

QALoad 5.02

On l ine Help

 ii

Customer Support Hot l ine:
1-800-538-7822

FrontLine Support Web Si te:
 h t tp:/ / front l ine.compuware.com

This document and the product referenced in i t are subject to the fol lowing legends:

Access is l im ited to authorized users. Use of th is product is subject to the terms and condit ions of the user’s
License Agreement with Compuware Corporat ion.

© 1998-2004 Compuware Corporat ion. Al l rights reserved. Unpublished - rights reserved under the
Copyright Laws of the United States.

U.S. GOVERNMENT RIGHTS

Use, dupl icat ion, or disclosure by the U.S. Government is subject to restrict ions as set forth in Compuware
Corporat ion l icense agreement and as provided in DFARS 227.7202-1(a) and 227.7202-3(a) (1995), DFARS
252.227-7013(c)(1)(i i)(OCT 1988), FAR 12.212(a) (1995), FAR 52.227-19, or FAR 52.227-14 (ALT III), as
appl icable. Compuware Corporat ion.

This product contains confident ial in formation and trade secrets of Compuware Corporat ion. Use,
disclosure, or reproduct ion is prohibited without the prior express writ ten permission of Compuware
Corporat ion.

Compuware, Act iveAnalysis, Act iveData, In terval, QACenter, QADirector, QALoad, QARun, Reconci le,
TestPartner, TrackRecord, and WebCheck are trademarks or registered trademarks of Compuware
Corporat ion.

Acrobat® Reader copyright © 1987-2002 Adobe Systems Incorporated. Al l rights reserved. Adobe, Acrobat ,
and Acrobat Reader are trademarks of Adobe Systems Incorporated.

Al l other company or product names are trademarks of their respect ive owners.

US Patent Nos.: Not Appl icable.

Doc. CWQLHX520
Apri l 11, 2005

 iii

Table Of Con ten ts
QALoad onl ine help.. 1

Gett ing started with QALoad.. 2

Welcome to QALoad .. 2

The load test ing process ... 2

Developing scripts .. 3

Sett ing up the Conductor ... 3

Validat ing scripts.. 4

Running a load test ... 4

Analyzing test results.. 6

Script Development Workbench .. 10

Overview of the Script Development Workbench ... 10

About the Script Development Workbench ... 11

Sessions... 12

Developing a test script .. 15

Using EasyScript ... 66

NetLoad .. 182

UNIX ... 186

Test ing with QARun ... 187

Troubleshoot ing ... 188

Conductor ... 191

Overview of the QALoad Conductor .. 191

About the Conductor ... 191

Sett ing up a test .. 202

Running a test ... 213

Running a series of tests (batch)... 216

Monitoring a running test .. 216

Recording and replaying a test ... 219

Analyzing load test data ... 220

In tegrat ion and server monitoring... 221

Troubleshoot ing ... 231

Player .. 239

Overview of the QALoad Player ... 239

About the Player ... 239

Dialog box and field descript ions... 240

How to... ... 242

 iv

Analyze.. 245

Overview of QALoad Analyze... 245

About Analyze .. 245

Accessing test data.. 249

Displaying detai l data... 251

Creat ing a chart or graph ... 255

Customizing a chart or graph ... 257

Viewing reports... 258

Publish ing or sharing test results ... 267

Language Reference .. 271

Contents of QALoad Language Reference.. 271

ADO .. 271

Citrix ... 401

DB2 ... 423

ODBC.. 435

ODBC/DB2.. 438

Oracle 7... 471

Oracle 7/8 ... 491

Oracle 8... 495

Oracle Forms Server .. 525

QALoad ... 619

QARun integrat ion ... 645

SAP 4.x .. 646

SAP 6.x .. 657

SSL... 671

Tuxedo .. 676

Uniface.. 698

Uniface Polyserver (Versions 7.2.04 - 7.2.06)... 722

Winsock .. 762

WWW ... 791

Compuware customer support ... 864

Contact in formation... 864

World Wide Web Information ... 864

QALoad glossary ... 865

Non-alphabet ic ... 865

A.. 865

B.. 865

 v

C.. 865

D ... 865

E.. 865

F .. 865

G ... 866

H ... 866

I ... 866

J... 866

K.. 866

L .. 866

M ... 866

N ... 866

O ... 866

P.. 866

Q ... 866

R.. 866

S.. 867

T .. 867

U ... 867

V.. 867

W .. 867

X.. 867

Y.. 867

Z .. 867

Accessibi l i ty features... 870

Accessibi l i ty of QALoad components... 870

Accessibi l i ty of QALoad documentat ion .. 870

Assist ive technology tools that enhance the accessibi l i ty of QALoad ... 871

Product shortcut keys... 871

Compuware customer support ... 874

Contact in formation... 874

World Wide Web Information ... 874

Index ... 875

QALoad 5.02

1

QALoad on l i n e help

QALoad 5.02

2

Get t ing st ar t ed w i t h QALoad

Welcome to QALoad
With QALoad, you can simulate the load generated by thousands of users without the expense of actual
end users or their equipment. QALoad enables you to quickly develop test scripts, control the condit ions
for the test, create the virtual users that simulate the load, in i t iate and monitor the test, and report the
results.

The fol lowing components of QALoad control di fferent aspects of the load test ing process:

Script Development Workbench
Develop your scripts. Capture sessions and convert the transact ions in to C, C++, or Java-based script .

Conductor
Control session act ivi ty. In i t iate and monitor the test.

Player
Simulate user act ivi ty based on commands given from the Conductor.

Analyze
View summary report data and create other stat ist ical reports from the test.

Before you begin using QALoad, review the Gett ing started sect ion of the onl ine help to famil iarize yourself
with load test ing concepts.

The load test ing process
You begin the test ing process by determin ing the types of appl icat ion transact ions you want to emulate.
You then develop these transact ions in to QALoad scripts by creat ing the same types of requests that your
appl icat ions invoke on the server. Each transact ion becomes i ts own script . The QALoad Script
Development Workbench lets you easi ly create ful l-funct ion scripts.

When you plan your test, you need to decide which transact ions to run, the number of simulated cl ients
that wi l l run each transact ion script , and the frequency at which each script wi l l run. When you run the
test on a workstat ion with the QALoad Player component, you can specify transact ion rates as well as fixed
and random delays to better emulate real-system act ivi ty. QALoad considers these factors a test scenario
and stores them in a session ID fi le.

While a test is running, the test operator can dynamical ly view overal l run t imes as well as individual
t ransact ion performance. QALoad's Conductor component col lects th is data for analysis at the conclusion
of the test.

After execut ing the test, summary reports show the response t imes that the emulated cl ients experienced
during the test. Individual and global checkpoints let you view and ident i fy specific areas of system
performance. You can export al l test output data to spreadsheet and stat ist ical packages for further analysis
or use QALoad's Analyze component to create presentat ion-qual i ty reports and graphs.

As shown in the fol lowing image, a typical load test setup consists of a QALoad Conductor, one or more
QALoad Players, and the system under test.

QALoad Conductor

QALoad's Conductor controls al l test ing act ivi ty such as sett ing up the session descript ion fi les, in i t iat ing
and monitoring the test, and report ing and analyzing test results.

QALoad 5.02

3

QALoad Player

A QALoad Player creates virtual users that simulate mult iple cl ients sending middleware cal ls to a server
under test. In a typical test setup, one or more QALoad Player workstat ions run under any Windows 32-bit
platform (Windows XP or 2000) or UNIX. For large tests (thousands of simulated cl ients), you can connect
mult iple Players to QALoad's Conductor. The Conductor and Players communicate using TCP/IP.

The hardware and software capabi l i t ies of the Player machine are the only factors that l im it the capacity of
an individual QALoad Player. The maximum number of virtual users per Player machine is dependent on
the system under test, the characterist ics of the script , and the test scenario. You can specify how many
threaded- and process-based virtual users to assign on a machine on the M ach ines tab of the Opt ions
dialog box in the Conductor. The Conductor calculates how many virtual users wi l l be act ive per 64 MB of
RAM, based on the values you provide in these fields.

System under test

The servers you test are typical ly product ion systems or a dupl icate of a product ion system that is set up at
a test faci l i ty. If you perform any kind of system select ion or performance stress test, the system under test
must use the same hardware and software (including current versions) as the product ion environment.
Compuware has found that even subt le changes have profound effects on performance.

Developing scripts
The QALoad Script Development Workbench is used to develop test scripts. You use the QALoad Script
Development Workbench to develop scripts. It contains faci l i t ies for capturing sessions, convert ing
captured sessions in to scripts, and modifying and compil ing scripts. Once you compile your script , you can
use QALoad's Conductor and Player components to test your system.

Record Faci l i t y: QALoad's Record faci l i ty, which you can access through the QALoad Script Development
Workbench, records the transact ions that your term inal, browser, or cl ient makes. It stores these
transact ions in a capture f i le.

Convert Faci l i t y: QALoad's Convert faci l i ty, which you can access through the QALoad Script
Development Workbench, converts capture fi les in to scripts. It generates a one-to-one correspondence of
t ransact ions from the original session to your QALoad script .

Visual Navigator: Visual Navigator for WWW is QALoad's easy-to-use visual in terface to QALoad's
powerful script development tools. Visual Navigator for WWW renders your recorded C-based transact ion
in a tri -paned, browser-l ike environment similar to popular visual ly-oriented development tools, with icons
represent ing al l the elements of your script .

Using QARun scripts for load test ing

QALoad provides you with the funct ional i ty to perform load tests using your QARun scripts. By insert ing
your QARun script in to a QALoad script template, you can t ime your GUI-driven business transact ions and
include those t im ings in QALoad post-test reports.

Set t ing up the Conductor
To prepare for running a load test, you must set up the Conductor:

1. Start the Conductor.

2. Configure the Conductor. After starting the Conductor, you may need to verify that the Conductor’s configuration
parameters are set properly.

3. Set up a session ID file. For every test you run, you must create a session ID file containing information the
Conductor needs to run the test, such as which scripts to run, which Player machines to use, and whether to collect

QALoad 5.02

4

server or performance monitoring data. You use the Conductor to create and save session ID files in the
\QAload\Session directory.

Server and performance monitoring

QALoad integrates several mechanisms for merging load test response t ime data with server ut i l izat ion data
and performance metrics. Most methods produce data that is included in your load test t im ing results and
processed in QALoad Analyze. The only except ion is Appl icat ionVantage. Data captured from
Applicat ionVantage can be opened in Appl icat ionVantage or Appl icat ion Expert , but not in QALoad.

If you plan to col lect server and performance moni toring data, you must set the appropriate opt ions in the
Conductor before running the load test. The fol lowing methods of server and performance monitoring are
avai lable:

! Remote Monitoring — allows you to monitor server utilization statistics from a remote machine without installing any
software on the remote machine.

! Server Analysis Agents — must be installed on each applicable machine.

! ServerVantage — integrates with your existing ServerVantage installation. You must be licensed for and have
installed and configured the appropriate product in order to integrate with QALoad .

! Application Expert/ApplicationVantage — collects test data that you can open in both Application Expert and
Application Vantage.

Validat ing scripts
Before you conduct an actual load test, you should individual ly val idate the script(s) you plan to use in the
load test by running i t in a simple test. If the script runs to the end without any errors and runs mult iple
t imes without errors, i t is val id to use in a load test.

If the script aborts on an error, debug the script and run i t through a simple test again. You can val idate
scripts from the QALoad Script Development Workbench, the QALoad Player, or the QALoad Conductor.

Running a load test

Running a load test

After val idat ing a script using one of the methods described in Val idat ing scripts, i t is safe to run a load test
with that script . See the fol lowing topics for more in formation:

! Preparing for a Load Test

! Starting a Load Test

! Monitoring a Load Test

! Stopping a Load Test

Preparing for a load test

Before you run a load test, you must complete the fol lowing tasks:

! Prepare a datapool file: If you created a datapool file using the QALoad Script Development Workbench, QALoad
stores the file where the Conductor can automatically access it. However, if you created a datapool file using a text
editor (for example, Notepad), you must place the file in your appropriate
\Middlewares\<middleware_name>\scripts directory (for example,
\QAload\Middlewares\Oracle\Scripts) so the Conductor can access the file.

QALoad 5.02

5

For information about datapool files, see Simulating user-entered data.

! Set Up SSL Client Authentication for Virtual Users (SSL scripts only): If you are running a load test with a
WWW script containing SSL requests, you should export a Client Certificate from your browser into QALoad or
create a QALoad Client Certificate for each virtual user that runs the script. This setup facilitates a one-to-one ratio of
Client Certificates to virtual users, which more realistically simulates your testing environment.

To export Client Certificates from your browser and convert them for use in QALoad or to create QALoad Client
Certificates, see Importing a client certificate from a Web browser.

Once you export or create the necessary Client Certificates, you can insert them into your script using datapools.

Start ing a load test

While a load test is running, the Conductor’s toolbar changes from the Configurat ion and Setup Toolbar to
the Runtime Toolbar. The Runtime Toolbar buttons let you control the test and access detai led
in formation about the test whi le i t is running.

For more in formation about what to expect from the QALoad Conductor whi le a test is running —
including descript ions of the Runtime Toolbar buttons — see Monitoring a load test.

To start a load test, cl ick the Run button on the configurat ion and setup toolbar or choose Start Test from
the Conductor’s Run menu.

Note: While any window on the desktop is re-sizing or re-positioning, all Windows applications pause. Do not
click and hold on a window caption or border for extended periods during a load test because it delays message
handling and may impact the test results.

Monitoring a load test

When a test is started, the QALoad Conductor’s in terface changes to an in teract ive test control stat ion,
referred to as the Runtime Window. The Runtime Window displays in formation about the scripts,
machines, and virtual users that are execut ing the load test. From the Runtime Window, you can observe
the progress of individual scripts and Player machines, create and view real-t ime graphs, and start or
suspend scripts and Players from a running test to better simulate the unpredictabi l i ty of real users.

In addit ion to the test data shown by default on the Runtime Window, you can access detai led test
in formation using the QALoad Conductor’s Runtime toolbar buttons. You can:

! View statistics for a single virtual user

! View the activities of a virtual user in a browser-like window (WWW only)

! Step to the next request (WWW only)

! View the current datapool record

! Display the script running on a single virtual user

! Display messages sent from a Player workstation to the QALoad Conductor

! Display statistics about Conductor/Player communication

! Show/hide the Runtime Tree or Runtime Control Panel

! Synchronize all virtual users

! Exit, abort, or quit the test

QALoad 5.02

6

Running a batch test

By sett ing the appropriate opt ions in the Conductor, you can elect to run a series of tests as a batch, rather
than one at a t ime. A batch test is comprised of mult iple session ID fi les that are executed sequential ly.

You can create a batch test by adding a number of session ID fi les to a batch f i le. Before you can add a
session ID to a batch fi le, the fol lowing condit ions must be true:

! The session must include a defined number of transactions. Sessions of unlimited transactions cannot be used in a
batch test.

! All scripts to be included must exist prior to starting the batch test. This means the .c files referenced in the selected
session ID files must be present in the scripts directory.

Stopping a load test

A load test is complete when al l virtual users exit . A virtual user automatical ly exits when one of the
fol lowing occurs:

! A script encounters an EXIT command.

! A script completes its transaction loop.

To stop a load test, cl ick the Ex i t button.

Adding post-test comments

If you selected the Display Post Test Com m ents opt ion on the General tab of the Options dialog box
when you configured the Conductor, the Post Test Com m ents window opens when you cl ick the Qui t
button. Type any comments, which are saved to the test ’s Summary Report, which can be viewed in
QALoad Analyze.

Analyzing test results

Analyzing test results

After you set up a load test and run i t , you can analyze the results from the test using QALoad Analyze.

An important part of the load test ing process is viewing and studying the results of a test. You can view
load test results not only on a machine where QALoad is instal led, but also on any machine with a Web
browser.

When you run a test using a part icular session ID fi le (set up in the Conductor), each Player compiles a
local t im ing fi le comprised of a series of t im ing records for each checkpoint of each script run on that
Player. Each t im ing record in the fi le consists of a response t ime/elapsed t ime pair of values specifying the
amount of t ime i t took a certain checkpoint to fin ish (response t ime) at a specific t ime in the test (elapsed
t ime).

At the end of a test, Player t im ing fi les are sent to the Conductor and are merged into a single t im ing fi le,
cal led the Primary t im ing fi le, for analysis. If you set up in tegrat ion with Compuware’s ServerVantage
product, the Conductor col lects t im ing data from the ServerVantage central console and also merges that
data in to the t im ing fi le.

When you open a t im ing fi le, QALoad generates a working folder that contains al l support ing fi les, reports,
and images generated from that t im ing fi le. The folder is located in the \Program
Files\Compuware\QALoad\TimingFiles\xxx.xml.source directory, where <xxx> is the name of the
t im ing fi le.

QALoad 5.02

7

Custom reports

QALoad Analyze provides the abi l i ty to create custom reports using XML (Extensible Markup Language),
XSL (Extensible Style Language), and HTM (Hypertext Markup) fi les. QALoad Analyze provides a set of fi les
in .htm, .xml, and .xsl formats in addit ion to the .t im fi le. QALoad Analyze automatical ly generates a XML
(*.xml), XSL (*.xsl), and HTM (*.htm) fi le when you open a t im ing fi le.

Pre-defined reports

QALoad Analyze provides pre-defined reports so you can receive immediate load test results without
having to manipulate any data. Al l the fi les necessary for those reports are located in the directory
\Program Files\Compuware\QALoad\Timing Files\Reports.

Note: The pre-defined reports that are available depend on the data collected in the timing file, which is
determined by the QALoad Conductor option you select at the time of running the load test.

Graphing data

Start ing with the Workspace, you can use QALoad Analyze’s chart ing features to graph t im ing data in a
number of formats and styles.

Managing large amounts of data

With a large number of virtual users, i t ’s possible to create a t im ing fi le contain ing hundreds of thousands
of t im ing records for each checkpoint. Attempting to graph just a few of those checkpoints can slow
QALoad Analyze down considerably. For example, i f a t im ing fi le contained 250,000 t iming records for
each data point, at tempting to graph even one checkpoint means that QALoad Analyze has to paint
250,000 l ines on the graph.

Since most monitors only have 1024 pixels across the screen, the 250,000 data points would most ly be
plotted atop one another and the results would be unreadable.

Now imagine attempting to graph the data of several data points of that size. The sheer amount of data
could easi ly overwhelm a workstat ion. And every t ime you move the window, resize the window, right-
cl ick on the graph, or so on, QALoad Analyze has to re-draw the graph. You could conceivably spend
enormous amounts of t ime simply attempting to graph data.

To make large amounts of data manageable, QALoad Analyze provides an opt ion that al lows you to
determine how to th in data. That is, how to determ ine how many data points to plot.

QALoad Analyze graph types

The fol lowing basic graph types are avai lable from QALoad Analyze. After generat ing one of the fol lowing
graph types, you may further customize a graph in a number of ways.

Line Graph

A l ine graph plots response t imes versus elapsed t imes for the selected checkpoints. It provides a
good representat ion of how much fluctuat ion there is in response t imes over the course of a test.

Bar Graph

A bar graph shows the median, mean, or percent i le response t imes for the selected checkpoints.

Transact ion Th rough put Graph

This type of graph shows the cumulat ive number of t ransact ions that occurred with in the user-
specified t ime range over the durat ion of the test.

Respon se Tim e Dist r i but ion Graph

QALoad 5.02

8

This type of graph shows the percentage of checkpoint t im ings that fal l with in a part icular response
t ime range. A response t ime distribut ion graph shows i f response t imes tend to fal l with in a range or
are widely dispersed. A response t ime distribut ion graph only shows results for a single checkpoint,
al though i t can compare results from mult iple t im ing fi les.

Cum ulat i ve Respon se Tim e Dist r i but ion Graph

This type of graph shows the percentage of t ransact ions for a single checkpoint that have a response
t ime equal to or less than a specified value.

Customizing graphs

You can also change the style and appearance of a graph using opt ions avai lable from the Graph toolbar.
Display the Graph toolbar by right-cl icking in an open area of a graph and choosing the Toolbar opt ion
from the shortcut menu. The Graph toolbar contains buttons for standard Windows operat ions as well as
for customizing the appearance of your graphs.

The Graph toolbar includes the fol lowing features for customizat ion:

! Graph type (gallery type)

! Color

! Grid orientation (horizontal and vertical)

! Legend box

! Data display

! Dimension (3D or 2D)

! Rotation

! Z-Cluster

! Color/pattern

Integrat ing ServerVantage agent data

If you set opt ions to in tegrate ServerVantage resource ut i l izat ion data before running a test, that data is
included in the result ing t im ing fi le and can be sorted and displayed in QALoad Analyze in much the same
way as QALoad t im ing data. ServerVantage data provides a summary of al l the Agents that ServerVantage
monitored during the load test and detai ls aggregate stat ist ics for Agent data points including min imum,
maximum, and

mean data values.

Displaying ServerVantage Agent data

When you open a t im ing fi le contain ing ServerVantage Agent data, QALoad Analyze displays test data with
QALoad t im ing data two ways:

! ServerVantage Agent workstations are listed in the Server Monitoring group in the Workspace tree-view, under the
Resource Trends (ServerVantage) branch. From the Workspace, select Agent workstations to create detail or
graphical views of the Agent data points. Specifically, you can:

 Display Agent data point detai ls.

 Graph Agent data point detai ls.

! Detailed data point information is displayed in the Data window. The ServerVantage detail view includes data such
as the name of the machine where you ran the ServerVantage Agent; the Agent name; and the minimum, maximum,
and mean data values for the Agent.

Note: ServerVantage resource utilization data is available only if you set the ServerVantage integration
options on the QALoad Conductor’s Test Information window before executing a load test.

QALoad 5.02

9

Viewing Applicat ion Expert and QALoad integrated reports

QALoad integrates with Appl icat ion Expert version 8.0 and 9.0 to help analyze network performance
during a load test. Appl icat ion Expert is a Windows-based tool that enables users to examine the effects the
network wi l l have on the performance of new or modified appl icat ions prior to l ive deployment.
Appl icat ion Expert provides reports that help network managers ident i fy poorly performing appl icat ions.

When using the Appl icat ion Expert in tegrat ion in a load test, QALoad generates a trace fi le. This fi le is the
capture fi le created by the Appl icat ionVantage Agent. The name of the trace fi le is
<Session>_<YYYYMMDD>_<HHMMSS>.opt/.opx where <Session> is the name of the QALoad Conductor
session used to execute the load test, and <YYYYMMDD> and <HHMMSS> are the date and t ime the trace fi le
was captured. The trace fi le extension for Appl icat ion Expert version 8.0 is .opt; for version 9.0 i t is .opx.

It is located in the (default) directory \Program Files\Compuware\QALoad\LogFiles. At the end of a
load test, a h igh-level stat ic report and various support ing fi les are automatical ly generated from the trace
fi le and located in the directory \Program
Files\Compuware\QALoad\LogFiles\<Session>_<YYYYMMDD>_<HHMMSS>.

You can view the stat ic report at any t ime in a Web browser such as M icrosoft In ternet Explorer. The stat ic
report contains the fol lowing Vantage views:

! Performance Overview

! Network Utilization and Transit Time

! Node Processing Detail

! Node Sending Detail

! Bounce Diagram

! Error Analysis

! Thread Analysis

! Conversion Map

A descript ion of each view is provided in the <Session>_<YYYYMMDD>_<HHMMSS>.xml fi le.

To generate the trace fi le, Appl icat ionVantage Agent must be instal led on the same machine as QALoad
Conductor. The Agent can be instal led during the QALoad instal l or instal led independently.

To generate the h igh-level stat ic report , Appl icat ion Expert or Appl icat ion Vantage must be instal led on the
same machine as QALoad Conductor. For addit ional test analysis, import the trace fi le in to Appl icat ion
Expert or Appl icat ionVantage. To use Appl icat ion Expert or Appl icat ion Vantage to further analyze the
trace, refer to the Appl icat ion Expert or Appl icat ionVantage User’s Guides or onl ine help.

QALoad 5.02

10

Scr ip t Developm en t Wor k bench

Overview of the Script Development Workbench
The QALoad Script Development Workbench is the QALoad component used to develop load test scripts. It
contains the faci l i t ies you need for recording transact ions such as funct ion cal ls or request / response
interact ions placed by your Windows appl icat ion. The recorded transact ion, cal led a capture fi le, contains
raw data that must be converted to an editable test script based on C, C++, or Java, depending upon which
middleware environment is under test.

After convert ing the recorded transact ion to a script , you can use the Script Development Workbench's
script editor and other funct ional i ty to make any necessary modificat ions to your script . For example,
maybe you had to sign on to a Web server with a user name and password as part of your recorded
transact ion. At test t ime, when mult iple virtual users are running your test script , you might want each
user to have a different user name/password combinat ion. You can use the Script Development Workbench
to create a re-usable pool of user name/password combinat ions, saved as a datapool fi le, and edit your
script to extract values from that fi le at test t ime. QALoad provides script ing commands for si tuat ions l ike
that, and provides a Funct ion Wizard and onl ine language reference, both avai lable right from the editor,
to help you locate and insert the right commands.

When you are sat isfied wi th your test script , you can compile i t direct ly from the Script Development
Workbench. And, final ly, add i t to a load test in the QALoad Conductor.

In shor t , t o p roduce a usable t est scr ip t you w i l l :

1. Record a transaction into a capture file (.cap).

2. Convert the capture file to a editable script.

3. Edit the script.

4. Compile the script.

To access the Script Development Workbench, cl ick Start>Program s\ Com puw are\ QALoad\ Script Developm ent
Workbench . To begin developing a test script , select the appropriate middleware from the Session menu.

Specify your middleware type by choosing the middleware name from the Session menu or cl icking the appropriate
button on the toolbar. The Default Session Prompt opens. If th is middleware type should be the default every t ime you
open the Script Development Workbench, select the check box M ake th is m y defaul t session .

If you do not want to be prompted to set a default m iddleware, clear the Enable defaul t session check ing
check box. You can also turn default session checking on or off from the Configure Script Development
Workbench dialog box at any t ime.

Cl ick OK.

 To set up aut om at ic conversion and com pi lat ion:

1. From the Script Development Workbench menu, choose Options>Workbench.

2. On the Configure Script Development Workbench dialog box, in the Record Options area, select the check box
Automatically Convert Capture.

3. Click the Compiler Settings tab.

4. Select the check box Automatically compile scripts.

5. To ensure that a script isn't overwritten accidentally, select the check box Prompt before overwriting script.

QALoad 5.02

11

6. Click OK to save your settings.

The Script Development Workbench wil l automatical ly convert a capture fi le when you stop the recording
process and compile the result ing script . You wil l be prompted i f a script by the same name already exists,
so that you can decide whether to overwrite an exist ing script or to save your script under a different
name.

About the Script Development Workbench

Overview of the Script Development Workbench

The QALoad Script Development Workbench is the QALoad component used to develop load test scripts. It
contains the faci l i t ies you need for recording transact ions such as funct ion cal ls or request / response
interact ions placed by your Windows appl icat ion. The recorded transact ion, cal led a capture fi le, contains
raw data that must be converted to an editable test script based on C, C++, or Java, depending upon which
middleware environment is under test.

After convert ing the recorded transact ion to a script , you can use the Script Development Workbench's
script editor and other funct ional i ty to make any necessary modificat ions to your script . For example,
maybe you had to sign on to a Web server with a user name and password as part of your recorded
transact ion. At test t ime, when mult iple virtual users are running your test script , you might want each
user to have a different user name/password combinat ion. You can use the Script Development Workbench
to create a re-usable pool of user name/password combinat ions, saved as a datapool fi le, and edit your
script to extract values from that fi le at test t ime. QALoad provides script ing commands for si tuat ions l ike
that, and provides a Funct ion Wizard and onl ine language reference, both avai lable right from the editor,
to help you locate and insert the right commands.

When you are sat isfied wi th your test script , you can compile i t direct ly from the Script Development
Workbench. And, final ly, add i t to a load test in the QALoad Conductor.

In shor t , t o p roduce a usable t est scr ip t you w i l l :

1. Record a transaction into a capture file (.cap).

2. Convert the capture file to a editable script.

3. Edit the script.

4. Compile the script.

To access the Script Development Workbench, cl ick Start>Program s\ Com puw are\ QALoad\ Script Developm ent
Workbench . To begin developing a test script , select the appropriate middleware from the Session menu.

Specify your middleware type by choosing the middleware name from the Session menu or cl icking the appropriate
button on the toolbar. The Default Session Prompt opens. If th is middleware type should be the default every t ime you
open the Script Development Workbench, select the check box M ake th is m y defaul t session .

If you do not want to be prompted to set a default m iddleware, clear the Enable defaul t session check ing
check box. You can also turn default session checking on or off from the Configure Script Development
Workbench dialog box at any t ime.

Cl ick OK.

 To set up aut om at ic conversion and com pi lat ion:

1. From the Script Development Workbench menu, choose Options>Workbench.

2. On the Configure Script Development Workbench dialog box, in the Record Options area, select the check box
Automatically Convert Capture.

QALoad 5.02

12

3. Click the Compiler Settings tab.

4. Select the check box Automatically compile scripts.

5. To ensure that a script isn't overwritten accidentally, select the check box Prompt before overwriting script.

6. Click OK to save your settings.

The Script Development Workbench wil l automatical ly convert a capture fi le when you stop the recording
process and compile the result ing script . You wil l be prompted i f a script by the same name already exists,
so that you can decide whether to overwrite an exist ing script or to save your script under a different
name.

Set t ing a default middleware session

To set a par t icular m iddlew are as t he def aul t f or new sessions:

1. Access the QALoad Script Development Workbench.

2. From the File menu, choose the name of the middleware session you want to open. The Default Session Prompt
opens. The Default Session Prompt didn't open?

3. Select the Make this my default Session check box .

4. Click OK.

Configuring the Script Development Workbench

The first t ime you use the QALoad Script Development Workbench, you should set opt ions to determine a
working directory QALoad can use for temporary fi les, compiler sett ings, and other general opt ions related
to the behavior of the QALoad Script Development Workbench.

To set a w ork ing d i r ect ory:

1. Access the Script Development Workbench.

2. From the Session menu, choose the session you want to start.

3. From the Options menu, choose Workbench.

4. Set any appropriate options. For a description of the available options, press F1 from the Configure Script
Development Workbench dialog box.

Note: Compuware recommends that you always select the Automatically Compile Scripts and Automatically
Convert Capture options.

5. Click OK to save your settings.

Sessions

EasyScript Sessions

When you first open the Script Development Workbench, you can set general opt ions related to which
panes to display, your compiler, and so on, but you can't begin any middleware-specific act ivi t ies, such as
recording a transact ion, unt i l you open an EasyScript Session. Opening an EasyScript Session tai lors the
Script Development Workbench to a specific middleware environment, providing you with al l the
appropriate opt ions and funct ions for your script ing needs.

QALoad 5.02

13

To open an EasyScript Session, choose your middleware type from the Session menu, or cl ick the
appropriate toolbar button. Once a session is open, the Workbench interface wil l change.

You can also open a Universal session to record cal ls from mult iple middlewares with in a single session.

Using the Universal session

The Universal session al lows you to record cal ls from mult iple middleware appl icat ions with in a single
Script Development Workbench session. You might use the Universal session in cases where your
appl icat ion accesses an addit ional appl icat ion that uses a different protocol.

For example, your browser might download and open a Java applet which then communicates with a
Winsock server. If you recorded that act ivi ty using a simple WWW session, the Script Development
Workbench would only record the HTTP requests that downloaded and opened the Java applet. Recording
that transact ion with the Universal session ensures that you record the HTTP requests from the browser as
well as the Winsock-based communicat ion between the Java applet and the Winsock server — al l with in a
single script .

You start and record from a Universal session exact ly l ike a single middleware session with one difference
— after start ing a Universal session you must select which middleware appl icat ions to record.

The Script Development Workbench main window

The QALoad Script Development Workbench main window is divided into dynamic panes that you can
h ide or show as needed by select ing commands from the View menu.

Hint: Click on a pane in the following graphic for a description of that pane. Use your scroll bars to see the
rest of the graphic.

QALoad 5.02

14

Menus and toolbar but tons

The QALoad Script Development Workbench menus and buttons change depending on whether you have
an EasyScript Session open.

Menus and toolbars without an open EasyScript session

The fol lowing menus and toolbars are avai lable when an EasyScript Session is not open.

Fi le
View
Options
Session
Tools
Help

Toolbar Buttons

Menus and toolbars with an open EasyScript session

The fol lowing menus and toolbars are avai lable when an EasyScript Session is open.

Fi le
Edit
View
Options
Session
Tools

QALoad 5.02

15

Window
Help

Toolbar Buttons
Recording toolbar

Recording toolbar

The Recording toolbar is a float ing toolbar that is launched automatical ly when you start recording a
transact ion.

Cl ick each button on the fol lowing toolbar image for a descript ion of i ts funct ional i ty.

Developing a test script

Recording a t ransact ion

Recording middleware calls

QALoad begins recording before start ing your appl icat ion, ensuring that any early startup act ivi ty is
recorded.

Hint: You can save yourself some steps later by setting options now to automatically convert your recorded
capture file and compile it into a script.

To record a m iddlew are cal l :

1. Open an appropriate middleware session in the QALoad Script Development Workbench.

2. (Oracle Forms Server only) Choose Options>Workbench, then click Java to set the location of your Java files for
recording.

3. Select Session>Record>Start. The Record Options wizard opens.

4. If necessary, set or change any recording options on your middleware-specific options tab. Press F1 from the
middleware options tab for a description of available options.

5. From the toolbar, click Start Record. QALoad launches your application and any proxies, if necessary, and begins
recording any calls.

6. Run the desired user operations using your application.

7. (WWW only) If you are capturing SSL requests using EasyScript for Secure WWW, the browser generates one or
more prompts indicating the following:

 It does not recognize the authori ty who signed the server cert i ficate.

 The server cert i ficate presented by the Web site does not contain the correct si te name.

When you receive these prompts, cl ick the browser’s Next or Cont inue button so you can connect to
and exchange information with the desired Web site.

8. (Optional) At any time during the recording process, you can insert any necessary commands or comments into the
capture file.

9. When you have recorded a complete transaction, stop the application from which you are recording.

QALoad 5.02

16

10. When you finish, click Stop Record. You will be prompted to save your capture file. By default, capture files (.cap)
are saved in the QALoad\Middlewares\<middleware_name>\captures directory.

Note: If QALoad is not able to record from your application, try QALoad’s alternate procedure for recording.

Inserting commands/comments into a capture file

You can insert commands and/or comments while recording a capture fi le.

To inser t com m ands/ com m ent s in t o a capt ure f i le:

1. On the Recording toolbar, click Insert Command. The toolbar expands into a window where you can select options
for inserting commands into your capture file.

2. In the Command Type area, select whether you want to insert a comment or a begin/end checkpoint.

3. In the Command Info area, type your comment or a description of the checkpoint.

4. Click Insert to insert your comment or checkpoint command into your capture file, and then continue recording your
transaction as usual.

Convert ing a t ransact ion to a script

Converting

A capture fi le contains al l the raw data that was recorded, but i t needs to be converted in to an editable
script fi le before you can proceed. The script fi le can then be open in the Script Development Workbench
editor and edited as needed.

To conver t a capt ure f i le t o a scr ipt :

1. Access the QALoad Script Development Workbench. Details.

2. From the Session menu, choose the session you want to start.

3. If you have not already done so, set conversion options.

4. In the Workspace Pane, click the Captures tab.

5. Click on the capture file you want to convert and click File>Convert.

6. If an Error/Warning Summary opens in the Output Pane, resolve any errors if necessary.

7. Compile the script.

Note: You can set an option to automatically convert your recorded transactions into scripts. How?

Compiling a test script

A QALoad script is a real C-, C++-, or Java-based script , and therefore needs to be compiled before i t can be
used. QALoad works with your exist ing compiler to compile usable test scripts. If you make changes to an
exist ing script , you must re-compile i t before you can successful ly use i t in a test. If you add an uncompiled
or out-of-date script to a load test, the QALoad Conductor wi l l prompt you to compile the script .

To learn more about compil ing a script , cl ick one of the fol lowing opt ions:

Sett ing up automatic compil ing
Sett ing advanced compiler opt ions
Compil ing Win32 Scripts
Compil ing UNIX Scripts

QALoad 5.02

17

Customizing a script

Using the Function Wizard

The Funct ion Wizard al lows you to quickly and easi ly edit your script by choosing from the QALoad
commands avai lable to your script and insert ing them with a cl ick of your
mouse.

The Funct ion Wizard is located in the Script Development Workbench in a
pane on the right side of the window that you can enable or disable from the
View menu.

The Funct ion Wizard l ists al l funct ions that are val id to use in your open
script . Funct ions are grouped in logical sect ions with in the top window of the
wizard. When you h ighl ight a funct ion in the top window of the wizard, the
lower window wil l l ist a descript ion of that funct ion and i ts parameters.

To insert a funct ion in to your script , locate i t in the Funct ion Wizard and
then simply drag-and-drop i t in to your script .

The funct ion wil l be writ ten in to your script at the point you chose. When
you insert a funct ion using the wizard, a text box opens showing the proper
syntax and parameter opt ions. (The text box may not appear i f an associated
variable or object has not been declared in the script .) As you edit the
funct ion 's parameters, the text box h ighlights the parameter that is current ly
being edited.

Note for ADO scripts: After inserting an ADO method, change the # sign to
the appropriate object number.

Using custom counters and messages

QALoad al lows you to define your own counters and insert messages into
your script , where they wi l l be writ ten to your t im ing fi le and viewable in
Analyze or at runt ime in the Conductor.

Counters can be either cumulative or instance. This simply determines how
they should be graphed in Analyze:

! For a cumulative counter, Analyze keeps a running sum of the counter while graphing verses elapsed time. This type
of counter is used for all the WWW error counters. Each time a WWW error occurs, a value of 1 is written for that
counter. When looking at a detailed view in Analyze, you can see at what times that error occurred. When you graph
a counter in Analyze, the graph will show the total number of occurrences verses the elapsed time.

! For an instance counter, Analyze graphs each value directly. No summing of previous values is done.

Counters must be added manually using the QALoad commands DEFINE_COUNTER and
COUNTER_VALUE. Messages must be added manually using the QALoad command SCRIPT_MESSAGE.

The fol lowing sample script i l lustrates both script counters and messages:

#include <stdio.h>
#include "smacro.h"
#include "do_www.h"

int rhobot_script(PLAYER_INFO *s_info)
{
char buf1[256];
int id1, id2, id3, id4;

DEFINE_TRANS_TYPE("ScriptCounters ");
DO_InitHttp(s_info);

// "Counter Group", "Counter Name", "Counter Units (Optional)",
// Data Type, Counter Type.

QALoad 5.02

18

id1 = DEFINE_COUNTER("Cumulative Group", "Cumulative long",
 0, DATA_LONG, COUNTER_CUMULATIVE);
id2 = DEFINE_COUNTER("Cumulative Group", "Cumulative float",
 0, DATA_FLOAT, COUNTER_CUMULATIVE);
id3 = DEFINE_COUNTER("Instance Group", "Instance long",
 0, DATA_LONG, COUNTER_INSTANCE);
id4 = DEFINE_COUNTER("Instance Group", "Instance float",
 0, DATA_FLOAT, COUNTER_INSTANCE);

SYNCHRONIZE();
BEGIN_TRANSACTION();

// add value to cumulative counter 1
COUNTER_VALUE(id1, 1);
DO_SLEEP(2);

// add value to cumulative counter 2
COUNTER_VALUE(id2, 1.5);
RND_DELAY(6);

// add value to instance counter 1
COUNTER_VALUE(id3, s_info->nRndDelay);

// add custom message for this user
wsprintf(buf1, "User %d slept for %d milliseconds during transaction %d",
 s_info->nAbsVUNum, s_info->nRndDelay, s_info->s_trans_count);
SCRIPT_MESSAGE("User Messages", buf1);
DO_SLEEP(2);

// add value to instance counter 2
// relative user number plus pi times the current transaction number
COUNTER_VALUE(id4, s_info->nRelVUNum + (3.14159 * s_info->s_trans_count));

END_TRANSACTION();
DO_FreeHttp();
REPORT(SUCCESS);
EXIT();

}

Defining checkpoints

Checkpoint statements col lect t im ings of events, such as the execut ion of SQL statements. If you manually
insert checkpoint statements in to your capture fi le during the recording process, or i f you select the
Include Defaul t Checkpoin t Statem en ts conversion opt ion before convert ing a script , your script wi l l
include checkpoints.

Otherwise, you wil l need to manually insert checkpoints in your script(s) to col lect t im ings.

Defining transaction loops

If you did not insert begin-and end-transact ion commands into your capture f i le, QALoad’s Convert faci l i ty
automatical ly places begin-and end-transact ion commands at the start and end of the recorded sequence.
QALoad scripts execute the code between the begin-and end-transact ion commands in a loop according to
the number of t imes you specify in the QALoad Conductor when sett ing up a test.

Depending on how you completed your recording, you may want to move one or both of these transact ion
commands to another place in the script to more accurately define the transact ion that runs during the
load test.

For example, let ’s say during the recording process you log in and log out as part of the procedure.
However, during the load test you do not want to log in and log out as part of every transact ion. To avoid a
login and logout with every procedure, move the begin- and end-transact ion commands so the login and
logout commands are outside of the transact ion loop.

QALoad 5.02

19

Simulating user-entered data

When you create a script , you wil l probably have some constant data embedded in the script that
automatical ly enters your appl icat ion ’s input fields while recording (for example, an employee number). If
you run a load test using th is script , the script uses the same data for each transact ion. To run a real ist ic
test, you can modify the script to use variable data from a datapool fi le. By varying the data input over the
course of a test, the behavior more real ist ical ly emulates the behavior of mult iple users. You can use the
QALoad Script Development Workbench to create, maintain, and use datapool fi les (.dat) to insert variable
data in to your scripts.

A datapool can be defined as either central or local:

! A central datapool is a datapool that resides on the same workstation as the QALoad Conductor, and is available to
any Player system on the network that requests it from the QALoad Conductor. A central datapool is controlled by
the QALoad Conductor, and you use the QALoad Conductor to set any options relating to a central datapool.

! A local datapool is a datapool that resides on a Player workstation, and is only available to that Player. Because a
local datapool resides locally and is only available to the local Player, it does not generate any network traffic. You
use the QALoad Script Development Workbench to insert local datapools into a script.

The fol lowing sect ions describe how to create and use central and local datapools.

Creat ing a datapool f i l e

You can create a datapool fi le using the Script Development Workbench.

To creat e a dat apool f i le:

1. Open a middleware session in the QALoad Script Development Workbench.

2. From the File menu, choose New.

3. On the New dialog box that opens, select New from the Datapools tree item.

4. In the Filename field, type a unique name for your datapool file.

5. In the Rows: and Cols: fields, type the number of rows and columns your new datapool should have.

6. Click OK.

7. Enter your datapool records in the grid that opens in the Workbook Pane.

8. When you are finished entering datapool records, click File>Save As to name your datapool file.

9. Click OK to save the file. QALoad saves the file in your \QALoad\Datapools directory.

M odi fying a datapool f i l e

You can modify a datapool fi le using the Script Development Workbench.

To m odi f y a dat apool f i le:

1. In the Workspace Pane, click the Datapools tab.

2. Double-click the datapool file you want to modify. The datapool file opens in the Workbook pane.

3. Make the appropriate changes and save the file.

Using a cen t ral datapool f i l e i n a script

You assign a central datapool fi le to a specific script by select ing the datapool fi le and sett ing any
appropriate opt ions using the Conductor. Each script can use a single central datapool. The central
datapool is avai lable to al l Player workstat ions running the test. The fol lowing procedures describe how to
assign and extract data from a central datapool. These procedures assume you have already created the
datapool fi le as described above.

QALoad 5.02

20

Assigning a central datapool fi le

1. With a session ID file open in the QALoad Conductor, click the Script Assignment tab.

2. In the External Data column for the selected script, click the Browse button.

3. In the External Data dialog box, navigate to the datapool you wish to use. Select it and click Open.

4. If you wish to re-use the datapool records when the script reaches the end of the file, select Rewind. To only use
each record once, and then discard it, select Strip.

5. When you are done, click OK.

Using data records from a central datapool fi le

To use data from a central datapool in your load test, you wil l have to modify your script . Typical ly, you
wil l read one record per transact ion.

To add dat apool st at em ent s t o your scr ip t :

1. With your script open in the QALoad Script Development Workbench, navigate to the place where you want to insert
a datapool variable and highlight the text to replace.

2. From the Session menu, choose Insert>Datapool. The Insert New Datapool dialog box appears.

3. Select a datapool from the list and click OK, or click the Add button to open the Select Datapool dialog box where
you can choose a datapool file to add to your test.

4. When you are finished, the QALoad Script Development Workbench places several datapool functions into your
script, denoting them with markers so you can easily identify them.

Using local datapool f i l es i n a script

You assign a local datapool fi le to a specific script by select ing the datapool fi le and sett ing any appropriate
opt ions using the QALoad Script Development Workbench. Each script can use up to 64 local datapools.
Use the fol lowing procedures to assign and extract data from a local datapool fi le. These procedures assume
you have created a datapool as described above.

Assigning a Local Datapool

1. Open a session in the QALoad Script Development Workbench.

2. In the Workspace pane, click the Scripts tab.

3. On the Scripts tab, double-click on the appropriate script name to open it in the Workbook pane.

4. From the Session menu, choose Insert>Datapool. The Insert Datapool Commands dialog box appears.

5. On the Insert Datapool Commands dialog box, click the Add button. The Select Datapool dialog box opens.

6. In the Type field, select Local. Note that you can also choose to insert a central datapool from this dialog box. If you
choose to insert a central datapool from here, the QALoad Script Development Workbench places the Conductor
command GET_DATA into the script just after the BEGIN_TRANSACTION command, bookmarks the command in the
margin of the script, and uses any options set for the specified datapool in the QALoad Conductor.

7. In the ID field, give the datapool a unique identifier. The name can contain alphanumeric characters only. Use
underscores (_) for spaces. This ID will help you identify the datapool in your script, for example
“ACCOUNT_NUMS”.

8. In the Filename field, type (or browse for) the fully qualified path of your datapool file. For example: c:\Program
Files\Compuware\QALoad\Workbench\<middleware_name>\Scripts\datapool.dat

9. If you wish to re-use the datapool records when the script reaches the end of the file, select Rewind at End of File.
To only use each record once, and then discard it, clear this option.

10. When you are finished, click OK. The selected datapool is displayed on the Insert New Datapool dialog box.

11. Click OK. The QALoad Script Development Workbench will place a #define statement identifying the datapool file
near the beginning of your script, and place the datapool commands OPEN_DATA_POOL, READ_DATA_RECORD, and

QALoad 5.02

21

CLOSE_DATA_POOL at the default locations in the script. These statements will be bookmarked in the margin for
easy identification.

12. When you are finished modifying the script, save any changes.

For detai led in formation about any of these commands, refer to the Language Reference sect ion.

Using Data Records from a Local Datapool Fi le

To use data from a local datapool fi le you wil l have to modify your script to read data records and fields at
the appropriate place in the script . Datapool fi les should typical ly be opened with the statement
OPEN_DATA_POOL just before the BEGIN_TRANSACTION statement, then datapool fields can be cal led in to
the script to replace variable strings. The OPEN_DATA_POOL statement is automatical ly inserted in to your
script when you use the QALoad Script Development Workbench to insert your datapool.

1. Read a record from the datapool file using the following command, which reads a single record from the local
datapool file you specify:
READ_DATA_RECORD(<LOCAL DATAPOOL ID>);

2. To access the fields of this record, substitute GET_DATA_FIELD(ACCOUNT_NUMS, n) expressions in place of
variable strings.

3. After the END_TRANSACTION statement, close the local datapool file by using the following statement:
CLOSE_DATA_POOL(LOCAL DATAPOOL ID);

Note that th is statement is added automatical ly i f you use the QALoad Script Development Workbench to
insert your datapool.

For detai led in formation about any of these commands, refer to the Language Reference sect ion.

Insert i ng Variable Data w i th Act i veData Subst i tut i on

The QALoad Script Development Workbench al lows you to transform string data from quoted constants or
substrings into variables. Act iveData variable subst i tut ion lets you ident i fy and right-cl ick on a string to
declare the selected string a variable with in the QALoad script . This faci l i ty also lets you select or edit
datapool entries more dynamical ly, making script development easier and more efficient.

To subst i t ut e a dat apool value or a var iable in p lace of a select ed st r ing in your scr ip t :

1. Start the appropriate session in the QALoad Script Development Workbench.

2. In the Workspace pane, click the Scripts tab.

3. On the Script tab, double-click the script you wish to open. The script opens in the Workbook pane.

4. In the script, highlight the string you wish to replace.

5. Right-click anywhere in the highlighted string.

! To substitute a value from a datapool:

 — Cl ick Act i veData>Datapool Subst i tut i on in the shortcut menu that opens. The
Act i veData Datapool Subst i tut i on dialog box opens.

 In the Datapool (s) area, h ighl ight the datapool to use. The contents of the datapool fi le
display below. If the datapool you want to use is not l isted, cl ick the Add button to add
i t to the l ist of avai lable datapools.

 In the Field: ID field, type the field number of the specific value to use from the
datapool.

 When you are fin ished, cl ick OK. The QALoad Script Development Workbench wil l
place a #define statement ident i fying the datapool fi le at the beginning of your script .
It wi l l also insert the datapool commands OPEN_DATA_POOL, READ_DATA_RECORD,
GET_DATA_FIELD and CLOSE_DATA_POOL at the default locat ions in the script , and

QALoad 5.02

22

bookmark them in the margin for easy ident i ficat ion. Refer to the Language Reference
sect ion for detai led in formation about any of those commands.

 To substitute a variable:

 Click Act i veData>Variable Subst i tut i on from the shortcut menu that appears. The
Act i veData Variable Subst i tut i on dialog box opens.

 Assign a variable name for the selected string in the Variable Nam e field.

 Click OK. The QALoad Script Development Workbench wil l declare the variable at the
beginning of your script and subst i tute the named variable for the selected string. It wi l l
also bookmark both locat ions for easy ident i ficat ion.

6. When you are finished, save your script changes. Compuware recommends that you also compile your script to
check for any errors.

Middleware scripting techniques

Ci t r i x

Handling dynamic windows

During conversion, CtxWaitForWindowCreate cal ls are added to the script for each named window
creat ion event. During replay, some dynamic windows that were in the capture may not appear, which
causes the script to fai l because a wait point t imes out. To avoid script fai lure in th is circumstance,
comment out the CtxWaitForWindowCreate commands that may be referencing dynamic windows.

Using the CtxWaitForScreenUpdate command

In some situat ions, a window may vary in how long i t takes to refresh on the screen. For example, the
Windows Start menu is an unnamed window that can take varying amounts of t ime to appear, depending
on system resource usage. To prevent playback problems in which a mouse cl ick does not synchronize with
i ts in tended window, insert the CtxWaitForScreenUpdate command in the script after the act ion that
causes the window to appear. The parameters for the CtxWaitForScreenUpdate command correspond to
the X and Y coordinates and the width and height of the window. This command ensures that the window
has enough t ime to display before the mouse cl ick.

Handling dynamic window t i t les

Some appl icat ions create windows whose t i t les vary depending on the state of the window. For example,
M icrosoft Word creates a t i t le based on the default document name at the t ime of the window creat ion.
During replay, th is dynamic t i t le can differ from the window t i t le that was recorded, and the window is
not recognized. If th is occurs, t ry the fol lowing steps to modify the script :

1. Ensure that the Enable Wildcard Title Match check box is selected in the Citrix conversion options prior to
converting the recording.
In the Window Verification group of the Citrix Convert Options dialog box, ensure that the Enable Wildcard Title
Match check box is selected. This check box is selected by default. If you are working with a previously-converted
script, ensure that a CtxSetEnableWildcardMatching command exists in the script prior to the
BEGIN_TRANSACTION command and that the parameter is set to TRUE.

2. Verify whether there is an issue with dynamic window titles.
When a script fails on validation because the run time window title is different than the expected window title from the
recording, it is likely that you are dealing with a dynamic title issue that can be handled by this scripting technique. In
this case, the script fails on the CtxWaitForWindowCreate call.

3. Identify a match “pattern” for the dynamic window title.
Note the error message that is returned during validation (or replay). The message indicates the expected window
title versus the window title from script playback. Examine the differences in the window titles to create a “match
pattern” that recognizes the window title, while ignoring other windows. A match pattern can be a simple substring of
the window title or a pattern string using wildcard characters such as ? (to match any single character) or * (to match
any number of characters). The examples below illustrate the different match patterns.

QALoad 5.02

23

4. Insert a CtxSetWindowMatchTitle command prior to the CtxWaitForWindowCreate call for the dynamic
window.
When adding the SetWindowMatchTitle command, ensure that the first parameter contains the correct window
object and the second parameter contains the match string in double-quotes.

5. Validate the script to ensure the CtxWaitForWindowCreate command recognizes the dynamic window name.
Run the revised script through validation to ensure that the script succeeds. If the script does not validate
successfully, go to step 3 to determine if the match pattern is correct.

Example 1: Using a substring match

In th is example, the M icrosoft Word appl icat ion generates a dynamic t i t le when the script is replayed. The
dynamic name is a concatenat ion of the default document that Word creates at appl icat ion startup with
the name of the appl icat ion. The script is altered to reflect the fact that the string “ Microsoft Word” is
always part of the window t i t le:

// Window CWI_13 ("Microsoft Word") created
CtxSetWindowMatchTitle(CWI_13, “Microsoft Word”);
CtxWaitForWindowCreate(CWI_13);

Example 2: Using a wildcard match with the * character

In th is example, the SampleClientApp appl icat ion generates a dynamic t i t le when the script is replayed.
The dynamic name is the name of the appl icat ion fol lowed by the name of the user, beginning with the
word “ User” . The asterisk (*) wi ldcard is subst i tuted for a given username, reflect ing the pattern of
“ SampleClientApp – User:” as part of the window t i t le fol lowed by an arbitrary user name:

// Window CWI_13 ("SampleClientApp – User: John") created
CtxSetWindowMatchTitle(CWI_13,“SampleClientApp – User: *”);
CtxWaitForWindowCreate(CWI_13);

Example 3: Using a wildcard match with the ? character

In th is example, the RandomValue appl icat ion generates a dynamic t i t le when the script is replayed. The
dynamic name is the appl icat ion fol lowed by a random single digit . The question mark character is
subst i tuted for the single digit to reflect the pattern that begins “ RandomValue: ” , fol lowed by single digit :

// Window CWI_13 ("RandomValue: 0") created
CtxSetWindowMatchTitle(CWI_13, “Sample Application: ?”);
CtxWaitForWindowCreate(CWI_13);

Handling dynamic windows that require user in teract ion

Some windows that require user act ion before normal script processing can proceed may appear
in termit tent ly during replay. One example commonly encountered with Citrix is the ICA Seamless Host
Agent window. This window, i f i t appears, requires user act ion or the script may fai l .

To w ork around t h is issue, f ol low t hese st eps:

1. Capture a session in which the dynamic window appears and the user performs the action to dismiss the window.
This may require multiple attempts to capture the window. Once this is captured in a recording, save the script as a
temporary script.

2. If the window did not appear in the primary script, extract the code snippet from the temporary script that acts on the
dynamic window and insert it into the real script. The code usually consists of a CtxPoint command and a CtxClick
command for this window. Insert the commands after the CtxWaitForWindowCreate command for the dynamic
window. In addition, extract and insert the Citrix window information object constructor call and delete call to the
relevant parts of the script, changing the object name to avoid conflicting with existing window objects. Ensure that
the additional code is not inserted between a CtxPoint command and a CtxClick command in the primary script.

3. Add a special CtxSetWindowMatchTitle command immediately before the CtxWaitForWindowCreate command. The
first parameter of the CtxSetWindowMatchTitle command should be the correct window object. The second

QALoad 5.02

24

parameter contains a special wildcard match “*” that enables the CtxClick command to accept any window title,
which ensures that even if the matching window does not appear, the command still executes successfully.

4. If the window appears in the primary script, comment out the CtxWaitForWindowCreate command for the dynamic
window. Because the window itself may not appear, the CtxWaitForWindowCreate command should be commented
out.

5. Validate the script. If the validation is not successful, ensure that steps 2-4 were performed correctly.

In the fol lowing example’s scenario, the ICA Seamless Window Agent window does not appear in the
primary script , but appears in termit tent ly when the primary script is replayed, causing those replay
sessions to fai l . A second Citrix script , which includes the window appearance, is recorded and the
CtxPoint and CtxClick commands are extracted from th is script and inserted in to the primary script , with
the window object changed to match the object in the primary script . In addi t ion, the Citrix window
object constructor cal l and delete cal l are added in the appropriate places in the script , and the CtxClick
command is changed to refer to th is object. In the fol lowing example, the text in bold represents code that
was manually inserted in to the locat ion in the primary script where the window appears in the secondary
script .

CtxWI *CWI_99 = new CtxWI(0x10052, "ICA Seamless Host Agent", 0, 0, 391, 224);
...
CtxSetWindowMatchTitle(CWI_99, “*”);
CtxPoint(190, 203);
CtxClick(CWI_99, 0, L_BUTTON, NONE);
CtxPoint(300, 400);
...
delete CWI_99; // "ICA Seamless Host Agent"

Moving the Citrix connect and disconnect outside the transact ion loop

If your load test ing requirements for Citrix include creat ing extended logon sessions, in which the user
remains connected to the Citrix server between transact ions, review the fol lowing t ips for recording and
script development.

Recording

Perform the fol lowing steps during the recording process in order to prepare for moving the connect and
disconnect act ions outside the transact ion loop:

1. Insert a comment such as “Logged in to Citrix” after the Citrix logon but before any windows have been opened.

2. Ensure that all application windows are closed before disconnecting from the Citrix session.

3. Insert a comment such as “Ready to log off Citrix” before the Citrix logoff sequence is initiated. Ensure that the first
comment is added after the user has logged on and closed all login-related dialog boxes, but before any applications
are started. Similarly, the second comment must be placed after all applications have been closed, but before the
user logs off.

Scripting

Comment out the BEGIN_TRANSACTION and END_TRANSACTION cal ls and add new
BEGIN_TRANSACTION and END_TRANSACTION cal ls at the locat ion where the comments from steps 1
and 3 above were placed. Comment out the cal ls instead of delet ing them so that the original locat ion of
these commands can be determined for debugging purposes.

Also comment out the DO_SetTransact ionStart and DO_SetTransact ionCleanup cal ls.

Handl ing Citrix server farms

Citrix servers can be grouped in farms. When load test ing, you may want to connect to a Citrix server farm
rather than to a specific server. This type of setup load tests the server farm and Citrix load balancing
rather than a single server, which provides a more real ist ic load test.

QALoad 5.02

25

To record a script that connects to a farm, you must use an ICA fi le to connect. However, when a capture
takes place, a specific server (in the farm) must have a connect ion. Specify the correct ICA fi le to connect
to the server farm as well as a specific server with in that server farm. To veri fy that your script is
connect ing to a server farm and not a specific server, assign the server name to one blank space when
val idat ing the script . For example:

.

.

.

/* Declare Variables */
const char *CitrixServer = " ";
const char *CitrixUsername = "citrix";
const char *CitrixPassword = "~encr~657E06726F697206";
const char *CitrixDomain = "qacitrix2";
const int CitrixOutputMode = OUTPUT_MODE_NORMAL;

.

.

.

SET_ABORT_FUNCTION(abort_function);

DEFINE_TRANS_TYPE("Orders.cpp");

CitrixInit(4);

/* Citrix replay settings */

CtxSetConnectTimeout(90);
CtxSetDisconnectTimeout(90);
CtxSetWindowTimeout(30);
CtxSetPingTimeout(20);
CtxSetWaitPointTimeout(30);
CtxSetWindowVerification(TRUE);
CtxSetDomainLoginInfo(CitrixUsername, CitrixPassword, Citrix-Domain);
CtxSetICAFile("PRD desktop.ica");
CtxSetEnableCounters(TRUE);
CtxSetWindowRetries(5, 5000);
CtxSetEnableWildcardMatching(TRUE);

SYNCHRONIZE();

Handling unexpected events in Citrix

The CtxWindowEventExists and CtxScreenEventExists commands can be used to handle unexpected
window and screen events in Citrix scripts. When there is a possibi l i ty of unexpected dialogs appearing or
unexpected screen events occurring, you must modi fy the script to respond to the changes and cont inue
the load test.

For example, i f a script opens a M icrosoft Word document that resides on a network, and that document is
already open by another network user, an unexpected dialog box appears that prompts the user to choose
between cont inuing to open the document in read-only mode or to cancel i t . To prevent script fai lure,
modificat ions can be made in the script to handle the dialog boxes that appear in th is si tuat ion.

General ly, to handle unexpected events, you record two scripts. The first script contains a recording of the
expected events. The second script should include the unexpected events. Using the
CtxWindowEventExists and CtxScreenEventExists funct ions, create a condit ional block of code that
handles the dialogs that may appear.

Example

The fol lowing script example shows the addit ional script l ines that were added to handle a Word
document that is already open by another user on a network. The added l ines appear in boldface type.

/*
 * capSave11111-2.cpp

QALoad 5.02

26

 *
 * Script Converted on June 21, 2004 at 01:04:17 PM
 * Generated by Compuware QALoad convert module version 5.2.0 build 50
 *
 * This script contains support for the following middlewares:
 * - Citrix
 */

/* Converted using the following options:
 * General:
 * Line Split : 132 characters
 * Sleep Seconds : 1
 * Auto Checkpoints : No
 * Citrix
 * General Options :
 * Window Verification : Yes
 * Session Timeouts : Yes
 * Connect Timeout (s) : 60
 * Disconnect Timeout (s) : 60
 * Window Creation Timeout (s) : 30
 * Ping Timeout (s) : 20
 * Wait Point Timeout (s) : 30
 * Include Wait Points : Yes
 * Enable Counters : No
 * Include Unnamed Windows : Yes
 * Output Mode : Normal
 * Input Options :
 * Combine Keyboard Input : Yes
 * Combine Mouse Input : Yes
 */

#define CITRIX_CLIENT_VERSION "8.00.60000"
#define CITRIX_ICO_VERSION "2.4"
#define SCRIPT_VER 0x00000205UL

#include <stdio.h>
#include "smacro.h"

#include "do_citrix.h"

/* set function to call on abort*/
void abort_function(PLAYER_INFO *s_info);

#ifndef NULL
#define NULL 0
#endif

extern "C" int rhobot_script(PLAYER_INFO *s_info)
{
 /* Declare Variables */
 const char *CitrixServer = "qaccitrix";
 const int CitrixOutputMode = OUTPUT_MODE_NORMAL;

 /* Citrix Window Information Objects */
 CtxWI *CWI_1 = new CtxWI(0x1001c, "Warning !!", 107, 43, 427, 351);
 CtxWI *CWI_2 = new CtxWI(0x2001c, "Log On to Windows", 111, 65, 418, 285);
 CtxWI *CWI_3 = new CtxWI(0x5001c, "Please wait...", 111, 112, 418, 145);
 CtxWI *CWI_4 = new CtxWI(0x30030, "Citrix License Warning Notice", 125, 198,
397, 127);
 CtxWI *CWI_5 = new CtxWI(0x40030, "Citrix License Warning Notice", 125, 198,
397, 127);
 CtxWI *CWI_6 = new CtxWI(0x4002e, "UsrLogon.Cmd", 0, 456, 161, 25);
 CtxWI *CWI_7 = new CtxWI(0x1003a, "", -2, 452, 645, 31);
 CtxWI *CWI_8 = new CtxWI(0x10066, "ICA Seamless Host Agent", 0, 0, 391, 224);
 CtxWI *CWI_9 = new CtxWI(0x10052, "Program Manager", 0, 0, 641, 481);

QALoad 5.02

27

 CtxWI *CWI_10 = new CtxWI(0x1008c, "", 115, 0, 405, 457);
 CtxWI *CWI_11 = new CtxWI(0x1005a, "", 2, 49, 205, 408);
 CtxWI *CWI_12 = new CtxWI(0x2006a, "", 200, 186, 156, 287);
 CtxWI *CWI_13 = new CtxWI(0x10138, "", 112, 116, 416, 248);
 CtxWI *CWI_14 = new CtxWI(0x50036, "Microsoft Word", -4, -4, 649, 461);
 CtxWI *CWI_15 = new CtxWI(0x1017e, "Open", 19, 23, 602, 387);
 CtxWI *CWI_16 = new CtxWI(0x20174, "*Microsoft Word", -4, -4, 649, 461);
 CtxWI *CWI_17 = new CtxWI(0x10058, "", 113, 114, 305, 26);
 CtxWI *CWI_18 = new CtxWI(0x2013e, "Calculator", 66, 66, 261, 253);
 CtxWI *CWI_19 = new CtxWI(0x1005a, "", 2, 49, 205, 408);
 CtxWI *CWI_20 = new CtxWI(0x3006a, "Shut Down Windows", 111, 96, 418, 193);

 CtxWI *CWI_117 = new CtxWI(0x20172, "File In Use", 144, 127, 352, 179);
 CtxWI *CWI_118 = new CtxWI(0x30172, "11111111 (Read-Only) - Microsoft Word", -4,
-4, 649, 461);

 SET_ABORT_FUNCTION(abort_function);

 DEFINE_TRANS_TYPE("capSave11111-2.cpp");

 CitrixInit(1);

 /* Citrix replay settings */
 CtxSetConnectTimeout(60);
 CtxSetDisconnectTimeout(60);
 CtxSetWindowTimeout(30);
 CtxSetPingTimeout(20);
 CtxSetWaitPointTimeout(30);
 CtxSetWindowVerification(TRUE);
 CtxSetEnableCounters(FALSE);
 CtxSetWindowRetries(5, 5000);
 CtxSetEnableWildcardMatching(TRUE);

 SYNCHRONIZE();

 BEGIN_TRANSACTION();

 DO_SetTransactionStart();

 CtxConnect(CitrixServer, CitrixOutputMode);

 // Window CWI_1 ("Warning !!") created 1087837356.454

 CtxWaitForWindowCreate(CWI_1, 2125);

 DO_MSLEEP(1891);
 CtxPoint(246, 267); //1087837358.797

 DO_MSLEEP(453);
 CtxMouseDown(CWI_1, L_BUTTON, NONE, 246, 267); // 1087837358.797

 CtxMouseUp(CWI_1, L_BUTTON, NONE, 247, 267); //1087837359.032

 .
 .
 .

