the
event.sourceUserName to root.

Without conditional mappings, you will have to create two regular expressions to match the two unique
information types in this event—the IP address and the user name. Although it is feasible to define two

Developer's Guide
Chapter 6: Advanced Features

Micro Focus Connectors (7.13.0) Page 141 of 242

regular expressions for this case, if there were hundreds of messages with unique information types, this
solution will not scale well.

With conditional mappings, you can define the following mapping properties in your parser for the above
example:

regex=Event id is (\\d+) type (\\S+) with parameter (\\S+)
token.count=3
token[0].name=EVENTID
token[1].name=TYPE
token[2].name=PARAMETER
#Standard mappings
event.deviceEventClassId=EVENTID
event.deviceEventCategory=TYPE
#Conditional mappings
conditionalmap.count=1
conditionalmap[0].field=event.deviceEventClassId
conditionalmap[0].mappings.count=2
conditionalmap[0].mappings[0].values=532,534
conditionalmap[0].mappings[0].event.sourceAddress=PARAMETER
conditionalmap[0].mappings[1].values=533
conditionalmap[0].mappings[1].event.sourceUserName=PARAMETER

The properties in the Conditional mappings section above define the following logic:

l conditionalmap.count—Specifies the number of conditional mappings. In the above example, one
conditional mapping is defined.

l conditionalmap[x].field or conditionalmap[x].token—Specifies the field or token to
evaluate. You can only use one of these properties for each conditional mapping, and not both.

When using conditionalmap[x].field, you must use the event.eventIdField format to
specify a value for this property. In the above example, conditionalmap
[0].field=event.deviceEventClassId.

When using conditionalmap[x].token, you must specify the token as the value. For example,
conditionalmap[0].token=PARAMETER (not shown in the above example).

l conditionalmap[x].mappings.count—Specifies the count of information types. In the above
example, 2—sourceAddress and sourceUserName.

l conditionalmap[x].mappings[x].values—Specifies a list of values to match with each token or
field defined. In the example above, conditionalmap[0].mappings[0].values = 532, 534.

If you have more than one value, use a comma to separate them.

If this property is omitted, the conditional mapping is processed as a DEFAULT mapping that is executed
ONLY if the previous mappings did not match. This is analogous to the Else behavior in the If…Else
construct. For example, if the following conditional mapping was defined in addition to the mappings in the
above example:

Developer's Guide
Chapter 6: Advanced Features

Micro Focus Connectors (7.13.0) Page 142 of 242

conditionalmap[0].mappings[2].event.destinationAddress=PARAMETER

Then, if an event with an event id other than 532, 533, and 534 was received, its
event.destinationAddress will be set to PARAMETER. If you added the DEFAULT conditional map as
suggested above to the previous example, then you must change the conditionalmap
[0].mappings.count to 3 for the example to work.

l conditionalmap[x].mappings[x].event.{xxxx} or conditionalmap[x].mappings
[x].additionaldata.{xxx}-Specifies the mapping properties to be evaluated if
conditionalmap[x].mappings[x].values match the conditionalmap[x].field or
conditionalmap[x].token.

l conditionalmap[x].mappings[x].delimiter—Specifies the delimiter to use for the values
defined above. By default, comma (,). This property is optional.

Using Conditional Mapping in Sub-messages
You can use conditional mappings in sub-messages. For example:

submessage[3].messageid=conditionalmapsample
submessage[3].pattern.count=1
submessage[3].pattern[0].regex=Event id is (\\d+) type (\\S+) with parameter
(\\S+)
submessage[3].pattern[0].fields=event.deviceEventClassId
submessage[3].pattern[0].conditionalmap.count=2
submessage[3].pattern[0].conditionalmap[0].field=event.deviceEventClassId
submessage[3].pattern[0].conditionalmap[0].mappings.count=2
submessage[3].pattern[0].conditionalmap[0].mappings[0].values=532,534
submessage[3].pattern[0].conditionalmap[0].mappings
[0].event.destinationAddress=$3
submessage[3].pattern[0].conditionalmap[0].mappings[1].values=533
submessage[3].pattern[0].conditionalmap[0].mappings
[1].event.destinationUserName=$3
submessage[3].pattern[0].conditionalmap[1].token=$2
submessage[3].pattern[0].conditionalmap[1].mappings.count=1
submessage[3].pattern[0].conditionalmap[1].mappings[0].values=B
submessage[3].pattern[0].conditionalmap[1].mappings
[0].event.destinationAddress=$3

The regular expression is divided into groups. A group is an element between two parentheses (). Each
group is represented by $number from left to right, where number is a sequentially increasing whole
number, starting at 1.

In the above example, there are three groups:

$1 -- (\\d+)

Developer's Guide
Chapter 6: Advanced Features

Micro Focus Connectors (7.13.0) Page 143 of 242

$2 -- (\\S+)

$3 -- (\\S+)

Additional Data Mapping
In some environments it is useful to map certain additional data names to normal ArcSight schema fields.
The mapping can vary based on the device vendor and product and can be controlled from the ArcSight
Console, with the mappings stored on the SmartConnector machine.

The SmartConnector tracks whatever additional data names it encounters and reports this information to
the ArcSight Console (otherwise, spelling and capitalization errors would make the mapping feature much
more difficult to use.)

All data mapping is done through SmartConnector commands from the ArcSight Console, as shown:

Using the Get Additional Data Names Command

The Get Additional Data Names command specifies the additional data names assigned to each device
vendor or product combination since the SmartConnector started running. This process has a default
limitation of the most recent 100 device vendor/product combinations, and the most recent 100 names for
each (this limit can be changed with the SmartConnector property
agent.additionaldata.mapper.track.max.names).

The command output looks like this:

Additional Data Names Seen:
Generic (no vendor/product):

test1 [3 times]
test11
test13 [2 times]
test14 [3 times]
test15 [4 times]
test17 [5 times]
test18 [6 times]
test2 [4 times]
test20 [2 times]
test3 [5 times]
test4
test5 [3 times]

Vendor/product [vend/prod]:

Developer's Guide
Chapter 6: Advanced Features

Micro Focus Connectors (7.13.0) Page 144 of 242

test1
test10 [6 times]
test11
test12 [4 times]
test13 [2 times]
test14
test15 [2 times]
test17 [4 times]
test19 [2 times]
test2 [3 times]
test20 [4 times]
test5 [4 times]
test9

Vendor/product [vend/prod2]:
test10 [2 times]
test11 [5 times]
test12 [5 times]
test13 [7 times]
test15 [4 times]
test17 [2 times]
test18 [5 times]
test19
test2 [4 times]
test20 [6 times]
test3 [3 times]
test4 [6 times]
test6
test7
test9 [4 times]

If an additional data name appears more than once, the number of times it has been seen is included in the
command output, as shown above.

Using the Map Additional Data Name… Command

The Map Additional Data Name… command opens this dialog:

Developer's Guide
Chapter 6: Advanced Features

Micro Focus Connectors (7.13.0) Page 145 of 242

The Device vendor and Device product fields can be left blank to create a generic mapping, or filled in
for a specific mapping. The additional data name is usually one of the names shown in the Get Additional
Data Names output, but does not have to be. The ArcSight field must be a valid ArcSight event field. The
command output for a successful generic mapping looks as follows:

Successfully mapped additional data name [test11] to event field [message]
for vendor/product []

A successful device vendor/product-specific mapping has output similar to the following:

Successfully mapped additional data name [test10] to event field [message]
for vendor/product [vend/prod]

If the additional data name has not been seen, the name is still mapped, but with a warning as follows:

Successfully mapped additional data name [foo] to event field
[deviceCustomString1] for vendor/product [vend/prod] (note that additional
data name [foo] has not been seen for vendor/product [vend/prod])

If the ArcSight field is not valid, an error similar to the following is displayed:

Failed to map additional data name [bar] to event field [messages] for
vendor/product [vend/prod] (event field [messages] is unknown)

Using the Unmap Additional Data Name… Command

The Unmap Additional Data Name… command opens this dialog:

The Device vendor field and Device product fields can be left blank to remove a generic mapping, or be
filled to remove a specific mapping. The additional data name should be one that was previously mapped
for the specified device vendor and product combination.

The command output for a successful generic unmapping displays as follows:

Successfully unmapped additional data name [test11] for vendor/product []

A successful device vendor/product-specific unmapping has output similar to the following:

Successfully unmapped additional data name [foo] for vendor/product
[vend/prod]

If the specified additional data name was not previously mapped, the output displays as follows:

Developer's Guide
Chapter 6: Advanced Features

Micro Focus Connectors (7.13.0) Page 146 of 242

Failed to unmap additional data name [foo] for vendor/product [vend/prod]
(not previously mapped)

Note: One additional data name can be mapped to more than one ArcSight field for the same device
vendor/product combination. In such cases, unmapping it unmaps it from all ArcSight fields for that
device vendor/product.

In the opposite case, where multiple additional data names are mapped to the same ArcSight field for
the same device vendor/product combination, the last mapping takes precedence over previous
mappings to that ArcSight field and its corresponding device vendor/product combination.

Using the Get Status Command

The Get Status command includes the status for additional data names which are mapped to ArcSight
fields, as shown below:

NGCustomAdditionalDataMapper0................Generic mappings:test11=>message
NGCustomAdditionalDataMapper1................Mappings for
vend/prod:test10=>message, foo=>deviceCustomString1

Note: Only mappings for loaded device vendor/product combinations are included. This includes
mappings for vendor/product combinations that have had mapping or unmapping commands
executed (even unsuccessful ones), and vendor/product combinations for which additional data-laden
events have been seen. Unloaded mappings on disk are not included.

Log Rotation Types
For connectors that follow log files, there are three mechanisms for rotating the log files implemented in the
connector framework. See "File Connector Parameters " for more information and the parameters available
for log rotation.

l Name Following Log Rotation

l Daily Rotation

l Index Rotation

Several of the parameters are described here:

l Parameters for Daily and Index Rotation

Name Following Log Rotation
An example of name following log rotation would be, the device writes to xyz.log. At rotation time, the
device renames xyz.log to xyz1.log and creates a new xyz.log and begins to write to it. The

Developer's Guide
Chapter 6: Advanced Features

Micro Focus Connectors (7.13.0) Page 147 of 242

connector detects the drop in size of xyz.log and terminates the reader thread to the old xyz.log after
processing is completed. The connector creates a new reader thread to the new xyz.log and begins
processing that file. To enable this log rotation, set followexternalrotation and filesizecheck to
true.

Daily Rotation
A typical scenario of daily rotation could be, the device writes to xyz.timestamp.log on a daily basis. At
a specified time, the device creates a new daily log and begins to write to it. The connector detects the new
log and terminates the reader thread to the previous log after processing is complete. The connector then
creates a new reader thread to the new xyz.timestamp.log and begins processing that file. To enable
this log rotation, set rotationscheme to Daily. See also "Parameters for Daily and Index Rotation".

Index Rotation
In the case of index rotation, the device writes to indexed files - xyz.log.001, xyz.log.002,
xyz.log.003 and so on. At startup, the connector processes the log with highest index. When the device
creates a log with a greater index, the connector terminates the reader thread to the previous log after
processing completes, creates a thread to the new log and begins processing that log. To enable this log
rotation, set rotationscheme to Index. See also "Parameters for Daily and Index Rotation".

Parameters for Daily and Index Rotation
Use the rotationschemeparams parameter to set the parameters for daily or index log file rotation. The
rotationschemeparams parameter can be used only if the rotationscheme parameter is set to
Daily or Index.

Using rotationschemeparams for Daily Log File Rotation

This section describes values for the rotationschemeparams parameter when
rotationscheme=Daily. Applications use this value to generate date coded log files (for example,
Trend Micro ScanMail).

A filename template has the following syntax:

[prefix,]dateFormat,suffix[,true|false]

Symbols used in the dateformat can be read by the connector. They do not need to be declared as
strings. For example:

yyyy.MM.dd
yyyy-MM-dd

Any character can be used in the prefix and suffix fields except the comma (,).

Developer's Guide
Chapter 6: Advanced Features

Micro Focus Connectors (7.13.0) Page 148 of 242

To include a literal string in a field, escape it with a single quote (‘). For example:

access_,yyyyMMdd’in TimeZone: PST’,.log,true

The [prefix] and [true|false] fields are optional. The [true|false] field indicates that the
rotated file has an additional counter so it can be rotated multiple times a day. For example, to obtain the
following output:

Access.yyyyMMdd.log.1
Access.yyyyMMdd.log.2
...

the syntax would have to be:

Access.,yyyyMMdd,.log,true

If you use periods (or “full stops”) within filenames, then they must be stated within the parameters. The
commas which separate prefix,dateFormat,appendix do not replace them. For example, to obtain this
output:

Filename.yyyyMMdd.appendix

use this syntax:

Filename.,yyyyMMdd,.appendix

Example:

yyyyMMdd,log

In this example, prefix is omitted, therefore, the following comma is not required. dateFormat is
yyyyMMdd, suffix is log, and the [true|false] field is omitted. Because [true|false] is the last
field and is omitted, a comma is not required at the end.

Example:

Access,yyyyMMdd,log

In this example, prefix is Access, dateFormat is yyyyMMdd, suffix is log, and the [true|false]
field is omitted.

Example:

Access.,yyyyMMdd,

In this example the prefix is Access. and yyyyMMdd is the mandatory dateFormat field. The file does
not have an suffix, but the configuration still must end with a comma to indicate that it is the end of the file
name. This syntax will produce an output such as Access.20160209.

Example:

Access,yyyyMMdd,log,true

Developer's Guide
Chapter 6: Advanced Features

Micro Focus Connectors (7.13.0) Page 149 of 242

In this example, prefix is Access, dateFormat is yyyyMMdd, suffix is log, and the [true|false]
field is set to true. Here true means even if the file name does not exactly match with the above given
format, if the file name ends with the suffix and starts with prefix and also has the date in it then that
file is matched.

For example: Access_v2.20150225.log

Using rotationschemeparams for Index Log File Rotation

This section describes values for the rotationschemeparams parameter when
rotationscheme=Index. For example:

my.'%03d,001,999,false’.log

The value %03d specifies how many digits are allowed before .log in the file name. In this example, 3
digits are allowed. The value 001,999 specifies how high to count in the index. In this example, the file
rotation could go to my.999.log.

The last parameter, [true|false], is optional. The default is false, which means missing indexes are
not allowed. The connector does not stop reading the current file until the log file with the next index
appears.

When true, it specifies that the connector continues processing if there is a missing file, for example if the
device rotates the log from my.636.log to my.638.log.

Using wildcard for Daily and Index Log File Rotation (File Folder Follower
Only)

Use the agents[x].wildcard parameter to match file names when rotating log files.

Note: The Regex File connector processes only files with the specified file extension.

To process all files for Regex File connectors on the Windows platform, use the value "asterisk dot
asterisk" (*.*) . because all files have an extension by default.

To process all files for Regex File connectors on the Unix/Linux platforms, the recommended value is
"asterisk" (*). For example, if you configure this property to *.ext, then the Regex connector will read
events from only log files with the extension .ext.

Using wildcard for Date Rotation

A typical scenario could be, the device writes to xyz.timestamp.log on a daily basis. At a specified time,
the device creates a new daily log and begins to write to it. The connector detects the new log and
terminates the reader thread to the previous log after processing is complete. The connector then creates a
new reader thread to the new xyz.timestamp.log and begins processing that file. To enable this log
rotation, set wildcard to a data file format, as shown in the following example:

Developer's Guide
Chapter 6: Advanced Features

Micro Focus Connectors (7.13.0) Page 150 of 242

agents[x].wildcard=fileName.'yyyy-MM-dd'.fileSuffix

For a data file name of myFile.2013-09-23.log, the wildcard command is:

agents[x].wildcard=foo.'yyyy-MM-dd'.log

Where myFile is the fileName, 'yyyy-mm-dd' is the date format, and .log is the fileSuffix.

Pattern matching is performed only for the portion within quotes.

Using wildcard for Index Rotation

In this case, the device writes to indexed files, for example: xyz.001.log, xyz.002.log, xyz.003.log,
and so on. At startup, the connector processes the log with highest index. When the device creates a log
with a greater index, the connector terminates the reader thread to the previous log after processing
completes, creates a thread to the new log and begins processing that log. To enable this log rotation, set
wildcard using the syntax shown in the following example:

agents
[x].wildcard=FileName.'patternOfIndex,minValue,maxValue,ignoreMissingIndex'.f
ileSuffix

where:

l patternOfIndex is the pattern of the index. It specifies how many digits are allowed before .log in
the file name. For example, to allow a 3-digit index, enter %d03.

l minValue is the minimum value the index can take.

l maxValue is the maximum value the index can take, after which it again starts from minValue. For
example, assume that minValue=000, and maxValue=999. When the connector finds a file with a 999
index, it will then look for a rotated file with the index 000.

l ignoreMissingIndex is a Boolean value that describes what the connector should do if a file with the
next index is never created, If true, the connector checks if there is a new file with the correct file name
pattern instead of waiting for the next index-based file forever.

For example, the command:

agents[x].wildcard=myFile.'%d01,0,9,true'.log

will support the processing of log files myFile.0.log through myfile.9.log before searching for
myFile.0.log again.

Log Internal Events for File-Reading FlexConnectors
File-reading FlexConnectors have internal events that are sent when the connector begins to process a file
and when the connector finishes processing the file. Another event can be configured so that the event is
sent when a specified number of files are not processed in a specified amount of time. The events are
configured in ARCSIGHT_HOME/user/agent/agent.properties.

Developer's Guide
Chapter 6: Advanced Features

Micro Focus Connectors (7.13.0) Page 151 of 242

l internalevent.filestart.enable=true/false - the default is true.

l internalevent.fileend.enable=true/false - the default is true.

l internalevent.filecount.enable=false/true - the default is false. This event has the
following parameters:

o internalevent.filecount.duration=nnn - specifies the number of seconds that the
connector has to process a specified number of files.

o internalevent.filecount.minfilecount=nnn - specifies the minimum number of files that
the connector should process in a specified number of seconds.

o internalevent.filecount.timer.delay=nnn - specifies, in seconds, how often the connector
should check to see if the connector is compliant with the other parameters.

Unparsed Events Detection
The unparsed event detection feature syntactically detects unparsed events and logs them to a separate
file for easier identification. This feature can be enabled by configuring the
unparsedevents.log.enabled parameter and setting it to true. See "Parameters Common to all
SmartConnectors" for more information about this parameter.

To verify whether the feature is enabled, see the agent.log file. The following sample log message
indicates that the feature is enabled:

[2016-05-10 18:00:40,190][INFO]
[default.com.arcsight.agent.loadable.agent._DHCPFileAgent]
[parseParameters] Logging of unparsed events is [enabled] for SmartConnector
[dhcp_file][3vEFHnVQBABCAA9NWrEbq5g==]

Supported Parser Types
Connectors with the following parser types can use the unparsed event detection feature:

l Regex parser—Configuration files for this parser type have the extension
sdkrfilereader.properties.

l Key-Value parser—Configuration files for this parser type have the extension
sdkkeyvaluefilereader.properties.

l Delimited parser—Configuration files for this parser type have the extension
sdkfilereader.properties.

To determine whether a connector uses any of the these parser types, see the agent.log file. The
following sample log message indicates that the connector uses a delimited parser:

[2016-05-10 18:00:40,222][INFO]
[default.com.arcsight.agent.content.FCPContentInputStreamProvider]

Developer's Guide
Chapter 6: Advanced Features

Micro Focus Connectors (7.13.0) Page 152 of 242

[getInputStream] Resource [dhcp_file\dhcp_file_v6.sdkfilereader.properties]
found in [Z:\\system\agent\fcp\arcsightagents.aup|dhcp_file\dhcp_file_
v6.sdkfilereader.properties.arc]

Unparsed Events Detection Criteria
An ArcSight parser configuration file can contain any of these expressions:

l Comment Expressions

l Parsing Expressions

l Token Expressions

l Mapping Expressions

l Extra-Processor Expressions

To understand these expressions, consider the following parser file:

#
Parser file for Microsoft Windows DHCP File Agent
#Event ID Meaning
#00 The log was started.
#01 The log was stopped.
#02 The log was temporarily paused due to low disk space.
#10 A new IP address was leased to a client.
#11 A lease was renewed by a client.
#12 A lease was released by a client.
#13 An IP address was found to be in use on the network.
#14 A lease request could not be satisfied because the scope's
address pool was exhausted.
#15 A lease was denied.
#16 A lease was deleted.
#17 A lease was expired.
#20 A BOOTP address was leased to a client.
#21 A dynamic BOOTP address was leased to a client.
#22 A BOOTP request could not be satisfied because the scope's
address pool for BOOTP was exhausted.
#23 A BOOTP IP address was deleted after checking to see it was
not in use.
#24 IP address cleanup operation has began.
#25 IP address cleanup statistics.
#30 DNS update request to the named DNS server
#31 DNS update failed
#32 DNS update successful
#50+ Codes above 50 are used for Rogue Server Detection information.

