
Web Services API
Guide

ArcSight Logger 5.3 SP1

March 5, 2013

Copyright © 2013 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use or copying. Consistent
with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and
Technical Data for Commercial Items are licensed to the U.S. Government under vendor's standard
commercial license.

The information contained herein is subject to change without notice. The only warranties for HP products
and services are set forth in the express warranty statements accompanying such products and services.
Nothing herein should be construed as constituting an additional warranty. HP shall not be liable for
technical or editorial errors or omissions contained herein.

Follow this link to see a complete statement of copyrights and acknowledgements:
http://www.hpenterprisesecurity.com/copyright

The network information used in the examples in this document (including IP addresses and hostnames) is
for illustration purposes only.

This document is confidential.

Contact Information

Revision History

Phone 1-866-535-3285 (North America)
+44 203-564-1189 (EMEA)
+49 69380789455 (Germany)

Support Web Site http://support.openview.hp.com

Protect 724 Community https://protect724.arcsight.com

Date Product Version Description

03/05/2013 5.3 SP1 5.3 SP1 release. Includes a new search call—
getDataforRowIds

07/27/2012 5.3 5.3 release. Includes updated runReports information.

12/09/2011 5.2 5.2 release. Includes a new reports call—
getSubGroups()

05/31/2011 5.1 First release of the Web Services API.

http://www.hpenterprisesecurity.com/copyright
http://support.openview.hp.com
https://protect724.arcsight.com

Contents

Chapter 1: Logger Web Services ... 5

Accessing the API .. 5

Obtaining the WSDL for Logger Web Services .. 6

Setting a Cookie .. 6

Chapter 2: Login Service ... 7

extendSession .. 7

getVersion .. 7

login .. 7

logout .. 8

Chapter 3: Report Service ... 9

getDeviceGroups ... 9

getDevices ... 9

getDevicesInDeviceGroup ... 9

getReportGroups ... 9

getSubGroups ... 9

getReportsInGroup .. 10

getStorageGroups ... 10

runReport .. 10

Example: Running a Report .. 12

Example: Passing Parameters when Running a Report .. 15

Chapter 4: Search Service ... 19

How the Search API Works ... 19

Returning Specific Fields in Search Results .. 20

endSearch .. 20

getDataforRowIds ... 20

getHeader .. 21

getNextTuples .. 21

hasMoreTuples .. 21

startSearch .. 22

Example: Searching for Events .. 22
Confidential Logger Web Services API Guide 3

Contents
4 Logger Web Services API Guide Confidential

Chapter 1

Logger Web Services

ArcSight Logger provides Web Services for its search and reporting functions. These
services enable you to log in, perform searches, or run reports on Logger from a Web
Service client that you write using Java, Perl, Python, Ruby, and so on. This guide describes
the Web Services included with Logger 5.3 SP1.

Three Web Services are available:

 Login Service—to log in to a Logger and establish a cookie that is used for all search
and report service calls.

 Search Service—to run a search query on Logger.

 Report Service—to run a report on Logger.

To learn more about writing a Web Service client, refer to the documentation of the
language you intend to use to write the client.

Accessing the API
The Logger Web Services API is included with Logger 5.3 SP1.

To access the API:

1 Install Logger 5.3 SP1 on your Logger.

2 Write a Web Services client using a language of your choice, such as Java, Perl, or
Python. Use the following endpoint in the client to access Logger’s Web Services:

https://<LoggerHost or IP address>/soap/services/<ServiceName>/
<ServiceName>.wsdl

where ServiceName is LoginService for logging into your Logger, ReportService for
reports, and SearchService for search.