 DO_MSLEEP(63);
 // Window CWI_14 ("Microsoft Word") created 1087837397.390

 CtxWaitForWindowCreate(CWI_14, 141);

 DO_MSLEEP(78);
 CWI_14->setTitle("Document1 - Microsoft Word"); //1087837397.468

QALoad 5.02

28

 // Window CWI_13 ("") destroyed 1087837397.468

 DO_MSLEEP(2468);
 CtxPoint(37, 50); //1087837400.218

 DO_MSLEEP(282);
 CtxClick(CWI_14, 203, L_BUTTON, NONE); //1087837400.421

 // Window CWI_15 ("Open") created 1087837400.764

 CtxWaitForWindowCreate(CWI_15, 344);

 DO_MSLEEP(1656);
 CtxPoint(132, 99); //1087837402.671

 DO_MSLEEP(250);
 CtxDoubleClick(CWI_15); // 1087837402.874

 DO_MSLEEP(109);

 DO_MSLEEP(1953);
 CtxPoint(247, 197); //1087837404.827

 // Window CWI_15 ("Open") destroyed 1087837404.827

 if(CtxWindowEventExists(EVT_STR_CTXWINDOWCREATE,3000,CWI_16))
 BeginBlock();
 CtxPoint(337, 265); //1087837404.905

 // Window CWI_16 ("11111111 - Microsoft Word") created
1087837404.905

 CtxWaitForWindowCreate(CWI_16, 31);

 // Window CWI_14 ("Document1 - Microsoft Word") destroyed
1087837404.905

 DO_MSLEEP(7547);
 CtxPoint(628, 9); //1087837414.592

 DO_MSLEEP(2141);
 CtxClick(CWI_16, 281, L_BUTTON, NONE); //1087837414.873

 DO_MSLEEP(234);
 // Window CWI_16 ("11111111 - Microsoft Word") destroyed
1087837415.108

 CtxPoint(113, 93); //1087837418.779

 // Window CWI_17 ("") created 1087837418.779
 EndBlock()

///ReadOnly Code Start

 else
 BeginBlock();

 // Window CWI_117 ("File In Use") created 1087840076.599

 CtxWaitForWindowCreate(CWI_117, 578);

 DO_MSLEEP(2360);

QALoad 5.02

29

 CtxPoint(358, 283); //1087840079.068

 DO_MSLEEP(125);
 CtxClick(CWI_117, 281, L_BUTTON, NONE); //1087840079.365

 DO_MSLEEP(109);
 // Window CWI_117 ("File In Use") destroyed 1087840079.458

 // Window CWI_118 ("11111111 (Read-Only) - Microsoft Word") created
1087840079.521

 CtxWaitForWindowCreate(CWI_118, 63);

 // Window CWI_115 ("Document1 - Microsoft Word") destroyed
1087840079.521

 DO_MSLEEP(4766);
 CtxPoint(631, 3); //1087840084.490

 DO_MSLEEP(203);
 CtxClick(CWI_118, 250, L_BUTTON, NONE); //1087840084.740

 DO_MSLEEP(93);
 // Window CWI_118 ("11111111 (Read-Only) - Microsoft Word")
destroyed 1087840084.833

 DO_MSLEEP(2407);
 CtxPoint(34, 465); //1087840087.333

 EndBlock();

///ReadOnly Code End

 DO_MSLEEP(1063);

 DO_MSLEEP(484);
 CtxPoint(112, 93); //1087837419.654

 DO_MSLEEP(406);
 CtxDoubleClick(CWI_9); // 1087837419.904
 .
 .
 .

 // Window CWI_9 ("Program Manager") destroyed 1087837440.122

 // Window CWI_7 ("") destroyed 1087837440.138

 DO_SetTransactionCleanup();

 CtxDisconnect();

 END_TRANSACTION();

 delete CWI_1; // "Warning !!"
 delete CWI_2; // "Log On to Windows"
 delete CWI_3; // "Please wait..."
 delete CWI_4; // "Citrix License Warning Notice"
 delete CWI_5; // "Citrix License Warning Notice"
 delete CWI_6; // "UsrLogon.Cmd"
 delete CWI_7; // ""

QALoad 5.02

30

 delete CWI_8; // "ICA Seamless Host Agent"
 delete CWI_9; // "Program Manager"
 delete CWI_10; // ""
 delete CWI_11; // ""
 delete CWI_12; // ""
 delete CWI_13; // ""
 delete CWI_14; // "Microsoft Word"
 delete CWI_15; // "Open"
 delete CWI_16; // "11111111 - Microsoft Word"
 delete CWI_17; // ""
 delete CWI_18; // "Calculator"
 delete CWI_19; // ""
 delete CWI_20; // "Shut Down Windows"

 delete CWI_117; // "File In Use"
 delete CWI_118; // "11111111 (Read-Only) - Microsoft Word"

 CitrixUninit();

 REPORT(SUCCESS);
 EXIT();
 return(0);
}

void abort_function(PLAYER_INFO *s_info)
{
 RR__printf("Virtual User ABORTED.");

 CitrixUninit();

 EXIT();
}

Oracle Form s Server

Understanding the C++ script

Understanding the C++ script

Oracle Forms Server scripts are produced for Oracle Forms 4.5, 6.0, 6i, and 9i (Release 2 and later)
recordings. The C++ script executes OFS-related statements by passing the statements in the script DLL to
the OFS Java engine that performs the cl ient act ivi t ies and the cl ient communicat ion with the server.
Because the C++ script statements are direct ly t ied to corresponding methods in the OFS Java engine,
modificat ions to the script statements are l im ited to changing the property parameter values through
variabl izat ion.

An OFS C++ script contains three main sect ions: Connect ion, Appl icat ion Body, and Disconnect. The
QALoad transact ion loop includes al l three sect ions by default . The transact ion loop can be moved using
the guidel ines described in Moving the OFS transact ion loop. An internal auto checkpoint is created
during connect ion statements and transmission statements.

The C++ script statements are a condensed version of the Java-style script statements. The C++ script
statements show the GUI controls in the OFS appl icat ion and the control propert ies, which are either
control at tributes or act ivi t ies. For example:

ofsClickButton("BUTTON", 52, OFS_ENDMSG, 325);

In th is example, the user cl icks (property 325) a button (control ID 52). OFS_ENDMSG is a flag that
indicates that the GUI act ivi ty ends the current OFS Message.

QALoad also al lows OFS and WWW statements from a Universal session to be scripted in the C++ script ,
providing the abi l i ty to play back WWW and OFS statements.

QALoad 5.02

31

The fol lowing topics describe the three main sect ions of an Oracle Forms Server script in more detai l :

Connect ion statements
Appl icat ion statements
Disconnect statements

Connection statements

The connect ion script l ines in the C++ script vary depending on the type of Forms connect ion mode that is
act ive. You choose the Forms connect ion mode on the Oracle Form s Server Recording Opt ions dialog
box. Forms connect ion modes include server-side recording, HTTP, HTTPS, or socket.

Server-side recording is l im ited to appl icat ions that use Forms 9i (appl icat ions running in Oracle 9iAS
Release 2 and above). HTTP connect ion mode is avai lable for appl icat ions using Forms 9i and for
appl icat ions using the patched Forms 6i version configured with the HTTP servlet. HTTPS connect ion
mode is strict ly for SSL-enabled appl icat ions that use Forms 9i. Socket connect ion mode is for appl icat ions
that use Forms 6i and lower versions, such as Oracle 11i.

Server-side recording connections

Server-side recording mode contains only one connect ion statement. The funct ion that is used –
ofsSetServletMode – contains the l istener servlet value that you entered on the Oracle Form s Server
Recording Opt ions dialog box. The first parameter defines the HTTP or HTTPS configurat ion of the
appl icat ion environment. The second parameter defines the name of the Forms Listener Servlet used by the
appl icat ion. To connect, QALoad internal ly invokes Oracle’s dispatch cal ls using the two parameters.
Oracle’s proprietary classes provide the implementat ion for the HTTP or HTTPS connect ion. For example:

ofsSetServletMode(OFS_HTTP, "http://ntsap45b:7779/forms90/l90servlet");

HTTP connections

HTTP connect ion mode contains mult iple connect ion statements. To connect, QALoad internal ly performs
Java cal ls to accomplish the fol lowing tasks:

! Define HTTP header properties

! Connect to the Forms Servlet (an HTTP-GET request)

! Set the parameters of the Forms Listener Servlet

! Connect to the Forms Listener Servlet (an HTTP-GET request)

! Set additional HTTP header property for the Listener Servlet

! Connect to the Forms Listener Servlet (an HTTP-POST request). The last connection statement also initiates the
required Forms “handshake” and determines the Forms encryption used by the application environment.

For example:

ofsHTTPSetHdrProperty("User-Agent", "Java1.3.1.9");
ofsHTTPSetHdrProperty("Host", "ntsap45b:7779");
ofsHTTPSetHdrProperty("Accept", "text/html, image/gif, image/jpeg, *; q=.2, "*/*; q=.2"
);
ofsHTTPSetHdrProperty("Connection", "Keep-alive");
ofsHTTPConnectToFormsServlet(
"http://ntsap45b:7779/forms90/f90servlet?ifcmd=startsession");
ofsHTTPSetListenerServletParms("?ifcmd=getinfo&ifhost=C104444D01&ifip= "192.168.234.1"
);
ofsHTTPConnectToListenerServlet("http://ntsap45b:7779/forms90/l90servlet");
ofsHTTPSetHdrProperty("Content-type", "application/x-www-form-urlencoded");
ofsHTTPInitialFormsConnect();

HTTPS connections

HTTPS connect ion mode uses the same connect ion statements as HTTP mode. To connect, QALoad
internal ly performs the same tasks as the HTTP connect ion mode plus i t performs the SSL connect ion

QALoad 5.02

32

when the ofsHTTPSDoSSLHandshake funct ion is cal led. This statement is posit ioned in the script before
the ofsHTTPConnectToFormsServlet funct ion.

Socket connections

Socket mode contains only one connect ion statement. The funct ion that is used – ofsConnectToSocket –
contains the port number and the URL you entered on the OFS Recording Options dialog box to start OFS
capture. The port value is the port on which the Forms Server direct ly l istens for Forms traffic. To connect,
QALoad uses Java cal ls to open a Java socket using the parameters, in i t iate the required Forms "handshake” ,
and determine the Forms encrypt ion used by the appl icat ion environment. For example:

ofsConnectToSocket("10.10.0.167", 9002);

Application statements

The appl icat ion statements in the C++ script consist of property statements and transmission statements.
Property statements describe the attributes and act ivi t ies of GUI controls in the appl icat ion. Transmission
statements send the GUI controls and their propert ies as Forms Message data to the server. There is only
one transmission statement: ofsSendRecv. QALoad creates an in ternal auto checkpoint when th is statement
is executed. In the fol lowing example, the first two (property) statements set the locat ion and size of a
FormWindow GUI control. The ofsSendRecv statement sends the GUI control propert ies to the server.

ofsSetWindowLocation("FORMWINDOW", 6, OFS_ENDMSG, 135, 0, 0); //Property
ofsSetWindowSize("FORMWINDOW", 6, OFS_ENDMSG, 137, 650, 500); //Property
ofsSendRecv(1); //Transmission

Parameters of a property statement:

The parameters of a property statement are arranged in the fol lowing sequence:

1. Captured control name. If the name is not available, this value is the class name to which the control belongs.

2. Captured control ID.

3. Action type. This flag indicates if the property is to be added to the current Forms Message or if the property ends
the current Forms Message. During playback, each control is treated as a Forms Message. When the current
Message ends, QALoad translates the control and its properties to binary format. The valid values are:

 OFS_ADD – add the property to the current Message.

 OFS_ENDMSG – add the property to the current Message and end the Message.

 OFS_STARTSUBMSG – add the property of the succeeding nested Message to the current
Message.

4. Property ID. The Forms version-specific ID of the property.

5. Property value. Captured value of the property (optional)

6. Property value. Captured value of the property (optional)

For example:

ofsSetWindowSize("FORMWINDOW", 6, OFS_ENDMSG, 137, 650, 500);

In th is example, control ID 6, which belongs to GUI class FORMWINDOW, is resized (PROPERTY
137) to have coordinates 650 and 500. This marks the end of the current Message.

Forms environment statements:

The in it ial set of statements in the Forms script describes the Forms appl icat ion environment. In th is set,
the "version ” and the “ cmdline” propert ies are the most important. The version property shows the Forms
Bui lder version used by the appl icat ion. The version indicates the capabi l i t ies of the appl icat ion. For
example, some versions cannot support HTTP connect ions. The cmdline property shows the Forms

QALoad 5.02

33

configurat ion parameters passed to the server by the Forms applet. The parameter “ record=names”
indicates that the appl icat ion enables GUI control names to be captured. Control names are preferred in
mult i-threaded playback. The “ ICX” parameter indicates that the appl icat ion uses a Personal Home Page,
which requires that you supply OracleAppsLogin in formation on the Oracle Form s Server Convert
opt ions dialog box for the script to run successful ly.

In the sample script below, the Forms bui lder version is 90290 (the version used in Oracle 9iAS Release 2,
unpatched). The cmdline property shows “ record=forms” which defaults “ record=names” . The cmdline
property does not have the “ ICX” t icket parameter.

ofsSetInitialVersion("RUNFORM", 1, OFS_ADD, 268, "90290");
ofsSetScreenResolution("RUNFORM", 1, OFS_ADD, 263, 96, 96);
ofsSetDisplaySize("RUNFORM", 1, OFS_ADD, 264, 1024, 768);
ofsInitSessionCmdLine("RUNFORM", 1, OFS_ADD, 265,
 "server module=test1.fmx userid= sso_userid= debug=no buffer_records=no debug_"
 "messages=no array=no query_only=no quiet=yes render=no host=ntsap45b.prodti.com"
 "puware.com port= record=forms tracegroup=debug log=run1 term=");
ofsSetColorDepth("RUNFORM", 1, OFS_ADD, 266, "256");
ofsColorAdd("RUNFORM", 1, OFS_ADD, 284, "0");
ofsColorAdd("RUNFORM", 1, OFS_ADD, 284, "8421504");
ofsSetFontName("RUNFORM", 1, OFS_ADD, 383, "Dialog");
ofsSetFontSize("RUNFORM", 1, OFS_ADD, 377, "900");
ofsSetFontStyle("RUNFORM", 1, OFS_ADD, 378, "0");
ofsSetFontWeight("RUNFORM", 1, OFS_ADD, 379, "0");
ofsSetScaleInfo("RUNFORM", 1, OFS_ADD, 267, 8, 20);
ofsSetNoRequiredVAList("RUNFORM", 1, OFS_ADD, 291);
ofsSetPropertyString("RUNFORM", 1, OFS_ENDMSG, 530, "America/New_York");
ofsSendRecv(1);
//ClientSeqNo=1|CapTime=1086884188.281|MsgCount=1

Sending messages to the server:

The ofsSendRecv statement sends the accumulated GUI controls and their propert ies to the Forms Server as
binary data. This statement represents the point at which the cl ient sends a Forms Terminal Message to the
server. In Oracle Forms, the cl ient and the server must end each data block with a Terminal Message before
any transmission occurs.

In ternal ly, QALoad varies the binary data transmission depending on the connect ion mode:

! For server-side recording mode, QALoad sends the binary data by invoking Oracle’s dispatch calls. Oracle’s own
classes provide the implementation for the HTTP transmission.

! For HTTP or HTTPS mode, QALoad wraps the binary data inside an HTTP stream and invokes Java’s HTTP calls.

! For socket mode, QALoad sends the binary data directly to the Java socket opened at the connection point.

The ofsSendRecv statement has one parameter: the response code of the captured Terminal Message. The
possible values for th is parameter are 1 (add), 2 (update), and 3 (close). Typical ly, when the response code
is 3, the Forms Server reacts by removing the GUI controls associated with the cl ient message from the
server cache.

A comment l ine appears after each ofsSendRecv statement that contains script-tracking in formation. The
information on the comment l ine is also found in the capture fi le in each ofsSendRecv capture l ine. The
comment l ine shows the relat ive sequence of each cl ient request, as represented by a Terminal Message,
from the start of the appl icat ion (e.g. Cl ientSeqNo=1). The comment l ine also shows the t im ing mark of
the captured Terminal Message (e.g. CapTime=1086884188.281) and the number of Forms messages
contained in the request (e.g. MsgCount=1). The number of Messages can be veri fied by count ing the
preceding ENDMSG and STARTSUBMSG flags in the request block. The comment l ine is useful for
debugging playback issues because i t readi ly shows the cl ient request sequence number where the issue is
occurring.

Getting the server reply:

QALoad 5.02

34

During the execut ion of ofsSendRecv, QALoad also obtains the server’s reply and translates the binary
Forms data in to Forms control values and control propert ies. The values are also writ ten to the playback
log fi le (in capture fi le format) i f script logging is enabled. The fol lowing sample is a server reply:

VU 0 : M|S|2|0|1
VU 0 : P|S|322|java.lang.Integer|0|151000320
VU 0 : P|S|279|java.lang.Boolean|0|false
VU 0 : P|S|525|java.lang.String|AMERICAN_AMERICA.WE8MSWIN1252
VU 0 : T|S|1|ServerSeqNo=1|MsgCount=76

The first l ine indicates the start of a Forms Message from the server (M |S). The th ird parameter is an act ion
code (1= add, 2= update, 3= delete, 4= get property value). The fourth parameter is the Class Code of the
control (0 = root class). The fi fth parameter is the Control ID (1= RunForm).

The second, th ird and fourth l ines are property l ines related to the above Forms Message from the server
(P|S). The th ird parameter of each l ine is the property ID (322). The fourth parameter is the data type of
th is property (java.lang.In teger). The fi fth parameter is the data value. If the value is 0, the data value is in
a sixth parameter (false).

The th ird l ine is the terminal message l ine from the server (T|S). The th ird parameter is the response code
associated with the terminal message (1= add, 2= update, = close). The fourth parameter is the relat ive
sequence of the server reply, as represented by a Terminal Message, from the start of the appl icat ion (e.g.
ServerSeqNo= 1). The fi fth parameter is the number of Forms messages contained in the reply (e.g.
MsgCount = 1). The number of Messages may be veri fied by count ing the preceding M|S flags in the reply
block. The fourth and fi fth parameters are script-tracking in formation, which can be useful for debugging
a playback issue. If logging is enabled, the log fi le shows the tracking in formation, which can make the
comparison between server responses and captured responses easier.

Processing large data and delayed response scenarios:

When HTTP or HTTPS connect ion mode is used, Forms data is wrapped inside the HTTP reply stream.
QALoad checks the HTTP header of the reply before processing the Forms data. The HTTP header
sometimes indicates that the cl ient needs to perform addit ional HTTP POST requests to obtain the
complete Forms data. This indicat ion occurs when the content-length of the reply is 64000 (a large data
scenario), or the content-type is "text/plain ” and the HTTP header contains an “ i ferror: ” string (a delayed
response/re-post scenario). QALoad performs the necessary POST requests to obtain the complete reply
data, and then translates the accumulated reply data to Forms controls and propert ies.

Disconnect statements

The disconnect script l ines vary depending on the Forms connect ion mode.

! In server-side recording mode, the ofsServerSideDisconnect script statement internally invokes Oracle’s dispatch
calls to disconnect.

! In HTTP mode, the ofsHTTPDisconnect statement internally makes Java calls to disconnect the main URL
connection from the servlet.

! In socket mode, the ofsSocketDisconnect statement closes the socket on which the Forms Server listens for traffic.

Using script logging as a debugging tool

You can debug a playback issue in a C++ script by enabl ing replay logging. The opt ion for enabl ing replay
logging is located on the Script Assignment tab of the Conductor. For more in formation about enabl ing log
fi le generat ion, see Debugging a script .

In Java-based scripts, logging is not enabled by default . To enable logging, change the parameter of the
Logging method to true in the script . For example:

QALoad 5.02

35

oracleForms.Logging(true);

When logging is enabled, QALoad writes the cl ient requests and server repl ies to the playback log fi le in the
same format as the capture fi le. The playback log fi le is found in the \QALoad\LogFiles directory. When
there is an issue during playback, such as the server not responding to a cl ient request, you can compare
the capture fi les and check the differences in the server reply data. Both the capture fi le and the log fi le
contain tracking in format ion appended to the server’s terminal messages. The tracking data contains the
relat ive sequence number of the server reply from the start of the Forms session and the t im ing mark. The
tracking data also shows the number of Forms messages contained in the reply block. The number of
messages are based on the number of “ M|S” l ines prior to the “ T|S” l ines.

In the fol lowing example, the first set of statements shows the logged statements and the second set of
statements shows the captured statements. The ServerSeqNo value shows that th is is the 8th reply from the
server. The MsgCount value of 1 shows that only one Forms Message is included in th is reply block.

1087419810.000|ofsShowWindow|WINDOW_START_APP|11|OFS_ENDMSG|173|PROPERTY_VISIBLE|java.lang.B
oolean|true
1087419810.000|ofsSendRecv|1|ClientSeqNo=8|CapTime=1087419810.000|MsgCount=1
1087419810.000|M|S|2|0|30
1087419810.000|P|S|135|java.awt.Point|0|java.awt.Point[x=0,y=0]
1087419810.000|P|S|137|java.awt.Point|0|java.awt.Point[x=706,y=464]
1087419810.000|P|S|139|java.awt.Point|0|java.awt.Point[x=0,y=0]
1087419810.000T|S|1|ServerSeqNo=8|CapTime=1087419810.000|MsgCount=1

1087402349.296|ofsShowWindow|WINDOW_START_APP|11|OFS_ENDMSG|173|PROPERTY_VISIBLE|java.lang.B
oolean|true
1087402349.296|ofsSendRecv|1|ClientSeqNo=8|CapTime=1087402349.296|MsgCount=1
1087402349.296|M|S|2|0|30
1087402349.296|P|S|135|java.awt.Point|0|java.awt.Point[x=0,y=0]
1087402349.296|P|S|137|java.awt.Point|0|java.awt.Point[x=706,y=464]
1087402349.296|P|S|139|java.awt.Point|0|java.awt.Point[x=0,y=0]
1087402349.296|T|S|1|ServerSeqNo=8|CapTime=1087402349.296|MsgCount=1

See Also

Playback error codes for OFS

Moving the OFS transact ion loop

To enable movement of the QALoad transact ion loop in the C++ script , you must fi rst record a ful l business
transact ion and a part ial business transact ion. The business transact ion is the act ivi ty that you would l ike
to repeat during QALoad playback. Insert QALoad capture comments (using the Insert Com m and button
on the Recording toolbar) at the start and end of a business transact ion. These comments wi l l help you
find the spots in the script where you would l ike to reposit ion the BEGIN_TRANSACTION() and
END_TRANSACTION() statements. Then re-start the business transact ion.

QALoad's OFS script presents a sequence of Forms GUI objects. The GUI objects contain context
dependencies. For example, when a window is opened, the buttons, text fields and edit boxes inside that
window are logical ly dependent on the state of that window. When only one business transact ion is
captured and the corresponding script ’s transact ion loop is moved, the sequence of the GUI objects is
broken during the second i terat ion of the transact ion loop. The broken sequence results in a broken
context, which causes the server to respond unpredictably during playback on the second and subsequent
i terat ions of the transact ion loop. When the business transact ion is restarted during capture, the Forms
GUI objects that compose the new transact ion are used to anchor in to the new transact ion loop without
breaking the context dependencies of GUI objects.

When modifying the script , use the comment l ines as guides in moving the END_TRANSACTION() and
BEGIN_TRANSACTION() statements. Ensure that there is a contextual flow from the new posit ion of the

QALoad 5.02

36

END_TRANSACTION() statement to the new posit ion of the BEGIN_TRANSACTION() statement. The set of
GUI objects that belong to the ofsSendRecv() statement just before the new END_TRANSACTION()
statement must be the same as the set of GUI objects that belong to the ofsSendRecv() statement prior to
the new BEGIN_TRANSACTION() statement.

During playback, modify the Conductor sett ing for Transact ion Pacing on the Script Assignment tab to
al low the database to process each new business transact ion.

The fol lowing example shows a modified OFS transact ion loop:

New position of the BEGIN_TRANSACTION statement

/*
NewSales
*/

DO_SLEEP(13);
ofsEdit("ORDER_SOLD_TO_0", 562, OFS_ADD, 131, "B");
ofsSetSelection("ORDER_SOLD_TO_0", 562, OFS_ADD, 195, 1, 1);
ofsSetCursorPosition("ORDER_SOLD_TO_0", 562, OFS_ENDMSG, 193, "1");
ofsIndexKey("ORDER_SOLD_TO_0", 562, OFS_ENDMSG, 175, 97, 0);

DO_SLEEP(6);
ofsSendRecv(1); //ClientSeqNo=31|MsgCount=2|1093981339.921
BEGIN_TRANSACTION();

ofsEdit("ORDER_SOLD_TO_0", 562, OFS_ADD, 131, "Business World");
ofsSetSelection("ORDER_SOLD_TO_0", 562, OFS_ADD, 195, 14, 14);
ofsSetCursorPosition("ORDER_SOLD_TO_0", 562, OFS_ENDMSG, 193, "14");
ofsRemoveFocus("ORDER_SOLD_TO_0", 562, OFS_ENDMSG, 174);
ofsSetSelection("ORDER_CUSTOMER_NUMBER_0", 564, OFS_ADD, 195, 0, 0);
ofsSetCursorPosition("ORDER_CUSTOMER_NUMBER_0", 564, OFS_ENDMSG, 193, "0");
ofsFocus("ORDER_CUSTOMER_NUMBER_0", 564, OFS_ENDMSG, 174);

DO_SLEEP(6);
ofsSendRecv(1); //ClientSeqNo=32|MsgCount=4|1093981347.296

New position of the END_TRANSACTION statement

/*
EndTrans
*/

DO_SLEEP(39);
ofsSendRecv(1); //ClientSeqNo=61|MsgCount=4|1093981458.031

ofsSetCursorPosition("ORDER_SOLD_TO_0", 562, OFS_ENDMSG, 193, "14");
ofsSelectMenuItem("Sales Orders", 257, OFS_ENDMSG, 477, "MENU_11059");

DO_SLEEP(26);
ofsSendRecv(1); //ClientSeqNo=62|MsgCount=2|1093981485.265

ofsEdit("ORDER_SOLD_TO_0", 562, OFS_ADD, 131, "B");
ofsSetSelection("ORDER_SOLD_TO_0", 562, OFS_ADD, 195, 1, 1);
ofsSetCursorPosition("ORDER_SOLD_TO_0", 562, OFS_ENDMSG, 193, "1");
ofsIndexKey("ORDER_SOLD_TO_0", 562, OFS_ENDMSG, 175, 97, 0);

DO_SLEEP(3);
ofsSendRecv(1); //ClientSeqNo=63|MsgCount=2|1093981488.437
END_TRANSACTION();

ofsEdit("ORDER_SOLD_TO_0", 562, OFS_ADD, 131, "Business World");
ofsSetSelection("ORDER_SOLD_TO_0", 562, OFS_ADD, 195, 14, 14);
ofsSetCursorPosition("ORDER_SOLD_TO_0", 562, OFS_ENDMSG, 193, "14");
ofsIndexSKey("ORDER_SOLD_TO_0", 562, OFS_ENDMSG, 176, 10, 0);

DO_SLEEP(13);
ofsSendRecv(1); //ClientSeqNo=64|MsgCount=2|1093981502.640

QALoad 5.02

37

Tips:
During capture, the OFS configuration parameter "record=names" must be enabled to produce control names
that may be included in the converted script. Control names persist throughout the Forms session, unlike
control IDs, whose values may change at runtime. Add the “ record=names” parameter in the Formsweb.cfg
file or add this parameter to the startup servlet URL. Control IDs can create problems when the transaction
loop is moved. Some of the control IDs that have been instantiated by the server prior to the new transaction
loop lose context during iterations of the new loop. For example, in a second loop iteration, the server
assumes that these client controls are new, generates new control IDs, and eventually cannot find the proper
context. Then the server stops responding. If control names are used, Forms objects that have been
instantiated before the new transaction loop are maintained through all iterations of the loop because the
control name persists throughout the application session.
During playback, ensure that the sleep factor is at 100% and that the transaction pacing is set to a large
enough value for the server to process the business transaction that is contained in the new loop. These
options can be set on the Script Assignment tab of the Conductor.

OFS and WWW Universal sessions

You can record with a Universal session to capture both the OFS and WWW transact ions and merge the
two sets of t ransact ions in to one script . The captured WWW statements contain non-servlet, non-Forms
data such as GIF objects, whi le the captured OFS statements contain the Forms data.

Universal script ing for OFS-WWW sessions is avai lable in C++ format only. After conversion, the WWW
statements do not appear in visual scripts.

Note: The only Universal session combination that is available for Oracle Forms Server is the combination
of WWW and Oracle Forms Server.

When an Oracle Appl icat ions login is captured, the login can be scripted using the OracleAppsLogin
statement or the ofsSetICXTicket statement. Compuware recommends that you use ofsSetICXTicket.

When OracleAppsLogin is used, the login is performed twice: once by the scripted DO_Http statement for
the WWW act ions and again by OracleAppsLogin. To prevent dupl icate logins, you must comment out the
DO_Http (WWW middleware) statement.

When ofsSetICXTicket is used, the login is performed just once. This statement al lows the WWW login to
execute, extracts the ICX t icket from the server reply, and passes the ICX t icket to the Forms session.

To use ofsSetICXTicket, you must modify the script .

To capt ure an Oracle Appl icat ions login w i t h of sSet ICXTicket :

1. Add the following variable declaration statements to the top of the script:
char *p;
char ICX_Ticket[100];
char *pTicket;

2. In the *.postcapweb file, find the HTTP request that returns the ICX ticket. The reply should contain a string that
indicates the ICX ticket value, such as "ICX_TICKET=". Note the left and right characters that delimit the ICX ticket
value. In the example in step 4, the left delimiter is "icx_ticket='" and the right delimiter is "'".

3. In the script, find the matching request line for the HTTP request.

4. After the matching HTTP request line, add the DO_GetUniqueString statement using your chosen delimiters. For
example:
p = DO_GetUniqueString("icx_ticket='", "'");

5. Add script lines that copy the extracted value into your script variables.
strcpy(ICX_Ticket, p);
pTicket=ICX_Ticket;

QALoad 5.02

38

6. (optional) Verify the ICX ticket value.
RR__printf("ICX_Ticket=\"%s\"\n", ICX_Ticket);

7. Add the script line that passes the value of the ICX ticket to the OFS statement ofsInitSessionCmdLine.
ofsSetICXTicket(&pTicket);

SAP 6.x

Required commands

Certain commands must be present in an SAP script for i t to run successful ly. These commands are created
automatical ly during the conversion process. Most of the commands exist before the
BEGIN_TRANSACTION statement. The required commands include:

SET_ABORT_FUNCTION(abort function);

DEFINE_TRANS_TYPE("capture.cpp");

HRESULT hr = CoInitialize(0);

if(hr != ERROR_SUCCESS)
 RR__FailedMsg(s_info, "ERROR initializing COM");

SAPGuiSetCheckScreenWildcard(‘*’);
SYNCHRONIZE();

Required commands for transaction restarting

When transact ion restart ing is enabled in the Conductor for an SAP script , the fol lowing commands,
which are automatical ly added by QALoad during script conversion, must exist for the script to run:

SAPGuiApplication(RegisterROT);
SAPGuiApplication(RevokeROT);
SAPGui_error_handler(s_info, buffer);

The SAPGuiApplicat ion command properly registers and removes the script 's SAP GUI usage on the
Runtime Object Table (ROT). If a transact ion fai ls, these act ions are taken to start and clean up the SAP
environment.

Note: Do not call RR__FailedMsg in an SAP script if the script includes a restart transaction operation.
SAPGui_error_handler can be called with the same parameters as RR__FailedMsg to output a fatal error
message while still allowing a proper clean up of the current transaction before restarting the transaction.

Error handl ing and report ing

A try/catch block is automatical ly generated for the commands between the BEGIN_TRANSACTION and
END_TRANSACTION statements. This construct provides error handl ing and report ing from the script .

BEGIN_TRANSACTION();

try{

 SAPGuiConnect(s_info,"qacsapdb2");
 SAPGuiVerCheckStr("6204.119.32");

 //Set SapApplication = CreateObject("Sapgui.ScripingCtrl.1")
 //SapApplication.OpenConnection ("qacsapdb")
 //Set Session = SapApplication.Children(0).Children(0)

 DO_SLEEP(3);

 SAPGuiPropIdStr("wnd[0]");
 SAPGuiCmd3(GuiMainWindow, ResizeWorkingPane, 83, 24, false);

 DO_SLEEP(6);

 SAPGuiPropIdStr("wnd[0]/usr/txtRSYST-BNAME");
 SAPGuiCmd1(GuiTextField,PutText,"qaload1");

QALoad 5.02

39

 SAPGuiPropIdStr("wnd[0]/usr/pwdRSYST-BCODE");
 SAPGuiCmd1Pwd(GuiPasswordField, PutText,"~encr~1211616261");

 SAPGuiCmd0(GuiPasswordField,SetFocus);
 SAPGuiCmd1(GuiPasswordField,PutCaretPosition,3);

 SAPGuiPropIdStr("wnd[0]");
 SAPGuiCmd1(GuiMainWindow,SendVKey,0);
 SAPGuiCheckScreen("S000","SAPMSYST","SAP");

 ...

 DO_SLEEP(10);

 SAPGuiPropIdStr("wnd[0]/usr/cntlIMAGE_CONTAINER/shellcont/shell/shellcont[0]/shell");
 SAPGuiCmd1(GuiCtrlTree, ExpandNode, "0000000003");
 SAPGuiCmd1(GuiCtrlTree, PutSelectedNode, "0000000004");
 SAPGuiCmd1(GuiCtrlTree, PutTopNode, "Favo");
 SAPGuiCmd1(GuiCtrlTree, DoubleClickNode, "0000000004");
 SAPGuiCheckScreen("SESSION_MANAGER", "SAPLSMTR_NAVIGATION", "SAP Easy Access");
 SAPGuiPropIdStr("wnd[1]/usr/btnSPOP-OPTION1");
 SAPGuiCmd0(GuiButton,Press);
 SAPGuiCheckScreen("SESSION_MANAGER","SAPLSPO1","Log Off");

} // end try

catch (_com_error e){
 char buffer[1024];
 sprintf (buffer," EXCEPTION 0x%x %s for VU(%i)\n",e.Error(),
 (char *)e.Description(), S_task_id);
 RR__FailedMsg(s_info,buffer);

} // end catch

END_TRANSACTION();

To include the log on with in the transact ion loop, move the SAPGuiConnect cal l inside the try block as
shown in the fol lowing example:

SET_ABORT_FUNCTION(abort_function);
DEFINE_TRANS_TYPE("capture.cpp");
RESULT hr = CoInitialize(0);

if(hr != ERROR_SUCCESS)
 RR__FailedMsg(s_info,"ERROR initializing COM");

SAPGuiSetCheckScreenWildcard('*');

SYNCHRONIZE();

BEGIN_TRANSACTION();

try{

 SAPGuiConnect(s_info,"qacsapdb2");
 SAPGuiVerCheckStr("6204.119.32");
 ...
 SAPGuiPropIdStr("wnd[1]/usr/btnSPOP-OPTION1");
 SAPGuiCmd0(GuiButton,Press);
 SAPGuiCheckScreen("SESSION_MANAGER","SAPLSPO1","Log Off");

} // end try

catch (_com_error e){

 char buffer[1024];
 sprintf(buffer," EXCEPTION 0x%x %s for VU(%i)\n",e.Error(),
 (char *)e.Description(), S_task_id);
 RR__FailedMsg(s_info,buffer);

} // end catch

END_TRANSACTION();

QALoad 5.02

40

To include the log on outside the transact ion loop, move the log off sect ion so that i t fol lows the
END_TRANSACTION statement. However, ensure that the recording with in the transact ion loop begins
and ends in the same locat ion in the menu system. For example:

SET_ABORT_FUNCTION(abort_function);

DEFINE_TRANS_TYPE("capture.cpp");

HRESULT hr = CoInitialize(0);

if(hr != ERROR_SUCCESS)
 RR__FailedMsg(s_info,"ERROR initializing COM");
SAPGuiSetCheckScreenWildcard('*');

SYNCHRONIZE();

SAPGuiConnect(s_info,"qacsapdb2");

SAPGuiPropIdStr("wnd[0]/usr/txtRSYST-BNAME");
SAPGuiCmd1(GuiTextField,PutText,"qaload1");

SAPGuiPropIdStr("wnd[0]/usr/pwdRSYST-BCODE");
SAPGuiCmd1Pwd(GuiPasswordField,PutText,"~encr~1211616261");
SAPGuiCmd0(GuiPasswordField,SetFocus);
SAPGuiCmd1(GuiPasswordField,PutCaretPosition,3);

SAPGuiPropIdStr("wnd[0]");
SAPGuiCmd1(GuiMainWindow,SendVKey,0);
SAPGuiCheckScreen("S000","SAPMSYST","SAP");

BEGIN_TRANSACTION();

try{
 SAPGuiVerCheckStr("6204.119.32");
 ...
} // end try

catch (_com_error e){
 char buffer[1024];
 sprintf(buffer," EXCEPTION 0x%x %s for VU(%i)\n",e.Error(),
 (char *)e.Description(), S_task_id);
 RR__FailedMsg(s_info,buffer);

} // end catch

END_TRANSACTION();

SAPGuiPropIdStr("wnd[1]/usr/btnSPOP-OPTION1");
SAPGuiCmd0(GuiButton,Press);
SAPGuiCheckScreen("SESSION_MANAGER","SAPLSPO1","Log Off");

The fol lowing example adds custom counters to obtain and save the SAP Server in formation that is
avai lable through the SAP Gui Script ing API. Not ice that SAPGuiSessionInfo is cal led before logging off ,
because the data is not avai lable after logging off.

int id1, id2, id3, id4;

long lRoundTrips,lFlushes;

// "Counter Group", "Counter Name", "Counter Units
// (Optional)", Data Type, Counter Type.

id1 = DEFINE_COUNTER("Cumulative Group", "Cumulative RoundTrips", 0, DATA_LONG,
COUNTER_CUMULATIVE);

id2 = DEFINE_COUNTER("Cumulative Group", "Cumulative Flushes", 0, DATA_LONG,
COUNTER_CUMULATIVE);

id3 = DEFINE_COUNTER("Instance Group", "Instance RoundTrips", 0, DATA_LONG,
COUNTER_INSTANCE);

QALoad 5.02

41

id4 = DEFINE_COUNTER("Instance Group", "Instance Flushes", 0, DATA_LONG, COUNTER_INSTANCE);

SYNCHRONIZE();

BEGIN_TRANSACTION();

try{
 SAPGuiConnect(s_info,"qacsapdb2");
 ...
 SAPGuiSessionInfo(GetRoundTrips,lRoundTrips);
 SAPGuiSessionInfo(GetFlushes,lFlushes);
 SAPGuiPropIdStr("wnd[1]/usr/btnSPOP-OPTION1");
 SAPGuiCmd0(GuiButton,Press);
 SAPGuiCheckScreen("SESSION_MANAGER", "SAPLSPO1", "Log Off");

 COUNTER_VALUE(id1,lRoundTrips);
 COUNTER_VALUE(id2,lFlushes);
 COUNTER_VALUE(id3,lRoundTrips);
 COUNTER_VALUE(id4,lFlushes);

} // end try

catch (_com_error e){
 char buffer[1024];
 sprintf(buffer,"SAP: EXCEPTION 0x%x %s for VU(%i)\n",e.Error(), (char *)e.Description(),
S_task_id);

 RR__FailedMsg(s_info,buffer);

} // end catch

END_TRANSACTION();

Handling mult iple logons

You may need to modify your script to handle mult iple logons when the recording scenario differs from
the run-t ime scenario. For example, i f when you record, no users are logged on to the SAP environment
and when you run the script , users are already logged on, the script may fai l . To work around th is issue,
you can use the SAPGuiPropIdStrExists and SAPGuiPropIdStrExistsEnd commands to handle either
scenario. This technique works by checking for the mult iple logon dialog box from SAP and select ing the
Cont inue opt ion.

The fol lowing example demonstrates the usage of the SAPGuiPropIdStrExists and
SAPGuiPropIdStrExistsEnd commands to handle mult iple logons:

...

SAPGuiCheckScreen("S000","SAPMSYST","SAP");
SAPGuiPropIdStrExists("wnd[1]/usr/radMULTI_LOGON_OPT2");

 DO_SLEEP(24);

 SAPGuiCmd0(GuiRadioButton,Select);
 SAPGuiCmd0(GuiRadioButton,SetFocus);
 SAPGuiPropIdStr("wnd[1]/tbar[0]/btn[0]");
 SAPGuiCmd0(GuiButton,Press);
 SAPGuiCheckScreen("S000","SAPMSYST","License Information for Multiple Logon");

SAPGuiPropIdStrExistsEnd("wnd[1]/usr/ radMULTI_LOGON_OPT2");

...

Checking the SAP status bar

The SAP status bar displays error and status messages, as shown in the fol lowing figure.

QALoad 5.02

42

You can use the SAPGuiCheckStatusbar command to test for certain status responses in the SAP
environment.

The SAPGuiCheckStatusbar command is used in the fol lowing script example:

...
SAPGuiPropIdStr("wnd[0]");
SAPGuiCmd1(GuiMainWindow, SendVKey, 0);
SAPGuiCheckScreen("S000", "SAPMSYST", "SAP");
SAPGuiCmd3(GuiMainWindow, ResizeWorkingPane, 94, 24, false);

//SAPGuiCheckStatusbar returns TRUE if the message is found
//and FALSE if not found

BOOL bRetSts = SAPGuiCheckStatusbar("wnd[0]/sbar", "E: Make an entry in all required
fields");

if (bRetSts)
 RR__printf(" True\n");

else
 RR__printf(" False\n");

...

Object l i fe span

Whenever a script is run, al l objects on the SAP GUI window are deleted and re-created. These objects,
which are created in the SAP environment and can disappear without user in teract ion, can cause script
fai lure i f the script references the objects after they have disappeared.

For more troubleshoot ing in formation, refer to SAP’s publ icat ion t i t led “ SAP GUI Scripting API for the
Windows and Java Platforms” .

Tuxedo

Managing Tuxedo buffers

Tuxedo cl ients use typed buffers to transmit data between Tuxedo cl ients and servers. You can create a
typed buffer by using the tpal loc command and specifying the buffer type and size. QALoad supports the
fol lowing Tuxedo buffer types:

! FML

! FML32

QALoad 5.02

43

! STRING

! CARRAY

! X_OCTET

! VIEW

! VIEW32

For example, to al locate a 4096 byte FML buffer on the cl ient, use the fol lowing code:

char *buffer;
buffer = tpalloc("FML", "", 4096);

To place data in to the buffer, use the fol lowing code:

FChg(buffer, fieldid, oc, "data", 4);

Where buffer is the Tuxedo-al located (tpal loc) buffer, fieldid is the field value, and oc is the field
occurrence.

To simpli fy buffer management and provide more comprehensive error checking, QALoad Tuxedo scripts
automatical ly handle buffer management. Instead of having to work with buffer pointers, QALoad ’s
Tuxedo commands h ide the buffer pointers by managing an array of buffers behind the scenes. The
commands ident i fy buffers using a mnemonic name such as Buf1, which translates in to the array index,
rather than a buffer pointer.

The fol lowing example shows how a Tuxedo script manages a buffer al locat ion for the Do_Tuxtpcal l
command.

Do_Tuxtpalloc(Buf1 , "FML", 1024);
Do_TuxFinit(Buf1);
Do_TuxFMLData(test_carray, 1, "abcdefg");
Do_TuxFMLData(test_long, 1, "12345");
Do_Tuxtpcall("OPEN_TEST1", Buf1 , Buf2 , 0);

In the example above, the Do_Tuxtpal loc command al locates a buffer named Buf1. Do_TuxFin it clears any
previous contents of Buf1. The Do_TuxFMLData commands load data in to the most recent buffer that
Do_TuxFin it clears; therefore, the Do_TuxFMLData parameter l ist does not include Buf1.

Fol lowing the setup of the buffer, the Do_Tuxtpcal l makes a service cal l to OPEN_TEST1. The parameter l ist
of the Do_Tuxtpcal l includes an input and output buffer. In the example above, the input buffer is Buf1
and the output buffer is Buf2. The final parameter of zero indicates that special Tuxedo flags are not
specified. QALoad automatical ly determines i f a buffer type is FML or FML32 and cal ls the appropriate
Tuxedo API rout ines.

Note that a command is not avai lable to free a previously al located buffer. When the script executes a
Do_Tuxtpal loc command, QALoad checks to see whether the buffer associated with a specified buffer index
was previously al located. If QALoad determines that the buffer was previously al located, i t frees the buffer
using Tuxedo’s tpfree prior to al locat ing i t .

Passing data between Tuxedo commands

When a Tuxedo cl ient appl icat ion executes, i t may pass data from one API cal l to another. A script that
needs to emulate an appl icat ion needs to pass data in the same way the appl icat ion passes data. The
fol lowing example shows how to use QALoad commands to pass output data from one Do_Tuxtpcal l as
input to another Do_Tuxtpcal l .

/* Declare Variables for Account ID and encode Account ID */

char AcctID[16];

char EncAcctID[32];

/* Set up input buffer with Account Name for retrieving Account ID */

Do_Tuxtpalloc(Buf1 , "FML", 1024);

QALoad 5.02

44

Do_Tuxtpalloc(Buf2 , "FML", 1024);

Do_TuxFinit(Buf1);

Do_TuxFMLData(ACCT_NAME, 0, "Gerard Plumbing");

/* Retrieve Account ID using the name */

Do_Tuxtpcall("getAcctIdFromName", Buf1 , Buf2 , 0);

/* Extract the Account id from the output buffer */

Do_TuxgetFMLData(Buf2 , ACCT_ID, 0, AcctID);

/* Account id may be special characters, so encode it */

Do_Tuxencode(EncAcctID, AcctID, strlen(AcctID));

/* Load up the buffer for the next call */

Do_TuxFinit(Buf1);

Do_TuxFMLData(ACCT_ID, 0, EncAcctID);

/* Call to get account detail */

Do_Tuxtpcall("getAcctDetail", Buf1 , Buf2 , 0);

In the example above, the first Do_Tuxtpcal l retrieves an account ID from the account name. The account
name is placed into Buf1 (input buffer), and the account ID is placed into Buf2 (output buffer).

The account ID is retreived from Buf2 using the Do_TuxgetFMLData command. The Do_TuxgetFMLData
command retrieves data from a typed buffer using the Tuxedo field and occurrence ident i fiers.

When data is returned using the Do_TuxgetFMLData command, i t is returned in i ts in ternal form, without
encoding. Yet, the Do_TuxFMLData command, which loads data in to the Tuxedo buffers, requires that
special characters are encoded. Therefore, the Do_Tuxencode command is used to encode the data before
using i t as input to the second Do_Tuxtpcal l .

You can also use the Do_TuxgetTuxBuffer command to work with data from a Tuxedo buffer. The
Do_TuxgetTuxBuffer command returns the actual address of a Tuxedo buffer given a buffer name. Once
you have the pointer to the buffer, you can use nat ive Tuxedo commands such as Fadd, FChg, etc. for FML
or memcpy for CARRAY-type data to input data in to or retrieve data from a Tuxedo buffer.

VIEW and VIEW32 buffers are accessed using compiler macros automatical ly generated in QALoad ’s
Convert faci l i ty. For example, a view cal led testVw16 is accessed using the macro VW_testVw16(buffer
_index) as shown in the sample below.

/* Allocate buffer space for testVw16 in buffer #2, */
/* and set values. */

Do_Tuxtpalloc(Buf2, "VIEW:testVw16", sizeof(struct testVw16)

);

VW_testVw16(Buf2)->tv16intneg = -1234;

Note: If you manipulate an encoded string, remember that all non-printable and some special characters
occupy three bytes in the array. Make sure you take this into account during character substitution. Note that the
EncAcctID variable, in the example above, is larger than the AcctID variable.

Encoding string data in scripts

You may need to include data in the script so i t can get placed into a buffer. A technique cal led string
encoding makes non-prin table characters readable in the script . Note that you can use encoded strings for
data that QALoad ’s Convert faci l i ty places in the script or for data you place in the script .

The fol lowing QALoad commands use encoded strings as parameters:

! Do_TuxFMLData

! Do_Tuxcarray

QALoad 5.02

45

! Do_Tuxxoctet

! Do_Tuxstring

! Do_Tuxtpinit

! Do_TuxSetViewData

! Do_TuxBuildBuffer

! Do_TuxAppendBuffer

A string is encoded using the fol lowing rules:

! all alpha and numeric characters (0-9, a-z, and A-Z) are preserved intact

! all non-alpha numeric characters within the range of ASCII 32 (space) to ASCII 125 (}) are preserved intact, except
the following:

 backslash (\)

 ampersand (&)

 double quote (" ")

 pipe (|)

! null characters are encoded as a tilde (~)

! all other characters are encoded as a three-byte sequence of an ampersand (&) followed by two lowercase hex
digits representing the ASCII value of the character.

The fol lowing example i l lustrates encoding:

Original St r i ng: 0 1 2 A B C D a b c - & | (null)

Encoded St ring: 0 1 2 A B C D a b c - &26&7c~

Winsock

Understanding data representat ion in the script

This sect ion describes how data that is sent and received is displayed in a Winsock script . Use th is sect ion
as a reference when you examine a script .

During the conversion process, QALoad determines how to represent each character in the script . This
conversion process uses the fol lowing rules:

1. The character is compared to the “space” character in the ASCII table, which has a decimal value of 32. If the
character’s value is less than 32, the following steps are taken:

b. If the character is “\r”, “\n”, “\t”, or “\f”, it is represented in the script as a normal C escape
character.

c. If the character is either “^\” or “^^”, it is represented in the script as an octal character. For
example, the values would be “\034” and “\036”, respectively.

d. If the character’s value is less than 32 and it does not meet the descriptions in a) and b) above, it
is represented in the script as a control character. For example, if the character is a null character, it is
represented in the script as “^@”.

2. If the character’s decimal value is between 32 (the “space” character) and 126 (~), it displays in the script as a
standard readable ASCII character, with the following exceptions:

 If the character is “ \ ” , which has a decimal value of 92, i t is represented as “ \ \ ” in the
script .

 If the character is “ “ “ , which has a decimal value of 34, i t is represented as “ \ ” ” in the
script .

QALoad 5.02

46

 If the character is “ ^ ” , which has a decimal value of 94, i t is represented as “ ^^ ” in the
script .

3. If the character has a decimal value of 127, which corresponds to Delete (DEL), it is represented as “^” in the script.

The fol lowing table summarizes the results of rules 1-3.

Code Octal Decim al Char

^@ 000 0 NUL

^A 001 1 SOH

^B 002 2 STX

^C 003 3 ETX

^D 004 4 EOT

^E 005 5 ENQ

^F 006 6 ACK

^G 007 7 BEL

^H 010 8 BS

\t 011 9 HT

\n 012 10 LF

^K 013 11 VT

\f 014 12 FF

\r 015 13 CR

^N 016 14 SO

^O 017 15 SI

^P 020 16 SLE

^Q 021 17 SC1

^R 022 18 DC2

^S 023 19 DC3

^T 024 20 DC4

^U 025 21 NAK

^V 026 22 SYN

^W 027 23 ETB

^X 030 24 CAN

QALoad 5.02

47

^Y 031 25 EM

^Z 032 26 SIB

^[033 27 ESC

\034 034 28 FS

^] 035 29 GS

^_ 037 31 US

 040 32 SP

\" 042 34 "

\\ 134 92 \

^^ 136 94 ^

^? 177 127 DEL

4. If the character is not included in the groups defined in steps 1-3, it is represented as an octal character in the script.
These characters are often referred to as high ASCII characters (those with a decimal value greater than 128), and are
represented in the script as “\OOO”, where OOO is the octal value for the ASCII character.

Handling Winsock appl icat ion data flow

Frequently, server programs return unique values (for example, a session ID) that vary with each execut ion
of the script and may be vital to the success of subsequent transact ions. To create scripts that include these
values, you need to subst i tute the hard-coded values returned by the server with variables. The fol lowing
original and modified code examples demonstrate th is technique.

Original code

In th is script , the server sends a session ID in response to a connect ion by the cl ient. This session ID is
required to successful ly complete subsequent transact ions.

/*
* wsk-AdvancedTechniques_original.c
*
* This script contains support for the following
* middlewares:
* - Winsock
*/

/* Converted using the following options:
* General:
* Line Split : 80 characters
* Sleep Seconds : 1
* Auto Checkpoints : Yes
*/

#define SCRIPT_VER 0x00000005UL
#include <stdio.h>
#include "smacro.h"
#include "do_wsk.h"

/* set function to call on abort*/

void abort_function(PLAYER_INFO *s_info);

QALoad 5.02

48

#ifndef NULL
#define NULL 0
#endif

int rhobot_script(s_info)
PLAYER_INFO *s_info;
{

/* Declare Variables */

SET_ABORT_FUNCTION(abort_function);
DEFINE_TRANS_TYPE("wsk-AdvancedTech_1.c");

// Checkpoints have been included by the convert process

DefaultCheckpointsOn();

DO_WSK_Init(s_info);

SetTimeout(20); /* Wait up to 20 seconds for each expected pattern */

SYNCHRONIZE();

BEGIN_TRANSACTION();

DO_WSK_Socket(S1, AF_INET, SOCK_STREAM, IPPROTO_IP);
DO_WSK_Bind(S1, ANY_ADDR, ANY_PORT);
DO_WSK_Connect(S1, "172.22.24.125", 2100, AF_INET);

///
// The session id returned by the server is
// unique to each connection
///

/* 21bytes: SessionID=jrt90847\r\n */

DO_WSK_Expect(S1, "\n");

//
// This unique id is then used for subsequent
// requests
//

/* 34 bytes */

DO_WSK_Send(S1, "SessionID=jrt90847\r\n:^B^@^@^@^B^@^@^@^A^@^@^@");

/* 15 bytes: ID Accepted#^@\r\n */

DO_WSK_Expect(S1, "\n");
DO_WSK_Closesocket(S1);

END_TRANSACTION();

REPORT(SUCCESS);

EXIT();

return(0);
}

void abort_function(PLAYER_INFO *s_info)
{

RR__printf("Virtual User %i:ABORTED.", S_task_id);

EXIT();
}

Modified code

If the original script (wsk-AdvancedTechniques_original.c shown above) is replayed, i t wi l l fai l because the
session ID wil l not be unique; rather, i t wi l l be the session ID that is coded in the script . To use the unique
session ID received from the server, variable subst i tut ion must be used.

QALoad 5.02

49

/*
* wsk-AdvancedTechniques_modified.c
*
* This script contains support for the following
* middlewares:
* - Winsock
*/

/* Converted using the following options:
* General:
* Line Split : 80 characters
* Sleep Seconds : 1
* Auto Checkpoints : Yes
*/

#define SCRIPT_VER 0x00000005UL
#include <stdio.h>
#include "smacro.h"
#include "do_wsk.h"

/* set function to call on abort*/

void abort_function(PLAYER_INFO *s_info);

#ifndef NULL
#define NULL 0
#endif

int rhobot_script(s_info)
PLAYER_INFO *s_info;

{

/* Declare Variables */

char Buffer[64];
char SendBuffer[64];
int nBytesReceived = 0;

SET_ABORT_FUNCTION(abort_function);

DEFINE_TRANS_TYPE("wsk-AdvancedTech_1.c");

// Checkpoints have been included by the convert process

DefaultCheckpointsOn();

DO_WSK_Init(s_info);

SetTimeout(20); /* Wait up to 20 seconds for each expected pattern */

SYNCHRONIZE();

BEGIN_TRANSACTION();

DO_WSK_Socket(S1, AF_INET, SOCK_STREAM, IPPROTO_IP);
DO_WSK_Bind(S1, ANY_ADDR, ANY_PORT);
DO_WSK_Connect(S1, "172.22.24.125", 2100, AF_INET);

//
// The reply from the server is read into
// the Buffer variable. We will then have
// the unique Session ID for this connection.
// Also need to null-terminate the buffer
// after receiving.
//

DO_WSK_Recv(S1, Buffer, 64, 0, &nBytesReceived);
Buffer[nBytesRecieved] = '\0';

/* 21bytes: SessionID=jrt90847\r\n */

//DO_WSK_Expect(S1, "\n");

QALoad 5.02

50

//
// Finally, substitute the Session ID received from
// the server with the one coded in the script.
//

sprintf(SendBuffer, "%s:^B^@^@^@^B^@^@^@^A^@^@^@", Buffer);
DO_WSK_Send(S1, SendBuffer);

/* 34 bytes */

//DO_WSK_Send(S1, "SessionID=jrt90847:^B^@^@^@^B^@^@^@^A^@^@^@");

/* 15 bytes: ID Accepted#^@\r\n */

DO_WSK_Expect(S1, "\n");
DO_WSK_Closesocket(S1);

END_TRANSACTION();

REPORT(SUCCESS);

EXIT();

return(0);

}

void abort_function(PLAYER_INFO *s_info)

{
RR__printf("Virtual User %i:ABORTED.", S_task_id);
EXIT();
}

Modifying QALoad's funct ions to incorporate dynamic data

If you need to use dynamic data with your scripts, you can modify some QALoad funct ions to handle
dynamic data. The two scenarios below describe specific si tuat ions in which you might need dynamic data,
and how to achieve that in the script .

Scenario 1:

One method of accessing dynamic data is by using a datapool fi le. However, you might need to read in
data that is not in the format of an ASCII string, which is required for datapool fi les.

For example, i f the string “ \ 121\ 101\ 114\ 157\ 141\ 144” is read in from a datapool fi le with one of the
datapool funct ions, the output would be “ \ \ 121\ \ 101\ \ 114\ \ 157\ \ 141\ \ 144” , which is incorrect. To
work around th is problem, you can use the OctalToChar() command to convert any octal sequences into
their binary representat ion. The fol lowing examples i l lustrates the use of the OctalToChar() command for
th is purpose:

Example

In th is example, the string “ \ 121\ 101\ 114\ 157\ 141\ 144” is read in from a central datapool fi le and
converted to i ts binary representat ion.

/* Declare variables */
char temp[40];

...

BEGIN_TRANSACTION();
GET_DATA();

...

DO_WSK_Socket(S1, AF_INET, SOCK_STREAM, IPPROTO_IP);
DO_WSK_Bind(S1, ANY_ADDR, ANY_PORT);
DO_WSK_Setsockopt(S1, SOL_SOCKET, SO_OOBINLINE, 1);

QALoad 5.02

51

strcpy(temp,VARDATA(1));

OctalToChar(temp); //used to convert octal strings
 //to their binary format

DO_WSK_Send(S1,temp);
//DO_WSK_Send(S1,"\121\101\122\165\156");
DO_WSK_Closesocket(S1);

The DO_WSK_Send() command above sends the string “ 121\ 101\ 114\ 157\ 141\ 144” to the server. This
string is the octal representat ion of the the string “ QALoad ” .

Scenario 2:

You might find that your capture data is not the same data you need for running a test. For example, you
might need to change the value of a user ID during replay. One method of changing the value is to change
the value through the DO_WSK_Send() command, but that results in the value being stat ic only with in the
funct ion. To subst i tute a different value each t ime, create a dynamic variable, such as a datapool value, to
replace the user ID.

Example

In th is example, the script includes a DO_WSK_Send() command that sends “ name=Jim ” to the server as
the user ID. Then a variable is used to change the name to “ Mark” .

/* Declare variables */
char buffer[65];
char sendbuffer[65];

...

BEGIN_TRANSACTION();

...

DO_WSK_Socket(S1, AF_INET, SOCK_STREAM, IPPROTO_IP);
DO_WSK_Bind(S1,ANY_ADDR, ANY_PORT);
DO_WSK_Setsockopt(S1, SOL_SOCKET, SO_OOBINLINE, 1);
DO_WSK_Connect(S1, "127.0.0.1", 90, AF_INET);

//original DO_WSK_Send(S1,"name=Jim");

strcpy(buffer, "Mark");
sprintf(sendbuffer, "name=%s", buffer);
DO_WSK_Send(S1, sendbuffer);

/* 2 bytes: ok */

DO_WSK_Expect(S1,"ok");
DO_WSK_Closesocket(S1);

The buffer before the DO_WSK_Send() command is modified and a new buffer is passed as the second
parameter of the DO_WSK_Send() command. This effect ively sends “ name=Mark” to the server instead of
 "name=Jim ” .

Saving server repl ies

There are two methods for saving the ent ire reply that a server sends back. The fol lowing paragraphs
describe each method.

Using the Response() and ResponseLength() commands

The Response() command can be cal led direct ly after the DO_WSK_Expect() command. It returns a pointer
to the data that has been received by DO_WSK_Expect(). To also receive the length of the replay, cal l the
ResponseLength() command, which returns the number of characters that were received. The fol lowing
example uses the Response() and ResponseLength() commands.

QALoad 5.02

52

Example

In th is example, variables are declared to store the results from the two funct ions. Both funct ions are also
used to save the buffer that is received with in the DO_WSK_Expect() command.

/* Declare Variables */
int x = 0;
char *temp;

...

BEGIN_TRANSACTION();

...

DO_WSK_Socket(S1, AF_INET, SOCK_STREAM, IPPROTO_IP);
DO_WSK_Bind(S1, ANY_ADDR, ANY_PORT);
DO_WSK_Setsockopt(S1, SOL_SOCKET, SO_OOBINLINE, 1);
DO_WSK_Connect(S1, "127.0.0.1", 90, AF_INET);

/* 21 bytes: You are now connected */

DO_WSK_Expect(S1, "d");

// Used to store the data that was received by the
// DO_WSK_Expect

temp = Response();

// Used to get the size of the response that was received
// so far

x = ResponseLength();

/* The line below will print the length of the response and the actual response */

RR__printf(“length = %d, and response= %s",x, temp);
DO_WSK_Closesocket(S1);

The message “ length=21 response=You are now connected” displays in the Player buffer window.

Using the DO_WSK_Recv() command

To save a response based on i ts size instead of a unique character string that is used with in the
DO_WSK_Expect() command, use the DO_WSK_Recv() command. This command enables you to specify
how much data to receive and where to store the data.

You can also use the DO_WSK_Recv() command to store the reply that is returned from the server. This
strategy is useful when you need to retrieve the buffer that is returned from the server, even though the
returned data is too dynamic and causes the DO_WSK_Expect() command to fai l every t ime.

Example

In th is example, the DO_WSK_Recv() command is used to save a server reply based on size. Two variables
are declared to store the results from the DO_WSK_Recv() command.

/* Declare Variables */
int size = 0;
char temp[45];

...

BEGIN_TRANSACTION();

...

DO_WSK_Socket(S1, AF_INET, SOCK_STREAM, IPPROTO_IP);
DO_WSK_Bind(S1, ANY_ADDR, ANY_PORT);
DO_WSK_Setsockopt(S1, SOL_SOCKET, SO_OOBINLINE, 1);
DO_WSK_Connect(S1, "127.0.0.1", 90, AF_INET);

QALoad 5.02

53

/* 21 bytes: You are now connected */

memset(temp,'\0',45);
DO_WSK_Recv(S1,temp,45,0,&size);
RR__printf("size=%d string=%s",size,temp);
DO_WSK_Closesocket(S1);

The message “ size=21 string=You are now connected” displays in the Player buffer window.

Note: If you use this method as a substitute for the DO_WSK_Expect() command, ensure that you receive
the correct information prior to calling the next function in the script.

Parsing server repl ies for values

To parse a buffer for a part icular value, you can write a parsing rout ine that searches the ent ire buffer for
the value. However, you can also use one of QALoad ’s Winsock helper commands. The fol lowing scenarios
describe two situat ions in which you could use the Winsock commands to solve a parsing problem.

Scenario 1:

To find a string in a server reply, you can use the SkipExpr() and ScanExpr() commands. SkipExpr()
searches for the first occurrence of a string in the in ternal buffer that contains the response that was
received with in the DO_WSK_Expect() command. Then, use the ScanExpr() command to search for
another string. ScanExpr() saves the buffer from the first occurrence of the string that was used with
SkipExpr() up to and including the string used with in ScanExpr(). The first parameter of ScanExpr() is a
UNIX-style regular expression. The fol lowing table l ists the most common expressions:

Character M ean ing

. Matches the end of a string.

* Matches any number of characters.

? Matches any one character.

Example In th is example, the buffer contains “ sessionid=1234567890abc” , and the goal is to retrieve
everyth ing after the “ =” , up to and including “ abc” .

/* Declare Variables */
char temp[35];
int size = 0;

...

BEGIN_TRANSACTION();

...

DO_WSK_Socket(S1, AF_INET, SOCK_STREAM, IPPROTO_IP);
DO_WSK_Bind(S1, ANY_ADDR, ANY_PORT);
DO_WSK_Setsockopt(S1, SOL_SOCKET, SO_OOBINLINE, 1);
DO_WSK_Connect(S1, "127.0.0.1", 90, AF_INET);

/* 23 bytes: sessionid=1234567890abc */

DO_WSK_Expect(S1, "c");
SkipExpr("sessionid=");
size=ScanExpr(".*abc" , temp);
RR__printf("length = %d string = %s", size, temp);
DO_WSK_Closesocket(S1);

The message “ length=13 string=1234567890abc” displays in the Player buffer window.

Scenario 2:

QALoad 5.02

54

You may have data returned from the server that is too dynamic, that is, you are not able to base parsing
on actual characters. The solut ion is to base the parsing on character posit ions instead.

For example, to save the characters 20 through 25, you could use the ScanSkip() and ScanString()
commands. ScanSkip() skips a specified number of characters in the in ternal buffer that stores the response
that was received with in the DO_WSK_Expect() command. ScanString() scans a number of characters from
the current posit ion with in the buffer in to a character string.

Example

In th is example, a buffer contain ing “ xxx123456789yyy” is returned from the server. The value between
“ xxx” and “ yyy” is returned.

/* Declare Variables */

char temp[15];

...

BEGIN_TRANSACTION();

...

DO_WSK_Socket(S1, AF_INET, SOCK_STREAM, IPPROTO_IP);
DO_WSK_Bind(S1, ANY_ADDR, ANY_PORT);
DO_WSK_Setsockopt(S1, SOL_SOCKET, SO_OOBINLINE, 1);
DO_WSK_Connect(S1, "127.0.0.1", 90, AF_INET);

/* 16 bytes: xxx0123456789yyy */

memset(temp,'\0',15);
DO_WSK_Expect(S1, "yyy");
ScanSkip(3);
ScanString(10,temp);
RR__printf("string=%s",temp);
DO_WSK_Closesocket(S1);

The message “ string=0123456789” displays in the Player buffer window.

WW W

Simulat ing variable IP addresses

While QALoad can simulate mult iple virtual users from a single system, i t general ly does so using a single
source IP address. In most test ing situat ions th is isn ’t a problem, but with a small set of HTTP-based
appl icat ions, i t may not be the best way to simulate real-l i fe act ivi ty. For QALoad Player machines with
more than one stat ic IP address, QALoad can direct each virtual user to use a di fferent source IP address. To
accomplish th is, a local datapool fi le contain ing a l ist of local stat ic IP addresses must be created on each
QALoad Player machine. When you enable IP spoofing in the QALoad Conductor, the QALoad Conductor
instructs each QALoad Player to create the appropriate datapool fi le at run t ime. The QALoad Player wi l l
ut i l ize these addresses for connect ions to HTTP and SSL servers. Each virtual user wi l l receive one address
for use with al l i ts connect ions. If there are more virtual users than addresses, IP addresses wil l be re-used
start ing from the beginning of the datapool fi le.

Modifying a Script to Use Variable IP Addresses

QALoad uses the DO_IPSpoofEnable command to insert IP addresses from the datapool in to the script .
When th is command is executed, the script opens the datapool fi le located on the QALoad Player, reads
the first avai lable data record, and stores that record for use on al l subsequent DO_Http and DO_Https
cal ls. If there are more virtual users than IP addresses in the datapool fi le, IP addresses are reused. You can
automatical ly generate the DO_IPSpoofEnable command in your script during conversion by select ing the
IP Spoofing opt ion from the QALoad Script Development Workbench ’s WW W Advanced dialog box.
Access th is dialog box from the Convert Options wizard’s WWW tab by cl icking the Advanced button.

QALoad 5.02

55

This opt ion inserts the DO_IPSpoofEnable command direct ly in the script during conversion, before the
first DO_Http or DO_Https command.

Creating a Datapool of IP Addresses

Use the fol lowing procedure to create a datapool of val id IP addresses from the QALoad Conductor. This
fi le is automatical ly created on the QALoad Player workstat ions (Windows and UNIX) at run t ime.

To creat e a dat apool of IP addresses:

1. Start QALoad Conductor.

2. Click the Machine Configuration tab.

3. Double-click the Player machine name in the list. The Properties dialog box appears.

4. Select the Generate IP Spoof Data (machines with multiple IP addresses only) option.

5. Click OK.

At run t ime, the QALoad Conductor sends a command to each QALoad Player Agent to create the datapool
fi le of IP addresses, and the script is sent to the server using the different IP addresses.

The Generate IP Spoof Data check box is val id only for WWW scripts.