Developer's Guide
Chapter 6: Advanced Features

Micro Focus Connectors (7.13.0) Page 153 of 242

#DHCP 2008 QResult: 0: NoQuarantine, 1:Quarantine,
2:Drop Packet, 3:Probation,6:No Quarantine Information ProbationTime:Year-
Month-Day Hour:Minute:Second:MilliSecond.
#ID,Date,Time,Description,IP Address,Host Name,MAC Address,User Name,
TransactionID, QResult,Probationtime, CorrelationID,Dhcid.
#DHCP 2003 ID,Date,Time,Description,IP Address,Host Name,MAC Address

regex=(\\d+),(\\d+/\\d+/\\d+),(\\d+:\\d+:\\d+),((?:(?:.*?,)*)?.*?),(.*?),
([^,]*),([-\\+]?\\w*),?
line.ignore.regex=\\s*
comments.start.with=#

token.count=7
token[0].name=EventID
token[0].type=String
token[1].name=Date
token[1].type=Date
token[1].format=MM/dd/yy
token[2].name=Time
token[2].type=Time
token[2].format=HH:mm:ss
token[3].name=EventName
token[3].type=String
token[4].name=Address
token[4].type=String
token[5].name=HostName
token[5].type=String
token[6].name=sourceMAC
token[6].type=String

event.sourceHostName=HostName
event.deviceEventClassId=EventID
event.name=EventName
event.deviceReceiptTime=__createTimeStamp(Date,Time)
#Convert address for event id = 30 - DNS update request
event.sourceAddress=__splitAsAddress(__ifThenElse(EventID,"30",
__reverseDottedDecimalAddressByteOrder(Address),Address),,)
event.deviceProduct=__stringConstant("DHCP Server")
event.deviceVendor=__getVendor("Microsoft")
event.deviceCustomString4=__toUpperCase(__regexTokenNoWarning
(sourceMAC,"(\\S{1,6}).*"))

Developer's Guide
Chapter 6: Advanced Features

Micro Focus Connectors (7.13.0) Page 154 of 242

event.sourceMacAddress=__getLongMACAddressByHexString(sourceMAC)
event.deviceCustomString4Label=__stringConstant(MAC Vendor Prefix)
event.deviceCustomString5Label=__stringConstant(Ethernet Vendor)
event.deviceCustomNumber1=__safeToLong(__ifThenElse(EventID,"25",
__regexTokenNoWarning(EventName,"(\\d+) leases.*"),))
event.deviceCustomNumber2=__safeToLong(__ifThenElse(EventID,"25",
__regexTokenNoWarning(EventName,".* and (\\d+) leases.*"),))
event.deviceCustomNumber1Label=__ifThenElse(EventID,"25",
__stringConstant(leases expired),)
event.deviceCustomNumber2Label=__ifThenElse(EventID,"25",
__stringConstant(leases deleted),)

extraprocessor.count=2
extraprocessor[0].type=map
extraprocessor[0].filename=dhcp_file/event_ref.csv
extraprocessor[1].type=map
extraprocessor[1].filename=dhcp_file/ethernet_vendor_ref.csv

Comment Expressions

The following lines in the parser file represent the comment expressions:

#
Parser file for Microsoft Windows DHCP File Agent
#Event ID Meaning
#00 The log was started.
#01 The log was stopped.
#02 The log was temporarily paused due to low disk space.
#10 A new IP address was leased to a client.
#11 A lease was renewed by a client.
#12 A lease was released by a client.
#13 An IP address was found to be in use on the network.
#14 A lease request could not be satisfied because the scope's
address pool was exhausted.
#15 A lease was denied.
#16 A lease was deleted.
#17 A lease was expired.
#20 A BOOTP address was leased to a client.
#21 A dynamic BOOTP address was leased to a client.
#22 A BOOTP request could not be satisfied because the scope's
address pool for BOOTP was exhausted.
#23 A BOOTP IP address was deleted after checking to see it was
not in use.

Developer's Guide
Chapter 6: Advanced Features

Micro Focus Connectors (7.13.0) Page 155 of 242

#24 IP address cleanup operation has began.
#25 IP address cleanup statistics.
#30 DNS update request to the named DNS server
#31 DNS update failed
#32 DNS update successful
#50+ Codes above 50 are used for Rogue Server Detection information.

#DHCP 2008 QResult: 0: NoQuarantine, 1:Quarantine, 2:Drop Packet,
3:Probation,6:No Quarantine Information ProbationTime:Year-Month-Day
Hour:Minute:Second:MilliSecond.
#ID,Date,Time,Description,IP Address,Host Name,MAC Address,User Name,
TransactionID, QResult,Probationtime, CorrelationID,Dhcid.
#DHCP 2003 ID,Date,Time,Description,IP Address,Host Name,MAC Address

#Convert address for event id = 30 - DNS update request

Parsing Expressions

The following lines in the parser file indicate the parsing expressions. This parsing expression indicates
how an event should be broken down and tokenized by the parser.

regex=(\\d+),(\\d+/\\d+/\\d+),(\\d+:\\d+:\\d+),((?:(?:.*?,)*)?.*?),(.*?),
([^,]*),([-\\+]?\\w*),?
line.ignore.regex=\\s*
comments.start.with=#

Token Expressions

The following lines in the parser file indicate the token expressions, that is, how many tokens to capture, the
token name, token data type, and so on.

token.count=7
token[0].name=EventID
token[0].type=String
token[1].name=Date
token[1].type=Date
token[1].format=MM/dd/yy
token[2].name=Time
token[2].type=Time
token[2].format=HH:mm:ss
token[3].name=EventName
token[3].type=String
token[4].name=Address

Developer's Guide
Chapter 6: Advanced Features

Micro Focus Connectors (7.13.0) Page 156 of 242

token[4].type=String
token[5].name=HostName
token[5].type=String
token[6].name=sourceMAC
token[6].type=String

Mapping Expressions

The following lines in the parser file represent mapping expressions to indicate how the captured tokens
should be mapped to ArcSight event schema fields.

event.sourceHostName=HostName
event.deviceEventClassId=EventID
event.name=EventName
event.deviceReceiptTime=__createTimeStamp(Date,Time)
event.sourceAddress=__splitAsAddress(__ifThenElse(EventID,"30",
__reverseDottedDecimalAddressByteOrder(Address),Address),,)
event.deviceProduct=__stringConstant("DHCP Server")
event.deviceVendor=__getVendor("Microsoft")
event.deviceCustomString4=__toUpperCase(__regexTokenNoWarning
(sourceMAC,"(\\S{1,6}).*"))
event.sourceMacAddress=__getLongMACAddressByHexString(sourceMAC)
event.deviceCustomString4Label=__stringConstant(MAC Vendor Prefix)
event.deviceCustomString5Label=__stringConstant(Ethernet Vendor)
event.deviceCustomNumber1=__safeToLong(__ifThenElse(EventID,"25",
__regexTokenNoWarning(EventName,"(\\d+) leases.*"),))
event.deviceCustomNumber2=__safeToLong(__ifThenElse(EventID,"25",
__regexTokenNoWarning(EventName,".* and (\\d+) leases.*"),))
event.deviceCustomNumber1Label=__ifThenElse(EventID,"25",
__stringConstant(leases expired),)
event.deviceCustomNumber2Label=__ifThenElse(EventID,"25",
__stringConstant(leases deleted),)

Extra-Processor Expressions

The following lines in the parser file indicate the extra-processor expressions, to hand off the event to
another parser file for further processing.

extraprocessor.count=2
extraprocessor[0].type=map
extraprocessor[0].filename=dhcp_file/event_ref.csv
extraprocessor[1].type=map
extraprocessor[1].filename=dhcp_file/ethernet_vendor_ref.csv

Developer's Guide
Chapter 6: Advanced Features

Micro Focus Connectors (7.13.0) Page 157 of 242

Criteria for Unparsed Events
If an event fails to tokenize based on the parsing expression used by the parser, then it is considered to be
an unparsed event. The criteria for an event to be labeled an unparsed event is its failure to pass the
parsing expression.

Note the following considerations on parsing criteria:

l Multi-line merging parsers, token operations, sub-messages, and conditional maps are out of scope of
the detection criteria.

l Extra-processors that belong to the supported parser types are included in the detection criteria.

Example:

The following event line completely matches the parsing expression of the parser, hence it is considered to
be a parsed event:

11000,03/23/15,12:43:35,DHCPV6 Solicit,2001:db8::f80f:9757:b0a5:c40c,2k12-
dhcpsvr.fadetoblack.
local,,14,000100011C87C704000C290FFAAF,,,,,

However, the following event line with an incorrect date string of 03/23 does not match the parsing
expressions of the parser, hence it is considered to be an unparsed event:

11000,03/23,12:43:35,DHCPV6 Solicit,2001:db8::f80f:9757:b0a5:c40c,2k12-
dhcpsvr.fadetoblack.
local,,14,000100011C87C704000C290FFAAF,,,,,

This unparsed event also generates an exception stack trace in the agent.log file. The following is a
sample stack trace:

[2016-03-10 18:00:41,031][ERROR]
[default.com.arcsight.agent.dhcp.DhcpFileProcessor][processLine]
[java.text.ParseException: Unparseable date: "03/23"

at java.text.DateFormat.parse(DateFormat.java:357)
at com.arcsight.agent.parsers.token.DateParser.parseToken

(DateParser.java:105)
at com.arcsight.agent.sdk.parsers.SDKCustomParser.addToken

(SDKCustomParser.java:292)
at com.arcsight.agent.dhcp.DhcpSemiConfigurableParser.parseTokens

(DhcpSemiConfigurableParser.java:307)
at com.arcsight.agent.parsers.GenericParserImpl.parseValues

(GenericParserImpl.java:397)
at com.arcsight.agent.parsers.GenericParserImpl.parse

(GenericParserImpl.java:755)
at com.arcsight.agent.parsers.GenericParserImpl.parseString

Developer's Guide
Chapter 6: Advanced Features

Micro Focus Connectors (7.13.0) Page 158 of 242

(GenericParserImpl.java:806)
at com.arcsight.agent.baseagents.filereader.multifile.FileProcessor.

parseLine(FileProcessor.java:202)
at com.arcsight.agent.baseagents.filereader.multifile.FileProcessor.

processLine(FileProcessor.java:186)
at com.arcsight.agent.baseagents.filereader.

NameFollowingFileReaderThread.processLine
(NameFollowingFileReaderThread.java:769)

at com.arcsight.agent.baseagents.filereader.
BaseAutoConfigParserFileReaderThread.processLine
(BaseAutoConfigParserFileReaderThread.java:157)

at com.arcsight.agent.dhcp.DhcpFileReaderThread.processLine
(DhcpFileReaderThread.java:79)

at com.arcsight.agent.baseagents.filereader.FileReaderThread.run
(FileReaderThread.java:859)

at java.lang.Thread.run(Thread.java:745)

When an event line fails to match the parsing expression of the parser, then it is considered to be an
unparsed event. This information is logged in the agent.log file. The following is an example message:

[2016-03-10 18:00:41,027][ERROR]
[default.com.arcsight.common.log.EventLogManager]
[logUnparsedEvent] Cannot parse raw event [11000,03/23,12:43:35,DHCPV6
Solicit,2001:db8::f80f:9757:b0a5:c40c,2k12-dhcpsvr.fadetoblack.
local,,14,000100011C87C704000C290FFAAF,,,,,] with ArcSight SmartConnector
[class com.arcsight.agent.loadable.agent._DHCPFileAgent], and Parser [class
com.arcsight.agent.dhcp.DhcpSemiConfigurableParser]. Parser Result: [].
Parsing Exception: [Unparseable date: "03/23"].

If an exception occurs when parsing the event, then it is also logged in the agent.log file. The following is
an example exception message:

[2016-03-10 18:00:41,028][ERROR]
[default.com.arcsight.common.log.EventLogManager]
[logUnparsedEvent]
java.text.ParseException: Unparseable date: "03/23"

at java.text.DateFormat.parse(DateFormat.java:357)
at com.arcsight.agent.parsers.token.DateParser.parseToken(DateParser.

java:105)
at com.arcsight.agent.sdk.parsers.SDKCustomParser.addToken

(SDKCustomParser.java:292)
at com.arcsight.agent.dhcp.DhcpSemiConfigurableParser.parseTokens

(DhcpSemiConfigurableParser.java:307)
at com.arcsight.agent.parsers.GenericParserImpl.parseValues

Developer's Guide
Chapter 6: Advanced Features

Micro Focus Connectors (7.13.0) Page 159 of 242

(GenericParserImpl.java:397)
at com.arcsight.agent.parsers.GenericParserImpl.parse

(GenericParserImpl.java:755)
at com.arcsight.agent.parsers.GenericParserImpl.parseString

(GenericParserImpl.java:806)
at com.arcsight.agent.baseagents.filereader.multifile.FileProcessor.

parseLine(FileProcessor.java:202)
at com.arcsight.agent.baseagents.filereader.multifile.FileProcessor.

processLine(FileProcessor.java:186)
at com.arcsight.agent.baseagents.filereader.

NameFollowingFileReaderThread.processLine(
NameFollowingFileReaderThread.java:769)

at com.arcsight.agent.baseagents.filereader.
BaseAutoConfigParserFileReaderThread.processLine
(BaseAutoConfigParserFileReaderThread.java:157)

at com.arcsight.agent.dhcp.DhcpFileReaderThread.processLine
(DhcpFileReaderThread.java:79)

at com.arcsight.agent.baseagents.filereader.FileReaderThread.run
(FileReaderThread.java:859)

at java.lang.Thread.run(Thread.java:745)

Unparsed Events Output File
Unparsed events detected by the connector are logged to the %ARCSIGHT_HOME%/logs/events.log
(Linux) or $ARCSIGHT_HOME/logs/events.log (Windows) file. The following is a sample message:

"Timestamp","ArcSight SmartConnector","ArcSight Parser","Parser
Result","Parsing Exception","Unparsed Event"

"2016-05-10 18:00:41.030 -0700","class com.arcsight.agent.loadable.agent._
DHCPFileAgent","class com.arcsight.agent.dhcp.DhcpSemiConfigurableParser","",
"Unparseable date: ""03/23""","11000,03/23,12:43:35,DHCPV6
Solicit,2001:db8::f80f:9757:b0a5:c40c,2k12-dhcpsvr.fadetoblack.
local,,14,000100011C87C704000C290FFAAF,,,,,"

The events.log file is a CSV file containing the column headers on the first line and the unparsed events
on the following lines. The following table describes the columns in the CSV file:

Developer's Guide
Chapter 6: Advanced Features

Micro Focus Connectors (7.13.0) Page 160 of 242

Column Name
Column
Description Sample Value Required/Optional

Timestamp The time stamp at
which the event
was detected as an
unparsed event

2016-05-10 18:00:41.030 -0700 Required

ArcSight
SmartConnector

The ArcSight
SmartConnector
class that detected
the unparsed event
class

com.arcsight.agent.loadable.agent._DHCPFileAgent Required

ArcSight Parser The ArcSight parser
class that detected
the unparsed event
class

com.arcsight.agent.dhcp.DhcpSemiConfigurableParser Required

Parser Result The parser result, if
any

Optional

Parsing Exception The parser
exception message,
if any

Unparseable date: "03/23" Optional

Unparsed Event The unparsed
event string

11000,03/23,12:43:35,DHCPV6
Solicit,2001:db8::f80f:9757:b0a5:c40c,2k12-
dhcpsvr.fadetoblack.local,,14,
000100011C87C704000C290FFAAF,,,,,

Required

Developer's Guide
Chapter 6: Advanced Features

Micro Focus Connectors (7.13.0) Page 161 of 242

Chapter 7: Map Files
The following topics are covered in this chapter:

l What Are Map Files?

l Map File Examples

l Map File Details

l Using Ranges in Map Files

l Using Regular Expressions in Map Files

l Using Parser-Like Expressions in Map Files

l Real World Examples

What Are Map Files?
Map files are actual physical files, located in the connector itself. Map files operate on events after they are
collected and parsed, but before they are sent to the destination, conditionally changing one or more event
fields. There are several parts of the connector code that use map files:

l Basic map files, which operate on events early in the event flow

l AgentInfoAdder1 map files, which operate on events later in the event flow, and can be made to
operate differently when there are multiple destinations and/or multiple connectors running in one
container

l The categorizer modules use map files to do their work

l Map file “extra processors” can be specified in FlexConnector parsers

Note: Map files are kept in memory for performance reasons, so large ones will affect the memory
usage of the connector.

Map File Examples
A map file is a comma-separated file that you can edit in a text editor (such as Notepad or vi, which do not
add formatting) or in a spreadsheet. The following is an example of a simple map file. In this document, map
file examples are shown in tables for clarity.

Note: If you use a spreadsheet application to create or edit your map files, be sure to save the resulting
files in the comma-separated value (CSV) format.

Micro Focus Connectors (7.13.0) Page 162 of 242

The first line normally defines the event fields that will be looked at ("getters") and those that will be
potentially set ("setters"). Optionally, there can be a line before that, starting with !Flags, that controls
certain values (see "Controlling Map File Operation"). In that case, it's the second line that defines the
"getters" and "setters." A simple example without a !Flags line is:

event.destinationPort set.event.applicationProtocol

20 ftp

21 ftp

80 http

110 pop3

In this example, the applicationProtocol event field is set based on the value of the
destinationPort event field, but only if the destinationPort is one of the values in the “getter”
column. If destinationPort is 21, applicationProtocol will be set to ftp, but if
destinationPort is 22, applicationProtocol will not be set at all, because the value 22 does not
appear in the destinationPort “getter” column.

There is a duplicate value (ftp) in the applicationProtocol column, which is allowed because it is a
“setter”, but not in the destinationPort column, in which a duplicate value would be an error.

This example would look like this in a text editor:

event.destinationPort,set.event.applicationProtocol
20,ftp
21,ftp
80,http
110,pop3

Multiple "Getters" and "Setters"
More complicated map files can have multiple “getter” columns (the row is only used if all column values
match the event) and/or multiple “setter” columns (to set more than one field).

The following is an example with two "getters:"

event.deviceCustomNumber1 event.deviceEventCategory set.event.deviceEventCategory

1 1 Vulnerability - Buffer/Heap Overflow

3 1 Vulnerability - Configuration Error

1 2 Malicious Code - Worm

In this case, if the deviceCustomNumber1 and deviceEventCategory event fields are both 1, then
the value for the deviceEventCategory event field is changed to Vulnerability-Buffer/Heap
Overflow. If they are 3 and 1, respectively, the value is set to Vulnerability-Configuration

Developer's Guide
Chapter 7: Map Files

Micro Focus Connectors (7.13.0) Page 163 of 242

Error, and if the values are 1 and 2, the value is set to Malicious Code-Worm. Any other combination
leaves the deviceEventCategory event field unchanged.

This example (and the next one) also shows that you can have a "getter" event field also appear as a
"setter."

The following is an example with two "setters:"

event.name set.event.name set.event.deviceEventClassId

accept(2) AUE_ACCEPT AUE_ACCEPT

access(2) AUE_ACCESS AUE_ACCESS

acct(2) AUE_ACCT AUE_ACCT

In this case, the name event field is looked up to both replace the name event field and set the
deviceEventClassId event field.

Also, you can have both multiple "getters" and multiple "setters" in the same map file.

Using the “No Getter” Trick
By having no “getters,” you can set one or more fields to specific constant values, unconditionally. For
example:

set.event.message

Map file was here

This type of map file always has exactly two lines. It can have more than one column if you want to set more
than one field, like this:

set.event.message set.event.deviceCustomString1

Map file was here And also here

Map File Details
The following subsections describe details for the various map file types.

Controlling Map File Operation
Any map file can be controlled with an optional initial line starting with !Flags, that can be omitted. If this
line is present, it precedes the line that defines the "getters" and "setters." It is a comma-separated line
similar to the rest of the file, but the number of columns do not have to match the other lines. The line must
begin with !Flags, followed by one or more of the following flags, with commas in between:

Developer's Guide
Chapter 7: Map Files

Micro Focus Connectors (7.13.0) Page 164 of 242

Flag Description

Overwrite allow fields that are already set to be overwritten

Overwrite- fields that are already set will not be overwritten

CaseSens "getters" are case sensitive

CaseSens- "getters" are case insensitive

TrimGetters any leading or trailing whitespace or tabs are removed from
"getters"

TrimGetters- any leading or trailing whitespace or tabs are not removed
from "getters"

TrimSetters any leading or trailing whitespace or tabs are removed from
"setters"

TrimSetters- any leading or trailing whitespace or tabs are not removed
from "setters" are

EnfrcUniqID duplicate "getter" values are treated as fatal errors

EnfrcUniqID- duplicate "getter" values are treated as warnings

Note: The minus sign after the flag reverses its meaning.

For example, the following would make "getters" case insensitive, not allow overwriting fields, and not
remove any leading or trailing whitespace or tabs from "setters":

!Flags,CaseSens-,Overwrite-,TrimSetters-

Basic Map Files
Place basic map files in the user/agent/map directory under the ArcSight home directory of the
connector file system. Name the files map.0.properties, map.1.properties, and so on. Basic map
files are named as properties files (with the .properties extension), but they are actually CSV files.

New or changed map files will be automatically applied approximately every five minutes. Also, you can use
the Reload custom map files command in the ArcSight Console to reload the basic map files on demand.
See the ArcSight Console User’s Guide, "Managing SmartConnector", "Sending Control Commands to
SmartConnectors", under the "Categorizer" mapper category.

The files are numbered so that the connector knows what order to apply them, since changes made by one
map file may affect a later map file. The numbering sequence must stay consecutive and files cannot be
skipped. For example, the sequence 0, 1, 2, 3 is valid. The sequence 0, 1, 3 is not, and will cause the reading
of the files to be stopped at 1 in this example.

By default, basic map files overwrite the values in event fields. Any leading or trailing whitespace or tabs are
removed (trimmed) from "getters" and "setters", "getters" are case sensitive, and duplicate "getters" generate
warnings. Any of these default behaviors can be changed with the !Flags line.

Developer's Guide
Chapter 7: Map Files

Micro Focus Connectors (7.13.0) Page 165 of 242

AgentInfoAdder1 Map Files
Put the files in the user/agent/aup/acp directory under the ArcSight home directory. Or use the
user/agent/aup/<id>/acp directory for destination/connector-specific files, where <id> is replaced
with the actual ID of the connector or destination. Name the files AgentInfoAdder1.map.10.csv,
AgentInfoAdder1.map.11.csv, and so on.

The AgentInfoAdder1 map files are numbered starting at 10, not 0 or 1, since files 0 to 9 are reserved
for internal map files that are not visible to users. The files are numbered so that the connector knows what
order to apply them, since changes made by one map file may affect a later map file. If there is a missing
number (like files 10 and 12 but not file 11), no files after the missing number will be processed. Restart the
connector to reload AgentInfoAdder1 map files.