The examples provided in this guide are for illustration only and may not
work as-is in your environment.
Confidential Logger Web Services API Guide 5

1 Logger Web Services
Obtaining the WSDL for Logger Web Services
Use the following WSDL to access Logger’s Web Services:

 On a Logger appliance:
https://<LoggerHost or IPaddress>/soap/services/<ServiceName>/
<ServiceName>.wsdl

 On a software Logger:
https://<LoggerHost or IPaddress>:<port_number>/soap/services/
<ServiceName>/<ServiceName>.wsdl

where <LoggerHost or IPaddress> is the hostname or IP address of the Logger,
<port_number> is the port that you specify in the URL when connecting to a software
Logger and <ServiceName> is the name of Web Service you want to access.

Use LoginService for logging into your Logger, ReportService for reports, and
SearchService for search.

Setting a Cookie
All API calls require you to input a cookie that identifies a session on Logger on which the
call will run. A cookie is set when you log in to a Logger using the Login Service login call.

For example, you can set cookie in this way:

cookie = LoginService.login(“admin”, “password”, 3600);

For more information about the Login Service, see Chapter 2‚ Login Service‚ on page 7.
6 Logger Web Services API Guide Confidential

Chapter 2

Login Service

The Login Web Service enables you to log in to a Logger and establish a cookie that is used
for all search and report service calls. Additionally, this service enables you to extend or log
out of an existing session, and obtain the version of Web Services currently running on
your Logger.

extendSession
void extendSession(String cookie)

This call extends the session identified by the specified cookie.

cookie identifies a session on the Logger on which this call will run.

getVersion
String getVersion()

This call returns the version of the Web Services.

The Web Services version is different from the Logger version. For example, for Loggers
running 5.3 SP1, the Web Services version is 1.0.0.0.2.

login
String login(String username, String password, int
sessionTimeoutInSeconds)

This call enables you to log in to a Logger and returns a cookie. All API calls require you to
input a cookie that identifies a session on Logger on which the call will run.

For example, you can set cookie in this way:

cookie = LoginService.login(“admin”, “password”, 3600);

username is a user configured on Logger. The user must have the appropriate privileges
configured for the actions he/she is going to take using the API calls. For example, the user
must be configured to “View, run, and schedule reports” for Report folder [Firewall] if
he/she needs to run those reports.

password is the password associated with the username.
Confidential Logger Web Services API Guide 7

2 Login Service
sessionTimeoutInSeconds is the number of seconds of inactivity after which the login
session will end. You can extend an existing session by using the extendSession call.

Example:

login(“admin”, “password”, 3600);

logout
void logout(String cookie)

This call ends a session identified by the cookie and expires that cookie. This cookie is the
one that was established using the login call.

cookie identifies a session on the Logger on which this call will run.
8 Logger Web Services API Guide Confidential

Chapter 3

Report Service

This section describes the API calls you can use to run a report on Logger.

Some report formats return results in binary format. Therefore, report results are base-64
encoded. You need to decode these results to display them in human-readable form.

getDeviceGroups
String[] getDeviceGroups(String cookie)

This call returns an array of the names of device groups configured on the Logger that is
identified by the specified cookie.

getDevices
String[] getDevices(String cookie)

This call returns an array of the names of devices configured on the Logger that is
identified by the specified cookie.

getDevicesInDeviceGroup
String[] getDevicesInDeviceGroup(String cookie, String
deviceGroupName)

This call returns an array of the names of all devices in the specified device group on the
Logger that is identified by the specified cookie.

getReportGroups
Group[] getReportGroups(String cookie)

This call returns an array of report groups, where each group is associated with a name
and a unique report group identifier (groupID), on the Logger that is identified by the
specified cookie.

The report groups are the same as report categories in the Logger UI.

getSubGroups
Group[] getSubGroups(String groupId, String cookie)
Confidential Logger Web Services API Guide 9

3 Report Service
This call returns an array of groups within the group whose identifier you specified
(groupId), on the Logger that is identified by the specified cookie.

The report groups are the same as report categories in the Logger UI.

getReportsInGroup
Report[] getReportsInGroup(String groupID, String cookie)

This call returns an array of reports in the specified group (identified by the groupID) on
the Logger that is identified by the specified cookie. Each report in the returned array is
associated with a report name and a unique report identifier (reportID).