Note: The machine on which the QALoad Conductor resides must have static IP addresses assigned to it. If
no static IP addresses are found, the QALoad Conductor displays a warning and the datapool file is not
generated. The datapool file is named ipspoof.dat, and is saved in the \Compuware\QALoad\Datapools
directory.

Handling error messages from the Web server

When a server returns an error message, i t returns i t in one of two ways. It ei ther returns an error message
with a response code (for example, 404 Not Found) or returns an HTML page that contains an error
message. The fol lowing sect ions provide examples of code that you can use in your script to handle errors
that the Web server returns to the browser.

Handling error messages with response codes

The example below demonstrates how to write code to handle error messages that include response codes
that the Web server returns to the browser. The code performs the fol lowing act ions:

! Checks for an error code using the DO_GetLastHttpError command

! Aborts or continues script execution, based on the WWW_FATAL_ERROR statement

Example

int error;
char errorString[30];

DO_Http("GET http://www.host.com/ HTTP/1.0\r\n\r\n");

if((error = DO_GetLastHttpError()) > 399)

{
sprintf(errorString, "Error in response: %d\n", error);
WWW_FATAL_ERROR("Request-host", errorString);
}

Handling error messages returned in an HTML page

The examples below demonstrate how to write code to handle error messages that the Web server returns
to the browser in an HTM L page.

QALoad 5.02

56

Using DO_VerifyDocTitle to verify page requests

By insert ing the DO_VerifyDocTit le command into your script , you can compare the HTML document
t i t les in your load test script with the document t i t les you original ly captured. The code performs the
fol lowing act ions:

! Calls DO_Http to request an HTML page from the Web server

! Calls DO_VerifyDocTitle with the original HTML document title. If the titles do not match, DO_VerifyDocTitle exits the
script

Exam ple

DO_Http("GET http://www.host.com/ HTTP/1.0\r\n\r\n");
DO_VerifyDocTitle("Welcome to The Main Page", TITLE);

Searching response text for error messages

In some scripts, error messages are displayed as text in an HTML page. The fol lowing example
demonstrates how to detect these messages in a script . The code performs the fol lowing act ions:

! Searches for errors returned as HTML from the Web server

! Branches to error handling code

Exam ple

int response;
response = DO_Http("GET http://www.host.com/ HTTP/1.0\r\n\r\n");
if (strstr (response, "200 OK") == NULL)
 WWW_FATAL_ERROR("host", "Response did not have 200 OK");

Simulat ing CGI requests

The fol lowing topics describe strategies for simulat ing CGI requests:

CGI parameter encoding
CGI Get requests
CGI Post requests
CGI forms

Simulat ing JavaScript

JavaScript is handled by the fol lowing process:

1. The browser makes a page request to a server for a page that contains JavaScript.

2. Because JavaScript is simply uncompiled code, the browser downloads and immediately executes this code upon
receipt of the page.

Supported objects

QALoad supports the bui l t -in JavaScript objects (global, object, funct ion, array, string, boolean, number,
math, date, regexp, and error), document objects, and image objects.

Supported properties

The only document propert ies that QALoad supports are cookies, t i t le, and the images array. The only
image property that QALoad supports is src.

Evaluation errors

If an object, property, or funct ion used with in a block of JavaScript code is not defined, i t wi l l cause a
JavaScript except ion. The except ion stops evaluat ion of that block.

QALoad 5.02

57

Example Web page

The fol lowing Web page contains the JavaScript funct ion and an onLoad tag that cal ls the scrol l i t funct ion.
The onLoad tag tel ls the browser to execute the JavaScript immediately after loading the page. The scrol l i t
funct ion displays a scrol l ing banner region on the Web page.

<HTML>
<HEAD>
<TITLE>Java Script Example</TITLE></HEAD>

<SCRIPT LANGUAGE="JavaScript" src="js_do_nothing.js">

function scrollit_r2l(seed)
{

var m1 = " Welcome to Compuware's QALoad homepage.";
var m2 = " Glad to see you.";
var m3 = " Thanks for coming. ";
var msg = m1 + m2 + m3;
var out = " ";
var c = 1;

if (seed > 100) {
seed--;
var cmd="scrollit_r2l(" + seed + ")";
timerTwo=window.setTimeout(cmd,100);
}

else if (seed <= 100 && seed > 0) {
for (c=0 ; c < seed ; c++) {
out+=" ";
}
out+=msg;
seed--;
var cmd="scrollit_r2l(" + seed + ")";
window.status=out;
timerTwo=window.setTimeout(cmd,100);
}

else if (seed <= 0) {
if (-seed < msg.length) {
out+=msg.substring(-seed,msg.length);
seed--;
var cmd="scrollit_r2l(" + seed + ")";
window.status=out;
timerTwo=window.setTimeout(cmd,100);
}

else {
window.status=" ";
timerTwo = window.setTimeout("scrollit_r2l(100)", 75);
}
}
}

</script>

<BODY onLoad="timerONE=window.setTimeout('scrollit_r2l(100)',500);">
<!-- End scrolltext -->

<center><h2>Java Script Example</h2><hr>Check out the browser's scrolling status
 bar.

</center>

</BODY></HTML>

Example script

QALoad 5.02

58

The fol lowing script features a DO_Http cal l to retrieve the JavaScript page.

How I t Works: QALoad evaluates the JavaScript in the context of script blocks, onLoad tags, and src and
then executes them.

DO_InitHttp(s_info);

...

...

BEGIN_TRANSACTION();
DO_AutomaticSubRequests(TRUE);

...

...

DO_Http("GET http://www.host.com/js.htm HTTP/1.0\r\n\r\n");
DO_VerifyDocTitle("Java Script Example", TITLE);

...

...

END_TRANSACTION();

Execut ing a Visual Basic script

QALoad does not evaluate a Visual Basic script . However, any Visual Basic script request that occurs is
inserted in to the script as a main request.

Execut ing a Java applet

Java applets are handled by the fol lowing process:

1. The browser makes a request to a Web server for an HTML document that contains embedded Java applets.

2. The browser downloads the Java applets, in the order in which they appear on the Web page, and immediately
executes them.

Example Web page

The fol lowing Web page contains two sect ions that reference Java applets. Not ice the parameters that
fol low the applet. The browser passes these parameters when invoking an applet.

<HTML>
<HEAD>
<TITLE>Java Example</TITLE></HEAD>
<BODY>

<center><h2>Java Applet Example</h2><hr>

<applet code="LScrollText.class" width="500" height="20" >
<PARAM NAME="MESSAGE" VALUE="Scrolling Text created by Java Applet... >>Click here to
Download<< Use it FREE">
<PARAM NAME="FONTHEIGHT" VALUE="14">
<PARAM NAME="SPEED" VALUE="2">
<PARAM NAME="PIXELS" VALUE="1">
<PARAM NAME="FONTCOLOR" VALUE="0000FF">
<PARAM NAME="BACKCOLOR" VALUE="FFFF00">
<PARAM NAME="TARGET" VALUE="lscrolltext.zip">
</applet>

A scrolling message, with custom colors, font size, speed, and target URL.

The source (.ZIP) file can be downloaded by clicking the associated area in text window.

<hr>

QALoad 5.02

59

<APPLET CODE="imagefader.class" WIDTH=80 HEIGHT=107>
<PARAM name="demicron" value="www.demicron.se">
<PARAM name="reg" value="A00012">
<PARAM name="maxitems" value="3">
<PARAM name="width" value="80">
<PARAM name="height" value="107">
<PARAM name="bitmap0" value="anibal.jpg">
<PARAM name="bitmap1" value="jak.jpg">
<PARAM name="bitmap2" value="jan.jpg">
<PARAM name="url0" value=" ">
<PARAM name="url1" value=" ">
<PARAM name="url2" value=" ">
<PARAM name="step" value="0.05">
<PARAM name="delay" value="20">
<PARAM name="sleeptime" value="2000">

</APPLET>

This applet is a very popular image fader that displays a series of images, and allows URLs
to be associated with each image.

<hr>

</center>
</BODY></HTML>

Example script

QALoad does not evaluate Java applets. They appear as main requests. The example script features the
fol lowing elements:

! A DO_Http call to retrieve the main page.

! A DO_Http call to retrieve the scrolling text class.

! A DO_Http call to retrieve the image fader class Java applet.

How I t Works: QALoad interacts with the Web server without execut ion of the Java applet program wi th in
the virtual browser. The browser accepts the pages that contain Java applets, but does not execute the
applet as part of the load test. The Java applets are not evaluated by QALoad and appear as main requests
in the script .

DO_InitHttp(s_info);

...

...

BEGIN_TRANSACTION();

...

...

DO_Http("GET http://www.host.com/java.htm HTTP/1.0\r\n\r\n");
DO_VerifyDocTitle("Java Example", TITLE);

/* Request: 2 */
DO_Http("GET http://www.host.com/LScrollText.class HTTP/1.0\r\n\r\n");

/* Request: 3 */
DO_Http("GET http://www.host.com/imagefader.class HTTP/1.0\r\n\r\n");
DO_Http("GET http://www.host.com/jak.jpg HTTP/1.0\r\n\r\n");

...

...

END_TRANSACTION();

Simulat ing frames

Frames are handled by the fol lowing process:

QALoad 5.02

60

1. The browser makes a main page request to a Web server for a page that contains frames.

2. The browser parses the frame pages and places them in sub-windows within the browser, each of which displays the
frame content.

Example Web page

The fol lowing Web page contains four frames.

<HTML>
<HEAD>
<TITLE>FRAME Example</TITLE>
</HEAD>

<! -- Here is the FRAME information for browsers with frames -->

<FRAMESET Rows="*,*"><!-- Two rows, each equal height -->
 <FRAMESET Cols="*,*"><!-- Two columns, equal width -->
 <FRAME Src="findex.htm" Name="ul-frame">
 <FRAME Src="findex.htm" Name="ur-frame">
 </FRAMESET>

 <FRAMESET Cols="*,*"><!-- Two columns, equal width -->
 <FRAME Src="findex.htm" Name="ll-frame">
 <FRAME Src="findex.htm" Name="lr-frame">
 </FRAMESET>
</FRAMESET>

</HTML>

Example script

QALoad automatical ly generates al l constructs necessary to request frames. The example script features the
fol lowing element:

! A DO_Http call to retrieve the main page.

How I t Works: The frames are treated as sub-requests and are evaluated and requested by QALoad .

BEGIN_TRANSACTION();
DO_AutomaticSubRequests(TRUE);

...

...

DO_Http("GET http://www.host.com/frameset.htm HTTP/1.0\r\n\r\n");
DO_VerifyDocTitle("FRAME Example", TITLE);

...

...

END_TRANSACTION();

Simulat ing cookies

This sect ion describes how QALoad handles cookies. Cookies are handled by the fol lowing process:

1. The browser makes a CGI request to a server for a dynamic page.

2. When the server sends the page back to the browser, the page includes a cookie in the header. The browser saves
the cookie along with information that ties it to the Web server.

3. On all subsequent requests to that Web server, the browser passes the cookie along with the request.

Example Web page

The fol lowing CGI Perl script generates a Set-Cookie header as a part of subsequent HTTP requests.

Set-Cookie: SaneID=172.22.24.180-4728804960004
Set-Cookie: SITESERVER=ID=f0544199a6c5970a7d087775f83b23af

QALoad 5.02

61

<html>

...

The cookies for this site are:

SaneID=172.22.24.180-4728804960004; SITESERVER=ID=f0544199a6c5970a7d087775f83b23af
<P>

Next cookie for this URL will be : 1

RELOAD PAGE TO INCREMENT COUNTER

Return to
previous homepage.

Example script when Dynamic Cookie Handling is turned on

This is the default method by which QALoad handles cookies. The example script features the fol lowing
elements:

! Two CGI requests that return dynamic pages

! Cookies are handled by the replay engine

BEGIN_TRANSACTION();
DO_DynamicCookieHandling(TRUE);

...

...

/* Request: 1 */
DO_Http("GET http://www.host.com/cgi-bin/cookies5.pl"
 "HTTP/1.0\r\n\r\n");

/* Request: 2 */
DO_Http("GET http://www.host.com/cgi-bin/cookies5.pl"
 "HTTP/1.0\r\n\r\n");

...

...

END_TRANSACTION();

Example script when Dynamic Cookie Handling is turned off

The example script features the fol lowing elements:

! A CGI request that returns a dynamic page

! Two DO_GetCookieFromReply calls to retrieve the cookie from reply

! Two DO_SetValue calls to set the cookie

! A free cookie

How I t Works: For cookies that are set with CGI scripts, the script stores incoming cookies in a variable
and passes them back to the Web browser in the reply from the CGI script . The script handles these
cookies by execut ing a DO_GetCookieFromReply command after the CGI request.
DO_GetCookieFromReply stores the cookie values in variables, which the script then passes back to
subsequent CGI requests using the DO_SetValue command.

int i;
char *Cookie[4];

...

...

for(i=0;i<4;i++)
Cookie[i]=NULL;
DO_InitHttp(s_info);

...

...

QALoad 5.02

62

BEGIN_TRANSACTION();
DO_DynamicCookieHandling(FALSE);

...

...

/* Request: 1 */
DO_Http("GET http://www.host.com/cgi-bin/cookies5.pl
 "HTTP/1.0\r\n\r\n");

/*Set-Cookie: NUM=1 */
DO_GetCookieFromReplyEx("NUM", &Cookie[0], '*');

/*Set-Cookie: SQUARE=1 */
DO_GetCookieFromReplyEx("SQUARE", &Cookie[1], '*');

/* Request: 2 */
DO_SetValue("cookie000", Cookie[0]); /* NUM=1 */
DO_SetValue("cookie001", Cookie[1]); /* SQUARE=1 */
DO_Http("GET http://www.host.com/cgi-bin/cookies5.pl "
 "HTTP/1.0\r\n"
 "Cookie: {*cookie000}; {*cookie001}\r\n\r\n");

...

...

DO_HttpCleanup();
for(i=0; i<4; i++)
{
free(Cookie[i]);
Cookie[i]=NULL;
}

END_TRANSACTION();

Simulat ing browser caching

Browser caching is handled by the fol lowing process:

1. When the browser makes a request for static HTML pages, it may include an option to retrieve the page only if it is
newer than the one held in the browser’s cache.

2. If browser caching is enabled, the server returns only newer versions of the page. If browser caching is not enabled,
the server always returns the page.

How I t Works: The QALoad Script Development Workbench disables browser caching while recording,
which means a page is always retrieved.

Request ing password-protected directories

Web developers use password-protected directories to protect access to some pages. When the browser
requests a page in a password-protected directory, the server returns a special response that specifies the
page is password-protected. When the browser receives th is type of reply, i t gathers the user ID and
password, encrypts them, and passes them back to the server in a subsequent request.

Example script

QALoad automatical ly generates al l the constructs that are necessary to execute a request of a password-
protected directory.

The example script features the fol lowing elements:

! DO_BasicAuthorization, which takes the user ID and password as parameters

! DO_Http request to the password-protected directory

BEGIN_TRANSACTION();
DO_BasicAuthorization("frank", "~encr~557A2549474E57444A");

QALoad 5.02

63

...

...

DO_Http("GET http://www.host.com/access_controlled/secure.htm HTTP/1.0\r\n\r\n");
DO_VerifyDocTitle("Successful Test of a Secured Page", TITLE);

...

...

END_TRANSACTION();

Example script

QALoad also handles Windows Domain Authent icat ion (NTLM).

The example script features the fol lowing elements:

! A DO_NTLMAuthorization call, which takes the domain, user ID, and password as parameters

! DO_Http request to the NTLM protected directory

BEGIN_TRANSACTION();
DO_NTLMAuthorization("dom1\\frank", "~encr~557A2549474E57444A");

...

...

DO_Http("GET http://www.host.com/ntlm_controlled/secure.htm HTTP/1.0\r\n\r\n");
DO_VerifyDocTitle("Successful Test of a NTLM Page", TITLE);

...

...

END_TRANSACTION();

Using the WWW Convert Options dialog box

The fol lowing topics provide usage t ips and result ing script examples for each of the opt ions that are
avai lable on the Convert Opt ions dialog box:

Form fields as comments
Anchors as comments
Cl ient image maps as comments
Debug comments
Document t i t le veri ficat ion
Baud rate
Refresh t imeout
Encode DBCS characters
Enable Visual Navigator

Advanced opt ions:

Cache
Dynamic redirect handl ing
Dynamic cookie handl ing
Automatical ly process subrequests
Persistent connect ions during replay
Reuse SSL session ID
Max concurrent connect ions
Max connect ion retries
Server response t imeout
HTTP version detect ion
Act iveData
IP spoofing
Streaming media
Hostnames as IP addresses

QALoad 5.02

64

Strip al l cookies from request
Traffic fi l ters

Test ing a script

Script validation

Before adding a script to a load test, val idate i t to ensure i t wi l l run without problems. The fol lowing
procedure is only val id for Win32 scripts. To val idate a UNIX script , see Val idat ing a UNIX script .

To val idat e a W in32 scr ipt :

1. With a session open in the QALoad Script Development Workbench, click Options>Workbench to configure the
Script Development Workbench and Player for validation.

2. Select the Automatically Recompile check box if you want QALoad to compile a script before attempting to validate
it. QALoad will list any compilation errors in the editor after compiling.

3. Select the Only Display Player Output on Script Failure check box to only view Player messages upon script
failure.

4. Type a value in the Wait up to field that the QALoad Script Development Workbench should wait for a script to
execute before timing out.

5. In the Player Settings area, select the Abort on Error check box for QALoad to stop script execution upon
encountering an error.

6. Select the Debug Data check box for the script to display a debug message indicating which command the script is
executing.

7. In the Run As area, indicate whether the transaction should be run as thread- or process-based.

Note: Oracle Forms Server, Citrix, Java, Uniface, and Tuxedo scripts are limited to process-based validation
only.

8. In the Number of users field, type a number of virtual users to run this script for validation. The default is 1.

9. Enter a value in the Transactions field. For validation, Compuware recommends that you accept the default value of
1 transaction.

10. In the Sleep Factor % field, type the percentage of each DO_SLEEP (pause in the script) to maintain. For validation,
you may not need to run every pause in the script at its full length. The value can be a percentage between 0 and
100. The default is 0.

11. Click OK to save your changes.

12. In the Workspace Pane, click the Scripts tab.

13. Double-click on the appropriate script name to open the script.

14. From the Session menu, choose Validate Script.

You wil l receive a confirmation message i f the script executes successful ly. If i t does not execute
successful ly, a Val idat ion fi le (.val) wi l l open in the editor to help you ident i fy errors.

Debugging a script

Log files

Log fi les can be generated for Oracle, Oracle Forms Server, Citrix, WWW, Uniface, DB2, ODBC, SAP, and
Winsock scripts only.

If you encountered errors whi le val idat ing or test ing a script , you can view any log fi les generated during
the test from the Script Development Workbench's LogFiles tab. Log fi les are generated during a test i f you
set debug opt ions while sett ing up your test in the Conductor. Each virtual user for which you enabled

QALoad 5.02

65

Logfi le Generat ion wil l have created a fi le contain ing in formation about i ts performance. When a test
fin ishes running, al l log fi les are saved in the directory \Program Files\Compuware\QALoad\LogFiles.
Log fi les are named <scriptname>_<middleware>_vu<AbsoluteVirtualUserNumber>.<ext>, where:

! <scriptname> is the name of the script the virtual user ran

! <middleware> is the name of your middleware application

! <AbsoluteVirtualUserNumber> is the identification number assigned to the virtual user

! <.ext> is the file extension, dependent upon which middleware application you are testing. File extensions are listed
in the following table:

M iddlew are Fi l e Ex tension

Oracle
WWW
Citrix

.rip — A log fi le generated by a fai led Player. At the end of a test, al l

.rip fi les are sent from the Players to the \QALoad\LogFiles
directory and added to the merged t im ing fi le for your analysis.

Uniface
WWW

.cap — A standard log fi le contain ing in formation about al l
statements executed during a test.

Citrix
DB2
ODBC
Oracle
Oracle Forms Server
SAP
Winsock
WWW

.log — A standard log fi le contain ing in formation about al l
statements executed during a test.

Verifying script checkpoints

You can quickly veri fy the syntax of the checkpoint commands BeginCheckpoint() and EndCheckpoint()
in your script every t ime you compile your script by sett ing a single opt ion, or on-the-fly with a single
menu command.

Autom at i cal l y, every t im e you com pi le a script :

1. From the Script Development Workbench's main menu, click Options>Workbench.

2. On the Configure Script Development Workbench dialog box, click the Compiler Settings tab.

3. Select the Verify Checkpoints option .

4. Click OK.

Every t ime you compile your script , the Script Development Workbench wil l veri fy the syntax of your
checkpoint statements, and ensure the parameters passed in each pair match. If any errors are encountered,
an error message wil l display in the Output pane. You can cl ick on any error l ine to go direct ly to that l ine
in the script .

M an ual l y, for the open script on ly:

With your script open in the Workbook pane, cl ick Session>Veri fy Checkpoin ts.

The Script Development Workbench wil l veri fy the syntax of your checkpoin t statements, and ensure the
parameters passed in each pair match. If any errors are encountered, an error message wil l display in the
Output pane. You can cl ick on any error l ine to go direct ly to that l ine in the script .

QALoad 5.02

66

Using EasyScript

ADO

ADO Recording Options

User Started : Select th is opt ion i f you would l ike to start your appl icat ion manually for recording, either
before or after you start recording. Because th is method may fai l to record your appl icat ion ’s in i t ial cal ls,
Compuware recommends you select the Autom at i c opt ion instead. Select the User Started opt ion when
you do not know the ful l appl icat ion startup name and command opt ion parameters or when the
appl icat ion spawns off processes that generate traffic that you want recorded.

Note: If you choose this option and the application under test generates traffic before the first Windows
screen displays, you must also select the Capture Initialization Phase check box on the Workbench
Configuration tab of the Configure QALoad Script Development Workbench dialog box.

Autom at i c: Select th is opt ion for QALoad to automatical ly start your appl icat ion for recording, al lowing
you to record early appl icat ion startup act ivi ty. This is the recommended method of recording cal ls,
because i t takes advantage of QALoad’s enhanced abi l i t ies to handle various mult i-threaded programming
techniques. Choose th is opt ion to record traffic from just one appl icat ion. This opt ion l im its the recording
output to just the traffic generated by the appl icat ion, not including the traffic that is generated by
processes spawned by the appl icat ion.

Com m and Line: If you chose Automatic Program Startup, enter the command l ine of your appl icat ion.
You can also use the browse button to locate your appl icat ion.

Work ing Di rectory : Enter the working directory of your appl icat ion.

ADO Conversion Options

Field Ret rieval : Select th is opt ion to include al l instances of the ADO CARecordset->GetFields (represented
in a QALoad script as ADO_Recordset(#)->GetFields(ADOFieldSet[#]); in the converted script .

Clearing th is field removes a number of different elements from the script that may not be necessary for
playback because they are processed on the cl ient side rather than the server side. Removing them can
great ly decrease the size of your script without affect ing your load test results.

Caution: Clear this option only if you are certain that ADO_Recordset(#)->GetFields(ADOFieldSet[#]); is
not integral to your script.

For more in formation about th is opt ion, see Using the Field Retrieval opt ion.

ADO Method Reference

QALoad provides descript ions and examples of the various methods that are avai lable for an ADO script .
For detai ls, refer to the Language Reference Help sect ion for ADO.

Cit rix

Overview

Use QALoad's Citrix middleware to load test systems that run Citrix MetaFrame or Citrix MetaFrame XP.

What i s Ci t r i x?

Citrix middleware is a communicat ion layer that provides remote access to Windows systems. The remote
system appears in a window on the local system.

Connect ing to the rem ote system

QALoad 5.02

67

Once you have connected to a machine that is running the MetaFrame server, you can log in to the remote
system and then run appl icat ions. Alternat ively, you can specify an appl icat ion in addit ion to a user name
and password, which provides access only to the specified appl icat ion and min imizes user input that is
necessary to access the appl icat ion under test.

Test ing in l oad-balanced envi ronm en ts

If you are test ing an environment that includes a server farm, you can use Citrix ICA fi les to support th is
type of configurat ion. Specify the ICA fi le on the Citrix Record Options dialog box. ICA fi les are also
necessary for encrypt ion, Publ ished Applicat ions, and Published Desktops. ICA fi les are generated on the
MetaFrame server and can be obtained from your M etaFrame administrator. For more in formation about
using ICA fi les, see Using ICA fi les.

What do you want to do?

Record a Citrix session
Set recording opt ions
Set conversion opt ions

Recording a Citrix session

To begin recording a Citrix session, cl ick the Record button on the Session toolbar. (If you have not
already chosen Citrix as the session type, cl ick the Ci t r i x Session button to act ivate a new Citrix session.)
The Citrix capture appl icat ion appears, as shown in the fol lowing image.

Cl ick the three sect ions of the image to learn more about the fields and the in formation that is displayed
in each area.

QALoad 5.02

68

Citrix recording options

To set recording opt ions, choose Record... from the Opt ions menu in the Script Development Workbench.

Set the fol lowing opt ions for recording Citrix appl icat ions:

Server In form at ion

Server: Type the name or address of the server machine for automatic connect ions. To connect to a
server manually, do not enter a value in th is field.

Usern am e: Type the user name for the server machine that was specified in the Server field.

Passw ord: Type the password for the user name that was specified in the Usernam e field.

Dom ain : Type a domain name that appl ies to the user name and password that were specified in the
Usern am e and Passw ord fields. Specifying a domain is opt ional. To ensure that the specified user
name is logged on to the server instead of a domain, type the server name in th is field.

Applicat ion Information

Select whether to automat ical ly start an appl icat ion after logging on. Choose Autostart to launch the
appl icat ion specified in the Appl i cat ion field, Custom to refer to the ICA fi le for appl icat ion in formation,
or None to disable automatic appl icat ion startup.

Appl i cat ion : Type the path and fi le name of an appl icat ion to start upon a successful log on.

QALoad 5.02

69

Di rectory: Type the working directory for the appl icat ion that was specified in the Appl i cat ion
field. Specifying a working directory is opt ional even i f you have specified an appl icat ion in the
Appl i cat ion field.

ICA File: Type the name of a Citrix ICA file. To enable this field, click the Custom option. Specify a URL or a file
name without a path. This file, which is located on the MetaFrame server, contains configuration options for the
Citrix client. For more information about ICA files, consult your Citrix administrator.

Notes: To test Published Applications and load-balanced environments (server farms), you must specify an
ICA file.

To validate a script on the same machine on which it was captured, you must copy the ICA file to the QALoad
\BinaryFiles directory. To use the ICA file on remote Player machines, the ICA file should be specified as an
attached file in the External Data column of the Script Assignment tab in the Conductor.

Connect ion Information

Port : Type the port number over which Citrix ICA traffic travels. This port is also the port on which
the MetaFrame server is l istening. The default port is 1494.

Resolut ion : Choose a window size for the Citrix connect ion.

Using ICA files

ICA fi les, which are generated on the MetaFrame server, contain configurat ion opt ions for Citrix. You can
specify an ICA fi le on the Citrix Record Options dialog box.

ICA fi les are specified in the script with the CtxSetICAFile command. If an ICA fi le is specified, the cal l is
generated with an unquali fied fi le name. For example:

CtxSetICAFile("customapp.ica");

 Note: The file name is not fully-qualified because the file may not exist in the same location among the
remote Player machines.

To val idate the script on the same machine on which i t was captured, copy the ICA fi le to the
QALoad\BinaryFiles directory.

To use the ICA fi le on remote Player machines, the ICA fi le should be specified as an attached fi le in the
External Data column of the Script Assignment tab in the Conductor.

Citrix conversion options

To set conversion opt ions, choose Convert ... from the Opt ions menu in the Script Development
Workbench.

Set the fol lowing opt ions for Citrix conversions:

General

Replay Output M ode: Choose the playback mode to use during replay.

! Normal mode is normal headless replay.

! Renderless mode maximizes the number of possible client sessions (and minimizes CPU usage) by discarding all
graphic data immediately after receipt. However, you cannot take snapshots in renderless mode.

! Windowless mode reduces CPU usage by allowing the client to skip drawing the screen image. Rendering still exists
off-screen, which makes session snapshots possible.

Enable Coun ters: Select to enable the middleware counters that are bui l t in to Connect(), Disconnect(),
and Ping() cal ls. Enabl ing these counters can affect load test performance.

Keyboard/Mouse Input

Com bine consecut i ve key characters i n to a st r i ng: Select to combine consecut ive ASCII character key
act ions. This opt ion combines individual cal ls to type characters in to one cal l for the ent ire string.

QALoad 5.02

70

Convert consecut i ve m ouse com m ands in to poin ts/ cl i cks: Select to consol idate consecut ive
MouseMove commands into a Point() command and to convert matching MouseDown/M ouseUp
command pairs in to Cl ick() commands.

Timeout Values

Connect : Type the number of seconds to wait for the connect ion to complete.

Ping: Type the number of seconds to wait for the Ping() cal l to return results.

Disconnect : Type the number of seconds to wait for the disconnect ion to complete.

Wai t Poin t : Type the number of seconds to wait for wait points to complete.

Window even ts: Type the number of seconds to wait for window creat ion and destruct ion events to occur.

Restore Defaul ts: Cl ick to set al l t imeout opt ions to the default sett ings.

Window

Enable veri f i cat ion : Select to enable window veri ficat ion. When th is opt ion is enabled, a window must be
act ive for an act ion to be issued. Also choose the number of t imes to re-try for veri ficat ion i f an act ive
window is not found, and the number of mil l iseconds to wait between each try.

Enable Wi ldcard Ti t l e M atch : Select to enable wi ldcard comparisons for matching Citrix window creat ion
events. For more in format ion about wi ldcard comparisons, see Handling dynamic window t i t les.

Citrix command reference

QALoad provides descript ions and examples of the various commands avai lable for a Citrix script . For
detai ls, refer to the Language Reference Help sect ion for Citrix.

Advanced scripting techniques for Citrix

Handl ing dynam ic w indow s

During conversion, CtxWaitForWindowCreate cal ls are added to the script for each named window
creat ion event. During replay, some dynamic windows that were in the capture may not appear, which
causes the script to fai l because a wait point t imes out. To avoid script fai lure in th is circumstance,
comment out the CtxWaitForWindowCreate commands that may be referencing dynamic windows.

Using the CtxWai tForScreenUpdate com m and

In some situat ions, a window may vary in how long i t takes to refresh on the screen. For example, the
Windows Start menu is an unnamed window that can take varying amounts of t ime to appear, depending
on system resource usage. To prevent playback problems in which a mouse cl ick does not synchronize with
i ts in tended window, insert the CtxWaitForScreenUpdate command in the script after the act ion that
causes the window to appear. The parameters for the CtxWaitForScreenUpdate command correspond to
the X and Y coordinates and the width and height of the window. This command ensures that the window
has enough t ime to display before the mouse cl ick.

Handl ing dynam ic w indow t i t l es

Some appl icat ions create windows whose t i t les vary depending on the state of the window. For example,
M icrosoft Word creates a t i t le based on the default document name at the t ime of the window creat ion.
During replay, th is dynamic t i t le can differ from the window t i t le that was recorded, and the window is
not recognized. If th is occurs, t ry the fol lowing steps to modify the script :

1. Ensure that the Enable Wildcard Title Match check box is selected in the Citrix conversion options prior to
converting the recording.
In the Window Verification group of the Citrix Convert Options dialog box, ensure that the Enable Wildcard Title
Match check box is selected. This check box is selected by default. If you are working with a previously-converted
script, ensure that a CtxSetEnableWildcardMatching command exists in the script prior to the
BEGIN_TRANSACTION command and that the parameter is set to TRUE.

QALoad 5.02

71

2. Verify whether there is an issue with dynamic window titles.
When a script fails on validation because the run time window title is different than the expected window title from the
recording, it is likely that you are dealing with a dynamic title issue that can be handled by this scripting technique. In
this case, the script fails on the CtxWaitForWindowCreate call.

3. Identify a match “pattern” for the dynamic window title.
Note the error message that is returned during validation (or replay). The message indicates the expected window
title versus the window title from script playback. Examine the differences in the window titles to create a “match
pattern” that recognizes the window title, while ignoring other windows. A match pattern can be a simple substring of
the window title or a pattern string using wildcard characters such as ? (to match any single character) or * (to match
any number of characters). The examples below illustrate the different match patterns.

4. Insert a CtxSetWindowMatchTitle command prior to the CtxWaitForWindowCreate call for the dynamic
window.
When adding the SetWindowMatchTitle command, ensure that the first parameter contains the correct window
object and the second parameter contains the match string in double-quotes.

5. Validate the script to ensure the CtxWaitForWindowCreate command recognizes the dynamic window name.
Run the revised script through validation to ensure that the script succeeds. If the script does not validate
successfully, go to step 3 to determine if the match pattern is correct.

Example 1: Using a substring match

In th is example, the M icrosoft Word appl icat ion generates a dynamic t i t le when the script is replayed. The
dynamic name is a concatenat ion of the default document that Word creates at appl icat ion startup with
the name of the appl icat ion. The script is altered to reflect the fact that the string “ Microsoft Word” is
always part of the window t i t le:

// Window CWI_13 ("Microsoft Word") created
CtxSetWindowMatchTitle(CWI_13, “Microsoft Word”);
CtxWaitForWindowCreate(CWI_13);

Example 2: Using a wildcard match with the * character

In th is example, the SampleClientApp appl icat ion generates a dynamic t i t le when the script is replayed.
The dynamic name is the name of the appl icat ion fol lowed by the name of the user, beginning with the
word “ User” . The asterisk (*) wi ldcard is subst i tuted for a given username, reflect ing the pattern of
“ SampleClientApp – User:” as part of the window t i t le fol lowed by an arbitrary user name:

// Window CWI_13 ("SampleClientApp – User: John") created
CtxSetWindowMatchTitle(CWI_13,“SampleClientApp – User: *”);
CtxWaitForWindowCreate(CWI_13);

Example 3: Using a wildcard match with the ? character

In th is example, the RandomValue appl icat ion generates a dynamic t i t le when the script is replayed. The
dynamic name is the appl icat ion fol lowed by a random single digit . The question mark character is
subst i tuted for the single digit to reflect the pattern that begins “ RandomValue: ” , fol lowed by single digit :

// Window CWI_13 ("RandomValue: 0") created
CtxSetWindowMatchTitle(CWI_13, “Sample Application: ?”);
CtxWaitForWindowCreate(CWI_13);

Handl ing dynam ic w indow s that requi re user i n teract ion

Some windows that require user act ion before normal script processing can proceed may appear
in termit tent ly during replay. One example commonly encountered with Citrix is the ICA Seamless Host
Agent window. This window, i f i t appears, requires user act ion or the script may fai l .

To w ork around t h is issue, f ol low t hese st eps:

1. Capture a session in which the dynamic window appears and the user performs the action to dismiss the window.
This may require multiple attempts to capture the window. Once this is captured in a recording, save the script as a
temporary script.

QALoad 5.02

72

2. If the window did not appear in the primary script, extract the code snippet from the temporary script that acts on the
dynamic window and insert it into the real script. The code usually consists of a CtxPoint command and a CtxClick
command for this window. Insert the commands after the CtxWaitForWindowCreate command for the dynamic
window. In addition, extract and insert the Citrix window information object constructor call and delete call to the
relevant parts of the script, changing the object name to avoid conflicting with existing window objects. Ensure that
the additional code is not inserted between a CtxPoint command and a CtxClick command in the primary script.

3. Add a special CtxSetWindowMatchTitle command immediately before the CtxWaitForWindowCreate command. The
first parameter of the CtxSetWindowMatchTitle command should be the correct window object. The second
parameter contains a special wildcard match “*” that enables the CtxClick command to accept any window title,
which ensures that even if the matching window does not appear, the command still executes successfully.

4. If the window appears in the primary script, comment out the CtxWaitForWindowCreate command for the dynamic
window. Because the window itself may not appear, the CtxWaitForWindowCreate command should be commented
out.

5. Validate the script. If the validation is not successful, ensure that steps 2-4 were performed correctly.

In the fol lowing example’s scenario, the ICA Seamless Window Agent window does not appear in the
primary script , but appears in termit tent ly when the primary script is replayed, causing those replay
sessions to fai l . A second Citrix script , which includes the window appearance, is recorded and the
CtxPoint and CtxClick commands are extracted from th is script and inserted in to the primary script , with
the window object changed to match the object in the primary script . In addi t ion, the Citrix window
object constructor cal l and delete cal l are added in the appropriate places in the script , and the CtxClick
command is changed to refer to th is object. In the fol lowing example, the text in bold represents code that
was manually inserted in to the locat ion in the primary script where the window appears in the secondary
script .

CtxWI *CWI_99 = new CtxWI(0x10052, "ICA Seamless Host Agent", 0, 0, 391, 224);
...
CtxSetWindowMatchTitle(CWI_99, “*”);
CtxPoint(190, 203);
CtxClick(CWI_99, 0, L_BUTTON, NONE);
CtxPoint(300, 400);
...
delete CWI_99; // "ICA Seamless Host Agent"

M oving the Ci t r i x connect and disconnect outside the t ransact ion loop

If your load test ing requirements for Citrix include creat ing extended logon sessions, in which the user
remains connected to the Citrix server between transact ions, review the fol lowing t ips for recording and
script development.

Recording

Perform the fol lowing steps during the recording process in order to prepare for moving the connect and
disconnect act ions outside the transact ion loop:

1. Insert a comment such as “Logged in to Citrix” after the Citrix logon but before any windows have been opened.

2. Ensure that all application windows are closed before disconnecting from the Citrix session.

3. Insert a comment such as “Ready to log off Citrix” before the Citrix logoff sequence is initiated. Ensure that the first
comment is added after the user has logged on and closed all login-related dialog boxes, but before any applications
are started. Similarly, the second comment must be placed after all applications have been closed, but before the
user logs off.

Script ing

Comment out the BEGIN_TRANSACTION and END_TRANSACTION cal ls and add new
BEGIN_TRANSACTION and END_TRANSACTION cal ls at the locat ion where the comments from steps 1
and 3 above were placed. Comment out the cal ls instead of delet ing them so that the original locat ion of
these commands can be determined for debugging purposes.

Also comment out the DO_SetTransact ionStart and DO_SetTransact ionCleanup cal ls.

QALoad 5.02

73

Handl ing Ci t r i x server farm s

Citrix servers can be grouped in farms. When load test ing, you may want to connect to a Citrix server farm
rather than to a specific server. This type of setup load tests the server farm and Citrix load balancing
rather than a single server, which provides a more real ist ic load test.

To record a script that connects to a farm, you must use an ICA fi le to connect. However, when a capture
takes place, a specific server (in the farm) must have a connect ion. Specify the correct ICA fi le to connect
to the server farm as well as a specific server with in that server farm. To veri fy that your script is
connect ing to a server farm and not a specific server, assign the server name to one blank space when
val idat ing the script . For example:

.

.

.

/* Declare Variables */
const char *CitrixServer = " ";
const char *CitrixUsername = "citrix";
const char *CitrixPassword = "~encr~657E06726F697206";
const char *CitrixDomain = "qacitrix2";
const int CitrixOutputMode = OUTPUT_MODE_NORMAL;

.

.

.

SET_ABORT_FUNCTION(abort_function);

DEFINE_TRANS_TYPE("Orders.cpp");

CitrixInit(4);

/* Citrix replay settings */

CtxSetConnectTimeout(90);
CtxSetDisconnectTimeout(90);
CtxSetWindowTimeout(30);
CtxSetPingTimeout(20);
CtxSetWaitPointTimeout(30);
CtxSetWindowVerification(TRUE);
CtxSetDomainLoginInfo(CitrixUsername, CitrixPassword, Citrix-Domain);
CtxSetICAFile("PRD desktop.ica");
CtxSetEnableCounters(TRUE);
CtxSetWindowRetries(5, 5000);
CtxSetEnableWildcardMatching(TRUE);

SYNCHRONIZE();

Handl ing unexpected even ts in Ci t r i x

The CtxWindowEventExists and CtxScreenEventExists commands can be used to handle unexpected
window and screen events in Citrix scripts. When there is a possibi l i ty of unexpected dialogs appearing or
unexpected screen events occurring, you must modi fy the script to respond to the changes and cont inue
the load test.

For example, i f a script opens a M icrosoft Word document that resides on a network, and that document is
already open by another network user, an unexpected dialog box appears that prompts the user to choose
between cont inuing to open the document in read-only mode or to cancel i t . To prevent script fai lure,
modificat ions can be made in the script to handle the dialog boxes that appear in th is si tuat ion.

General ly, to handle unexpected events, you record two scripts. The first script contains a recording of the
expected events. The second script should include the unexpected events. Using the

QALoad 5.02

74

CtxWindowEventExists and CtxScreenEventExists funct ions, create a condit ional block of code that
handles the dialogs that may appear.

Example

The fol lowing script example shows the addit ional script l ines that were added to handle a Word
document that is already open by another user on a network. The added l ines appear in boldface type.

/*
 * capSave11111-2.cpp
 *
 * Script Converted on June 21, 2004 at 01:04:17 PM
 * Generated by Compuware QALoad convert module version 5.2.0 build 50
 *
 * This script contains support for the following middlewares:
 * - Citrix
 */

/* Converted using the following options:
 * General:
 * Line Split : 132 characters
 * Sleep Seconds : 1
 * Auto Checkpoints : No
 * Citrix
 * General Options :
 * Window Verification : Yes
 * Session Timeouts : Yes
 * Connect Timeout (s) : 60
 * Disconnect Timeout (s) : 60
 * Window Creation Timeout (s) : 30
 * Ping Timeout (s) : 20
 * Wait Point Timeout (s) : 30
 * Include Wait Points : Yes
 * Enable Counters : No
 * Include Unnamed Windows : Yes
 * Output Mode : Normal
 * Input Options :
 * Combine Keyboard Input : Yes
 * Combine Mouse Input : Yes
 */

#define CITRIX_CLIENT_VERSION "8.00.60000"
#define CITRIX_ICO_VERSION "2.4"
#define SCRIPT_VER 0x00000205UL

#include <stdio.h>
#include "smacro.h"

#include "do_citrix.h"

/* set function to call on abort*/
void abort_function(PLAYER_INFO *s_info);

#ifndef NULL
#define NULL 0
#endif

extern "C" int rhobot_script(PLAYER_INFO *s_info)
{
 /* Declare Variables */
 const char *CitrixServer = "qaccitrix";
 const int CitrixOutputMode = OUTPUT_MODE_NORMAL;

 /* Citrix Window Information Objects */
 CtxWI *CWI_1 = new CtxWI(0x1001c, "Warning !!", 107, 43, 427, 351);

QALoad 5.02

75

 CtxWI *CWI_2 = new CtxWI(0x2001c, "Log On to Windows", 111, 65, 418, 285);
 CtxWI *CWI_3 = new CtxWI(0x5001c, "Please wait...", 111, 112, 418, 145);
 CtxWI *CWI_4 = new CtxWI(0x30030, "Citrix License Warning Notice", 125, 198,
397, 127);
 CtxWI *CWI_5 = new CtxWI(0x40030, "Citrix License Warning Notice", 125, 198,
397, 127);
 CtxWI *CWI_6 = new CtxWI(0x4002e, "UsrLogon.Cmd", 0, 456, 161, 25);
 CtxWI *CWI_7 = new CtxWI(0x1003a, "", -2, 452, 645, 31);
 CtxWI *CWI_8 = new CtxWI(0x10066, "ICA Seamless Host Agent", 0, 0, 391, 224);
 CtxWI *CWI_9 = new CtxWI(0x10052, "Program Manager", 0, 0, 641, 481);
 CtxWI *CWI_10 = new CtxWI(0x1008c, "", 115, 0, 405, 457);
 CtxWI *CWI_11 = new CtxWI(0x1005a, "", 2, 49, 205, 408);
 CtxWI *CWI_12 = new CtxWI(0x2006a, "", 200, 186, 156, 287);
 CtxWI *CWI_13 = new CtxWI(0x10138, "", 112, 116, 416, 248);
 CtxWI *CWI_14 = new CtxWI(0x50036, "Microsoft Word", -4, -4, 649, 461);
 CtxWI *CWI_15 = new CtxWI(0x1017e, "Open", 19, 23, 602, 387);
 CtxWI *CWI_16 = new CtxWI(0x20174, "*Microsoft Word", -4, -4, 649, 461);
 CtxWI *CWI_17 = new CtxWI(0x10058, "", 113, 114, 305, 26);
 CtxWI *CWI_18 = new CtxWI(0x2013e, "Calculator", 66, 66, 261, 253);
 CtxWI *CWI_19 = new CtxWI(0x1005a, "", 2, 49, 205, 408);
 CtxWI *CWI_20 = new CtxWI(0x3006a, "Shut Down Windows", 111, 96, 418, 193);

 CtxWI *CWI_117 = new CtxWI(0x20172, "File In Use", 144, 127, 352, 179);
 CtxWI *CWI_118 = new CtxWI(0x30172, "11111111 (Read-Only) - Microsoft Word", -4,
-4, 649, 461);

 SET_ABORT_FUNCTION(abort_function);

 DEFINE_TRANS_TYPE("capSave11111-2.cpp");

 CitrixInit(1);

 /* Citrix replay settings */
 CtxSetConnectTimeout(60);
 CtxSetDisconnectTimeout(60);
 CtxSetWindowTimeout(30);
 CtxSetPingTimeout(20);
 CtxSetWaitPointTimeout(30);
 CtxSetWindowVerification(TRUE);
 CtxSetEnableCounters(FALSE);
 CtxSetWindowRetries(5, 5000);
 CtxSetEnableWildcardMatching(TRUE);

 SYNCHRONIZE();

 BEGIN_TRANSACTION();

 DO_SetTransactionStart();

 CtxConnect(CitrixServer, CitrixOutputMode);

 // Window CWI_1 ("Warning !!") created 1087837356.454

 CtxWaitForWindowCreate(CWI_1, 2125);

 DO_MSLEEP(1891);
 CtxPoint(246, 267); //1087837358.797

 DO_MSLEEP(453);
 CtxMouseDown(CWI_1, L_BUTTON, NONE, 246, 267); // 1087837358.797

 CtxMouseUp(CWI_1, L_BUTTON, NONE, 247, 267); //1087837359.032

 .
 .

QALoad 5.02

76

 .

 DO_MSLEEP(63);
 // Window CWI_14 ("Microsoft Word") created 1087837397.390

 CtxWaitForWindowCreate(CWI_14, 141);

 DO_MSLEEP(78);
 CWI_14->setTitle("Document1 - Microsoft Word"); //1087837397.468

 // Window CWI_13 ("") destroyed 1087837397.468

 DO_MSLEEP(2468);
 CtxPoint(37, 50); //1087837400.218

 DO_MSLEEP(282);
 CtxClick(CWI_14, 203, L_BUTTON, NONE); //1087837400.421

 // Window CWI_15 ("Open") created 1087837400.764

 CtxWaitForWindowCreate(CWI_15, 344);

 DO_MSLEEP(1656);
 CtxPoint(132, 99); //1087837402.671

 DO_MSLEEP(250);
 CtxDoubleClick(CWI_15); // 1087837402.874

 DO_MSLEEP(109);

 DO_MSLEEP(1953);
 CtxPoint(247, 197); //1087837404.827

 // Window CWI_15 ("Open") destroyed 1087837404.827

 if(CtxWindowEventExists(EVT_STR_CTXWINDOWCREATE,3000,CWI_16))
 BeginBlock();
 CtxPoint(337, 265); //1087837404.905

 // Window CWI_16 ("11111111 - Microsoft Word") created
1087837404.905

 CtxWaitForWindowCreate(CWI_16, 31);

 // Window CWI_14 ("Document1 - Microsoft Word") destroyed
1087837404.905

 DO_MSLEEP(7547);
 CtxPoint(628, 9); //1087837414.592

 DO_MSLEEP(2141);
 CtxClick(CWI_16, 281, L_BUTTON, NONE); //1087837414.873

 DO_MSLEEP(234);
 // Window CWI_16 ("11111111 - Microsoft Word") destroyed
1087837415.108

 CtxPoint(113, 93); //1087837418.779

 // Window CWI_17 ("") created 1087837418.779
 EndBlock()

QALoad 5.02

77

///ReadOnly Code Start

 else
 BeginBlock();

 // Window CWI_117 ("File In Use") created 1087840076.599

 CtxWaitForWindowCreate(CWI_117, 578);

 DO_MSLEEP(2360);
 CtxPoint(358, 283); //1087840079.068

 DO_MSLEEP(125);
 CtxClick(CWI_117, 281, L_BUTTON, NONE); //1087840079.365

 DO_MSLEEP(109);
 // Window CWI_117 ("File In Use") destroyed 1087840079.458

 // Window CWI_118 ("11111111 (Read-Only) - Microsoft Word") created
1087840079.521

 CtxWaitForWindowCreate(CWI_118, 63);

 // Window CWI_115 ("Document1 - Microsoft Word") destroyed
1087840079.521

 DO_MSLEEP(4766);
 CtxPoint(631, 3); //1087840084.490

 DO_MSLEEP(203);
 CtxClick(CWI_118, 250, L_BUTTON, NONE); //1087840084.740

 DO_MSLEEP(93);
 // Window CWI_118 ("11111111 (Read-Only) - Microsoft Word")
destroyed 1087840084.833

 DO_MSLEEP(2407);
 CtxPoint(34, 465); //1087840087.333

 EndBlock();

///ReadOnly Code End

 DO_MSLEEP(1063);

 DO_MSLEEP(484);
 CtxPoint(112, 93); //1087837419.654

 DO_MSLEEP(406);
 CtxDoubleClick(CWI_9); // 1087837419.904
 .
 .
 .

 // Window CWI_9 ("Program Manager") destroyed 1087837440.122

 // Window CWI_7 ("") destroyed 1087837440.138

 DO_SetTransactionCleanup();

 CtxDisconnect();

QALoad 5.02

78

 END_TRANSACTION();

 delete CWI_1; // "Warning !!"
 delete CWI_2; // "Log On to Windows"
 delete CWI_3; // "Please wait..."
 delete CWI_4; // "Citrix License Warning Notice"
 delete CWI_5; // "Citrix License Warning Notice"
 delete CWI_6; // "UsrLogon.Cmd"
 delete CWI_7; // ""
 delete CWI_8; // "ICA Seamless Host Agent"
 delete CWI_9; // "Program Manager"
 delete CWI_10; // ""
 delete CWI_11; // ""
 delete CWI_12; // ""
 delete CWI_13; // ""
 delete CWI_14; // "Microsoft Word"
 delete CWI_15; // "Open"
 delete CWI_16; // "11111111 - Microsoft Word"
 delete CWI_17; // ""
 delete CWI_18; // "Calculator"
 delete CWI_19; // ""
 delete CWI_20; // "Shut Down Windows"

 delete CWI_117; // "File In Use"
 delete CWI_118; // "11111111 (Read-Only) - Microsoft Word"

 CitrixUninit();

 REPORT(SUCCESS);
 EXIT();
 return(0);
}

void abort_function(PLAYER_INFO *s_info)
{
 RR__printf("Virtual User ABORTED.");

 CitrixUninit();

 EXIT();
}

Java

Overview

QALoad does not support recording of Java scripts. Instead, Java scripts are created from script templates
that you use to create a stub script that you can then edit manually. Templates are saved in the
QALoad\Middlewares\Java\Templates directory. QALoad suppl ies four default templates. QALoad uses
a token name to represent the classpath — when you create a new Java script , QALoad simply replaces the
token <classnamehere> with the class/script name you assign. You can also instal l addit ional templates
using the <classnamehere> token i f you wish.

Fol lowing is an example of a Java template with the classname token (in bold):

import com.compuware.qacenter.qaload.EasyScript.*;
public class <classnamehere> implements EasyScript

{
/** optional - Class method runs once for each script when class is loaded */
public static void setup QALoad Test () throws Exception

QALoad 5.02

79

{
}

Use the Script Development Workbench to convert a previously recorded EasyScript for RMI script to an
EasyScript for Java script , or to create a new EasyScript for Java script from the provided stub scripts.

Creat ing a new Java script

Using my script from a previous version of QALoad

Accessing JavaDoc

QALoad provides JavaDoc for your reference. To access i t from the Script Development Workbench menu,
choose Help>EasyScript for Java: JavaDoc from a Java session.

Updating your scripts

To update an RM I script from a release prior to QALoad 5.0, take the fol lowing steps to convert your script
to the new Java Script format.

To updat e RMI scr ipt s:

1. Copy your existing script to the QALoad\Middlewares\Java\Scripts directory.

2. Open an EasyScript for Java session.

3. Open the script you copied to the \Scripts directory in step 1.

4. Create a new Java script using the template named old format. This template illustrates the modifications you need
to make to your previous script to make it compatible with EasyScript for Java.

5. Use the comments in the new script you created using the old format template to guide you in modifying your
previously created script.

6. When you are finished, save your modified script.

Creating a Java Script

To creat e a Java scr ipt f or QALoad :

1. With a Java session open, choose File>New from the menu.

2. In the File area, click on the Middleware tree item.

3. In the Filename field, type a name for your new Java script. Note that Java file names do have special requirements,
and QALoad will enforce those requirements. For example, Java file names cannot contain spaces. If you try to
include a space in your file name, QALoad will give you an error prompt.

4. Click OK. The Create Java Script dialog box opens.

5. Under the Script field is a selection box listing all the templates available in your
\QALoad\Middlewares\Java\Templates directory. QALoad provides four default templates. If you click on a
template name, a sample is shown in the right pane. The four templates are:

 long format — Provides al l required and opt ional methods.

 new class — Creates a class associated with the script .

 old format — Shows modi ficat ions needed to run legacy scripts.

QALoad 5.02

80

 short format — Provides only the min imum required methods.

Select the template that best suits your needs and click OK. QALoad creates a stub script by the name
you designated and opens it in the Workbook pane for editing.

6. Edit your script as necessary. You can use QALoad's Java Script Options dialog box to edit some script attributes.

Oracle

Oracle recording options

User Started : Select th is opt ion i f you would l ike to start your appl icat ion manually for recording, either
before or after you start recording. Because th is method may fai l to record your appl icat ion ’s in i t ial cal ls,
Compuware recommends you use the Autom at i c opt ion instead. Select the User Started opt ion when you
do not know the ful l appl icat ion startup name and command opt ion parameters or when the appl icat ion
spawns off processes that generate traffic that you want recorded.

Note: If you choose this option and the application under test generates traffic before the first Windows
screen displays, you must also select the Capture Initialization Phase check box on the Workbench
Configuration tab of the Configure QALoad Script Development Workbench dialog box.

Autom at i c: Select th is opt ion for QALoad to automatical ly start your appl icat ion when recording, al lowing
you to record early appl icat ion startup act ivi ty. This is the recommended method of capturing API cal ls,
because i t takes advantage of QALoad’s enhanced abi l i t ies to handle various mult i-threaded programming
techniques. Select th is opt ion to record traffic from just one appl icat ion. This opt ion l im its the recording
output to just the traffic generated by the appl icat ion, not including the traffic that is generated by
processes spawned by the appl icat ion.

Com m and Line: If you chose Autom at i c Program Startup, enter the command l ine of your Oracle
appl icat ion. You can also use Brow se to locate your appl icat ion.

Work ing Di rectory : Enter the working directory of your Oracle appl icat ion.

Note: If you entered the full path in the Command Line field, this field is filled in automatically.

Oracle conversion options

Database Paths, Incl udes: Enter the locat ion of your Oracle database includes.

Database Paths, Libraries: Enter the locat ion of your Oracle database l ibraries.

Variabl i zat ion (Act i veData) Enable: Select th is opt ion to enable Act iveData for Oracle during conversion.
This opt ion is enabled by default . For more in formation, cl ick Act iveData for Oracle.

M in im um Characters: Enter the min imum number of characters to match for auto-variabl izat ion.

PostCapture: Fetch I terat ion Override: Type the number of fetch i terat ions al lowed while recording a
script to control the amount of data fetched during playback. To fetch al l data, type: 1000000.

ActiveData for Oracle

Act i veData for Oracle

Oracle variabl izat ion is a powerful script ing assistant that provides automatic correlat ion of data values in
your script (auto-variabl izat ion) and lets you use a datapool as the source of data values (manual-
variabl izat ion).

Auto-variabl izat ion

When you enable auto-variabl izat ion, QALoad correlates the data values produced by the execut ion of
recorded SQL statements and assigns a single source variable to matching bind and stat ic variables that
subsequently use the value. Auto-variabl izat ion wil l on ly target a capture fi le's bind variables and

QALoad 5.02

81

embedded stat ic data in recorded SQL statements as receivers of source variables. Source variables wi l l be
automatical ly generated based on the capture fi le's PostBind data, Fetch data, and embedded Stat ic data in
SQL statements. Source variables from PostBind data wi l l be generated only i f the PostBind data belongs to
one of these OCI bind data types:

Code OCI7 Bind Data Type OCI8 Bind Data Type

3 SQLT_INT SQLT_INT

4 SQLT_FLT SQLT_FLT

68 SQLT_UIN SQLT_UIN

1 SQLT_CHR SQLT_CHR

5 SQLT_STR SQLT_STR

96 SQLT_AFC SQLT_AFC

97 SQLT_AFC SQLT_AFC

11 SQLT_RID SQLT_RID Not Appl icable

in OCI8

Source variables from Fetch data wi l l be generated only i f the Fetch data belongs to one of the above OCI
datatypes or one of the fol lowing:

Code OCI7 Fetch Data Type OCI8 Fetch Data Type

6 SQLT_VNU SQLT_VNU

2 SQLT_NUM SQLT_NUM

Note: Fetch data is made available in the capture file only when the Oracle Capture Option Use Fetch data
for Variablization is selected.

Stat ic data embedded in SQL statements wi l l be used as source variable or receiver of a source variable only
when the SQL statement states a SELECT, INSERT, UPDATE or DELETE operat ion. SQL statements that
contain stored procedures (e.g. BEGIN…) wi l l be excluded.

Auto-variabl izat ion occurs by default in QALoad, but you can turn i t off by clearing the conversion opt ion
Variabl i zat ion (Act i veData) on the Oracle Convert Opt ions tab. If you choose to use automatic
variabl izat ion, you can then use manual-variabl izat ion to change a source variable previously determined
by auto-variabl izat ion to data from a local or central datapool.

Manual Variabl izat ion

Manual variabl izat ion al lows you to change the source of variables ident i fied through auto-variabl izat ion
to use data from central or local datapools. You use the variabl izat ion tree-view and the opt ions avai lable
from the tree-view to view and change source variables.

Manual variabl izat ion is l im ited to changing the source variables to data that was prepared from a local
datapool or conductor (central) datapool. Once changed, al l (but not individual) source variables may be
changed back to the original source variables.

QALoad 5.02

82

W hy use Act iveData for Oracle?

! To avoid duplicate key errors which can occur during playback when the data relationships hidden (implied)
within a set of Oracle SQL statements are not recorded. For example, a recorded Select SQL statement may
include the Oracle nextval expression to get the next sequential unique number in the database. The returned value
from the expression is used for the primary key in a subsequent Insert statement. The primary key is associated with
a bind variable. The value of the bind variable is recorded and noted in the QALoad script. When the script is played
back, the returned value from nextval will naturally be different from the value of the bind variable. The Insert SQL
execution incurs a duplicate key error from the Oracle server.

Oracle variabl izat ion prevents th is error by providing a logical relat ionship between the returned data
from the Select statement and the data for the Insert bind variable. The data relat ionship is establ ished
through a source variable.

! To reduce diagnostic time for playback data issues, especially when dealing with large scripts. Using a single
source variable for script variables that have the same data value reduces the amount of debugging time that would
have been spent on multiple script variables. Additionally, the Compare Tool aids you in debugging data issues by
highlighting SQL and data differences that could influence the load test of two similar capture files.

Variabl i zat ion m enu

Access the Variabl i zat ion menu from the Script Development Workbench's Session menu, or by right-
cl icking from the variabl izat ion tree-view.

Create/ Edi t a source: Opens a tree-view of your variabl ized
statements and their sources.

Show Capture Di f feren ce: Accesses the Compare Tool, where you
can choose a capture fi le to compare to the current capture fi le and
have the differences in SQL statements and bind data h ighl ighted for
your comparison with in the variabl izat ion tree-view.

Revariabl i ze: Deletes al l manually generated source variables and re-
executes auto-variabl izat ion. Note that datapool sources may not be
changed back to PostBind, Fetch, or Stat ic data unless you select th is
opt ion.

Rem ove al l sources: Deletes al l source variables from the script 's .var
fi le.

Show SQL statem en t : Provides a detai led view of the h ighl ighted
SQL statement. The detai led view wil l display associated Bind and

Column data (from the Execute statement), associated PostBind data, and associated Fetch data.

Hin ts: Opens the Oracle Variabl izat ion Hints onl ine help.

Word w rap: Shows the complete SQL statement in wrapped format. This is selected by default .

Displ ay opt ions: Al lows you to change display opt ions to one of the fol lowing: Only statements with bind
variables, Unsourced Bind statements, or Show al l SQL statements (default).

The Refresh the curren t view opt ion wil l re-draw the tree-view after a source is manually changed.

Save the Variabl i zat ion VAR f i l e: Saves any changes to the script 's .var fi le.

Save and Convert : Saves changes to the .var fi le and re-converts the script .

Save and Convert As: Saves changes to the .var fi le and prompts you to save your script under a new name
before re-convert ing i t .

Variabl i ze

Use th is dialog box to variabl ize a fi le or to compare two similar fi les. The results wi l l be displayed in a tree-
view from which you can manually variabl ize the fi le or view the differences between the two fi les. When

QALoad 5.02

83

you compare two fi les, the differences in SQL statements and bind data wi l l be h ighl ighted with in the
Variabl izat ion tree-view.

Variabl i ze the fol l ow ing capture f i l e: Lists the path and name of the curren t ly selected capture fi le (.cap).

Com pare and Variabl i ze w i th the fol l ow ing f i l e: Navigate to the capture fi le you'd l ike to compare to the
current ly selected capture fi le.

Variabl i ze: Variabl izes the fi le and displays the recorded SQL statements, bind variables, stat ic variables
embedded in SQL statements, data values and the sources of data values as determined by auto-
variabl izat ion.

Cancel : Closes the dialog box without making any changes.

Source Detai l s

Displays detai ls about the source of the selected variable, and al lows you to replace the source with data
from a central or local datapool.

Nam e: Lists the name of the field in the script that was variabl ized.

Value: Lists the value assigned to the variabl ized field.

Line #: Lists the script l ine where the field is located.

(Defaul t) From Postbind/ Fetch / Stat i c data: If th is opt ion is selected, the source of the variable was
determined by auto-variabl izat ion.

Source variable nam e in Convert scri pt : The name assigned to the variable by auto-variabl izat ion, or
when replaced by a datapool variable.

From datapool : Select th is opt ion to change the source to a central or local datapool.

Field Num ber : Specify the column number in the datapool fi le to use as the source.

Advanced Opt ions: Cl ick to open the Act iveData Advanced Source Options dialog box where you can
format the source before using i t , if necessary.

Displ ay val ues m atched by auto-variabl i zat ion : In th is area, cl ick the appropriate button to determine
which values to display: Sources, Matching values, or Matching names and values.

M atch exact : Select i f the source must be an exact match, or de-select to use the source for a sub-string
search.

Update Source: Cl ick to update the variable source according to the sett ings on th is dialog.

Update ALL: Cl ick to use the newly created source variable for al l i tems in the l ist area.

Delete Source: Cl ick to delete the variable and al l i ts references from the tree-view.

Qui t : Cl ick to cancel without saving any changes.

Com paring f i l es

The Oracle Variabl izat ion Compare Tool compares two similar capture fi les and h ighl ights the differences
in SQL statements and bind data and h ighl ights them in the Variabl izat ion Tree View.

Why use the Compare Tool?

The Compare Tool can help you debug data issues in your transact ion that may cause load test problems,
especial ly in large scripts. With the differences h ighlighted in a window display, you can quickly determ ine
i f manual variabl izat ion is warranted for specific variables. Manual variabl izat ion can help you work
around data issues that in fluence load tests.

QALoad 5.02

84

To use t he Com pare Tool :

1. In the Workspace pane, right-click on the first capture file you want to compare and select Variablize from the
shortcut menu. The Variablize dialog box opens, displaying the path and name of the selected file.

2. Select the Compare and Variablize with the following file check box, and then navigate to the capture file you
wish to compare against the first selected file.

3. Click the Variablize button. A new tab opens in the Script Development Workbench, presenting a tree-view of the
data. Differences in SQL statements and bind data are highlighted.

4. View differing values by clicking on a highlighted bind variable or SQL statement. The Show Capture Difference
window will open, listing the value used in each file.

5. If you don't need to change the data, click OK to be returned to the tree-view. If you need to change the source of a
bind item to a datapool variable, click Go to Source Display. The Source Details (for bind data) window or Show
SQL Statement (for SQL statements) window opens.

6. Change the source of any variables to call datapool items.

7. Save the .var file and convert your capture file to build an updated script by right-clicking and selecting Save and
Convert or Save and Convert As.

Setting up QALoad to run Oracle scripts on UNIX

After instal l ing the QALoad UNIX Player and ut i l i t ies, you should ensure that the fol lowing environment
variables are set prior to start ing the Player Agent (loadagent):

Plat form Envi ronm en t
Variable

Value

Al l Plat form s: ORACLE_HOME <path>/oracle/product/<version>

 TNS_ADMIN <location of config files>

 ORACLE_SID <oracle instance name

AIX : LIBPATH <playerdir>/lib:<ORACLE_HOME>/lib

HP-UX : SHLIB_PATH <playerdir>/lib:<ORACLE_HOME>/lib

Linux : LD_LIBRARY_PATH <playerdir>/lib:<ORACLE_HOME>/lib

Solari s: LD_LIBRARY_PATH <playerdir>/lib:<ORACLE_HOME>/lib

Sett ing environment variables on UNIX systems depends on your login shel l . For example:

! For ksh: export ORACLE_HOME=/oracle/product/8.1.6

! For csh: setenv ORACLE_HOME /oracle/product/8.1.6

The ORACLE_HOME environment variable points to the directory where the Oracle workstat ion software
has been instal led. The TNS_ADMIN environment variable should point to the locat ion of the cl ient
and/or server config fi les. ORACLE_SID should be set to the name of the Oracle instance. For each UNIX
platform, update the appropriate l ibrary path variable to include the l ibrary di rectory for the part icular
version of Oracle.

Scripts wi l l automatical ly be downloaded to the Player machines by the Conductor and compiled, i f
necessary, at test execut ion t ime.

During the automatic script download and compile, i f a script compile error occurs, a scriptname.err fi le
wi l l be generated in the scripts directory.

To compile a script by hand, use the Rmake command. The syntax is as fol lows:

Rmake <scriptdir>/<scriptname>

QALoad 5.02

85

 or

Rmake <scriptdir>/<scriptname>

Oracle command reference

QALoad provides descript ions and examples of the various commands avai lable for an Oracle script . For
detai ls, refer to the Language Reference Help sect ion for Oracle 7, Oracle 7/8, or Oracle 8.

Oracle Forms Server

Recording from Oracle Forms Server

QALoad supports recording Oracle Forms 9i and patched 6i (versions 6.0.8.14 and up) appl icat ions in HTTP
mode, Forms 4.5, 6.0, 6i, and 9i appl icat ions in socket mode, and SSL-enabled Oracle Forms 9i
appl icat ions. These recording types are described briefly below.

Oracle Forms scripts from QALoad versions 5.1 and earl ier are in Java; scripts recorded in later versions are
in C++.

Recording 9i and Form s 9i (HTTP m ode)

Oracle 9iAS uses HTTP tunnel ing to send Forms data across the firewall as normal Internet traffic. To record
Oracle 9i and Oracle Forms 9i in HTTP mode, select 9i on the Record Options dialog box before you start
recording your appl icat ion. Once you start recording, you must specify the Oracle Appl icat ion Server name
and port on the in i t ial browser page, and then cl ick the l ink to your Forms 9i appl icat ion.