AgentInfoAdder1 map files will not overwrite event fields that are already set. By default, leading and
trailing spaces are removed from “getter” and “setter” values before processing. “Getter” values are not case
sensitive. If two rows have duplicate “getters”, a warning is logged. This is the default behavior of basic map
files. These default behaviors can be modified by using the !Flags line.

Categorizer Map Files
Connectors categorize events, whichis to say that the category fields (for example,
categorySignificance and categoryTechnique) are set. The mechanism described here can
categorize events that otherwise would not be categorized. And in fact that is key, because any event that
has already been categorized will not be modified.

Put the files under the user/agent/aup/acp/categorizer/current directory under the ArcSight
home directory. Under that, create a directory that matches the deviceVendor field of the events you
want to categorize, and under that create a map file named for the deviceProduct field of the events you
want to categorize, with the .csv extension. The deviceVendor and deviceProduct names must be
modified as follows:

l Convert any uppercase letters to lowercase.

l Convert any characters that are not letters or digits to underscore characters.

For example, if the events will have deviceVendor set to "Giant Corp" and deviceProduct set to "It's a
Big Product", then you would create user/agent/aup/acp/categorizer/current/giant_
corp/it_s_a_big_product.csv.

This map file is just like any other map file, though they often only have one getter, on the
deviceEventClassId field, and generally only set the category fields (categoryObject,
categoryBehavior, categoryTechnique, categoryDeviceGroup, categorySignificance, and
categoryOutcome).

Developer's Guide
Chapter 7: Map Files

Micro Focus Connectors (7.13.0) Page 166 of 242

You can use the Reload custom categorizations command in the ArcSight Console to reload the
categorizer map files on demand. See the ArcSight Console User’s Guide, "Managing SmartConnectors",
"Sending Control Commands to SmartConnectors", under the "Categorizer" mapping category.

Categorizer map files can overwrite the values in event fields, though that rarely matters since events that
have any of the category fields set will not be processed. Leading and trailing spaces are removed from
“getter” and “setter” values before processing. The "getter” values are not case sensitive. If two rows have
duplicate “getters”, a warning is logged.

Extra Processor Map Files
See "Extra Processors" for general information on extra processors. An example of parser contents follows:

extraprocessor.count=1
extraprocessor[0].type=map
extraprocessor[0].filename=customvendor/customproduct.csv
extraprocessor[0].allowoverwrite=false
extraprocessor[0].casesensitive=false
extraprocessor[0].charencoding=US-ASCII
extraprocessor[0].trimgettertokens=false
extraprocessor[0].trimsettertokens=false

In this case the map file is the user/agent/aup/fcp/customvendor/customproduct.csv file. The
other optional properties let you change the default operation, which allows overwriting values, is case
sensitive, removes leading or trailing whitespace or tabs from "getters" and "setters", and uses the platform's
default character encoding. The map file is just like any other map file, and operates on the event after the
parser and any extra processors earlier in the list (if extraprocessor.count is greater than 1) is
finished. If you need more than one map file, adjust extraprocessor.count accordingly and specify
them.

Using Ranges in Map Files
You can use ranges in map files to simplify map file creation. For example, a map file that lists many source
addresses can be quite large:

event.sourceAddress set.event.deviceCustomString1

1.0.1.0 China

1.0.1.1 China

1.0.1.2 China

Developer's Guide
Chapter 7: Map Files

Micro Focus Connectors (7.13.0) Page 167 of 242

event.sourceAddress set.event.deviceCustomString1

1.0.1.3 China

...763 more addresses...

1.0.3.255 China

The above example would list 768 addresses, if the entire map file was shown.

Using a range in a map file, you can create a simpler file that does the same task. For example:

range.event.sourceAddr
ess

set.event.deviceCustomStri
ng1

1.0.1.0-1.0.3.255 China

The resulting map file is easier to create, and is smaller and less prone to typing errors.

Ranges can be used on:

l Number event fields like sourcePort or fileSize

l IP address fields like sourceAddress and deviceCustomIPv6Address1 (each range in the map
file must be either IPv4 or IPv6, meaning it cannot have an IPv4 starting address and an IPv6 ending
address, or vice versa. For IPv6-aware parsers, the map file should expect the possibility of either IP
address type in any IP address field. For a non-IPv6-aware parser, the map file would only expect IPv4 in
the normal fields and IPv6 in the deviceCustomIPv6Address fields)

l MAC address event fields like destinationMacAddress

Additional details pertaining to ranges:

l IPv6 addresses can use the :: and dotted-quad formats. In IPv6-aware parsers, IPv6 addresses can be
used where they were previously not valid.

l MAC addresses must be in hexadecimal with colon separators

l Use the hyphen character as the separator between the lower bound and upper bound in the range

l Avoid overlapping ranges in the same column

Using Regular Expressions in Map Files
You can use regular expressions in map files to provide look up functionality to set field values. For
example:

regex.event.sourceUserN
ame

set.event.deviceCustomStr
ing1

.*?arcsight.com.* ArcSight

.*?somesoft.com.* Somesoft

Developer's Guide
Chapter 7: Map Files

Micro Focus Connectors (7.13.0) Page 168 of 242

In this example, the sourceUserName event field is looked up to see if it matches either of the regular
expressions, and if it does, the deviceCustomString1 event field is set accordingly.

The regular expression “getter” event field must be a string field, and the value in each event is matched
against all of the regular expressions in that column. Unlike with ranges, it’s more difficult to avoid regular
expressions that “overlap,” and the rule is that in that case the first one wins.

If you combine regular expressions with ranges, and there are no overlapping ranges (overlapping ranges
are not recommended), it is best to put the ranges before (to the left of) the regular expressions, for
performance reasons.

Using Parser-Like Expressions in Map Files
You can use parser-like expressions in map files to extend the functionality of map files.

Here is an example with three input events:

deviceCustomNumber1 deviceCustomString1 deviceCustomString3

1 “ Leading and trailing ” “Whatever”

10 “Anyone reading this?” “Overwrite with this”

17 “ Hello ” “. . . there!”

These are the resulting deviceCustomString1 values that we want for those three events:

deviceCustomString1

“Leading and trailing”

“Overwrite with this”

“ Hello ”

Unlike ranges and regular expressions, this feature isn’t about the “getters,” but about the “setter(s)”. In this
example, we want to remove (trim) leading and trailing spaces from deviceCustomString1 when the
number is 1, and copy the value of deviceCustomString3 into deviceCustomString1 if the number
is 10. For any other number, no change is desired.

Here is an example of a map file that can achieve the result shown above:

event.deviceCustomNumber1
set.expr
(deviceCustomString1|deviceCustomString3).event.deviceCustomString1

1 __stringTrim(deviceCustomString1)

10 deviceCustomString3

Additional details:

Developer's Guide
Chapter 7: Map Files

Micro Focus Connectors (7.13.0) Page 169 of 242

l The “getter” column (or columns) controls which row, if any, is used

l In the header line, the expression “setter” lists what event fields might be used in the expressions in that
column, inside the parentheses, and what event field will be set, at the end

l Then one of the actual expressions below that is evaluated and the result put into the event field

Note: Operations (such as __stringTrim) are described in "ArcSight Operations".

In this case deviceCustomString1 and deviceCustomString3 are listed inside the parentheses in the
header row since they are used as described in "More About Parser-Like Expressions Syntax".

More About Parser-Like Expressions Syntax
For parser-like expressions, the “setter” header has several parts:

l Two constant parts: “set.expr(“ and “).event.”

l Between those is the list of event fields and/or additional data fields that might be used in the
expressions, separated by pipes (two pipes separate event fields from additional data)

l The one event field that will be set to the result of the expression

Note: Expression “setters” cannot be used to set additional data fields, only event fields.

Below is a “no getter” example:

set.expr(deviceCustomNumber1|deviceCustomNumber2||addnumber).event.deviceCustomNumber3

"_sum(deviceCustomNumber1,deviceCustomNumber2,_safeToInteger(addnumber))"

This example sets deviceCustomNumber3 to the sum of deviceCustomNumber1,
deviceCustomNumber2, and (if it is a valid number) the additional data field addnumber.

Operations Containing Commas

When an operation contains any commas, most commonly with operations that have multiple arguments
(for example, __regexToken), use quotes around the entire operation, and then change any quote
characters that are now inside the outer quotes to two quote characters. The CSV parsing code will turn
those doubled quote characters back into one quote character. For example:

"__regexToken(proto,"".*?/(.*)"")"

Backslashes in Expressions Versus in Parsers

In parsers you must use \\ to represent one backslash character, but in these expressions you do not need
to use the double backslash. Parsers are properties files, which use backslashes for quoting. Map files are
CSV files (regardless what the file extension is), which use actual quotes for quoting.

Developer's Guide
Chapter 7: Map Files

Micro Focus Connectors (7.13.0) Page 170 of 242

Real World Examples
This section contains the following information:

l Adding Country Names to Events

l Getting Domain Name from Hostname

Adding Country Names to Events
In the following example, the goal is to add new fields to events that contain the name of the source and
destination countries, based on the sourceAddress and destinationAddress event fields.

The data divides the IPv4 address space into many ranges, each of which is associated with a particular
country. The map files are large enough (order of magnitude 100K lines) that you might need to increase
the connector heap size. The resulting map file would look like this:

range.event.sourceAddress set.additionaldata.SCN

1.0.0.0-1.0.0.255 Australia

1.0.1.0-1.0.3.255 China

1.0.4.0-1.0.7.255 Australia

. . . additional lines in the mapfile . . .

This example uses the range feature on an IPv4 event field. A second map file with the same data is also
needed for the destinationAddress event field.

Getting Domain Name from Hostname
The map file example below uses the last two part of a hostname to get the domain name only.

set.expr(sourceHostName).event.deviceCustomString2

"__regexToken(sourceHostName,""*\.([^\.]+\.[^\.]+)$"")"

This table shows the results of this map file:

soureHostName deviceCustomString2

14-202-33-238.static.tpgi.com.au com.au

bzq-79-181-26-177.red.bezeqint.net bezeqint.net

dynamic-27-121-217-28.goi.ne.jp ne.jp

Developer's Guide
Chapter 7: Map Files

Micro Focus Connectors (7.13.0) Page 171 of 242

soureHostName deviceCustomString2

05405efe.skybroadband.com skybroadband.com

dail-95-105-128-25-orange.orange.sk orange.sk

host-19-157-66-217.spbmts.ru spbmts.ru

118-160-227-230.dynamic.hinet.net hinet.net

Developer's Guide
Chapter 7: Map Files

Micro Focus Connectors (7.13.0) Page 172 of 242

Appendix A: ArcSight Operations
The following table describes all of the operations that can be used when tokens are mapped to Micro
Focus ArcSight event fields.

Operation Return Type Definition and Comments

__BASE64Decode String The parameter is a single Base-64 encoded string, which is
decoded to bytes, and then converted to a string using the
platform's default character set.

__byteArrayToIPAddress IPAddress This operation takes a byte array representation of an IPv4 or IPv6
address as a parameter and returns an IPAddress object. This
operation can be used only for IPv6-aware parsers.

__byteArrayToIPv6 IPAddress This parameter returns an IPv6 address stored as an IPAddress
object. Use this parameter for mapping to event fields or additional
fields which can have an IPv6 address type. Use this operation only
in a non-IPv6-aware parser. For an IPv6-aware parser use the __
byteArrayToIPAddress operation.

__byteArrayToIPv6String String The parameter returns the string representation of an IPv6
address stored in a byte array.

__concatenate String The parameters can be literal strings or other values of various
types. The result is a string that consists of all of these parameters
concatenated together.

__concatenate("Active",protocol," Ports:
",portnum)

__concatenate("CompanyName: [",
CompanyName,"]")

__concatenate("PF: ",PassOrBlock)

__concatenateDeleting String The last parameter is a literal string containing a set of characters
to delete. The other parameters can be literal strings or other
values of various types. The result is a string that consists of all of
these parameters (except the last) concatenated together, with
the specified characters deleted from the non-literal parameters.
For example, if the parameters are “Literal”, “Foobar”, and “r” (where
the first and third parameters are literal), then the result would be
“LiteralFooba”. Note that the “r” in “Foobar” was deleted but the “r”
in “Literal” was not.

__contains Boolean This operation searches for one string within another and returns
true if it is found and false otherwise. For example, like

__contains(stringInWhichToSearch,
stringToFind)

Micro Focus Connectors (7.13.0) Page 173 of 242

Operation Return Type Definition and Comments

__containsFromList Boolean This operation tries to match a string (the first operand, which is
searched in) with a list of comma-separated strings and returns
true when a string match is found. Otherwise returns false. For
example,

__containsFromList(stringInWhichToSearch ,
firstStringToFind, secondStringToFind)

__convertMSDNSURL String This operation converts a Microsoft DNS URL in the form:

(n)nchars(m)mchars(0)

To a normal URL:

nchars.mchars

__createLocalTimeStampFromSeconds
MicrosZone

TimeStamp The parameters are 2 long integer numbers and a string. The first
parameter is the number of seconds since January 1, 1970, while
the second is the number of microseconds within the second. These
are combined into a TimeStamp. If the third parameter is a valid
time zone name, the number of seconds is interpreted relative to
January 1, 1970 in that time zone. Otherwise GMT is used. Some
of the precision of the microseconds is currently lost.

__createLocalTimeStampFromGMT
SecondsMillis

TimeStamp The 2 parameters are each long integer numbers. The first is the
number of seconds since January 1, 1970 GMT, while the second is
the number of milliseconds within the second. They are combined
into a TimeStamp. __
createLocalTimeStampFromGMTSecondsMillis(tv_sec,tv_msec)

__createLocalTimeStampFromGMT
Second Nanoseconds

TimeStamp The 2 parameters are each long integer numbers. The first is the
number of seconds since January 1, 1970 GMT, while the second is
the number of nanoseconds within the second. They are combined
into a TimeStamp. Some of the precision of the nanoseconds is
currently lost.

__createLocalTimeStampFrom
NanoSeconds

TimeStamp The parameter is a long integer number. It is the number of
nanoseconds since January 1, 1970 GMT. It is converted into a
TimeStamp. Some of the precision of the nanoseconds is currently
lost.

__createLocalTimeStampFromNTP TimeStamp The parameter is a string. It should contain the number of seconds
since January 1, 1970 GMT before a decimal point, and the
number of microseconds after the decimal point. They are
combined into a TimeStamp.

__createLocalTimeStampFromSeconds
SinceEpoch

TimeStamp The parameter is a single long integer number, which is the number
of seconds since January 1, 1970 GMT. It is converted into a
TimeStamp, with the fractional seconds set to zero.

__createLocalTimeStampFrom SecondsSinceEpoch
(srcTimestamp)

Developer's Guide
Appendix A: ArcSight Operations

Micro Focus Connectors (7.13.0) Page 174 of 242

Operation Return Type Definition and Comments

__createOptionalTimeStamp
FromString

TimeStamp The parameters are two strings. The first string is date and time
specified by default in the yyyy-MM-dd HH:mm:ss format. The
second, optional parameter specifies the format for the first string if
it needs to be different from the default. If the value of the first
string is null, nothing is mapped. Otherwise the value is mapped
using the format specified for the second parameter, if present, or
the default format.

__createRuleFiringInfo String This operation takes an arbitrary number of parameters. Each can
be either a literal string or a value of some other type. The result is
simply the parameters concatenated together as a long string, with
commas between the parameters. The parameters which are not
literal strings are converted to strings.

__createSafeLocalTimeStamp TimeStamp The first parameter is a string, which is the date/time to parse, while
the second is a literal string, which is the format (same style as the
format for the Date, Time, and TimeStamp tokens). The string is
parsed and returned as a TimeStamp. Most errors result in the
current time being returned.

__createTimeStamp TimeStamp The first parameter is a Date and the second parameter is a Time.
They are combined into a single TimeStamp an returned.
Everything is assumed to be in local time.

__createTimeStamp(date,time)

__createTimeStampByHexEncodedTime TimeStamp The parameter is a single string of 12 hexadecimal digits, with 2
each for year (0 means 1970), month (0-11), day (1-31), hou (0-
23), minute (0-59), and second (0-59). The milliseconds are
implicitly set to zero, and the numbers are interpreted as local time.
The resulting TimeStamp is returned.

__createTimeStampByStartTimeElapsed TimeStamp The parameters are 2 strings. The first is the starting time in
ddMMMyyyy hh:mm:ss format, while the second is an elapsed time
in hh:mm:ss format. The result is a TimeStamp for the ending time,
assuming the starting time is a local time.

__createTimeStampForOpsecStartTime TimeStamp The parameter is a single string in ddMMMyyyy HH:mm:ss format.
It is parsed and the resulting TimeStamp, interpreted as being local
time, is returned.

__createTimeStampStringFrom
SecondsMicros

String The parameters are 2 long integer numbers. The first parameter is
the number of seconds since January 1, 1970 GMT, while the
second is the number of microseconds within the second. These are
combined into a TimeStamp and then into a string. Some of the
precision of the microseconds is currently lost.

__currentTimestampInSeconds Long Any parameters are ignored. The current time, expressed as the
number of seconds since January 1, 1970 GMT, is returned as a
long integer.

Developer's Guide
Appendix A: ArcSight Operations

Micro Focus Connectors (7.13.0) Page 175 of 242

Operation Return Type Definition and Comments

__divide Integer The first parameter is the numerator and the second parameter is
the denominator. The result is an integer with the value of the
numerator divided by the denominator, rounded to the nearest
integer.

__doubleToAddress IPAddress This is the same as the numberToAddress operation except that
the parameter is a double-precision floating-point number.

__doubleToAddress(DestIP)

__extractNTDomain String The only parameter is a string. If it contains a back slash, the part of
the string up to but not including that backslash is returned.
Otherwise the entire string is returned.

__extractNTUser String The only parameter is a string in the form 'domain\user', where
domain is an NT domain and user is an NT user name. The user
name is returned. If there is no backslash in the string, it is returned
unchanged.

__extractProtocol String The only parameter is a string. If the string contains any of the
defined protocol strings (TCP, ICMP, UDP, IGMP, or RTSP), just
that string is returned (the search is case- insensitive, and the first
protocol found is returned). If none of the protocol strings is found,
the whole string is returned.

__firstOfPositiveInteger Integer This operation takes an arbitrary number of integer number
parameters. The first one which is positive is returned. If no positive
parameter is found, null is returned.

__foundScanHostName String The host name is returned in most cases. The exception is if the
string is “[Unknown]”, in that case null is returned.

__getCVEStringFor String The only parameter is a string, which should be a CVE identifier.
What is returned is “CVE|id” where id is the identifier. Note that the
separator character is a vertical bar.

__getDeviceDirection Enumeration
(Integer)

The only parameter is a string. If it is one of the defined inbound
strings (e.g., “in” or “incoming”), then the inbound constant (0) is
returned. If it is one of the defined outbound strings (e.g., “outbound”
or “=>”), then the outbound constant (1) is returned. Otherwise the
unknown constant (Integer.MIN_VALUE, - 2147483648) is
returned.

__getIPv4AddressEmbeddedIn
IPv6Address

IPAddress The operation extracts and returns an IPv4 address embedded in
an IPv6 address. The return parameter is an IPv4 address. The
input parameter is an IPv6 address in byte array format.

To assign the IPv4 address to an IPv4 address event field in a non-
IPv6-aware parser:

__getIPv4AddressEmbeddedInIPv6Address (__
stringToIPv6Address("::ffff:10.14.11.140"))

Developer's Guide
Appendix A: ArcSight Operations

Micro Focus Connectors (7.13.0) Page 176 of 242

Operation Return Type Definition and Comments

__getIpV6AddressFromHighLow String This operator takes two string parameters consisting of decimal
numbers and returns a string representation of an IPv6 address.
The numbers are a decimal representation of the first four and last
four segments of the IPv6 address.

__getLongMACAddressByHexString MacAddress The parameter is a 12-character hexadecimal string, which is
converted to a MAC address.

__getLongMACAddressByString MacAddress The only parameter is a string. It is a MAC address, which is a 6-
part hexadecimal address separated by colons or dashes. It is
returned.

__getManhuntPriority String The two parameters are both long integers, with the first
representing the severity and the second representing the
reliability. The result is a string containing the product of the two
values, divided by 256.

__getNormalizedOS String The only parameter is a string. This string is looked up in a map that
comes from an AUP file. If found, the result is returned. Otherwise a
string of the form “/Operating System/param” is returned, where
param is the parameter string, with any slashes replaced by
dashes. For example, “OS/2” would become “/Operating
System/OS-2” (unless OS/2 appeared in the os.mappings.csv map,
in which case that value would be returned).

__getNotZeroPort Integer The only parameter is a string. If it is null, not a valid integer, or zero,
then null is returned.

Otherwise (it is a valid non-zero integer), the numeric value is
returned.

__getOriginator Enumeration
(Integer)

The only parameter is a string. If the string is “Source”, the result is
the source constant (0). If the string is “Destination”, the result is
the destination constant (1). Otherwise the unknown constant
(Integer.MIN_VALUE, - 2147483648) is returned.

__getOriginatorFromSourcePort Enumeration
(Integer)

The parameters are an Integer (the port number) and a literal
integer. If neither is null and the port is less than the limit specified in
the second (literal) parameter, then the destination constant (1) is
returned. Otherwise the source constant (0) is returned.

__getProtocolName String The only parameter is an Integer, which is converted into a string
for the matching protocol, as defined in RFC 1700. If the parameter
is null, null is returned. And if the parameter is out of range, then the
number itself is returned as a string.

__getProtocolNameFromString String This operation is like the getProtocolName operation, except that
the parameter is a string instead of an integer. If the string does not
contain a valid integer, then the string is returned unchanged.