The report groups are the same as report categories in the Logger UI.

getStorageGroups
String[] getStorageGroups(String cookie)

This call returns an array of the storage group names configured on the Logger that is
identified by the specified cookie.

runReport
String runReport(String reportID, long startTime, long endTime, int
scanlimit, int resultRowLimit, String devices, String deviceGroups,
String storageGroups, String reportParameters, String reportformat,
String cookie)

This call runs the report specified by the reportID parameter on the Logger that is
identified by the specified cookie. The report fields are arranged in the CSV format
according to the order defined in the report on Logger and are base-64 encoded. You must
use a decoder to convert this data into human-readable form. To decode a base-64
encoded report, you need the ws-commons-util-1.0.1.jar file.

reportID is a unique identifier for a report. To obtain reportID, use
getReportsInGroup call.

startTime is the epoch time starting at which events for this report are scanned. For
example, if you want to specify startTime as ($NOW - 2h) in Java, enter
System.currentTimeMillis() – 2 * 60 * 60 * 1000.

Use the getReportGroups call to obtain groupID.

If you use the specified example, make sure the time on the client machine is
synchronized with the time on Logger. Otherwise, search results will contain
events that span a different time range than what you wanted.
10 Logger Web Services API Guide Confidential

3 Report Service
endTime is the epoch time up to which events for this reports are scanned. For example, if
you want to specify endTime as ($Now) in Java, enter System.currentTimeMillis().

scanlimit is the number of events to scan. If you specify 0, all events are scanned.

resultRowLimit is the maximum number of rows of report data to return. If you specify
0, all rows are returned.

devices are the names of devices whose events are scanned for this report. If you do not
want to specify device names, enter null. In that case, all devices are scanned. To specify
multiple devices, enter a comma-separated list that is enclosed in double quotes; for
example, “finance-2, internal, dev-server3”. To obtain a list of devices configured on a
Logger, use the getDevices call.

deviceGroups are the names of device groups whose events are scanned for this report.
If you do not want to specify a device group name, enter null. In that case, all device
groups are scanned. To specify multiple device groups, enter a comma-separated list that is
enclosed in double quotes; for example, “finance-servers, sales-servers, dev-servers.

To obtain a list of device groups configured on a Logger, use the getDeviceGroups call.

storageGroups are the names of storage groups whose events are scanned for this
report. If you do not want to specify a storage group name, enter null. In that case, all
storage groups on Logger are scanned. To specify multiple storage groups, enter a comma-
separated list that is enclosed in double quotes; for example, “storage-group1, storage-
group3”.

To obtain a list of storage groups configured on a Logger, use the getStorageGroups
call.

reportParameters are the parameters a report requires to run. If a report does not
require any parameter, enter null. Even if a parameter has default values assigned, those
values are not automatically used when a report is run using this API call. You must specify
those values in the API call to use them. If a report requires parameters and you do not
specify them, the report will not run.

Use double quotes (“ ”) to separate parameters and single quotes (‘ ’) to separate
parameter values.

reportformat is the format in which a report is generated. Only the CSV and PDF
formats are supported currently. Enter “CSV” or “csv” for CSV and “PDF” or “pdf” for PDF.

cookie identifies a session on the Logger on which the report will run. This is a required
parameter.

If you use the specified example, make sure the time on the client machine is
synchronized with the time on Logger. Otherwise, search results will contain
events that span a different time range than what you wanted.