Note: When using server-side recording, you must perform steps to configure the server. See Using server-
side recording for more information.

Recording 9i (SSL m ode)

To record an Oracle 9i appl icat ion in SSL mode, select Form s Version 9i on the Record Options dialog box,
and type the Jin it iator certDB fi le that the 9i appl icat ion uses. The certDB fi le veri fies the SSL Cert i ficate
Authori ty on the cl ient side prior to the Forms connect ion. Once you start recording, specify the Oracle
Appl icat ion server name and port on the in i t ial browser page, and cl ick the l ink to the Forms 9i
appl icat ion.

Note: SSL mode is not available with server-side 9i recording.

Recording Form s 4.5, 6.0, or 6i (socket m ode)

For socket-mode recording, QALoad must start your appl icat ion for you through your browser. Before
recording, enter the URL of the Forms applet page in the URL field, and the Form s Server port in the Port
field. If you leave the Port field blank, or enter an incorrect port number, your recording wil l on ly result in
an empty capture fi le. You may leave the URL field blank, but wi l l be prompted for the Forms applet page
on the in i t ial browser page. From the applet page, cl ick the l ink to your Forms appl icat ion. QALoad wil l
take over recording at th is point.

Using server-side recording

For Forms appl icat ions running in Oracle 9iAS, you can use server-side recording, which avoids issues that
can be encountered with some server configurat ions. Server-side recording creates a script recording by
using the Forms server's own capabi l i t ies to record transact ions.

To enable server-side recording, select the 9i Server-Side Recording check box on the Oracle Forms Server
Record Options dialog box and provide the URL of the ListenerServlet in the ListenerServlet field.

QALoad 5.02

86

Server setup

Before recording a script using server-side recording, you must fi rst modify the server configurat ion so that
QALoad can communicate with the server properly. Once the server modificat ions are complete, recording
and playback are the same as for standard OFS scripts.

To prepare t he Form s server f or ser ver -side recording:

1. Copy the ofsmessage.jar file from the \QALoad\Classes directory of the QALoad installation on the client
machine to the \FORMS90\JAVA directory of the Oracle 9i Application Server installation on the server machine.

2. Add a new section of configuration parameters to the formsweb.cfg file in the \FORMS90\server directory of the
Oracle 9i Application Server installation. Use the following format, substituting your own information for the items in
boldface type:

[MsgBlk]
form=test1.fmx
userid=scott/tiger@iasdb
archive_jini=f90all_jinit.jar,OfsMessage.jar
archive_ie=f90all.cab,OfsMessage.jar
archive=f90all.jar,OfsMessage.jar
formsMessageListener=oracle.forms.iserver.MessageListener
recordFileName=c:\temp\is

3. When you begin to record, append a config parameter on the initial browser page's URL, as shown in boldface type in
the following sample URL:
http://ntsap45b:7779/forms90/l90servlet?config=MsgBlk

Oracle Forms Server recording options

QALoad records through your default browser.

Connect ions

Form s version : Select your Oracle Forms Server version. This parameter must match the version of
WebForms you are using or you wil l not be able to record. If you use the Oracle Appl icat ions suite of
products, use the fol lowing table to determine the Forms version:

Appl i cat ions
Version

Form s Version

10 4.5

11 4.5

11i 6i

Enable server-side recording: Select to enable Oracle Forms 9i server-side recording.

Li stener servlet URL: Type the URL of the l istener servlet that is used by the appl icat ion under test.

Use SSL: Select th is opt ion i f the appl icat ion uses Forms Version 9i and the appl icat ion is SSL-enabled.

Cert i f i cate f i l e: For SSL mode only. Type the name of, or browse for, the Oracle Jin it iator's certDB
fi le that is located on the cl ient machine. The certDB fi le is used by Oracle 9i to veri fy the SSL
Cert i ficate Authori ty on the cl ient side prior to the Forms connect ion.

Socket URL: For socket connect ions with Oracle Forms versions 6i, 6.0, or 4.5, enter the URL to in i t iate
your applet. If you are recording from 9i, th is field is unavai lable.

Port : If your Oracle Forms version is anyth ing other than 9i, type the port number on your Oracle Forms
Server appl icat ion server for QALoad to l isten on. This is the same port as the Forms l istener (usual ly 9000).

QALoad 5.02

87

To det erm ine t he server por t :

1. Start the WebForms application in the browser.

2. Once the application has started, choose the menu option View>Source.

3. Look in the source code for a line that resembles this:
<PARAM NAME = "serverPort" VALUE ="9000" >. This value is the server port.

Addi t i onal Jar Fi l es

Override appl i cat ion defaul ts: If you need to use Java resources other than those that are your
appl icat ion 's defaults, select the check box and then cl ick Add to navigate to the appropriate JAR fi les and
add them to the l ist .

Oracle Forms Server conversion options

General

Send heartbeat every [n] m inutes: Type the number of minutes between each Forms 6i heartbeat
message. Compuware recommends using a value of 4 or more to prevent socket usage issues.

Sim ulate an Oracle Appl i cat ions 11i Login : Select to simulate an Oracle Appl icat ions 11i login via a
Personal Home Page. Then complete the fol lowing three fields:

Hom ePage URL: Type the locat ion (URL) of the Personal Home Page.
Userid : Type the user name to be used on the Personal Home Page.
Passw ord : Type the password for the user name that is specified above in the Userid field.

CPP scripts

Stop runn ing w hen server m essages indicate errors: Select to check server messages for errors. If th is
opt ion is selected, the script stops running i f errors are encountered. If th is opt ion is not selected, the script
ignores errors and cont inues.

Stop on ly i f server m essage m atches speci f i ed st r i ng: Select to al low script fai lure only i f the
specified server message is received. This opt ion is avai lable only i f the Stop runn ing w hen server
m essages indicate errors is also selected.

M essage: Type a string to match against server messages, and select one of the fol lowing match
types.

con tains: Match based on the specified characters appearing anywhere in the message.
i s exact l y : Match based on the specified complete error message name.
begins w i th : Match based on the specified characters appearing at the beginning of the
message.
ends w i th : Match based on the specified characters appearing at the end of the message.

Java scripts

Referen ce con t rol s by : Select whether to reference controls in the script by name or server assigned ID
number.

To use th is opt ion, the applet startup parameters must have the record=names opt ion. In some
appl icat ions, each t ime a new form or window is drawn, the server assigns i t a new sequence of ID
numbers. In these appl icat ions, using the original ly record ID numbers can cause the script to fai l when
mult iple transact ions are executed for a virtual user.

Use of record=names does not consistent ly work for Oracle Forms Server prior to V6i. In the event you
cannot use control labels, place the BEGIN_/END_TRANSACTION loop around the ent ire script .

QALoad 5.02

88

Output a w arn ing i f nam e i s not found : This check box is enabled when the Use "string" control
labels check box is selected. The default behavior of the Script Development Workbench is to output
a warning when a control label is not found. These warnings wil l appear as comments in the script .
Select ing th is opt ion disables these warnings.

Reduce script l i nes: Select th is opt ion to reduce the number of script l ines in socket mode capture fi les.
This opt ion makes i t easier to read/debug long scripts. If th is opt ion is selected, QALoad produces one l ine
of script code in a si tuat ion that previously produced 3 l ines: the transmission of a message contain ing a
Forms control that has a single property. For example:

The fol lowing 3 script l ines:

oracleFormsMsg1 = oracleForms.FormWindow(CONTROL_FormWindow006);
oracleFormsMsg1.Add(PROPERTY_LOCATION, new java.awt.Point(0,0));
oracleForms.XmitMsg(4, oracleFormsMsg1); // Statement # = 4

wil l be reduced to one l ine:

oracleForms.FormWindow(CONTROL_FormWindow006, PROPERTY_LOCATION, new java.awt.Point(0,0));

Output cl i en t m essages as com m ents: Output raw cl ient capture data as comments in the generated
script . This data can be used to compare converted playback log fi les.

Output server m essages as com m ents: Output raw server capture data as comments in the generated
script . This data can be used to compare converted playback log fi les. Select ing th is opt ion can significant ly
increase the size of scripts.

Checkpoints in Oracle Forms Server scripts

EasyScript for Oracle Forms Server supports QALoad's automatic middleware checkpoint t im ings in both
HTTP and socket modes. Default checkpoints (Begin/End Checkpoint pairs) are not supported.

Automatic checkpoints are enabled from the Conductor's Tim ing Opt ions column on the Script
Assignm en t tab and are enabled on a script-by-script basis.

At playback, automatic checkpoints are executed during the ofsSendRecv statement.

Forms validation/playback debugging options

Debug data

When the Debug Data opt ion is enabled on the Configure Script Development Workbench dialog box for
val idat ion, or the Conductor's Debug Trace opt ion is enabled for playback, executed script statements wi l l
be displayed. For example:

VU 0 : Line:90, ofsSetWindowSize("FORMWINDOW" ,6, OFS_ENDMSG, 137, 750, 600)
VU 0 : Line:91, ofsActivateWindow("WINDOW_START_APP" ,11, OFS_ENDMSG, 247)
VU 0 : Line:92, ofsShowWindow("WINDOW_START_APP" ,11, OFS_ENDMSG, 173)
VU 0 : Line:93, ofsFocus("BUTTON" ,51, OFS_ENDMSG, 174)
VU 0 : Line:94, ofsSetWindowSize("FORMWINDOW" ,6, OFS_ENDMSG, 137, 750, 600)
VU 0 : Line:95, ofsSendRecv(1) //ClientSeqNo=2|MsgCount=6

Oracle Forms Server playback error codes

QALoad displays error codes during playback for specific except ion messages. While debugging, refer to the
table below that l ists error codes and descript ions that apply to Oracle Forms Server scripts.

Most of the errors l isted below are cl ient request errors due to JVM memory issues. When the error is due to
a server problem, the error message indicates a connect ion issue or a bad response from the server. Al l
these errors cause playback to fai l . When the error is cl ient-related, you can work around the JVM memory
issue by tweaking the Player machine's Threads Per Player value in QALoad Conductor. When the error is

QALoad 5.02

89

server-related, the server is unable to handle the load. The server typical ly throws out connect ion requests,
does not respond to requests, or terminates connect ions during playback.

Error code Descript i on

OFS-ERROR-001 Failed to create the replay log fi le.

OFS-ERROR-002 Failed while processing server detai l message. Unknown control handle.

OFS-ERROR-003 Failed to send a heartbeat message.

OFS-ERROR-004 OracleAppsLogin: Error: icx_t icket not found in OracleAppsLogin, please
check URL, userid, and password.

OFS-ERROR-005 Failed to set Boolean property of a RunForm object.

OFS-ERROR-006 Failed to process Boolean property of a RunForm object.

OFS-ERROR-007 Failed to set Point property of a RunForm object.

OFS-ERROR-008 Failed to process point property of a RunForm object.

OFS-ERROR-009 Failed to set Byte property of a RunForm object.

OFS-ERROR-010 Failed to process Byte property of a RunForm object.

OFS-ERROR-011 Failed to set In teger property of a RunForm object.

OFS-ERROR-012 Failed to process Integer property of a RunForm object.

OFS-ERROR-013 Failed to set String property of a RunForm object.

OFS-ERROR-014 Failed to process String property of a RunForm object.

OFS-ERROR-015 Failed to set Void property of a RunForm object.

OFS-ERROR-016 Failed to process Void property of a RunForm object.

OFS-ERROR-017 Failed to process Character property of a RunForm object.

OFS-ERROR-019 Failed to process Float property of a RunForm object.

OFS-ERROR-020 Failed to set Date property of a RunForm object.

OFS-ERROR-021 Failed to process Date property of a RunForm object.

OFS-ERROR-022 Failed to set Rectangle property of a RunForm object.

OFS-ERROR-023 Failed to process Rectangle property of a RunForm object.

OFS-ERROR-024 Failed to set ByteArray property of a RunForm object.

OFS-ERROR-025 Failed to set StringArray property of a RunForm object.

QALoad 5.02

90

OFS-ERROR-027 Failed to process ByteArray property of a RunForm object.

OFS-ERROR-028 Failed to process StringArray property of a RunForm object.

OFS-ERROR-029 Failed to process nested message.

OFS-ERROR-030 Failed to do server-side connect ion.

OFS-ERROR-031 Failed to disconnect server-side connect ion.

OFS-ERROR-032 Failed because the server sent th is error message: <message>

OFS-ERROR-033 Failed to expand the GUI control array.

OFS-ERROR-034 Failed to get the stored propert ies.

OFS-ERROR-035 Failed to send terminal message using server-side connect ion.

OFS-ERROR-036 Failed to send Forms message using server-side connect ion.

OFS-ERROR-037 Failed to process the Void property of a Button object.

OFS-ERROR-038 Failed to add l istbox value. Bounds error. Listbox index: <index >, Listbox
value: < value>

OFS-ERROR-039 Failed to find Listbox value. Value: < value>

OFS-ERROR-040 Failed to set the String property of an ErrorDialog object.

OFS-ERROR-041 Failed to process the String property of an ErrorDialog object.

OFS-ERROR-042 Failed to process the nested message of an ErrorDialog object.

OFS-ERROR-043 Failed to set the Point property of a FormWindow object.

OFS-ERROR-044 Failed to process the Point property of a FormWindow object.

OFS-ERROR-045 Failed to set the Boolean property of a FormWindow object.

OFS-ERROR-046 Failed to process the Boolean property of a FormWindow object.

OFS-ERROR-047 Failed to set the Integer property of a FormWindow object.

OFS-ERROR-048 Failed to process the Integer property of a FormWindow object.

OFS-ERROR-049 Failed to process the nested message of a FormWindow object.

OFS-ERROR-050 Failed to set the String property of a JavaContainer object.

OFS-ERROR-051 Failed to process the String property of a JavaContainer object.

OFS-ERROR-052 Failed to process the nested message of a JavaContainer object.

QALoad 5.02

91

OFS-ERROR-053 Failed to set the String property of an LOV object.

OFS-ERROR-054 Failed to process the String property of an LOV object.

OFS-ERROR-055 Failed to set the Integer property of an LOV object.

OFS-ERROR-056 Failed to process the Integer property of an LOV object.

OFS-ERROR-057 Failed to set the Point property of an LOV object.

OFS-ERROR-058 Failed to process the Point property of an LOV object.

OFS-ERROR-059 Failed to set the Void property of an LOV object.

OFS-ERROR-060 Failed to process the Void property of an LOV object .

OFS-ERROR-061 Failed to process the nested message of an LOV object.

OFS-ERROR-062 Failed to set the String property of a LogonDialog object.

OFS-ERROR-063 Failed to process the String property of a LogonDialog object.

OFS-ERROR-064 Failed to process the nested message of a LogonDialog object.

OFS-ERROR-065 Failed to set the String property of a MenuParamDialog object.

OFS-ERROR-066 Failed to process the String property of a M enuParamDialog object.

OFS-ERROR-067 Failed to process the nested message of a M enuParamDialog object.

OFS-ERROR-068 Failed to set the String property of a PopList object.

OFS-ERROR-069 Failed to process the String property of a PopList object.

OFS-ERROR-070 Failed to set the Integer property of a PopList object.

OFS-ERROR-071 Failed to process the Integer property of a PopList object.

OFS-ERROR-072 Failed to set the Void property of a PopList object.

OFS-ERROR-073 Failed to process the Void property of a PopList object.

OFS-ERROR-074 Failed to process the nested message of a PopList object.

OFS-ERROR-075 Failed to set the String property of a TextField object.

OFS-ERROR-076 Failed to process the String property of a TextField object.

OFS-ERROR-077 Failed to set the Point property of a TextField object .

OFS-ERROR-078 Failed to process the Point property of a TextField object.

QALoad 5.02

92

OFS-ERROR-079 Failed to set the Integer property of a TextField object.

OFS-ERROR-080 Failed to process the Integer property of a TextField object.

OFS-ERROR-081 Failed to set the Void property of a TextField object .

OFS-ERROR-082 Failed to process the Void property of a TextField object.

OFS-ERROR-083 Failed to process the nested message of a TextField object.

OFS-ERROR-084 Failed to set the Integer property of a Tree object.

OFS-ERROR-085 Failed to process the Integer property of a Tree object.

OFS-ERROR-086 Failed to set the String property of a Tree object.

OFS-ERROR-087 Failed to process the String property of a Tree object .

OFS-ERROR-088 Failed to process the nested message of a Tree object.

OFS-ERROR-089 Failed to process the nested message of a Button object.

OFS-ERROR-090 Failed to execute SSL handshake.

OFS-ERROR-091 Failed to col lect Forms message.

OFS-ERROR-092 Failed to get the content length of the POST request.

OFS-ERROR-093 Failed to get new connect ion for a POST request.

OFS-ERROR-094 Failed to set up a new connect ion for an SSL-enabled POST request.

OFS-ERROR-095 Failed while post ing a NULL request for a large-data response.

OFS-ERROR-096 Failed to store data from the server reply.

OFS-ERROR-097 Failed to do a re-POST request.

OFS-ERROR-098 Server reply data is inval id. If the fol lowing Java msg is nul l , server has
terminated th is Forms session. Java Msg: <message>

OFS-ERROR-099 Failed to disconnect the URL connect ion.

OFS-ERROR-100 Failed to connect to Forms Servlet. Check the URL and i ts parameters.

OFS-ERROR-101 Failed to do SSL connect ion to the Forms Servlet. Check the URL and i ts
parameters.

OFS-ERROR-102 Failed to log the Forms Servlet connect ion.

OFS-ERROR-103 Failed to log the HTTP reply header.

QALoad 5.02

93

OFS-ERROR-104 Failed while reading the http reply header. Server has terminated the
Forms session.

OFS-ERROR-105 Failed while reading the server reply in an SSL connect ion.

OFS-ERROR-106 Failed to connect to the Forms Listener Servlet. Check the URL. If the URL
is val id, the server is not accept ing new connect ions.

OFS-ERROR-107 Failed to create a new URL connect ion for a Get request.

OFS-ERROR-108 Failed to connect to the Forms Listener Servlet in SSL mode. Check the
URL. If the URL is val id, the server is not accept ing new connect ions.

OFS-ERROR-109 Failed to log Listener Servlet connect ion.

OFS-ERROR-110 Failed to log in i t ial Forms Server connect ion.

OFS-ERROR-111 Failed to get a URL connect ion for the first POST request.

OFS-ERROR-112 Server did not return the encrypt ion keys for the first Post request. Forms
Server is not accept ing new connect ions.

OFS-ERROR-113 Failed to load loadplayerJava at startup. Library name: <l ibraryName>

OFS-ERROR-114 Failed to do SSL handshake.

OFS-ERROR-115 Failed to get SSL inputStream.

OFS-ERROR-117 Failed to close SSL socket.

OFS-ERROR-118 Failed to wri te the Forms Message.

OFS-ERROR-119 Failed to do a socket connect ion to the Forms Server.

OFS-ERROR-120 Server did not return the Forms encrypt ion key during a socket
connect ion.

OFS-ERROR-121 Failed to close the socket during a socket connect ion.

OFS-ERROR-122 Failed to wri te Forms message during a socket connect ion.

OFS-ERROR-123 Failed to send Forms message. Server terminated socket connect ion.

OFS-ERROR-124 Server reply is inval id. If Java msg is nul l , server has terminated th is Forms
session. Java Msg: <message>

OFS-ERROR-125 Failed to get the reply content. Check the URL. The URL may be inval id.

OFS-ERROR-126 JVM memory issues.

OFS-ERROR-128 LoadValue fai led. LoadValue count is greater than the array length.

QALoad 5.02

94

Oracle Forms Server method reference

QALoad provides descript ions and examples of the various methods and funct ions avai lable for an Oracle
Forms Server script . For detai ls, refer to the Language Reference Help sect ion for Oracle Forms Server.

Advanced scripting techniques

Understanding the C++ script

Understanding the C++ script

Oracle Forms Server scripts are produced for Oracle Forms 4.5, 6.0, 6i, and 9i (Release 2 and later)
recordings. The C++ script executes OFS-related statements by passing the statements in the script DLL to
the OFS Java engine that performs the cl ient act ivi t ies and the cl ient communicat ion with the server.
Because the C++ script statements are direct ly t ied to corresponding methods in the OFS Java engine,
modificat ions to the script statements are l im ited to changing the property parameter values through
variabl izat ion.

An OFS C++ script contains three main sect ions: Connect ion, Appl icat ion Body, and Disconnect. The
QALoad transact ion loop includes al l three sect ions by default . The transact ion loop can be moved using
the guidel ines described in Moving the OFS transact ion loop. An internal auto checkpoint is created
during connect ion statements and transmission statements.

The C++ script statements are a condensed version of the Java-style script statements. The C++ script
statements show the GUI controls in the OFS appl icat ion and the control propert ies, which are either
control at tributes or act ivi t ies. For example:

ofsClickButton("BUTTON", 52, OFS_ENDMSG, 325);

In th is example, the user cl icks (property 325) a button (control ID 52). OFS_ENDMSG is a flag that
indicates that the GUI act ivi ty ends the current OFS Message.

QALoad also al lows OFS and WWW statements from a Universal session to be scripted in the C++ script ,
providing the abi l i ty to play back WWW and OFS statements.

Connect ion statements

The connect ion script l ines in the C++ script vary depending on the type of Forms connect ion mode that is
act ive. You choose the Forms connect ion mode on the Oracle Form s Server Recording Opt ions dialog
box. Forms connect ion modes include server-side recording, HTTP, HTTPS, or socket.

Server-side recording is l im ited to appl icat ions that use Forms 9i (appl icat ions running in Oracle 9iAS
Release 2 and above). HTTP connect ion mode is avai lable for appl icat ions using Forms 9i and for
appl icat ions using the patched Forms 6i version configured with the HTTP servlet. HTTPS connect ion
mode is strict ly for SSL-enabled appl icat ions that use Forms 9i. Socket connect ion mode is for appl icat ions
that use Forms 6i and lower versions, such as Oracle 11i.

Server-side recording connections

Server-side recording mode contains only one connect ion statement. The funct ion that is used –
ofsSetServletMode – contains the l istener servlet value that you entered on the Oracle Form s Server
Recording Opt ions dialog box. The first parameter defines the HTTP or HTTPS configurat ion of the
appl icat ion environment. The second parameter defines the name of the Forms Listener Servlet used by the
appl icat ion. To connect, QALoad internal ly invokes Oracle’s dispatch cal ls using the two parameters.
Oracle’s proprietary classes provide the implementat ion for the HTTP or HTTPS connect ion. For example:

ofsSetServletMode(OFS_HTTP, "http://ntsap45b:7779/forms90/l90servlet");

HTTP connections

QALoad 5.02

95

HTTP connect ion mode contains mult iple connect ion statements. To connect, QALoad internal ly performs
Java cal ls to accomplish the fol lowing tasks:

! Define HTTP header properties

! Connect to the Forms Servlet (an HTTP-GET request)

! Set the parameters of the Forms Listener Servlet

! Connect to the Forms Listener Servlet (an HTTP-GET request)

! Set additional HTTP header property for the Listener Servlet

! Connect to the Forms Listener Servlet (an HTTP-POST request). The last connection statement also initiates the
required Forms “handshake” and determines the Forms encryption used by the application environment.

For example:

ofsHTTPSetHdrProperty("User-Agent", "Java1.3.1.9");
ofsHTTPSetHdrProperty("Host", "ntsap45b:7779");
ofsHTTPSetHdrProperty("Accept", "text/html, image/gif, image/jpeg, *; q=.2, "*/*; q=.2"
);
ofsHTTPSetHdrProperty("Connection", "Keep-alive");
ofsHTTPConnectToFormsServlet(
"http://ntsap45b:7779/forms90/f90servlet?ifcmd=startsession");
ofsHTTPSetListenerServletParms("?ifcmd=getinfo&ifhost=C104444D01&ifip= "192.168.234.1"
);
ofsHTTPConnectToListenerServlet("http://ntsap45b:7779/forms90/l90servlet");
ofsHTTPSetHdrProperty("Content-type", "application/x-www-form-urlencoded");
ofsHTTPInitialFormsConnect();

HTTPS connections

HTTPS connect ion mode uses the same connect ion statements as HTTP mode. To connect, QALoad
internal ly performs the same tasks as the HTTP connect ion mode plus i t performs the SSL connect ion
when the ofsHTTPSDoSSLHandshake funct ion is cal led. This statement is posit ioned in the script before
the ofsHTTPConnectToFormsServlet funct ion.

Socket connections

Socket mode contains only one connect ion statement. The funct ion that is used – ofsConnectToSocket –
contains the port number and the URL you entered on the OFS Recording Options dialog box to start OFS
capture. The port value is the port on which the Forms Server direct ly l istens for Forms traffic. To connect,
QALoad uses Java cal ls to open a Java socket using the parameters, in i t iate the required Forms "handshake” ,
and determine the Forms encrypt ion used by the appl icat ion environment. For example:

ofsConnectToSocket("10.10.0.167", 9002);

Applicat ion statements

The appl icat ion statements in the C++ script consist of property statements and transmission statements.
Property statements describe the attributes and act ivi t ies of GUI controls in the appl icat ion. Transmission
statements send the GUI controls and their propert ies as Forms Message data to the server. There is only
one transmission statement: ofsSendRecv. QALoad creates an in ternal auto checkpoint when th is statement
is executed. In the fol lowing example, the first two (property) statements set the locat ion and size of a
FormWindow GUI control. The ofsSendRecv statement sends the GUI control propert ies to the server.

ofsSetWindowLocation("FORMWINDOW", 6, OFS_ENDMSG, 135, 0, 0); //Property
ofsSetWindowSize("FORMWINDOW", 6, OFS_ENDMSG, 137, 650, 500); //Property
ofsSendRecv(1); //Transmission

Parameters of a property statement:

The parameters of a property statement are arranged in the fol lowing sequence:

1. Captured control name. If the name is not available, this value is the class name to which the control belongs.

QALoad 5.02

96

2. Captured control ID.

3. Action type. This flag indicates if the property is to be added to the current Forms Message or if the property ends
the current Forms Message. During playback, each control is treated as a Forms Message. When the current
Message ends, QALoad translates the control and its properties to binary format. The valid values are:

 OFS_ADD – add the property to the current Message.

 OFS_ENDMSG – add the property to the current Message and end the Message.

 OFS_STARTSUBMSG – add the property of the succeeding nested Message to the current
Message.

4. Property ID. The Forms version-specific ID of the property.

5. Property value. Captured value of the property (optional)

6. Property value. Captured value of the property (optional)

For example:

ofsSetWindowSize("FORMWINDOW", 6, OFS_ENDMSG, 137, 650, 500);

In th is example, control ID 6, which belongs to GUI class FORMWINDOW, is resized (PROPERTY
137) to have coordinates 650 and 500. This marks the end of the current Message.

Forms environment statements:

The in it ial set of statements in the Forms script describes the Forms appl icat ion environment. In th is set,
the "version ” and the “ cmdline” propert ies are the most important. The version property shows the Forms
Bui lder version used by the appl icat ion. The version indicates the capabi l i t ies of the appl icat ion. For
example, some versions cannot support HTTP connect ions. The cmdline property shows the Forms
configurat ion parameters passed to the server by the Forms applet. The parameter “ record=names”
indicates that the appl icat ion enables GUI control names to be captured. Control names are preferred in
mult i-threaded playback. The “ ICX” parameter indicates that the appl icat ion uses a Personal Home Page,
which requires that you supply OracleAppsLogin in formation on the Oracle Form s Server Convert
opt ions dialog box for the script to run successful ly.

In the sample script below, the Forms bui lder version is 90290 (the version used in Oracle 9iAS Release 2,
unpatched). The cmdline property shows “ record=forms” which defaults “ record=names” . The cmdline
property does not have the “ ICX” t icket parameter.

ofsSetInitialVersion("RUNFORM", 1, OFS_ADD, 268, "90290");
ofsSetScreenResolution("RUNFORM", 1, OFS_ADD, 263, 96, 96);
ofsSetDisplaySize("RUNFORM", 1, OFS_ADD, 264, 1024, 768);
ofsInitSessionCmdLine("RUNFORM", 1, OFS_ADD, 265,
 "server module=test1.fmx userid= sso_userid= debug=no buffer_records=no debug_"
 "messages=no array=no query_only=no quiet=yes render=no host=ntsap45b.prodti.com"
 "puware.com port= record=forms tracegroup=debug log=run1 term=");
ofsSetColorDepth("RUNFORM", 1, OFS_ADD, 266, "256");
ofsColorAdd("RUNFORM", 1, OFS_ADD, 284, "0");
ofsColorAdd("RUNFORM", 1, OFS_ADD, 284, "8421504");
ofsSetFontName("RUNFORM", 1, OFS_ADD, 383, "Dialog");
ofsSetFontSize("RUNFORM", 1, OFS_ADD, 377, "900");
ofsSetFontStyle("RUNFORM", 1, OFS_ADD, 378, "0");
ofsSetFontWeight("RUNFORM", 1, OFS_ADD, 379, "0");
ofsSetScaleInfo("RUNFORM", 1, OFS_ADD, 267, 8, 20);
ofsSetNoRequiredVAList("RUNFORM", 1, OFS_ADD, 291);
ofsSetPropertyString("RUNFORM", 1, OFS_ENDMSG, 530, "America/New_York");
ofsSendRecv(1);
//ClientSeqNo=1|CapTime=1086884188.281|MsgCount=1

Sending messages to the server:

The ofsSendRecv statement sends the accumulated GUI controls and their propert ies to the Forms Server as
binary data. This statement represents the point at which the cl ient sends a Forms Terminal Message to the

QALoad 5.02

97

server. In Oracle Forms, the cl ient and the server must end each data block with a Terminal Message before
any transmission occurs.

In ternal ly, QALoad varies the binary data transmission depending on the connect ion mode:

! For server-side recording mode, QALoad sends the binary data by invoking Oracle’s dispatch calls. Oracle’s own
classes provide the implementation for the HTTP transmission.

! For HTTP or HTTPS mode, QALoad wraps the binary data inside an HTTP stream and invokes Java’s HTTP calls.

! For socket mode, QALoad sends the binary data directly to the Java socket opened at the connection point.

The ofsSendRecv statement has one parameter: the response code of the captured Terminal Message. The
possible values for th is parameter are 1 (add), 2 (update), and 3 (close). Typical ly, when the response code
is 3, the Forms Server reacts by removing the GUI controls associated with the cl ient message from the
server cache.

A comment l ine appears after each ofsSendRecv statement that contains script-tracking in formation. The
information on the comment l ine is also found in the capture fi le in each ofsSendRecv capture l ine. The
comment l ine shows the relat ive sequence of each cl ient request, as represented by a Terminal Message,
from the start of the appl icat ion (e.g. Cl ientSeqNo=1). The comment l ine also shows the t im ing mark of
the captured Terminal Message (e.g. CapTime=1086884188.281) and the number of Forms messages
contained in the request (e.g. MsgCount=1). The number of Messages can be veri fied by count ing the
preceding ENDMSG and STARTSUBMSG flags in the request block. The comment l ine is useful for
debugging playback issues because i t readi ly shows the cl ient request sequence number where the issue is
occurring.

Getting the server reply:

During the execut ion of ofsSendRecv, QALoad also obtains the server’s reply and translates the binary
Forms data in to Forms control values and control propert ies. The values are also writ ten to the playback
log fi le (in capture fi le format) i f script logging is enabled. The fol lowing sample is a server reply:

VU 0 : M|S|2|0|1
VU 0 : P|S|322|java.lang.Integer|0|151000320
VU 0 : P|S|279|java.lang.Boolean|0|false
VU 0 : P|S|525|java.lang.String|AMERICAN_AMERICA.WE8MSWIN1252
VU 0 : T|S|1|ServerSeqNo=1|MsgCount=76

The first l ine indicates the start of a Forms Message from the server (M |S). The th ird parameter is an act ion
code (1= add, 2= update, 3= delete, 4= get property value). The fourth parameter is the Class Code of the
control (0 = root class). The fi fth parameter is the Control ID (1= RunForm).

The second, th ird and fourth l ines are property l ines related to the above Forms Message from the server
(P|S). The th ird parameter of each l ine is the property ID (322). The fourth parameter is the data type of
th is property (java.lang.In teger). The fi fth parameter is the data value. If the value is 0, the data value is in
a sixth parameter (false).

The th ird l ine is the terminal message l ine from the server (T|S). The th ird parameter is the response code
associated with the terminal message (1= add, 2= update, = close). The fourth parameter is the relat ive
sequence of the server reply, as represented by a Terminal Message, from the start of the appl icat ion (e.g.
ServerSeqNo= 1). The fi fth parameter is the number of Forms messages contained in the reply (e.g.
MsgCount = 1). The number of Messages may be veri fied by count ing the preceding M|S flags in the reply
block. The fourth and fi fth parameters are script-tracking in formation, which can be useful for debugging
a playback issue. If logging is enabled, the log fi le shows the tracking in formation, which can make the
comparison between server responses and captured responses easier.

Processing large data and delayed response scenarios:

When HTTP or HTTPS connect ion mode is used, Forms data is wrapped inside the HTTP reply stream.
QALoad checks the HTTP header of the reply before processing the Forms data. The HTTP header
sometimes indicates that the cl ient needs to perform addit ional HTTP POST requests to obtain the
complete Forms data. This indicat ion occurs when the content-length of the reply is 64000 (a large data

QALoad 5.02

98

scenario), or the content-type is "text/plain ” and the HTTP header contains an “ i ferror: ” string (a delayed
response/re-post scenario). QALoad performs the necessary POST requests to obtain the complete reply
data, and then translates the accumulated reply data to Forms controls and propert ies.

Disconnect statements

The disconnect script l ines vary depending on the Forms connect ion mode.

! In server-side recording mode, the ofsServerSideDisconnect script statement internally invokes Oracle’s dispatch
calls to disconnect.

! In HTTP mode, the ofsHTTPDisconnect statement internally makes Java calls to disconnect the main URL
connection from the servlet.

! In socket mode, the ofsSocketDisconnect statement closes the socket on which the Forms Server listens for traffic.

Using scri pt l ogging as a debugging tool

You can debug a playback issue in a C++ script by enabl ing replay logging. The opt ion for enabl ing replay
logging is located on the Script Assignment tab of the Conductor. For more in formation about enabl ing log
fi le generat ion, see Debugging a script .

In Java-based scripts, logging is not enabled by default . To enable logging, change the parameter of the
Logging method to true in the script . For example:

oracleForms.Logging(true);

When logging is enabled, QALoad writes the cl ient requests and server repl ies to the playback log fi le in the
same format as the capture fi le. The playback log fi le is found in the \QALoad\LogFiles directory. When
there is an issue during playback, such as the server not responding to a cl ient request, you can compare
the capture fi les and check the differences in the server reply data. Both the capture fi le and the log fi le
contain tracking in format ion appended to the server’s terminal messages. The tracking data contains the
relat ive sequence number of the server reply from the start of the Forms session and the t im ing mark. The
tracking data also shows the number of Forms messages contained in the reply block. The number of
messages are based on the number of “ M|S” l ines prior to the “ T|S” l ines.

In the fol lowing example, the first set of statements shows the logged statements and the second set of
statements shows the captured statements. The ServerSeqNo value shows that th is is the 8th reply from the
server. The MsgCount value of 1 shows that only one Forms Message is included in th is reply block.

1087419810.000|ofsShowWindow|WINDOW_START_APP|11|OFS_ENDMSG|173|PROPERTY_VISIBLE|java.lang.B
oolean|true
1087419810.000|ofsSendRecv|1|ClientSeqNo=8|CapTime=1087419810.000|MsgCount=1
1087419810.000|M|S|2|0|30
1087419810.000|P|S|135|java.awt.Point|0|java.awt.Point[x=0,y=0]
1087419810.000|P|S|137|java.awt.Point|0|java.awt.Point[x=706,y=464]
1087419810.000|P|S|139|java.awt.Point|0|java.awt.Point[x=0,y=0]
1087419810.000T|S|1|ServerSeqNo=8|CapTime=1087419810.000|MsgCount=1

1087402349.296|ofsShowWindow|WINDOW_START_APP|11|OFS_ENDMSG|173|PROPERTY_VISIBLE|java.lang.B
oolean|true
1087402349.296|ofsSendRecv|1|ClientSeqNo=8|CapTime=1087402349.296|MsgCount=1
1087402349.296|M|S|2|0|30
1087402349.296|P|S|135|java.awt.Point|0|java.awt.Point[x=0,y=0]
1087402349.296|P|S|137|java.awt.Point|0|java.awt.Point[x=706,y=464]
1087402349.296|P|S|139|java.awt.Point|0|java.awt.Point[x=0,y=0]
1087402349.296|T|S|1|ServerSeqNo=8|CapTime=1087402349.296|MsgCount=1

M oving the OFS t ransact ion loop

QALoad 5.02

99

To enable movement of the QALoad transact ion loop in the C++ script , you must fi rst record a ful l business
transact ion and a part ial business transact ion. The business transact ion is the act ivi ty that you would l ike
to repeat during QALoad playback. Insert QALoad capture comments (using the Insert Com m and button
on the Recording toolbar) at the start and end of a business transact ion. These comments wi l l help you
find the spots in the script where you would l ike to reposit ion the BEGIN_TRANSACTION() and
END_TRANSACTION() statements. Then re-start the business transact ion.

QALoad's OFS script presents a sequence of Forms GUI objects. The GUI objects contain context
dependencies. For example, when a window is opened, the buttons, text fields and edit boxes inside that
window are logical ly dependent on the state of that window. When only one business transact ion is
captured and the corresponding script ’s transact ion loop is moved, the sequence of the GUI objects is
broken during the second i terat ion of the transact ion loop. The broken sequence results in a broken
context, which causes the server to respond unpredictably during playback on the second and subsequent
i terat ions of the transact ion loop. When the business transact ion is restarted during capture, the Forms
GUI objects that compose the new transact ion are used to anchor in to the new transact ion loop without
breaking the context dependencies of GUI objects.

When modifying the script , use the comment l ines as guides in moving the END_TRANSACTION() and
BEGIN_TRANSACTION() statements. Ensure that there is a contextual flow from the new posit ion of the
END_TRANSACTION() statement to the new posit ion of the BEGIN_TRANSACTION() statement. The set of
GUI objects that belong to the ofsSendRecv() statement just before the new END_TRANSACTION()
statement must be the same as the set of GUI objects that belong to the ofsSendRecv() statement prior to
the new BEGIN_TRANSACTION() statement.

During playback, modify the Conductor sett ing for Transact ion Pacing on the Script Assignment tab to
al low the database to process each new business transact ion.

The fol lowing example shows a modified OFS transact ion loop:

New position of the BEGIN_TRANSACTION statement

/*
NewSales
*/

DO_SLEEP(13);
ofsEdit("ORDER_SOLD_TO_0", 562, OFS_ADD, 131, "B");
ofsSetSelection("ORDER_SOLD_TO_0", 562, OFS_ADD, 195, 1, 1);
ofsSetCursorPosition("ORDER_SOLD_TO_0", 562, OFS_ENDMSG, 193, "1");
ofsIndexKey("ORDER_SOLD_TO_0", 562, OFS_ENDMSG, 175, 97, 0);

DO_SLEEP(6);
ofsSendRecv(1); //ClientSeqNo=31|MsgCount=2|1093981339.921
BEGIN_TRANSACTION();

ofsEdit("ORDER_SOLD_TO_0", 562, OFS_ADD, 131, "Business World");
ofsSetSelection("ORDER_SOLD_TO_0", 562, OFS_ADD, 195, 14, 14);
ofsSetCursorPosition("ORDER_SOLD_TO_0", 562, OFS_ENDMSG, 193, "14");
ofsRemoveFocus("ORDER_SOLD_TO_0", 562, OFS_ENDMSG, 174);
ofsSetSelection("ORDER_CUSTOMER_NUMBER_0", 564, OFS_ADD, 195, 0, 0);
ofsSetCursorPosition("ORDER_CUSTOMER_NUMBER_0", 564, OFS_ENDMSG, 193, "0");
ofsFocus("ORDER_CUSTOMER_NUMBER_0", 564, OFS_ENDMSG, 174);

DO_SLEEP(6);
ofsSendRecv(1); //ClientSeqNo=32|MsgCount=4|1093981347.296

New position of the END_TRANSACTION statement

/*
EndTrans
*/

DO_SLEEP(39);
ofsSendRecv(1); //ClientSeqNo=61|MsgCount=4|1093981458.031

QALoad 5.02

100

ofsSetCursorPosition("ORDER_SOLD_TO_0", 562, OFS_ENDMSG, 193, "14");
ofsSelectMenuItem("Sales Orders", 257, OFS_ENDMSG, 477, "MENU_11059");

DO_SLEEP(26);
ofsSendRecv(1); //ClientSeqNo=62|MsgCount=2|1093981485.265

ofsEdit("ORDER_SOLD_TO_0", 562, OFS_ADD, 131, "B");
ofsSetSelection("ORDER_SOLD_TO_0", 562, OFS_ADD, 195, 1, 1);
ofsSetCursorPosition("ORDER_SOLD_TO_0", 562, OFS_ENDMSG, 193, "1");
ofsIndexKey("ORDER_SOLD_TO_0", 562, OFS_ENDMSG, 175, 97, 0);

DO_SLEEP(3);
ofsSendRecv(1); //ClientSeqNo=63|MsgCount=2|1093981488.437
END_TRANSACTION();

ofsEdit("ORDER_SOLD_TO_0", 562, OFS_ADD, 131, "Business World");
ofsSetSelection("ORDER_SOLD_TO_0", 562, OFS_ADD, 195, 14, 14);
ofsSetCursorPosition("ORDER_SOLD_TO_0", 562, OFS_ENDMSG, 193, "14");
ofsIndexSKey("ORDER_SOLD_TO_0", 562, OFS_ENDMSG, 176, 10, 0);

DO_SLEEP(13);
ofsSendRecv(1); //ClientSeqNo=64|MsgCount=2|1093981502.640

Tips:

During capture, the OFS configuration parameter "record=names" must be enabled to produce control names
that may be included in the converted script. Control names persist throughout the Forms session, unlike control
IDs, whose values may change at runtime. Add the “record=names” parameter in the Formsweb.cfg file or add
this parameter to the startup servlet URL. Control IDs can create problems when the transaction loop is moved.
Some of the control IDs that have been instantiated by the server prior to the new transaction loop lose context
during iterations of the new loop. For example, in a second loop iteration, the server assumes that these client
controls are new, generates new control IDs, and eventually cannot find the proper context. Then the server
stops responding. If control names are used, Forms objects that have been instantiated before the new
transaction loop are maintained through all iterations of the loop because the control name persists throughout
the application session.

During playback, ensure that the sleep factor is at 100% and that the transaction pacing is set to a large enough
value for the server to process the business transaction that is contained in the new loop. These options can be
set on the Script Assignment tab of the Conductor.

OFS and WWW Un iversal sessions

You can record with a Universal session to capture both the OFS and WWW transact ions and merge the
two sets of t ransact ions in to one script . The captured WWW statements contain non-servlet, non-Forms
data such as GIF objects, whi le the captured OFS statements contain the Forms data.

Universal script ing for OFS-WWW sessions is avai lable in C++ format only. After conversion, the WWW
statements do not appear in visual scripts.

Note: The only Universal session combination that is available for Oracle Forms Server is the combination of
WWW and Oracle Forms Server.

When an Oracle Appl icat ions login is captured, the login can be scripted using the OracleAppsLogin
statement or the ofsSetICXTicket statement. Compuware recommends that you use ofsSetICXTicket.

When OracleAppsLogin is used, the login is performed twice: once by the scripted DO_Http statement for
the WWW act ions and again by OracleAppsLogin. To prevent dupl icate logins, you must comment out the
DO_Http (WWW middleware) statement.

When ofsSetICXTicket is used, the login is performed just once. This statement al lows the WWW login to
execute, extracts the ICX t icket from the server reply, and passes the ICX t icket to the Forms session.

To use ofsSetICXTicket, you must modify the script .

To capt ure an Oracle Appl icat ions login w i t h of sSet ICXTicket :

QALoad 5.02

101

1. Add the following variable declaration statements to the top of the script:
char *p;
char ICX_Ticket[100];
char *pTicket;

2. In the *.postcapweb file, find the HTTP request that returns the ICX ticket. The reply should contain a string that
indicates the ICX ticket value, such as "ICX_TICKET=". Note the left and right characters that delimit the ICX ticket
value. In the example in step 4, the left delimiter is "icx_ticket='" and the right delimiter is "'".

3. In the script, find the matching request line for the HTTP request.

4. After the matching HTTP request line, add the DO_GetUniqueString statement using your chosen delimiters. For
example:
p = DO_GetUniqueString("icx_ticket='", "'");

5. Add script lines that copy the extracted value into your script variables.
strcpy(ICX_Ticket, p);
pTicket=ICX_Ticket;

6. (optional) Verify the ICX ticket value.
RR__printf("ICX_Ticket=\"%s\"\n", ICX_Ticket);

7. Add the script line that passes the value of the ICX ticket to the OFS statement ofsInitSessionCmdLine.
ofsSetICXTicket(&pTicket);

SAP

SAP 4.x

Overview

Use QALoad's SAP middleware support to load test systems that run SAP 4.0B, 4.5 or 4.6D.

What is SAP?

The SAP GUI front end is a middleware that al lows user to access SAP servers from Windows. The SAP
servers run various SAP business appl icat ions, such as appl icat ions for customer relat ionship management,
human resources, and supply chain management.

Connect ing to the SAP server

First , you must connect to the SAP server. Once you have connected to a mach ine that is running the SAP
server, you can log on and interact with the SAP appl icat ions.

Recording scripts

To record scripts with SAP 4.x, you must start the QALSAP appl icat ion. The QALSAP appl icat ion enables
you to connect and log on to the SAP server.

SAP recording opt ions (Versions 4.x)

Before you can successful ly record transact ions from a SAP-based appl icat ion , you must select the Dialog
(modal) opt ion on the Help>Set t i ngs>F4 Help tab in the SAP appl icat ion. You must do th is for the user
you are recording.

User Started : Select th is opt ion i f you would l ike to start your appl icat ion manually for recording, either
before or after you start recording

Because th is method may fai l to record your appl icat ion ’s in i t ial cal ls, Compuware recommends you use
the Automatic opt ion instead.

Autom at i c: Select th is opt ion for QALoad to automatical ly start your appl icat ion for recording, al lowing
you to record early appl icat ion startup act ivi ty. This is the recommended method of recording, as i t takes
advantage of QALoad’s enhanced abi l i t ies to handle various mult i threaded programming techniques.

QALoad 5.02

102

Com m and Line: Enter or browse for the path to QALSAP, then enter the startup parameter \c. For
example, enter: c:\Program Files\Compuware\QALoad\Qalsap.EXE \c.

The fol lowing addit ional startup parameters are avai lable:

Param eter Descript i on

\a Version 3.1 cl ients only. Use th is parameter in place of \c i f QALSAP cannot connect to
your Sapgui. QALoad wil l then record direct ly from QALSAP. For example:
c:\Program Files\Compuware\QALoad\Qalsap.EXE \a

\m Minimizes the Sapgui window after successful ly logging in . For example: c:\Program
Files\Compuware\QALoad\Qalsap.EXE \c \m

\r# Where # is a number from one to five. Type \r fol lowed by a number from one to five to
indicate how many t imes QALoad should attempt to login to Sapgui i f the first at tempt
t imes out. For example: c:\Program Files\Compuware\ QALoad \Qalsap.EXE \c
\r5

Work ing Di rectory : Enter the working directory of your SAP appl icat ion.

Note: If you entered the full path in the Command Line field, this field is filled in automatically.

Disable SAP En joy Durin g Capture: Select th is check box to disable SAP Enjoy (SAP 4.6 and above) before
recording. If you choose not to disable SAP Enjoy, you must manually shut down the SAP cl ient tray
appl icat ion before you stop recording.

Start i ng QALSAP

QALSAP is the appl icat ion that enables recording from QALoad for SAP 4.x scripts. To begin recording, you
must start th is appl icat ion .

To st ar t QALSAP:

1. From the Windows Start menu, choose Run.

2. On the Run dialog box, type QALSAP.

SAP conversion opt ions (Versions 4.x)

Consol idate Checkpoin ts: Select to consol idate checkpoints with the same descript ion in to a single
checkpoint. The checkpoint descript ion is the Tcode concatenated with the first 30 characters of the screen
t i t le.

If you do not select th is opt ion, and QALoad detects a dupl icate descript ion, i t wi l l append a sequence
number after the checkpoint descript ion.

Graph ical User In terface: Select to view val idat ion in graphical mode. If selected, the script wi l l step
through val idat ion transact ions with SAPGUI running. Due to memory requirements (15-20 MB per user),
select th is opt ion only i f you are replaying a single user.

An im at ing an SAP capture f i l e

Animating a capture fi le plays back the series of t ransact ions from an SAP recording.

To anim at e an SAP capt ure f i le:

1. Open an SAP session in the QALoad Script Development Workbench.

QALoad 5.02

103

2. In the Workspace Pane, click the Captures tab.

3. Select the capture file you want to animate.

4. From the Session menu, choose Animate>Start. The QALoad Script Development Workbench opens the file in
QALSAP, where you can view each transaction graphically.

View ing SAP 4.x post -test l og f i l es

If you selected the Detai l ed Logging opt ion on the QALoad Script Development Workbench ’s SAP
Conversion Options dialog box before you ran the test, QALoad automatical ly generated a log fi le for each
virtual user named saplg###.log (where ### is the virtual user number) during the test. Each log fi le
contains a graphical representat ion of the events sent to and received from the server for a part icular
virtual user.

You can open and delete a log fi le from the QALoad Script Development Workbench using the fol lowing
procedure.

To open a vi r t ual user log f i le:

1. With an SAP session open in the QALoad Script Development Workbench, select File>Browse.

2. On the Browse dialog box, double-click Log Files.

3. After QALSAP opens, select File>Open.

4. In the Files of Type field, select Log File. The Browse Log Files dialog box opens, displaying the available SAP
log files.

5. Double-click on the log file you wish to open. Log files are named saplg###.log, where ### is the virtual user
number.

QALSAP opens the selected log file. In the Line # column of the log file, each request by the client is marked by a
blue “client” icon, while each response from the server is marked by a white “server” icon, as shown in the following
image.

Viewing request or response detai ls

QALSAP al lows you to view detai led in formation about each request and response in the log fi le, including
each logged SAP screen, and i ts menus, funct ion keys, and controls.

You determine which in formation to display by select ing one or both of the fol lowing commands from the
View menu:

! View>Show Event — Opens a detail window, displaying detailed information about each logged event, including
screen names, key names, tool tip text, and so on.

QALoad 5.02

104

! View>Show Form — Opens a form window, displaying a graphic representation of the logged SAP screen and
related menus.

To view a speci f ic r equest or response:

1. With a log file open in QALSAP, select the appropriate command(s) from the View menu to determine what amount
of detail to view.

2. Double-click on the line number of the request or response you want to view. Detail windows open for the selected
request or response, depending on the options you set in the View menu. In the image below, both Show Event and
Show Form were selected.

 To view the next l ike response—for example, i f you are viewing a cl ient request and
want to view the next cl ient request—select View >Goto Nex t Respon se. Alternately,
from the form window, cl ick the appropriate toolbar button to view the next or
previous response.

 To view the next event in the log, select View >Goto Nex t Even t . Alternately, from the
form window, cl ick the appropriate toolbar button to view the next or previous event.

SAP 4.x com m and reference

QALoad provides descript ions and examples of the various commands avai lable for an SAP script . For
detai ls, refer to the Language Reference Help sect ion for SAP 4.x .

SAP 6.x

Overview

Use QALoad's SAP middleware to load test systems that run SAP 6.20 and 6.40.

What is SAP?

The SAP GUI front end is a middleware that al lows users to access SAP servers from Windows. The SAP
servers run various SAP business appl icat ions, such as appl icat ions for customer relat ionship management,
human resources, and supply chain management.

QALoad 5.02

105

Connect ing to the SAP server

Once you have connected to a machine that is running the SAP server, you can log on and interact with
the SAP appl icat ions.

Conf iguring an SAP cl i en t for l oad test ing

Before you can record an SAP session, you must have an SAP cl ient that is configured to enable QALoad to
access the SAP server. Configure the SAP cl ient through the SAP Logon appl icat ion.

To conf igure an SAP cl ien t f or load t est ing:

1. Start the SAP Logon application. From the taskbar, click Start>Programs>SAP Front End>SAPlogon.

Click the New... button on the SAP Logon dialog box. The New Entry dialog box appears.

2. Type values in the Description, Application Server, and System number fields.

Note: QALoad uses the value in the Description field to connect to the server.

3. Click OK. The new SAP server entry appears in the list in the SAP Logon dialog box.

SAP recording opt ions (Versions 6.x)

Save Server Descri pt i on : Select to specify and save the server descript ion (name) to which you want to
connect during recording. If th is check box is not selected, you are prompted for a server descript ion
during the log on process.

Recording an SAP session

An SAP server connect ion must be configured before you can connect with QALoad. See Configuring an
SAP cl ient for load test ing for more in formation. Addit ional ly, your SAP administrator must set the
SAPGUI/User_Scripting securi ty profi le parameter to TRUE to successful ly record a script . For more
in formation about SAP securi ty sett ings, refer to the SAP publ icat ion t i t led "Sapgui Scripting Security".

To record an SAP session:

1. In the Script Development Workbench, click the Record button on the Session toolbar. If you have not already
chosen SAP as the session type, click the SAP Session button to activate a new SAP session.

If you have not selected the Save Server Description record option, the SAP Server Description dialog box appears.
Type the name of the SAP server to which you want to connect. This value is the same as the Description field that
displays in the SAP Logon configuration application. Press Enter. A log on dialog box appears.

QALoad 5.02

106

2. Type a user ID in the User field and the password in the Password field. Press Enter. The SAP application starts.

3. In the SAP application, turn off the scripting and notification options. Click the Customizing of local layout button
and choose Options. The Options dialog box appears. On the Scripting tab, select Enable Scripting, but clear the
two Notify check boxes.

4. Begin recording actions in SAP.

SAP conversion opt ions (Versions 6.x)

Save Passw ord: Select to save the encrypted password. If th is check box is not selected, you are prompted
for a password during conversion.

VB Script : Select to generate Visual Basic Script for debugging outside QALoad . If th is opt ion is not
selected, you receive C++ scripts that can be used for playback with in QALoad .

Bui ld SAP Libraries: Cl ick the Bui ld button to generate the QALoad SAP l ibraries based on your version of
SAP. If you receive l inking errors whi le val idat ing or compil ing, you should cl ick th is button.

SAP 6.x com m and reference

QALoad 5.02

107

QALoad provides descript ions and examples of the various commands avai lable for an SAP script . For
detai ls, refer to the Language Reference Help sect ion for SAP 6.x.

Advanced script i ng techn iques for SAP

Required commands

Certain commands must be present in an SAP script for i t to run successful ly. These commands are created
automatical ly during the conversion process. Most of the commands exist before the
BEGIN_TRANSACTION statement. The required commands include:

SET_ABORT_FUNCTION(abort function);

DEFINE_TRANS_TYPE("capture.cpp");

HRESULT hr = CoInitialize(0);

if(hr != ERROR_SUCCESS)
 RR__FailedMsg(s_info, "ERROR initializing COM");

SAPGuiSetCheckScreenWildcard(‘*’);
SYNCHRONIZE();

Required commands for transaction restarting

When transact ion restart ing is enabled in the Conductor for an SAP script , the fol lowing commands,
which are automatical ly added by QALoad during script conversion, must exist for the script to run:

SAPGuiApplication(RegisterROT);
SAPGuiApplication(RevokeROT);
SAPGui_error_handler(s_info, buffer);

The SAPGuiApplicat ion command properly registers and removes the script 's SAP GUI usage on the
Runtime Object Table (ROT). If a transact ion fai ls, these act ions are taken to start and clean up the SAP
environment.

Note: Do not call RR__FailedMsg in an SAP script if the script includes a restart transaction operation.
SAPGui_error_handler can be called with the same parameters as RR__FailedMsg to output a fatal error
message while still allowing a proper clean up of the current transaction before restarting the transaction.

Error handl ing and report ing

A try/catch block is automatical ly generated for the commands between the BEGIN_TRANSACTION and
END_TRANSACTION statements. This construct provides error handl ing and report ing from the script .

BEGIN_TRANSACTION();

try{

 SAPGuiConnect(s_info,"qacsapdb2");
 SAPGuiVerCheckStr("6204.119.32");

 //Set SapApplication = CreateObject("Sapgui.ScripingCtrl.1")
 //SapApplication.OpenConnection ("qacsapdb")
 //Set Session = SapApplication.Children(0).Children(0)

 DO_SLEEP(3);

 SAPGuiPropIdStr("wnd[0]");
 SAPGuiCmd3(GuiMainWindow, ResizeWorkingPane, 83, 24, false);

 DO_SLEEP(6);

 SAPGuiPropIdStr("wnd[0]/usr/txtRSYST-BNAME");
 SAPGuiCmd1(GuiTextField,PutText,"qaload1");

 SAPGuiPropIdStr("wnd[0]/usr/pwdRSYST-BCODE");
 SAPGuiCmd1Pwd(GuiPasswordField, PutText,"~encr~1211616261");

QALoad 5.02

108

 SAPGuiCmd0(GuiPasswordField,SetFocus);
 SAPGuiCmd1(GuiPasswordField,PutCaretPosition,3);

 SAPGuiPropIdStr("wnd[0]");
 SAPGuiCmd1(GuiMainWindow,SendVKey,0);
 SAPGuiCheckScreen("S000","SAPMSYST","SAP");

 ...

 DO_SLEEP(10);

 SAPGuiPropIdStr("wnd[0]/usr/cntlIMAGE_CONTAINER/shellcont/shell/shellcont[0]/shell");
 SAPGuiCmd1(GuiCtrlTree, ExpandNode, "0000000003");
 SAPGuiCmd1(GuiCtrlTree, PutSelectedNode, "0000000004");
 SAPGuiCmd1(GuiCtrlTree, PutTopNode, "Favo");
 SAPGuiCmd1(GuiCtrlTree, DoubleClickNode, "0000000004");
 SAPGuiCheckScreen("SESSION_MANAGER", "SAPLSMTR_NAVIGATION", "SAP Easy Access");
 SAPGuiPropIdStr("wnd[1]/usr/btnSPOP-OPTION1");
 SAPGuiCmd0(GuiButton,Press);
 SAPGuiCheckScreen("SESSION_MANAGER","SAPLSPO1","Log Off");

} // end try

catch (_com_error e){
 char buffer[1024];
 sprintf (buffer," EXCEPTION 0x%x %s for VU(%i)\n",e.Error(),
 (char *)e.Description(), S_task_id);
 RR__FailedMsg(s_info,buffer);

} // end catch

END_TRANSACTION();

To include the log on with in the transact ion loop, move the SAPGuiConnect cal l inside the try block as
shown in the fol lowing example:

SET_ABORT_FUNCTION(abort_function);
DEFINE_TRANS_TYPE("capture.cpp");
RESULT hr = CoInitialize(0);

if(hr != ERROR_SUCCESS)
 RR__FailedMsg(s_info,"ERROR initializing COM");

SAPGuiSetCheckScreenWildcard('*');

SYNCHRONIZE();

BEGIN_TRANSACTION();

try{

 SAPGuiConnect(s_info,"qacsapdb2");
 SAPGuiVerCheckStr("6204.119.32");
 ...
 SAPGuiPropIdStr("wnd[1]/usr/btnSPOP-OPTION1");
 SAPGuiCmd0(GuiButton,Press);
 SAPGuiCheckScreen("SESSION_MANAGER","SAPLSPO1","Log Off");

} // end try

catch (_com_error e){

 char buffer[1024];
 sprintf(buffer," EXCEPTION 0x%x %s for VU(%i)\n",e.Error(),
 (char *)e.Description(), S_task_id);
 RR__FailedMsg(s_info,buffer);

} // end catch

END_TRANSACTION();

QALoad 5.02

109

To include the log on outside the transact ion loop, move the log off sect ion so that i t fol lows the
END_TRANSACTION statement. However, ensure that the recording with in the transact ion loop begins
and ends in the same locat ion in the menu system. For example:

SET_ABORT_FUNCTION(abort_function);

DEFINE_TRANS_TYPE("capture.cpp");

HRESULT hr = CoInitialize(0);

if(hr != ERROR_SUCCESS)
 RR__FailedMsg(s_info,"ERROR initializing COM");
SAPGuiSetCheckScreenWildcard('*');

SYNCHRONIZE();

SAPGuiConnect(s_info,"qacsapdb2");

SAPGuiPropIdStr("wnd[0]/usr/txtRSYST-BNAME");
SAPGuiCmd1(GuiTextField,PutText,"qaload1");

SAPGuiPropIdStr("wnd[0]/usr/pwdRSYST-BCODE");
SAPGuiCmd1Pwd(GuiPasswordField,PutText,"~encr~1211616261");
SAPGuiCmd0(GuiPasswordField,SetFocus);
SAPGuiCmd1(GuiPasswordField,PutCaretPosition,3);

SAPGuiPropIdStr("wnd[0]");
SAPGuiCmd1(GuiMainWindow,SendVKey,0);
SAPGuiCheckScreen("S000","SAPMSYST","SAP");

BEGIN_TRANSACTION();

try{
 SAPGuiVerCheckStr("6204.119.32");
 ...
} // end try

catch (_com_error e){
 char buffer[1024];
 sprintf(buffer," EXCEPTION 0x%x %s for VU(%i)\n",e.Error(),
 (char *)e.Description(), S_task_id);
 RR__FailedMsg(s_info,buffer);

} // end catch

END_TRANSACTION();

SAPGuiPropIdStr("wnd[1]/usr/btnSPOP-OPTION1");
SAPGuiCmd0(GuiButton,Press);
SAPGuiCheckScreen("SESSION_MANAGER","SAPLSPO1","Log Off");

The fol lowing example adds custom counters to obtain and save the SAP Server in formation that is
avai lable through the SAP Gui Script ing API. Not ice that SAPGuiSessionInfo is cal led before logging off ,
because the data is not avai lable after logging off.

int id1, id2, id3, id4;

long lRoundTrips,lFlushes;

// "Counter Group", "Counter Name", "Counter Units
// (Optional)", Data Type, Counter Type.

id1 = DEFINE_COUNTER("Cumulative Group", "Cumulative RoundTrips", 0, DATA_LONG,
COUNTER_CUMULATIVE);

id2 = DEFINE_COUNTER("Cumulative Group", "Cumulative Flushes", 0, DATA_LONG,
COUNTER_CUMULATIVE);

id3 = DEFINE_COUNTER("Instance Group", "Instance RoundTrips", 0, DATA_LONG,
COUNTER_INSTANCE);

id4 = DEFINE_COUNTER("Instance Group", "Instance Flushes", 0, DATA_LONG, COUNTER_INSTANCE);

QALoad 5.02

110

SYNCHRONIZE();

BEGIN_TRANSACTION();

try{
 SAPGuiConnect(s_info,"qacsapdb2");
 ...
 SAPGuiSessionInfo(GetRoundTrips,lRoundTrips);
 SAPGuiSessionInfo(GetFlushes,lFlushes);
 SAPGuiPropIdStr("wnd[1]/usr/btnSPOP-OPTION1");
 SAPGuiCmd0(GuiButton,Press);
 SAPGuiCheckScreen("SESSION_MANAGER", "SAPLSPO1", "Log Off");

 COUNTER_VALUE(id1,lRoundTrips);
 COUNTER_VALUE(id2,lFlushes);
 COUNTER_VALUE(id3,lRoundTrips);
 COUNTER_VALUE(id4,lFlushes);

} // end try

catch (_com_error e){
 char buffer[1024];
 sprintf(buffer,"SAP: EXCEPTION 0x%x %s for VU(%i)\n",e.Error(), (char *)e.Description(),
S_task_id);

 RR__FailedMsg(s_info,buffer);

} // end catch

END_TRANSACTION();

Handling mult iple logons

You may need to modify your script to handle mult iple logons when the recording scenario differs from
the run-t ime scenario. For example, i f when you record, no users are logged on to the SAP environment
and when you run the script , users are already logged on, the script may fai l . To work around th is issue,
you can use the SAPGuiPropIdStrExists and SAPGuiPropIdStrExistsEnd commands to handle either
scenario. This technique works by checking for the mult iple logon dialog box from SAP and select ing the
Cont inue opt ion.

The fol lowing example demonstrates the usage of the SAPGuiPropIdStrExists and
SAPGuiPropIdStrExistsEnd commands to handle mult iple logons:

...

SAPGuiCheckScreen("S000","SAPMSYST","SAP");
SAPGuiPropIdStrExists("wnd[1]/usr/radMULTI_LOGON_OPT2");

 DO_SLEEP(24);

 SAPGuiCmd0(GuiRadioButton,Select);
 SAPGuiCmd0(GuiRadioButton,SetFocus);
 SAPGuiPropIdStr("wnd[1]/tbar[0]/btn[0]");
 SAPGuiCmd0(GuiButton,Press);
 SAPGuiCheckScreen("S000","SAPMSYST","License Information for Multiple Logon");

SAPGuiPropIdStrExistsEnd("wnd[1]/usr/ radMULTI_LOGON_OPT2");

...

Checking the SAP status bar

The SAP status bar displays error and status messages, as shown in the fol lowing figure.

QALoad 5.02

111

You can use the SAPGuiCheckStatusbar command to test for certain status responses in the SAP
environment.

The SAPGuiCheckStatusbar command is used in the fol lowing script example:

...
SAPGuiPropIdStr("wnd[0]");
SAPGuiCmd1(GuiMainWindow, SendVKey, 0);
SAPGuiCheckScreen("S000", "SAPMSYST", "SAP");
SAPGuiCmd3(GuiMainWindow, ResizeWorkingPane, 94, 24, false);

//SAPGuiCheckStatusbar returns TRUE if the message is found
//and FALSE if not found

BOOL bRetSts = SAPGuiCheckStatusbar("wnd[0]/sbar", "E: Make an entry in all required
fields");

if (bRetSts)
 RR__printf(" True\n");

else
 RR__printf(" False\n");

...

Object l i fe span

Whenever a script is run, al l objects on the SAP GUI window are deleted and re-created. These objects,
which are created in the SAP environment and can disappear without user in teract ion, can cause script
fai lure i f the script references the objects after they have disappeared.

For more troubleshoot ing in formation, refer to SAP’s publ icat ion t i t led “ SAP GUI Scripting API for the
Windows and Java Platforms” .

Tuxedo

Tuxedo recording options

User Started : Select th is opt ion i f you would l ike to start your appl icat ion manually for recording, either
before or after you start recording. Because th is method may fai l to record your appl icat ion ’s in i t ial cal ls,
Compuware recommends you use the Autom at i c opt ion instead. Select the User Started opt ion when you
do not know the ful l appl icat ion startup name and command opt ion parameters or when the appl icat ion
spawns off processes that generate traffic that you want recorded.

QALoad 5.02

112

Note: If you choose this option and the application under test generates traffic before the first Windows
screen displays, you must also select the Capture Initialization Phase check box on the Workbench
Configuration tab of the Configure QALoad Script Development Workbench dialog box.

Autom at i c: Select th is opt ion for QALoad to automatical ly start your appl icat ion for recording, al lowing
you to record early appl icat ion startup act ivi ty. This is the recommended method of recording, because i t
takes advantage of QALoad’s enhanced abi l i t ies to handle various mult i-threaded programming techniques.
Select th is opt ion to record traffic from just one appl icat ion. This opt ion l im its the recording output to just
the traffic generated by the appl icat ion, not including the traffic that is generated by processes spawned by
the appl icat ion.

Note: If you are recording from a PeopleSoft application, you must use the Automatic Program Startup
method to successfully record any PeopleSoft sub-windows that make Tuxedo calls.