Developer's Guide
Appendix A: ArcSight Operations

Micro Focus Connectors (7.13.0) Page 177 of 242

Operation Return Type Definition and Comments

__getSymantecNSPriority String The two parameters are both long integers, with the first
representing the severity and the second representing the
reliability. The result is a string containing the product of the two
values, divided by 10.

__getTimeZone String The only parameter is a string. If the string does not represent a
valid timezone, it returns null. If the string is in the general timezone
format, it returns the passed parameter. If the string is an offset in
the RFC 822 format (such as "-08:00"), the return string is found by
offset into the "timezones" list in agent.properties.

Valid RFC 822 formats that are not found in agent.properties will
return a reasonable default string.

__getTrendMicroHost Name String The single parameter is a string. If it is null, null is returned. If it
contains a backslash, then the part before the backslash is
returned. If it contains an '@' or a '.', null is returned.

Otherwise, the original string is returned.

__getTrendMicroUser String The first parameter is a string. If it contains a backslash that is not
the final character of the string, then the part after the backslash is
returned. If it contains an '@' or a '.', null is returned. Otherwise, the
second parameter (which is a string if specified) is returned if
specified. A null is returned if the second parameter is not specified.

__getTypeEnumeration (Integer) The only parameter is a literal string. If it is “correlation” or
“correlated”, then the correlation constant (2) is returned. If it is
“aggregated,” then the aggregated constant (1) is returned.
Otherwise the base constant (0) is returned. The comparisons are
made case- insensitively.

__getVendor String This is a synonym for the stringConstant operation.

__getVulnerabilityCategory String The only parameter is a literal integer, which should be in the range
0 to 4. The values returned are:

l /scanner/device/vulnerability for 0

l /scanner/device/openport for 1

l /scanner/device/user for 2

l /scanner/device/banner for 3

l /scanner/device/uri for 4

__getXForceStringFor String If the one string parameter is not null, it is returned with 'X-Force|'
prepended to it. If it is null, then null is returned.

Developer's Guide
Appendix A: ArcSight Operations

Micro Focus Connectors (7.13.0) Page 178 of 242

Operation Return Type Definition and Comments

__hexStringToAddress IPAddress This is similar to the noDotStringFormatToAddress operation,
except that the parameter is in hexadecimal. In other words, it
should be 8 hexadecimal digits, where each set of 2 digits is a part
of the IP address, zero-filled and with no dots. For example,
“C0A80A0C” would become the IP address 192.168.10.12.

Use this operation only with IPv6-aware parsers for both IPv4 and
IPv6 addresses.

__hexStringToLong Long The one string parameter represents a hexadecimal value. If it
starts with '0x' or '$', those are removed before parsing the value.
The result is returned as a long integer.

__hexStringToIPV6Address IPAddress For non-IPv6-aware parsers, this operator takes as input a 32-
character string consisting of hexadecimal digits and converts it to
an IPv6 address. If the length is 8 characters, as it would be for an
IPv4 address, the return value is null. Any other input size results in
an exception.

For IPv6-aware parsers, this operation is obsolete and should not
be used.

__hexStringToString String The parameter is a single string, which should consist of
hexadecimal digits. It is converted to an array of bytes (two
hexadecimal digits per byte), which is then converted to a string
using UTF-8 encoding (RFC 3629). If the input is null, the result is
also null.

__hourMinuteSecondsToSeconds Long The parameter is a single string, in HH:mm:ss format. The duration
is converted to seconds and returned.

__ifAorBThenElse String There are five parameters. Each can be either a literal string or a
regular string (although other types are converted to strings). If the
first parameter is equal to the second or the first parameter is equal
to the third parameter, then the fourth parameter is returned.
Otherwise, the fifth parameter is returned.

__ifGreaterOrEqual String The four parameters are strings. If either of the first two
parameters is null, null is returned and an error is logged. Otherwise,
those two parameters are parsed as integers and compared. Any
parsing errors treat the value as zero. If the first parameter is
numerically larger than the second, then the third parameter is
returned. Otherwise, the fourth parameter is returned.

__ifPositive String There are three parameters. If the first (integer) operand is
positive, return the second (string) operand; otherwise, return the
third (string) operand.

Developer's Guide
Appendix A: ArcSight Operations

Micro Focus Connectors (7.13.0) Page 179 of 242

Operation Return Type Definition and Comments

__ifThenElse String There are four parameters. Each can be either a literal string or a
regular string (although other types are converted to strings). The
first two parameters are compared, and if they are equal, then the
third parameter is returned as the result. Otherwise (if the first two
parameters differ), the fourth parameter is returned.

__ifThenElseAddress IPAddress There are four parameters. The first two parameters are string.
The first two parameters are compared, and if they are equal, then
the third parameter is returned as the result.

Otherwise (if the first two parameters differ), the fourth parameter
is returned.

__ifTrueThenElse String There are three parameters. The first is a Boolean value (true or
false), and if it is true, then the second parameter is returned; if the
Boolean value is false, then the third parameter is returned.

__integerConstant Integer The parameter is a single literal integer, which is returned. If a literal
string which is not a valid integer is passed instead, then null is
returned.

__integerToLong Long The parameter is a single integer number, which is converted to a
long integer number and returned. If the parameter is null, the
returned value is too.

__length Integer This operation retrieves the length of the operand string.

__longToDot4QuadAddress String The parameter is a single long integer number, which is converted
to an IP address in the same manner as for the numberToAddress
operation, but is then converted to a 4-part dotted string. For
example, 16909060 would become the string “1.2.3.4”.

__longToInteger Integer The parameter is a single long integer number, which is converted
to an integer number (possibly truncating it) and returned. If the
parameter is null, the returned value is too.

__longToString String This operation returns the string representation of a long object.
The optional second operand is the radix (integer, minimum value is
2). The optional third operand is the minimum length (integer,
minimum value is 0), and the result will be left-padded with zeroes, if
needed to achieve that minimum length. This is useful in making
numbers comparable as strings.

__longToTimeStamp TimeStamp The parameter is a single long integer number, which is the number
of milliseconds since January 1, 1970 GMT. It is converted into a
TimeStamp.

Developer's Guide
Appendix A: ArcSight Operations

Micro Focus Connectors (7.13.0) Page 180 of 242

Operation Return Type Definition and Comments

__noDot4QuadStringsToAddress IPAddress The parameters are 4 strings, each of which is a decimal number,
and in the normal order for IP addresses. For example, the strings
“192”, “168”, “10”, “12” would become the IP address
192.168.10.12.

__noDot4QuadStringsToAddress (src_ip1,src_
ip2,src_ip3,src_ip4)

__noDotStringFormatTo Address IPAddress The parameter is a single string of 12 decimal digits, where each set
of 3 digits is a part of the IP address, zero-filled and with no dots. For
example, “192168010012” would become the IP address
192.168.10.12.

__numberToAddress IPAddress The parameter is a single long integer number, which is converted
to an IP address with the least signifigant byte of the number
corresponding to the rightmost part of the address. For example,
16909060 would become the IP address 1.2.3.4.

__numberToAddress(IPAddress)

__oneOf String This operation takes an arbitrary number of parameters. Each can
be either a literal string or a regular string. The first one that is not
null and not zero-length is returned.

__oneOfAddress IPAddress For non-IPv6-aware parsers, this operation returns only the first
non-null IPv4 address. For IPv6-aware parsers, this operation
returns the first non-null IPv4 or IPv6 address.

__oneOfDateTime TimeStamp The parameters are any number of TimeStamp tokens. The first
token, which is not null, is returned.

__oneOfHostName String For non IPv6-aware parsers, this operation works like the oneOf
operation, but any parameter which looks like an IP address (4
decimal numbers separated by 3 periods) is skipped.

For IPv6-aware parsers, this operation works like the oneOf
operation, but any parameter which looks like an IPv4 or IPv6
address is skipped.

__oneOfInteger Integer This works like the oneOf operation, but the result is then parsed as
an integer number and returned. If the value is not a valid number,
null is returned.

__oneOfLong Long This works like the oneOf operation, but the result is then parsed as
a long integer number and returned. If the value is not a valid
number, null is returned.

__oneOfMac MacAddress This works like the oneOf operation, but the result is then parsed as
a MAC address (a six octet hexadecimal representation, separated
by colons) and returned. For example, 00:08:74:4C:7F:1D. If the
value is not a valid MAC address, null is returned.

__oneOfNetBIOSName String This works like the oneOf operation, except for the removal of one
or two leading backslashes, if present, before returning the result.

Developer's Guide
Appendix A: ArcSight Operations

Micro Focus Connectors (7.13.0) Page 181 of 242

Operation Return Type Definition and Comments

__parseMultipleTimeStamp TimeStamp The first parameter is a timestamp value, passed as a string. If it is
null, null is returned. Otherwise, the second and any additional
parameters are constant time stamp formats (as defined for Java's
SimpleDateFormat class). They are used to attempt to parse the
first parameter. The result of the first one that works, without
throwing an exception, is returned as a TimeStamp. If none of the
formats works, an exception is thrown.

__parseMutableTimeStamp TimeStamp The parameter is a single string, which can be in one of these
formats:

l MMM dd HH:mm:ss

l MMM dd HH:mm:ss.SSS zzz

l MMM dd HH:mm:ss.SSS

l MMM dd HH:mm:ss zzz

l MMM dd yyyy HH:mm:ss

l MMM dd yyyy HH:mm:ss.SSS zzz

l MMM dd yyyy HH:mm:ss.SSS

l MMM dd yyyy HH:mm:ss zzz

If this operation has been called before successfully, the same
format is tried first. If one of the first four formats (which do not
include a year) is used, then the year is changed as described for
the setYearToCurrentYear operation. If no format works, a fatal
error is written to the log and null is returned.

__parseMutableTimeStampSilently TimeStamp This is the same as the _parseMutableTimeStamp operation,
except that when no format works, no fatal error is written to the
log.

__parseSignedLong Long This is the same as the safeToLong operation, except that a
leading “+” sign is also allowed.

__product Integer Each parameter is either an integer variable or a string constant
that can be a floating-point value. The result is an integer with the
value of the product of the parameters multiplied together and
rounded to the nearest integer.

__regexToken String This operation takes two strings as parameters. The first is the
string to parse. The second is the regular expression (a literal
string). If the regular expression is blank or null then the result is the
same as the first argument. Otherwise the string to parse is parsed
using the regular expression, and the first matching group
(expression inside parentheses) is returned as a string. For
example, if the parameters are “foobar” and “fo+(o.*)(r)”, the result
will be “oba”.

__regexToken(proto,".*?/(.*)")

Developer's Guide
Appendix A: ArcSight Operations

Micro Focus Connectors (7.13.0) Page 182 of 242

Operation Return Type Definition and Comments

__regexTokenAsAddress IPAddress For non-IPv6-aware parsers, this operation is similar to the
regexToken operation: it takes two string parameters, and the
result (expected to be in four-part dotted decimal format) is then
converted from a string to an IP address. That is, if the parameters
are “foo/192.168.10.12/bar” and “[a-z]+\/([0- 9\.]+)\/bar”, the
result will be the IP address 192.168.10.12.

__regexTokenAsAddress (dst,"(.*?)[:].*")

For IPv6-aware parsers, this operation can return both IPv4 and
IPv6 addresses.

__regexTokenAsInteger Integer This is like the regexToken operation, also taking 2 string
parameters, except that the result is then converted from a string
to an integer (or null if it is not a valid number).

__regexTokenAsInteger (port,".*?:(\\d+)")

__regexTokenAsInteger (dst,".*?:(\\d+)[:
].*")

__regexTokenAsLong Long This is like the regexToken operation, also taking 2 string
parameters, except that the result is then converted from a string
to a long integer (or null if it is not a valid number).

__regexTokenFindAndJoin String There are five string parameters. The first parameter is the string
to be processed. The second is a regular expression with at least
one capturing group. The third is an optional join delimiter. The
fourth and fifth are optional strings to prepend and append to the
final result, respectively. The operation repeatedly attempts to find
the regular expression in the string to be processed, starting each
time at the end of where the regular expression was last found.
Each time it is found, the capturing groups from the regular
expression are added to the result, with the join delimiter between
them. Finally, the prepend and append strings are added, if they are
not null.

__regexTokenNoWarning String This operation works similarly to the regexToken operation. The
primary differences are that 1) the regular expression has to match
the entire string, not just be found in it, and 2) if the regular
expression does not match, there is no warning logged.

__replaceAll String The three parameters are all strings. The first is the starting string,
the second is the regular expression, and the third is the
replacement string. Each place the regular expression is found in
the starting string is replaced by the replacement string, and the
result is returned. Note that the replacement string can contain
references to capturing groups in the regular expression, in the
form '$n', where n is 0 to 9.

Developer's Guide
Appendix A: ArcSight Operations

Micro Focus Connectors (7.13.0) Page 183 of 242

Operation Return Type Definition and Comments

__replaceFirst String The three parameters are all strings. The first is the starting string,
the second is the regular expression, and the third is the
replacement string. The first place the regular expression is found in
the starting string it is replaced by the replacement string, and the
result is returned. Note that the replacement string can contain
references to capturing groups in the regular expression, in the
form '$n', where n is 0 to 9.

__reverseDottedDecimalAddress
ByteOrder

String The parameter is an IP address passed as a string, which must
have exactly 3 dot characters. The result is an IP address returned
as a string, but with the 4 parts reversed in order. For example,
passing '2.1.168.192' will result in '192.168.1.2' being returned.

__safeToDate TimeStamp This operation works like the createOptionalTimeStampFromString
operation, except that if errors occur, null is returned.

__safeToInteger Integer The parameter is a single string, which is converted to an integer, or
null if the string is not a valid number. Useful for log formats that use
"-" to specify null values on integer fields, such as Microsoft Windows
XP SP2 Personal Firewall.

__safeToInteger(bytes)

__safeToInteger(srcPort)

__safeToLong Long The parameter is a single string, which is converted to a long
integer, or null if the string is not a valid number.

__safeToLong(time_taken)

__safeToRoundedLong Long The parameter is a string that is parsed as a number (which can
have a fractional part) and then rounded to the nearest long
integer and returned. If the string is not a valid number, null is
returned.

__setYearToCurrentYear TimeStamp The parameter is a single TimeStamp, for which the year is forcibly
set to the current year, plus or minus one (depending in part on the
syslog.future.limit property). This is used for TimeStamps that do
not have a defined year.

__signedNumberToAddress IPAddress The parameter is a long integer that is returned as an IP address,
but with the byte-order reversed.

Developer's Guide
Appendix A: ArcSight Operations

Micro Focus Connectors (7.13.0) Page 184 of 242

Operation Return Type Definition and Comments

__simpleMap String There are n+1 or n+2 parameters. The first parameter is a string
which is to be looked up in the map. The next n parameters are the
map, in the form of string literals each of which has a key, an equals
sign, and a value. If the key matches the first parameter, then the
value for that key is returned. If the final parameter is a single
character, it is used as the delimiter instead of the equals sign. For
example, if the parameters are (all literal except the first): “Foo”,
“Bar=17”, “Foo=34”, then the returned value will be “34”. If no key
matches, null is returned.

__simpleMap(FileInfected,"0=No", "1=Yes","=")

__simpleMap(Type,"8=Success", "16=Failure")

__split String This operation takes three parameters. The first is the string to split
(a string). The second is the delimiter (a literal string). The third is
the index (a literal integer). If the delimiter or the index is blank or
null, then the result is the same as the first argument. Otherwise the
string to split is split around occurrences of the delimiter, with the
index'th string returned. For example, if the parameters are “The
string to split,” “ “ (space), and “2”, the result will be “string”.

__splitAsAddress IPAddress For non-IPv6-aware parsers, this operation is like the split
operation: it takes three string parameters, and the result
(expected to be in four-part dotted decimal format) is then
converted from a string to an IP address. That is, if the parameters
are “foo/192.168.10.12/bar”, “/”, and 2, the result will be the IP
address 192.168.10.12.

For IPv6-aware parsers, this operation converts the result to an
IPv4 or IPv6 address.

__splitAsInteger Integer This is like the split operation, also taking 3 string parameters,
except that the result is then converted from a string to an integer
(or null if it is not a valid number).

__splitAsLong Long This is like the split operation, also taking 3 string parameters,
except that the result is then converted from a string to a long
integer (or null if it is not a valid number).

__stringConstant String This takes a single string literal parameter, and returns it.

__stringConstant("Example")

__stringToIPv6Address IPAddress In a non-IPv6-aware parser, this operation takes a string
representation of an IPv6 address as input and returns a value of
type IPv6 address.

This operation should not be used in a IPv6-aware parser. Instead,
use the IP Address token parser or directly map the IPv6 address
string to event fields.

__stringTrim String The parameter is a string, that is returned with any leading or
trailing whitespace characters removed.

Developer's Guide
Appendix A: ArcSight Operations

Micro Focus Connectors (7.13.0) Page 185 of 242

Operation Return Type Definition and Comments

__subtract Integer The two parameters must be integer variables, or can be string
constants that are floating- point values. The result is an integer
with the value of the first parameter minus the second and rounded
to the nearest integer.

__sum Integer Each parameter must be an integer variable, or can be a string
constants that are floating-point values. The result is an integer
with the value of the sum of the parameters added together and
rounded to the nearest integer

__toHex String The parameters are a long integer number and a literal integer. The
value of the first parameter is converted to hexadecimal and
returned, padded to the number of digits specified by the second
parameter, and preceded by “0x”. Note that odd lengths are
rounded down, and if the specified length is insufficient some of the
bits of the first parameter are simply lost. For example, with
parameters of 65535 and 8, the result is “0x0000FFFF”. With
parameters of 65535 and 3, the result is “0xFF” (the 3 is rounded
down to 2, and the high-order bits of 65535 are lost).

__toLongTimeStamp Long The parameter is a single string, which is a date and time in yyyy-
MM-dd HH:mm:ss format. The string is parsed, interpreting it as
local time, and the resulting date in returned as the long integer
number of milliseconds since January 1, 1970 GMT.

__toLowerCase String The parameter is a single string, which is converted to lowercase
and returned.

__toLowerCase(protocol)

__toUpperCase String The parameter is a single string, which is converted to uppercase
and returned.

__toUpperCase(protocol)

__useCurrentYear TimeStamp The parameter is a single TimeStamp, which is returned with its
year changed to the current year. The calculation is done in the
local timezone, which will affect the result near either end of the
year.

__useCurrentYear(date)

Developer's Guide
Appendix A: ArcSight Operations

Micro Focus Connectors (7.13.0) Page 186 of 242

Appendix B: ArcSight Built-in Tokens
This table lists ArcSight built-in tokens

Token String Description

Tokens Available for Database Parsers Only

_DB_DRIVER JDBC Driver Name.

_DB_URL Database URL.

_DB_HOST Host name or IP Address of the machine hosting the database.

_DB_PORT Port where the database is listening for SQL queries.

_DB_NAME Database name.

Tokens Available for Syslog Parsers Only

_SYSLOG_TIMESTAMP Time stamp received in the header of the syslog message.

_SYSLOG_SENDER Host name or IP address of the sender received in the header of the
syslog message. In the unusual case if the header did not contain a
host name or IP address, this will be the address that the connector
received the packet from.

_SYSLOG_SOURCE_ADDR The actual IP address that the connector received the syslog
message from. The token value can be assigned to the event field of
your choice. (For example, event.deviceCustomString6=_SYSLOG_
SOURCE_ADDR). The value of this token can be an IPv4 or an IPv6
address.

_SYSLOG_FACILITY Facility received in the header of the syslog message (applies only to
Syslog Daemon connector).

_SYSLOG_PRIORITY Priority received in the header of the syslog message (applies only
to Syslog Daemon connector).

Tokens Available for SNMP Parsers Only - the following token strings are for use only in the properties file type
sdksnmp.#.sdksnmptrap.properties

_SNMP_TRAP_TYPE Trap type received in the SNMP trap header.

_SNMP_TIMESTAMP Time stamp received in the SNMP trap header.

_SNMP_ENTERPRISE_ OID Enterprise OID received in the SNMP trap header.

_SNMP_SENDER SNMP agent address that sends the SNMP trap.

Micro Focus Connectors (7.13.0) Page 187 of 242

Appendix C: ArcSight Built-in Token Types
Token types are important because tokens can only be mapped to ArcSight event fields with matching
types. Event fields and their types are listed in the ArcSight Console User’s Guide, in the "Reference Guide",
under "Data Fields".

Type Meaning Format

Date A value evaluating to a particular day. MM/dd/yyyy

Integer A number from -2147483648 to 2147483647. n/a

IPAddress For non-IPv6-aware parsers, this is an IPv4 address (for example: 1.1.1.1).
This type cannot be used for IPv6 addresses. If it is, then null will be
returned.

For IPv6-aware parsers, this can be an IPv4 or an IPv6 address (for
example: fdeb:f59b:2e13:56c9:xxxx:xxxx:xxxx:xxxx).

n/a

IPv6Address An IPv6 address - 16 bytes specified as 32 hexadecimal characters where
each byte consists of two hexadecimal characters.

n/a

Long A number from -9223372036854775808 to
9223372036854775807.

n/a

MacAddress An Ethernet MAC address of the form: 00-06-3E-22-51-B9 or
00:06:3E:22:51:B9.

n/a

RegexToken This token type is useful when a simple regular expression needs to be
used to extract further information from a token.