In Java, double quotes must be escaped by using the backslash (\) character.
Confidential Logger Web Services API Guide 11

3 Report Service
Example: Running a Report
The following example, which uses a Java client, runs a report on Logger host,
logger.companyxyz.com, to determine the most common events in the last 2 hours on that
Logger and generates a report in the CSV format. The generated report is decoded with a
base-64 decoder. In this example, a login session is established first. If the session is idle
for 600 seconds (10 minutes), it is ended.

package com.coolcustomer.logger.webservices;

import java.rmi.RemoteException;

import org.apache.axis2.client.Options;
import org.apache.axis2.client.ServiceClient;
import org.apache.ws.commons.util.Base64;

import com.arcsight.wsclient.logger.login.adb.LoginServiceStub;
import
com.arcsight.wsclient.logger.report.adb.ArcSightReportServiceException;
import com.arcsight.wsclient.logger.report.adb.ReportServiceStub;

public class LoggerReportAPIExample {

// LoginService needed to make API calls
private LoginServiceStub _loginService = null;

// ReportService needed to make API calls
private ReportServiceStub _reportService = null;

// IP Address or Hostname (:Port) of the Logger
private String _loggerHost = “192.0.2.5”;

private String _login = “admin”;
private String _password = “password”;
private int _timeout = 600;

// Main Method
// A simple test client to run a report by passing in a Name and
// finding the ReportId and running the report
public static void main(String[] args) throws Exception {

LoggerReportAPIExample example = new LoggerReportAPIExample();
String result = example.runReport(“Most Common Events”);
System.out.println(new String(result));

}

/**
 * This method runs a report, illustrating how to fetch the ID of a
 * report by name
 * @param reportName the name of the report
 * @return result of the report run
 */
public String runReport(String reportName) throws Exception {

When running the following search on a software Logger, make sure you
specify the port number on which Logger is running in the _loggerHost
variable. For example, "user-centos:9000".
12 Logger Web Services API Guide Confidential

3 Report Service
init(_loggerHost);

// Make a Web Service Call to Login and retrieve an
//authentication token
String cookie = _loginService.login(_login, _password,
_timeout);

// Fetch the Id for the report from its name, by using a method
// that recursively loops over all categories and returns the
// report id
String id = getReportId(reportName, cookie);

if (id != null) {
String result = runReport(id,

(System.currentTimeMillis() - 2 * 60 * 60 * 1000),
System.currentTimeMillis(), 0, 100, null, null,
null, null, “CSV”, cookie);

byte[] reportBytes = Base64.decode(result);
return new String(reportBytes);

}

return null;
}

/**
 * Run a report by passing all the parameters needed by the API
 * @return result of the report run
 * @throws Exception
 */
public String runReport(String reportId, long startTime, long endTime,

int scanLimit, int resultRowLimit, String devicesCSV,
String deviceGroupsCSV, String storageGroupsCSV,
String reportParameters, String reportformat, String
cookie)
throws Exception {

String result = null;

// Make a Web Service Call to Run the Report
result = _reportService.runReport(reportId, startTime, endTime,

scanLimit, resultRowLimit, devicesCSV, deviceGroupsCSV,
storageGroupsCSV, reportParameters, reportformat,
cookie);

return result;
}

/**
 * One way to find a ReportID, is from the Logger Web UI
 * (ReportCategories menu item) Here's a simple programmatic example of
 * how to recurse over the categories to find the report ID
 * @param reportName the name of the report to search for
 * @param cookie the authentication token
 * @return reportID the ID of the report
 * @throws ArcSightReportServiceException
 * @throws RemoteException
 */
private String getReportId(String reportName, String cookie)

throws ArcSightReportServiceException, RemoteException {
Confidential Logger Web Services API Guide 13

3 Report Service
// get the top level report groups
ReportServiceStub.Group[] groups = _reportService

.getReportGroups(cookie);

for (int i = 0; i < groups.length; i++) {
ReportServiceStub.Group group = groups[i];

String groupID = group.getId();
String groupName = group.getName();

// Recursively search for the report in all of its subgroups
String reportId = depthFirstSearchForReport(groupID,

reportName,cookie);
if (reportId != null) {

return reportId;
}

}
return null;