Com m and Line: If you chose Automatic Program Startup, enter the command l ine of your Tuxedo
appl icat ion. You can also use the browse button to locate your appl icat ion.

If you are capturing from a PeopleSoft appl icat ion, ensure that al l of the parameters used with the
appl icat ion are appended to the command l ine.

Work ing Di rectory : Enter the working directory of your Tuxedo appl icat ion or the directory of any
addit ional fi les your appl icat ion may require that do not reside in the appl icat ion ’s path environment.

Tuxedo Version : Specify the Tuxedo version that is used for automatic and user-started program startup.

Tuxedo conversion options

Consol idate Checkpoin ts: Select th is opt ion to consol idate checkpoints. If you do not select th is opt ion,
cal ls to the same service name generate more than one checkpoint.

Om i t Asynch ronous Cal l s (tpacal l): Select th is opt ion to omit the asynchronous Tuxedo cal ls (TPACALL)
during conversion. If th is opt ion is not selected, al l TPACALL’s wil l be converted to TPCALL. A comment
wi l l be inserted in the script to denote where each TPACALL was converted.

Use PeopleSof t cert i f i cates: If your PeopleSoft appl icat ion uses cert i ficates, any cert i ficate you record wil l
not be val id for replay after you terminate the transact ion (tpterm). Select th is check box to automatical ly
insert a val id replay cert i ficate in the script in the place of each recorded PeopleSoft cert i ficate.

Use system VIEW envi ronm en t variables: Select th is check box to use the current VIEW environment
variables (VIEWDIR, VIEWFILES) rather than the values used in the capture fi le. This opt ion is useful when
convert ing on a system other than the one which performed the original recording.

Tuxedo Version : Select the version of Tuxedo to use when running your script .

Convert FM L Field Iden t i f i ers i n to Field Nam es: Select th is opt ion to ident i fy the FML field name
associated with each FML field ident i fier in the script during conversion. The FML field name is inserted
in to the script as a comment immediately fol lowing the associated FML field ident i fier.

Field Table Nam es: Enter or browse for the field table names used in your Tuxedo appl icat ion. If the field
table names are not given on the command l ine, then the program uses the FIELDTBLS environment
variable as the l ist of field tables to be converted and the FLDTBLDIR environment variable as the l ist of
directories to search for the fi les. FIELDTBLS specifies a comma-separated l ist of field table fi le names.

WSTUX32.DLL: Enter or browse for the path to the WSTUX32.DLL fi le i f it does not reside in a directory
with in the appl icat ion path. The WSTUX32.DLL is required to convert FML field ident i fiers to field names.

Field Tables: Enter or browse for the path of the field table name specified in the Field Table Names field.

Setting up QALoad to run Tuxedo scripts on UNIX

After instal l ing the QALoad UNIX Player and ut i l i t ies, you should ensure that the fol lowing environment
variables are set prior to start ing the Player Agent (loadagent):

QALoad 5.02

113

Plat form Envi ronm en t
Variable

Value

Al l Plat form s: WSNADDR <srvrname-or-IPaddr>:<port#>

 TUXDIR <path>/<tuxedo dir>

AIX : LIBPATH <playerdir>/lib:<TUXDIR>/lib

HP-UX : SHLIB_PATH <playerdir>/lib:<TUXDIR>/lib

Linux : LD_LIBRARY_PATH <playerdir>/lib:<TUXDIR>/lib

Solari s: LD_LIBRARY_PATH <playerdir>/lib:<TUXDIR>/lib

Sett ing environment variables on UNIX systems depends on your login shel l . For example:

! For ksh: export SYBASE_ROOT=/dir/tuxedo

! For csh: setenv SYBASE_ROOT /dir/tuxedo

The TUXDIR environment variable points to the directory where the Tuxedo workstat ion software has
been instal led. The WSNADDR environment variable specifies the network address(es) of the workstat ion
l istener process by which the cl ient gains access to the appl icat ion. For each UNIX platform, update the
appropriate l ibrary path variable to include the l ibrary directory for the part icular version of Tuxedo.

Scripts wi l l be automatical ly downloaded to the Player machines by the Conductor and compiled, i f
necessary, at test execut ion t ime.

During the automatic script download and compile, i f a script compile error occurs, there wil l be a
scriptname.err fi le generated in the scripts directory.

To compile a script by hand, use the Rmake command. The syntax is as fol lows:

Rmake <scriptdir>/<scriptname>

 or

Rmake <scriptdir>/<scriptname>

Replaying a script with PeopleSoft certificates

Because a PeopleSoft cert i f icate is only val id unt i l the transact ion is terminated, a recorded cert i ficate wi l l
not be val id at replay t ime and a script contain ing a recorded cert i ficate wi l l fai l .

To keep a script from fai l ing due to an inval id cert i f icate, QALoad must automatical ly subst i tute the
recorded PeopleSoft cert i ficate with a val id replay cert i ficate in each Tuxedo request that contains the
cert i ficate.

To automate the process of subst i tut ing the recorded cert i ficate with a val id replay cert i ficate, select the
opt ion Use PeopleSof t cert i f i cates on the Tuxedo tab of the Convert Options Wizard before attempting to
convert your capture fi le to a script .

For more in formation, see the topic Sett ing conversion opt ions

Tuxedo command reference

QALoad provides descript ions and examples of the various commands avai lable for a Tuxedo script . For
detai ls, refer to the Language Reference Help sect ion for Tuxedo.

Advanced scripting techniques for Tuxedo

M an aging Tuxedo buf fers

QALoad 5.02

114

Tuxedo cl ients use typed buffers to transmit data between Tuxedo cl ients and servers. You can create a
typed buffer by using the tpal loc command and specifying the buffer type and size. QALoad supports the
fol lowing Tuxedo buffer types:

! FML

! FML32

! STRING

! CARRAY

! X_OCTET

! VIEW

! VIEW32

For example, to al locate a 4096 byte FML buffer on the cl ient, use the fol lowing code:

char *buffer;
buffer = tpalloc("FML", "", 4096);

To place data in to the buffer, use the fol lowing code:

FChg(buffer, fieldid, oc, "data", 4);

Where buffer is the Tuxedo-al located (tpal loc) buffer, fieldid is the field value, and oc is the field
occurrence.

To simpli fy buffer management and provide more comprehensive error checking, QALoad Tuxedo scripts
automatical ly handle buffer management. Instead of having to work with buffer pointers, QALoad ’s
Tuxedo commands h ide the buffer pointers by managing an array of buffers behind the scenes. The
commands ident i fy buffers using a mnemonic name such as Buf1, which translates in to the array index,
rather than a buffer pointer.

The fol lowing example shows how a Tuxedo script manages a buffer al locat ion for the Do_Tuxtpcal l
command.

Do_Tuxtpalloc(Buf1 , "FML", 1024);
Do_TuxFinit(Buf1);
Do_TuxFMLData(test_carray, 1, "abcdefg");
Do_TuxFMLData(test_long, 1, "12345");
Do_Tuxtpcall("OPEN_TEST1", Buf1 , Buf2 , 0);

In the example above, the Do_Tuxtpal loc command al locates a buffer named Buf1. Do_TuxFin it clears any
previous contents of Buf1. The Do_TuxFMLData commands load data in to the most recent buffer that
Do_TuxFin it clears; therefore, the Do_TuxFMLData parameter l ist does not include Buf1.

Fol lowing the setup of the buffer, the Do_Tuxtpcal l makes a service cal l to OPEN_TEST1. The parameter l ist
of the Do_Tuxtpcal l includes an input and output buffer. In the example above, the input buffer is Buf1
and the output buffer is Buf2. The final parameter of zero indicates that special Tuxedo flags are not
specified. QALoad automatical ly determines i f a buffer type is FML or FML32 and cal ls the appropriate
Tuxedo API rout ines.

Note that a command is not avai lable to free a previously al located buffer. When the script executes a
Do_Tuxtpal loc command, QALoad checks to see whether the buffer associated with a specified buffer index
was previously al located. If QALoad determines that the buffer was previously al located, i t frees the buffer
using Tuxedo’s tpfree prior to al locat ing i t .

Passing data betw een Tuxedo com m ands

When a Tuxedo cl ient appl icat ion executes, i t may pass data from one API cal l to another. A script that
needs to emulate an appl icat ion needs to pass data in the same way the appl icat ion passes data. The
fol lowing example shows how to use QALoad commands to pass output data from one Do_Tuxtpcal l as
input to another Do_Tuxtpcal l .

/* Declare Variables for Account ID and encode Account ID */

QALoad 5.02

115

char AcctID[16];

char EncAcctID[32];

/* Set up input buffer with Account Name for retrieving Account ID */

Do_Tuxtpalloc(Buf1 , "FML", 1024);

Do_Tuxtpalloc(Buf2 , "FML", 1024);

Do_TuxFinit(Buf1);

Do_TuxFMLData(ACCT_NAME, 0, "Gerard Plumbing");

/* Retrieve Account ID using the name */

Do_Tuxtpcall("getAcctIdFromName", Buf1 , Buf2 , 0);

/* Extract the Account id from the output buffer */

Do_TuxgetFMLData(Buf2 , ACCT_ID, 0, AcctID);

/* Account id may be special characters, so encode it */

Do_Tuxencode(EncAcctID, AcctID, strlen(AcctID));

/* Load up the buffer for the next call */

Do_TuxFinit(Buf1);

Do_TuxFMLData(ACCT_ID, 0, EncAcctID);

/* Call to get account detail */

Do_Tuxtpcall("getAcctDetail", Buf1 , Buf2 , 0);

In the example above, the first Do_Tuxtpcal l retrieves an account ID from the account name. The account
name is placed into Buf1 (input buffer), and the account ID is placed into Buf2 (output buffer).

The account ID is retreived from Buf2 using the Do_TuxgetFMLData command. The Do_TuxgetFMLData
command retrieves data from a typed buffer using the Tuxedo field and occurrence ident i fiers.

When data is returned using the Do_TuxgetFMLData command, i t is returned in i ts in ternal form, without
encoding. Yet, the Do_TuxFMLData command, which loads data in to the Tuxedo buffers, requires that
special characters are encoded. Therefore, the Do_Tuxencode command is used to encode the data before
using i t as input to the second Do_Tuxtpcal l .

You can also use the Do_TuxgetTuxBuffer command to work with data from a Tuxedo buffer. The
Do_TuxgetTuxBuffer command returns the actual address of a Tuxedo buffer given a buffer name. Once
you have the pointer to the buffer, you can use nat ive Tuxedo commands such as Fadd, FChg, etc. for FML
or memcpy for CARRAY-type data to input data in to or retrieve data from a Tuxedo buffer.

VIEW and VIEW32 buffers are accessed using compiler macros automatical ly generated in QALoad ’s
Convert faci l i ty. For example, a view cal led testVw16 is accessed using the macro VW_testVw16(buffer
_index) as shown in the sample below.

/* Allocate buffer space for testVw16 in buffer #2, */
/* and set values. */

Do_Tuxtpalloc(Buf2, "VIEW:testVw16", sizeof(struct testVw16)

);

VW_testVw16(Buf2)->tv16intneg = -1234;

Note: If you manipulate an encoded string, remember that all non-printable and some special characters
occupy three bytes in the array. Make sure you take this into account during character substitution. Note that the
EncAcctID variable, in the example above, is larger than the AcctID variable.

Encoding st r i ng data in scri pts

QALoad 5.02

116

You may need to include data in the script so i t can get placed into a buffer. A technique cal led string
encoding makes non-prin table characters readable in the script . Note that you can use encoded strings for
data that QALoad ’s Convert faci l i ty places in the script or for data you place in the script .

The fol lowing QALoad commands use encoded strings as parameters:

! Do_TuxFMLData

! Do_Tuxcarray

! Do_Tuxxoctet

! Do_Tuxstring

! Do_Tuxtpinit

! Do_TuxSetViewData

! Do_TuxBuildBuffer

! Do_TuxAppendBuffer

A string is encoded using the fol lowing rules:

! all alpha and numeric characters (0-9, a-z, and A-Z) are preserved intact

! all non-alpha numeric characters within the range of ASCII 32 (space) to ASCII 125 (}) are preserved intact, except
the following:

 backslash (\)

 ampersand (&)

 double quote (" ")

 pipe (|)

! null characters are encoded as a tilde (~)

! all other characters are encoded as a three-byte sequence of an ampersand (&) followed by two lowercase hex
digits representing the ASCII value of the character.

The fol lowing example i l lustrates encoding:

Original St r i ng: 0 1 2 A B C D a b c - & | (null)

Encoded St ring: 0 1 2 A B C D a b c - &26&7c~

Uniface

Uniface recording options

Un i face executable: Enter the ful l path or browse to the Uniface 7 executable that is used by the
appl icat ion you want to record. For example: c:\usys72\bin\UNIFACE.exe.

Work ing di rectory : Enter or browse to the working directory of your Uniface appl icat ion or the directory
of any addit ional fi les your appl icat ion may require that do not reside in the appl icat ion ’s path
environment.

In i t i al i zat ion (.i n i) f i l e: Enter or browse to the ful l path to the Uniface appl icat ion 's in i t ial izat ion fi le.

Assignm en t (.asn) f i l e: Enter or browse to the ful l path to the appl icat ion 's assignment fi le. For example:
c:\usys72\project\myapp.asn.

Com m and l i ne statem en t : Type command l ine opt ions that should be used at appl icat ion startup,
including the command that is used to start the appl icat ion. For example: warehouse 1 1 control
use=control dnp=tcp:

Uniface conversion options

Includes: Type the ful l path or browse to the directory that contains the database include fi les.

QALoad 5.02

117

Libraries: Type the ful l path or browse to the directory that contains the database l ibrary fi les.

Generate Un i face l i sts: Uniface can handle in ternal l ist structures. Select th is check box to convert strings
contain ing l ist i tems to a succession of DO_URB_xxx cal ls that manipulate Uniface l ists.

Show output param eters: Select th is opt ion for the converted script to contain the output parameters of
an operat ion as commented l ines.

Insert t race m essages as com m ents: Select th is opt ion for the converted script to contain the recorded
content of the message frame as commented l ines.

Uniface command reference

QALoad provides descript ions and examples of the various commands avai lable for a Uniface script . For
detai ls, refer to the Language Reference Help sect ion for Uniface.

Winsock

How QALoad handles DO_WSK_Send commands

QALoad displays the contents of a DO_WSK_Send command as a string in a Winsock script . Some of these
strings are very large, which can cause a compiler error (fatal error C1076: compiler l im it : in ternal heap
l im it reached) i f there are several large strings in a single script .

To avoid th is compilat ion error, QALoad does not al low strings that are displayed in a Winsock script to be
more than 12,000 characters. If a DO_WSK_Send command has a send buffer larger than 12,000 characters,
i ts buffer is broken into smaller strings during the conversion. These smaller strings are then copied in to a
char buffer named "SendBuffer", which is sent in the DO_WSK_Send command. The size of the SendBuffer
variable, by default , is declared as the size of the largest DO_WSK_Send + 1000. For example:

int rhobot_script(s_info)
PLAYER_INFO *s_info;
{
 /* Declare Variables */
 char SendBuffer[22139]; //Largest send is 21139 + 1000

 ...
 ...
 ...

 strcpy(SendBuffer, "$$"); //Assume a large string, shortened for this example
 strcat(SendBuffer, "$$");

 /* 12675 bytes */
 DO_WSK_Send(S1, SendBuffer);

 ...
 ...

 strcpy(SendBuffer, "$$"); //SendBuffer is reused
 strcat(SendBuffer, "$$");
 strcat(SendBuffer, "$$");

 /* 21139 bytes */
 DO_WSK_Send(S1, SendBuffer);

 ...
 ...

 REPORT(SUCCESS);
 EXIT();
 return(0);
}

QALoad 5.02

118

Handling Winsock application data flow

Frequently, server programs return unique values (i .e., SessionID) that vary with each execut ion of the
script and may be vital to the success of subsequent transact ions. The fol lowing scripts demonstrate how
th is can be done.

Original Script

In th is script , the server sends a session ID in response to a connect ion by the cl ient. This session ID is
required to successful ly complete subsequent transact ions.

/*
* wsk-AdvancedTechniques_original.c
*
* This script contains support for the following middlewares:
* - Winsock
*/
/* Converted using the following options:
* General:
* Line Split : 80 characters
* Sleep Seconds : 1
* Auto Checkpoints : Yes
*/
#define SCRIPT_VER 0x00000005UL
#include <stdio.h>
#include "smacro.h"
#include "do_wsk.h"
/* set function to call on abort*/
void abort_function(PLAYER_INFO *s_info);
#ifndef NULL
#define NULL 0
#endif
int rhobot_script(s_info)
PLAYER_INFO *s_info;
{
/* Declare Variables */
SET_ABORT_FUNCTION(abort_function);
DEFINE_TRANS_TYPE("wsk-AdvancedTech_1.c");

// Checkpoints have been included by the convert process
DefaultCheckpointsOn();
DO_WSK_Init(s_info);
SetTimeout(20); /* Wait up to 20 seconds for each expected pattern */

SYNCHRONIZE();
BEGIN_TRANSACTION();
DO_WSK_Socket(S1, AF_INET, SOCK_STREAM, IPPROTO_IP);

DO_WSK_Bind(S1, ANY_ADDR, ANY_PORT);

DO_WSK_Connect(S1, "172.22.24.125", 2100, AF_INET);

//
// The session id returned by the server is
// unique to each connection
//

/* 21bytes: SessionID=jrt90847\r\n */
DO_WSK_Expect(S1, "\n");

///
// This unique id is then used for subsequent

QALoad 5.02

119

// requests
///

/* 34 bytes */
DO_WSK_Send(S1, "SessionID=jrt90847\r\n:^B^@^@^@^B^@^@^@^A^@^@^@");

/* 15 bytes: ID Accepted#^@\r\n */
DO_WSK_Expect(S1, "\n");

DO_WSK_Closesocket(S1);

END_TRANSACTION();
REPORT(SUCCESS);
EXIT();
return(0);
}

void abort_function(PLAYER_INFO *s_info)
{
RR__printf("Virtual User %i:ABORTED.", S_task_id);
EXIT();
}

M odi f i ed Script

If the original script (wsk-AdvancedTechniques_original.c shown above) is replayed, i t wi l l fai l because the
session ID wil l not be unique; rather, i t wi l l be the session ID that is coded in the script . To use the unique
session ID received from the server, variable subst i tut ion must be used.

/*
* wsk-AdvancedTechniques_modified.c
*
* This script contains support for the following middlewares:
* - Winsock
*/
/* Converted using the following options:
* General:
* Line Split : 80 characters
* Sleep Seconds : 1
* Auto Checkpoints : Yes
*/
#define SCRIPT_VER 0x00000005UL
#include <stdio.h>
#include "smacro.h"
#include "do_wsk.h"
/* set function to call on abort*/
void abort_function(PLAYER_INFO *s_info);
#ifndef NULL
#define NULL 0
#endif
int rhobot_script(s_info)
PLAYER_INFO *s_info;
{
/* Declare Variables */
char Buffer[64];
char SendBuffer[64];
int nBytesReceived = 0;
SET_ABORT_FUNCTION(abort_function);
DEFINE_TRANS_TYPE("wsk-AdvancedTech_1.c");

// Checkpoints have been included by the convert process
DefaultCheckpointsOn();
DO_WSK_Init(s_info);

QALoad 5.02

120

SetTimeout(20); /* Wait up to 20 seconds for each expected pattern */

SYNCHRONIZE();
BEGIN_TRANSACTION();
DO_WSK_Socket(S1, AF_INET, SOCK_STREAM, IPPROTO_IP);

DO_WSK_Bind(S1, ANY_ADDR, ANY_PORT);

DO_WSK_Connect(S1, "172.22.24.125", 2100, AF_INET);

//
// The reply from the server is read into
// the Buffer variable. We will then have
// the unique Session ID for this connection.
// Also need to null terminate the buffer
// after receiving.
//

DO_WSK_Recv(S1, Buffer, 64, 0, &nBytesReceived);
Buffer[nBytesRecieved] = ‘\0’;
/* 21bytes: SessionID=jrt90847\r\n */
//DO_WSK_Expect(S1, "\n");

///
// Finally, substitute the Session ID received from
// the server with the one coded in the script.
///

sprintf(SendBuffer, “%s:^B^@^@^@^B^@^@^@^A^@^@^@", Buffer);
DO_WSK_Send(S1, SendBuffer);
/* 34 bytes */
//DO_WSK_Send(S1, "SessionID=jrt90847:^B^@^@^@^B^@^@^@^A^@^@^@");

/* 15 bytes: ID Accepted#^@\r\n */
DO_WSK_Expect(S1, "\n");

DO_WSK_Closesocket(S1);

END_TRANSACTION();
REPORT(SUCCESS);
EXIT();
return(0);
}
void abort_function(PLAYER_INFO *s_info)
{
RR__printf("Virtual User %i:ABORTED.", S_task_id);
EXIT();
}

Winsock recording options

User Started : Select th is opt ion i f you would l ike to start your appl icat ion manually for recording, either
before or after you start recording. Because th is method may fai l to record your appl icat ion ’s in i t ial cal ls,
Compuware recommends you use the Autom at i c opt ion instead. Select the User Started opt ion when you
do not know the ful l appl icat ion startup name and command opt ion parameters or when the appl icat ion
spawns off processes that generate traffic that you want recorded.

Notes:
If you run a character-based application in a DOS window, the Script Development Workbench does not record
the API calls.

If you choose this option and the application under test generates traffic before the first Windows screen

QALoad 5.02

121

displays, you must also select the Capture Initialization Phase check box on the Workbench Configuration tab
of the Configure QALoad Script Development Workbench dialog box.

Autom at i c: Select th is opt ion i f you want QALoad to automatical ly start your Winsock-based cl ient,
al lowing you to record early appl icat ion startup act ivi ty. This is the recommended method of recording
because i t takes advantage of QALoad’s enhanced abi l i t ies to handle various mult i-threaded programming
techniques. When you select th is opt ion, the QALoad Script Development Workbench records the API cal ls
that occur before the cl ient enters i ts message loop. Select th is opt ion to record traffic from just one
appl icat ion. This opt ion l im its the recording output to just the traffic generated by the appl icat ion, not
including the traffic that is generated by processes spawned by the appl icat ion.

Com m and Line: Enter the command l ine of your Winsock-based cl ient. Note that i f you enter the ful l
path, QALoad automatical ly enters the path in the Work ing Di rectory field.

Work ing Di rectory : Enter the working directory of your Winsock-based cl ient, i f necessary.

Capture: Select the Winsock version to record.

Set IP Addresses: Cl ick th is button to open the Add/Delete IP Addresses dialog box, which you can use to
specify the IP addresses and ports on which you want to record Winsock API cal ls or that you wish to
exclude from recording.

Winsock conversion options

There are no special ized conversion opt ions for Winsock.

Winsock command reference

QALoad provides descript ions and examples of the various commands avai lable for a Winsock script . For
detai ls, refer to the Language Reference Help sect ion for Winsock.

Advanced scripting techniques for Winsock

Understanding data represen tat ion in the script

This sect ion describes how data that is sent and received is displayed in a Winsock script . Use th is sect ion
as a reference when you examine a script .

During the conversion process, QALoad determines how to represent each character in the script . This
conversion process uses the fol lowing rules:

1. The character is compared to the “space” character in the ASCII table, which has a decimal value of 32. If the
character’s value is less than 32, the following steps are taken:

b. If the character is “\r”, “\n”, “\t”, or “\f”, it is represented in the script as a normal C escape
character.

c. If the character is either “^\” or “^^”, it is represented in the script as an octal character. For
example, the values would be “\034” and “\036”, respectively.

d. If the character’s value is less than 32 and it does not meet the descriptions in a) and b) above, it
is represented in the script as a control character. For example, if the character is a null character, it is
represented in the script as “^@”.

2. If the character’s decimal value is between 32 (the “space” character) and 126 (~), it displays in the script as a
standard readable ASCII character, with the following exceptions:

 If the character is “ \ ” , which has a decimal value of 92, i t is represented as “ \ \ ” in the
script .

 If the character is “ “ “ , which has a decimal value of 34, i t is represented as “ \ ” ” in the
script .

 If the character is “ ^ ” , which has a decimal value of 94, i t is represented as “ ^^ ” in the
script .

3. If the character has a decimal value of 127, which corresponds to Delete (DEL), it is represented as “^” in the script.

QALoad 5.02

122

The fol lowing table summarizes the results of rules 1-3.

Code Octal Decim al Char

^@ 000 0 NUL

^A 001 1 SOH

^B 002 2 STX

^C 003 3 ETX

^D 004 4 EOT

^E 005 5 ENQ

^F 006 6 ACK

^G 007 7 BEL

^H 010 8 BS

\t 011 9 HT

\n 012 10 LF

^K 013 11 VT

\f 014 12 FF

\r 015 13 CR

^N 016 14 SO

^O 017 15 SI

^P 020 16 SLE

^Q 021 17 SC1

^R 022 18 DC2

^S 023 19 DC3

^T 024 20 DC4

^U 025 21 NAK

^V 026 22 SYN

^W 027 23 ETB

^X 030 24 CAN

^Y 031 25 EM

^Z 032 26 SIB

QALoad 5.02

123

^[033 27 ESC

\034 034 28 FS

^] 035 29 GS

^_ 037 31 US

 040 32 SP

\" 042 34 "

\\ 134 92 \

^^ 136 94 ^

^? 177 127 DEL

4. If the character is not included in the groups defined in steps 1-3, it is represented as an octal character in the script.
These characters are often referred to as high ASCII characters (those with a decimal value greater than 128), and
are represented in the script as “\OOO”, where OOO is the octal value for the ASCII character.

Handl ing Winsock appl i cat ion data f l ow

Frequently, server programs return unique values (for example, a session ID) that vary with each execut ion
of the script and may be vital to the success of subsequent transact ions. To create scripts that include these
values, you need to subst i tute the hard-coded values returned by the server with variables. The fol lowing
original and modified code examples demonstrate th is technique.

Original code

In th is script , the server sends a session ID in response to a connect ion by the cl ient. This session ID is
required to successful ly complete subsequent transact ions.

/*
* wsk-AdvancedTechniques_original.c
*
* This script contains support for the following
* middlewares:
* - Winsock
*/

/* Converted using the following options:
* General:
* Line Split : 80 characters
* Sleep Seconds : 1
* Auto Checkpoints : Yes
*/

#define SCRIPT_VER 0x00000005UL
#include <stdio.h>
#include "smacro.h"
#include "do_wsk.h"

/* set function to call on abort*/

void abort_function(PLAYER_INFO *s_info);

#ifndef NULL
#define NULL 0
#endif

QALoad 5.02

124

int rhobot_script(s_info)
PLAYER_INFO *s_info;
{

/* Declare Variables */

SET_ABORT_FUNCTION(abort_function);
DEFINE_TRANS_TYPE("wsk-AdvancedTech_1.c");

// Checkpoints have been included by the convert process

DefaultCheckpointsOn();

DO_WSK_Init(s_info);

SetTimeout(20); /* Wait up to 20 seconds for each expected pattern */

SYNCHRONIZE();

BEGIN_TRANSACTION();

DO_WSK_Socket(S1, AF_INET, SOCK_STREAM, IPPROTO_IP);
DO_WSK_Bind(S1, ANY_ADDR, ANY_PORT);
DO_WSK_Connect(S1, "172.22.24.125", 2100, AF_INET);

///
// The session id returned by the server is
// unique to each connection
///

/* 21bytes: SessionID=jrt90847\r\n */

DO_WSK_Expect(S1, "\n");

//
// This unique id is then used for subsequent
// requests
//

/* 34 bytes */

DO_WSK_Send(S1, "SessionID=jrt90847\r\n:^B^@^@^@^B^@^@^@^A^@^@^@");

/* 15 bytes: ID Accepted#^@\r\n */

DO_WSK_Expect(S1, "\n");
DO_WSK_Closesocket(S1);

END_TRANSACTION();

REPORT(SUCCESS);

EXIT();

return(0);
}

void abort_function(PLAYER_INFO *s_info)
{

RR__printf("Virtual User %i:ABORTED.", S_task_id);

EXIT();
}

Modified code

If the original script (wsk-AdvancedTechniques_original.c shown above) is replayed, i t wi l l fai l because the
session ID wil l not be unique; rather, i t wi l l be the session ID that is coded in the script . To use the unique
session ID received from the server, variable subst i tut ion must be used.

/*
* wsk-AdvancedTechniques_modified.c
*
* This script contains support for the following

QALoad 5.02

125

* middlewares:
* - Winsock
*/

/* Converted using the following options:
* General:
* Line Split : 80 characters
* Sleep Seconds : 1
* Auto Checkpoints : Yes
*/

#define SCRIPT_VER 0x00000005UL
#include <stdio.h>
#include "smacro.h"
#include "do_wsk.h"

/* set function to call on abort*/

void abort_function(PLAYER_INFO *s_info);

#ifndef NULL
#define NULL 0
#endif

int rhobot_script(s_info)
PLAYER_INFO *s_info;

{

/* Declare Variables */

char Buffer[64];
char SendBuffer[64];
int nBytesReceived = 0;

SET_ABORT_FUNCTION(abort_function);

DEFINE_TRANS_TYPE("wsk-AdvancedTech_1.c");

// Checkpoints have been included by the convert process

DefaultCheckpointsOn();

DO_WSK_Init(s_info);

SetTimeout(20); /* Wait up to 20 seconds for each expected pattern */

SYNCHRONIZE();

BEGIN_TRANSACTION();

DO_WSK_Socket(S1, AF_INET, SOCK_STREAM, IPPROTO_IP);
DO_WSK_Bind(S1, ANY_ADDR, ANY_PORT);
DO_WSK_Connect(S1, "172.22.24.125", 2100, AF_INET);

//
// The reply from the server is read into
// the Buffer variable. We will then have
// the unique Session ID for this connection.
// Also need to null-terminate the buffer
// after receiving.
//

DO_WSK_Recv(S1, Buffer, 64, 0, &nBytesReceived);
Buffer[nBytesRecieved] = '\0';

/* 21bytes: SessionID=jrt90847\r\n */

//DO_WSK_Expect(S1, "\n");

//
// Finally, substitute the Session ID received from
// the server with the one coded in the script.
//

QALoad 5.02

126

sprintf(SendBuffer, "%s:^B^@^@^@^B^@^@^@^A^@^@^@", Buffer);
DO_WSK_Send(S1, SendBuffer);

/* 34 bytes */

//DO_WSK_Send(S1, "SessionID=jrt90847:^B^@^@^@^B^@^@^@^A^@^@^@");

/* 15 bytes: ID Accepted#^@\r\n */

DO_WSK_Expect(S1, "\n");
DO_WSK_Closesocket(S1);

END_TRANSACTION();

REPORT(SUCCESS);

EXIT();

return(0);

}

void abort_function(PLAYER_INFO *s_info)

{
RR__printf("Virtual User %i:ABORTED.", S_task_id);
EXIT();
}

M odi fying QALoad's fun ct ions to i ncorporate dynam ic data

If you need to use dynamic data with your scripts, you can modify some QALoad funct ions to handle
dynamic data. The two scenarios below describe specific si tuat ions in which you might need dynamic data,
and how to achieve that in the script .

Scenario 1:

One method of accessing dynamic data is by using a datapool fi le. However, you might need to read in
data that is not in the format of an ASCII string, which is required for datapool fi les.

For example, i f the string “ \ 121\ 101\ 114\ 157\ 141\ 144” is read in from a datapool fi le with one of the
datapool funct ions, the output would be “ \ \ 121\ \ 101\ \ 114\ \ 157\ \ 141\ \ 144” , which is incorrect. To
work around th is problem, you can use the OctalToChar() command to convert any octal sequences into
their binary representat ion. The fol lowing examples i l lustrates the use of the OctalToChar() command for
th is purpose:

Example

In th is example, the string “ \ 121\ 101\ 114\ 157\ 141\ 144” is read in from a central datapool fi le and
converted to i ts binary representat ion.

/* Declare variables */
char temp[40];

...

BEGIN_TRANSACTION();
GET_DATA();

...

DO_WSK_Socket(S1, AF_INET, SOCK_STREAM, IPPROTO_IP);
DO_WSK_Bind(S1, ANY_ADDR, ANY_PORT);
DO_WSK_Setsockopt(S1, SOL_SOCKET, SO_OOBINLINE, 1);

strcpy(temp,VARDATA(1));

OctalToChar(temp); //used to convert octal strings
 //to their binary format

QALoad 5.02

127

DO_WSK_Send(S1,temp);
//DO_WSK_Send(S1,"\121\101\122\165\156");
DO_WSK_Closesocket(S1);

The DO_WSK_Send() command above sends the string “ 121\ 101\ 114\ 157\ 141\ 144” to the server. This
string is the octal representat ion of the the string “ QALoad ” .

Scenario 2:

You might find that your capture data is not the same data you need for running a test. For example, you
might need to change the value of a user ID during replay. One method of changing the value is to change
the value through the DO_WSK_Send() command, but that results in the value being stat ic only with in the
funct ion. To subst i tute a different value each t ime, create a dynamic variable, such as a datapool value, to
replace the user ID.

Example

In th is example, the script includes a DO_WSK_Send() command that sends “ name=Jim ” to the server as
the user ID. Then a variable is used to change the name to “ Mark” .

/* Declare variables */
char buffer[65];
char sendbuffer[65];

...

BEGIN_TRANSACTION();

...

DO_WSK_Socket(S1, AF_INET, SOCK_STREAM, IPPROTO_IP);
DO_WSK_Bind(S1,ANY_ADDR, ANY_PORT);
DO_WSK_Setsockopt(S1, SOL_SOCKET, SO_OOBINLINE, 1);
DO_WSK_Connect(S1, "127.0.0.1", 90, AF_INET);

//original DO_WSK_Send(S1,"name=Jim");

strcpy(buffer, "Mark");
sprintf(sendbuffer, "name=%s", buffer);
DO_WSK_Send(S1, sendbuffer);

/* 2 bytes: ok */

DO_WSK_Expect(S1,"ok");
DO_WSK_Closesocket(S1);

The buffer before the DO_WSK_Send() command is modified and a new buffer is passed as the second
parameter of the DO_WSK_Send() command. This effect ively sends “ name=Mark” to the server instead of
 "name=Jim ” .

Saving server repl i es

There are two methods for saving the ent ire reply that a server sends back. The fol lowing paragraphs
describe each method.

Using the Response() and ResponseLength() commands

The Response() command can be cal led direct ly after the DO_WSK_Expect() command. It returns a pointer
to the data that has been received by DO_WSK_Expect(). To also receive the length of the replay, cal l the
ResponseLength() command, which returns the number of characters that were received. The fol lowing
example uses the Response() and ResponseLength() commands.

Example

In th is example, variables are declared to store the results from the two funct ions. Both funct ions are also
used to save the buffer that is received with in the DO_WSK_Expect() command.

QALoad 5.02

128

/* Declare Variables */
int x = 0;
char *temp;

...

BEGIN_TRANSACTION();

...

DO_WSK_Socket(S1, AF_INET, SOCK_STREAM, IPPROTO_IP);
DO_WSK_Bind(S1, ANY_ADDR, ANY_PORT);
DO_WSK_Setsockopt(S1, SOL_SOCKET, SO_OOBINLINE, 1);
DO_WSK_Connect(S1, "127.0.0.1", 90, AF_INET);

/* 21 bytes: You are now connected */

DO_WSK_Expect(S1, "d");

// Used to store the data that was received by the
// DO_WSK_Expect

temp = Response();

// Used to get the size of the response that was received
// so far

x = ResponseLength();

/* The line below will print the length of the response and the actual response */

RR__printf(“length = %d, and response= %s",x, temp);
DO_WSK_Closesocket(S1);

The message “ length=21 response=You are now connected” displays in the Player buffer window.

Using the DO_WSK_Recv() command

To save a response based on i ts size instead of a unique character string that is used with in the
DO_WSK_Expect() command, use the DO_WSK_Recv() command. This command enables you to specify
how much data to receive and where to store the data.

You can also use the DO_WSK_Recv() command to store the reply that is returned from the server. This
strategy is useful when you need to retrieve the buffer that is returned from the server, even though the
returned data is too dynamic and causes the DO_WSK_Expect() command to fai l every t ime.

Example

In th is example, the DO_WSK_Recv() command is used to save a server reply based on size. Two variables
are declared to store the results from the DO_WSK_Recv() command.

/* Declare Variables */
int size = 0;
char temp[45];

...

BEGIN_TRANSACTION();

...

DO_WSK_Socket(S1, AF_INET, SOCK_STREAM, IPPROTO_IP);
DO_WSK_Bind(S1, ANY_ADDR, ANY_PORT);
DO_WSK_Setsockopt(S1, SOL_SOCKET, SO_OOBINLINE, 1);
DO_WSK_Connect(S1, "127.0.0.1", 90, AF_INET);

/* 21 bytes: You are now connected */

memset(temp,'\0',45);
DO_WSK_Recv(S1,temp,45,0,&size);
RR__printf("size=%d string=%s",size,temp);
DO_WSK_Closesocket(S1);

QALoad 5.02

129

The message “ size=21 string=You are now connected” displays in the Player buffer window.

Note: If you use this method as a substitute for the DO_WSK_Expect() command, ensure that you receive
the correct information prior to calling the next function in the script.

Parsing server repl i es for values

To parse a buffer for a part icular value, you can write a parsing rout ine that searches the ent ire buffer for
the value. However, you can also use one of QALoad ’s Winsock helper commands. The fol lowing scenarios
describe two situat ions in which you could use the Winsock commands to solve a parsing problem.

Scenario 1:

To find a string in a server reply, you can use the SkipExpr() and ScanExpr() commands. SkipExpr()
searches for the first occurrence of a string in the in ternal buffer that contains the response that was
received with in the DO_WSK_Expect() command. Then, use the ScanExpr() command to search for
another string. ScanExpr() saves the buffer from the first occurrence of the string that was used with
SkipExpr() up to and including the string used with in ScanExpr(). The first parameter of ScanExpr() is a
UNIX-style regular expression. The fol lowing table l ists the most common expressions:

Character M ean ing

. Matches the end of a string.

* Matches any number of characters.

? Matches any one character.

Example In th is example, the buffer contains “ sessionid=1234567890abc” , and the goal is to retrieve
everyth ing after the “ =” , up to and including “ abc” .

/* Declare Variables */
char temp[35];
int size = 0;

...

BEGIN_TRANSACTION();

...

DO_WSK_Socket(S1, AF_INET, SOCK_STREAM, IPPROTO_IP);
DO_WSK_Bind(S1, ANY_ADDR, ANY_PORT);
DO_WSK_Setsockopt(S1, SOL_SOCKET, SO_OOBINLINE, 1);
DO_WSK_Connect(S1, "127.0.0.1", 90, AF_INET);

/* 23 bytes: sessionid=1234567890abc */

DO_WSK_Expect(S1, "c");
SkipExpr("sessionid=");
size=ScanExpr(".*abc" , temp);
RR__printf("length = %d string = %s", size, temp);
DO_WSK_Closesocket(S1);

The message “ length=13 string=1234567890abc” displays in the Player buffer window.

Scenario 2:

You may have data returned from the server that is too dynamic, that is, you are not able to base parsing
on actual characters. The solut ion is to base the parsing on character posit ions instead.

For example, to save the characters 20 through 25, you could use the ScanSkip() and ScanString()
commands. ScanSkip() skips a specified number of characters in the in ternal buffer that stores the response
that was received with in the DO_WSK_Expect() command. ScanString() scans a number of characters from
the current posit ion with in the buffer in to a character string.

QALoad 5.02

130

Example

In th is example, a buffer contain ing “ xxx123456789yyy” is returned from the server. The value between
“ xxx” and “ yyy” is returned.

/* Declare Variables */

char temp[15];

...

BEGIN_TRANSACTION();

...

DO_WSK_Socket(S1, AF_INET, SOCK_STREAM, IPPROTO_IP);
DO_WSK_Bind(S1, ANY_ADDR, ANY_PORT);
DO_WSK_Setsockopt(S1, SOL_SOCKET, SO_OOBINLINE, 1);
DO_WSK_Connect(S1, "127.0.0.1", 90, AF_INET);

/* 16 bytes: xxx0123456789yyy */

memset(temp,'\0',15);
DO_WSK_Expect(S1, "yyy");
ScanSkip(3);
ScanString(10,temp);
RR__printf("string=%s",temp);
DO_WSK_Closesocket(S1);

The message “ string=0123456789” displays in the Player buffer window.

WWW

Visual Navigator

Visual scri pt i ng concepts

In troducing visual script ing

Visual Navigator for WWW is QALoad's easy-to-use visual in terface to QALoad's powerful script
development tools. Visual Navigator for WWW renders your recorded C-based transact ion in a tri -paned,
browser-l ike environment similar to popular visual ly-oriented development tools, with icons represent ing
al l the elements of your script . In fact, you could set up and run a WWW script without ever having to
modify a C-based script .

With Visual Navigator's advanced edit ing features, you don't have to know the syntax of QALoad's
command set or your HTML requests or responses to customize your script . You can quickly and easi ly:

! See what URL calls were made and what type they were (for example a POST or GET statement)

! See what information was passed in a call

! See what replies/pages were returned

! Add checkpoints or comments into your script

! Move the begin/end transaction statement

! Move the synchronize statement

! Edit an HTTP header

! Set particular flags and commands

! Add datapools

! Variablize your script

! Extract information from a reply to use in subsequent calls

! Save your script and go back to it at any time for further editing

QALoad 5.02

131

! Create a C-based script file, if you like

Show me the Visual Navigator

Looking at a transact ion loop

The transact ion loop is the port ion of your script that is played back repeatedly, represent ing mult iple
users making requests. The elements in your transact ion loop depend on what was original ly recorded on
each page you requested. You can move the transact ion loop up or down in the tree-view using the arrow
buttons, to al low certain requests to be moved in or out of the Transact ion Setup area, where they wil l be
executed before beginning the transact ion loop.

Note: The following graphic does not show all the possible script elements, but gives a good representation
of what your transaction loop might look like in the Visual Navigator.

High-level script items

There are three h igh-level script i tems in the transact ion loop that represent the web pages you've
recorded. NavigateTo, HTML Pages, and XML Requests:

NavigateTo: This is always the first i tem under the Transact ion Loop element , and is always denoted wi th
an arrow icon. It l ists the URL that was typed into the web browser at the start of recording. This specifies
the first request to be made. The result of th is request is the next i tem in the tree, which is general ly an
HTML Page i tem.

If the first i tem is an HTTP request for XML data, i t wi l l appear as an XML Request i tem in the tree.

Page (HTM L): Fol lowing NavigateTo there wil l typical ly be a set of HTML Page i tems, which are always
denoted with a globe icon underneath the Transact ion Loop element. These represent pages visi ted whi le
the transact ion was being recorded.

The form-view (bottom pane) l ists the request 's reply status, the requested URI, and the associated
checkpoint name for the page returned.

HTML Page i tems can be parent to a number of script i tems in the tree-view, such as Act ion i tems. For
more in formation about sub-i tems that can exist under a Page i tem, see HTM L Page sub-i tems.

XM L Request : Requests for XML documents are denoted by a document/arrow icon underneath the
Transact ion Loop element . These represent the requests for XML data made during the transact ion that
was recorded. XML Request i tems can be parent to a number of lower-level script sub-i tems in the tree-
view, such as Header and Cookie i tems and the XmlReply document i tem. See XML requests to learn about
sub-i tems that can exist under an XML Request i tem.

What is variabl izat ion?

When you record a transact ion, the result ing script is essent ial ly a recording of the act ions of a single end-
user. When you play back that script mult iple t imes during a load test, you probably wi l l want i t to
emulate the act ions of multiple users making differing requests of your server instead of the single user that
was recorded. One way to achieve that is to replace certain data with a variable that draws i ts value from a
l ist of values that you provide. Here are some examples of why and how you might variabl ize a script :

! If your original script recorded a user logging on to a site using an ID and password, you could replace the ID and
password with variables in the script. At test time, those variables could draw their values from a datapool file of
acceptable values, using a different set of values for each transaction run. In other words, that one script could
emulate a number of different users by utilizing a different user ID/password combination for each transaction.

! If your script inserted new records into a customer database, you might want the names to be unique each time the
script is run (each transaction). You could create a datapool file of names, and then insert a variable into the script
where the name was typed. At test time, the variable would insert a different name from the datapool file with each
transaction.

QALoad 5.02

132

! If an ID string is returned from the server and that ID is then used as part of future requests to the server, and each
virtual user may get back a different ID from the server, you could use a variable to use a specific ID. You could
extract an ID from the reply, place it into a variable, and then use the value in that variable in place of the actual ID
for future requests, ensuring you only use the ID you specify.

There are l ikely a number of values in your script that can be variabl ized. Those values are noted in the
tree-view (bottom pane) with var....

For detai ls on how to create and maintain datapool fi les and variables, see Datapools and variables.

XML Support

QALoad's XML support is handled through the Script Development Workbench's Visual Navigator, which
displays your script 's HTTP or XML requests in an easy-to-use visual ly-based interface that offers you point-
and-cl ick script edit ing. Although XML is supported through the Visual Navigator, we recommend you
read through th is help topic as well as the Visual Navigator help topics to become famil iar with the
features that are unique to QALoad's XML support.

When an HTTP request is made for an XML document, ei ther in the form of an HTTP GET request, or an
HTTP POST request with an XML document as the post data, then the data is displayed in the three Visual
Navigator panes as i l lustrated below. Cl ick on a pane in the graphic for a descript ion of i ts contents and
funct ional i ty.

 Note: To make the following graphic fit better in this help window, we've turned off the Script Development
Workbench toolbars and panes that are not directly related to this help topic. You can hide/show many of
the Script Development Workbench toolbars and panes using commands available from the View menu.

.

Streaming media in Visual Navigator

If you selected the Streaming Media opt ion on the WWW Advanced conversion opt ions dialog box before
recording your script , and the recorded transact ion contains RealOne Player or Windows Media streaming
requests, your streaming media request wi l l be presented as a Page in the tree-view, similar to the fol lowing
graphic:

QALoad 5.02

133

The form-view (bottom pane) for a streaming media page wil l show
the t i t le Real Media Request or Windows Media Request to indicate the
type of request you recorded, and wil l l ist the fol lowing fields:

Requested URI : Lists the requested URI that invoked the media
player. For Real M edia the fi le typical ly wi l l be an RM fi le, whi le for
Windows Media i t wi l l typical ly be an ASX fi le.

Play M edia Request : Select th is check box for the virtual user to
process the RM or ASX fi le that is received and make the necessary
requests to dupl icate what the cl ient performed while receiving the
streaming media. If th is checkbox is not selected, then no further
processing is performed after receiving the RM or ASX fi le.

Play Requested M edia for N seconds: You can specify how much of the streaming media fi le the virtual
user should play, in seconds, before moving on to the next request. A value of zero indicates that the ent ire
media stream should be played.

Note: While a virtual user is playing a media request i t wi l l not make any other requests in the
transact ion loop. This may be different than what the user performed when recording the
transact ion because a browser is capable of spawning the streaming media player as a separate
executable which can execute at the same t ime that the user cont inues to make further web
requests in the browser.

DBCS and Visual Navigator

The Visual Navigator handles both nat ive and encoded characters. (See DBCS Support in QALoad for more
in formation about DBCS support.)

The fol lowing graphic shows how the Visual Navigator provides nat ive character support. In the fol lowing
graphic, both Engl ish and Chinese characters are displayed in the Workbook Pane.

QALoad 5.02

134

The same capture fi le, Shanghai.cap, is open in the graphic below. Here, the Visual Navigator displays the
Chinese characters in encoded format.

Visual Navigator's i n ter face

The Visual Navigator

The visual script ing in terface, cal led the Visual Navigator, has three panes that represent different aspects
of your script , and menu i tems that offer you addit ional funct ional i ty. Using the Visual Navigator to
develop your scripts makes your job easier. For example, searching through l ines of code to locate a
part icular button you cl icked on a part icular page can take a long t ime, but using the Visual Navigator you
can simply cl ick through the pages to locate that button. In fact, you can develop your whole script –
recording, variabl izing, convert ing, compil ing, and running i t – al l from the Visual Navigator's in terface
without ever wri t ing a l ine of code.

For a brief explanat ion of each Visual Navigator pane, cl ick on the panes in the graphic below. For more
in formation about a pane, use the l inks l isted after the graphic.

Note: To make the following graphic fit better in this help window, we've turned off the Script Development
Workbench toolbars and panes that are not directly related to this help topic. You can hide/show many of the
Script Development Workbench toolbars and panes using commands available from the View menu.

QALoad 5.02

135

Visual Navigator's menus

The Visual Navigator has a number of special menu commands to help you develop your script .

Visual Navigator menu

The Visual Navigator menu is the main menu for Visual Script ing. Access the Visual Navigator menu from
the Script Development Workbench's main menu, or by right-cl icking on any i tem in the Visual Navigator
tree-view (left pane).

QALoad 5.02

136

Datapools and Variables: Opens the Datapools and Variables dialog box, where you can add, delete, or
modify datapool fi les or variables.

View Script Fi l e: Opens a window showing the C++ (.cpp) fi le based on what is current ly showing in the
Visual Navigator's tree-view. This is a read-only script .

Create Edi table Script Fi le: Creates an editable C++ (.cpp) script based on the current Visual Script . You
can modify th is script direct ly;however, i t wi l l not be updated i f you then make changes to the script using
the Visual Navigator.

Show Hidden Fields: Displays form fields that may normally have been h idden by the browser.

Show Redi rected Pages (3xx): Wil l toggle whether or not redirected pages wil l be displayed. These are
pages that come back with a reply status code of 3xx, for example: 302 Not Found.

Show Cl ien t Error Pages (4xx): Wil l toggle whether or not Cl ient Error pages wil l be displayed. These are
pages that come back with a reply status code of 4xx, for example: 407 Proxy Authorization
Required.

Show Server Error Pages (5xx): Wil l toggle whether or not Server Error pages wil l be displayed. These are
pages that come back with a reply status code of 5xx, for example: 503 Service Unavailable.

Insert Tree I tem : Opens a sub-menu where you can choose to insert certain tree i tems into your script . For
detai ls, see Insert ing script i tems.

Delete Tree I tem : Deletes the current ly selected tree i tem. If the selected i tem may not be deleted from the
script , th is command is unavai lable.

View Source: Opens a text window displaying the source code of the current ly act ive HTML Page or
Subrequest in the tree view.

Edit menu

The Script Development Workbench Edi t menu provides special commands for Visual Navigator
funct ional i ty as well as common Edi t menu commands. Access the Edit menu from the main menu, or by
right-cl icking on an edit box that can be variabl ized in the Visual Navigator form-view (bottom pane).
Fields that can be variabl ized are denoted with a Var button.

The commands on the Edit menu are dynamic and the avai labi l i ty of certain commands depends upon
whether you have text selected and where your cursor is. The fol lowing graphics i l lustrate the difference:

QALoad 5.02

137

Insert Variable/ Subst i tute w i th Variable: Opens the Datapools and Variables dialog, al lowing you to
insert a variable or replace the selected text with a variable. Subst i tuted text wi l l refer to a local variable or
datapool variable and wil l look similar to one of the fol lowing examples:

{$Customer Number$}

{$Last Name:Customer Data$}

These commands are only avai lable when the cursor is placed in an edit box on a tree-view i tem that can
be variabl ized (you wil l see Var next to i t).

Insert Random Value/ Subst i tute w i th Random Value: Opens the Random Number Tag dialog box where
you can specify a range wi th in which a random number should be generated for th is value. The subst i tuted
text wi l l look l ike th is:

{$RANDOM:0:100$}

and i t wi l l produce a random number between the lower and upper l im it each t ime i t is executed.

These commands are only avai lable when the cursor is placed in an edit box on a tree-view i tem that can
be variabl ized (you wil l see Var next to i t).

Insert VU Num ber/ Subst i tute w i th VU Num ber : Inserts, or replaces the h ighl ighted text with, the
fol lowing text:

{VU_NUMBER}

which wil l a virtual user number at runt ime. Typical ly th is wi l l be combined with other text to form a
larger string. For example:

Customer{VU_NUMBER}

wil l produce Customer1, Customer2, and so on, depending upon what the vi rtual user number is.

These commands are only avai lable when the cursor is placed in an edit box on a tree-view i tem that can
be variabl ized (you wil l see Var next to i t).

Revert to Original St r i ng: Rol ls the contents of the selected edit box back to when i t was first created,
usual ly when the recording was converted to a Visual Script .

This menu i tem is enabled only i f the edit box with in the form can be variabl ized and i t has been changed
at some point.

Delete Variable Reference: Deletes the variable from the selected edit box. Note that you can also
h ighl ight a variable and press the Delete key to delete a variable with in an edit box.

This menu i tem becomes enabled when you h ighl ight a variable inside of an edit box.

Elements of a Visual Navigator script

Primary script elements

Elements of a Visual Navigator script

When you open a Visual Navigator script , you'l l see standard elements of your script l isted in the left pane.
Each element can contain a number of script i tems, which in turn have attributes that are editable in some
cases. This topic l ists the major elements of a script , and l inks to addit ional help topics describing each
element 's associated script i tems:

The main elements of a Visual Navigator script are:

Playback Options

Web Playback Options

Traffic Fi l ters

QALoad 5.02

138

Variables

Datapool Fi les

Common Http Headers

Common Content Checks

Transact ion Setup

Transact ion Loop

Transact ion Cleanup

Playback Options

Lists various sett ings related to playback. Sett ings are contained in the Web Playback Options and Traffic
Fi l ters i tems.

Web Playback Options

This i tem contains sett ings related to playback such as proxy sett ings, t ime out value, number of
concurrent connect ions, baud rate emulat ion, and fi l ters. This form is divided into three areas: Proxy
Sett ings, M iscel laneous Playback Sett ings, and Memory Options.

Proxy Settings

This sect ion of the form shows the proxy sett ings as they were original ly recorded. This is the same
information you could enter in to the Internet Explorer or Netscape browsers to configure them.

Use Auto Con f igurat ion Script : If an auto-configurat ion script was used while recording, then th is
checkbox wil l be selected and the address of the auto configurat ion script wi l l be shown. If an auto
configurat ion script was not used, then the other proxy sett ing fields are enabled.
HTTP Proxy : The address of the proxy server machine and i ts port number.
SSL Proxy : The address of the SSL proxy server machine and i ts port number.
Except ions: Separate entries with a comma, for example: company.sample.com,
company2.company.com
Ht tp Version : Specifies which protocol to use when making HTTP and SSL requests during playback.
Options are Auto, 1.0, or 1.1. The version affects whether or not repl ies may come back chunked.
Only HTTP 1.1 requests wi l l receive chunked repl ies.
Usern am e: A val id user ID to use i f the proxy server requires authorizat ion.
Passw ord : A val id password corresponding to the user ID in the previous field, to use i f the proxy
server requires authorizat ion. The password wil l be encrypted when recording.

Miscellaneous Playback Settings

This sect ion contains various sett ings used for playback. The values on th is form in it ial ly originate from
the WWW Convert Options dialog box; however, you can change some of the values on th is form.

Server Respon se Tim eout : The number of seconds to wait for a response from the server before
considering i t to be t imed out.
M ax Connect ion Ret ries: Specifies how many t imes a connect ion wil l be tried before i t is
considered fai led.
M ax Concurren t Connect ions: The maximum number of concurrent connect ions that can be
opened to request documents. QALoad supports from 1 to 4 connect ions. This opt ion al lows QALoad
to better simulate a browser’s behavior whi le playing back a script .
Persi sten t Connect ion During Playback : When selected, QALoad wil l t ry to maintain an open
connect ion to the server during playback. An open connect ion may better simulate the recorded
transact ion.
Cach ing: When selected, QALoad wil l simulate the browser’s caching behavior.
Reuse SSL Session ID : When selected, QALoad wil l reuse the current session ’s communicat ion

QALoad 5.02

139

in formation (session ID) for al l page requests with in the transact ion.
Use Transm ission Baud Rate Em ulat ion : Select to simulate a specific baud rate for transmission of
requests, and then select a rate from the drop-down field. QALoad wil l then slow the transmission of
requests appropriately in order to emulate the transact ion rate of a modem.
Use Recept ion Baud Rate Em ulat ion : Select to simulate a specific baud rate for recept ion of
requests, and then select a rate from the drop-down field. QALoad wil l then slow the recept ion of
requests appropriately in order to emulate the transact ion rate of a modem.
Refresh Tim eout (Seconds): A page wil l be considered a redirect i f the META Refresh CONTENT
field's value is less than the value in th is field. This field can only be set in the conversion opt ions.

Memory Options

This sect ion contains sect ions related to memory usage at the virtual user level.

Vi rtual User M em ory Size: Indicates whether the current sett ing is for Typical or M in imize Memory
Usage.

M em ory Opt ions: Cl ick to open the M emory Options dialog box, from which you can
change from M inimize M emory Usage mode to Typical mode, or change Typical mode
sett ings. Once a script is converted using Typical mode, the memory usage sett ing cannot be
changed to M in imize Memory Usage.

M an ual l y Select Subrequests: Indicates whether the current sett ing is Act ive or Not Act ive. This
opt ion can be modified on the Memory Options dialog box. When the opt ion is Act ive, the
fol lowing buttons are also avai lable.

Select Al l Subs: Cl ick to select al l subrequests.

Clear Al l Subs: Cl ick to clear al l subrequests.

Traffic Filters

Traffic Fi l ters al lows you to fi l ter out certain requests whi le playing back a script . For example, you may
want to el im inate advert isement requests that are being made of Web servers other than the one you are
test ing.

The first t ime you convert a capture fi le, i t wi l l use the fi l ters specified on the WWW Advanced conversion
opt ions dialog box and wi l l el im inate any pages indicated as being fi l tered. Fi l ter in formation entered on
that dialog wil l be writ ten to the Traffic Fi l ters tree i tem. Any changes you make to th is tree i tem wil l not
affect i tems in the Visual Navigator tree but wi l l be strict ly for fi l tering subrequests at playback t ime.

Note: Traffic filters do not affect which XML requests are written to the tree when a capture file is converted.

Two types of fi l ters may be specified:

! Allowed Traffic

This l ist specifies a set of substrings for the type of URLs you wil l al low to be requested. The URL of
every request made must include at least one of the specified substrings. The fi l ter only appl ies to
subrequests.

For example, i f the l ist contained the strings "compuware" and "compuweb" then QALoad would al low
the URLs "www.compuware.com\ info.htm" and "http:/ /mycompuweb/weather.htm" to be requested,
but not "www.google.com".

! Blocked Traffic

This l ist specifies a set of substrings for the type of URLs which should not be requested. If a URL to be
requested contains any of the substrings in th is l ist , then the request wi l l not be sent. The fi l ter only
appl ies to subrequests.

For example, i f th is l ist contained the terms "doublecl ick" and "popup_source" then QALoad would not
al low the fol lowing URL to be requested: "http:/ /www.doublecl ick.com/myAdvert isement.htm".

QALoad 5.02

140

The traffic fi l ters form-view also l ists the substrings that were converted to Addit ional Subrequests during
conversion under the Traf f i c converted to Subrequests heading. This l ist is read-only and displays the
sett ings from the WWW Advanced conversion opt ions dialog box.

Variables

Lists local variables that have been created for th is script . For more in formation about variabl izat ion, see
Variabl izing a Visual Script .

Form View Fields

Variable Nam e: The name you provided to ident i fy the variable.

In i t i al : The in i t ial value for th is field, before variabl izat ion takes place.

Datapool Files

Lists datapool fi les being cal led by the script . Each datapool l isted has a l ist of variables under i t
represent ing columns in the datapool fi le. Datapools can be Local (specific to a single Player) or Central
(avai lable to al l Players).

Common Http Headers

Lists headers that were recorded from at least 50% of your requests. These headers wi l l be sent out with
every request that is made at playback unless they are overwrit ten by a header of the same name
underneath an individual request act ion.

You can insert new header i tems from the tree-view by cl icking Visual Navigator>Insert Tree I tem >Ht tp
Header . In addit ion, you can modify the values in the Http Header form in the right pane.

Common Content Checks

Lists common content checks, which apply to al l repl ies sent by the server. Content checks enable you to
veri fy whether the correct page was returned based on the existence or absence of a specific search string.
You can also set content checks at the page level. Cl ick the Add New Con ten t Check I tem button in the
form-view to add new common content checks.

Common content checks can include variables. Common content checks enable you to generate an error
code on a set condit ion even i f no individual page-level content checks are enabled. The search string is
compared to the raw HTML returned by the server, so you may need to include HTML tags in your search
to match the text that appears in the browser.

Transaction Setup

Lists any act ions that occurred before the main transact ion loop. Any i tems/act ions that occur under th is
heading wil l be executed after the Synchronize but before the BEGIN_TRANSACTION(); statement at
playback. For example, you may have logged in to a part icular Web site and do not want to log in and out
with every transact ion at playback. You can move the Transact ion Setup i tem in the tree-view by
h ighl ight ing it and cl icking the Move UP/M ove DOWN buttons. The Transact ion Setup can contain cl ient
cert i ficate tree i tems.

Client Certificate tree item

If the recorded transact ion contains a l ine with a ssl-clientcert command, then
Visual Navigator wi l l create a Cl ient Cert i ficate tree i tem and place i t direct ly
beneath the Transact ion Setup tree i tem.

The Client Cert i ficate string can be modified or variabl ized in the form-view.

QALoad 5.02

141

The Client Cert i ficate i tem can also be moved up and down the tree l ike other tree i tems, such as
checkpoints. This al lows you to move i t in to the Transact ion Loop area i f you wish to change the
cert i ficate with each transact ion.

A Client Cert i ficate i tem wil l generate a script l ine similar to the fol lowing:

Set (EVERY_REQUEST, CERTIFICATE, “qaload_cl”);
If the Requi res Passw ord check box is selected, the generated script l ine is similar to the fol lowing:

Set (EVERY_REQUEST, CERTIFICATE_PASSWORD, "~encr~250F7641455876");

Transaction Loop

Lists the requests in your transact ion. Al l i tems/act ions that occur under th is heading wil l be placed
between the BEGIN_TRANSACTION and END_TRANSACTION statements causing them to be repeated for
as many t imes as the Conductor tel ls them to be. The transact ion loop has a number of possible sub-
elements, depending on the Web site you tested. For detai led descript ions of the elements that can be
l isted in a transact ion loop, see Looking at a transact ion loop.

Transaction Cleanup

Lists act ions that occur after the script has fin ished execut ing the appropriate number of t ransact ions. Any
i tems that occur under th is heading wil l be placed after the END_TRANSACTION statement. For example,
you may want to log out of a part icular Web site after complet ing the appropriate number of t ransact ions.
You can move the Transact ion Cleanup i tem in the tree-view by h ighl ight ing i t and cl icking the Move
UP/Move DOWN buttons.

Transact ion loop i tems

Synch

Inserts a Synch i tem immediately after the current ly selected HTML Page. A Synch i tem represents a spot
where al l virtual users wi l l pause during replay unt i l al l act ive virtual users have reached the same point .
Once the virtual users are synchronized th is way, the Conductor wi l l instruct them al l to cont inue.

A Synch i tem can be moved up or down the tree using Up/Dow n in the form-view.

IP Spoof

Inserts an IP Spoof i tem immediately after the current ly selected HTML page.

In order for IP Spoofing to work with Visual Navigator, i t is necessary to create or insert an exist ing local
datapool fi le cal led QALOAD_IPSPOOF in the Visual Navigator tree-view. For more in formation about
creat ing th is datapool fi le and insert ing i t , see Creat ing the QALOAD_IPSPOOF datapool fi le.

Read Datapool

Opens the Datapool and Variables dialog box, al lowing you to choose which datapool to use, and then
inserts a Read Datapool i tem immediately after the current ly selected HTML Page.

You can move th is i tem up or down the tree-view by cl icking Up/Dow n in the form-view.

Form View Fields

The form-view (bottom pane) for a Read Datapool i tem displays the fol lowing in formation:

Datapool Nam e: The name of the datapool fi le that wi l l be used. To use a di fferent fi le, cl ick Select f i le…
and then choose or create another.

Datapool Variables: Lists the variables (fields) associated with th is datapool f i le.

Checkpoint pair

QALoad 5.02

142

Inserts a Begin Checkpoi n t i tem before the current ly selected HTML Page and an End Checkpoin t after
the current ly selected HTML Page.

Checkpoints are used to measure durat ion t imes for certain act ions to be completed. You can move ei ther
the Begin or End checkpoint i tem to encompass several requests, i f necessary. To move either i tem,
h ighl ight i t and then cl ick Up/Dow n in the form-view.

Form View Fields

The form-view fields for a Begin / End Checkpoin t i tem l ists the fol lowing in formation:

Nam e: The unique name of the checkpoint. When a checkpoint i tem is inserted, i t is given a default name
such as UserCheckpoint 1. This name can be changed. Changing the name of the Begin or End
Checkpoin t i tem automatical ly changes the name of the corresponding Begin or End i tem. In addit ion,
delet ing a Begin or End Checkpoin t i tem wil l automatical ly delete the corresponding Begin or End i tem.

Show End/ Begin Checkpoin t : Cl ick this button to quickly locate the Begin or End Checkpoin t i tem that
corresponds to the i tem current ly selected.

Increment Variable/Decrement Variable/Reset Variable

Increments, decrements, or resets the value of a local variable.

Opens the Datapools and Variables dialog box, which al lows you to select which variable to increment,
decrement, or reset. It then inserts the appropriate i tem (Increm en t Variable, Decrem en t Variable, Reset
Variable) after the curren t ly selected HTML page.

Form View Fields

The form-view (bottom pane) for an Increm en t , Decrem en t , or Reset Variable i tem l ists the fol lowing
in formation:

Variable Nam e: The name of the variable being modified. To use a different variable, cl ick Select Var…
and then choose or create a different local variable.

Act ion : Describes the type of act ion to perform on the local variable. Options are:

! Increment — increments the value by 1.

! Decrement — decrements the value by 1.

! Reset Value — Type a value to replace the current variable with in the New Value field.

Debug Print

Inserts a Debug Prin t i tem after the current ly selected HTML Page that wi l l cause a string to be output to
the Player window during playback. This can be useful for debugging a script whi le you are trying to
variabl ize i t so that i t wi l l replay correct ly with mult iple virtual users.

Form View Field

Debug Prin t Statem en t : If you simply type a string in th is field, i t wil l be printed in the Player’s output
window just as you typed i t . If you insert a variable in to the string, the value of the variable wi l l be printed
to the Player's window at playback so you can see i ts value. For example, to prin t the value of a datapool
variable you might enter a string l ike the fol lowing:

Customer Name is {$First Name:Customer Data$} {$Last Name:Customer Data$}

which would print a statement l ike the fol lowing to the Player window at runt ime: Customer Name is
Cindy Nelson.

Comment

QALoad 5.02

143

Inserts a Com m ent i tem after the current ly selected HTML page. Type your comment in to the form-view
(bottom pane).

HTML Pages

HTML Page form-view

The form-view (bottom pane) for an HTML Page tree i tem contains the fol lowing in formation:

Reply Status: The code designat ing
the status of the reply. For most pages
that were returned correct ly, th is wi l l
be 200 OK.

Requested URI : This read-only field
l ists the URI which was requested that
resulted in th is page being displayed.

Checkpoin t Nam e: If the page has a
t i t le, then i t wi l l be used as the checkpoint name. If not, the word Checkpoint wi l l be used. To make sure al l
checkpoint names are unique, a number may be appended to the end of the checkpoint name.

M eta Ref resh Requi red [] Seconds Before Redi rect ion : If the Refresh Timeout opt ion was selected on the
WWW Conversion Options dialog box, th is field displays the number of seconds that QALoad waits before
i t t reats a META refresh request as a normal request. This field only appears when refresh t imeouts are
enabled.

HTML Page sub-items

The fol lowing script i tems can exist under a Page (HTML) i tem in the Visual Navigator's tree-view. Each
possible page sub-i tem is l isted below, along with descript ions for the fields that appear in the form-view in
the right pane when you select the i tem in the tree-view.