For example: Assume that the token contained the string ‘From: rajiv’ and
the only needed part is ‘rajiv’ then the following expression could be used:

s/From: (.*)/$1/

Substitution regular expression
of the form:

s/{exp}/{subst}/

String Any free form sequence of characters. n/a

Time A value evaluating to a particular time of day. HH:mm:ss

TimeStamp A date, a time or a date and a time. Date/time format (see Date and
Time Format Symbols)

Micro Focus Connectors (7.13.0) Page 188 of 242

Appendix D: Date and Time Format Symbols
This table contains date and time format symbols:

Symbol Meaning Presentation Examples

G Era designator (Text) AD

y Year (Number) 2016 or 16

M Month in year (Text & Number) July or Jul or 07

w Week in year (Number) 27

W Week in month (Number) 2

D Day in year (Number) 129

d Day in month (Number) 10

F Day of week in month (Number) 2 (indicating 2nd Wed. in July)

E Day in week (Text) Tuesday or Tue

a Am/pm marker (Text) AM or PM

H Hour in day (0~23) (Number) 0

k Hour in day (1~24) (Number) 24

K Hour in am/pm (0~11) (Number) 0

h Hour in am/pm (1~12) (Number) 12

m Minute in hour (Number) 30

s Second in minute (Number) 55

S Millisecond (Number) 978

z Time zone (Text) Pacific Standard Time or PST or GMT-08:00

Z Time zone RFC 822 -0800 (indicating PST)

For example, one date format might be:

yyyy-MM-dd HH:mm:ss

Use single quotes around text that is not meant to be interpreted as date format characters. Use this
example for a date like: 2016.07.04 AD at 12:08:56 PDT.

yyyy.MM.dd G 'at' HH:mm:ss z

Use two single quotes to insert a single quote. Use this example for a date like: Wed, Jul 4, '16.

EEE, MMM d, ''yy

Micro Focus Connectors (7.13.0) Page 189 of 242

Appendix E: ArcSight Built-in Event Field
Mappings
The following table lists ArcSight event fields. See the numbered Range Notes (n) following this table for
further explanations of certain field ranges.

ArcSight Mapping Type Length Range

applicationProtocol String 31 n/a

baseEventCount Integer n/a 0 -> 231-1

bytes In Long n/a 0 -> 263-1

bytesOut Long n/a 0 -> 263-1 -1

categoryBehavior String 1023 n/a (1)

categoryDeviceGroup String 1023 n/a (1)

categoryObject String 1023 n/a (1)

categoryOutcome String 1023 n/a (1)

categorySignificance String 1023 n/a (1)

categoryTechnique String 1023 n/a (1)

cryptoSignature String 512 n/a

customerURI String - n/a (2)

destinationAddress IPAddress n/a IPv4 or IPv6 (3)

destinationDnsDomain String 255 n/a

destinationHostName String 1023 n/a

destinationMacAddress MacAddress n/a MAC (4)

destinationNtDomain String 255 n/a

destinationPort Integer n/a 0 ->65535

destinationProcessName String 1023 n/a

destinationServiceName String 1023 n/a

destinationTranslatedAddress IPAddress n/a IPv4 or IPv6 (3)

destinationTranslatedPort Integer n/a 0 -> 65535

destinationTranslatedZoneURI String - n/a (2)

Micro Focus Connectors (7.13.0) Page 190 of 242

ArcSight Mapping Type Length Range

destinationUserId String 1023 n/a

destinationUserName String 1023 n/a

destinationUserPrivileges String 1023 n/a

destinationZoneURI String - n/a (2)

deviceAction String 63 n/a

deviceAddress IPAddress n/a IPv4 or IPv6 (3)

deviceCustomDate1 TimeStamp n/a n/a (5)

deviceCustomDate1Label String 1023 n/a

deviceCustomDate2 TimeStamp n/a n/a (5)

deviceCustomDate2Label String 1023 n/a

deviceCustomIPv6Address1 IPAddress n/a IPv6 (8)

deviceCustomIPv6Address1Label String 1023 Should be “Device IPv6 Address”

deviceCustomIPv6Address2 IPAddress n/a IPv6 (8)

deviceCustomIPv6Address2Label String 1023 Should be “Source IPv6 Address”

deviceCustomIPv6Address3 IPAddress n/a IPv6 (8)

deviceCustomIPv6Address3Label String 1023 Should be “Destination IPv6 Address”

deviceCustomNumber1 Long n/a - 263 -> 263-1

deviceCustomNumber1Label String 1023 n/a

deviceCustomNumber2 Long n/a - 263 -> 263-1

deviceCustomNumber2Label String 1023 n/a

deviceCustomNumber3 Long n/a - 263 -> 263-1

deviceCustomNumber3Label String 1023 n/a

deviceCustomString1 String 1023 (4.x)

4000 (5.x)

n/a

deviceCustomString1Label String 1023 n/a

deviceCustomString2 String 1023 (4.x)

4000 (5.x)

n/a

deviceCustomString2Label String 1023 n/a

deviceCustomString3 String 1023 (4.x)

4000 (5.x)

n/a

Developer's Guide
Appendix E: ArcSight Built-in Event Field Mappings

Micro Focus Connectors (7.13.0) Page 191 of 242

ArcSight Mapping Type Length Range

deviceCustomString3Label String 1023 n/a

deviceCustomString4 String 1023 (4.x)

4000 (5.x)

n/a

deviceCustomString4Label String 1023 n/a

deviceCustomString5 String 1023 (4.x)

4000 (5.x)

n/a

deviceCustomString5Label String 1023 n/a

deviceCustomString6 String 1023 (4.x)

4000 (5.x)

n/a

deviceCustomString6Label String 1023 n/a

deviceDnsDomain String 255 n/a

deviceDomain String 1023 n/a

deviceEventCategory String 1023 n/a

deviceEventClassId String 1023 n/a

deviceExternalId String 255 n/a

deviceFacility String 1023 n/a

deviceHostName String 63 n/a

deviceInboundInterface String 15 n/a

deviceMacAddress MacAddress n/a MAC (4)

deviceNtDomain String 255 n/a

deviceOutboundInterface String 15 n/a

devicePayloadId String 128 n/a

deviceProcessName String 1023 n/a

deviceProduct String 63 n/a

deviceReceiptTime TimeStamp n/a n/a (5)

deviceSeverity String 63 n/a

deviceTimeZone String 255 n/a

deviceTranslatedAddress IPAddress n/a IPv4 or IPv6 (3)

deviceTranslatedZoneURI String - n/a (2)

deviceVendor String 63 n/a

deviceVersion String 31 n/a

Developer's Guide
Appendix E: ArcSight Built-in Event Field Mappings

Micro Focus Connectors (7.13.0) Page 192 of 242

ArcSight Mapping Type Length Range

deviceZoneURI String - n/a (2)

endTime TimeStamp n/a n/a (5)

externalId String 40 n/a

fileCreateTime TimeStamp n/a n/a (5)

fileHash String 255 n/a

fileId String 1023 n/a

fileModificationTime TimeStamp n/a n/a (5)

fileName String 1023 n/a

filePath String 1023 n/a

filePermission String 1023 n/a

fileSize Long n/a 0 -> 263-1

fileType String 1023 n/a

flexDate1 TimeStamp n/a n/a (5)

flexDate1Label String 128 n/a

flexNumber1 Long n/a - 263 -> 263-1

flexNumber1Label String 128 n/a

flexNumber2 Long n/a -2 63 -> 263-1

flexNumber2Label String 128 n/a

flexString1 String 1023 n/a

flexString1Label String 128 n/a

flexString2 String 1023 n/a

flexString2Label String 128 n/a

message String 1023 n/a

name String 512 n/a (9)

oldFileCreateTime TimeStamp n/a n/a (5)

oldFileHash String 255 n/a

oldFileId String 1023 n/a

oldFileModificationTime TimeStamp n/a n/a (5)

oldFileName String 1023 n/a

oldFilePath String 1023 n/a

Developer's Guide
Appendix E: ArcSight Built-in Event Field Mappings

Micro Focus Connectors (7.13.0) Page 193 of 242

ArcSight Mapping Type Length Range

oldFilePermission String 1023 n/a

idFileSize Long n/a 0 -> 263-1

idFileType String 1023 n/a

rawEvent String 4000 n/a (7)

requestClientApplication String 1023 n/a

requestContext String 2048 n/a

requestCookies String 1023 n/a

requestMethod String 1023 n/a

requestUrl String 1023 n/a

sourceAddress IPAddress n/a IPv4 or IPv6 (3)

sourceDnsDomain String 255 n/a

sourceHostName String 1023 n/a

sourceMacAddress MacAddress n/a MAC (4)

sourceNtDomain String 255 n/a

sourcePort Integer n/a 0 -> 65535

sourceProcessName String 1023 n/a

sourceServiceName String 1023 n/a

sourceTranslatedAddress IPAddress n/a IPv4 or IPv6 (3)

sourceTranslatedPort Integer n/a 0 -> 65535

sourceTranslatedZoneURI String - n/a (2)

sourceUserId String 1023 n/a

sourceUserName String 1023 n/a

sourceUserPrivileges String 1023 n/a

sourceZoneURI String - n/a (2)

startTime TimeStamp n/a n/a (5)

transportProtocol String 31 n/a (6)

Range Notes

1. Although these fields can be set using the FlexConnector properties file, the recommended way is to
create a categorization file. For more about the possible values, see the "Categories" topic in the
Console Help or the ArcSight Console User’s Guide. Also, see "FlexConnectors and Categorization".

2. Although URI fields can be set using the FlexConnector properties file, these are really links to

Developer's Guide
Appendix E: ArcSight Built-in Event Field Mappings

Micro Focus Connectors (7.13.0) Page 194 of 242

resources in the database. Therefore, it is recommended that those fields be set using the network-
model and customer-setting features.

3. This can be an IPv4 address (from 0.0.0.0 to 255.255.255.255) or an IPv6 address
(xxxx:xxxx:xxxx:xxxx:xxxx:xxxx).

4. This is a MAC address: XX:XX:XX:XX:XX:XX or XX-XX-XX-XX-XX-XX.

5. This is a timestamp stored as milliseconds since January 1, 1970.

6. The options are: TCP, UDP, ICMP, IGMP, ARP.

7. Set PreserveRawEvent to Yes to have the connector automatically preserve the original event log
received from the device. With the default No, you can configure this field. To find the
PreserveRawEvent field in the ArcSight Console interface, go to the Connectors resource tree >
Configure > Default tab > Content >Processing section > PreserveRawEvent.

8. For a non-IPv6-aware parser, the IPv6 fields (deviceCustomIPv6Address1, 2, and 3) should
consistently use 1 for device, 2 for source, and 3 for destination. The labels for them will automatically
be set if the IPv6 address field is set, but if your ArcSight Console parser sets them explicitly, it should
use the exact strings shown above.

For an IPv6-aware parser, the IPv6 fields (deviceCustomIPv6Address1, 2, and 3) can contain
either IPv4 or IPv6 addresses. In practice, these fields should rarely be used. If they are, the labels
should be set to an appropriate value.

9. The name field is mandatory.

See "ArcSight Built-in Tokens" for a list of ArcSight built-in tokens.

Developer's Guide
Appendix E: ArcSight Built-in Event Field Mappings

Micro Focus Connectors (7.13.0) Page 195 of 242

Appendix F: Configuring a Connector for ArcSight
ESM Domain Field Sets
This appendix applies to Oracle-based ESM and provides information on configuring a FlexConnector for
ESM domain field sets, which allow you to map additional data.

ArcSight ESM offers a series of special user-configurable fields called domain fields that you can use to
leverage additional data available in an event, and that identifies a business-related attribute. When events
come in to the ArcSight Manager, they are evaluated against the available domain field sets. If the event
matches the fields in a domain field set, the event is tagged as relevant to that domain. These fields then
are displayed in the Event Inspector and anywhere that domain field set is referenced.

Before creating a FlexConnector or modifying an existing connector to send additional data to support
domain field sets, create the domain fields and domain field sets from the ArcSight Console as described in
Domain Field Sets in the ArcSight ESM User's Guide.

Supported data types include:

FlexConnector Data Type ESM Data Type

String String

Long Long

TimeStamp Date

IPAddress (IPv4) IPv4Address

Integer Number

IPv6Address IPv6Address

Double (Floating Point) Floating Point

You can modify an existingFlexConnector or create a new FlexConnector to take advantage of the fields you
have defined as part of the domain field set. For example, the following is a domain field set for credit card
transactions:

Field Type

Credit Card Number Integer (Number)

Transaction Amount Double (Floating Point)

Currency String

Transaction Host IP IPv6Address

Transaction Time TimeStamp (Date)

Micro Focus Connectors (7.13.0) Page 196 of 242

Assuming these fields are not defined in a current parser, you will need to add mappings for these fields in
the FlexConnector parser as additional data fields.

For example, for this sample domain field set, you can add the following entries to the FlexConnector parser
you are developing:

token[0].name=Credit Card Number
token[0].type=Integer

token[1].name=Transaction Amount
token[1].type=Double

token[2].name=Currency
token[2].type=String

token[3].name=Transaction Host IP
token[3].type=IPAddress

token[4].name=Transaction Time
token[4].type=TimeStamp

additionaldata.Credit Card Number=Credit Card Number
additionaldata.Transaction Amount=Transaction Amount
additionaldata.Currency=Currency
additionaldata.Transaction Host IP=Transaction Host IP
additionaldata.Transaction Time=Transaction Time

The connector processes the additional data fields with the data type you assigned along with the token
names.

If you have an existing FlexConnector, you can modify your parser to include the new fields for a domain
field set as shown in the following example. To modify the parser of an existing SmartConnector that you
have installed, contact Professional Services or your ArcSight representative for assistance.

The domain field set for this example includes the following fields:

Field Type

Credit Card Number Integer (Number)

Credit Card Holder String

Transaction Host IP IPAddress (for IPv6-aware parsers, this can be an IPv4 or IPv6 address)

Transaction Time TimeStamp (Date)

In this example, your existing parser contains entries such as the following:

Developer's Guide
Appendix F: Configuring a Connector for ArcSight ESM Domain Field Sets

Micro Focus Connectors (7.13.0) Page 197 of 242

token[9].name=abc
token[9].type=TimeStamp

token[10].name=def
token[10].type=Integer

token[11].name=ghi
token[11].type=IPAddress

token[12].name=jkl
token[12][.type=String

token[13][.name=mno
token[13].type=Long

You can use currently defined tokens to assign data types to your new domain feature set fields by adding
these additional data fields. Transaction Time will assume the data type of the jkl field (TimeStamp).

When you add this... Then...

additionaldata.Credit Card Number=abc Credit Card Number assumes the data type of the abc field (Integer)

additionaldata.Credit Card Holder=def Credit Card Holder assumes the data type of the def field (String)

additionaldata.Transaction Host IP=ghi Transaction Host IPassumes the data type of the ghi field (IPAddress)

additionaldata.Transaction Time=jkl Transaction Time assumes the data type of the jkl field (TimeStamp)

These additional data fields associate your newly created fields with the data types of fields already defined
in the parser.

After modifying the parser, restart the connector. When the connector comes back online, it sends the
added fields to the ArcSight Manager.

Developer's Guide
Appendix F: Configuring a Connector for ArcSight ESM Domain Field Sets

Micro Focus Connectors (7.13.0) Page 198 of 242

Appendix G: Advanced Parameters
The following topics are covered in this appendix:

l Parameters Common to all SmartConnectors

l CEF Syslog Parameters

l File Connector Parameters

l File Folder Follower Parameters

l Syslog Parameters

Note:

l The advanced parameters have been designed to assist developers in creating new
FlexConnectors. The advanced parameters might not be applicable to all connectors even if they are
present in the agent.properties file. If they are applicable to a connector, they will work as
described.

l Do not change any parameter value in the agent.properties file unless the parameter is
described in your connector’s guide. This appendix is meant for developing new FlexConnectors,
and not for changing parameters in the implemented connectors. Changing the parameters from
their default values can prevent the connectors from working.

You can customize connector behavior by using the advanced parameters described in this appendix.
These parameters can be added to or updated in the agent.properties file located in the
$ARCSIGHT_HOME/current/user/agent directory after connector installation.

Note: The folder path examples in this chapter refer to the Linux form where the path starts with
$ARCSIGHT_HOME and uses slashes. For Windows, the path starts with %ARCSIGHT_HOME% and uses
back slashes. For example:

l Linux: $ARCSIGHT_HOME/current/user/agent/agent.properties

l Windows: %ARCSIGHT_HOME%\current\user\agent\agent.properties

The agent.properties file is a plain text file. Use the appropriate editor for your operating system to
edit the content. For example, use Notepad for Windows and vi for Linux. Any modifications to the
agent.properties file should be performed very carefully with knowledge of how parameters operate.
This way, you would avoid inadvertently altering the behavior of the SmartConnector.

Micro Focus Connectors (7.13.0) Page 199 of 242

Parameters Common to all SmartConnectors
The following table describes the parameters that can be used with all ArcSight SmartConnectors.

Parameter Default Description

agents[x].deviceconnection
alertinterval

60000 Connectors update internal device connectivity state based on
this interval (milliseconds).

agents[x].extractfieldnames [blank] List of event fields separated by comma; for example: fileName,
sourcePort.

This parameter is related to fieldextractor feature that allows to
populate the event field based on the file name the connector is
reading. It can be used in all connectors that have files as input
(for example any file connector, file folder connector and a few
other connectors like DB Audit processing, Juniper Steel-Belted
Radius).

extractfieldnames, extractregex and extractsource are used
together. Only when usefieldextractor is true,
extractfieldnames, extractregex and extractsource can be
used.

agents[x].extractregex [blank] The regular expression that will extract as many tokens
(filename, sourcePort, and so on) as the number of fieldnames
from the name of the log file.

This parameter is related to fieldextractor feature that allows to
populate the event field based on the file name the connector is
reading. It can be used in all connectors that have files as input
(for example any file connector, file folder connector and a few
other connectors like DB Audit processing, Juniper Steel-Belted
Radius).

extractfieldnames, extractregex and extractsource are used
together. Only when usefieldextractor is true,
extractfieldnames, extractregex and extractsource can be
used.

Developer's Guide
Appendix G: Advanced Parameters

Micro Focus Connectors (7.13.0) Page 200 of 242

Parameter Default Description

agents[x].extractsource File Name Source from which to extract the fields.

Possible Values: A constant—“File Name” or “File Path”.

This parameter is related to fieldextractor feature that allows to
populate the event field based on the file name the connector is
reading. It can be used in all connectors that have files as input
(for example any file connector, file folder connector and a few
other connectors like DB Audit processing, Juniper Steel-Belted
Radius).

extractfieldnames, extractregex and extractsource are used
together. Only when usefieldextractor is true,
extractfieldnames, extractregex and extractsource can be
used.

agents[x].persistenceinterval

Note: For Syslog File connectors, the
persistenceinterval parameter must be a
positive integer to enable persistence.

0 Interval in milliseconds when persisting properties in some
connectors.

l The persisted file is located at $ARCSIGHT_
HOME/current/user/agent/
persisted.properties.

l If 0, then every change in the property value will persist in
the file. This could impact the performance.

l If <0, then the properties file is not persisted.

l If >0, then wait for the specified interval and then persist
properties file. The property file will have the properties
specified by the connector. For example, for legacy
connectors it could contain the file name as a key, and “true”
as value if file was processed.

agents[x].unparsedevents.log.
enabled

false The default value is false. Specify true for the connector to
detect and log unparsed events to $ARCSIGHT_
HOME/current/logs/events.log. See also "Unparsed Events
Detection".

agents[x].usefieldextractor false Indicates whether the event fields should be extracted from the
log file name.

Possible Values: true/false

This parameter is related to fieldextractor feature that allows to
populate the event field based on the file name the connector is
reading. It can be used in all connectors that have files as input
(for example any file connector, file folder connector and a few
other connectors like DB Audit processing, Juniper Steel-Belted
Radius).

Developer's Guide
Appendix G: Advanced Parameters

Micro Focus Connectors (7.13.0) Page 201 of 242

Parameter Default Description

deviceeventcounter.maxdevicestoevent 1000 This property pertains to the DeviceEventCounter module. It
specifies the default maximum number of devices for which the
DeviceEventCounter module will send agent:043 internal
events. If an agent properties file specifies agent.component
[x].maxdevstoevent as a legacy parameter, then it will be used
instead of the deviceeventcounter.maxdevicestoevent value.

deviceeventcounter.maxdevicestolog 1000 This property pertains to the DeviceEventCounter module. It
specifies the default maximum number of devices for which the
DeviceEventCounter module will log the EPS status. If an agent
properties file specifies agent.component[x].maxdevicestolog
as legacy parameter, then it will be used instead of the
deviceeventcounter.maxdevicestolog value.

name.resolve.use.getallbyname true Flag to control if java.net.getAllByName is used (if false then
getByName is used, which may avoid IPv6 lookups).

CEF Syslog Parameters
The following table describes the CEF syslog parameters.

Parameter Default Description

transport.cefsyslog.header false Change to true to enable RFC 3164 headers for the CEF
Syslog destination type.

transport.cefsyslog.header.facility 4 This parameter, which is ignored unless
transport.cefsyslog.header is true, changes the facility
value used to calculate the <PRI> value in the generated
header. The range of valid values is 0 to 23. The default
value of 4 means "security/authorization messages".

Developer's Guide
Appendix G: Advanced Parameters

Micro Focus Connectors (7.13.0) Page 202 of 242

Parameter Default Description

transport.cefsyslog.header.keepdomain false This parameter, which is ignored unless
transport.cefsyslog.header is true, controls whether the
value in deviceHostname is used as is in the header (if the
property changed to true), or if the domain is first removed.
For example, if the deviceHostName field of an event is
server.foo.com, only "server" would normally be used in the
header. But if this property is changed to true, then
"server.foo.com" would be used. Note that for any events
that do not have the deviceHostName field set, this
property does not matter (the deviceAddress will be used
instead).

transport.cefsyslog.header.severitymap 7,6,5,3,2 This parameter, which is ignored unless
transport.cefsyslog.header is true, controls how the event's
agentSeverity field is converted into an RFC 3164 severity
value, which in turn is combined with the facility value to
create the <PRI> value in the generated header. If this
property is changed, there must be 5 values, representing
agentSeverity values unknown, low, medium, high, and
very-high, respectively. And each value must be in range of
0 (emergency) to 7 (debug). The default mapping is
unknown=>debug, low=>informational, medium=>notice,
high=>error, and very-high=>critical.

transport.cefsyslog.header.useconadrashost true This parameter, which is ignored unless
transport.cefsyslog.header is true, controls what to do if
neither the deviceHostname nor the deviceAddress field is
set in an event. By default the connector's own IP address
is used, but that can be disabled (leaving that part of the
header empty) by changing this property to false.