}

/**
 * Simple depth first example illustrating the use of the
 * _reportService.getSubGroups method of the API
 * @param groupID the group whose subgroups are needed
 * @param reportName the report that we're looking for recursively
 * @param cookie the authentication token
 * @return reportId, if found
 */
private String depthFirstSearchForReport(String groupID, String

reportName,
String cookie) throws ArcSightReportServiceException,
RemoteException {

// get the reports
ReportServiceStub.Report[] reports =

_reportService.getReportsInGroup(
groupID, cookie);

if (reports != null) {
for (int j = 0; j < reports.length; j++) {

ReportServiceStub.Report report = reports[j];
String reportID = report.getId();
if (reportName.equals(report.getName())) {

return reportID;
}

}
}

// if not found here, start recursing over the subgroups
ReportServiceStub.Group[] subgroups =

_reportService.getSubGroups(
groupID, cookie);

if (subgroups != null && subgroups.length > 0) {
for (int i = 0; i < subgroups.length; i++) {

String subGroupID = subgroups[i].getId();
String reportId =

depthFirstSearchForReport(subGroupID,
reportName, cookie);

if (reportId != null) {
14 Logger Web Services API Guide Confidential

3 Report Service
return reportId;
}

}
}

return null;
}

private void init(String loggerHost) {
// Use this class, to make the JRE trust the certificates
XTrustProvider.install();
if (_reportService != null && _loginService != null) {

return;
}

// Setup the LoginService & ReportService stubs to make API
// calls to your Logger
try {

_reportService = new ReportServiceStub(“https://” +
loggerHost

+
“/soap/services/ReportService/ReportService.wsdl”);

_loginService = new LoginServiceStub(“https://” +
loggerHost

+
“/soap/services/LoginService/LoginService.wsdl”);

// 30 minutes
long timeOutInMilliSeconds = 30 * 60 * 1000;

// Axis related settings
Options axisOptions = new Options();

axisOptions.setTimeOutInMilliSeconds(timeOutInMilliSeconds);
ServiceClient serviceClient =

_reportService._getServiceClient();
serviceClient.setOverrideOptions(axisOptions);

} catch (Exception e) {
e.printStackTrace();

}
}

}

Example: Passing Parameters when Running a Report
Before you can run a report through the API, the report must be set up. For this example,
we will set up a report that allows users to select from a list of products and a list of
vendors.

To create the example report:

1 In the in the Parameter Object Editor, create two multi-select lists with predefined
values.

 Multi-Select List 1: commonProducts, with the values Logger and ESM

 Multi-Select List 2: commonVendors, with the values Arcsight, Cisco, and
Juniper
Confidential Logger Web Services API Guide 15

3 Report Service
2 Create the following query in the Query Object Editor:

SELECT arc_name, arc_deviceProduct, arc_deviceVendor
FROM events
Where lower(arc_deviceProduct) IN (<%commonProducts%>)
OR lower(arc_deviceVendor) IN (<%commomVendors%>)
GROUP BY arc_name, arc_deviceProduct, arc_deviceVendor
LIMIT 5

3 In the Adhoc Report Designer, create a report called
Product_Vendor_Option_Report.

4 Add the query that you created in Step 2 to the report.

5 Add the Common Products and Common Vendors multi-select lists you created in
Step 1 to this report.

When running the report, users are promoted to enter the parameters based on the query.
Logger builds the query based on the user’s specification.

For example, if the users selects Logger for commonProducts and Arcsight and Cisco for
commonVendors, Logger will fill in the fields like this when running the query:

SELECT arc_name, arc_deviceProduct, arc_deviceVendor
FROM events
Where lower(arc_deviceProduct) IN (“logger”)
OR lower(arc_deviceVendor) IN (“arcsight”, “cisco”)
GROUP BY arc_name, arc_deviceProduct, arc_deviceVendor
LIMIT 5

In order to run the report through the API, you must pass the parameters that a user
would have selected.

To run the example report from the API:

1 Find the Report ID - either using the API or from the UI.

Open Reports > Report Categories > Deploy Reports and Categories and note
the report ID of the report you want to use.