In addit ion, a Page i tem can contain sub-i tems that you insert manually after recording the transact ion.

Content Check sub-i tem

PageCheck sub-i tem

Addit ionalSubRequests sub-i tem

SubRequests sub-i tem

Cookies Set by Server sub-i tem

Sleep sub-i tem

Fi l l In Form sub-i tem

Act ion sub-i tems

Content Check sub-item

Inserts a Conten t Check i tem for the current ly-selected HTML page. Insert a content check to veri fy
whether the correct page was returned based on the existence or absence of a part icular search string in the
server's reply for that page. Content checks can include variables. The search string is compared to the raw
HTML returned by the server, so you may need to include HTML tags in your search to match the text that
appears in the browser.

The top pane displays the source for the HTML page. You can easi ly select text in the top pane and add i t
to the content check defin i t ion by cl icking the Copy f rom Source button.

QALoad 5.02

144

Form-view fields

The form-view (bottom pane) includes the fol lowing fields:

Enable th i s con ten t check : Select to enable the content check for the page. Content checks are disabled
by default . After checking th is box, choose whether the check succeeds i f the string is contained or not
contained in the page. Then type the string text in the box.

Copy f rom Source: Select text in the top pane and cl ick th is button to copy the selected text in the top
pane to the text box.

Veri fy: Click to test whether the check succeeds for the text shown in the top pane.

PageCheck sub-item

Allows you to veri fy that the t i t le of the page that was requested is correct.

Form View Fields

The form-view (bottom pane) includes the fol lowing fields:

Original Ti t l e: This read-only field displays the t i t le of the recorded page.
Veri fy Page Ti t l e: Select th is checkbox to enable/disable t i t le veri ficat ion at playback, then select the
appropriate opt ion:
Com plete Ti t l e: The t i t le of the page that is requested must match exact ly wi th the original t i t le.
Pref i x : Matches the first characters of the t i t le. Specify how many characters to match. At playback t ime
QALoad wil l then compare the first N characters to the original t i t le, al lowing you to veri fy t i t les which
might change sl ight ly.
Suf f i x : Matches the last characters of the t i t le. Specify how many characters to match. At playback t ime
QALoad wil l then compare the last N characters to the original t i t le, al lowing you to veri fy t i t les which
might change sl ight ly.

AdditionalSubRequests sub-item

Some requests are contained in applets, Act iveX components, or other objects that are captured, but not
played back by QALoad . These subrequests, which are not recognized as normal subrequests, are l isted in
the Addi t i onalSubRequests t ree i tem .

Each addit ional subrequest i tem appears in the script as a pre-loaded subrequest just before the main
act ion. As a result , the playback engine requests the main page, regular subrequests, and then the pre-
loaded subrequests.

For example:

//--------- REQUEST # 2 ---------
//
// current page url is http://c96852d01/pda/
//
// Pre-load the following image requests before the next request is made.
// These requests seem to have been made by javascript or applets associated
// with the next page but will not be made automatically by the replay engine,
// hence they are here in the script.
//

Set (NEXT_REQUEST_ONLY, ADDITIONAL_SUBREQUEST,
 "http://c96852d01/pda/images/LeftBackgrnd.jpg");

Set (NEXT_REQUEST_ONLY, ADDITIONAL_SUBREQUEST,
 "http://c96852d01/pda/menuopen.gif");
Set (NEXT_REQUEST_ONLY, ADDITIONAL_SUBREQUEST,
 "http://c96852d01/pda/menuclose.gif");
Set (NEXT_REQUEST_ONLY, ADDITIONAL_SUBREQUEST,
 "http://c96852d01/pda/menuclose.gif");
Set (NEXT_REQUEST_ONLY, ADDITIONAL_SUBREQUEST,
 "http://c96852d01/pda/images/browsex.gif");

QALoad 5.02

145

Click_On(IMAGE, 1, SRC_ATTRIBUTE, "http://c96852d01/pda/images/browse.gif");

SubRequests sub-item

Lists al l subrequests (such as images) that the page performed in order to be ful ly rendered in the browser.
Subrequests cannot be changed and are shown strict ly to provide detai led in formation about the requests
that were made during the recording session.

Form View Fields

The form-view (bottom pane) for subrequests contains the fol lowing fields:

URI : Lists the URI of the subrequest that was made.
View Source: Cl ick to open the source fi le associated with the reply of the subrequest in a text format.
Image fi les wi l l show up as most ly unreadable characters, but cascading stylesheet and JavaScript requests
wi l l be readable.

Cookies set by Server sub-item

If the reply from the server for the requested page contains a Set-Cookie command, i t is l isted here. This
i tem cannot be modified, i t is l isted for your in formation only.

Form View Fields

The form-view (bottom pane) for cookies l ists the fol lowing in formation:

Nam e: The name of the cookie.
Value: The value that the cookie should be set to.
Path : The path with in the domain to which th is cookie is assigned. This cookie wi l l on ly be sent to the
server i f future request URIs have the same domain and th is path. The path can be deeper but i t must start
with th is path.
Dom ain : The domain to which th is cookie is assigned. This cookie wi l l on ly be sent to the server i f future
request URIs have th is domain and the path specified above.
Expi res: The cookie's expirat ion date, i f i t has one.

Sleep sub-item

Every page wil l have a Sleep i tem immediately before i ts Act ion i tem. The sleep value specifies how many
seconds were spent viewing th is page (or fi l l ing out a form) before an act ion was taken (such as cl icking on
a l ink or button).

Fill In Form sub-item

If a requested page contains a Form (html element) that was fi l led in by the user, then a Fi l l In Form i tem
and i ts associated elements wi l l be created in the tree-view. When th is tree i tem is selected, a bl inking
frame wil l appear around the form in the browser-view (top pane).

Form View Fields

The form-view (bottom pane) for a Form element l ists the fol lowing in formation:

Form Act ion St r ing: The Act ion String associated with th is form. For example, the URI which wil l be
requested.
Form Num ber : The number assigned to the form, indicat ing which form wil l be used.

A Fi l l In Form item in the tree-view can include a number of sub elements. For detai ls, see Form sub-i tems.

Extract String sub-item

QALoad 5.02

146

Insert an Extract String i tem when you need to extract in formation from a reply and store i t in a variable to
use in variabl izing future requests or simply for logging the in formation. For example, i f a string is located
inside a JavaScript or in a h idden tag that is not visible in the browser, and i t m ight change each t ime th is
page is requested, use an Extract String to extract the value.

When an Extract String i tem is inserted in to the tree-view, the browser-view wil l display the HTML source
for the page in which the i tem was inserted. Cl ick Select New St ring, h ighlight the text to extract, and
then cl ick Done.

The string to extract wi l l be recognized by the text preceding i t and certain text fol lowing i t . Anyth ing in
between wil l be extracted and saved into the local variable. When you select text in i t ial ly, Visual Navigator
wi l l use 10 or more characters on either side of the extracted text to make the search string unique enough
to find th is copy of the extracted text. You can increase or decrease the size of these strings using the spin
controls.

You must also specify a variable that wi l l receive the extracted string at run t ime by cl icking on Select Var .

Form View Fields

The form-view (bottom pane) for an Extract String item wil l l ist the fol lowing in formation:

Variable to receive st r i n g: The local variable that wi l l receive the string extracted from the reply. The
value wil l in i t ial ly be None.

Select Var : Cl ick to access the Datapools and Variables dialog box where you can select or create a local
variable to use with the Extract String i tem.

Preceded by : The text preceding the string you want to extract.

Ext racted : The string to be extracted on th is part icular reply.

Fol low ed by : The text fol lowing the string to be extracted.

Select new st r i ng: Cl ick to select a new string in the browser-view (top pane). After cl icking th is button,
h ighl ight the string text in the browser-view. The button text changes to Done. When you have selected
the appropriate string, cl ick Done. The Preceded , Ext racted , and Fol low ed by fields wi l l be fi l led in
automatical ly, and the string to be extracted wil l remain h ighl ighted in the browser-view.

Frames

If an HTML page that is recorded contained frames, they wil l be represented in the tree-view (left pane)
with a circle icon contain ing a capital F. A frame page wil l be indented beneath the page that is i ts parent.
If you cl ick on a frame icon in the tree-view, the corresponding frame wil l be h ighl ighted in the browser-
view (top pane) with a bl inking frame around i t for ident i ficat ion.

Duplicated frameset pages

Sometimes when a user cl icks on a l ink or takes some other act ion inside of a frame, the new page that was
requested simply replaces the contents of one of the frames already shown in the browser. To indicate that
the frameset page (the main page that holds the frames) has not changed, Visual Navigator renames i t
Duplicated Frameset n. Where n is an ident i fying number for the frameset that is incremented as more
frameset pages are dupl icated.

Form view fields

The form-view (bottom pane) for a Frame Page i tem l ists the fol lowing in formation:

Requested URI : The URI which was used to request the frame page
Fram e Nam e: The name of the frame as indicated in the source HTML.

Act ion sub-i tems

QALoad 5.02

147

Action sub-items

An Act ion i tem appears under each HTML Page except the last one in the script . This represents the act ion
that the user took to get to the next page. Act ion i tems include:

! NavigateTo – Visual Navigator could not determine how the user accessed the next page (they may have typed a
URL directly into the address bar, or a JavaScript may have caused the jump).

Note: A NavigateTo item is the first element that appears under the Transaction Loop element. This is
because when the browser is launched during recording, the user must specify a starting address (typically by
typing it into the Address bar).

! Click On Link – The user clicked on a text link

! Click On Image – The user clicked on an image link

! Click On Button – The user clicked on a Submit type button.

! PostTo – Data was sent to the server with a POST command but a matching submit button was not found. This may
have been caused by a JavaScript.

Action i tems can contain various sub-elements. For detai ls, see Act ion i tem sub-elements.

NavigateTo sub-item

Specifies a URI to be requested. If the Script Development Workbench cannot determine how the next
page was requested (typical ly due to a JavaScript making the request) then i t wi l l use a NavigateTo t ree
i tem instead of something more specific such as a Cl i ck On Link .

Form View Field

The form-view (bottom pane) for a NavigateTo i tem l ists the fol lowing in formation:

URI : The URI that was requested. This value can be variabl ized.
Use Link En coding for CGI Param eters: If an HTTP GET request is the result of a direct request that
includes the CGI parameters with in the l ink, the parameters must be sent to the server in a different
encoding cal led Link Encoding. In most cases, the Script Development Workbench automatical ly detects
th is type of request and selects th is opt ion. However, you can manually change th is sett ing for
troubleshoot ing. General ly, If a Navigate_To is associated with a form, use form encoding (do not select
th is check box); i f a Navigate_To is associated with an anchor, use l ink encoding (select th is check box).

Click On Link sub-item

If the user cl icked on a text l ink or an image l ink, then a Cl ick On Link act ion i tem wil l be inserted under
that page. This is used to describe the act ion that was taken while on th is page that resulted in the next
page being requested.

When a Click On Link tree-view i tem is selected, the text or image in the browser-view (top pane) wi l l be
h ighl ighted by a bl inking frame to make i t easier to locate. There are several types of Cl ick On Links:

 Tex t Links – One of the more common l inks in web pages are Text based l inks. These usual ly
appear as underl ined text.

 Im age Links – An image can have a l ink, similar to text.

 Cl ien t -Side Im age M ap – A Cl ient-Side Image Map is an image on a page that has mult iple
l inks associated with i t . Each l ink is associated with a region, which can be any shape. When
the user cl icks on the image, the browser wi l l determine which region was cl icked on and wil l
request the page l inked to from that region.

 Server-Side Im age M ap – A Server-Side Image Map is an image on a page that has mult iple
l inks associated with i t . Unl ike Cl ient-Side Image Maps, these l inks are stored on the server
rather than the cl ient. When a user cl icks on the image, the browser wi l l send the server the
mouse coordinate relat ive to the top-left corner of the image. The server wi l l then reply with
the appropriate page.

QALoad 5.02

148

Form View Fields

The form-view (bottom pane) for Cl i ck On Link i tems l ist the fol lowing in formation:

Link Type: Specifies the type of l ink found. For example, Text, Image, Cl ient Side Image Map, or Server
Side Image Map.
Link Tex t : Only avai lable for text l inks. Shows the text associated with the l ink, as displayed in the
browser-view (top pane). During playback, the script wi l l search for a l ink using th is text and then request
the page specified by the l ink.
Im age: Only avai lable for image l inks. Shows the URL of the image that was cl icked. When playing back
the script , QALoad wil l search for an image with a l ink that originated from th is URL and wil l request the
page specified by the l ink.
I f m ul t i ple m atches to Target URI are found, use m atch : It could be possible to have mult iple l inks to a
single URI. Use the spin control to move to the next or previous l ink that matches the target URI. Selected
l inks wi l l be framed and the Link Text, or Image, or Image Region edit box (the edit box avai lable depends
on what type of l ink i t is) wi l l be updated .
Target URI : Displays the URI that wi l l be requested when th is l ink is cl icked on.
X and Y Coordinates: Server Side Image M aps only. The mouse coordinates, relat ive to the upper left of
the image, that were cl icked on while recording.

Click On Button sub-item

Clicking on Subm i t is usual ly associated with entering values in to a form (Fi l l In Form i tem). When the
Cl i ck On But ton t ree-view i tem is selected, the associated button in the browser window (top pane) wi l l be
h ighl ighted with a bl inking frame, making i t easier to locate.

Form View Fields

The form-view (bottom pane) for Cl i ck On But tons (submits) l ists the fol lowing in formation:

Iden t i fy by : Cl ick the appropriate button to choose whether to ident i fy the button by Name (in ternal
name as indicated in the HTML), by Label (the text on the button), by Occurrence (e.g. the 3rd button), or
by Image Source (in case th is submit button is real ly an image). The edit Ident i fy by buttons wil l change
appropriately, depending upon which opt ion you choose.

Prev But ton / Nex t But ton : If there are other submit buttons on the page, use Prev Button/Next Button to
choose to use one of those other submit buttons. The name, label, or occurrence wil l be updated
automatical ly.

Label : The Label field (or Name, Occurrence, or Image Source field) can be modified or variabl ized. If you
variabl ize the field, cl icking Next Button or Prev Button wil l not affect i ts contents. However i f you choose
to use one of the other opt ions, different text wi l l be displayed because variabl izat ion is specific to each
method of ident i ficat ion.

I f m ul t i ple m atches to URL are found, use m atch : If QALoad finds mult iple matches (for example, two
buttons labeled Buy Me) then you can use th is field to specify which match to use. For example you could
specify that you want to cl ick on the 4th button with a label of Buy Me when looking at a page with a lot of
i tems for sale.

Original Label : The original label associated with the button that was cl icked while recording.

Original Nam e: The original name (from the HTM L source) for th is button.

Form Act ion : The URL associated with a form. This is the address for the request that wi l l sent when the
submit button is cl icked.

Subm i t M ethod : Whether th is submit i tem was a GET or POST.

PostTo sub-item

QALoad 5.02

149

If the recorded request was a POST request rather than a GET request and the Script Development
Workbench could not find a matching Submit type button, then a PostTo t ree act ion i tem wil l be inserted
under the page. This can sometimes happen i f the request is in i t iated by JavaScript.

Form View Fields

The form-view (bottom pane) for a PostTo i tem l ists the fol lowing in formation:

URI : The URI which is being posted to.
Con ten t Type: One of the fol lowing: DEFAULT, TEXT_PLAIN, or MULTIPART_FORM_DATA. This field is
read-only.

Act ion i tem sub-i tems

Action item sub-elements

The fol lowing i tems can exist under Act ion i tems in the tree-view:

Http Headers sub-i tem

Cookies sub-i tem

CGI Parameters sub-i tem

NTLM Authent icat ion sub-i tem

Basic Authent icat ion sub-i tem

Http Headers sub-item

If a header exists under an Act ion i tem, then i t wi l l be sent for that
request only. If the header has the same name as one of the common
headers, then i t wi l l override the common header for th is request
only. It is possible to insert addit ional HTTP headers.

Form View Fields

The form-view (bottom pane) for an HTTP Header l ists the fol lowing
in formation:

Nam e: The name of the HTTP header.
Value: The value of the HTTP header.

Cookies sub-item

When a Cookie i tem is a sub-element of an Act ion i tem, i t contains a l ist of cookie i tems that were sent in
the header of the request that the Act ion i tem made when recording. Cookies are added automatical ly by
the browser based on the URI that is being requested. They are either set as a result of the previous reply
(the server returned a Set-Cookie command), or they are set by JavaScript contained in the previous reply.

If the Cookie shown has a matching Set-Cookie i tem, then noth ing wil l display in the script since the
cookie is created automatical ly during playback. If there is no matching Set-Cookie i tem, then a Set-Cookie
type statement wi l l be generated in the script .

You can insert addit ional cookies in to the Cookies sect ion of a page as another means of variabl izing the
playback. How?

Form View Fields

The form-view (bottom pane) for a cookie i tem l ists the fol lowing in formation. Both of these i tems are can
be edited and variabl ized. You can also insert addit ional cookie i tems.

QALoad 5.02

150

Nam e: The name of the cookie.
Value: The value of the cookie.

CGI Parameters sub-item

Lists CGI parameters sent along with the request made by the Act ion i tem.

Form View Fields

The form-view (bottom pane) for CGI Parameter i tems l ists the fol lowing in formation. Both these fields
can be edited and variabl ized. You can also insert addit ional CGI Parameter i tems.

Nam e: The name of the CGI Parameter.
Value: The value of the CGI Parameter.

NTLM Authentication sub-item

Sometimes the pages being requested require NTLM Authent icat ion, that is, the user wi l l be presented with
a dialog box asking for a UserID, Password, and Domain. This in formation is recorded and l isted in the
tree-view under the Act ion i tem that requires i t .

Form View Fields

The form-view (bottom pane) for NTLM Authent icat ion i tems l ists the fol lowing in formation:

User : User name typed into the authent icat ion dialog.
Passw ord : Password typed into the authent icat ion dialog.
Dom ain : Domain typed into the authent icat ion dialog.

Basic Authentication sub-item

Sometimes the pages being requested require Basic Authent icat ion, that is, the user wi l l be presented with a
dialog box asking for a UserID and Password. This in formation is recorded and presented in the tree-view
under the Act ion i tem which requires i t .

Form View Fields

The form-view (bottom pane) for Basic Authent icat ion i tems l ists the fol lowing in formation:

User : User name typed into the authent icat ion dialog.
Passw ord : Password typed into the authent icat ion dialog.

Forms

Forms

Many pages that are used during a WWW load test ing session wil l contain forms that a user must fi l l out
and submit buttons that get cl icked. QALoad wil l ident i fy forms and the elements with in them, as well as
determine which submit button was cl icked i f there is more than one.

When a page contains a form that wi l l be submitted, then a Fi l l In Form item wil l be inserted in to that
page’s l ist of i tems in the tree-view (left pane). Underneath the Fi l l In Form item wil l be Form Element
i tems such as Edit Boxes, Radio Buttons, and Check Boxes. Fol lowing the Fi l l In Form item wil l be either a
Cl ick On Button i tem or a PostTo i tem. For detai ls about Form Elements, see Form sub-i tems.

When a Fi l l In Form item is selected in the tree-view (left pane), Visual Navigator h ighl ights the form with
a bl inking frame in the browser-view (top pane).

Form sub-items

A Fi l l In Form i tem in the tree-view can contain a number of sub-i tems, represent ing elements that can
appear in forms on HTML pages.

QALoad 5.02

151

The fol lowing sub-i tems can appear under a Fi l l In Form item:

Hidden sub-i tem

Editbox sub-i tem

Selectbox sub-i tem

TextArea sub-i tem

Checkbox sub-i tem

Radio sub-i tem

Hidden sub-item

Forms can contain h idden fields that do not show up on the page. These
fields are not visible to the end user in teract ing with the browser, but
they may need to be variabl ized for a load test, for example a field that
contains a session ID may need to be variabl ized.

Form View Fields

The form-view (bottom pane) for a Hidden Field element l ists the
fol lowing in formation:

Nam e: The name of the h idden field
Value: The value of the h idden field.
Al l ow th i s h idden f i eld to be variabl i zed: Select to variabl ize th is field.
Cl ick the var... button to select a variable.

Editbox sub-item

One of the more common elements in a form is an edit box. When th is tree item is selected, QALoad wil l
draw a bl inking frame around the appropriate edit box in the browser-view (top pane). The edit box in the
browser-view wil l show the value that was original ly typed in when the transact ion was recorded.

Form View Fields

The form-view (bottom pane) for an Edit Box element l ists the fol lowing in formation:

Nam e: The name of the edit box.
Value: The value of the edit box. Any changes made to th is field wi l l be reflected in the edit box in the
browser window.

Selectbox sub-item

A select box is often cal led a drop down select ion box or l ist box. The form-view wil l appear sl ight ly
different depending upon whether the Select Box is capable of support ing mult iple select ions or not.

Form View Fields

The form-view (bottom pane) for a Select Box element l ists the fol lowing in formation:

Nam e: The name (in the HTML) of the select box.
I tem s f rom the Select Box : Lists the i tems present in the Select Box in the browser-view. An i tem has a
checkbox next to i t to indicate i f i t has been selected. To change a select ion, select or clear the checkbox.
Your choices wil l be reflected in the browser. If the Select Box only supports one select ion, then only the
most recent select ion is selected.
Variabl i zed Select ions: Edit boxes that al low the use of variables (local or from a datapool) to specify what
opt ions are chosen from the Select Box. For a mult iple select ion Select Box, i t is possible to add up to six
variables in addit ion to any i tem chosen using the check boxes.

QALoad 5.02

152

For a single select ion Select Box, a single edit box is provided to al low you to use a variable (local or from a
datapool) to specify the opt ion you want chosen from the Select Box.

TextArea sub-item

A Text Area i tem is a multi-l ine text box.

Form View Fields

The form-view (bottom pane) for a TextArea element l ists the fol lowing in formation:

Nam e: The name of the Text Area field.
Value: The value of the Text Area field. Any changes you enter in to th is edit box wil l be reflected in the
browser-view (top pane). To enter a l inefeed, press Ctrl+Enter.

Checkbox sub-item

The form-view (bottom pane) for a Checkbox element l ists the fol lowing in formation:

Nam e: The name of the Checkbox.
Value: The value of the Checkbox.
State: Reflects whether the box is checked (selected) or not. If the State is 1 (checked), then the Name and
Value are passed along in the request to the server. If the State is 0 (not checked) then the Name and Value
are not passed along. You can change the value of the State by cl icking on the checkbox control in the
browser-view (top pane).

Radio sub-item

The form-view (bottom pane) for a Radio Button element l ists the fol lowing in formation:

Group Nam e: The Group Name is shared by al l radio buttons that belong to the same group.
Value: The Value field is what different iates one radio button from another. The group name and value of
the selected radio button wil l be sent along with the request to the server. The Value of a radio button can
be, and often is, di fferent than the text shown in the browser.
use th i s val ue but ton : When you select a radio but ton in the browser-view (top pane) i ts value wil l display
in th is text box. Cl ick th is button to transfer th is value in to the above Value field.

XML requests

XML document-view

When you cl ick on an XML Request i tem in the tree-view (left pane) the right pane becomes a document-
view displaying a tree-view of detai ls about the XM L document requested or returned as the result of an
XML request. Each individual XML item appears as a node in the XML document tree. XML elements can
have chi ld elements and these appear as chi ld nodes of the XML element. Attributes of an element appear
as chi ld nodes of the element, with the attribute value appearing as a chi ld of the attribute name.

What if no XML data is associated with a request?

If there is no XML document associated with the XML request (for example, an HTTP GET) a message
indicat ing that there is no XML to be displayed is shown in the XML document view.

How does the document-view relate to the form-view?

Select ing an i tem in the XML document tree wil l display the form-view detai ls corresponding to that XML
element type in the bottom pane.

Fol lowing is an example of XML request data displayed in a port ion of the XML document-view:

QALoad 5.02

153

XML form-view

When an XML request is displayed in the document-view (top pane) — as a result of an XML request i tem
or XML reply chi ld i tem being selected in the Visual Navigator tree-view — you can cl ick on i tems in the
document-view to display in formation about each in the form-view (bottom pane). If no XML item is
selected in the document-view, the XML Page form-view wil l be displayed instead. For XML items, the
form view display opt ions depend on two th ings:

! what type of XML item is selected in the Visual Navigator tree-view (left pane): an XML request or an XML reply

! what type of XML item is subsequently selected in the XML document-view (top pane).

When an XML item is selected in the XML document-view, the value of that XML item is displayed in an
edit box in the form-view. Some values — at tribute values and text values — can be edited or variabl ized
(that is, subst i tut ing one or more variables for the value in an XML request or select ing the return value
from an XML reply i tem to be received by a variable for later use in the script). Text i tems, which are values
between element tags, and attribute values represent volat i le i tems in an XML document structure, used for
passing values to and from Web Services, for example.

The fol lowing tables l ist the possible act ions for XML items displayed in a form-view. Val id act ions are
determined by the XML item type and whether the i tem is from an HTTP POST request or from an HTTP
reply.

In the fol lowing tables:

! If an item is editable, the value in the form-view can be changed and the new value will be used during replay.

! If a value can be variablized, a variable can be substituted for all or part of the value. The variable's value will be
placed in the variable's location at replay. An example is a value received from an item from a previous XML
document reply.

! If a variable can receive a replay value, the return value for the item can be placed into a selected variable during
replay. The variable can then be substituted for an input value in a later XML request.

XM L Request I tem s

XM L Request I tem Edi table? Can the Value
be Variabl i zed?

Declarat ion No No

DTD (Document
Type Defin i t ion)

No No

PI (Processing
Instruct ion)

No No

Comment No No

Element No No

QALoad 5.02

154

Attribute (Name) No No

Attribute (Value) Yes Yes

Text Yes Yes

XM L Reply I tem s

XM L Request I tem Can Variable
Receive Replay

Value

Declarat ion No

DTD (Document Type
Defin i t ion)

No

PI (Processing
Instruct ion)

No

Comment No

Element No

Attribute (Name) No

Attribute (Value) Yes

Text Yes

Using Visual Navigator

Creat ing a Visual Navigator script

Creating a Visual Navigator script

Using the Script Development Workbench, you can quickly and easi ly:

! Convert an old script to a Visual Script How?

! Record a new Visual Script How?

Converting previously-recorded scripts

You can convert exist ing C-based scripts to a Visual Navigator script .

To conver t a previously-recorded scr ip t :

1. With a WWW session open, choose Options>Convert.

2. On the WWW tab, select the option Enable Visual Scripting.

3. Click OK.

4. On the Workspace Pane's Capture tab, right-click on the capture file to convert to a script. From the context menu,
choose Convert (or Convert As).

5. You may be prompted to overwrite an existing script file. Click Yes.

QALoad 5.02

155

The Script Development Workbench converts your capture fi le to a Visual Navigator script , opening i t in
the Workbook Pane.

Recording a Visual Navigator script

You record a Visual Navigator script the same way you record a regular QALoad script — by sett ing opt ions
to determine the behavior of QALoad while recording, and then cl icking through a transact ion to mimic a
user. QALoad wil l record al l sent and received HTTP and SSL cal ls using the Script Development
Workbench's Web proxy and write the act ivi ty to a capture fi le.

After recording, the capture fi le must be converted to an editable, C-based script . This is the point where
Visual Scripting differs from a regular W WW script. By sett ing a single opt ion before convert ing the capture
fi le to an editable script , you can turn your capture f i le data in to a Visual Script that al lows you to view the
actual Web pages you recorded in a browser-l ike in terface, where you can manipulate the transact ion and
easi ly insert variable in formation in to your script wi thout direct ly edit ing a l ine of code.

To record a Visual Scr ip t :

1. Open a WWW session in the Script Development Workbench.

2. Click Options>Record. The WWW Record Options dialog box opens. Set any relevant options.

3. Click OK.

4. For convenience, set conversion options now also. (You can set conversion options after recording your transaction,
if you prefer, or even change pre-set options at any time after recording and then re-convert the capture file to apply
the changes.):

a. Click Options>Convert. The Universal Convert Options dialog box opens.

b. Set any applicable options on the General Convert and WWW tabs.

c. On the WWW tab, select the Enable Visual Navigator check box, which will ensure your capture file is
converted to a Visual Script later.

d. Click OK.

5. From the toolbar, click the Start Record button. QALoad launches your application and any proxies, if necessary,
and begins recording calls.

6. Record the transaction.

7. When you are finished, click the Stop Record button. You will be prompted to save your capture file. By default,
capture files (.cap) are saved in the directory QALoad\Middlewares\WWW\captures.

8. If you previously set options to prompt automatic conversion, your capture file will be converted to a Visual Script
and will open automatically in the editor. For more information about setting up automatic conversion, see
Configuring the Script Development Workbench.

If not, you wil l be prompted to save and name your fi le. When you are fin ished, cl ick OK.

9. Click the Script Development Workbench's Captures tab and locate the capture file you just saved.

10. Right-click the file and choose Convert. QALoad will convert your capture file to a Visual Navigator script and open it
in the editor.

Visual Navigator fi les

When you create a script using Visual Navigator, QALoad saves important in formation about your script in
the fol lowing fi les. These fi les are saved in the directory \Compuware\QALoad\Middlewares\WWW in the
subdirectories \Scripts and \Captures. Some of these fi les can be modified, and can be opened from the
Script Development Workbench's Workspace pane, i f necessary.

Fi lenam e Descript i on

QALoad 5.02

156

Fi les Generated From Recording

<filename>.cap A fi le contain ing al l of the requests
and responses that were recorded.

<filename>.rfd Replies to subrequests, wh ich most ly
consist of images, style sheets, and
javascripts. This data is used to
visual ly recreate the pages as they
appeared when recording.

Fi les Generated From Conversion to a Visual Script

<filename>.vistree Contains most of the elements of the
Visual Navigator tree, including any
elements that you modify later or
add to your script .

<filename>.VisHtml Contains the HTML pages of al l the
main requests as well as images,
stylesheets, and other subrequested
pages. This data is used to visual ly
recreate the pages as they appeared
when recording.

<filename>.VisXml Contains any XML/SOAP
information that was recorded.

<filename>.cpp A C++ representat ion of your script .

Insert ing script i tems

Inserting tree items

You can insert a number of script i tems into your converted script using the Visual Navigator menu
accessed from the Script Development Workbench main menu, or by right-clicking in the tree-view (left
pane).

From the main menu, choose Visual Navigator>Insert Tree I tem and then choose the i tem to insert .

From the tree-view, right-cl ick and choose Insert , and then choose the script i tem to insert .

Most of the inserted i tems can be moved up and down the tree using the Up/Dow n arrows in the form-
view (bottom pane) for that i tem. You can also delete an i tem highl ighted in the tree-view by choosing
Delete Tree I tem from the menu.

The fol lowing script i tems can be inserted from the Visual Navigator menu.

Extract String
Cookie
Http Header
Content Check
CGI Parameter
Synch
IP Spoof
Read Datapool
Checkpoint pair
Increment Variable/Decrement Variable/Reset Variable

QALoad 5.02

157

Debug Print
Comment

Inserting cookies into a script

Cookie i tems can be added direct ly to the Html Page i tem they apply to, under the Act ion i tem (for
example, a Cl ick on Link i tem).

To inser t a cook ie i t em :

1. In the Visual Navigator tree-view (left pane), navigate to the Html Page item requiring the cookie and then click on it
to select it.

2. From the menu, choose Visual Navigator>Insert Tree Item>Cookie. A Cookie form-view opens in the bottom
pane.

3. In the Name field, type a name for the new Cookie or click var... to access the Select Variable dialog box where you
can select a value from a datapool file or create a variable for this field.

4. In the Value field, type a value for the new Cookie or click var... to access the Select Variable dialog box where you
can select a value from a datapool file or create a variable for this field.

5. Click Save to save your changes.

The Cookie i tem is added to the script for the selected Html Page i tem.

Inserting HTTP headers into a Visual Navigator script

HTTP headers can be inserted under the Common Http Headers tree i tem.

To inser t a new Ht t p Header i t em :

1. In the Visual Navigator tree-view (left pane), navigate to the Common Http Headers script item, and then click on it.

2. From the menu, choose Visual Navigator>Insert Tree Item>Http Header. An Http Header form-view opens in the
bottom pane.

3. In the Name field, type a name for the new header or click var... to access the Select Variable dialog box where you
can select a value from a datapool file or create a variable for this field.

4. In the Value field, type a value for the new header or click var... to access the Select Variable dialog box where you
can select a value from a datapool file or create a variable for this field.

5. Click Save to save your changes.

The header i tem is added to the script , and wil l be used for al l requests at playback unless i t is overwrit ten
by a header with the same name underneath an individual request act ion.

Inserting a datapool fi le into a Visual Navigator script

You can quickly add an exist ing datapool fi le to your script from the Visual Navigator tree-view.

To inser t a dat apool f i le:

1. Right-click anywhere in the tree-view. From the popup menu that opens, choose Datapools and Variables.

2. Click Insert Datapool File.

QALoad 5.02

158

3. If your script doesn't yet include a central datapool file, the Choose Datapool Type dialog box will open, where you
can designate whether you want to insert your datapool file as a central or local datapool. If your script already
includes a central datapool, the Open dialog box will open.

4. From the Open dialog box, navigate to the datapool file to add to your script. Datapool files are normally located in
the directory \Compuware\QALoad\Datapools.

5. Highlight the appropriate file and click Open.

The fi le you selected is added to your script and appears l isted in your Datapools and Variables dialog box,
where you can edit or delete i t as necessary. If you expand the view of that fi le in the Datapools and
Variables dialog box, you can see the variables (columns) saved in that fi le. The names for those columns
are stored in the datapool fi le as a comment l ine. If they are not named, Visual Navigator wi l l assign them
the default name Var#.

Using datapools and variables with Visual Navigator

Variablizing a Visual Script

This topic describes several methods of working with variable data in a script .

Variablizing a string

Suppose you are test ing a si te where users must register themselves with a server. To register, they must
type a name, password, address, and so on in to a form. The result ing Visual Script would contain a Fi l l In
Form item in the tree-view under the appropriate Page i tem. Cl icking on a form item would open the
i tem's form-view in the bottom pane, which might look similar to the fol lowing graphic:

In th is example, the edit box required the user to type their name. Assume that a second edit box required
the user to type their password. Each edit box on the form resulted in a separate i tem under the Fi l l In
Form tree i tem. At runt ime, you might want to variabl ize the name and password edit boxes, so that a
different user name and corresponding password is entered for every transact ion. One way of variabl izing
these two fields is to create a datapool fi le contain ing two variables (columns) named Name (user ID) and
Password, populated with val id user names and passwords.

To var iabl ize t he nam e edi t box:

1. Highlight the text in the form-view. In this example, that would be Kim Walker.

2. Right-click on the highlighted text and choose Substitute with Variable, or simple click on the var... button.

3. On the Datapools and Variables dialog box that opens, click on the Name (user ID) variable and click OK.

4. The Value field in the form-view for that particular field will look something like the following:

At run t ime, th is form field wi l l be fi l led in with a value from the User name column of the datapool
fi le named User names and Passwords.

Working with an inserted variable

Here are some hints for working with variables:

! Clicking anywhere on an inserted variable selects the entire variable.

QALoad 5.02

159

! You can delete a variable by clicking on it to select it, and then pressing the Delete key on your keyboard.
Alternately, you can right-click on a variable and choose Delete Variable Reference from the menu to delete it.

! Rename a variable easily by double-clicking on it to open the Datapools and Variables dialog box with that variable
highlighted. You can easily rename the variable from there.

! You can restore the contents of an edit box to whatever its contents were immediately after being converted by right-
clicking on it and choosing Revert to Original String… from the menu. This will automatically delete any variables
that have been inserted since the most recent conversion.

Mixing regular text with variables

An edit box can contain a combinat ion of regular text and any number of variables, depending upon how
complicated the string needs to be.

Using local variables

Another method of variabl izing data, for instance the user ID and password describe previously, is to use
local variables to create a unique name and password on each pass through the transact ion loop with a
format of User1 and Pass1, User2 and Pass2, and so on.

You could accom pl ish t h is using a com binat ion of regular t ex t and a local var iable:

1. In the edit box for the User ID, type: User.

2. Then while the cursor is still at the end of the text you just typed, click the var... button to open the Datapools and
Variables dialog box.

3. On the Datapools and Variables dialog box, create a local variable by clicking the New Variable button. Name the
variable User Number. In the Initial Value field, assign the variable an initial value of 0 (zero).

4. Click OK. The Value field in the form-view will now display this value: User{$User Number$}

At run t ime, QALoad wil l create a value for that field that wi l l be a concatenat ion of User and the
value of the local variable named User Number.

5. Assume that the value should be 1 (one) for the first t ransact ion, 2 (two) for the second transact ion,
and so on. To accomplish that, the value of User Number must be incremented before each
i terat ion of the transact ion. To increment the value before each transact ion, insert an Increment
Variable i tem before the Page i tem that uses the User Number variable.

Variablizing with a random value

Another method of variabl izat ion is to insert or subst i tute selected text with a Random Value tag.

1. Select text or position your cursor and then click the var… button.

2. On the Datapools and Variables dialog box, click the Random Number button. The Random Number Tag dialog box
opens.

3. Type values in the Lower and Upper fields to specify a range from which the number should be drawn.

4. Click OK. The Value field in the form-view will now display a value similar to the following: User{$Random:1:500$}

5. At run time, this variable will create strings similar to the following: User17, User394, and so on.

To modify a range, double-cl ick on the Random tag to open the Random Number Tag dialog box where
you can adjust the ranges as needed.

Variablizing with a VU number

Another method of variabl izat ion is to insert or subst i tute selected text with a virtual user number tag.

1. Highlight the text to replace or position your cursor in a field and then click the var... button.

QALoad 5.02

160

2. On the Datapools and Variables dialog box, click the VU Number (Absolute) or VU Number (Relative) button. The
Value field in the form-view will be filled in with something similar to the following: {$VU NUM ABS$} or {$VU NUM
REL$}.

At run t ime, the VU Number tag wil l be subst i tuted with the number of the part icular virtual user that is
running th is script . The string created wil l look similar to th is: User45, User187, and so on.

Find/replace a variable

Visual Navigator has a Find/Replace feature that al lows you to quickly find occurrences of strings with in
the tree-view and replace them with other strings. For example, you could find al l occurrences of Smith and
replace them with the datapool variable {$Last Name:User Info$}. For detai ls about the find/ replace feature,
see Visual Navigator's Find and Replace feature.

Datapools and variables

Datapools and variables can be added or modified by several methods. To simply create, delete, or modi fy
datapool fi les and variables at any t ime while a script is open in the editor, choose Visual
Navigator>Datapools an d Variables from the menu to access the Datapools and Variables dialog box.

Alternately, the same dialog box wil l open automat ical ly whenever you are asked to choose a variable or
datapool fi le whi le working with the script , al lowing you to create the variables you need on-the-fly.

Data that can be variabl ized is denoted in the form-view (bottom pane) by the var... button. Cl icking
the var... button wil l open the Datapools and Variables dialog box.

For more information, click one of the following links:

Creat ing/maintain ing datapools

Adding variables

Creating and editing datapools

The fol lowing sect ions provide step-by-step instruct ions for creat ing a new datapool fi le, import ing a
datapool fi le, edit ing a datapool fi le, and insert ing a datapool fi le in to a script .

To creat e a new dat apool f i le:

1. With a script open, choose Visual Navigator>Datapools and Variables from the menu.

2. On the Datapools and Variables dialog box, click the New Datapool File button. If this script doesn't yet have a
central (Conductor-based) datapool assigned, the Choose Datapool Type dialog box opens for you to specify
whether the datapool you are about to create should be central (Conductor-based) or local (Player-based). Make
your selection and click OK.

3. On the Create New Datapool File dialog box, specify a name for the new datapool and the number of rows and
columns it should have.

4. Click OK to create the datapool file and be returned to the Datapools and Variables dialog box.

5. The Datapools and Variables dialog box now displays any datapool files assigned to the script, including the one you
just created. Click OK.

6. In the tree-view, scroll to the Datapool Files section of the script and click on the name of the datapool file you just
created.

7. In the form-view (bottom pane) type values into the datapool fields to be used at test time.

8. When you are finished, click File>Save to save your changes to the script.

To im por t a dat apool f i le:

QALoad 5.02

161

1. Copy your datapool file, which must be in .csv or .dat format, to the Datapools directory of the QALoad installation.

2. Insert the datapool into a script as described below.

To edi t a dat apool f i le:

Note: Because it is possible for more than one script to use the same datapool file, care should be taken
when modifying a datapool file's contents. Doing so for one script may cause errors in other scripts that use the
datapool file. Also, Visual Navigator datapools should be edited within the Visual Navigator, under Datapool
Files in the tree-view, instead of with the Datapool Editor.

If you need to make changes to a datapool file, Compuware recommends that you make a backup copy of the
file first. If a backup copy is not available, you may need to check all other scripts that use that datapool file and
make appropriate changes.

1. With your script open, scroll to the Datapool Files section of the script in the tree-view (left pane).

2. Locate the datapool file you want to edit, and click on it to highlight it. A table opens in the form-view (bottom pane)
displaying the contents of the datapool file.

3. Edit the datapool:

 Edit a cel l 's contents — Cl ick in the cel l and type over the exist ing contents.

 Insert /delete columns or rows — To insert a row or column, right-cl ick on a row or
column header and choose Insert Row or Insert Colum n from the menu. Then choose
whether to insert the new item before or after the selected i tem, and type the number
of i tems to insert . To delete a row or column, right-cl ick and choose Delete Row or
Delete Colum n from the menu. (Press SHIFT to select mult iple cont iguous i tems or
CTRL to select mult iple non-cont iguous i tems.)

 Rearrange columns or rows — Select one or more columns or rows by cl icking on the
headers (press SHIFT first to select mult iple i tems). Drag the rows or columns to a new
posit ion. As you drag them, a th in red l ine wil l indicate where the select ion wil l be
moved to.

 Rename a column header (variable) — Cl ick on the column name, and then type the
new name in the Variable Name field.

4. Save your changes by clicking File>Save.

To inser t a dat apool f i le in t o a scr ip t :

1. With your script open, scroll to the Datapool Files section of the script in the tree-view (left pane).

2. From the menu, choose Visual Navigator>Datapools and Variables.

3. On the Datapools and Variables dialog box, click the Insert Datapool File button.

4. If the script doesn't yet have a central (Conductor-based) datapool assigned, the Choose Datapool Type dialog box
opens. Select the option for the type of datapool to insert and click OK.

5. On the Open dialog box, navigate to the datapool file to use and click the Open button.

6. The file you selected will be added to the list of datapool files on the Datapools and Variables dialog box. Click OK to
save you changes and be returned to the editor.

Inserting a datapool fi le into a Visual Navigator script

You can quickly add an exist ing datapool fi le to your script from the Visual Navigator tree-view.

To inser t a dat apool f i le:

1. Right-click anywhere in the tree-view. From the popup menu that opens, choose Datapools and Variables.

QALoad 5.02

162

2. Click Insert Datapool File.

3. If your script doesn't yet include a central datapool file, the Choose Datapool Type dialog box will open, where you
can designate whether you want to insert your datapool file as a central or local datapool. If your script already
includes a central datapool, the Open dialog box will open.

4. From the Open dialog box, navigate to the datapool file to add to your script. Datapool files are normally located in
the directory \Compuware\QALoad\Datapools.

5. Highlight the appropriate file and click Open.

The fi le you selected is added to your script and appears l isted in your Datapools and Variables dialog box,
where you can edit or delete i t as necessary. If you expand the view of that fi le in the Datapools and
Variables dialog box, you can see the variables (columns) saved in that fi le. The names for those columns
are stored in the datapool fi le as a comment l ine. If they are not named, Visual Navigator wi l l assign them
the default name Var#.

Naming variables

When you first create a datapool fi le, the included variables are automatical ly assigned the default names
Var1, Var2, Var3, etc.

QALoad al lows you to rename those variables with meaningful names that can even include spaces. This
makes i t much easier to work with datapools. For example, you could name a datapool variable something
logical l ike City, rather than trying to remember that Var4 in your datapool is the City variable.

Renaming variables

You can quickly and easi ly rename local or datapool variables from the tree-view. Simply h ighl ight the
variable under the Datapool Fi les or Variables tree-view i tem, and then change the variable name in the
result ing form-view (bottom pane).

You can also edit from the Datapools and Variables dialog box. To access i t , right-cl ick anywhere in the
tree-view and then choose Datapools and Variables from the shortcut menu. Highl ight the variable to
rename and cl ick the Ren am e button.

Adding a variable

You can quickly add local or datapool variables to your script from the Visual Navigator tree-view. A local
variable can be subst i tuted wherever variables can be used. You can insert Increment Variable, Decrement
Variable, and Reset Variable i tems into the tree-view to manipulate the value of any variables.

To add a var iable:

1. Right-click anywhere in the tree-view. From the shortcut menu, choose Datapools and Variables.

2. In the Datapools and Variables tree-view, click on the Variables item to add a local variable, or click on a specific
datapool file to add a new datapool variable.

3. Click the New Variable button.

 If you are adding a new local variable, then an unnamed variable wi l l be added to your
l ist of local variables. You can rename the new variable.

 If you are adding a datapool variable, a variable with the default name (Var#) wi l l be
added to your datapool fi le. You can rename the new variable.

4. If you added a local variable, type the variable's value in the Initial Value field.

5. Click OK.

XML support

XML Support

QALoad 5.02

163

QALoad's XML support is handled through the Script Development Workbench's Visual Navigator, which
displays your script 's HTTP or XML requests in an easy-to-use visual ly-based interface that offers you point-
and-cl ick script edit ing. Although XML is supported through the Visual Navigator, we recommend you
read through th is help topic as well as the Visual Navigator help topics to become famil iar with the
features that are unique to QALoad's XML support.

When an HTTP request is made for an XML document, ei ther in the form of an HTTP GET request, or an
HTTP POST request with an XML document as the post data, then the data is displayed in the three Visual
Navigator panes as i l lustrated below. Cl ick on a pane in the graphic for a descript ion of i ts contents and
funct ional i ty.

Note: To make the following graphic fit better in this help window, we've turned off the Script Development
Workbench toolbars and panes that are not directly related to this help topic. You can hide/show many of the
Script Development Workbench toolbars and panes using commands available from the View menu.

XML requests

When an HTTP request is for an XML document, ei ther in the form of an HTTP GET request, or an HTTP
POST request with an XM L document as the post data, then an XML Request tree i tem wil l be displayed. in
the tree-view (left pane). The form-view (bottom pane) for an XML Request i tem includes the fol lowing
fields:

Reply Status: The reply status code. For most pages which were returned correct ly th is wi l l be 200 OK.

Request URI : This read-only field shows the URI which was requested that resulted in th is page being
displayed.

Checkpoin t Nam e: If the page has a t i t le, then i t wi l l be used as the checkpoint name. If not, the word
Checkpoint wi l l be used. To make sure al l checkpoin t names are unique, QALoad wil l add a number to the
beginning of the checkpoint name.

XML Request sub-items

An XML Request i tem can contain the fol lowing sub-i tems.

XML Reply

QALoad 5.02

164

The URI of the document returned as a result of the XML request. XML data corresponding to the reply is
displayed in the browser-view.

HTTP Headers

If a header exists under an act ion i tem then i t wi l l be sent for that request only. If the header has the same
name as one of the common headers, then i t wi l l override the common header for th is request only. The
form-view (bottom pane) for an HTTP header l ists i ts name and value. Because there is no XML data
recorded for a header, the browser-view remains empty. It is possible to insert addit ional HTTP Headers.

Cookies CGI Parameter

The Cookies tree i tem wil l contain a l ist of Cookie i tems that were sent in the header of the request that
th is i tem made while being recorded. Cookies are added automatical ly by the browser based on the URI
that is being requested. They are either set as a result of the previous reply (server returned a Set-Cookie
command), or they are set by JavaScript contained in the previous reply. The form-view for a cookie i tem
l ists i ts name and value. Because there is no XML data recorded for a header, the browser-view remains
empty.

XML document-view

When you cl ick on an XML Request i tem in the tree-view (left pane) the right pane becomes a document-
view displaying a tree-view of detai ls about the XM L document requested or returned as the result of an
XML request. Each individual XML item appears as a node in the XML document tree. XML elements can
have chi ld elements and these appear as chi ld nodes of the XML element. Attributes of an element appear
as chi ld nodes of the element, with the attribute value appearing as a chi ld of the attribute name.

What if no XML data is associated with a request?

If there is no XML document associated with the XML request (for example, an HTTP GET) a message
indicat ing that there is no XML to be displayed is shown in the XML document view.

How does the document-view relate to the form-view?

Select ing an i tem in the XML document tree wil l display the form-view detai ls corresponding to that XML
element type in the bottom pane.

Fol lowing is an example of XML request data displayed in a port ion of the XML document-view:

XML form-view

When an XML request is displayed in the document-view (top pane) — as a result of an XML request i tem
or XML reply chi ld i tem being selected in the Visual Navigator tree-view — you can cl ick on i tems in the
document-view to display in formation about each in the form-view (bottom pane). If no XML item is
selected in the document-view, the XML Page form-view wil l be displayed instead. For XML items, the
form view display opt ions depend on two th ings:

! what type of XML item is selected in the Visual Navigator tree-view (left pane): an XML request or an XML reply

! what type of XML item is subsequently selected in the XML document-view (top pane).

QALoad 5.02

165

When an XML item is selected in the XML document-view, the value of that XML item is displayed in an
edit box in the form-view. Some values — at tribute values and text values — can be edited or variabl ized
(that is, subst i tut ing one or more variables for the value in an XML request or select ing the return value
from an XML reply i tem to be received by a variable for later use in the script). Text i tems, which are values
between element tags, and attribute values represent volat i le i tems in an XML document structure, used for
passing values to and from Web Services, for example.

The fol lowing tables l ist the possible act ions for XML items displayed in a form-view. Val id act ions are
determined by the XML item type and whether the i tem is from an HTTP POST request or from an HTTP
reply.

In the fol lowing tables:

! If an item is editable, the value in the form-view can be changed and the new value will be used during replay.

! If a value can be variablized, a variable can be substituted for all or part of the value. The variable's value will be
placed in the variable's location at replay. An example is a value received from an item from a previous XML
document reply.

! If a variable can receive a replay value, the return value for the item can be placed into a selected variable during
replay. The variable can then be substituted for an input value in a later XML request.

XM L Request I tem s

XM L Request I tem Edi table? Can the Value
be Variabl i zed?

Declarat ion No No

DTD (Document
Type Defin i t ion)

No No

PI (Processing
Instruct ion)

No No

Comment No No

Element No No

Attribute (Name) No No

Attribute (Value) Yes Yes

Text Yes Yes

XM L Reply I tem s

XM L Request I tem Can Variable
Receive Replay

Value

Declarat ion No

DTD (Document Type
Defin i t ion)

No

PI (Processing
Instruct ion)

No

QALoad 5.02

166

Comment No

Element No

Attribute (Name) No

Attribute (Value) Yes

Text Yes

Visual Navigator's Find and Replace feature

Visual Navigator has an enhanced Find/Replace feature that al lows you to find occurrences of strings
with in the tree-view, al lowing you to quickly locate and/or replace text. For example, you could find
occurrences of Smith and replace them al l with the datapool variable {$Last Name:User Info$}.

Access Find and Replace from the Edi t menu, or by pressing Ctrl+F.

Find tab

Find w hat : Type the string to search for, or cl ick the var... button to select a variable to search for. The
appropriate tree i tem wil l be selected and the found text wi l l be h ighl ighted in the form-view (bottom
pane).

Case Sensi t i ve: Select i f Visual Navigator should only find strings with case matching that of the string to
locate.

var...: Cl ick to access the Select Variable dialog box, where you can choose a local variable or datapool
variable to search for.

Find Nex t : Cl ick to find the next occurrence of the string.

Cancel : Cl ick to cancel the search and close the dialog box.

Replace tab

Find w hat : Type the string to search for, or cl ick the var... button to select a variable to search for. The
appropriate tree i tem wil l be selected and the found text wi l l be h ighl ighted in the form-view (bottom
pane).

Replace w i th : Type the string to replace the search string, or cl ick the var... button to select a variable to
replace the search string. The replacement string can be a combinat ion of regular text and one or more
variables.

var...: Cl ick to access the Select Variable dialog box, where you can choose a local variable or datapool
variable to search for.

Case Sensi t i ve: Select i f Visual Navigator should only find strings with case matching that of the string to
locate.

Al low read-on ly f i elds to be changed : Select to replace text in read-only fields without a confirmation
dialog box. If th is opt ion is not selected, a confirmat ion dialog box appears for each occurrence of a string
in a read-only field from which you can choose whether to replace the field.

Replace: Cl ick to replace the string in the Find w hat field with the string in the Replace with field.

Replace Al l : Cl ick to replace al l occurrences of the string in the Find w hat field with the string in the
Replace w i th field. Matching strings that are found in read-only fields wi l l not be replaced.

Find Nex t : Cl ick to locate the next occurrence of the search string.

QALoad 5.02

167

Cancel : Cl ick to cancel the search and close the dialog box.

EasyScript for WWW

Conf iguring a Web brow ser (W WW)

Before you record the WWW requests your Web browser makes, you must configure the browser to use
QALoad’s proxy server.

To conf igure a W eb brow ser :

1. Start your Web browser.

2. Specify proxy settings:

 In the field designated to specify the address of the proxy server, enter the machine name
where QALoad Script Development Workbench is instal led.

 In the Port field, enter the port(s) that you specified on the Script Development Workbench ’s
WWW Record Options wizard (Capture Ports fields).

3. Click OK.

Stream ing m edia support

QALoad includes support for audio and video download test ing of both Windows Media Player and
RealOne Player and their supported media formats through a WWW session. When streaming media
conversion is enabled and you record a transact ion that cal ls streaming media, an addit ional command is
inserted in to your script which wil l request the media. You do not have to l isten to or view the ent ire
media you are request ing, you simply need to record i ts URL and ensure that the appropriate media player
is instal led on the Player machines that wi l l play back the script . At run t ime, the script invokes your
media player and requests the streaming media resource. Streaming media through a firewall or proxy
server is not supported.

QALoad's streaming media support includes the fol lowing media player(s). The appropriate media player
must be instal led on the machine you are recording from as well as any QALoad Player machine that wi l l
be execut ing the script .

! RealOne Player — The media download is initiated by requesting a file that is a data type supported by the
RealOne Player. Supported data types are RealAudio, RealVideo, RealText, RealPix, MP3, and SMIL. As a result,
the DownloadRPMedia command will be inserted into the script at the appropriate point. At runtime, this command
initiates and waits for completion of the download. RealOne Player scripts must be executed as process-based
scripts.

! Windows Media Player — The media download is initiated by downloading a file with a content type of
(audio|video)/(x-ms-asf|s-ms-asf) in the browser. Currently, only .asx files are supported. As a result, the
DownloadMediaFromASX command is inserted into the script at the appropriate point.

Note: QALoad does not support scripts that have both RealNetworks media and Windows Media in the
same script. To test both types in a single load test, use a different script for each type.

Please note that asynchronous cal ls may not be played back exact ly as they were recorded. For example, i f
you cl ick on a l ink in the browser whi le recording while the media is playing, during replay that l ink wi l l
not be requested unt i l the media cl ip has fin ished being processed.

XM L Support

QALoad's XML support is handled through the Script Development Workbench's Visual Navigator, which
displays your script 's HTTP or XML requests in an easy-to-use visual ly-based interface that offers you point-
and-cl ick script edit ing. Although XML is supported through the Visual Navigator, we recommend you
read through th is help topic as well as the Visual Navigator help topics to become famil iar with the
features that are unique to QALoad's XML support.

QALoad 5.02

168

When an HTTP request is made for an XML document, ei ther in the form of an HTTP GET request, or an
HTTP POST request with an XML document as the post data, then the data is displayed in the three Visual
Navigator panes as i l lustrated below. Cl ick on a pane in the graphic for a descript ion of i ts contents and
funct ional i ty.

Note: To make the following graphic fit better in this help window, we've turned off the Script Development
Workbench toolbars and panes that are not directly related to this help topic. You can hide/show many of the
Script Development Workbench toolbars and panes using commands available from

DBCS Support i n QALoad

QALoad supports load test ing of Chinese, Japanese and Korean Web appl icat ions that use Double Byte
Character Sets (DBCS). DBCS is a character set that uses two bytes (16 bits) rather than one byte (8 bits) to
represent a single character. Some languages, such as Chinese, Japanese, and Korean, have writ ing schemes
with many different characters and character sets that cannot be represented with single-byte characters
such as ASCII and EBCDIC.

Note: DBCS support only applies to the WWW/SSL middleware. Currently QALoad only supports DBCS;
there is no support for Web applications that host Bi-Directional (BiDi) characters (which includes Arabic and
Hebrew languages).

QALoad provides two methods of support for DBCS: nat ive character and encoding. Depending on your
test ing requirements and environment, i t may be necessary to use both mechanisms to support the load
test ing of a Web site that contains DBCS characters.

! Native Character: converts the DBCS characters to their original characters in Chinese, Japanese, or Korean.
Native character support is only possible when using a native operating system (OS) such as load testing a
Japanese Web application from a Japanese version of Microsoft Windows. While QALoad does not support different
DBCS characters within the same script, it does support a script containing the DBCS native character set and
ASCII/English. Native character support is used within test scripts, error messages (generated through system
commands that use native characters) and timing files, making script editing easier and timing file analysis quicker.

! Encoding: encodes all DBCS characters into a sequence of printable characters regardless of the language and
exact character set in use. Encoding support is used when load testing multiple language sites from the same OS, or
when load testing a DBCS site from that of another DBCS platform. For example, testing a site with Japanese
characters from a Korean or English/ASCII OS. The encoding option is used when native character support cannot
be used or when script portability between different DBCS language OS is required.

QALoad 5.02

169

WW W conversion opt ions

Form f ield as com m ents: Select th is check box to include a comment block in your script that shows each
val id field that is encountered after a CGI form has been requested. This opt ion is not avai lable i f the
Visual Navigator is enabled. Fol lowing is an example of a form field comment block:

/* Form:1 text Name: name, Value: , Desc: */
/* Form:1 text Name: e-mail, Value: , Desc: */
/* Form:1 text Name: Address, Value: , Desc: */
/* Form:1 text Name: city, Value: , Desc: */
/* Form:1 text Name: state, Value: , Desc: */
/* Form:1 text Name: zip, Value: , Desc: */
/* Form:1 check box Name: echo, Value: , Desc: Echo a copy of HTML page to email */
/* Form:1 radio Name: test, Value: capture, Desc: Capture */
/* Form:1 radio Name: test, Value: replay, Desc: Replay */
/* Form:1 hidden Name: hidden, Value: This rocks!, Desc: */

Anchors as com m ents: Select th is check box to include a comment block in your script that shows al l the
anchors encountered in a requested HTML document. If i t is not selected, no anchors wi l l be included in
the script . This opt ion is not avai lable i f the Visual Navigator is enabled. The fol lowing is an example of an
anchors comment block:

/* Anchors:'http://playback1/standard.html' 'Standard Example' */
/* Anchors:'http://playback1/forms.html' 'Forms Example' */
/* Anchors:'http://playback1/dynamic.html' 'Dynamic HTML Example' */
/* Anchors:'http://playback1/cgi.html' 'CGI Example' */
/* Anchors:'http://playback1/cookies.html' 'Cookies Example’ */
/* Anchors:'http://playback1/ssl.html' 'SSL Example' */
/* Anchors:'http://playback1/javascript.html' 'Java Script Example' */

Cl ien t Im age M aps as Com m ents: If selected, the command DO_GetClientM apHREF wil l be inserted in to
your script fol lowed by a comment block denot ing cl ient image maps. This opt ion is not avai lable i f the
Visual Navigator is enabled.

DO_GetClientMapHREF(MAP(1), REGION(1), &ClientMapURL[0]);

/* Client Map:1 Region:2 HREF: http://www.ethnicgrocer.com/eg/cp/cr.jsp?FOLDER%3C */
/* %3Efolder_id=169991 &ASSORTMENT%3C%3East_id=153827&site=EG&bmUID= */
/* 1005685611375&WebLogicSession=O1GLayxDvTfjLthL65xY6X1cdQIVdCejWCT8wm */
/* D4PLs29z9H7WC wxlkr8f21K1aKoLSMI4Hml6o3|6518173674514870389/ */
/* 167838850/5/80/80/443/443/-1|-8250053020002903791/167838870/5/80 */
/* /80/443/443/-1|6518173674514872679Client Map:1 Region:3 HREF: */
/* http://www.ethnicgrocer.com/eg/cp/cr. */

You can search for DO_GetClientMapHREF in the script to help locate the DO_Get and DO_SetValues in
the script , as well as where the array of DO_GetClientMapHREF is in i t ial ized and freed.

Debug com m ents: When th is opt ion is enabled, comments wi l l be inserted in to the converted script to
denote repl ies from the server, anchors, and so on. This opt ion is not avai lable i f the Visual Navigator is
enabled. For example:

/* Received reply:

URL:<http://abcweb.anywhere.com/cafe/default.htm> */

Docum en t Ti t l e Veri f i cat ion : Periodical ly, the HTML page t i t le found in a load tested script does not
match the HTML page t i t le found in your recorded text. Select th is check box to compare the HTML page
t i t le contents in your load tested script with the HTML page t i t le contents in your capture fi le. You can
enable the comparison based on prefix- or suffix-specified character match or ent ire string match.

Ent i re Docum en t Ti t l e: Select th is opt ion to compare the ent ire length of the HTML page t i t le.

Pref i x : Select th is opt ion to compare the prefix (left-most specified characters) of the HTML page t i t le.
Specify the number of characters to match in the Characters to Match field.

Suff i x : Select th is opt ion to compare the suffix (right-most specified characters) of the HTML page t i t le.
Specify the number of characters to match in the Characters to Match field.

QALoad 5.02

170

Characters to m atch : After you select the Prefix or Suffix opt ions, use th is field to specify the number of
characters to match from the HTML page t i t le.

Baud Rate Em ulat ion : Select th is check box to download web pages and images at a rate represent ing the
speed of connect ion, then enter a connect ion speed in the Baud Rate field. This enables you to simulate
modem speed.

Refresh Tim eout : Select th is check box and type a t ime value in the field (in seconds) to compare the
specified t ime value against a Web page's META Refresh value (e.g. <META HTTP-EQUIV=Refresh
CONTENT="10"; URL="http://www.compuware.com/">). If the META Refresh tag's CONTENT field
value is less than the t ime value you specify, the page is treated as a redirected page. If the CONTENT field
value is greater than the t ime you specify, the page is treated as a regular page.

Tip: Select this option to avoid infinite loops in the script. Infinite loops can occur if a page refreshes
periodically to update data.

Encode DBCS Characters: Select th is check box to enable the encoding of captured data from Web
appl icat ions contain ing Double Byte Character Sets (DBCS) such as Chinese, Japanese, or Korean. Enabl ing
th is opt ion encodes al l nat ive characters and is used when nat ive character support cannot be used. Data
stays in encoded format throughout the load test: from capture, through convert and replay, to the
analysis of the t im ing fi le. By leaving th is opt ion clear (default), DBCS nat ive characters wi l l be used with in
test scripts, error messages, and t im ing fi les, making script edit ing easier and t im ing fi le analysis quicker.

Note: Native character support can only be used on the same DBCS language OS as the application under
test. For further information on DBCS Support, see DBCS Support in QALoad .

Enable Visual Navigator : Select th is check box to enable Visual Navigator, producing a visual ly-oriented
script rather than the standard QALoad C-based script .

Note: When you select this option, some WWW conversion options are not available, such as commenting
options, and some automatic playback options.

Advanced but ton : Accesses the WWW Advanced dialog box, al lowing you to set advanced conversion
opt ions.

WW W recording opt ions

Autom at i c Startup of In ternet Explorer : Select th is opt ion to have QALoad automatical ly launch the
browser and configure the proxy and port entries for the browser and the QALoad Script Development
Workbench. If you do not select th is opt ion, you must manually configure your proxy opt ions before
recording.

User Started Appl i cat ion : Select th is opt ion to configure the browser or appl icat ion manually, and then
set the appropriate opt ions from those that fol low.

Proxy Settings for User Started Application

Di rect Connect ion : Select th is opt ion i f you have a direct connect ion to the host from which you are
recording.

M an ual Proxy Con f igurat ion : Select th is opt ion to specify a proxy through which to connect to the host.
Then, use the HTTP, Secure, and Except ions fields to set proxy opt ions.

HTTP: Type the address of the HTTP proxy server. This field has a 255 character l im it . Then enter
the port number in the Port field. QALoad accepts numbers from 0-65535.

Secure: Type the address of the secure proxy server. This field is only avai lable i f you are l icensed to
use EasyScript for Secure WWW. This field has a 255 character l im it . Then enter the port number in
the Port field. QALoad accepts numbers from 0-65535.

Except ions: Type the addresses of any hosts for which QALoad should not use the specified proxies.

QALoad 5.02

171

Proxy Autom at i c Con f igurat ion Script : Select th is opt ion i f your proxy should use an automatic
configurat ion script located on your local area network. Then type the script 's URL in the URL field.

Advanced Options

Advanced Opt ions: This area displays the sett ings for several opt ions. To change any of these sett ings,
cl ick the Change Advanced Opt ions button to open the Advanced Options dialog box.

WW W com m and reference

QALoad provides descript ions and examples of the various commands avai lable for a WWW script. For
detai ls, refer to the Language Reference Help sect ion for WWW.

Advanced script i ng techn iques for W WW

Simulat ing variable IP addresses

While QALoad can simulate mult iple virtual users from a single system, i t general ly does so using a single
source IP address. In most test ing situat ions th is isn ’t a problem, but with a small set of HTTP-based
appl icat ions, i t may not be the best way to simulate real-l i fe act ivi ty. For QALoad Player machines with
more than one stat ic IP address, QALoad can direct each virtual user to use a di fferent source IP address. To
accomplish th is, a local datapool fi le contain ing a l ist of local stat ic IP addresses must be created on each
QALoad Player machine. When you enable IP spoofing in the QALoad Conductor, the QALoad Conductor
instructs each QALoad Player to create the appropriate datapool fi le at run t ime. The QALoad Player wi l l
ut i l ize these addresses for connect ions to HTTP and SSL servers. Each virtual user wi l l receive one address
for use with al l i ts connect ions. If there are more virtual users than addresses, IP addresses wil l be re-used
start ing from the beginning of the datapool fi le.

Modifying a Script to Use Variable IP Addresses

QALoad uses the DO_IPSpoofEnable command to insert IP addresses from the datapool in to the script .
When th is command is executed, the script opens the datapool fi le located on the QALoad Player, reads
the first avai lable data record, and stores that record for use on al l subsequent DO_Http and DO_Https
cal ls. If there are more virtual users than IP addresses in the datapool fi le, IP addresses are reused. You can
automatical ly generate the DO_IPSpoofEnable command in your script during conversion by select ing the
IP Spoofing opt ion from the QALoad Script Development Workbench ’s WW W Advanced dialog box.
Access th is dialog box from the Convert Options wizard’s WWW tab by cl icking the Advanced button.
This opt ion inserts the DO_IPSpoofEnable command direct ly in the script during conversion, before the
first DO_Http or DO_Https command.

Creating a Datapool of IP Addresses

Use the fol lowing procedure to create a datapool of val id IP addresses from the QALoad Conductor. This
fi le is automatical ly created on the QALoad Player workstat ions (Windows and UNIX) at run t ime.

To creat e a dat apool of IP addresses:

1. Start QALoad Conductor.

2. Click the Machine Configuration tab.

3. Double-click the Player machine name in the list. The Properties dialog box appears.

4. Select the Generate IP Spoof Data (machines with multiple IP addresses only) option.

5. Click OK.

At run t ime, the QALoad Conductor sends a command to each QALoad Player Agent to create the datapool
fi le of IP addresses, and the script is sent to the server using the different IP addresses.