Developer's Guide
Appendix G: Advanced Parameters

Micro Focus Connectors (7.13.0) Page 203 of 242

File Connector Parameters
The following table describes the file connector parameters.

Parameter Default Description

agents[x].configfile Agent_
type/Agent_
type

Path of the config file. This is the directory where the connector gets a parser for
log(s).

agents[x].followexternal
rotation

false If property is set to false, the rotation “in place” is not followed, the file read once,
the drop in size may not be monitored. If set to true, it will be monitored. There
are different ways files are rotated:

l If the new file has “index” suffix. For example, log1.txt,log2.txt

l If the new file has a new date stamp added. For example, log2013-07-31.txt
for daily rotation.

So, these types of rotations are captured with “rotationscheme” and related
parameters, or some rotation specified directly in file name regex, like those
based on multifolderfollower (Apache Tomcat is an example).

If this property is set to true, the Connector will monitor the size of the file (using
the file’s name, not its inode). If the file size has decreased, the connector will
assume that the file has been rotated.

agents[x].internalevent.
filecount.enable

false Enable/disable internal events when the number of files processed does not
meet the user defined limits.

l agents[x].internalevent.filecount.duration=n

Specifies the number of seconds.

l agents[x].internalevent.filecount.minfilecount=n

Specifies the minimum number of files that the connector should process in
the duration specified.

l agents[x].internalevent.filecount.timer.delay=n

Specifies, in seconds, the time the SmartConnector waits after it starts
monitoring and sending internal events when needed.

agents[x].internalevent.
fileend.enable

true Sends and internal event when file has completed processing.

agents[x].internalevent.
filestart.enable

true Sends an internal event when file has started to process.

agents[x].logfilename [blank] This property will be interpreted as a directory/folder. For example:

logfilename=/home/logfiles/

Developer's Guide
Appendix G: Advanced Parameters

Micro Focus Connectors (7.13.0) Page 204 of 242

Parameter Default Description

agents[x].onrotation None Possible Values:

l None: Nothing is done

l DeleteFile: The file is deleted on rotation

l RenameFileInTheSameDirectory: The file is renamed as per the
onrotationoptions parameter, described below on rotation.

agents[x].onrotationoptions processed If the onrotation parameter is chosen as "RenameFileInTheSameDirectory", this
parameter tells what to rename the file.

For example: If the default value is processed, on rotation, the file sample.log is
renamed to sample.log.processed.

The Unix extension cannot have spaces in it.

agents[x].preservestate false If set to true, remembers the last location read in the file periodically, depending
on the values set for the perservedstatecount and preservedstateinterval
properties.

If set to false, then nothing is written and the connector has no record of where it
left off. In this case, the values of perservedstatecount and
preservedstateinterval are ignored.

agents[x].preservedstate
count

10 The number of times the value has to change or has to be updated before
actually preserving the state.

agents[x].preservedstate
interval

30000 The number of idle milliseconds that will trigger a state persistence.

agents[x].rotationsleeptime 10 Used in conjunction with rotationonlywheneventexists, rotation will not occur
until the specified time has elapsed since the new event appeared. Default is 10
seconds.

agents[x].rotationscheme Daily Possible values: Daily, Index, None

agents[x]. rotationonlywhen
eventexists

false Used only by the daily log follower in conjunction with rotationsleeptime, no
rotation occurs until there is new event in the file or there is a new event and the
time for rotationsleeptime has elapsed since the new event appeared. Default is
false - not enabled.

agents[x].rotationscheme
params

[blank] Configure this parameter when rotationscheme parameter is set to Daily or
Index.

A filename template has the following syntax:

prefix,]dateFormat,suffix[,true|false]

For a complete description of how to use the rotationschemeparams parameter,
see "Parameters for Daily and Index Rotation"

agents[x].rotationdelay 30 In seconds. Specifies how long to wait after a new file is detected before the file
reader thread for the current file is terminated and a file reader thread launches
for a new file.

Developer's Guide
Appendix G: Advanced Parameters

Micro Focus Connectors (7.13.0) Page 205 of 242

Parameter Default Description

agents[x].startatend true The default is true. Useful when log files to be processed already exist and
contain data at connector startup or when the log file rotation takes place.
Setting this value to false will cause the entire file to be read at every startup,
which could lead to duplicate events, unless the preservestate parameter is set
to true. (Setting preservestate to true lets the connector skip the old events and
start from the last preserved read position of the file.)

agents[x].usealternate
rotationdetection

true Use an alternate mechanism to detect log rotation. Used with
followexternalrotation parameter. The log rotation detection logic uses a file’s
length as opposed the number of bytes counted in byte counting input stream.

Setting this value to true, compares a new file length to the previous file length.
Setting the value to false, compares a new file length to the number of bytes
read from the file (input stream).

agents[x].usenonlocking
windowsfilereader

true Does not lock the log file read by the connector on the Windows platform.

File Folder Follower Parameters
The following table describes the File Folder Follower parameters. If you do not see the parameter you need
in the table, see "File Connector Parameters ".

Parameter Default Description

agents[x].delay 10000 In milliseconds. Specifies how long the connector waits to start before
processing after it detects the file for the first time in the folder.

agents[x].encoding UTF8 Specifies the encoding or character set used in the log file. Only Java
recognized encoding is accepted. Informal names for encoding will
result in assuming UTF8 as logs encoding value.

agents[x].fixedlinelength

Note: For SAP only

-1 If set to a positive integer, this parameter sets the line length for an
event. The length can be expressed as either the number of characters
or bytes. The -1 default value indicates that one line represents one
event. This is because one line is typically one event.

agents[x].fixedlinelength
contains

Note: For SAP only

[Fixed Number of
Characters.]

Related to the fixedlinelength parameter. Specifies whether the fixed
length is the number of bytes or number of characters. Possible Values
are Fixed Number Of Bytes (default) or Fixed Number Of Characters.

Developer's Guide
Appendix G: Advanced Parameters

Micro Focus Connectors (7.13.0) Page 206 of 242

Parameter Default Description

agents[x].followexternal
rotation

false Specifies whether the file reader thread is going to follow any rotation
to the file done by the external device writing to the log. Is operational
only when agents[x]. processingmode is set to realtime.

If property is set to false, the rotation “in place” is not followed, the file
read once, the drop in size may not be monitored. If set to true, it will be
monitored. There are different ways files are rotated:

l if the new file has “index” suffix, for example, log1.txt,log2.txt

l if the new file has a new date stamp added, for example, log2013-
07-31.txt for daily rotation

These types of rotation are captured with “rotationscheme” and
related parameters, or some rotation specified directly in file name
regex, like those based on multifolderfollower (Apache Tomcat is an
example).

If this property is set to true, the Connector will monitor the size of the
file (using the file’s name, not its inode). If the file size has decreased, the
Connector will assume that the file has been rotated.

agents[x].maxretries -1 Maximum number of retries before giving up on a file.

Files will be moved to the “bad” directory if unable to read at once.
Positive means retry up to maxretries times to read again.

agents[x].minfilelength -1 Prevents processing of files smaller than the specified size.

agents[x].mode RenameFile
InTheSameDirectory

Specifies the action to perform on a log file after the Connector has
processed it. Possible actions are:

l RenameFileInTheSameDirectory—Renames the
processed log file to filename.processed.

l DeleteFile—Deletes the file once it has been processed.

l PersistFile—Retains the file with its original name after it has
been processed. However, the Connector remembers the files it has
already processed so that those are not processed again.

Note: The value for agents[x].usenonlockingwindowsfilereader
must be set to true in Windows environments for the modes
RenameFileInTheSameDirectory and DeleteFile to function
correctly.

agents[x].modeoptions processed Specifies the extension to add to processed files.

For example, .processed.

The Unix extension cannot have spaces in it.

Developer's Guide
Appendix G: Advanced Parameters

Micro Focus Connectors (7.13.0) Page 207 of 242

Parameter Default Description

agents[x].monitoringinterval 30000 Specifies the amount of time (in milliseconds) that the connector will
wait before re-reading the log file. The connector checks if file was
updated; if it was, then the connector continues to read the file.

After the file is read to the EOF, the connector checks for new records
until the value of the processingtimeout parameter is reached. If no
updates have occurred, then the connector checks for updates only at
intervals equal to the value of the monitoringinterval parameter. If no
updates have occurred up to the value of the processingthreshold
parameter, then the connector marks file as done and terminates
reading.

The monitoringinterval parameter should be used only when the
processingmode parameter is set to realtime. The value of the
monitoringinterval parameter must be greater than 0 and less than the
value of the processing timeout parameter (0< monitoringinterval <
processingtimeout < processingthreshold).

agents[x].processfolder
recursively

false Specifies whether to process log files in the subfolders of a specified
folder.

Possible values: true and false

When this property is set to true, the Connector traverses the
subfolders in a folder to locate log files to process.

agents[x].processinglimit 256 Set to specify the number of files to read in real time. There is one file
reader thread per file. When this limit is reached no new files will be
processed until some of the existing files are temporarily suspended
because of inactivity or are completely processed.

agents[x].processingmode batch Specifies the mode for connector log file processing. Possible values are:

l batch—Batch processing of the log file.

l realtime—Realtime processing of the log file.

If realtime is specified, then the properties, monitoringinterval,
processingthreshold, and processingtimeout must also be specified.

Developer's Guide
Appendix G: Advanced Parameters

Micro Focus Connectors (7.13.0) Page 208 of 242

Parameter Default Description

agents[x].processingthreshold 3600000 Specifies the amount of time (in milliseconds) that the connector will
wait for inactivity on the realtime log file. When the processingthreshold
value is exceeded, the log file is deleted or renamed depending on the
agents[x].mode value specified.

The processingthreshold parameter should be used only when the
processingmode parameter is set to realtime. The value of the
processingthreshold parameter must be greater than 0 and greater
than the value of the processingtimeout parameter (0<
monitoringinterval < processingtimeoutparameter <
processingthreshold).

This parameter cannot be disabled. Therefore, when processing mode
is set to 'realtime' and 'followexternalrotation' is set to 'true', the
connector may stop reading from the file over time. Although the
default value is 3600000, you can specify a larger value. The max
value is 9223372036854775807 (292,471,208.67753601074
years).

Note: When the processingthreshold value is exceeded, the log
file is deleted or renamed depending on the agents[x].mode value
specified.

agents[x].processingtimeout 120000 Specifies the threshold time (in milliseconds) for detecting inactivity on
the realtime log file. If inactivity on the log file exceeds this value, then
reading of the log file is suspended. The log file is again checked whether
to suspend, resume or terminate after the monitoringinterval has
elapsed.

The processingtimeout parameter should be used only when the
processingmode parameter is set to realtime. The value of the
processingtimeout parameter must be greater than 0 and less than
the value of the processingthreshold parameter (0 <
monitoringinterval < processingtimeout < processingthreshold).

agents[x].retryinterval 1000 In milliseconds. If you want to try again to process unprocessed files
(which were not processed because of an exception, such as a busy
device), use these fields.

agents[x].sleeptime 5000 Specified how long to wait before checking the folder for new files.

agents[x].triggerextension .done This parameter is used only if usertriggerfile parameter is set to true.

Specifies the file extension that the connector should look for to identify
a trigger file. Used in conjunction with usetriggerfile. It can be any word
at the end.

For example, .trigger.

Developer's Guide
Appendix G: Advanced Parameters

Micro Focus Connectors (7.13.0) Page 209 of 242

Parameter Default Description

agents
[x].usealternaterotation
detection

false Use an alternate mechanism to detect log rotation. Used with
followexternalrotation parameter. It tells the log rotation detection
logic to use a file’s length as opposed the number of bytes counted in
byte counting input stream.

agents[x].usenonlocking
windowsfilereader

false Does not lock the log file read by the connector on the Windows
platform so the device writing the log can rotate it if it chooses.

On Windows platform one process that writes into the file can prevent
the other process from reading. “true” allows the connector to read the
file regardless. Connector never locks the file, it is always only a reader.

agents[x].usetriggerfile false Specifies whether to look for a trigger file before processing a log file.

Possible values: true or false

A trigger file is an empty file that has the same name as the log file, but
a different extension.

This file is created by certain systems to indicate that a log file is ready
for processing.

If this property is set to true, the connector will not process a log file until
a trigger file for it has been created in the same folder where the log file
exists.

agents[x].wildcard [blank] Use the wildcard parameter to match file names for daily or index file
rotation. The wildcard parameter can be used only for file folder follower
connectors and has special restrictions for Regex File connectors. For
more information on how to use the wildcard parameter and its syntax,
see "Using wildcard for Daily and Index Log File Rotation (File Folder
Follower Only)".

Syslog Parameters
This section contains information on the following Syslog parameters:

l Syslog Daemon Parameters

l Syslog Pipe Parameters

l Syslog File Parameters

l Syslog NG Daemon Parameters

l Raw Syslog Daemon Parameters

l ArcSight CEF Encrypted Syslog (UDP) Parameters

l TippingPoint SMS Syslog Extended Parameters

Developer's Guide
Appendix G: Advanced Parameters

Micro Focus Connectors (7.13.0) Page 210 of 242

Syslog Daemon Parameters
The following sections describe the Syslog Daemon parameters.

l Event Parsing (Sub-agents) Parameters

l Event Reception Parameters

l Raw Log Parameters

l Event Queue Parameters

l Event Processing Parameters

Event Parsing (Sub-agents) Parameters

The following table describes the Syslog Event Parsing (Sub-agents) parameters.

Parameter Default Description

agents[x].customsubagentlist [The default is
too long to
display.]

Set this property to the restricted subagent list based on device types in
your environment. List parsers’ names separated by | (vertical bar) and no
“ “ (quotes) are allowed.

This parameter is used in conjunction with agents
[x].usecustomsubagentlist. It can help reduce the time the connector
needs to pick up the right parser.

Examples: agents[x].customsubagentlist=ciscopix_
syslog if your Connector is designed to parse cisco pix syslog events. Or
agents[x].customsubagentlist=ciscopix_
syslog|cyberguard_syslog if your Connectors are going to take care of
those 2 kinds of events.

agents[x].forwardmode false If set to true, every message is run through every available syslog parser
and the first parser whose main regex matches the message is assumed
to be the correct parser. This is very inefficient because every message
potentially must be run through 100+ parsers. However, in this mode, the
message is less likely to be picked up by the incorrect parser.

If set to false, the connector will pick the first match parser and save time.
However, this mode may raise the chance that the wrong parser is picked.

agents[x].usecustomsubagentlist false Set to true to use the agents[x].customsubagentlist property. This makes
the connector to consider the customized subagent list.

Developer's Guide
Appendix G: Advanced Parameters

Micro Focus Connectors (7.13.0) Page 211 of 242

Event Reception Parameters

The following table describes the Syslog Event Reception parameters.

Parameter Default Description

agents[x].encoding [blank] By default, there is no entry for agents[x].encoding in agent property file. If
you want to use an alternative value, add this parameter manually.

If this is specified and is valid, the specified encoding (for example, UTF-16)
is used. If not, then the default depends on the protocol: UTF-8 for Raw TCP
or the platform default for UDP. UTF-16 would be an example of a value to
set the property.

agents[x].tcpbindretrytime 5000 Time between TCP bind retries (in milliseconds). Time gap to retry to bind to
a socket address.

agents[x].tcpbuffersize 10240 Raw TCP buffer (in bytes). This is the initial size. It will be expanded if
necessary, up to the value defined by tcpmaxbuffersize parameter.

By default, tcpbuffersize is 10k and tcpmaxbuffersize is 1M. The reason we
set tcpbuffersize small is to save system resources.

Example of how these two parameters work with each other:

When a single tcp event is less than 10k in length (most of the event won't
be longer than this), nothing will be changed.

When a single tcp event is 15k in length, the connector will first try with 10k
tcpbuffersize and if failed, it will check if tcpbuffersize exceeded the limit of
tcpmaxbuffersize. If not, it will double tcpbuffersize to 20k, and find if 20k
buffer is efficient to hold the 15k tcp event. After this event, the system will
continue with the 20k tcpbuffersize and 1M tcpmaxbuffersize.

When the single tcp event is 25k in length and the connector finds the 20k
tcpbuffersize is still not enough to hold the event, it will double tcpbuffersize
again until it can hold the event. After this event, the system will continue to
work with 40k tcpbuffersize.

But when the tcp event is even larger than tcpmaxbuffersize, for example
1.5M (this is rare), the connector keeps doubling its tcpbuffersize until it
reaches tcpmaxbuffersize. And then it will truncate the 1.5M event
immediately.

Notice you can also set tcpmaxbuffersize<tcpmaxbuffersize=
tcpbuffersize> at the beginning. The connector will still use tcpbuffersize to
measure the event length. When the event is longer than tcpbuffersize, it
won't try to expand; instead, it will truncate the event immediately.

Developer's Guide
Appendix G: Advanced Parameters

Micro Focus Connectors (7.13.0) Page 212 of 242

Parameter Default Description

agents[x].tcpcleanupdelay -1 Idle TCP cleanup delay (in milliseconds). How often the idle TCP socket
should be cleaned up. The default value of -1 indicates the idle TCP socket is
never cleaned up.

Note that both tcpcleanupdelay and tcpmaxidletime must be set to values
greater than zero in order for idle TCP sockets to be cleaned up. Also, if
tcppeerclosedchecktimeout is set it takes precedence.

agents[x].tcpendchar [blank] Optional message terminating hex character, can use either 0x00 or NUL.

Not defined by default.

agents[x].tcpmaxsockets 1000 Specifies the maximum number of TCP connections that connector will
accept simultaneously. Parameter value should be any positive integer that
can reasonably utilize system resource and won't crash the system.
Connector will only accept TCP connection when the total connection is
under the number defined by this parameter, as soon as exceeded, the
connection will be rejected and print out fatal message. The default value of
this parameter is 1000, increase this value as required to accommodate
simultaneous connections from a large number of devices.

agents[x].tcpmaxbuffersize 1 MB Maximum raw TCP buffer (in bytes). Any message larger than the given
size will be truncated. The tcpmaxbuffersize is not used to truncate events,
this value is used to limit the expansion of tcpbuffersize, and how to cut
event is determined by tcpbuffersize. See also agents[x].tcpbuffersize.

agents[x].tcpsleeptime 50 If no data because either no sockets or sockets have no data, then sleep this
long (in milliseconds) before checking again.

agents[x].overwriterawevent false With the default value of false, if the parser for this syslog device directly
sets the rawEvent event field, the connector leaves that value as is. And if
the parser does not set that event field, then the full syslog message is put
into that event field. If this property is changed to true, then the full syslog
message is always used, even if that means overwriting a rawEvent value
that was explicitly set by the parser.

Developer's Guide
Appendix G: Advanced Parameters

Micro Focus Connectors (7.13.0) Page 213 of 242

Raw Log Parameters

The following table describes the Syslog Raw Log parameters.

Parameter Default Description

agents[x].rawlogfolder

Note: rawlogfolder and
all related properties
(folder name, interval,
and max size) cannot be
applied to Syslog
Pipe/File Connector.

[blank] This parameter defines the folder used for storing raw logs files.

By default this parameter is omitted from the agent.properties file. If you
want to store raw log files add this parameter and specify the folder where the
raw log files are stored. The connector creates the specified folder if it does not
exist.

The value for this property can be an absolute path for a folder in which to store
the raw log files. For example:

agents[x].rawlogfolder=/opt/arcsight

will cause the raw log files to be stored in the /opt/arcsight folder.

Alternatively the value for this property can be a relative path. This path is
prefixed with$ARCSIGHT_HOME/current/user/agent/ to form the full
path. For example:

agents[x].rawlogfolder=arcsight

will cause the raw log files to be stored in the $ARCSIGHT_
HOME/current/user/agent/arcsight folder.

If value given for rawlogfolder contains any invalid character for path and folder
name (e.g. '<' and '>' on Windows), then the raw log files will be stored in
$ARCSIGHT_HOME/current/user/agent/agentdata.

If you want to use the rawlogfolder feature, then you must set this parameter
and also set at least one ofagents[x].rawloginterval andagents
[x].rawlogmaxsize to positive values.

agents[x].rawloginterval -1 The raw log interval before each rotation (in seconds, or -1 to not rotate based
on time), if rawlogfolder is enabled.

agents[x].rawlogmaxsize -1 Raw event log maximum size in MB, or -1 to not rotate on size, if rawlogfolder is
enabled.

If both rawloginterval and rawlogmaxsize have positive values then both values
are used to control log rotation. Log rotation occurs whenever either of the
values are reached.

Developer's Guide
Appendix G: Advanced Parameters

Micro Focus Connectors (7.13.0) Page 214 of 242

Event Queue Parameters

The following table describes the Syslog Event Queue parameters.

Parameter Default Description

agents[x].filequeuemaxfilecount 100 File queue maximum file count. If the number passes
filequeuemaxfilecount, the connector starts to take action to avoid
filling up the disk. An action can be dropping events or whole files may
be omitted. It is important to choose the filequeuemaxfilecount value
carefully to avoid losing data.

agents[x].filequeuemaxfilesize 10000000 File queue max file size (Bytes). Increase this parameter to increase
the size of each file in the file queue.

agents[x].usefilequeue

Note: usefilequeue and all
related properties cannot be
applied to Syslog Pipe/File
connectors.

true This parameter is to determine whether Connector will keep the raw
events received into a file queue consisting of a certain number of fix-
sized files.