For example, suppose the Product_Vendor_Option_Report that we created has the
Report Id 1C568A25-8458-50E1-2C7E-7605291C5EB4.

2 Run the report from the API as follows:

String result = reportService.runReport(
“1C568A25-8458-50E1-2C7E-7605291C5EB4”, // Report ID
System.currentTimeMillis() - 60 * 60 * 1000, // Start Time
System.currentTimeMillis(), // End Time
10000, 100, null, // Scan Limit, Row Limit, Devices
null, null, // Device Groups, Storage Groups
“\“commonVendors='arcsight', 'cisco'\”,
\“commonProducts='logger'\””, //Comma Separated parameters
“csv”, // Output Format
cookie); // Cookie

byte[] data = Base64.decode(result);
String reportResult = new String(data);

Be sure to use quotes to identify comma separated parameter strings. In this example, the
string that needs to be sent is:
“commonVendors='arcsight', 'cisco'”, “commonProducts='logger'”
16 Logger Web Services API Guide Confidential

3 Report Service
In Java, the quotes must be escaped by using the backslash (\) character, like this:
String str = “\“commonVendors='arcsight', 'cisco'\”,

\“commonProducts='logger'\””;
Confidential Logger Web Services API Guide 17

3 Report Service
18 Logger Web Services API Guide Confidential

Chapter 4

Search Service

This section describes the API calls you can use to perform a search on Logger. You can
run any query that conforms to the syntax Logger expects.

Use the following guidelines when using the Search API:

 The Search API can only return search results that do not contain binary data. If the
search results contain binary data, the following exception is generated:

“Unexpected EOF; was expecting a close tag for element
<ns1:data>”

 Searching across peers is not supported.

How the Search API Works
The Search API uses an iterator pattern to search and retrieve events. To search for events,
you start a search session first using the startSearch API call. This call also specifies the
query to run. Next, you check if any matches were found using the hasMoreTuples API
call. If matches are found, you use the getNextTuples call to retrieve those events.
Once all events have been retrieved or if you have retrieved the events you were searching
for, you terminate the search session using the endSearch call.

The following example illustrates how a search is performed on Logger.

String cookie = loginService.login(“admin”, “password”, 600);
searchService.startSearch(“CEF”, System.currentTimeMillis() - 2 * 60 * 60 *
1000, System.currentTimeMillis(), cookie);

String[] arr = searchService.getHeader(cookie);
for (String str : arr) {
 System.out.println(str);
 }
while (searchService.hasMoreTuples(cookie)) {

Tuple [] tuples = searchService.getNextTuples(10, 600, cookie);
if (tuples != null) {

for (Tuple tuple : tuples) {
System.out.println (tuple.getData());

 }
}

 }
searchService.endSearch(cookie);
loginService.logout(cookie);
Confidential Logger Web Services API Guide 19

4 Search Service
Returning Specific Fields in Search Results
By default, the Search API returns all fields of matching rows. However, if you need to
obtain specific fields and not all, define the fields you need using the cef command. Doing
so creates the new columns and adds them to the tuple’s data array. You can refer to the
array, arr[n] where n is the index location, to obtain specific fields.

The following search query creates two new columns, name and deviceVendor.

ICMP* | cef name, deviceVendor

The header format of the search results for this query will be:

_rowId _EventTime _raw _PeerName name deviceVendor

where

_rowId is the ID of the row
_EventTime is the epoch time
_raw contains the raw event data
_PeerName is always Local because searching across peers is not supported
name is the cef-defined field in the above query
deviceVendor is the cef-defined field in the above query

In this case, the first element, _rowId, is added to tuple’s data array at arr[0]. Thus, the
new columns, name and deviceVendor, are added at arr[4] and arr[5]. You can refer to
these array locations to access these fields.

endSearch
void endSearch(String cookie)

This call terminates the currently running search session on the Logger identified by the
cookie.