The Generate IP Spoof Data check box is val id only for WWW scripts.

QALoad 5.02

172

Note: The machine on which the QALoad Conductor resides must have static IP addresses assigned to it. If
no static IP addresses are found, the QALoad Conductor displays a warning and the datapool file is not
generated. The datapool file is named ipspoof.dat, and is saved in the \Compuware\QALoad\Datapools
directory.

Handling error messages from the Web server

When a server returns an error message, i t returns i t in one of two ways. It ei ther returns an error message
with a response code (for example, 404 Not Found) or returns an HTML page that contains an error
message. The fol lowing sect ions provide examples of code that you can use in your script to handle errors
that the Web server returns to the browser.

Handling error messages with response codes

The example below demonstrates how to write code to handle error messages that include response codes
that the Web server returns to the browser. The code performs the fol lowing act ions:

! Checks for an error code using the DO_GetLastHttpError command

! Aborts or continues script execution, based on the WWW_FATAL_ERROR statement

Example

int error;
char errorString[30];

DO_Http("GET http://www.host.com/ HTTP/1.0\r\n\r\n");

if((error = DO_GetLastHttpError()) > 399)

{
sprintf(errorString, "Error in response: %d\n", error);
WWW_FATAL_ERROR("Request-host", errorString);
}

Handling error messages returned in an HTML page

The examples below demonstrate how to write code to handle error messages that the Web server returns
to the browser in an HTM L page.

Using DO_VerifyDocTitle to verify page requests

By insert ing the DO_VerifyDocTit le command into your script , you can compare the HTML document
t i t les in your load test script with the document t i t les you original ly captured. The code performs the
fol lowing act ions:

! Calls DO_Http to request an HTML page from the Web server

! Calls DO_VerifyDocTitle with the original HTML document title. If the titles do not match, DO_VerifyDocTitle exits the
script

Exam ple

DO_Http("GET http://www.host.com/ HTTP/1.0\r\n\r\n");
DO_VerifyDocTitle("Welcome to The Main Page", TITLE);

Searching response text for error messages

In some scripts, error messages are displayed as text in an HTML page. The fol lowing example
demonstrates how to detect these messages in a script . The code performs the fol lowing act ions:

! Searches for errors returned as HTML from the Web server

! Branches to error handling code

Exam ple

QALoad 5.02

173

int response;
response = DO_Http("GET http://www.host.com/ HTTP/1.0\r\n\r\n");
if (strstr (response, "200 OK") == NULL)
 WWW_FATAL_ERROR("host", "Response did not have 200 OK");

Simulat ing CGI requests

The fol lowing topics describe strategies for simulat ing CGI requests:

CGI parameter encoding
CGI Get requests
CGI Post requests
CGI forms

Simulat ing JavaScript

JavaScript is handled by the fol lowing process:

1. The browser makes a page request to a server for a page that contains JavaScript.

2. Because JavaScript is simply uncompiled code, the browser downloads and immediately executes this code upon
receipt of the page.

Supported objects

QALoad supports the bui l t -in JavaScript objects (global, object, funct ion, array, string, boolean, number,
math, date, regexp, and error), document objects, and image objects.

Supported properties

The only document propert ies that QALoad supports are cookies, t i t le, and the images array. The only
image property that QALoad supports is src.

Evaluation errors

If an object, property, or funct ion used with in a block of JavaScript code is not defined, i t wi l l cause a
JavaScript except ion. The except ion stops evaluat ion of that block.

Example Web page

The fol lowing Web page contains the JavaScript funct ion and an onLoad tag that cal ls the scrol l i t funct ion.
The onLoad tag tel ls the browser to execute the JavaScript immediately after loading the page. The scrol l i t
funct ion displays a scrol l ing banner region on the Web page.

<HTML>
<HEAD>
<TITLE>Java Script Example</TITLE></HEAD>

<SCRIPT LANGUAGE="JavaScript" src="js_do_nothing.js">

function scrollit_r2l(seed)
{

var m1 = " Welcome to Compuware's QALoad homepage.";
var m2 = " Glad to see you.";
var m3 = " Thanks for coming. ";
var msg = m1 + m2 + m3;
var out = " ";
var c = 1;

if (seed > 100) {
seed--;
var cmd="scrollit_r2l(" + seed + ")";
timerTwo=window.setTimeout(cmd,100);
}

QALoad 5.02

174

else if (seed <= 100 && seed > 0) {
for (c=0 ; c < seed ; c++) {
out+=" ";
}
out+=msg;
seed--;
var cmd="scrollit_r2l(" + seed + ")";
window.status=out;
timerTwo=window.setTimeout(cmd,100);
}

else if (seed <= 0) {
if (-seed < msg.length) {
out+=msg.substring(-seed,msg.length);
seed--;
var cmd="scrollit_r2l(" + seed + ")";
window.status=out;
timerTwo=window.setTimeout(cmd,100);
}

else {
window.status=" ";
timerTwo = window.setTimeout("scrollit_r2l(100)", 75);
}
}
}

</script>

<BODY onLoad="timerONE=window.setTimeout('scrollit_r2l(100)',500);">
<!-- End scrolltext -->

<center><h2>Java Script Example</h2><hr>Check out the browser's scrolling status
 bar.

</center>

</BODY></HTML>

Example script

The fol lowing script features a DO_Http cal l to retrieve the JavaScript page.

How I t Works: QALoad evaluates the JavaScript in the context of script blocks, onLoad tags, and src and
then executes them.

DO_InitHttp(s_info);

...

...

BEGIN_TRANSACTION();
DO_AutomaticSubRequests(TRUE);

...

...

DO_Http("GET http://www.host.com/js.htm HTTP/1.0\r\n\r\n");
DO_VerifyDocTitle("Java Script Example", TITLE);

...

...

END_TRANSACTION();

Execut ing a Visual Basic script

QALoad does not evaluate a Visual Basic script . However, any Visual Basic script request that occurs is
inserted in to the script as a main request.

QALoad 5.02

175

Execut ing a Java applet

Java applets are handled by the fol lowing process:

1. The browser makes a request to a Web server for an HTML document that contains embedded Java applets.

2. The browser downloads the Java applets, in the order in which they appear on the Web page, and immediately
executes them.

Example Web page

The fol lowing Web page contains two sect ions that reference Java applets. Not ice the parameters that
fol low the applet. The browser passes these parameters when invoking an applet.

<HTML>
<HEAD>
<TITLE>Java Example</TITLE></HEAD>
<BODY>

<center><h2>Java Applet Example</h2><hr>

<applet code="LScrollText.class" width="500" height="20" >
<PARAM NAME="MESSAGE" VALUE="Scrolling Text created by Java Applet... >>Click here to
Download<< Use it FREE">
<PARAM NAME="FONTHEIGHT" VALUE="14">
<PARAM NAME="SPEED" VALUE="2">
<PARAM NAME="PIXELS" VALUE="1">
<PARAM NAME="FONTCOLOR" VALUE="0000FF">
<PARAM NAME="BACKCOLOR" VALUE="FFFF00">
<PARAM NAME="TARGET" VALUE="lscrolltext.zip">
</applet>

A scrolling message, with custom colors, font size, speed, and target URL.

The source (.ZIP) file can be downloaded by clicking the associated area in text window.

<hr>

<APPLET CODE="imagefader.class" WIDTH=80 HEIGHT=107>
<PARAM name="demicron" value="www.demicron.se">
<PARAM name="reg" value="A00012">
<PARAM name="maxitems" value="3">
<PARAM name="width" value="80">
<PARAM name="height" value="107">
<PARAM name="bitmap0" value="anibal.jpg">
<PARAM name="bitmap1" value="jak.jpg">
<PARAM name="bitmap2" value="jan.jpg">
<PARAM name="url0" value=" ">
<PARAM name="url1" value=" ">
<PARAM name="url2" value=" ">
<PARAM name="step" value="0.05">
<PARAM name="delay" value="20">
<PARAM name="sleeptime" value="2000">

</APPLET>

This applet is a very popular image fader that displays a series of images, and allows URLs
to be associated with each image.

<hr>

</center>
</BODY></HTML>

Example script

QALoad does not evaluate Java applets. They appear as main requests. The example script features the
fol lowing elements:

QALoad 5.02

176

! A DO_Http call to retrieve the main page.

! A DO_Http call to retrieve the scrolling text class.

! A DO_Http call to retrieve the image fader class Java applet.

How I t Works: QALoad interacts with the Web server without execut ion of the Java applet program wi th in
the virtual browser. The browser accepts the pages that contain Java applets, but does not execute the
applet as part of the load test. The Java applets are not evaluated by QALoad and appear as main requests
in the script .

DO_InitHttp(s_info);

...

...

BEGIN_TRANSACTION();

...

...

DO_Http("GET http://www.host.com/java.htm HTTP/1.0\r\n\r\n");
DO_VerifyDocTitle("Java Example", TITLE);

/* Request: 2 */
DO_Http("GET http://www.host.com/LScrollText.class HTTP/1.0\r\n\r\n");

/* Request: 3 */
DO_Http("GET http://www.host.com/imagefader.class HTTP/1.0\r\n\r\n");
DO_Http("GET http://www.host.com/jak.jpg HTTP/1.0\r\n\r\n");

...

...

END_TRANSACTION();

Simulat ing frames

Frames are handled by the fol lowing process:

1. The browser makes a main page request to a Web server for a page that contains frames.

2. The browser parses the frame pages and places them in sub-windows within the browser, each of which displays the
frame content.

Example Web page

The fol lowing Web page contains four frames.

<HTML>
<HEAD>
<TITLE>FRAME Example</TITLE>
</HEAD>

<! -- Here is the FRAME information for browsers with frames -->

<FRAMESET Rows="*,*"><!-- Two rows, each equal height -->
 <FRAMESET Cols="*,*"><!-- Two columns, equal width -->
 <FRAME Src="findex.htm" Name="ul-frame">
 <FRAME Src="findex.htm" Name="ur-frame">
 </FRAMESET>

 <FRAMESET Cols="*,*"><!-- Two columns, equal width -->
 <FRAME Src="findex.htm" Name="ll-frame">
 <FRAME Src="findex.htm" Name="lr-frame">
 </FRAMESET>
</FRAMESET>

</HTML>

QALoad 5.02

177

Example script

QALoad automatical ly generates al l constructs necessary to request frames. The example script features the
fol lowing element:

! A DO_Http call to retrieve the main page.

How I t Works: The frames are treated as sub-requests and are evaluated and requested by QALoad .

BEGIN_TRANSACTION();
DO_AutomaticSubRequests(TRUE);

...

...

DO_Http("GET http://www.host.com/frameset.htm HTTP/1.0\r\n\r\n");
DO_VerifyDocTitle("FRAME Example", TITLE);

...

...

END_TRANSACTION();

Simulat ing cookies

This sect ion describes how QALoad handles cookies. Cookies are handled by the fol lowing process:

1. The browser makes a CGI request to a server for a dynamic page.

2. When the server sends the page back to the browser, the page includes a cookie in the header. The browser saves
the cookie along with information that ties it to the Web server.

3. On all subsequent requests to that Web server, the browser passes the cookie along with the request.

Example Web page

The fol lowing CGI Perl script generates a Set-Cookie header as a part of subsequent HTTP requests.

Set-Cookie: SaneID=172.22.24.180-4728804960004
Set-Cookie: SITESERVER=ID=f0544199a6c5970a7d087775f83b23af

<html>

...

The cookies for this site are:

SaneID=172.22.24.180-4728804960004; SITESERVER=ID=f0544199a6c5970a7d087775f83b23af
<P>

Next cookie for this URL will be : 1

RELOAD PAGE TO INCREMENT COUNTER

Return to
previous homepage.

Example script when Dynamic Cookie Handling is turned on

This is the default method by which QALoad handles cookies. The example script features the fol lowing
elements:

! Two CGI requests that return dynamic pages

! Cookies are handled by the replay engine

BEGIN_TRANSACTION();
DO_DynamicCookieHandling(TRUE);

...

...

/* Request: 1 */
DO_Http("GET http://www.host.com/cgi-bin/cookies5.pl"
 "HTTP/1.0\r\n\r\n");

QALoad 5.02

178

/* Request: 2 */
DO_Http("GET http://www.host.com/cgi-bin/cookies5.pl"
 "HTTP/1.0\r\n\r\n");

...

...

END_TRANSACTION();

Example script when Dynamic Cookie Handling is turned off

The example script features the fol lowing elements:

! A CGI request that returns a dynamic page

! Two DO_GetCookieFromReply calls to retrieve the cookie from reply

! Two DO_SetValue calls to set the cookie

! A free cookie

How I t Works: For cookies that are set with CGI scripts, the script stores incoming cookies in a variable
and passes them back to the Web browser in the reply from the CGI script . The script handles these
cookies by execut ing a DO_GetCookieFromReply command after the CGI request.
DO_GetCookieFromReply stores the cookie values in variables, which the script then passes back to
subsequent CGI requests using the DO_SetValue command.

int i;
char *Cookie[4];

...

...

for(i=0;i<4;i++)
Cookie[i]=NULL;
DO_InitHttp(s_info);

...

...

BEGIN_TRANSACTION();
DO_DynamicCookieHandling(FALSE);

...

...

/* Request: 1 */
DO_Http("GET http://www.host.com/cgi-bin/cookies5.pl
 "HTTP/1.0\r\n\r\n");

/*Set-Cookie: NUM=1 */
DO_GetCookieFromReplyEx("NUM", &Cookie[0], '*');

/*Set-Cookie: SQUARE=1 */
DO_GetCookieFromReplyEx("SQUARE", &Cookie[1], '*');

/* Request: 2 */
DO_SetValue("cookie000", Cookie[0]); /* NUM=1 */
DO_SetValue("cookie001", Cookie[1]); /* SQUARE=1 */
DO_Http("GET http://www.host.com/cgi-bin/cookies5.pl "
 "HTTP/1.0\r\n"
 "Cookie: {*cookie000}; {*cookie001}\r\n\r\n");

...

...

DO_HttpCleanup();
for(i=0; i<4; i++)
{
free(Cookie[i]);

QALoad 5.02

179

Cookie[i]=NULL;
}

END_TRANSACTION();

Simulat ing browser caching

Browser caching is handled by the fol lowing process:

1. When the browser makes a request for static HTML pages, it may include an option to retrieve the page only if it is
newer than the one held in the browser’s cache.

2. If browser caching is enabled, the server returns only newer versions of the page. If browser caching is not enabled,
the server always returns the page.

How I t Works: The QALoad Script Development Workbench disables browser caching while recording,
which means a page is always retrieved.

Request ing password-protected directories

Web developers use password-protected directories to protect access to some pages. When the browser
requests a page in a password-protected directory, the server returns a special response that specifies the
page is password-protected. When the browser receives th is type of reply, i t gathers the user ID and
password, encrypts them, and passes them back to the server in a subsequent request.

Example script

QALoad automatical ly generates al l the constructs that are necessary to execute a request of a password-
protected directory.

The example script features the fol lowing elements:

! DO_BasicAuthorization, which takes the user ID and password as parameters

! DO_Http request to the password-protected directory

BEGIN_TRANSACTION();
DO_BasicAuthorization("frank", "~encr~557A2549474E57444A");

...

...

DO_Http("GET http://www.host.com/access_controlled/secure.htm HTTP/1.0\r\n\r\n");
DO_VerifyDocTitle("Successful Test of a Secured Page", TITLE);

...

...

END_TRANSACTION();

Example script

QALoad also handles Windows Domain Authent icat ion (NTLM).

The example script features the fol lowing elements:

! A DO_NTLMAuthorization call, which takes the domain, user ID, and password as parameters

! DO_Http request to the NTLM protected directory

BEGIN_TRANSACTION();
DO_NTLMAuthorization("dom1\\frank", "~encr~557A2549474E57444A");

...

...

DO_Http("GET http://www.host.com/ntlm_controlled/secure.htm HTTP/1.0\r\n\r\n");
DO_VerifyDocTitle("Successful Test of a NTLM Page", TITLE);

QALoad 5.02

180

...

...

END_TRANSACTION();

Using the WWW Convert Options dialog box

The fol lowing topics provide usage t ips and result ing script examples for each of the opt ions that are
avai lable on the Convert Opt ions dialog box:

Form fields as comments
Anchors as comments
Cl ient image maps as comments
Debug comments
Document t i t le veri ficat ion
Baud rate
Refresh t imeout
Encode DBCS characters
Enable Visual Navigator

Advanced opt ions:

Cache
Dynamic redirect handl ing
Dynamic cookie handl ing
Automatical ly process subrequests
Persistent connect ions during replay
Reuse SSL session ID
Max concurrent connect ions
Max connect ion retries
Server response t imeout
HTTP version detect ion
Act iveData
IP spoofing
Streaming media
Hostnames as IP addresses
Strip al l cookies from request
Traffic fi l ters

EasyScript for Secure WWW

Overview

EasyScript for Secure WWW supports SSL/HTTPS requests when used in conjunct ion with the WWW
middleware. This support must be purchased separately and is distributed in a separately-instal led module.

Im port i ng a cl i en t cert i f i cate f rom a W eb brow ser (SSL)

You can import and convert a Cl ient Cert i ficate for any Web site you plan to visi t .

To im por t a cl ient cer t i f icat e:

1. Start your Web browser.

2. From the browser, select the Client Certificate for the Web site you plan to visit.

3. Export the Client Certificate (.p12 of .pfx file) to a directory where you can access it using the Script Development
Workbench.

Note: When the browser prompts you to enter a password, do not enter a password. If you enter a
password, QALoad cannot process the file.

QALoad 5.02

181

4. Start a WWW Session in the QALoad Script Development Workbench.

5. Click Tools>Maintain Certificates to open the SSL Certificate Maintenance dialog box.

6. On the Client Certificates tab, click the browse button [...] to browse for the Client Certificate you want to convert.
The Select the Exported Client Certificate to Convert dialog box opens.

7. Make sure Files of Type specifies P12 files (*.p12) or PFX files (*.pfx).

8. Select the appropriate Client Certificate and click Open. The path and file name of the selected Client Certificate
appears in Enter Certificate to Convert on the Client Certificates tab.

9. On the Client Certificates tab, click Convert.

10. Click Close to exit the SSL Certificate Maintenance dialog box.

Creat ing a cl i en t cert i f i cate in QALoad (SSL)

This procedure assumes you have a WWW session act ive.

To creat e a cl ien t cer t i f i cat e:

1. From the Tools menu, select Maintain Certificates to open the SSL Certificate Maintenance dialog box.

2. On the Client Certificates tab, enter a name in the Certificate Name field.

3. Enter the number of certificates to create.

4. Click the Create button to create the QALoad Client Certificate. QALoad stores it in the QALoad\Certificates
directory.

5. If necessary, configure your Web server to accept QALoad as the Certificate Authority. Refer to your Web server
documentation for more information.

Creat ing an SSL Cert i f i cate Authori ty

Note that creat ing a new CA inval idates al l previously created cl ient cert i ficates.

To creat e an SSL Cer t i f i cat e Aut hor i t y:

1. Start a WWW session.

2. From the Tools menu, select Maintain Certificates.

3. Click the Certificate Authority tab.

4. Click the Create button to create a new Certificate Authority with the expiration date shown in the field.

5. Exit and re-start the Script Development Workbench.

6. After creating a new Certificate Authority, re-import the CA to your Web server and then create new Client
Certificates.

Creat ing an SSL Server Cert i f i cate

To creat e an SSL Server Cer t i f icat e:

1. Start a WWW session.

2. From the Tools menu, select Maintain Certificates.

3. Click the Server Certificate tab.

4. Click the Create button to create a new Server Certificate with the expiration date shown in the field.

Execut ing SSL scripts th at use cl i en t cert i f i cates

QALoad 5.02

182

If you are execut ing SSL scripts that use cl ient cert i ficates, you must manually copy the cl ient cert i ficates in
use to the Player machine(s) execut ing the script(s).

Manually copy the cl ient cert i ficates from the \Program Files\Compuware\QALoad\Certificates
directory to the same default directory on the Player machine.

SSL Com m ands

QALoad provides descript ions and examples of the various commands avai lable for a secure WWW script.
For detai ls, refer to the Language Reference Help sect ion for SSL.

NetLoad

Using NetLoad

NetLoad is QALoad’s suite of load generat ion scripts that al lows you to simulate load condit ions on your
network using any of the fol lowing protocols:

! FTP

! HTTP

! PING

! LDAP

! POP3

! SMTP

! TCP

! UDP

! MSExchange

NetLoad includes QALoad-provided scripts, which you can access from the Conductor to run in a test, for
each protocol. You can customize the act ivi ty of the script by creat ing reusable datapools in the QALoad
Script Development Workbench to use during test ing. When you run a test, each virtual user wi l l request a
single datapool record. Once al l the records have been read, the datapool fi le is rewound and the process
starts again. You can use QALoad’s components to run scripts and analyze the results as usual, or you can
integrate your results with Compuware’s ServerVantage product.

In short , NetLoad al lows you to generate traffic on your network in a control led manner and gather
performance t im ings from the network. To faci l i tate test ing under TCP/IP and UDP, NetLoad provides you
with a server module to simulate server act ivi ty — al lowing you to gather network t im ings without
expending your actual server resources.

Note: To use NetLoad for MSExchange to test on Outlook 2000, you must ensure that CDO support is
installed on your workstation before you continue. For instructions, see Verifying CDO Support for MSExchange.

For more in formation on the NetLoad Server modules, see NetLoad Server Modules for TCP/IP and UDP.

NetLoad server modules for TCP/ IP and UDP

If you are load test ing a network running TCP/IP or UDP, you should use the appropriate NetLoad Server
module to simulate server responses during your load test. This al lows you to load your network and
col lect t im ings without expending your own server’s resources. The NetLoad Server modules are only for
use i f you’re test ing on TCP/IP or UDP. You do not need to instal l the Server modules to test any other
NetLoad-supported protocol.

You can instal l or copy the NetLoad Server modules to any Windows workstat ion on your network. After
start ing the appropriate Server module, you supply the QALoad Script Development Workbench with the

QALoad 5.02

183

host name of the machine where the Server module is running and the port number that you specified
when you started the Server module. When you are ready to run a test, start the Server module fi rst . During
the test NetLoad communicates with the NetLoad Server module, effect ively loading the network. If
NetLoad does not find the NetLoad Server module at the specified port—for instance i f you mistyped the
port number—the test fai ls (TCP) or fai ls to in i t iate (UDP).

Determining when to use the TCP server module

If you are going to send TCP packets using NetLoad, you must have a QALoad TCP Server module running
on each machine that you are sending packets to. Copy the TCP Server module fi le, Net loadTCPServer.exe,
to each machine that wi l l be receiving packets and double-cl ick on the fi le to start the TCP Server module.

Because the QALoad TCP Server module is a Windows-based program, you cannot use i t to send NetLoad
TCP packets to a UNIX machine.

Determining when to use the UDP server module

It is not necessary to have a QALoad UDP Server module running at the dest inat ion machine for NetLoad
to successful ly send packets to i t ; however, the Netload UDP Server can be useful to veri fy that the packets
are being sent. To instal l the UDP Server module on a machine you are sending packets to, copy the
program NetloadUDPServer.exe to that machine. Double-cl ick the fi le to start the UDP Server module.

Since i t is not necessary to have the UDP Server module running, you can send NetLoad UDP packets to
both UNIX and Windows workstat ions.

Note: If you are testing UDP in “broadcast” mode, it is not necessary to use the NetLoad Server module.

Installing the NetLoad Server module

If you are load test ing a network running TCP/IP or UDP, the NetLoad Server module appropriate for your
protocol must be running on a Windows workstat ion on your network before you start the test. The Server
modules are instal led automatical ly i f you chose the opt ion to instal l them during setup. However, once
the Server module is instal led on one workstat ion, you can instal l i t on another workstat ion by simply
copying the program from one workstat ion to another. The NetLoad Server modules are instal led to the
directory \Program Files\Compuware\QALoad\Middlewares\NetLoad\Server, and are named:

! NetLoadTCPServer.exe (for TCP/IP): If you are going to send TCP packets using NetLoad, you must have a TCP
Server module running on each machine you are sending packets to. Because the TCP Server module is a Windows
program, you cannot send NetLoad TCP packets to a UNIX machine.

! NetLoadUDPServer.exe (for UDP): It is not necessary to have a UDP Server module running on the machines you
are sending UDP packets to. However, the UDP Server is useful for verifying that the packets are being sent. Since
it is not necessary to have a UDP Server module installed on the destination workstations, you can send NetLoad
UDP packets to UNIX machines.

Start ing the NetLoad server module

You can configure and start the NetLoad server module from the Start menu.

If you are load test ing a network running TCP/IP or UDP, the NetLoad Server module appropriate for your
protocol should be running on a Windows workstat ion on your network before you start the test. The
Server modules are instal led with your QALoad product i f you chose to instal l them during setup. If you are
unsure i f you should be using a NetLoad Server module, see NetLoad server modules for TCP/IP and UDP.

To st ar t t he m odule:

1. Point to Start>Programs>Compuware> QALoad >NetLoad. Then click on the appropriate Server module: TCP
Server or UDP Server.

2. When prompted, type the port number of the host machine and click OK.

QALoad 5.02

184

3. On the QALoad NetLoad Server window, under the Options menu, select one of the following:

 Show M essage Every Packet — Displays a message, including byte size, after sending or
receiving a packet.

 Show M essage Every 100 Packets — Displays a message every 100 packets l ist ing the total
number of packets received.

Start ing a NetLoad session

You can start a NetLoad session from the workbench with an exist ing datapool fi le or a new one.

To st ar t a session:

1. From the QALoad Script Development Workbench, choose Session>NetLoad.

2. Open an existing protocol datapool file or create a new one:

 To create a new datapool f i le, choose Fi le>New . The New NetLoad Fi le dialog box opens.

 To open an exist ing datapool fi le, choose Fi le>Open . The Open NetLoad Fi le dialog box opens.

3. Select the protocol you wish to test on and click OK. If you are opening an existing datapool file, navigate to the file
and open it.

4. Enter or edit the appropriate datapool information in the Workbook Pane.

The QALoad Script Development Workbench al lows you to have mult iple fi les open at the same t ime.
Datapool fi les are located in the directory \Program
Files\Compuware\QALoad\Middlewares\NetLoad\Scripts.

Creat ing a NetLoad datapool

To creat e a Net Load dat apool :

1. From the QALoad Script Development Workbench, click Session>NetLoad.

2. Click File>New to open the New NetLoad File dialog box.

3. Select the protocol for which you wish to create a datapool file and click OK.

A grid opens in the Workbook Pane. Each row on the grid represents a single data record. The
column headings indicate the appropriate field in formation to enter. Note that the actual fields in
the grid vary by protocol.

4. Enter the appropriate information for your datapool file.

Some fields on the grid contain pul l-down menus. To act ivate them, cl ick anywhere with in the field.
Then make your select ion from the menu that appears.

5. When you are finished, select File>Save to name and save the datapool file.

The datapool fi le is l isted in the Workspace Pane Datapools tab. QALoad creates a script with the same
name and l ists i t on the Scripts tab. Both fi les are saved to the \NetLoad\Scripts directory (for example,
c:\Program Files\Compuware\QALoad\Middlewares\NetLoad\Scripts\datapool.dat).

To ent er dat apool dat a:

1. From the QALoad Script Development Workbench, choose Session>NetLoad.

QALoad 5.02

185

Click Fi l e>New to open the New NetLoad Fi le dialog box. Select the protocol for which you wish
to create a datapool fi le and cl ick OK. A grid similar to the one shown below appears in the
Workbook Pane. Each row on the grid represents a single data record. The column headings
indicate the appropriate field in formation to enter. Note that the actual fields in the grid vary by
protocol.

2. Enter the appropriate information for your datapool file. Note that some fields on the grid contain pull-down menus.
To activate them, click anywhere within the field. Then make your selection from the menu that appears.

3. When you are finished, click File>Save to name and save the datapool file. Note that your datapool file is listed in
the Workspace Pane Datapools tab. QALoad creates a C-based script by the same name and lists it in the
Workspace Pane Scripts tab. Both files will be saved to your \NetLoad\Scripts directory (for example,
c:\Program Files\Compuware\QALoad\Middlewares\NetLoad\Scripts\datapool.dat).

4. (Optional) Write a description of this datapool file for later reference by selecting Options>NetLoad. Once a
description has been entered for a datapool file, you can review or edit the description any time the file is open by
selecting Options>NetLoad again.

Edit ing a NetLoad datapool

You can edit the NetLoad datapool to make changes or addit ions to the fi le.

To edi t a dat apool :

1. With the appropriate NetLoad protocol session open, open the datapool by choosing File>Open and navigating to it,
or select it from the Workspace tab Datapools tab.

2. Make any changes or additions to the file.

3. To delete an entire record (a single row), click its row number and select Grid>Delete Row(s).

4. To insert a new record (a single row) above an existing record, click a row number and select Grid>Insert Row.
NetLoad inserts a blank row above the selected row.

5. Save any changes to the file by selecting File>Save.

Adding or edit ing a NetLoad datapool descript ion

You can add a meaningful descript ion, or edit a previous one, for any NetLoad datapool.

QALoad 5.02

186

To edi t a descr ipt ion:

1. With a datapool file open, select Options>NetLoad.

2. Enter a description for the current datapool file.

UNIX

Installing UNIX Players

The necessary UNIX Player software is distributed with your QALoad Windows instal lat ion.

Note: For updated UNIX system requirements and installation procedures, please refer to the QACenter
Performance Edition Installation and Configuration Guide. You can access this guide by clicking
Start>Programs>Compuware>QALoad>Documentation>Installation and Configuration Guide.

Transferring scripts to a UNIX Player

Normally, the appropriate script is automatically uploaded from the QALoad Conductor to the Players and
compiled at runt ime. However, i f i t is ever necessary to manually transfer a script , use the procedure that
fol lows.

Note: The machine where the QALoad Script Development Workbench is installed must have Winsock-
based TCP/IP to transfer a script to the UNIX machine where you wish to run it.

Transferring a Script

The fol lowing procedure describes how to transfer a script fi le from the Windows workstat ion where the
QALoad Script Development Workbench resides to the system running the QALoad Player.

1. Access the Script Development Workbench.

2. From the Session menu, choose the middleware session you want to start.

3. In the Workspace Pane, click the Scripts tab.

4. On the Scripts tab, select the script you want to transfer.

5. From the Tools menu, choose FTP to open the FTP Transfer dialog box. Note that the file name you selected to
transfer appears in the File to Transfer field.

6. Enter the Host Name, User Name, Password, and Destination Directory.

7. Click Transfer to send the file to the system where your QALoad Player is installed.

8. If you want to save the information you have entered for subsequent transfers, click Save Settings.

9. Click Close/Abort to exit the FTP Transfer dialog box.

Set t ing up for DB2 playback

As with al l QALoad middleware support on UNIX, DB2 UNIX support is replay only. QALoad does not
support recording scripts from a UNIX environment. QALoad assumes that the DB2 environment is
working prior to instal lat ion of QALoad .

Note: To run DB2 load tests on AIX with 10 or more virtual users in thread-based mode, you must set the
DB2 environment variable EXTSHM to ON to work around a memory handling problem in DB2.

To use EXTSHM w i t h DB2:

QALoad 5.02

187

1. Before starting the client application, type the following command:
export EXTSHM=ON

2. When starting the DB2 server, type the following commands:
export EXTSHM=ON
db2set DB2ENVLIST=EXTSHM
db2start

For in formation about set t ing up your UNIX Player instal lat ion, refer to the QACenter Performance Edit ion
Instal lat ion and Configurat ion Guide. You can access th is guide by cl icking
Start>Program s>Com puw are>QALoad >Docum en tat ion>Instal l at i on and Con f igurat ion Guide.

Test ing with QARun

Creat ing a QARun script

To create a QARun script , you insert any number of QARun transact ions (QARun scripts) in to a QALoad
template script accessible from the QALoad Script Development Workbench. The template script is a
simple QALoad script that can be compiled and run; however, i t contains no funct ional i ty unt i l you insert
the QARun transact ions appropriate for your test ing needs. QALoad provides two methods for insert ing
QARun transact ions: automated, and manual.

Using the automated method, you enter in formation in the QALoad Script Development Workbench about
the QARun transact ions to use and then let QALoad generate the test script using the in formation you
provided. This method is fast and efficient when you know exact ly which QARun scripts to use and where
they are located.

The manual method al lows you to open a copy of the QALoad template script and insert t ransact ions and
commands manually. You may want to use th is method i f you suspect you may need to edit your script
whi le you're creat ing i t .

Automat ically creat ing a QARun script

To aut om at ical ly creat e a QARun scr ipt :

1. From the QALoad Script Development Workbench, click Session>QARun to start a QARun scripting session.

2. Click Session>Generate Script. The Create New QARun Execution Script dialog box opens.

3. In the Login String field, select or type a valid username and password to access your installation of QARun.

4. In the Environment field, select the appropriate QARun environment.

5. In the QARun Script Name field, enter the name of the QARun transaction to insert, or select it from the list, which
contains a record of the last five QARun script names you entered.

Although you can enter a script name from any database, when the test is actually running and QALoad invokes
QARun, QARun attempts to retrieve that script from its default database. Therefore, in the QARun program installed
on the Player, you should designate a default database that contains the script(s) you want to run.

6. Select the Automatically Include Checkpoint check box if you want QALoad to automatically insert a checkpoint
into the script after this QARun transaction.

7. In the QALoad Script Name field, enter a name for this QALoad script. To write over an existing script, click the
Browse button to the right of this field and select a script from the list of available scripts.

8. To add additional QARun transactions to this script, click the Add Another Script button and repeat Steps 3–6 for
each additional transaction.

9. When you are finished, click the Create Script button. The QALoad script is saved in the directory \Program
Files\Compuware\QALoad\Middlewares\QARun\Scripts, and the script opens in the script editor.

QALoad 5.02

188

10. To compile the script for testing, click Session>Compile.

Manually creat ing a QARun script

You can manually insert QARun commands or scripts in to a QALoad script to compile.

To m anual ly creat e a scr ipt :

1. From the QALoad Script Development Workbench, select Session>QARun to start a QARun scripting session.

2. Select Session>New Template to create a new script from the QALoad template script.

3. In the Choose Script Name dialog box, enter a name for the new QALoad script and click OK. The script is saved in
the directory \Program Files\Compuware\QALoad\Middlewares\QARun\Scripts, and the script opens in
the script editor.

4. Edit the script as necessary:

! You can manually enter any transactions or scripting commands directly in the script.

! You can insert a QARun transaction by positioning the cursor on the appropriate line and selecting
Session>Insert>Transaction. On the Insert a QARun Transaction dialog box that opens:

! In Login String, select or type a valid user name and password to access your installation of
QARun.

! In Environment, select the appropriate QARun environment.

! In QARun Script Name, enter the name of the QARun transaction to insert, or select it from the
list, which contains a record of the last five QARun script names you entered. Note that you can
enter a script name from any database; however, when the test is actually running and QALoad
invokes QARun, QARun will attempt to retrieve that script from its default database. Therefore, in
the QARun program installed on the Player, you should designate a default database that contains
the script(s) you want to run.

! When you are finished, click Insert to insert the script you just created into the QALoad script.

5. When you are finished, save any changes.

6. To compile the script for testing, select Session>Compile.

Troubleshoot ing

The Default Session Prompt didn't open?

If the Default Session Prompt fai ls to open when you start a middleware session, then default session
checking was previously disabled. Do the fol lowing to enable default session checking:

1. From the Options menu, choose Workbench. The Configure QALoad Script Development Workbench dialog box
opens.

2. On the Workbench Configuration tab, select the Enable default Session checking check box.

The next t ime you open a QALoad Script Development Workbench middleware session, you wil l be
prompted to make i t your default session.

QALoad can't find Tuxedo environment variable

If QALoad cannot find the TUXDIR environment variable, the environment variable contains an inval id
value, or QALoad cannot find the directory \tuxedo\bin in the PATH in your environment space, you
wil l receive an error message.

QALoad 5.02

189

Follow the instruct ions in the error message to correct the appropriate issue. If you do not, QALoad may
not be able to convert , compile, or play back your script at the appropriate point in your test.

Winsock running out of socket resources

You may encounter a problem running out of socket resources on NT or Solaris when there are large
numbers of short-l ived connect ions.

When TCP/IP connect ions are shutdown, they go in to a TIME_WAIT state wait ing for the specified in terval
to expire. While in that state the connect ion is looking for any stray packets that may have been sent to
th is connect ion and remain unacknowledged.

If th is process was skipped, i t would be possible for a new connect ion to be opened using the same address
and port as the previous connect ion and to incorrect ly receive data that was intended for the previous
connect ion. When QALoad is generat ing many short-l ived connect ions, during a Winsock or WWW load
test, the default sett ing for the t imed wait delay may be so h igh that the driver machine wil l run out of
socket resources as al l closed sockets wait in the TIME_WAIT state.

To change the sett ing for the t imed wait delay:

Windows NT

Set the registry key:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\tcpip\
Parameters\TcpTimedWaitDelay

to a lower value. It can be set to anyth ing between 30 and 300. Compuware suggests using the lowest
possible value (30).

Solaris 2.6

Using "ndd" set the "tcp_close_wait_interval" to 30 seconds:

ndd -get /dev/tcp tcp_close_wait_interval

ndd -set /dev/tcp tcp_close_wait_interval 30000

Solaris 2.7

Use "ndd" as shown previously for Solaris 2.6, but subst i tute the "tcp_t ime_wait_interval"

SAP script validat ion fails

If your SAP script fai ls during val idat ion, you may need to disable automatic proxy configurat ion in
Internet Explorer.

To disable aut om at ic p roxy conf igurat ion:

1. In Internet Explorer, click Tools>Internet Options.

2. On the Connections tab, click the LAN Settings button.

3. Ensure that the Use automatic configuration script check box is cleared.

If disabl ing the automatic proxy configurat ion does not solve the problem, consider increasing the script
execut ion t imeout value to 100 seconds or to the length of the capture fi le (in seconds), whichever is
greater.

To increase t he t im eout value:

QALoad 5.02

190

1. With an SAP session open in the Script Development Workbench, click Options>Workbench.

2. On the Script Validation tab, type the new value in the Wait up to field.

3. Click OK.

Linking errors during validat ion or compilat ion of SAP scripts

When you re-record SAP 4.x scripts for SAP 6.20/SAP 6.40, you must cl ick the Bui ld SAP Libraries button
on the SAP Convert Options dialog box. This button generates new l ibraries based on the version of SAP
that is current ly instal led. If you have upgraded to a newer version of SAP and do not update the l ibraries,
you may experience various l inking errors during val idat ion or compilat ion.

Performance issues with SAP or Cit rix scripts

If you experience performance issues with SAP or Citrix scripts, increase your system paging fi le size to a
fixed size of at least four t imes the amount of RAM on the machine.

QALoad 5.02

191

Conduct or

Overview of the QALoad Conductor
You use the QALoad Conductor to configure, run, and monitor a load test that ut i l izes the scripts you
created in the Script Development Workbench. The Conductor controls the QALoad Players and manages
tests whi le they're running.

Before running a test, you must set up a test by recording descript ive in format ion about the test, sett ing
general test opt ions, configuring Player workstat ions, assigning compiled test scripts to Players, and sett ing
up monitoring opt ions. Then, save the test setup in a fi le cal led a session ID. Once you've configured and
saved a test session ID, you can reuse i t without needing to re-enter any of your test in formation.

While a test is running, the Conductor in terface changes to a tri -pane view cal led the Runtime window
that faci l i tates monitoring of individual machines and Players, and displays real-t ime test results. You can
view default graphs of performance data that are created for you by the Conductor and create custom
graphs based on the data being col lected during the test. Your custom graph layouts can be saved in the
session ID fi le and reused in future tests.

About the Conductor

Overview of the QALoad Conductor

You use the QALoad Conductor to configure, run, and monitor a load test that ut i l izes the scripts you
created in the Script Development Workbench. The Conductor controls the QALoad Players and manages
tests whi le they're running.

Before running a test, you must set up a test by recording descript ive in format ion about the test, sett ing
general test opt ions, configuring Player workstat ions, assigning compiled test scripts to Players, and sett ing
up monitoring opt ions. Then, save the test setup in a fi le cal led a session ID. Once you've configured and
saved a test session ID, you can reuse i t without needing to re-enter any of your test in formation.

While a test is running, the Conductor in terface changes to a tri -pane view cal led the Runtime window
that faci l i tates monitoring of individual machines and Players, and displays real-t ime test results. You can
view default graphs of performance data that are created for you by the Conductor and create custom
graphs based on the data being col lected during the test. Your custom graph layouts can be saved in the
session ID fi le and reused in future tests.

Taking a look at the Conductor

Taking a look at the Conductor

The Conductor's in terface is dynamic — i t changes depending on where you are in the test ing process:
sett ing up a test, or running a test. Both in terfaces are described below.

Test setup

The Conductor's Main Window is divided into tabs on which you enter in formation about your test and
set up the machines and scripts for the test. For more in formation about the test setup in terface, see Test
setup in terface.

Runn ing a test

QALoad 5.02

192

While a test is running, the Main Window changes into the Runtime Window, which displays vital
in formation about your running test and provides several controls to alter your test on-the-fly. For more
in formation about the Runtime Window and how to use i t whi le running a test, see Running a test.

Test setup

Test setup in terface

The Conductor's Main Window is divided into tabs on which you enter in formation about your test and
set up the machines and scripts for the test. In addit ion, the Conductor's toolbar provides access to
standard Windows funct ional i ty such as Print and Copy, as well as quick access to Conductor setup
opt ions and to QALoad Analyze. Use the tabs on the Main Window to set up your test. For detai led
in formation about the fields on these tabs, cl ick one of the l inks that fol low or press F1 from any
Conductor tab.

Field descript ions for each tab:

Test In formation
Script Assignment
Machine Configurat ion
Monitoring Options
Machine Assignment

Test In form at ion

Use th is tab to enter descript ive in formation about the test, view stat ist ics from the previous test, and set a
maximum amount of t ime for the current test to run. Al l descript ive in format ion about the test wi l l be
incorporated in to your test 's t im ing fi le, and can be viewed in Analyze with your test stat ist ics after the test
has fin ished.

QALoad 5.02

193

Test Descript i on : Enter a descript ion of the test, for example, i ts purpose. This field is wri t ten to your test 's
t im ing fi le to describe the test. This field is opt ional.

Cl ien t System : Enter a descript ion of the cl ient workstat ions. This field is opt ional.

Server System : Enter a descript ion of the server(s) under test. This field is opt ional.

Database Size: Enter a descript ion of the database used in th is test. This field is opt ional.

Com m ents: Enter any general comments about the test in th is field. Note that th is field is overwrit ten at
the end of a test i f the Post Test Remarks check box on the Options dialog box, General tab is enabled. In
that case, notes you type in the Post Test Remarks dialog wil l be saved to the test 's Summary Report.

Session Durat ion : Enter a value to specify the maximum amount of t ime for the test to run. Entering zero
(the default) wi l l execute the test indefin i tely. You can determine whether to stop the test immediately
when the durat ion expires or to al low the virtual users to complete the running transact ions by using the
opt ion Graceful ly exit users when Session Durat ion expires on the Options dialog box, General tab.

Enable Test Recording: Select th is check box to record load tests for later review.

Test Tim e: This field displays the t ime the previous test started.

Test Date: This field displays the date the previous test started.

Test Durat ion : This field displays the length of t ime i t took for the previous test to run.

Total Vi rtual Users: This field displays the number of virtual users assigned to the previous test.

Total Pass Transact ions: This field displays the number of t ransact ions that ran successful ly in the
previous test.

Total Fai l Transact ions: This field displays the number of t ransact ions that fai led in the previous test.

Script Assignm en t

Use th is tab to set up any scripts that have previously been recorded and compiled. Any scripts you add
here wil l be included in your load test, and one virtual user wi l l be automatical ly assigned to your script on
the M ach ine Assignm en t tab. After sett ing up your scripts here, you must assign addit ional virtual users to
your script from the M ach ine Assignm en t tab.

Script : Select a script from the drop-down l ist , or cl ick the New button to add a script .

New but ton : Cl ick th is button to browse for a script to add to the test.

Delete but ton : Cl ick th is button to remove the selected script from the load test.

Delete Al l : Cl ick th is button to delete al l scripts from th is test.

Type: Lists the middleware type of the script . Cl ick the browse (...) button to set custom middleware
opt ions.

Transact ions: Type the number of t ransact ions that each virtual user running the designated script should
run. Once a workstat ion reaches the maximum number of t ransact ions, the script cont inues execut ion
with the l ine fol lowing the End_Transact ion command rather than return ing to the top of the transact ion
loop. If you enter 0, the Conductor wi l l execute the script indefin i tely.

Debug Opt ions: Cl ick the browse button to access the Debug Options dialog box, where you can configure
debug sett ings for the script .

Error Handl ing: Choose how to respond when a non-cri t ical error occurs during execut ion of the
transact ion. During large load tests, errors can sometimes indicate that the test is strain ing the l im its of the
hardware/software in the test ing environment. Options are:

! Continue Transaction — If an error occurs while a transaction is being executed, the Player should continue
executing the transaction as if the error had not occurred. Select this option when errors are not critical to the
performance of the load test and can be safely ignored.

QALoad 5.02

194

! Abort Transaction — If an error occurs while a transaction is being executed, the Player should abort the current
transaction and the virtual user who encountered the error should exit the test. Use this option when errors will make
the virtual user invalid for executing more transactions.

! Restart Transaction (WWW, SAPGUI, and Citrix scripts only) — If an error occurs while a transaction is being
executed, the Player should abort the current transaction entirely and restart a new transaction from the beginning.
Note that the transaction count will increase for each transaction that is restarted.

QALoad uses two commands — DO_SetTransact ionStart() and DO_SetTransact ionCleanup() — to control
error handl ing. These commands are inserted in to your script by the conversion process.

Sleep Factor %: QALoad records the actual delays between requests and inserts the DO_SLEEP command in
the script to mimic those delays when the script is played back in a test. You can maintain the exact length
of the recorded delays at playback, or shorten them by entering a smaller percentage of the original ly
recorded delay to play back. For example, i f you recorded a delay of 10 seconds then DO_SLEEP (10); is
wri t ten to your script . Then, i f a Sleep Factor of 50% is specified here, the Player wi l l sleep for 5 seconds at
that statement when the test is executed.

Val id values for Sleep Factor % are 0-100% and also Random, which wil l cause the Player to sleep for a
randomly selected durat ion between 0 and the number of seconds specified in the DO_SLEEP() statements.

When a load test is executed with a Sleep Factor of 100% the script executes at exact ly the same speed at
which i t was recorded; therefore, you can simulate the performance of faster users by specifying a lower
Sleep Factor % value.

Hint: Enter a value of zero during unit testing to eliminate the actual sleeps from the script. After you unit
test the script, you can restore the original recorded delays by changing the Sleep Factor to a higher
percentage.

Service Level Th reshold : Enter a response t ime to use as the threshold for comparing other response
t imes. When you run a test, a l ine represent ing the Service Level Threshold wi l l appear in the runt ime
window. As the test progresses, you can compare incoming response t ime data to the Service Level
Threshold. This is a prel im inary way of analyzing test results without wait ing to open the t im ing fi le at the
end of the test, and can be used as an indicator to determine i f/when Dial-Up users should be added to the
test.

Pacing: Enter a value in th is field for the rate of pacing. Pacing is the t ime interval between the start of a
transact ion and the beginning of the next transact ion on each workstat ion running the script . For
example: i f a transact ion is designed to dupl icate the process of someone handl ing incoming telephone
cal ls and those cal ls arrive at a rate of 40 per hour/per person, set the pacing rate at 90 seconds.

The default pacing value is one second. This al lows the Conductor to thrott le runaway virtual users.

QALoad randomly schedules transact ions so that each transact ion executes on an average according to th is
predetermined rate. When a transact ion completes faster than i ts pacing rate, QALoad delays the execut ion
of the next transact ion for that workstat ion so that proper pacing is met. Since we do not normally t ime
events according to th is predetermined rate, QALoad randomly accelerates or delays the pacing on a
workstat ion-by-workstat ion basis. However, on the average, QALoad provides pacing according to the value
that you assign.

Tim ing Opt ions: Cl ick the browse button to open the Timing Options dialog box, where you can choose
to include QALoad's automatic t im ings in your test results or determine how much t im ing data to col lect.

Extern al Data: Cl ick the browse button to open the External Data dialog box where you can select any
central datapool fi les, local datapool fi les, or addit ional external support fi les necessary for your test.

M ach ine Con f igurat ion

Use the M ach ine Con f igurat ion tab to configure the various machines and agents that wi l l part icipate in
a load test. You can configure Player Machines, Server Analysis Agents, Remote Monitor Agents, and
Appl icat ion Expert in formation from a single screen.

QALoad 5.02

195

You should use th is tab to update Player or Agent in formation whenever a Player or Agent is added to the
test network, removed from the test network, or the network address of a Player or Agent has changed.

The fields on th is tab vary according to whether you choose the Player Machines, Server Analysis Agents,
Remote M onitor Agents, or Appl icat ion Expert opt ion. Fields for Players and each agent type are described
below.

Player Agents

Player machines execute the virtual users that wi l l perform the transact ions recorded in your test scripts. If
no Player machines are l isted, cl ick the Discover but ton to retrieve in formation from Player machines on
the local network, or you can add Player machines manually.

Discover, add, delete, or modify Player machines using the fol lowing fields:

Agen t M ach ine: Lists the hostname or IP address of the Player machine. You can edit the value, but i t
must be a val id hostname or dotted IP address so the Conductor can communicate with the machine
during the test. Select the check box next to the Player machine to add i t to a test, or clear the check box to
disable the Player. Disabled Player M achines wil l not be avai lable to run virtual users during the load test.
Compuware recommends you veri fy the hostname/IP address before attempting to run a test by cl icking
Request for the selected Player machine.

Operat ing System : Lists the operat ing system of the Player machine. This in formation is retrieved from
the Player machine when you use the Request or Discover opt ions. If you have manually added a Player
machine instead, th is column wil l l ist Unknown for that machine unt i l the machine has been successful ly
requested using Request or Discover . This in formation can be helpful in determin ing how many virtual
users to al locate to a machine, or to help you determine i f service packs should be appl ied to test mach ines.

M ax Threads: Lists the maximum number of thread-based virtual users the Player machine is configured
to execute. This value is automatical ly determined based on the sett ings in the Machine Defaults area on
the Options dialog box. You can overwrite the default value for the selected Player machine by changing
the amount in th is field.

M ax Processes: Lists the maximum number of process-based virtual users the Player machine is configured
to execute. This value is automatical ly determined based on the sett ings in the M ach ine Defaul ts area on
the Options dialog box. You can overwrite the default value for the selected Player machine by changing
the amount in th is field.

Perform an ce Data: Cl ick to access the Performance Data Options dialog box, where you enable
performance data col lect ion.

Discover M ach ines: Cl ick Discover M ach ines for QALoad Conductor to query the network for avai lable
Player workstat ions and display the results on th is tab.

Request : Cl ick Request for the Conductor to send a request to the selected Player to veri fy that i t is up-
and-running.

Request Al l : Cl ick to request al l assigned Players to ensure that they are up-and-running.

New : Cl ick to access the New Entry dialog box where you can configure a Player workstat ion to add to the
test.

Delete : Cl ick to delete the selected entry.

Delete Al l : Click to delete the ent ire l ist .

Server Analysis Agents

Enable Data Capture: Select to capture data from the Agents at runt ime.

Add Tem plates to Selected Agen t : Cl ick to navigate to a pre-defined template of counters to assign to th is
Agent machine.

QALoad 5.02

196

Discover Al l Agen t Coun ters: Cl ick to query the network for workstat ions wi th Server Analysis Agents
instal led, and to load information about the counters avai lable from each. The results wi l l be l isted in the
tree-view.

Discover M ach ines: Cl ick Discover M ach ines for QALoad Conductor to query the network for avai lable
Server Analysis Agent workstat ions and display the results on th is tab.

New : Cl ick New to access the New Entry dialog box where you can configure a Server Analysis Agent
workstat ion to add to the test.

Delete: Cl ick th is button to remove the selected Agent workstat ion from the tree-view.

Delete Al l : Cl ick to remove al l Server Analysis Agents from the test.

Remote Monitor Machines

Enable Data Capture: Select to capture data from the Agents at runt ime.

New : Cl ick New to access the Remote M achine Configurat ion dialog box, from which you can configure a
Remote M onitor Agent workstat ion to add to the test.

Delete: Cl ick th is button to remove the selected Agent workstat ion from the tree-view.

Delete Al l : Cl ick to remove al l Remote Monitor Agents from the test.

Application Expert

Note: Before you can collect network performance data from Application Expert, it must be properly installed
and configured. For details, see Application Expert overview.

M ach ines to Add : Select from the l ist of machines that have Player agents instal led and use the arrow
buttons to move the machine name into the IP Pai rs area as Address 1.

IP Pai rs: In the Address 1 and Address 2 columns, add the machine names between which you want to
monitor traffic. Address 2 should be the IP or machine name of the first t ier of the appl icat ion being tested,
or you can simply type any to capture al l t raffic for Address 1. You can specify machines with URLs or IP
addresses. Select the Incl ude checkbox to specifical ly monitor those machines, or clear the check box to
turn monitoring off for those machines.

Note: If the network environment is running over a switch, then Address 1 must be the IP address of the
Conductor machine and the virtual user to capture must execute from that machine. If the network environment
is running over a hub (shared network), then Address 1 can be any Player machine available for testing. For
more information, see Configuring a test to use Application Expert.

Host Nam e: This field automatical ly l ists the name of the machine where the Conductor is instal led. Do
not change th is.

Usern am e: Type a val id user name for the machine l isted in the Host Nam e field.

Passw ord : Type the password corresponding to the Usern am e.

NIC Nam e: From the l ist , select the NIC (network in terface card) the machine l isted in the Host Nam e
field should use.

M on i toring Opt ions

Use the M on i toring Opt ions tab to specify opt ions for in tegrat ing ServerVantage into your load test.
QALoad assumes that the appropriate ServerVantage software is instal led, configured, and running prior to
start ing a load test.

Enable ServerVan tage In tegrat ion : Select i f you are in tegrat ing with ServerVantage.

Con t rol Server Hostnam e: Type the hostname of the machine where the ServerVantage server is
located.

Usern am e: Type a val id user name to access the ServerVantage server.

QALoad 5.02

197

Passw ord : Type the password corresponding to the user name above.

Override Defaul t Database: Select to provide the ServerVantage database name. When th is opt ion is
not selected, QALoad uses the default ServerVantage database name. If you provided a different name
during the instal lat ion of ServerVantage, select th is opt ion and type the name in the Database Nam e
field.

Database Nam e: If you selected the Override Defaul t Database opt ion, type the name of your
ServerVantage database.

Van tage Agen t Con f igurat ion : Type the hostname of a machine(s) where a ServerVantage Agent is
instal led, and cl ick Add to add i t to your load test.

Agen ts to M on i tor : Lists the machine names of each ServerVantage agent being monitored for th is
test.

Rem ove: To remove an agent machine from your load test, select i t in the Agents to Monitor area and
then cl ick Rem ove.

M ach ine Assignm en t

Use the M ach ine Assignm en t tab to assign scripts to specific Player workstat ions. You can use the Edi t
menu's Copy and Paste commands to copy and paste machine entries (rows) as needed.

Script : This field displays the script name. To add a script , cl ick New .

M iddlew are: Displays the middleware type the script was created for.

Start i ng VUs: Type number of virtual users to begin the test.

VU Increm en t : Type the number of virtual users to be added, at in tervals, after the test begins.

Tim e In terval : Displays the t ime interval at which incremental virtual users wi l l be added to a test. Change
the t ime interval by typing a new value.

Ending VUs: Displays the number of virtual users assigned to run unt i l the end of the test.

M ach ine: From the drop-down l ist , select Player machines to assign each script to run on.
For Appl icat ion Expert and Appl icat ionVantage integrat ions, the Player and Conductor machines must be
on the same LAN. For more in formation about in tegrat ing with Appl icat ion Expert or Appl icat ionVantage,
see Appl icat ion Expert /Appl icat ion Vantage overview.

M ode: Select the test mode for each Player machine: th read-based , process-based .

New but ton : Cl ick to access the Select Script dialog box where you can select a script to add to the test.

Delete: Cl ick to delete the selected script .

Delete Al l : Cl ick to delete al l scripts.

Auto Con f igure: Cl ick th is button to have QALoad automatical ly assign scripts to virtual users.

Run : Cl ick to start a test run. This button is only enabled i f your test is completely set up.

Running a test

Runt im e w indow in terface

When you start a test, the Conductor's in terface changes to an in teract ive test control stat ion cal led the
Runtime Window. The Runtime Window displays in formation about the scripts, machines, and virtual
users that are execut ing the load test. The test data is divided into three views – Detai ls, Graphs, and
Session – that are accessed from the Test Views workspace on the left side of the in terface.

From the Runtime Window, you can observe the progress of individual scripts and Player machines, view
real-t ime graphs, and start or suspend scripts and Players from a running test to better simulate the

QALoad 5.02

198

unpredictabi l i ty of real users. This window has three unique areas. Cl ick on a pane in the fol lowing graphic
for a brief descript ion of that pane. Or, cl ick on the l inks below the graphic for detai led in formation.

Detai l s view

The Detai ls view of the Data window displays al l your test data in real-t ime in a series of in teract ive tabs.
By cl icking on icons represent ing scripts, virtual users, and workstat ions, you can view different types of
data. By default , each test displays test detai ls in the right pane. You can also choose to view the script a
single virtual user is running, the Web page a WWW script is ut i l izing, or the RIP fi le generated by a fai led
virtual user.

Test detai ls

Test detai ls display automatical ly, and describe the object you select in the tree view. You can view detai ls
for al l test scripts, individual test scripts, al l player machines, and individual player machines.

See Test detai ls for more in formation about the Tree i tems that can be displayed in the data window.

Runt ime tabs

The fol lowing runt ime tabs can be displayed for a running script . These tabs can be enabled from the
Vi rtual User menu.

Debug
Monitor (Web User)
RIP Fi le (WWW)

Runtime Control Panel

The Runtime Control Panel is a dockable control stat ion that enables you to change virtual user opt ions
and data transfer opt ions while the load test is running. For more in formation, see Runtime Control Panel.

Graphs view

The Graphs view displays graphs of data col lected during the test. By default , the Graphs view displays
graphs for response t imes, test status, and player machine health.

Other graphs, such as user-defined checkpoints and Remote M onitoring counters, can also be plotted in
the right pane of the Graphs view i f they were enabled for the session.

QALoad 5.02

199

To display graphs:

1. Right-click on a counter or other data type in the tree view that you want to plot in a graph.

2. Choose Add Graph or Add Plot To.

You can also modify a graph's appearance by right-cl icking on the graph and choosing one of the
formatt ing opt ions, such as colors and axes propert ies. To increase the visibi l i ty of a plot when you have
mult iple plots on a graph, cl ick on a plot (or that plot 's number in the legend) to h ighl ight i t .

Session view

The Session view provides summary in formation about the test session that is current ly running. The
Session view can be printed as a report by right-cl icking and choosing Prin t from the shortcut menu.

Note: The Session view below has been cropped to better fit this help topic, while still representing what a
real Session view might look like.

Click on the sect ions in the fol lowing graphic for more in formation about the Session view.

QALoad 5.02

200

QALoad Conductor menus and toolbar but tons

The Conductor's menus and toolbar buttons are dynamic; their content depends on whether you are
preparing a test setup or running a test.

Test setup

The Conductor Configurat ion and Setup Menus al low you to configure the Conductor and your specific
test. Cl ick a menu or toolbar name below for detai ls:

Fi le
Edit
View
Run
Tools
Help
Configurat ion and Setup toolbar buttons

QALoad 5.02

201

Running a test

The Conductor's Runt ime menus and toolbar al low you to control your running test and the data that is
displayed at test t ime. Cl ick a menu name below for detai ls:

Test Options
View
Runtime Windows
Virtual User
Graph
Runtime toolbar buttons

Server and performance monitoring

QALoad integrates several mechanisms for merging load test response t ime data with server ut i l izat ion data
and performance metrics. Select the method that best suits your needs, or for which you are l icensed (i f
appl icable). Most methods produce data that is included in your load test t im ing results and processed in
QALoad Analyze. The only except ion is Appl icat ion Vantage. Data captured from Applicat ionVantage can
be opened in Appl icat ion Vantage or Appl icat ion Expert , but not in QALoad.

This sect ion briefly describes each method, and provides l inks to more detai led in formation about sett ing
up a test that includes the appropriate method.

! Remote Monitoring — allows you to monitor server utilization statistics from a remote machine without installing any
software on the remote machine.

! Server Analysis Agents — must be installed on each applicable machine.

! ServerVantage — integrates with your existing ServerVantage installation. You must be licensed for and have
installed and configured the appropriate product in order to integrate with QALoad .

! Application Expert/ApplicationVantage — collects test data that you can open in both Application Expert and
Application Vantage.

Monitoring CPU usage

To help you monitor the impact of running a load test on a server, QALoad can col lect data from selected
Players about CPU usage during a load test. The stat ist ics col lected during the test are merged into the test 's
t im ing fi le so you can view them in Analyze after the test.

When the Top Process M on i toring coun ter is enabled for a Server Analysis Agent machine, in formation
wil l be col lected periodical ly during the load test about which processes are using the most CPU. The
Conductor wi l l col lect in formation for up to ten processes during the test, but sometimes less i f some
processes are not affect ing CPU usage. Counter data wi l l be writ ten to your test 's t im ing fi le, which you can
open in Analyze after your test.

Note: During a load test, if the CPU idle time of your machine falls below 25%, check the individual
processes on your machine. If the Players and virtual users are utilizing most of the active CPU time, you should
use additional Player machines and fewer virtual users per Player to conduct your load test.

QALoad can compile stat ist ics from al l processes current ly running on the following platforms: Windows
2000 and XP, HP-UX, Linux, and Solaris.

To col lect Top Processes dat a:

1. With your test session ID file open, click the Machine Configuration tab.

2. Click the Server Analysis Agents option that is directly beneath the toolbar.

QALoad 5.02

202

3. If necessary, click Discover Machines so the Conductor can locate the available Server Analysis Agent machines
on your network.

4. To enable Top Process Monitoring on any Server Analysis Agent machine, click on the machine name to expand the
tree-view of available counters for that machine. Then, select the Top Process Monitoring counter.

5. To save your changes to your test session ID file, select File>Save from the Conductor menu.

When your test is fin ished, the Top Processes data col lected wil l be included in your test 's t im ing fi le which
you can open in QALoad Analyze.

Dial-up virtual users

QALoad's dial-up/dial-down feature al lows you to dynamical ly add or reduce virtual users to your test at
the script or Player level whi le your test is running, so you can adjust your running test according to test
behavior on-the-fly, rather than stopping to re-configure playback cri teria.

To use the dial-up/dial-down feature, you:

! must be licensed for at least the number of virtual users requested

! must configure a ramp-up session before running the test

Set t ing up a test

Overview of test setup

To set up a load test, you wil l set opt ions related to general Conductor behavior as well as in formation
about your specific test environment. Before you can successful ly set up a load test, you must have
recorded and compiled one or more test scripts. For in formation about recording a test script , see
Developing scripts in the Gett ing Started sect ion.

Determining general Conductor behavior

General Conductor opt ions you set wi l l be appl icable for al l tests run unt i l you change them. Conductor
opt ions are related to the fol lowing:

! Viewing options for real-time results

! Global Player options

! Player machine performance data

! Options for runtime reporting

! And more...

All of the above information, and more, can be configured from the Conductor's Options dialog box.

Setting up a specific test session

To prepare the Conductor for a specific test, you wil l save information and parameters specific to that test
in to a reusable session ID fi le (.id). You wil l need to enter the fol lowing types of in formation to set up a
test 's session ID fi le:

! General information about the test such as a description, the size of the database, the length of the test, and any
notes or comments

! Information about the test script(s) included in the test, including script name, middleware/protocol type, pacing,
whether to include external data, and so on

! Information about the workstations where the QALoad Players reside, including which script is assigned to each
workstation, how many virtual users are assigned to each workstation, the machine name, and so on

! (Optional) configuration for server monitoring

! (Optional) integration with other Compuware products.

QALoad 5.02

203

All of the above information can be entered and saved from the Conductor's main window, the Test
In formation Window.

Ant icipat ing error condit ions

You know before beginning a load test that errors are a possibi l i ty, but you may not always want them to
stop you cold.

QALoad helps you ant icipate error condit ions and determine, before running your test, how your Players
wi l l react to non-fatal errors. By sett ing one opt ion, you can instruct a Player to cont inue as i f no error was
encountered, stop running immediately, or restart at the beginning of the transact ion.

To set the error handl ing opt ion, see the help topic for the Script Assignment tab.

Configuring the Conductor

There are several sett ings for the Conductor that you should review before beginning your load test.

To set Conduct or opt ions t hat are not speci f ic t o one t est :

1. From the main menu, choose Tools>Options.

2. On the Options dialog box, set options related to post-test activity, warnings and prompts, runtime grids, timing
settings, interface refresh intervals, Conductor/Player communications, monitoring intervals, and more.

3. When you are finished, click OK to save your changes. Any options you set will apply to all tests until you change
them.

For detai led descript ions of the opt ions that are avai lable, see Options dialog box.

Managing large amounts of test data

Your load test wi l l probably include a large number of checkpoints and virtual users in order to adequately
test your system. When your test is running and your Conductor is col lect ing t im ing in formation from
your Player machines, the sheer amount of data can take up more of your resources than you'd l ike to
expend. Use QALoad's Timing Data Thinning opt ion to th in the amount of t im ing data being transferred
back to the Conductor during the test so that your test can run longer without stressing your resources.

1. With your test session ID file open, click the Script Assignment tab.

2. For each script for which you would like to thin your test data, click the button in the Timing Options column.

3. On the Timing Options dialog box, click the Enable Timing Data Thinning check box.

4. In the Thin Every... field, type the number of transactions to average. The average will be sent to the Conductor for
inclusion in the timing file, rather than every value.

5. Click OK.

6. Save your changes to your test session ID file by choosing File>Save from the Conductor menu.

For more detai ls about the Timing Options dialog box, see Timing Options.

Set t ing up a test session

You can enter al l the in formation necessary for your session ID fi le right from the Conductor's main
window, the Test In formation Window.

QALoad 5.02

204

Hint: The following procedures guide you through setting up a reusable test session ID using the
Conductor's main window, the Test Information window. Follow each step in turn to configure your test, or revisit
this help topic later to make changes to any specific part of the test setup.

Step 1: Enter descriptive information about the test

On the Test In form at ion tab:

1. (Optional) Type descriptive information about the test in the Test Description, Client System, Server System,
Database Size, and Comments fields.

2. In the Session Duration field, type a time limit to specify the maximum duration for the test to run. Enter zero if you
do not want to specify a maximum duration.

Hint: For details about any field on the Test Information tab, see Test Information.

Step 2: Assign compiled scripts to the test

On the Script Assignm en t tab:

1. Click New to open the Select Script dialog box. The Select Script dialog box lists the scripts available for your
transaction type. If it does not, select your transaction type (middleware environment) from the Scripts of Type list.

Hint: To open the Select Script dialog box from the Script column, click in the Script column to enable the
Browse (...) button. Then, click Browse.

The Select Script dialog box l ists a status for each script that indicates whether the script is compiled.
If i t is not, you must compile the script before attempting to use i t in a test.

2. Select a script from the list and click Select to return to the Script Assignment tab.

3. Continue selecting scripts until all scripts you wish to use in this test are listed.

Hint: For details about any field on the Script Assignment tab, see Script Assignment.