Possible values: true and false

When this parameter is set to true the connector stores raw events
in files as they are received and then processes the events by
reading the files. Using file queues helps avoid event loss when bursts
of events are arrive faster than they can be processed. The values
for filequeuemaxfilecount and filequeuemaxfilesize are used to define
the file queue behavior.

When this parameter is set to false file queues are not used and the
values for filequeuemaxfilecount and filequeuemaxfilesize are
ignored.

Developer's Guide
Appendix G: Advanced Parameters

Micro Focus Connectors (7.13.0) Page 215 of 242

Event Processing Parameters

The following table describes the Syslog Event Processing parameters.

Parameter Default Description

agents[x].aggregationcachesize 1000 Aggregation Cache Size.

For syslog connectors the aggregation cache stores the last
event received from each distinct source. When an event is
received that indicates “last message repeated n times” the
stored event is used as the security event, marked as
“aggregated” and annotated with the repetition count.

Parameter aggregationcachesize specifies the maximum
number of aggregation cache entries. Avoid configurations
where there are more than aggregationcachesize sources.
Aggregation is not done for a source whose event is not stored
in the cache due to the aggregationcachesize being exceeded.

syslog.setdevicehostname
conservatively.syslog

false With the default value of false, the deviceHostName event field
is set based on where the syslog message came from, before
the parser operates. If this property is changed to true, then
the deviceHostName event field is similarly set but after the
parser operates, and only if neither the deviceHostName nor
the deviceAddress event fields were set by the parser.

This is a container level parameter.

Developer's Guide
Appendix G: Advanced Parameters

Micro Focus Connectors (7.13.0) Page 216 of 242

Syslog Pipe Parameters
The following table describes the Syslog Pipe parameters. All of the parameters described under "Syslog
Daemon Parameters" also apply to Syslog Pipe.

Parameter Default Description

agents[x].configrestartsleeptime 5000 Time (in milliseconds) to wait before sending the
configuration restart signal to Syslog when running
on Solaris.

agents[x].sleeptime 5 Time (in seconds) to wait between file polling after
pipe has ended.

agents[x].solarissyslogconfigrestart
command

kill –HUP ‘cat/etc/syslog.pid’ Configuration restart signal to Syslog/Command to
execute after the connector starts reading the pipe
when running on Solaris.

syslog.setdevicehostname
conservatively.syslog_pipe

false With the default value of false, the
deviceHostName event field is set based on where
the syslog message came from, before the parser
operates. If this property is changed to true, then
the deviceHostName event field is similarly set but
after the parser operates, and only if neither the
deviceHostName nor the deviceAddress event
fields were set by the parser.

This is a container level parameter.

Syslog File Parameters
The following table describes the Syslog File parameters. All the parameters described under "Syslog
Daemon Parameters" apply.

Parameter Default Description

agents
[x].internalevent.filestart.enable

true When true, an internal audit event is generated whenever the connector
opens a file for processing.

If you don’t want to receive ArcSight internal events, you can turn this off.

agents[x].internalevent.fileend.enable true When true, an internal audit event is generated whenever the connector
completes processing a file.

Developer's Guide
Appendix G: Advanced Parameters

Micro Focus Connectors (7.13.0) Page 217 of 242

Parameter Default Description

agents[x].internalevent.filecount.
enable

false This feature has the following parameters:

agents[x].internalevent.filecount.duration=nnn

Specifies the number of seconds that the connector has to process a
specified number of files.

agents[x].internalevent.filecount.minfilecount=nnn

Specifies the minimum number of files that the connector should process in a
specified number of seconds.

agents[x].internalevent.filecount.timer.delay=nnn

Specifies, in seconds, how often the connector should check to see if the
connector is compliant with the other parameters.

Ifagents[x].internalevent.filecount.enable=true and
all three affiliate parameters are set appropriately, every
internalevent.filecount.timer.delay second, the connector checks if in the
last internalevent.filecount.duration second, the connector processed
enough events defined by the internalevent.filecount.minfilecount.

If not, the connector will send an internal event to the destination with the
name:

Number offiles processedis less than expectedvalue.

agents[x].startatend true If set to true, the connector receives only new lines inserted into the file.

If set to false, when the connector starts to process a file, it will process the
whole file.

syslog.setdevicehostname
conservatively.syslog_file

false With the default value of false, the deviceHostName event field is set based
on where the syslog message came from, before the parser operates. If this
property is changed to true, then the deviceHostName event field is
similarly set but after the parser operates, and only if neither the
deviceHostName nor the deviceAddress event fields were set by the
parser.

This is a container level parameter.

Developer's Guide
Appendix G: Advanced Parameters

Micro Focus Connectors (7.13.0) Page 218 of 242

Syslog NG Daemon Parameters
The following table describes the Syslog NG Daemon parameters. All the parameters described under
"Syslog Daemon Parameters" apply.

Parameter Default Description

agents[x].syslogng.mutual.auth.
enabled

false (disabled) Determines whether mutual authentication is enabled for
TLS. If false, mutual authentication is disabled, and the
Syslog NG agent is authenticated by the client. If true,
mutual authentication is enabled, and the client is
authenticated by the Syslog NG agent.

agents[x].syslogng.subagents.
with.ietf

generic_
syslog

List of subagents for SyslogNG (when IETF format is
enabled).

syslogng.tls.cert.file user/agent/syslog-
ng.cert

Location for the cert file to be used by Syslog NG clients for
TLS communication with the Syslog NG agent.

This is a container level parameter.

syslogng.header (?s)^(?:\\d{1})?\\s+
(\\S+)\\s+
(\\S+)\\s+(.*)

Pattern to parse the header and extract out SYSLOG-
VERSION, TIMESTAMP, HOST, REST_OF_MESSAGE

This is a container level parameter.

syslogng.header.tag (?s)^(\\S+)\\s+
(\\S+)\\s+
(\\S+)\\s+(-|(?:\\
[\\S+@
[^\\]]+\\])+)\\s+(.*)

Pattern to parse the header and extract
out APPNAME,PROCID, MSGID, STRUCTURED_DATA,
MESSAGE

These are specific parameters for syslog input format. They
can be changed if needed, but it is a rare occurrence.

This is a container level parameter.

syslogng.header.timestamp (?s)^(\\d{4}-\\d{2}-
\\d{2}T\\d{2}:\\d
{2}:\\d{2})(\\.\\d+)?
(Z|(?:-|\\+)\\d
{2}:\\d{2})?

Pattern to parse the time stamp.

Example of a time stamp string that could be parsed by the
default pattern: 1985-04-12T23:20:50.52Z

This is a container level parameter.

Raw Syslog Daemon Parameters
The following table describes the Raw Syslog Daemon parameters. All of the parameters described under
"Syslog Daemon Parameters" and "Syslog NG Daemon Parameters" apply.

Developer's Guide
Appendix G: Advanced Parameters

Micro Focus Connectors (7.13.0) Page 219 of 242

Parameter Default Description

agents[x].simpletimestampformat [Blank] Custom format for Captured Timestamp. This uses Java’s
SimpleDateFormat pattern syntax.

If left blank, the _parseMutableTimeStampSilently operation is used to
parse the time stamp.

ArcSight CEF Encrypted Syslog (UDP) Parameters
The following table describes the ArcSight CEF Encrypted Syslog (UDP) parameters. All of the parameters
described under"Syslog Daemon Parameters" apply.

Parameter Default Description

agents[x].customsubagentlist cef_syslog cef_syslog is the only supported value for this parameter. Do not
change the default for this property.

agents[x].protocol Encrypted UDP Encrypted UDP is the only supported value for this parameter. Do
not change the default for this property.

agents[x].usecustomsubagentlist true Indicates whether this agent uses the custom subagent list (cef_
syslog). Do not change the default for this property.

TippingPoint SMS Syslog Extended Parameters
The following table describes the TippingPoint SMS Syslog Extended parameters. All of the parameters
described under "Syslog Daemon Parameters" apply.

Parameter Default Description

agents[x].eventidfilepath ARCSIGHT_
HOME/user/agent/

Path for event ID file.

agents[x].syslogmode SyslogD Syslog Mode can be SyslogD, Pipe or File.
Only SyslogD is supported. Do not change
this value.

syslog.setdevicehostnameconservatively.
tippingpoint_sms_syslog

false With the default value of false, the
deviceHostName event field is set based on
where the syslog message came from,
before the parser operates. If this property is
changed to true, then the deviceHostName
event field is similarly set but after the parser
operates, and only if neither the
deviceHostName nor the deviceAddress
event fields were set by the parser.

This is a container level parameter.

Developer's Guide
Appendix G: Advanced Parameters

Micro Focus Connectors (7.13.0) Page 220 of 242

Appendix H: FlexConnectors and Categorization
This topic describes categorization in the context of FlexConnectors.

For details on using categorization, see the ArcSight Console User’s Guide, Reference Guide section,
specifically the topic “Event Categorization” for information on custom categorization for FlexConnectors.

Categorization
You can categorize the events collected by your FlexConnector. The following examples illustrate
categorization for HTTP status code-based devices (such as proxy, cache, or web servers) and for Firewall
devices (which use pass/open/allow, drop/deny/reject). Put the categorization file in this location:

ARCSIGHT_HOME/user/agent/acp/categorizer/current/
<device_vendor>/
<device_product>.csv

In this case, <device_vendor> is the value of the event.deviceVendor field (in lower case and with
spaces or other special characters replaced by an underline). The <device_product> is the value the
event.deviceProduct field (likewise in lower case with spaces replaced by underlines). Your
FlexConnector must set these fields before you can use categorization.

HTTP Status Code Categorization Example
event.deviceEventClassId,set.event.categoryObject,
set.event.categoryBehavior,set.event.categoryTechnique,set.event.
categoryDeviceGroup,set.event.categorySignificance,set.event.
categoryOutcome
100,/Host/Application/Service,/Communicate/Query,,/Application,/
Informational,/Success
101,/Host/Application/Service,/Communicate/Query,,/Application,/
Informational/Error,/Attempt
200,/Host/Application/Service,/Communicate/Query,,/Application,/
Normal,/Success
201,/Host/Resource,/Create,,/Application,/Normal,/Success
202,/Host/Application,/Execute,,/Application,/Informational/Error,
/Failure
203,,,,/Application,,
204,/Host/Resource,/Access/Start,,/Application,/Normal,/Success
205,/Host/Resource,/Access/Start,,/Application,/Informational,/

Micro Focus Connectors (7.13.0) Page 221 of 242

Success

206,/Host/Resource,/Access/Start,,/Application,/Informational,/
Success
300,/Host/Resource,/Access/Start,,/Application,/Informational,/
Success
301,/Host/Application/Service,/Communicate/Query,/Redirection/
Application,/Application,/Informational,/Success
302,/Host/Application/Service,/Communicate/Query,/Redirection/
Application,/Application,/Informational,/Success
303,/Host/Application/Service,/Communicate/Query,/Redirection/
Application,/Application,/Informational,/Success
304,/Host/Application/Service,/Communicate/Query,/Redirection/
Application,/Application,/Informational,/Success
305,/Host/Application/Service,/Communicate/Query,/Redirection/
Application,/Application,/Informational/Error,/Attempt
306,/Host/Application/Service,/Execute/Query,,/Application,/
Informational/Alert,/Failure
307,/Host/Application/Service,/Communicate/Query,/Redirection/
Application,/Application,/Informational,/Success
400,/Host/Application/Service,/Access/Start,/Traffic
Anomaly/Application Layer/Syntax
Error,/Application,/Informational/Warning,/Failure
401,/Host/Application/Service,/Authentication/Verify,,/Application
,/Informational/Warning,/Failure
402,/Host/Application/Service,/Communicate/Query,/Traffic
Anomaly/Application Layer/Unsupported
Command,/Application,/Informational/Error,/Failure
403,/Host/Application/Service,/Authentication/Verify,,/Application
,/Informational/Warning,/Failure
404,/Host/Resource,/Access/Start,,/Application,/Informational/
Warning,/Failure
405,/Host/Application/Service,/Communicate/Query,/Traffic
Anomaly/Application Layer/Unsupported
Command,/Application,/Informational/Error,/Failure
406,/Host/Application/Service,/Communicate/Query,,/Application,/
Informational/Error,/Failure
407,/Host/Application/Service,/Authentication,,/Application,/
Informational/Error,/Failure
408,/Host/Application/Service,/Communicate/Query,,/Application,/
Informational/Error,/Failure
409,/Host/Application/Service,/Communicate/Query,,/Application,/

Developer's Guide
Appendix H: FlexConnectors and Categorization

Micro Focus Connectors (7.13.0) Page 222 of 242

Informational/Error,/Failure
410,/Host/Resource,/Access/Start,,/Application,/Informational/
Warning,/Failure
411,/Host/Application/Service,/Access/Start,/Traffic
Anomaly/Application Layer/Syntax
Error,/Application,/Informational/Warning,/Failure
412,/Host/Application/Service,/Access/Start,,/Application,/
Informational/Warning,/Failure
413,/Host/Application/Service,/Communicate/Query,/
Traffic Anomaly/Application Layer/Syntax
Error,/Application,/Informational/Error,/Failure
414,/Host/Application/Service,/Communicate/Query,/
Traffic Anomaly/Application Layer/Syntax
Error,/Application,/Informational/Error,/Failure
415,/Host/Application/Service,/Communicate/Query,/
Traffic Anomaly/Application Layer/Syntax
Error,/Application,/Informational/Error,/Failure
416,/Host/Application/Service,/Communicate/Query,/
Traffic Anomaly/Application Layer/Syntax
Error,/Application,/Informational/Error,/Failure
417,/Host/Application/Service,/Communicate/Query,/
Traffic Anomaly/Application Layer/Syntax
Error,/Application,/Informational/Error,/Failure
500,/Host/Application/Service,/Execute,,/Application,/
Informational/Error,/Failure
501,/Host/Application/Service,/Execute,,/Application,/
Informational/Error,/Failure
502,/Host/Application/Service,/Execute,,/Application,/
Informational/Error,/Failure
503,/Host/Application/Service,/Access/Start,,/Application,/
Informational/Error,/Failure
504,/Host/Application/Service,/Execute,,/Application,/
Informational/Error,/Failure

Developer's Guide
Appendix H: FlexConnectors and Categorization

Micro Focus Connectors (7.13.0) Page 223 of 242

Firewall Example
event.deviceEventClassId,set.event.categoryObject,
set.event.categoryBehavior,set.event.categoryDeviceGroup,
set.event.categorySignificance,set.event.categoryOutcome
OPEN,/Host/Application/Service,/Communicate/Query,/Firewall,/
Normal,/Success
pass,/Host/Application/Service,/Communicate/Query,/Firewall,/
Normal,/Success
DROP,/Host/Application/Service,/Communicate/Query,/Firewall,/
Informational/Warning,/Failure

Developer's Guide
Appendix H: FlexConnectors and Categorization

Micro Focus Connectors (7.13.0) Page 224 of 242

Appendix I: Developing a Syslog FlexConnector
Follow these general steps to create a syslog FlexConnector.

1. Capture the RAW syslog by sending samples to a receiver (that is, the machine where the connector is
installed). Capture the logs by enabling RAW event. Extract the ASCII and modify the logs to represent
syslog format. Analyze the raw syslog.

Note: Do not pull the RAW syslog from the logger, because it does not format the output correctly.

2. Save a small sample of the file and use it as input to the ArcSight Regex Tool
(/$HOME/user/current/bin/arcsight.bat regex). See "Regex Tool for Regex
FlexConnectors".

The Regex Tool will automatically detect the syslog header if it is in the correct format (that is,
timestamp hostname/hostIP). Otherwise, it will not.

3. Choose syslog subagent in the Regex Tool (Options > Treat as Syslog SubAgent). The regex
should be able to start after the automatically detected syslog header that the Regex Tool picks up.

4. Name the file as myCompany_syslog.subagent.sdkfilereader.properties.

5. Complete the coding and mapping. For a list of the syslog tokens that can be used in the parser for
mapping to event fields, see "ArcSight Built-in Tokens". Save the .properties file in the
/current/user/agent/flexagent/syslog folder on the syslog receiver you are using.

6. Verify the value of the agents[0].usecustomsubagentlist property is set to true in the
agent.properties file:

agents[0].usecustomsubagentlist=true.

7. Add an entry in agent.properties file to include your custom subagent name. The
agent.properties file already contains a list of subagents. Ensure that your FlexConnector
subagent name is first in the list, for example:

agents[0].customsubagentlist=MyCompany_syslog

...

8. Test the syslog connector against the new parser.

The connector automatically generates an entry in the syslog.properties file when syslog is running.
This value should be automatically detected by the FlexConnector. Verify that the property is present in the
file, for example:

Micro Focus Connectors (7.13.0) Page 225 of 242

...

syslog.subagentdef=xxx.xxx.x.xx\:myCompany_syslog|flexagent_syslog|generic_
syslog

Developer's Guide
Appendix I: Developing a Syslog FlexConnector

Micro Focus Connectors (7.13.0) Page 226 of 242

Appendix J: Developing an XML FlexConnector
You can create an XML FlexConnector to recursively read events from XML-based files in a folder. Choose
the XML FlexConnector for devices that write event information to XML files, such as vulnerability scanners
that produce XML reports.

The following topics are covered:

l XML FlexConnector Development

l XML Tools

l XML Concepts for FlexConnector Development

l Prepare to Write the Parser - Identify Namespace, Nodes, and Tokens

l Create the XML FlexConnector Parser

l Install the FlexConnector

XML FlexConnector Development
Use XML tools to read the XML log files that you are using as your source for your parser. The sections
below breakdown parser development, categorization, and XML FlexConnector installation.

XML Tools
You can use various XML query tools to edit XML documents, find information in XML documents, or to
extract elements and attributes from XML documents to use in parser creation.

XML query tools include XPath and XQuery, which are available from:

l http://www.w3schools.com/xpath (XPath is a language for finding information in XML documents)

l http://www.w3schools.com/xquery (XQuery is a tool for finding and extracting elements and attributes
from XML documents)

These pages contain additional information on using XQuery:

l http://www.stylusstudio.com/xquery_primer.html

l http://www.stylusstudio.com/xquery_flwor.html

l http://www.xqueryfunctions.com/xq/alpha.html (XQuery function library; useful for building
expressions)

These are some XML editors:

Micro Focus Connectors (7.13.0) Page 227 of 242

http://www.w3schools.com/xpath
http://www.w3schools.com/xquery
http://www.stylusstudio.com/xquery_primer.html
http://www.stylusstudio.com/xquery_flwor.html
http://www.xqueryfunctions.com/xq/alpha.html

l http://www.mindfusion.eu/product1.html (XML Viewer)

l http://www.stylusstudio.com/xml_download.html (Stylus Studio XML)

l http://www.altova.com/download-trial.html (Altova XML Spy)

Tools like these are useful for parser creation. Try these or you might other similar tools on the web that
you like better.

XML Concepts for FlexConnector Development
These are some useful XML concepts that will help you develop your XML FlexConnector.

General XML Concepts
These are some concepts that are common to XML files, but that are good for you to keep in mind when
you are creating your parser:

The following example of an XML file is annotated to highlight the code that corresponds with these key
concepts:

1. Root Node

2. Leaf Nodes

3. Intermediate Nodes

4. Attributes

5. Text

Developer's Guide
Appendix J: Developing an XML FlexConnector

Micro Focus Connectors (7.13.0) Page 228 of 242

http://www.mindfusion.eu/product1.html
http://www.stylusstudio.com/xml_download.html
http://www.altova.com/download-trial.html

XML FlexConnector Concepts
These are some concepts that are specific to XML FlexConnector parsers:

l Namespace

l Hop Nodes

l Trigger Nodes

l Token Mappings

l Extra Events

Namespace

Use if your XML log file uses explicit namespaces or a default namespace in the header. Using namespaces
allows you to differentiate between elements that have the same name in the schema, but actually refer to
different content.

Specify those namespaces using these properties:

l namespace.count—Specifies the number of namespaces that your XML log file uses; for example,
namespace.count=2.

l namespace.prefix—Specifies the namespace prefix to use; for example, namespace
[1].prefix=ac.

l namespace[x].prefix=default—Use when your XML file specifies a namespace but does not use
any prefixes in the file. That is, your XML file uses a default namespace.

l namespace.uri—Specifies the Uniform Resource Identifier (URI) for the namespace; for example,
namespace[0].uri=http://example.org/2003/08/sdee

For example:

namespace.count=2

namespace[0].prefix=default
namespace[0].uri=http://www.mycompany.com/ids/2014/09/example

namespace[1].prefix=ac
namespace[1].uri=http://www.yourcompany.com/fds/acfg

Hop Nodes

Optional. Hop nodes are the nodes in the path from the root node to the event triggering node. These
nodes are necessary when tokens need to be captured from nodes other than the triggering node or when
events pertaining to a particular node need to be grouped in one block. Select nodes other than the trigger
node that contain relevant security event information to be hop nodes.

Developer's Guide
Appendix J: Developing an XML FlexConnector

Micro Focus Connectors (7.13.0) Page 229 of 242

Multiple hop node levels can be defined with each new level of hop nodes defined in reference to the
previously defined level. Hop nodes can also reference root nodes directly as variables.

To define hop nodes, use these properties:

l hop.node.count—Specifies the number of hop nodes; for example, hop.node.count=1

l hop.node.name—Specifies the names for the hop nodes; for example, hop.node[0].name=host

l hop.node.expression—Specifies the XPath/XQuery path expressions to select the nodes; for
example, hop.node[1].expression=/audits/audit/hosts/host

For example:

hop.node.count=1
hop.node[0].name=host
hop.node[0].expression=/audits/audit/hosts/host

Trigger Nodes

Mandatory. These are the nodes that trigger events. An XPath/XQuery path expression for a trigger node
can be the last defined hop node or the root node if no hop nodes are available.