cookie identifies a session on the Logger on which this call will run.

getDataforRowIds
String[] getDataforRowIds(String [] rowIds, String cookie)

This call looks up the row IDs passed in as an argument and returns a String array of
matching raw event data corresponding to the row IDs, in the order they were passed. If a
row ID is not found, then the corresponding result contains “null”.

rowIds is a String array of row IDs

You can obtain the Row IDs through search queries. For example, in the search query
explained in “Returning Specific Fields in Search Results” on page 20, the header
format of the search results for the query ICMP* | cef name, deviceVendor
was:

_rowId _EventTime _raw _PeerName name deviceVendor
20 Logger Web Services API Guide Confidential

4 Search Service
The _rowIds, returned by that search query are the ones to use in
getDataforRowIds, should you need access to the corresponding _raw event data.

cookie identifies a session on the Logger on which this call will run.

Example use:

String [] result = searchService.getDataforRowIds(new String[]
{"100177-0", "invalid"}, cookie);

getHeader
String getHeader(String cookie)

This call gets the header information that specifies the order in which the fields are
returned in the matching events.

getNextTuples
Tuple[] getNextTuples(int count, long timeOut, String cookie)

This call retrieves an array of tuples. Depending on the search query, a tuple might contain
rows of matching events or aggregated data. If no data is available at the time the call is
made, the return value is “null”.

count is the number of tuples (rows of matching events or aggregated data) to retrieve in
one iteration of this call.

timeOut is the time in milliseconds the call waits to receive tuples from Logger. If a tuple
is not received within this time, the call terminates.

cookie identifies a session on the Logger on which this call will run.

hasMoreTuples
boolean hasMoreTuples(String cookie)

This call returns true if the search operation (startSearch) is searching for or has
found matching events that can be retrieved. Once search finishes on the Logger and no
more events remain to be retrieved, this call returns false.

cookie identifies a session on the Logger on which this call will run.

Some searches, such as ICMP* | cef name | top 5 name, do not return
the _rowId. Instead they return created columns like name _count.
Results from these searches cannot be passed to this call.

• If a search operation is in progress but has not found any matching
events yet, the getNextTuples might not return any data even though
hasMoreTuples call returned a true value.

• The getHeader call specifies the order of fields returned in a matching
event.
Confidential Logger Web Services API Guide 21

4 Search Service
startSearch
void startSearch(String queryString, long startTime, long endTime,
String cookie)

This call starts a new search session on Logger identified by the cookie.

queryString is any search query that conforms to the syntax Logger expects. For
example, Error.

startTime is the epoch time starting at which events for this search operation are
scanned. For example, if you want to specify startTime as ($NOW - 2h) in Java, enter
System.currentTimeMillis() – 2 * 60 * 60 * 1000.

endTime is the epoch time up to which events for this search operation are scanned. For
example, if you want to specify endTime as ($Now) in Java, enter
System.currentTimeMillis().

cookie identifies a session on the Logger on which the query will run.

Example: Searching for Events
The following example, which uses a Java client, runs a search on a Logger appliance,
192.0.2.5, to search for CEF events received on Logger in the last 5 hours and extracts the
name field from the matching events. In this example, a login session is established first.
(If the session is idle for 600 seconds (10 minutes), it is ended.) Then, a search session is
started. If matching events are found, they are retrieved, 50 rows at a time using the
getNextTuples call. If no rows are returned within 10 minutes of the last retrieval call
(getNextTuples), the search session terminates. Or, once all rows have been retrieved, the
search session is ended.

package com.coolcustomer.logger.webservices;

import org.apache.axis2.client.Options;
import org.apache.axis2.client.ServiceClient;

import com.arcsight.wsclient.logger.login.adb.LoginServiceStub;
import com.arcsight.wsclient.logger.search.adb.SearchServiceStub;
import com.arcsight.wsclient.logger.search.adb.SearchServiceStub.Tuple;

public class LoggerSearchAPIExample {

If you use the specified example, make sure the time on the client machine is
synchronized with the time on Logger. Otherwise, search results will contain
events that span a different time range than what you wanted.