The number of trigger nodes determines the number of events that are generated using your parser. The
parser will generate an event each time the trigger node is discovered in the log file.

To define trigger nodes, use a property like this:

trigger.node.expression=$host/applications/application,$host/
vulnerablities/vulnerability

Token Mappings

Mandatory. In addition to the token properties listed in "Token Declarations" you must specify these
properties for the XML parser:

l token[x].expression—Specifies the XPath/XQuery path expression that is traversed to obtain the
value for the token. This is a mandatory property.

For example, token[0].expression=audits/audit/startDate

l token[x].node—Specifies the context node (root node, hop node, or trigger node) relative to which
the path expression is evaluated. A context node can be a hop node or a root node. If this property is not
specified, it defaults to the trigger node.

For example, token[0].node=host

Extra Events

Optional. If you need your FlexConnector to collect different event types for the same trigger node or from
different trigger nodes, you can use this property to specify other XQuery configuration files in the current

Developer's Guide
Appendix J: Developing an XML FlexConnector

Micro Focus Connectors (7.13.0) Page 230 of 242

configuration file.

To specify extra events, use these properties:

l extraevent.count—Specifies the number of extra events; for example, extraevent.count=2

l extraevent[x].filename—Specifies the file name of the additional configuration file that this
parser should use; for example, extraevent[0].filename=ncircle_xml_file/ncircle_xml_
file.xml3.uri

l extraevent[x].name—Specifies a name to associate with the extra events; for example,
extraevent[0].name=/scanner/device/uri/aggregated

Examples of Token Mappings

A token captured from the root node: token[0].expression=audits/audit/startDate

l A token captured from the hop node 1:

token[2].name=ip
token[2].type=IPAddress
token[2].expression=ip
token[2].node=host

l A token captured from the hop node 2:

token[5].name=protocol
token[5].expression=protocol
token[5].node=vulnref

l A token captured from the trigger node, when token[x].node is specified:

token[8].name=name
token[8].expression=name
token[8].node=

l A token captured from the trigger node, when token[x].node is not specified:

token[13].name=descr
token[13].expression=description

Prepare to Write the Parser - Identify Namespace,
Nodes, and Tokens
Before writing the parser, examine your source XML log files and complete the following tasks:

l Find the Trigger Node - the Most Important Step

l Decide if You Need a Namespace

Developer's Guide
Appendix J: Developing an XML FlexConnector

Micro Focus Connectors (7.13.0) Page 231 of 242

l Identify Hop Nodes

l Identify Tokens (including attributes and nodes as needed)

Find the Trigger Node - the Most Important Step
Look at the XML log file and find which node that all events have in common. When you determine this, you
can use this node as the trigger node. The trigger node will generate events. In the XML example below,
the trigger node identified is EventHeader:

Decide if You Need a Namespace
You will need a namespace if a namespace is declared in the header of your XML source file. If you find an
element or a node with a colon (:) in its name, the first part of that element or node is its namespace, and
must be declared in the parser. See "Namespace " for more information.

In the following example, elements with colons are circled.

Developer's Guide
Appendix J: Developing an XML FlexConnector

Micro Focus Connectors (7.13.0) Page 232 of 242

Identify Hop Nodes
Optionally, identify which node or nodes other than the trigger node contain relevant information for
security events. See "Hop Nodes" for details.

In the following example, the trigger node, Attributes, is indicated by an arrow.

In this example, the trigger node is Attributes, so the hop nodes could be:

hop.node.count=2
hop.node[0].name=header
hop.node[0].expression=//EventHeader
hop.node[1].name=role
hop.node[1].expression=$header//RoleAttributes

You can think of hop nodes as variable declarations for long expression paths. For example, if you have to
jump three nodes down before finding the trigger and the information to be parsed, you can declare this a
named "constant" path in the hop nodes. You can then use this as a variable for the token expression
instead of typing the entire path repeatedly.

Identify Tokens
Identify which information you want to extract from each event. Tokens are attributes or text under any
node. See "Token Declarations" for more information.

In the following example, tokens are identified by arrows.

Developer's Guide
Appendix J: Developing an XML FlexConnector

Micro Focus Connectors (7.13.0) Page 233 of 242

Create the XML FlexConnector Parser
To create the parser, use the information on namespaces, hop nodes (not used in this example), trigger
nodes, and tokens you gathered when you examined the source XML file.

l Parser Development - First Several Lines

l Parser Development Continued - Tokens

l Parser Development Continued - Mappings

l Categorization

l Copy the Parser Into the Folder

Parser Development - First Several Lines
This is an example of the top portion of a parser:

namespace.count=4
namespace[0].prefix=default
namespace[0].uri=urn:arcsight:MF:event
namespace[1].prefix=event
namespace[1].uri=urn:arcsight:MF:event
namespace[2].prefix=addn
namespace[2].uri=urn:arcsight:MF:addn
namespace[3].prefix=eventMain
namespace[3].uri=urn:arcsight:MF:event:main

Developer's Guide
Appendix J: Developing an XML FlexConnector

Micro Focus Connectors (7.13.0) Page 234 of 242

Tokenization Section
trigger.node.expression=//EventHeader
additionaldata.enabled=true
token.count=25

"Parser Development Continued - Tokens" contains examples of tokens, and continues after the line
token.count=25.

Parser Development Continued - Tokens
Use the XML tools listed in "XML Tools" to create expressions for the tokens. All expressions are relative to
the trigger node. Expressions are shown in the example below, which is a continuation of the parser stared
in the previous section:

Parser Development Continued - Mappings
Map tokens to event fields, and add severity mappings. Note that all unmapped tokens are passed as
additional data fields. See the following example:

Developer's Guide
Appendix J: Developing an XML FlexConnector

Micro Focus Connectors (7.13.0) Page 235 of 242

Note that severity mappings are often overlooked, and are key to event normalization. These mappings are
required. See "Severity Mapping" for details on adding severity mappings.

Categorization
Add categorization to your parser. This section is required. This is an are that is often overlooked, and is
important because categorization is used for event normalization. For example:

For more about the possible values, see the "Categories" topic in the Console Help or the ArcSight Console
User’s Guide. Also, see "FlexConnectors and Categorization".

Copy the Parser Into the Folder
After you develop the parser file, you must copy it into this location: ARCSIGHT_
HOME\current\user\agent\flexagent. This is the required location of the custom parsers you
develop for the FlexConnector.

Developer's Guide
Appendix J: Developing an XML FlexConnector

Micro Focus Connectors (7.13.0) Page 236 of 242

Install the FlexConnector
To install a connector to parse event information presented in standard XML schema, select ArcSight
FlexConnector XML File from the list of SmartConnectors to install.

Parameter Description

Folder The absolute path of the directory where log files for the FlexConnector are located. For example:

c:\logs

Configuration File The base name of the configuration file that describes the format of the log file. The suffix
.xqueryparser.properties is appended automatically. For example, if you specify:

log

The filename becomes:

ARCSIGHT_HOME\user\agent\flexagent\log.xqueryparser.properties

Run the connector either as a service or standalone.

Developer's Guide
Appendix J: Developing an XML FlexConnector

Micro Focus Connectors (7.13.0) Page 237 of 242

Appendix K: Frequently Asked Questions
For general troubleshooting information, participate in the ArcSight user community located at
https://community.softwaregrp.com. Many questions are answered there.

Where should I look for FlexConnector error and warning messages?

Examine the agent.log file located in ARCSIGHT_HOME\current\logs. Look for lines containing
[ERROR] and [WARN].

What data types are supported in SQL server database?

These are the supported SQL server data types. For other data types, the CASTing function might be
required.

tinyint
bit
smallint
numeric
bigint
varbinary
float
char
varchar
nvarchar
ntext
timestamp

Why does my connection to SQL Server fail/hang?

Check agent.log for the underlying error as the user interface error does not show the root cause. Oracle
has released Java 6 update 30 (6u30) that behaves differently from JRE 6u29, causing possible database
connection problems for SQL Server database connectors using JDBC connection. These connection
problems can occur with JRE 1.6.0_29 (6u29) and later versions.

Microsoft recommends using JRE 6u30 (and above) instead of JRE 6u29. Apply the "SQL Server 2008 R2
Service Pack 1 Cumulative Update 6" patch to the SQL server if you are experiencing connection failures or
hangs.

How do I define multiple trigger nodes for an XML FlexConnector?

Specify multiple triggers. To do so, specify each trigger node in its own properties file, with one for each
extra event or trigger node.

Is it possible to have SNMP traps with the same OID but different meanings (for example, for
login failed or user created)? In such cases, can I use the SNMP connector?

Micro Focus Connectors (7.13.0) Page 238 of 242

https://community.softwaregrp.com/

Yes. If there are different trap types, define one parser for each trap type and define the field assignments
differently within each parser.

I have successfully developed a FlexConnector with a connector type daemon but now need to
change the connector type from Syslog daemon to Syslog file. How do I implement this change?

Use the same properties files in the same location, but remove the agent.properties file from
user/agent. Re-install it as a Syslog File Connector.

Can host names take values with spaces?

No. Host names that include spaces are invalid.

Is there a way to perform a one-time query to get past events?

Yes, set the startatdate parameter in ARCSIGHT_HOME\current\user\agent\agent.properties
file, as follows:

For a time-based FlexConnector:

agents[x].startatdate=01/01/1970 00:00:00

For an ID-based FlexConnector:

agents[x].startatid=0

My database has date and time in two columns. How can I map this to a timestamp?

The two columns will need to be concatenated and possibly converted to strings using SQL functions so
that they can be mapped to a single ArcSight event field.

What does the error “Unable to detect DB version” mean?

This error indicates that the connector property version.query in the configuration file is invalid,
returns no data, or there is a database connection problem.

Are there best practices for writing regular expressions?

Try to be as specific as possible. For example, to parse a string "abc,def,ghi," do not use:

".*,.*,.*" or

".*?,.*?,.*?" or

"\\S+,\\S+,\\S+"

Instead, use:

"[^,]+,[^,]+,[^,]+"

This is because the first examples will cause the pattern matcher to compute all the possibilities. Of course,
if the string is space-separated, S+ makes sense.

Developer's Guide
Appendix K: Frequently Asked Questions

Micro Focus Connectors (7.13.0) Page 239 of 242

The .* expression is not recommended. Never use more than one of these in a regular expression,
preferably at the end. A question mark (?) is also not recommended. Never use more than one.

How do I parse a timestamp in the RFC 5424 format?

Use “T” in the timestamp, which represents the RFC 5424 syslog time format. For example:

2012-01-17:2012-01-17T10:39:32+08:00

with this format

yyyy-MM-dd'T'HH\:mm\:ssZ

Should I include comments in my connector configuration (parser) file?

Yes, comments can be helpful. Use the # sign at the beginning of each comment line to indicate that it is a
comment. You can also include some sample events in your comments that you used to help you write the
parser.

How do I keep track of the contents of device custom string field?

If you are populating deviceCustomString1, fill in deviceCustomSting1Label=_
stringConstant (describe the contents of deviceCustomString1). If a number of bytes go into
deviceCustomString1, then Number of Bytes must be included in
deviceCustomString1Label.

How can I identify my events?

Add deviceVendor, deviceProduct, deviceVersion to your configuration file.

How do I specify format for a datestamp extracted from a file name?

In agent.properties, add the format after the field your are populating. For example:

agents[0].extractfieldnames=deviceCustomDate1(yyyymmdd)

Can FlexConnectors directly read compressed files (such as .zip)?

Yes.

What can I do if events are not being collected?

If an event or events are not being collected, include do.unparsed.events=true in the configuration
file.

Where can I find errors and messages related to FlexConnector operation?

Examine the agent.log file to look for errors and warnings.

I cannot always find Regex Tool errors. Where do some of the Regex Tool errors appear?

FlexConnector Regex Tool can write errors to the command window where the tool was launched.

Developer's Guide
Appendix K: Frequently Asked Questions

Micro Focus Connectors (7.13.0) Page 240 of 242

How can I enable debug mode logging for a FlexConnector?

Enabling debug mode logging increases the amount of FlexConnector log information. With debug mode
logging enabled, the agent.log files are created quickly, so limit the amount of time the FlexConnector is
in debug mode to 10 to 15 minutes.

To enable debug mode logging:

1. Add the following two lines to ARCSIGHT_HOME\current\user\agent\agent.properties:

l log.global.debug=true

l log.channel.file.property.package.com.arcsight=0

2. After you complete your troubleshooting, remove the two above lines from the agent.properties
file.

Developer's Guide
Appendix K: Frequently Asked Questions

Micro Focus Connectors (7.13.0) Page 241 of 242

Send Documentation Feedback
If you have comments about this document, you can contact the documentation team by email. If an email
client is configured on this computer, click the link above and an email window opens with the following
information in the subject line:

Feedback on Developer's Guide (Connectors 7.13.0)

Just add your feedback to the email and click send.

If no email client is available, copy the information above to a new message in a web mail client, and send
your feedback to arcsight_doc@microfocus.com.

We appreciate your feedback!

Micro Focus Connectors (7.13.0) Page 242 of 242

mailto:arcsight_doc@microfocus.com?subject=Feedback on Connectors Developer's Guide (7.13.0)

	Chapter 1: Overview
	FlexConnector Development
	IPv6-Aware Parsers
	Event Fields
	Operations
	Developer Considerations

	Folder Structure
	Key Files

	FlexConnector Management
	ArcSight Connector Appliance
	ArcSight Management Center

	Chapter 2: Choose a FlexConnector Type
	FlexConnector Types
	Event Data Format Examples
	Log File FlexConnector
	ID-Based Database FlexConnector
	JSON Folder Follower FlexConnector/JSON Multiple Folder Follower FlexConnector
	Multiple Database FlexConnector
	Regex FlexConnectors (Variable-Format File FlexConnectors)
	Scanner FlexConnector
	SNMP FlexConnector
	Syslog FlexConnector
	Time-Based Database FlexConnector
	XML File FlexConnector

	Chapter 3: Install and Configure the FlexConnector
	FlexConnector Installation
	Install Core Software
	Set Global Parameters (Optional)
	Select Connector and Add Parameter Information
	ArcSight FlexConnector File
	ArcSight FlexConnector ID-Based Database
	ArcSight FlexConnector JSON Multiple Folder Follower
	ArcSight FlexConnector Multiple Database
	ArcSight FlexConnector Multiple Folder File
	ArcSight FlexConnector Regex File
	ArcSight FlexConnector Regex Folder File
	ArcSight FlexConnector REST
	ArcSight FlexConnector Scanner Database
	ArcSight FlexConnector Scanner Text Reports
	ArcSight FlexConnector Scanner XML Reports
	ArcSight FlexConnector XML File
	ArcSight FlexConnector Simple Network Management Protocol (SNMP Unified)
	ArcSight FlexConnector Syslog

	Select a Destination
	Complete Installation and Configuration

	Additional Configuration for Database Connectors
	Install SQL Server JDBC Driver
	Install MySQL Driver
	Add a JDBC Driver to the Connector Appliance/ArcSight Management Center
	Configure the JDBC Driver and Windows Authentication
	Oracle 8i Support
	Troubleshooting Duplicate Events
	Example 1: ID-based Database Connectors Only
	Example 2: ID-based and Time-based Connectors
	Example 3: Complex Main Query with a Join

	Chapter 4: Create a Configuration File
	Parser File Locations and Names
	Example Parser File
	Parser File Structure
	Token Declarations
	Token Types
	Event Mapping
	RequestUrl Event Field
	Operations Table
	Severity Mapping
	Examples

	Extra Processors
	Key-Value Parsers

	FlexConnector Creation Wizard for Delimited Log Files
	Regex Tool for Regex FlexConnectors
	Start the FlexConnector

	Chapter 5: Configuration File Examples
	Configuration Properties for a Log File FlexConnector
	Configuration Properties for all Regex FlexConnectors
	Configuration Properties for a Time-based Database FlexConnector
	Version
	Query
	Timestamp
	UniqueID

	Configuration Properties for an ID-based Database FlexConnector
	Version
	MaxID
	Query
	ID
	UniqueID
	Query Limit

	Configuration Properties for an SNMP Connector
	Configuration Properties for an XML FlexConnector
	Namespace
	Hop Nodes
	Trigger Nodes
	Token Mappings
	Examples of Token Mappings

	Extra Events

	Configuration Properties for a JSON Folder Follower FlexConnector/ JSON Multi...
	Trigger Node
	Token Location and Mappings
	JSON Parsers for Complex Event Schemas
	Working with Hierarchical Schemas
	Representing a JSON Array with a Key Element
	Representing a Token Value in URI Format
	Sample JSON Array

	Configuration Properties for Scanner FlexConnectors
	Scanner FlexConnectors for Normal Text or XML Scan Reports
	How Scanner FlexConnectors Parse Scan Reports
	Parser Files for Normal Text Reports
	Getting a List of Hosts
	Ignore or Include Line
	Regular Expression and Token Mappings
	Use IP
	Invalid Vulnerabilities
	Extra Events

	Getting Vulnerabilities for Scanned Hosts
	Token Mappings
	Event Mappings
	Severity Mappings
	Ignore or Include Line

	Getting Open Ports on Scanned Hosts
	Token Mappings
	Event Mappings
	Ignore or Include Line

	Getting OS and Applications (URIs) on Scanned Hosts
	Token Mappings
	Event Mappings
	Ignore or Include Line

	Configuration Files for XML Reports
	Getting a List of Hosts
	Token Mappings
	Use IP
	Invalid Vulnerabilities
	Extra Events

	Getting Vulnerabilities for Scanned Hosts
	Token Mappings
	Event Mappings
	Severity Mappings

	Getting Open Ports on Scanned Hosts
	Token Mappings
	Event Mappings

	Getting OS and Applications (URIs) on Scanned Hosts
	Token Mappings
	Event Mappings

	Scanner FlexConnectors for Database Scan Reports
	Getting the Version of the Database
	Version

	Getting the List of Scan Jobs
	Scan Job
	Use IP
	Invalid Vulnerabilities
	Extra Queries
	Vulnerability Query
	Open Ports Query

	Getting OS and Applications (URIs) on Scanned Hosts
	Getting Scanned Hosts (Host Query)

	Chapter 6: Advanced Features
	Regular Expressions
	Multi-line Parsing

	Sub-Messages
	Default Sub-message
	Extra Mappings
	Conditional Mappings
	Using Conditional Mapping in Sub-messages
	Additional Data Mapping
	Using the Get Additional Data Names Command
	Using the Map Additional Data Name… Command
	Using the Unmap Additional Data Name… Command
	Using the Get Status Command

	Log Rotation Types
	Name Following Log Rotation
	Daily Rotation
	Index Rotation
	Parameters for Daily and Index Rotation
	Using rotationschemeparams for Daily Log File Rotation
	Using rotationschemeparams for Index Log File Rotation
	Using wildcard for Daily and Index Log File Rotation (File Folder Follower Only)
	Using wildcard for Date Rotation
	Using wildcard for Index Rotation

	Log Internal Events for File-Reading FlexConnectors
	Unparsed Events Detection
	Supported Parser Types
	Unparsed Events Detection Criteria
	Comment Expressions
	Parsing Expressions
	Token Expressions
	Mapping Expressions
	Extra-Processor Expressions

	Criteria for Unparsed Events
	Unparsed Events Output File

	Chapter 7: Map Files
	What Are Map Files?
	Map File Examples
	Multiple Getters and Setters
	Using the “No Getter” Trick

	Map File Details
	Controlling Map File Operation
	Basic Map Files
	AgentInfoAdder1 Map Files
	Categorizer Map Files
	Extra Processor Map Files

	Using Ranges in Map Files
	Using Regular Expressions in Map Files
	Using Parser-Like Expressions in Map Files
	More About Parser-Like Expressions Syntax
	Operations Containing Commas
	Backslashes in Expressions Versus in Parsers

	Real World Examples
	Adding Country Names to Events
	Getting Domain Name from Hostname

	Appendix A: ArcSight Operations
	Appendix B: ArcSight Built-in Tokens
	Appendix C: ArcSight Built-in Token Types
	Appendix D: Date and Time Format Symbols
	Appendix E: ArcSight Built-in Event Field Mappings
	Appendix F: Configuring a Connector for ArcSight ESM Domain Field Sets
	Appendix G: Advanced Parameters
	Parameters Common to all SmartConnectors
	CEF Syslog Parameters
	File Connector Parameters
	File Folder Follower Parameters
	Syslog Parameters
	Syslog Daemon Parameters
	Event Parsing (Sub-agents) Parameters
	Event Reception Parameters
	Raw Log Parameters
	Event Queue Parameters
	Event Processing Parameters

	Syslog Pipe Parameters
	Syslog File Parameters
	Syslog NG Daemon Parameters
	Raw Syslog Daemon Parameters
	ArcSight CEF Encrypted Syslog (UDP) Parameters
	TippingPoint SMS Syslog Extended Parameters

	Appendix H: FlexConnectors and Categorization
	Categorization
	HTTP Status Code Categorization Example
	Firewall Example

	Appendix I: Developing a Syslog FlexConnector
	Appendix J: Developing an XML FlexConnector
	XML FlexConnector Development
	XML Tools
	XML Concepts for FlexConnector Development
	General XML Concepts
	XML FlexConnector Concepts
	Namespace
	Hop Nodes
	Trigger Nodes
	Token Mappings
	Extra Events
	Examples of Token Mappings

	Prepare to Write the Parser - Identify Namespace, Nodes, and Tokens
	Find the Trigger Node - the Most Important Step
	Decide if You Need a Namespace
	Identify Hop Nodes
	Identify Tokens

	Create the XML FlexConnector Parser
	Parser Development - First Several Lines
	Parser Development Continued - Tokens
	Parser Development Continued - Mappings
	Categorization
	Copy the Parser Into the Folder

	Install the FlexConnector

	Appendix K: Frequently Asked Questions
	Send Documentation Feedback