If you use the specified example, make sure the time on the client machine is
synchronized with the time on Logger. Otherwise, search results will contain
events that span a different time range than what you wanted.

If the following search was run on a software Logger, make sure you specify
the port number on which software Logger is running for the _loggerHost
variable. For example, "192.168.36.5:9000".
22 Logger Web Services API Guide Confidential

4 Search Service
 private SearchServiceStub _searchService = null;
 private LoginServiceStub _loginService = null;
 private String _loggerHost = “192.0.2.5”;
 private String user = “admin”;
 private String password = “password”;
 private int timeout = 600;

 public String runSearch (String query) {
init(_loggerHost);

String cookie = null;

try {
 String version = _loginService.getVersion();
 System.out.println(version);
 cookie = _loginService.login(user, password, timeout);
 _searchService.startSearch(query,

 System.currentTimeMillis() - (5 * 60 * 60 * 1000),
 System.currentTimeMillis(), cookie);

 // See what's the format of the Tuples
 String [] header = _searchService.getHeader(cookie);
 for (String str : header) {

System.out.println(str);
 }

 int rowNum = 0;
 while (_searchService.hasMoreTuples(cookie)) {

Tuple [] tuples =
 _searchService.getNextTuples(50, 600, cookie);
if (tuples != null) {

for (Tuple tuple : tuples) {
 String [] arr = tuple.getData();
 System.out.println(“ *** Row: ” + ++rowNum + “ *** ”);
 for (int i=0; i<header.length; i++) {

System.out.println(arr[i]);
 }
 System.out.println(“\n\n”);

}
}

 }
} catch (Exception e) {
 e.printStackTrace();
} finally {
 // clean up
 if (cookie != null) {

try {
 _searchService.endSearch(cookie);
 _loginService.logout(cookie);
} catch (Exception e) {
 e.printStackTrace();
}

 }
}
return null;

 }

 private void init(String loggerHost) {
Confidential Logger Web Services API Guide 23

4 Search Service
XTrustProvider.install();

try {
 _loginService =

new LoginServiceStub(“https://” + loggerHost +
“/soap/services/LoginService/LoginService.wsdl”);

 _searchService =
new SearchServiceStub(“https://” + loggerHost +
 “/soap/services/SearchService/SearchService.wsdl”);

 // read time out from some property file

 // 30 minutes
 long timeOutInMilliSeconds = 30 * 60 * 1000;
 Options axisOptions = new Options();
 axisOptions.setTimeOutInMilliSeconds(timeOutInMilliSeconds);
 ServiceClient serviceClient = _loginService._getServiceClient();
 serviceClient.setOverrideOptions(axisOptions);
 ServiceClient _searchServiceClient =

_searchService._getServiceClient();
 _searchServiceClient.setOverrideOptions(axisOptions);

} catch (Exception e) {
 e.printStackTrace();
}

 }

 public static void main(String[] args) throws Exception {
LoggerSearchAPIExample example = new LoggerSearchAPIExample();
example.runSearch(“CEF | cef name”);

 }
}

24 Logger Web Services API Guide Confidential

	Web Services API Guide
	Logger Web Services
	Accessing the API
	Obtaining the WSDL for Logger Web Services
	Setting a Cookie

	Login Service
	extendSession
	getVersion
	login
	logout

	Report Service
	getDeviceGroups
	getDevices
	getDevicesInDeviceGroup
	getReportGroups
	getSubGroups
	getReportsInGroup
	getStorageGroups
	runReport
	Example: Running a Report
	Example: Passing Parameters when Running a Report

	Search Service
	How the Search API Works
	Returning Specific Fields in Search Results
	endSearch
	getDataforRowIds
	getHeader
	getNextTuples
	hasMoreTuples
	startSearch
	Example: Searching for Events