Step 3: Set test options for each script

For each assigned script on the Script Assignm en t tab:

1. In the Transactions column, type the number of transactions that each virtual user running this script should run.
Once a workstation executes the number of transactions that you specify, script execution continues with the line
following the End_Transaction command rather than jumping to the beginning of the transaction loop

2. Click in the Debug Options column to enable the Browse button. Click Browse to open the Debug Options dialog
box, and then set any options for Debug Trace and Logfile generation. For a description of the Debug Options
dialog box, see Debug Options.

3. In the Error Handling column, select the option that indicates how the Player running this script should behave
when encountering non-fatal errors: Abort the transaction, Continue the transaction, or Restart the transaction.

4. Enter a value in the Sleep Factor column to specify the percentage of any originally recorded delay to preserve in
the script (for example, a value of 80 means preserve 80% of the original delay).

5. In the Service Level Threshold column, type a maximum duration for this script. At runtime, the QALoad Conductor
will display a runtime graph comparing the Service Level Threshold with the actual duration.

6. In the Pacing column, type a value, in seconds, for pacing.

7. Click in the Timing Options column to enable the Browse button. Then, click Browse to access the Timing Options
dialog box and set options related to checkpoints and data thinning.

8. (Optional) Click in the External Data column to enable the Browse button. Then, click Browse to open the External
Data dialog box and associate any necessary external files with your selected script.

Hint: For details about any field on the Script Assignment tab, see Script Assignment.

Step 4: Set up Player machines

On the M ach ine Conf igurat ion tab:

QALoad 5.02

205

1. Select the Player Agents option.

2. Click Discover Machines to query your network for QALoad Player workstations. All workstations with QALoad
Players installed will be listed. If Player machines are discovered to have previous versions of QALoad installed, an
error message will inform you which machines need to be updated.

3. Check the availability of all the Player machines on your network by clicking Request All, or by selecting individual
machines and clicking Request. The QALoad Conductor will request each selected Player machine to ensure it is
available.

If a Player machine is avai lable, system information for that machine wil l appear in the Propert ies
dialog box for that Player machine (double-cl ick on the Player machine l ist ing to access i ts Propert ies
dialog box. If the Player machine is not avai lable, you wil l receive a message that the Player is not
responding.

4. (Optional) Use New to manually add a Player machine, or Delete or Delete All to remove machines. To save the
current machine setup for re-use, create a new configuration file (.cfg). How?

Hint: For details about any field on the Machine Configuration tab, see Machine Configuration.

Step 5: (Optional) Set up Server Analysis Agents

On the M ach ine Conf igurat ion tab:

1. Select the Server Analysis Agents option.

2. Click the Enable Data Capture check box to enable monitoring at test time.

3. Click Discover Machines to query your network for workstations with Server Analysis Agents installed. If machines
are discovered to have previous versions of QALoad installed, an error message will inform you which machines
need to be updated.

4. Determine which counters are available:

 All Server Analysis Agents — Cl ick Discover Al l Agen t Coun ters.

 Specific Server Analysis Agents — Double-cl ick on the machine name.

5. Select counters to monitor at test time. Expand the tree-view for a machine name to view the available counters, and
then click on the check box next to a counter to select it.

6. (Optional) Use New to manually add a Server Analysis Agent, or Delete or Delete All to remove them. To save the
current machine setup for re-use, create a new configuration file (.cfg). How?

Hint: For details about any field on the Machine Configuration tab, see Machine Configuration.

Step 6: (Optional) Set up Remote Monitor Machines

On the M ach ine Conf igurat ion tab:

1. Select the Remote Monitor Machines option.

2. Click the Enable Data Capture check box to enable monitoring at test time.

3. Click Discover Machines to query your network for available machines.

4. Determine which counters are available:

 All Remote Monitor Agents — Cl ick Discover Al l Agen t Coun ters.

 Specific Remote Monitor Agents — Double-cl ick on the machine name.

5. Select counters to monitor at test time. Expand the tree-view for a machine name to view the available counters, and
then click on the check box next to a counter to select it.

6. (Optional) Use New to manually add a Remote Monitor machine, or Delete or Delete All to remove them. To save
the current machine setup for re-use, create a new configuration file (.cfg). How?

Hint: For details about any field on the Machine Configuration tab, see Machine Configuration.

Step 7: (Optional) Set up integration with Application Expert

On the M ach ine Con f igurat ion tab:

QALoad 5.02

206

1. Select the Application Expert option.

2. Click the Enable Data Capture check box to enable monitoring at test time.

3. In the Machines to Add area, choose the Player machine that will be running the virtual user to be captured. To
make your selection, highlight the machine name and click the arrow button to move the machine name into the IP
Pairs area as Address 1.

Address 2 should be the IP or machine name of the first t ier of the appl icat ion being tested, or you
can simply type any to capture al l t raffic for Address 1. Select the Include check box to monitor
communicat ions between those two machines during your load test.

Note: If the network environment is running over a switch, then Address 1 must be the IP of the Conductor
machine and the virtual user to capture must execute from that machine. If the network environment is running
over a hub (shared network), then Address 1 can be any Player machine available for testing. For more
information, see Configuring a test to use Application Expert.

4. The Login Area section should only be modified if you have installed the ApplicationVantage Remote Agent and not
the QALoad Vantage Agent. These fields will contain the network information for the workstation where your
ApplicationVantage Remote Agent is installed.

a. Host Nam e: This field automatical ly l ists the name of the machine where your Conductor
is instal led. Do not change th is.

b. Usern am e: Type the user name used during the instal lat ion of the Appl icat ionVantage
Remote Agent. If using the QALoad Vantage Agent, type the username Admin.

c. Passw ord : Type the password used during the instal lat ion of the Appl icat ionVantage
Remote Agent. If using the QALoad Vantage Agent, type the password Admin.

d. NIC Nam e: From the drop-down l ist , select the NIC (network in terface card) that is used by
the machine in the Host Nam e field.

e. (Optional) To save the current machine setup for re-use, create a new configuration file (.cfg). How?

At test t ime, the Conductor wi l l pass th is in formation to your instal lat ion of Appl icat ion Expert , which wil l
then capture the communicat ions between the speci fied pairs of machines and save that in formation to a
fi le you can open in Appl icat ion Expert after the test has fin ished. The fi le, with an .opt extension, wi l l be
saved to the \ temp directory of the current user's profi le directory.

Hint: For details about any field on the Machine Configuration tab, see Machine Configuration.

Step 8: (Optional) Set up integration with ServerVantage

On the M on i toring Opt ions tab:

1. Click the Enable ServerVantage Integration check box.

2. In the Control Server Database Host field, type the hostname of the machine where the ServerVantage server is
located.

3. In the Username field, type a valid user name to access the ServerVantage server.

4. In the Password field, type the password corresponding to the user name above.

5. Select the Override Default Database check box to provide the ServerVantage database name. When this option is
not selected, QALoad uses the default ServerVantage database name. If you provided a different name during the
installation of ServerVantage, select this option and type the name in the Database Name field.

6. In the Vantage Agent Configuration area, type the hostname of a machine(s) where a ServerVantage Agent is
installed, and click the Add button to add it to your load test.

Step 9: Assign scripts to Player machines

On the M ach ine Assignm en t tab, the scripts you assigned to the test on the Script Assignm en t tab are
l isted in the Script column. Fi l l in the fol lowing columns:

Note: Use Auto Configure to have QALoad automatically assign scripts to virtual users.

QALoad 5.02

207

1. In the Starting VUs column, type the number of virtual users to initially launch the script on this machine when a test
begins.

2. In the VU Increment column, type the number of virtual users that should be added, at intervals, if you want this
machine to add incremental virtual users. You must also fill in the Time Interval and Ending VUs fields.

3. In the Time Interval column, type the time interval at which incremental virtual users should be added to a test. (For
example, to add virtual users every 5 minutes, type 00:05:00). You must also fill in the VU Increment and Ending
VUs field.

4. Type the number of virtual users assigned to run until the end of the test.

5. In the Machine column for each script, select a Player machine from the drop-down list to assign it to that script. If
no Player machines are available in the drop-down list, click the Machine Configuration tab to set up a Player.

6. In the Mode column, select the test mode for each Player machine: thread-based or process-based.

7. (Optional) Use New, Delete, and Delete All to add or remove scripts from this test.

When al l scripts have been successful ly assigned to Player machines and the test is ready to run, Run on
the M ach ine Assignm en t tab wil l become avai lable and you can run a test.

Step 10: Save the test setup you just created as a reusable session ID file

Save the test setup

To save the current test setup to a reusable test fi le cal led a session ID, cl ick Fi le>Save to name and save i t .

Save the m ach ine con f igurat ions

To save the Player Agent, Server Analysis Agent, Remote Monitoring Agent, and Appl icat ionVantage
integrat ion configurat ions to a reusable fi le, cal led a configurat ion fi le (.cfg) see Saving machine
configurat ions.

Saving machine configurat ions

After configuring the machines to use for a load test , you can save the machine configurat ion in formation
in to a configurat ion fi le (.cfg) that can be reused in later tests, saving you significant t ime sett ing up later
tests. A configurat ion fi le includes in formation about which machines on the network were used as Player
Agent, Server Analysis Agent, Remote Monitoring, and Applicat ionVantage machines. You can save
mult iple configurat ions under different names. By default , when first using QALoad, the Conductor uses a
configurat ion fi le named Default.cfg. The Conductor wi l l save any changes to your machine
configurat ions to th is fi le unless you save your configurat ion to a new fi le with a different name.

You can open or save .cfg fi les from the Machine Configurat ion tab. The .cfg field always displays the
act ive configurat ion.

To creat e a new , em pt y .cf g f i le:

1. On the Machine Configuration tab, click on the drop-down .cfg field at the bottom of the tab.

2. Choose <New>.

3. On the Save As dialog box, specify a name for the new file and click Save.

4. Add the necessary Player and agent machines using the fields and buttons on the Machine Configuration tab. The
machines you configure are saved automatically to the file you just created.

To renam e t he cur rent .cf g f i le:

1. On the Machine Configuration tab, click on the drop-down .cfg field at the bottom of the tab.

2. Choose <Save As>.

QALoad 5.02

208

3. On the Save As dialog box, specify a name for the new file and click Save.

4. Make any necessary changes to the configuration. Your changes are saved automatically to the file you just created.

To open a previously creat ed .cf g f i le:

1. On the Machine Configuration tab, click on the drop-down .cfg field at the bottom of the tab.

2. Choose the .cfg file to open.

Note: The .cfg file only stores information about Player machines and counter agent machines. It does not
store information specific to a test, such as script names or settings. Test specific information is saved in the
session ID file. A session ID file for a specific test will save the name of the .cfg file associated with that test, and
open it automatically when the session ID file is opened. You can change the .cfg file at any time without
needing be concerned about the session ID file.

Add a Player workstat ion to a test session ID

Follow these instruct ions to add a Player workstat ion to your pool of avai lable Players in a test 's session ID
fi le.

To add a Player w orkst at ion t o a t est session ID:

1. On the Conductor's Test Information window, click the Machine Configuration tab.

2. Click the New button to open the New Entry dialog box.

3. Type the host name and port number of the new Player in the Agent Machine Host Name and Agent Port fields. If
you do not know a Player’s host name, check the Player’s window at startup. It displays the workstation’s Player
name.

4. Click the Request button to ensure the machine is available. If the Player is available, the number of thread- and
process-based virtual users it supports are listed in the appropriate columns, and the button text changes to OK.

If the Player does not respond, a message box appears indicat ing that the Player is not responding. If
the Player is not responding, one of the fol lowing scenarios is l ikely:

 The host name and/or port number you entered may not be correct. Check your
parameters and network connect ions, then try to send another request.

 The Player is not running. Start the Player and then try to send another request.

Adding sessions to a batch test

Before a session is added, the fol lowing condit ions must be true:

! The session must include a defined number of transactions. Sessions of unlimited transactions cannot be used in a
batch test.

! All scripts must exist prior to starting the batch test. This means that the files referenced in the selected session ID
files are present in the script directory.

A session can be placed in a batch mult iple t imes. This feature might be used to re-run a test or to perform
housekeeping chores, such as logging users in or out of a host or database.

To add a session :

1. From the Run menu, choose Batch Test.

2. In the Session Files (.id) box, highlight the session you want to add, and click the Add button.

QALoad 5.02

209

If you want to run a previously defined batch, cl ick the Load button to navigate to the directory
where the batch fi le (.run) resides. Select i t , and cl ick OK.

The session is added to the Batch List on the right side of the dialog box.

Adding a script to a test

To add a scr ip t t o a t est session:

1. From the Test Information Window, click the Script Assignment tab.

2. Click the Browse button in the Script column to open the Select Script dialog box.

3. From the Scripts of Type box, select your script type.

4. From the list of available scripts that appears, highlight a script name and click the Select button. You are returned
to the Test Information Screen.

5. In the Transactions column, specify the maximum number of transactions that you want each virtual user running
this script to run. Once a workstation executes the number of transactions that you specify, script execution
continues with the line following the End_Transaction command rather than jumping to the beginning of the
transaction loop.

6. Click the browse [...] button in the Debug Options column to access the Debug Options dialog box, where you can
specify virtual users for debug trace and logfile monitoring.

7. In the Error Handling column, select what to do when the script encounters an error: Continue Transaction (as if no
error had been encountered), Abort Transaction, or Restart Transaction (WWW, SAPGUI, and Citrix scripts only).

8. Enter a value in the Sleep Factor % column to specify the percentage of any originally-recorded delay to preserve in
the script (for example, a value of 80 means preserve 80% of the original delay). Valid values are 0-100, or Random.
The default value is 100%.

9. In the Service Level Threshold column, enter a response time by which to compare incoming response times during
a test. When you run a test, a line representing the Service Level Threshold will appear on the runtime graph. As the
test progresses, you can compare incoming response time data to the Service Level Threshold.

10. Enter a value, in seconds, in the Pacing field. Pacing is the time interval between the start of a transaction and the
start of the next transaction for each virtual user running a script.

11. In the Timing Options column, click the browse [...] button to access the Timing Options dialog box where you can
configure how much timing data is collected. For details about the Timing Options dialog box, click Timing Options.

12. Click the browse [...] button in the External Data column to access the External Data dialog box where you can
select a datapool or other file to include with your test. For details about the External Data dialog box, see External
Data.

13. From the File menu, choose Save to save your changes to the current session ID file, or Save As to save them to a
new session ID file.

Changing the number of virtual users

You can change the number of virtual users assigned to a script from the Test In formation Window,
Machine Assignment tab.

To change t he num ber of vi r t ual users:

1. Enter a new value in the Starting VUs column for the selected script.

2. If you have assigned incremental virtual users, change the values in the VU Increment and Ending Vus columns for
the appropriate script to determine how many virtual users to add at the interval specified in the Time Interval
column.

QALoad 5.02

210

3. From the File menu, choose Save to save your changes to the current session ID file, or Save As to save them to a
new session ID file.

Changing test opt ions

To change t est op t ions:

1. To change any of your test options, make your changes on the Test Information, Script Assignment, Machine
Configuration, Monitoring Options, or Machine Assignment tabs.

2. From the File menu, choose Save to save your changes to the current session ID file, or Save As to save them to a
new session ID file.

Removing a script from a test
1. On the Test Information Screen Script Assignment tab, click on the selection box to the left of the script name to

highlight the row.

2. Click Delete to remove the script from the test.

3. Select File>Save to save your changes to the current session ID file, or File>Save As to save them to a new
session ID file.

Removing a session from a batch test
1. Select Run>Batch Test.

2. Highlight the session to remove in the Batch List and click Remove.

Set t ing Auto Abort
1. Select Run>Batch Test.

2. Select Auto Abort After and use the slider to set the number of seconds to wait before aborting a test.

Normally, each test runs for the durat ion set in i ts respect ive session ID fi le. An individual test run is
complete when al l the virtual users have exited. If the Auto Abort After check box is selected and al l the
virtual users in a test do not exit with in the specified number of seconds, the Conductor automatical ly
aborts the test.

Remove used datapool records after a test

You can remove used datapool records after a test by sett ing the Strip Datapool funct ion before you run the
test. Use th is funct ion when running a test where you have data in the external datapool which can only
be used once by one virtual user at a t ime. (For example, when running transact ions that have unique data
constraints.) When act ivated, the Strip Datapool funct ion wil l mark each piece of data in the datapool that
is used during your test. When the test is over, the Strip Datapool funct ion prompts you to remove the
ident i fied used data from the datapool. If you run the test again, only new data wi l l be used for your
subsequent test.

To use t he St r ip Dat apool f unct ion:

1. With the current test's session ID file open in the Conductor, select the Script Assignment tab.

2. Click the External Data button. The External Data dialog box appears.

QALoad 5.02

211

3. In the Central Datapool area, select the Strip check box. Click OK.

4. At the end of your test, a Strip Datapools prompt will appear asking if you wish to go to the Strip Datapools screen.
Click Yes.

5. The Strip Data Pool dialog box appears. Click the Strip button.

6. When you are finished, click Done.

Set t ing automat ic st ripping of datapools between batch tests
1. Select Run>Batch Test.

2. Add sessions to the Batch List, or load the batch file you wish to run.

3. Select Automatic Datapool Stripping Between Tests.

Datapool records used during the test wi l l be removed before start ing the next test in the batch.

Note: Only those datapools marked as strippable on the External Data dialog box, accessible from the Test
Information Screen Script Assignment tab, will be removed.

Set t ing delays between tests

You can set a fixed delay or pause between tests by specifying a value in the Delay Betw een Tests field on
the Batch Test dialog box. After each test is complete, the Conductor delays for the specified amount of
t ime before start ing the next test.

Validat ing a script

Before running a test, you should run your script in a simple test to ensure that i t runs without errors. You
can val idate UNIX or Win32 scripts from the Conductor:

UNIX scripts

Win32 scripts

Debugging a script

If you encountered errors whi le val idat ing or test ing a script , use QALoad's debugging opt ions to monitor
the Player(s) that generated errors whi le they are running or after the test. Three debugging strategies are
described below.

Watch a virtual user execute a script on a Player workstation while it is running

To monitor selected virtual users at runt ime, enable the Debug Trace opt ion before you run your test.

To enable t he Debug Trace opt ion :

1. On the Conductor's Script Assignment tab, highlight the script you want to monitor.

2. In the Debug Options column, click the browse (...) button (note that the button may not be visible until you click in
the Debug Options column).

3. On the Debug Options dialog box, in the Debug Trace Virtual User Range area, choose which virtual users (if any) to
monitor. You can choose None or All Virtual Users, or choose Virtual User(s) and then type the numbers assigned to
the virtual users you want to monitor. You can monitor individual virtual users or ranges of virtual users.

4. Click OK to save your changes.

5. From the Conductor's main menu, click File>Save to save your test session ID.

QALoad 5.02

212

6. Run your test as usual. Each virtual user for which you enabled Debug Trace will display messages on its assigned
Player workstation indicating which commands are being executed.

Log details from selected virtual users while they are running (Citrix, DB2, ODBC, Oracle, Oracle Forms Server,
SAP, Uniface, Winsock, or WWW only)

You can instruct the Conductor to generate and save detai ls about the script execut ion of selected virtual
users by enabl ing Logfi le Generat ion before you run your test.

To enable Logf i le Generat ion:

1. On the Conductor's Script Assignment tab, highlight the script you want to monitor.

2. In the Debug Options column, click the browse (...) button (note that it might not be visible until you click it).

3. On the Debug Options dialog box, in the Logfile Generation Virtual User Range area, choose which virtual users (if
any) to monitor. You can choose None or All Virtual Users, or choose Virtual User(s) and then type the numbers
assigned to the virtual users you want to monitor. You can monitor individual virtual users or ranges of virtual users.

4. Click OK to save your changes.

5. From the Conductor's main menu, click File>Save to save your test session ID.

6. Run your test as usual. Each virtual user for which you enabled Logfile Generation will create a file containing
information about their performance. After the test is finished, the Conductor will request all log files from the Players
and save them in the directory \Program Files\Compuware\QALoad\LogFiles on the workstation where the
Conductor is installed. Log files are named <scriptname>_<middleware>_vu<AbsoluteVirtualUserNumber>.<ext>,
where:

! <scriptname> is the name of the script the virtual user ran

! <middleware> is the name of your middleware application

! <AbsoluteVirtualUserNumber> is the identification number assigned to the virtual user

! <.ext> is the file extension, dependent upon which middleware application you are testing. File extensions
are listed in the following table:

M iddlew are Fi l e Ex tension

Uniface
WWW

.cap — A standard log fi le contain ing
in formation about al l statements executed
during a test.

Citrix
DB2
ODBC
Oracle
Oracle Forms Server
SAP
Winsock
WWW

.log — A standard log fi le contain ing
in formation about al l statements executed
during a test.

View automatically generated log files from failed virtual users (Oracle and WWW only)

A Player that fai ls to execute a test script automatical ly generates a log fi le (with .rip extension) that detai ls
the requests that were played back by that Player. You can view a Player's .rip fi le from the Conductor's
Runt ime Window while a test is running, or later in QALoad Analyze. At the end of a test, al l .rip fi les are
sent from the Players to the \QALoad\LogFiles directory and added to the merged t im ing fi le, where you
can view them in Analyze.

To view a .r ip f i le w hi le t he t est is running :

QALoad 5.02

213

1. In the Runtime Window's tree-view, right-click on a failed Player icon.

2. From the context menu, choose Display RIP File.

A new tab opens in the Runtime Window displaying detai ls about the script the Player attempted to run,
and which subsequently fai led.

To view a .r ip f i le in QALoad Analyze:

At the end of your test, after al l test results have been col lected, open your result ing t im ing fi le in Analyze.
Cl ick on the RIP Fi les group to see a l ist of al l .rip fi les that were col lected during the test.

Running a test

Running a load test

When you have a load test properly set up, you can start the test by cl icking Run from the toolbar or by
choosing Run>Start Test from the menu.

Tip: While a test is running, the Conductor's interface changes to provide you with real-time test options.

Running a Series of Tests

You can also run a series of tests — a batch test. A batch test is comprised of mult iple session ID fi les.
When you run a batch test, the session fi les are executed sequential ly unt i l al l of them are executed. The
Conductor al lows you to run mult iple batch tests without operator in tervent ion.

Checking out virtual user licenses

If you are l icensed to run mult iple copies of the Conductor, for example so different work groups have
access to QALoad, you can check out virtual user l icenses before running a load test to ensure that enough
are avai lable for your test run.

If you do not choose to check out your l icenses before start ing a test, QALoad wil l prompt you after you
start the test and wil l at tempt to check out the appropriate number of l icenses. We recommend, though,
that you check your l icenses out manually before start ing so you can be sure you have enough virtual users
avai lable before beginning your test run.

To check out vi r t ual user l icenses:

1. From the Conductor menu, select Tools>Licensing. The License Information dialog box opens.

 If you are l icensed for concurrent l icensing (mult iple Conductors) the Conductor wi l l
query your l icense server to determine how many l icenses are current ly avai lable, and
return the results to th is dialog box. Go to step 2.

 If you have a node-locked l icense (a single Conductor), then most of the opt ions on
th is dialog box wil l be unavai lable, as you wil l not need to, or be able to, check out
virtual user l icenses. Al l virtual users for which you are l icensed wil l be avai lable to only
th is Conductor. Cl ick Close to return to your test setup.

2. In the Licensing Operations area, type how many virtual user licenses you want to check out in the Number of
Licenses field.

3. Click Check Out. The licenses will be checked out to your Conductor, and unavailable to any other Conductor
workstations on the network.

QALoad 5.02

214

When you are done using your l icensed virtual users, check them back in so they are once again avai lable
to other Conductor workstat ions on your network.

To check in vi r t ual user l icenses:

1. From the Conductor menu, choose Tools>Licensing. The License Information dialog box opens.

2. If you have licenses checked out, the Check in Virtual User License option is automatically selected for you.

3. Click Check In. The licenses will be made available to other Conductor workstations on the network.

Start ing a test

Click Run or choose Start Test from the Conductor’s Run menu.

Note: While a test is running, the toolbar changes to display the Runtime Toolbar buttons.

Start ing the Conductor from the command line

To start the Conductor from the command l ine, type:

mpwin32 <sessionID_file_name> /l /e /t

where val id startup parameters are:

Param eter Descript i on

/1
(Opt ional)

Creates a log fi le showing error messages and test status.

/e
(Opt ional)

Executes the indicated session ID fi le. If no session ID fi le
is specified, i t wi l l simply launch the Conductor without
opening a session.

/t
(Opt ional)

Executes the Conductor at a set t ime or a set date and
t ime. Time can be specified by either 12-hour or 24-hour
format. The fol lowing examples of the /t parameter
demonstrate each scenario.

Com m and Resul t

/t"03:30:00 pm" Starts the Conductor at
3:30PM today.

/t06:00:00 Starts the Conductor at
6:00AM today.

/t"12/01/04 03:30:00
pm"

Starts the Conductor on
December 1, 2004 at
3:30PM.

/t"12/25/04 14:00:00" Starts the Conductor on
December 25, 2004 at
2:00PM.

QALoad 5.02

215

Dialing up/ down virtual users

Note: If you haven't configured a ramp-up session, you will not be allowed to add or suspend virtual users
while the test is running. For information about configuring a ramp-up session, see Configuring a ramp-up
session.

When your test is running, the bottom of the Test In formation window turns in to the dockable Runtime
Control Panel, a port ion of which is shown below:

If you cl ick on a Player or script icon in the test 's tree-view, the Runtime Control Panel wi l l indicate how
many virtual users are current ly running on the selected Player machine or script . You can change the
number of running virtual users per script or per Player by select ing the appropriate script or Player
machine in the tree-view, and then typing a new number in the Running field (or by using the dial
control).

To dial up or dow n (add or subt ract) vi r t ual users dur ing a t est :

1. When your test is running, click on the script or Player workstation in the Runtime Window's tree-view for which you
want to add or subtract virtual users. The Running column in the top pane shows how many virtual users are
currently running on that script or Player.

2. In the Runtime Control Panel, type a new number in the Running field or drag the dial control to change the number.

3. When you are done, click the Apply button. The Conductor will release or suspend the specified number of virtual
users.

Your change do not take effect unt i l you cl ick the Apply button.

Increase/ decrease runt ime t iming updates

While a test is running, you can change the frequency at which t im ing updates are sent from the Players to
the Conductor. Decreasing the update in terval wi l l reduce the amount of overhead incurred in large load
tests due to the communicat ions between the Conductor and large numbers of virtual users.

On the Runtime Control Panel (bottom pane), choose from the fol lowing opt ions:

No Updates: Choose th is opt ion to stop sending t im ing data while the test is running. Data wil l st i l l be
col lected at the end of the test.

Send Al l : Choose th is opt ion to send al l t im ing data as i t is compiled.

Periodic Updates: Choose th is opt ion to specify a t ime interval for sending updates, then type the t ime
interval (in seconds) below.

Any change takes effect immediately, and appl ies to al l scripts in the test.

Manually Abort ing a Test

To manually abort a test (stop script execut ion for al l workstat ions), cl ick on the Abort toolbar button .

QALoad 5.02

216

Remove used datapool records after a test

You can remove used datapool records after a test by sett ing the Strip Datapool funct ion before you run the
test. Use th is funct ion when running a test where you have data in the external datapool which can only
be used once by one virtual user at a t ime. (For example, when running transact ions that have unique data
constraints.) When act ivated, the Strip Datapool funct ion wil l mark each piece of data in the datapool that
is used during your test. When the test is over, the Strip Datapool funct ion prompts you to remove the
ident i fied used data from the datapool. If you run the test again, only new data wi l l be used for your
subsequent test.

To use t he St r ip Dat apool f unct ion:

1. With the current test's session ID file open in the Conductor, select the Script Assignment tab.

2. Click the External Data button. The External Data dialog box appears.

3. In the Central Datapool area, select the Strip check box. Click OK.

4. At the end of your test, a Strip Datapools prompt will appear asking if you wish to go to the Strip Datapools screen.
Click Yes.

5. The Strip Data Pool dialog box appears. Click the Strip button.

6. When you are finished, click Done.

Running a series of tests (batch)

Running a batch test
1. Select Run>Batch Test.

2. Add the required session ID files to the Batch List using Add or Load.

3. Click Start to initiate the batch.

The Conductor then executes each of the session ID fi les in sequence.

Terminat ing a batch test

You can stop a batch of tests the same way you would stop a single session test, by cl icking the Abort or

Ex i t toolbar buttons.

Monitoring a running test

Watching a script execute

Use the Debug window in the Detai ls view of the runt ime Conductor to view the execut ing script . Note
that i t is possible that you won't see the execut ion of every statement, in order to min imize network traffic
between the Conductor and the Players. The QALOAD.INI fi le’s debug messages-per-sec parameter
determines how frequent ly the Player sends i ts script debug status to the Conductor. At i ts default value of
one message per second, the Player can execute several statements without sending a debug message to the
Conductor.

QALoad 5.02

217

To open the Debug window, select a workstat ion in the global control window and cl ick the Debug
toolbar button.

Note: The Conductor highlights the script line that it is currently executing.

Viewing datapool usage

Highl ight a script in the global control window and cl ick Datapool to open the Datapool window. As
the script executes Get_Data commands, the Datapool window reflects the current datapool record being
used by the script .

Graphing checkpoints

Use the Graphs view of the runt ime Conductor to create real-t ime graphs of checkpoint response t imes
during script execut ion. Similar graphs are also avai lable for post-test analysis in QALoad Analyze.

Selecting checkpoints to graph

Before you can review checkpoint response t imes in graph form, you must select the checkpoint counters
to include. Checkpoints are l isted in the tree view on the left side of the Graphs view of the runt ime
Conductor, as shown in the example below. Both automatic and user-defined checkpoints appear in the
Respon se Tim es folder of each running script .

Creating a graph of checkpoint response times

To choose a checkpoint that should appear in a graph, h ighl ight the checkpoint name, right-cl ick and
choose either Add Graph to create a new graph or Add Plot To to add a data plot to an exist ing graph.

If you choose the Add Graph opt ion, the Add Graph dialog box appears. Select the opt ions for how the
graph should appear and cl ick OK.

To better ident i fy problem checkpoints, you can set thresholds on plots or graphs that indicate the number
of t imes the data record for that checkpoint has gone above or below the number you set. Thresholds can
be set from the Advanced tab of the Add Graph dialog box or by right-cl icking on an exist ing graph and
choosing Thresholds.

QALoad 5.02

218

Highlighting individual plots

If you create several plots on a single graph, i t may become difficult to see individual plots. To increase a
plot 's visibi l i ty, cl ick on a plot in the graph or a plot 's number in the graph's legend. When highl ighted,
the plot appears th icker and darker on the graph.

Saving checkpoint graphs to a session ID

Checkpoint graphs that are created in the Conductor are automatical ly saved to the current session ID fi le.
To remove al l graphs you added, cl ick Graph>Restore Defaul t Graph Layout .

Graphing counter data

Use the Graphs view of the runt ime Conductor to create real-t ime graphs of counter data during script
execut ion. Similar graphs are also avai lable for post-test analysis in QALoad Analyze.

Selecting counters to graph

All counter data that is avai lable for graphing is located in the tree view on the left side of the of the
Graphs view Data window, as shown below.

Scripts of any middleware type col lect the fol lowing default counter data, which is avai lable in the
Conductor for real-t ime graphing:

! Global counters: Running VU%, total running VUs, and errors

! Script counters: Running VUs, response times, and transactions

! Player machine health: % processor, % memory used, % disk space, %disk time, % paging file

Addit ional middleware-based graphs are also generated by default and vary by middleware. For example,
for the WWW middleware, several performance-based counters are automatical ly col lected and avai lable
for graphing, including server responses and WWW traffic. You can monitor th is data to determine the
opt imum rate of performance of the appl icat ion that is running.

QALoad 5.02

219

Graphing counter statistics

To choose a counter that should appear in a graph, h ighl ight the checkpoint counter name or group of
counters (folder), right-cl ick and choose either Add Graph to create a new graph or Add Plot To to add a
data plot to an exist ing graph.

If you choose the Add Graph opt ion, the Add Graph dialog box appears. Select the opt ions for how the
graph should appear and cl ick OK.

To better ident i fy problems in the test, you can set thresholds on plots or graphs that indicate the number
of t imes the data record for that counter has gone above or below the number you set. Thresholds can be
set from the Advanced tab of the Add Graph dialog box or by right-cl icking on an exist ing graph and
choosing Thresholds.

Highlighting individual plots

If you create several plots on a single graph, i t may become difficult to see individual plots. To increase a
plot 's visibi l i ty, cl ick on a plot in the graph or a plot 's number in the graph's legend. When highl ighted,
the plot appears th icker and darker on the graph.

Saving counter data graphs to a session ID

Counter data graphs that are created in the Conductor are automatical ly saved to the current session ID
fi le. To remove al l graphs you added, cl ick Graph >Restore Defaul t Graph Layout .

Recording and replaying a test

Recording and replay overview

As a load test is running, the Conductor records each event in a .REC fi le. After the load test completes,
you can open the .REC fi le to replay the load test to evaluate important events that occurred, such as a
sudden increase in processor usage.

When you replay the load test, the playback looks ident ical to the actual load test, with the except ion of
the playback toolbar, which appears at the top of the screen. When you open the .REC replay fi le in the
Conductor, you can replay, fast-forward, double fast-forward, or pause.

Note: The replay feature provides a visual re-enactment of the load test; it does not perform the actual test
or connect to any servers.

Recording a test

Replaying a test

Recording a test

Load tests can be recorded by select ing the Record Load Test opt ion from the Conductor. When th is
opt ion is act ivated and the load test begins, a prompt appears for you to specify a fi le name for the
recording. When the load test is completed, you can replay the test.

To set t he Conduct or t o r ecord a load t est :

1. On the Test Information tab of the Conductor's main window, select the Enable Test Recording check box.

2. Start the load test. The Record dialog box appears.

3. Type a name for the record file. Click OK.

QALoad 5.02

220

Replaying a test

If you set the Conductor to record load tests, you can play them back after the test completes. Replaying a
recorded load test does not perform the actual load test. A replay provides a visual re-enactment of the
events that took place during the load test.

To replay a r ecorded load t est :

1. From the Conductor's Run menu, choose Test Recording>Replay a Load Test. The Open Record File dialog box
appears.

2. Browse for the recording file (filename.rec) that you saved when the load test started. Click Open.

3. The test will play back in a viewer that contains a playback toolbar. Use the toolbar buttons described in the following
table to control the playback.

But ton Act ion

Restarts the test replay from the
beginning

 Replays the test at normal speed

Replays the test twice as fast as
normal

Replays the test four t imes as fast as
normal

Pauses the replay at the current
snapshot

Exits test replay and opens the
Conductor test setup window

Note: Test control features such as dial-up/dial-down do not work during test replay, but the effects from
these features can be observed in the replay. Also, virtual user error details on the Virtual User Info window are
not available during replay. Detailed error information is available in the timing file and can be viewed with
Analyze.

Analyzing load test data

Analyzing load test data

By default , load test t im ing data is sent from the Conductor to Analyze at the end of a load test. Any
appropriate server monitoring data is also sent to Analyze and merged into your t im ing fi le (.t im).

You can set an opt ion in the Conductor to automatical ly launch Analyze at the end of a load test (detai ls),
or you can open Analyze manually from the Conductor toolbar or your QALoad program group.

QALoad 5.02

221

Creat ing a t iming file (.t im)

Once al l workstat ions stop execut ing, cl ick the Qui t toolbar button to complete the test and
automatical ly create the t im ing fi le (.t im).

Viewing test stat ist ics

Compute test stat ist ics by choosing Launch An alyze from the Conductor’s Tools menu or by cl icking
on the Analyze toolbar button.

Integrat ion and server monitoring

Remote Monitoring

Remote Monitoring

Remote M onitoring al lows you to extract data from Windows registry counters or SNMP counters (which
can be Windows or UNIX) from the server(s) under stress without requiring any software to be instal led on
the server(s). However, to col lect Windows registry counters, you must have a val id sign-on for the server(s)
under test.

To use Remote M onitoring:

! You must have login access to the machines you want to monitor

! You must select the counters to monitor on the machines to monitor using the Conductor's Machine Configuration
tab

! To collect SNMP counters, SNMP must be enabled on the Remote Monitor machine. Refer to your operating system
help for information about enabling SNMP.

While your test is running, QALoad wil l col lect the appropriate counter data and write i t to your t im ing fi le
where you can view i t in Analyze after the test. What counters are avai lable?

To set up Remote Monitoring, see Sett ing up a test session.

Adding a Remote Monitor machine

You can add Remote Monitor machines to a test as part of your overal l test session setup, or individual ly at
any t ime. You do not need to instal l any addit ional components on the machines to monitor.

To set up a whole test session, see Sett ing up a test session.

To add a Rem ot e Moni t or m achine t o a t est session:

1. Open the appropriate test session ID.

2. On the Machine Configuration tab, select the Remote Monitor Machines option.

3. Click the Enable Data Capture check box.

4. Click the New button to configure a machine.

5. On the Remote Machine Configuration dialog box, type the host name of the machine to use as a Remote Monitor
machine. Use a fully-qualified name in one of the following formats:

<machinename>\username

or

<domain>\username

QALoad 5.02

222

6. In the Remote Machine Type area, choose whether to gather Windows Registry Counters or SNMP Counters (All
platforms).

7. Click the Test button to check the connection to the remote machine. The Conductor will query the machine and
display a message indicating if the connection is successful.

8. When you are finished, click OK.

9. On the Machine Configuration tab, choose the counters to monitor by clicking the check box next to the counter
name.

Remote Monitoring counters

QALoad's Remote Monitor Agents can monitor Windows registry counters or SNMP counters.

Window s Regist ry Coun ters

Remote M onitoring Agents can monitor the same Windows registry counters as PERFMON, the
performance monitoring appl icat ion avai lable with the Windows operat ing system. The Windows registry
opt ion monitors machines that run Windows 2000 and XP. To retrieve Windows Registry Counters, you
must have access, via a user name and password, to the remote machine.

SNM P Coun ters

SNMP Remote M onitoring uses the SNMP service to provide network and system counters. SNMP counters
can be retrieved from any machine that is running an SNMP server. Although SNMP does not require a
user name and password, the SNMP agent must be configured to al low read-only access from the
Conductor machine. SNM P counters that are supported by QALoad Remote M onitoring are categorized
below.

ICMP

i cm pIn M sgs/ sec: the rate at which ICMP messages are received
i cm pIn Errors: the number of ICMP messages received having ICMP errors
Icm pIn DestUnreachs: the number of ICMP Dest inat ion Unreachable messages received
Icm pInTim eExcds: the number of ICMP Time Exceeded messages received
Icm pIn Parm Probs: the number of ICMP Parameter Problem messages received
Icm pInSrcQuenchs: the number of ICMP Source Quench messages received
i cm pInRedi rects/ sec: the rate at which ICMP Redirect messages are received
i cm pIn Echos/ sec: the rate at which ICMP Echo messages are received
i cm pIn EchoReps/ sec: the rate at which ICMP Echo Reply messages are received
i cm pInTim estam ps/ sec: the rate at which ICMP Timestamp messages are received
i cm pInTim estam pReps/ sec: the rate at which ICM P Timestamp Reply messages are received
i cm pIn AddrM asks: the number of ICMP Address Mask Request messages received
i cm pIn AddrM askReps: the number of ICMP Address Mask Reply messages received
i cm pOutM sgs/ sec: the rate at which ICMP messages are sent
i cm pOutM sgs/ sec: the number of ICMP messages not sent due to ICMP errors
i cm pOutDestUn reachs: the number of ICMP Dest inat ion Unreachable messages sent
i cm pOutTim eExcds: the number of ICMP Time Exceeded messages sent
i cm pOutParm Probs: the number of ICMP Parameter Problem messages sent
i cm pOutSrcQuen chs: the number of ICMP Source Quench messages sent
i cm pOutRedi rects/ sec: the number of ICMP Redirect messages sent
i cm pOutEchos/ sec: the number of ICMP Echo messages sent
i cm pOutEchoReps/ sec: the number of ICMP Echo Reply messages sent
i cm pOutTim estam ps/ sec: the number of ICMP Timestamp messages sent
i cm pOutTim estam pReps/ sec: the number of ICMP Timestamp Reply messages sent
i cm pOutAddrM asks: the number of ICMP Address Mask Request messages sent
i cm pOutAddrM askReps: the number of ICMP Address Mask Reply messages sent

IP

QALoad 5.02

223

i pForw arding: the indicat ion of whether th is ent i ty is act ing as an IP router in respect to the forwarding of
datagrams received by, but not addressed to, th is ent i ty.
i pDefaul tTTL: the default value inserted in to the Time-To-Live field of the IP header of datagrams
originated at th is ent i ty, whenever a TTL value is not suppl ied by the transport layer protocol.
i pInReceives/ sec: the rate of input datagrams received from interfaces, including those received in error.
i pInHdrErrors: the number of input datagrams discarded due to errors in their IP headers, including bad
checksums, version number mismatch, other format errors, t ime-to-l ive exceeded, errors discovered in
processing their IP opt ions, and so on.
i pInAddrErrors: the number of input datagrams discarded because the IP address in their IP header's
dest inat ion field was not a val id address to be received at th is ent i ty.
i pForw Datagram s/ sec: the rate of input datagrams for which th is ent i ty was not their final IP dest inat ion,
as a result of which an attempt was made to find a route to forward them to that final dest inat ion.
i pInUn know n Protos: the number of local ly-addressed datagrams receive successful ly but discarded
because of an unknown or unsupported protocol.
i pIn Discards: the number of input IP datagrams for which no problems were encountered to prevent their
cont inued processing, but which were discarded (for example, for lack of buffer space).
i pIn Del i vers/ sec: the rate of input datagrams successful ly del ivered to IP user-protocols (including ICMP).
i pOutRequests: the number of IP datagrams which local IP user-protocols (including ICMP) suppl ied to IP
in requests for transmission.
i pOutDiscards: the number of output IP datagrams for which no problem was encountered to prevent
their t ransmission to their dest inat ion, but which were discarded (for example, for lack of buffer space).
i pOutNoRoutes: the number of IP datagrams discarded because no route could be found to transmit them
to their dest inat ion.
i pReasm Tim eout : the maximum number of seconds which received fragments are held while they are
await ing reassembling at th is ent i ty.
i pReasm Reqds: the number of IP fragments received which needed to be reassembled at th is ent i ty.
i pReasm OKs: the number of IP datagrams successful ly re-assembled.
i pReasm Fai l s: the number of fai lures detected by the IP re-assembly algori thm (for whatever reason: t imed
out, errors, etc).
i pFragOKs: the number of IP datagrams that have been successful ly fragmented at th is ent i ty.
i pFragFai l s: the number of IP datagrams that have been discarded because they needed to be fragmented at
th is ent i ty but could not be, for example, because their Don't Fragment flag was set.
i pFragCreates/ sec: the rate of IP datagram fragments that have been generated as a result of fragmentat ion
at th is ent i ty.
i pRout ingDiscards: the number of rout ing entries which were chosen to be discarded even though they
are val id.

SNMP

snm pInPk ts/ sec: the rate of messages del ivered to the SNMP ent i ty from the transport service.
snm pOutPk ts/ sec: the rate at which SNMP Messages were passed from the SNMP protocol ent i ty to the
transport service.
snm pInBadVersions: the number of SNMP messages which were del ivered to the SNMP ent i ty and were
for an unsupported SNMP version.
snm pInBadCom m un i tyNam es: the number of SNMP messages del ivered to the SNMP ent i ty which used a
SNMP community name not known to said ent i ty.
snm pInBadCom m un i tyUses: the number of SNM P messages del ivered to the SNMP ent i ty which
represented an SNMP operat ion which was not al lowed by the SNMP community named in the message.
snm pInASNParseErrs: the number of ASN.1 or BER errors encountered by the SNMP ent i ty when decoding
received SNMP messages.
snm pInTooBigs: the number of SNMP PDUs which were del ivered to the SNMP protocol ent i ty and for
which the value of the error-status field is tooBig.
snm pInNoSuchNam es: the number of SNMP PDUs which were del ivered to the SNMP protocol ent i ty and
for which the value of the error-status field is noSuchName.
snm pInBadVal ues: the number of SNMP PDUs which were del ivered to the SNMP protocol ent i ty and for
which the value of the error-status field is badValue.

QALoad 5.02

224

snm pInReadOn lys: the number val id SNMP PDUs which were del ivered to the SNMP protocol ent i ty and
for which the value of the error-status field is readOnly.
snm pInGen Errs: the number of SNMP PDUs which were del ivered to the SNMP protocol ent i ty and for
which the value of the error-status field is genErr.
snm pInTotalReqVars/ sec: the rate of M IB objects which have been retrieved successful ly by the SNM P
protocol ent i ty as the result of receiving val id SNMP Get-Request and Get-Next PDUs.
snm pInTotalSetVars/ sec: the rate of M IB objects which have been altered successful ly by the SNMP
protocol ent i ty as the result of receiving val id SNMP Set-Request PDUs.
snm pInGetRequests/ sec: the rate of SNMP Get-Request PDUs which have been accepted and processed by
the SNMP protocol ent i ty.
snm pInGetNex ts/ sec: the rate of SNMP Get-Next PDUs which have been accepted and processed by the
SNMP protocol ent i ty.
snm pInSetRequests/ sec: the rate of SNMP Get-Response PDUs which have been accepted and processed
by the SNMP protocol ent i ty.
snm pInGetRespon ses/ sec: the rate of SNMP Set-Request PDUs which have been accepted and processed
by the SNMP protocol ent i ty.
snm pInTraps: the number of SNMP Trap PDUs which have been accepted and processed by the SNMP
protocol ent i ty.
snm pOutTooBigs: the number of SNMP PDUs which were generated by the SNMP protocol ent i ty and for
which the value of the error-status field is tooBig.
snm pOutNoSuchNam es: the number of SNMP PDUs which were generated by the SNMP protocol ent i ty
and for which the value of the error-status is noSuchName.
snm pOutBadValues: the number of SNMP PDUs which were generated by the SNMP protocol ent i ty and
for which the value of the error-status field is badValue.
snm pOutGen Errs: the number of SNMP PDUs which were generated by the SNMP protocol ent i ty and for
which the value of the error-status field is genErr.
snm pOutGetRequests/ sec: the rate of SNMP Get-Request PDUs which have been generated by the SNMP
protocol ent i ty.
snm pOutGetNex ts/ sec: the rate of SNMP Get-Next PDUs which have been generated by the SNMP
protocol ent i ty.
snm pOutSetRequests/ sec: the rate of SNMP Set-Request PDUs which have been generated by the SNMP
protocol ent i ty.
snm pOutGetResponses/ sec: the rate of SNMP Get-Response PDUs which have been generated by the
SNMP protocol ent i ty.
snm pOutTraps: the number of SNMP Trap PDUs which have been generated by the SNMP protocol ent i ty.
snm pOutTraps: indicates whether the SNMP ent i ty is permit ted to generate authent icat ionFailure traps.

TCP

t cpRtoAlgori thm : the algori thm used to determine the t imeout value used for retransmitt ing
unacknowledged octets.
t cpRtoM in : the min imum value permit ted by a TCP implementat ion for the retransmission t imeout.
t cpRtoM ax : the maximum value permit ted by a TCP implementat ion for the retransmission t imeout.
t cpM axConn : the l im it on the total number of TCP connect ions the ent i ty can support.
t cpAct i veOpens: the number of t imes TCP connect ions have made a direct t ransit ion to the SYN-SENT
state from the CLOSED state.
t cpAt tem ptFai l s: the number of t imes TCP connect ions have made a direct t ransit ion to the SYN-RCVD
state from the LISTEN state.
t cpEstabResets: the number of t imes TCP connect ions have made a direct t ransit ion to the CLOSED state
from either the ESTABLISHED state or the CLOSE-WAIT state.
t cpCurrEstab: the number of TCP connect ions for which the current state is either ESTABLISHED or
CLOSE-WAIT.
t cpInSegs/ sec: the rate at which segments are received, including those received in error.
t cpOutSegs/ sec: the rate at which segments are sent, including those on current connect ions but
excluding those contain ing only retransmitted octets.
t cpRet ransSegs/ sec: the rate at which segments are retransmitted.

QALoad 5.02

225

t cpIn Errs/ sec: the rate at which segments are received in error.
t cpOutRsts/ sec: the rate at which segments contain ing the RST flag are sent.
t cpPassiveOpen s: the total number of t imes TCP connect ions have made a direct t ransit ion to the SYN-
RCVD state from the LISTEN state.

UDP

udpInDatagram s/ sec: the rate of UDP datagrams being del ivered to UDP users.
udpNoPorts/ sec: the rate of received UDP datagrams for which there was no appl icat ion at the dest inat ion
port .
udpInErrors: the number of received UDP datagrams that could not be del ivered for reasons other than
the lack of an appl icat ion at the dest inat ion port .
udpOutDatagram s/ sec: the rate at which UDP datagrams are sent.

Solaris: Sun System

Col l i sions/ sec: the rate of output col l isions.
CpuUser%: the percentage of non-idle processor t ime that is spent in user mode.
CpuNice%: the percentage of non-idle processor t ime that is spent in n ice mode.
CpuSys%: the percentage of non-idle processor t ime that is spent in system mode.
CpuIdle%: the percentage of idle processor t ime.
I f InPackets/ sec: the rate of input packets.
I fOutPackets/ sec: the rate of output packets.
I f InErrors: the total number of input errors.
I fOutErrors: the total number of output errors.
In terrupts/ sec: the rate of system interrupts.
PagesIn KBytes/ sec: the rate of pages read in from disk.
PagesOut KBytes/ sec: the rate of pages writ ten to disk.
Sw apIn KBytes/ sec: the rate at which pages are being swapped in.
Sw apOut KBytes/ sec: the rate at which pages are being swapped out.

HP-UX: HP System

AvgJobs1: the average number of jobs in the last minute * 100.
AvgJobs5: the average number of jobs in the last 5 minutes * 100.
AvgJobs15: the average number of jobs in the last 15 minutes * 100.
CpuUser%: the percentage of non-idle processor t ime that is spent in user mode.
CpuNice%: the percentage of non-idle processor t ime that is spent in n ice mode.
CpuSys%: the percentage of non-idle processor t ime that is spent in system mode.
CpuIdle%: the percentage of idle processor t ime.
FreeM em ory KBytes: the amount of idle memory.
FreeSw ap KBytes: the amount of free swap space on the system.
M axProc: the maximum number of processes al lowed.
M axUserM em KBytes: the amount of maximum user memory on the system.
PhysM em ory KBytes: the amount of physical memory on the system.
Users: the number of users logged on to the machine.

LINUX Memory

Avai lableSw ap KBytes: the avai lable swap on the system.
Buf fered KBytes: the amount of memory used as buffers.
Cached KBytes: the amount of memory cached.
FreeM em ory KBytes: the amount of idle memory.
Shared KBytes: the amount of memory shared.
TotalM em ory KBytes: the total amount of memory on the system.
TotalSw ap KBytes: the total swap size for the system.

QALoad 5.02

226

LINUX System

CpuUser%: the percentage of non-idle processor t ime that is spent in user mode.
CpuNice%: the percentage of non-idle processor t ime that is spent in n ice mode.
CpuSys%: the percentage of non-idle processor t ime that is spent in system mode.
CpuIdle%: the percentage of idle processor t ime.

Windows HTTP Server

h t tpTotalFi l esSen t : the total number of fi les sent by th is HTTP server.
h t tpTotalFi l esReceived : the total number of fi les received by th is HTTP server.
h t tpCurren tAnonym ousUsers: the number of anonymous users current ly connected to th is HTTP server.
h t tpCurren tNonAnon ym ousUsers: the number of non-anonymous users current ly connected to th is
HTTP server.
h t tpTotalAnonym ousUsers: the total number of anonymous users that have ever connected to th is HTTP
server.
h t tpTotalNonAnonym ousUsers: the total number of non-anonymous users that have ever connected to
th is HTTP server.
h t tpM ax im um Anonym ousUsers: the maximum number of anonymous users simultaneously connected
to th is HTTP server.
h t tpM ax im um NonAnon ym ousUsers: the maximum number of non-anonymous users simultaneously
connected to th is HTTP server.
h t tpCurren tConnect ions: the current number of connect ions to the HTTP server.
h t tpM ax im um Connect ions: the maximum number of simultaneous connect ions to the HTTP server.
h t tpConnect ionAt tem pts: the total number of connect ion attempts to the HTTP server.
h t tpLogonAt tem pts: the total number of logon attempts to the HTTP server.
h t tpTotalOpt ions: the total number of requests made to th is HTTP server using the OPTIONS method.
h t tpTotalGets: the total number of requests made to th is HTTP server using the GET method.
h t tpTotalPosts: the total number of requests made to th is HTTP server using the POST method.
h t tpTotalHeads: the total number of requests made to th is HTTP server using the HEAD method.
h t tpTotalPuts: the total number of requests made to th is HTTP server using the PUT method.
h t tpTotalDeletes: the total number of requests made to th is HTTP server using the DELETE method.
h t tpTotalTraces: the total number of requests made to th is HTTP server using the TRACE method.
h t tpTotalM ove: the total number of requests made to th is HTTP server using the MOVE method.
h t tpTotalCopy : the total number of requests made to th is HTTP server using the COPY method.
h t tpTotalM kcol : the total number of requests made to th is HTTP server using the MKCOL method.
h t tpTotalPropf ind : the total number of requests made to th is HTTP server using the PROPFIND method.
h t tpTotalProppatch : the total number of requests made to th is HTTP server using the PROPPATCH
method.
h t tpTotalSearch : the total number of requests made to th is HTTP server using the MS-SEARCH method.
h t tpTotalLock : the total number of requests made to th is HTTP server using the LOCK method.
h t tpTotalUn lock : the total number of requests made to th is HTTP server using the UNLOCK method.
h t tpTotalOthers: the total number of requests made to th is HTTP server not using the OPTIONS, GET,
HEAD, POST, PUT, DELETE, TRACE, MOVE, MKCOL, PROPFIND, PROPPATCH, MS-SEARCH, LOCK or
UNLOCK methods.
h t tpCurren tCGIRequests: the number of Common Gateway Interface requests current ly being serviced by
th is HTTP server.
h t tpCurren tBGIRequests: the number of Binary Gateway Interface requests current ly being serviced by
th is HTTP server.
h t tpTotalCGIRequests: the total number of Common Gateway Interface requests made to th is HTTP
server.
h t tpTotalBGIRequests: the total number Binary Gateway Interface requests made to th is HTTP server.
h t tpM ax im um CGIRequests: the maximum number of Common Gateway In terface requests
simultaneously processed by th is HTTP server.
h t tpM ax im um BGIRequests: the maximum number of Binary Gateway Interface requests simultaneously
processed by th is HTTP server.

QALoad 5.02

227

h t tpCurren tBlockedRequests: the current number of requests being temporari ly blocked by th is HTTP
server.
h t tpTotalBlockedRequests: the total number of requests that have been temporari ly blocked by th is HTTP
server.
h t tpTotalRejectedRequests: the total number of requests that have been rejected by th is HTTP server.

Windows FTP Server

f tpTotalFi l esSen t : the total number of fi les sent by th is FTP server.
f tpTotalFi l esReceived : the total number of fi les received by th is FTP server.
f tpCurren tAnon ym ousUsers: the number of anonymous users current ly connected to th is FTP server.
f tpCurren tNonAnonym ousUsers: the number of non-anonymous users current ly connected to th is FTP
server.
f tpTotalAnonym ousUsers: the total number of anonymous users that have ever connected to th is FTP
server.
f tpTotalNonAnon ym ousUsers: the total number of non-anonymous users that have ever connected to
th is FTP server.
f tpM ax im um Anon ym ousUsers: the maximum number of anonymous users simultaneously connected to
th is FTP server.
f tpM ax im um NonAnonym ousUsers: the maximum number of non-anonymous users simultaneously
connected to th is FTP server.
f tpCurren tConnect ions: the current number of connect ions to the FTP server.
f tpM ax im um Connect ions: the maximum number of simultaneous connect ions to the FTP server.
f tpConnect ionAt tem pts: the total number of connect ion attempts to the FTP server.
f tpLogonAt tem pts: the total number of logon attempts to the FTP server.

Server Analysis agents

Server Analysis agents

Server Analysis agents use enhanced ServerVantage technology to provide server ut i l izat ion data without a
complete ServerVantage deployment. Server Analysis agents, provided on the QACenter Performance
Edit ion CD, are quickly and easi ly instal led on the servers that you wish to monitor during a load test .
Server Analysis agents provide you with valuable server ut i l izat ion metrics — cal led counters — on Web
servers, appl icat ion servers, and database servers being exercised by your load test to help you to pinpoint
performance bott lenecks when load test ing.

Unl ike a ful l ServerVantage instal lat ion, you can start , stop, and configure Server Analysis Agents right
from the famil iar in terface of the QALoad Conductor.

Server ut i l izat ion data from the agents and response t ime information from QALoad is al l automatical ly
downloaded and correlated through the use of Act iveAnalysis, and is avai lable for post-test analysis
through QALoad Analyze.

For detai ls about how to use Server Analysis agents in a load test, see Sett ing up Server Analysis agents.

Setting up Server Analysis agents

This procedure assumes you are l icensed to use the Server Analysis agents.

To set up a Server Analysis agent :

1. Open a test session in QALoad Conductor.

2. On the Machine Configuration tab, click the Server Analysis agents option.

QALoad 5.02

228

3. Click the Discover Machines button to locate all workstations on your network with QALoad Players and Server
Analysis agents installed. All available servers are listed. (Compuware recommends that you choose to install the
Server Analysis agent only on those machines you need to monitor during a load test.)

4. Select the Enable Data Capture check box to enable Server Analysis agent monitoring.

5. Discover which counters are available on your workstations:

 Individual ly: Double-cl ick on an individual Server Analysis agent. The counters avai lable on
that server wi l l be l isted.

 Global ly: Cl ick the Discover Al l Agen t Coun ters button. Al l avai lable Server Analysis agents
wi l l be queried and the counters avai lable on each server wi l l be l isted. A progress bar wi l l note
how many agents are avai lable, how many have been queried, and how many (i f any) fai led to
return counter in formation.

6. After discovering all available counters, choose which Server Analysis agents to monitor during your test by selecting
the check box next to the server name.

7. Choose which counters to include:

 By default , when you select a Server Analysis agent to monitor, al l i ts avai lable counters are also
selected for monitoring. You can individual ly de-select any counters you don't wish to include.

 Alternately, you can select QALoad-provided templates of counters based upon your part icular
server's setup. To do so:

 Click the Add Tem plates to Selected Agent button.

 On the QALoad – Select Templates dialog box, select the template to apply (for
example, Server Health) and cl ick OK.

Applicat ion Expert / Applicat ionVantage

Overview

Applicat ion Expert is a Windows-based tool that enables you to examine the effects the network wi l l have
on the performance of new or modified appl icat ions prior to l ive deployment. Appl icat ion Expert provides
granular thread detai ls that al low network managers to ident i fy poorly performing appl icat ions. QALoad
integrates with Appl icat ion Expert versions 8.0 and 9.0 and Applicat ionVantage 9.3 to help you analyze
network performance during a load test. QALoad also provides test data that you can open in both
Appl icat ion Expert and Appl icat ionVantage.

Before QALoad can col lect network data during a load test, the fol lowing must be true:

! The ApplicationVantage Agent is installed on the same machine as the QALoad Conductor. You can install either the
ApplicationVantage Agent or the ApplicationVantage Remote Agent.

! The QALoad Conductor and Player machines are located on the same LAN.

! You have set up IP address pairs in the Conductor’s Application Expert section of the Machine Configuration tab.
How?

At test t ime, the Conductor wi l l automatical ly start the Appl icat ion Vantage Agent. At the end of the test,
the Conductor wi l l stop the agent and return captured information to a trace fi le you can open in
Appl icat ion Expert or in Appl icat ionVantage. If ei ther tool is instal led on the Conductor machine, QALoad
wil l generate an XML report that detai ls the network traffic that was captured.

Hint: For information about Application Expert or ApplicationVantage, refer to the documentation you
received with your purchase of these tools.

Overview

Applicat ion Expert is a Windows-based tool that enables you to examine the effects the network wi l l have
on the performance of new or modified appl icat ions prior to l ive deployment. Appl icat ion Expert provides

QALoad 5.02

229

granular thread detai ls that al low network managers to ident i fy poorly performing appl icat ions. QALoad
integrates with Appl icat ion Expert versions 8.0 and 9.0 and Applicat ionVantage 9.3 to help you analyze
network performance during a load test. QALoad also provides test data that you can open in both
Appl icat ion Expert and Appl icat ionVantage.

Before QALoad can col lect network data during a load test, the fol lowing must be true:

! The ApplicationVantage Agent is installed on the same machine as the QALoad Conductor. You can install either the
ApplicationVantage Agent or the ApplicationVantage Remote Agent.

! The QALoad Conductor and Player machines are located on the same LAN.

! You have set up IP address pairs in the Conductor’s Application Expert section of the Machine Configuration tab.
How?

At test t ime, the Conductor wi l l automatical ly start the Appl icat ion Vantage Agent. At the end of the test,
the Conductor wi l l stop the agent and return captured information to a trace fi le you can open in
Appl icat ion Expert or in Appl icat ionVantage. If ei ther tool is instal led on the Conductor machine, QALoad
wil l generate an XML report that detai ls the network traffic that was captured.

Hint: For information about Application Expert or ApplicationVantage, refer to the documentation you
received with your purchase of these tools.

Setting up IP address pairs from the Conductor

To use the Appl icat ionVantage Agent to col lect data for Appl icat ion Expert or Appl icat ionVantage, i t is
necessary to set up IP address pairs to monitor from the Conductor.

To set up IP address pai rs:

1. With the session ID you want to use for your test open, click on the Conductor's Machine Configuration tab.

2. Click the Discover Machines button for the Conductor to query your test network for installed Player Agents. If the
Discover Machines button isn't available, select the Player Agents option button and then try again. The Machine
Configuration tab will be populated with names of available Player machines.

3. Select the Application Expert option button to access the Application Expert-specific fields.

4. In the Machines to Add area, choose the Player machine that will be running the virtual user to be captured. To
make your selection, simply highlight the machine name and click the arrow button to move the machine name into
the IP Pairs area as Address 1. Address 2 should be the IP or machine name of the first tier of the application being
tested, or you can simply type any to capture all traffic for Address 1. Select the Include check box to monitor
communications between those two machines during your load test.

Note: If the network environment is running over a switch, then Address 1 must be the IP of the Conductor
machine and the virtual user to capture must execute from that machine. If the network environment is running
over a hub (shared network), then Address 1 can be any Player machine available for testing. For more
information, see Configuring a test to use Application Expert.

5. The Login Area section should only be modified if you have installed the ApplicationVantage Remote Agent and not
the ApplicationVantage Agent. These fields will contain the network information for the workstation where your
ApplicationVantage Remote Agent is installed.

a. Host Nam e: This field automatical ly l ists the name of the machine where your
Conductor is instal led. Do not change th is.

b. Usern am e: Type the user name used during the instal lat ion of the Appl icat ionVantage
Remote Agent. If using the Appl icat ionVantage Agent, type the username Admin.

c. Passw ord : Type the password used during the instal lat ion of the Appl icat ionVantage
Remote Agent. If using the Appl icat ionVantage Agent, type the password Admin.

d. NIC Nam e: From the drop-down l ist , select the NIC (network in terface card) that is
used by the machine in the Host Name field.

6. Save this information to your test session ID file by clicking File>Save.

QALoad 5.02

230

7. (Optional) To save the current machine setup for re-use, create a new configuration file (.cfg). How?

8. Run your test. At test time, the Conductor passes this information to your installation of Application Expert, which
then captures the communications between the specified pairs of machines and saves that information to a file you
can open in Application Expert after the test has finished. The file, named sessionname_date_time.opt
(Application Expert version 8.0) or sessionname_date_time.opx (Application Expert version 9.0), is saved to
Program Files\Compuware\QALoad\LogFiles.

Configuring a test to use Application Expert

There are two possible configurat ions when using the Appl icat ion Expert component of QALoad . The type
of network where QALoad is instal led wil l determine which configurat ion you wil l use. In either instance,
the test wi l l have a stand-alone virtual user, which we wil l cal l an Expert User as th is is the virtual user to be
captured by Appl icat ion Expert . The Expert User wi l l run from a Player machine by i tself – no other virtual
users wi l l execute on th is machine. The remain ing virtual users wi l l be execut ing from other Player
machines with in the test environment. The two configurat ions are described below.

Hub or sh ared netw ork

In a shared network, Appl icat ion Expert has the abi l i ty to see network traffic from any device connected to
a hub. When using QALoad in th is environment, the test can be configured to have mult iple Player
machines – with one of those machines running the Expert User. To capture the network act ivi ty of the
Expert User, set up Address 1 of the IP pairs in the Conductor’s M achine Configurat ion tab to point to th is
machine.

Sw i tched netw ork

In a switched network, Appl icat ion Expert wi l l on ly see the network traffic of the device where i t is
instal led – which wil l be the QALoad Conductor machine in th is case. When using QALoad in th is
environment, the test must be configured to run the Expert User from a Player instal led on the same
machine as the Conductor. Al l remain ing virtual users must run from Player machines other than the
Conductor machine. To capture the network act ivi ty of the Expert User, set up Address 1 of the IP pairs in
the Conductor’s Machine Configurat ion tab to point to the Conductor machine. Please note that the
Player Agent needs to be instal led and running on the Conductor machine.

ServerVantage

Server monitoring with ServerVantage

If you are current ly a l icensed user of Compuware's ServerVantage, you can integrate data from your
exist ing ServerVantage deployment direct ly in to a QALoad t im ing fi le at the end of a load test.

For th is method to be successful, the fol lowing condit ions must be met:

! ServerVantage must be installed and configured correctly on your system

! ServerVantage must be scheduled to monitor the specified performance counters at a time that coincides with a
running QALoad test

! QALoad must be able to access the appropriate Agent stations to collect resource utilization data at the end of the
load test.

ServerVan tage

ServerVantage (formerly EcoTOOLS) monitors the avai labi l i ty and performance of appl icat ions, databases
and servers, al lowing users to central ly manage events across al l appl icat ion components— Web servers,
fi rewalls, appl icat ion servers, fi le systems, databases, middleware, and operat ing systems. ServerVantage
simultaneously monitors these components, analyzes both h istorical and real-t ime events, and correlates
monitored in formation for problem detect ion.

QALoad 5.02

231

In tegrat ion with ServerVantage is configured from the QALoad Conductor. Performance counters col lected
during a load test are included in the test 's t im ing fi le and can be sorted and displayed in QALoad Analyze
in much the same way as QALoad t im ing data. For more in formation about instal l ing or configuring
ServerVantage refer to i ts product documentat ion.

Setting up integration with ServerVantage

For instruct ions for in tegrat ing with ServerVantage, read the appropriate sect ion below:

To set up in t egrat ion w i t h ServerVant age:

1. On the Conductor Test Information Screen, click the Monitoring Options tab.

2. Click the Enable ServerVantage Integration check box.

3. In the Control Server Database Host field, type the hostname of the machine where the ServerVantage server is
located.

4. In the Username field, type a valid user name to access the ServerVantage server.

5. In the Password field, type the password that corresponds to the user name above.

6. Select the Override Default Database check box to provide the ServerVantage database name. When this option is
not selected, QALoad uses the default ServerVantage database name. If you provided a different name during the
installation of ServerVantage, select this option and type the name in the Database Name field.

7. In the Vantage Agent Configuration area, type the hostname of a machine(s) where a ServerVantage Agent is
installed, and click the Add button to add it to your load test.

Troubleshoot ing

Conductor pre-test checks

Before a test begins, the Conductor completes the fol lowing pre-test checks of the parameter fi les and
Players. If any of these checks fai l , the Conductor displays an error message.

! Are there enough Players configured to support the number of users specified in the session ID file?

! Does the number of users specified in the session ID file exceed the maximum number of users defined by your
authorization key?

! Can the specified compiled script files be accessed?

! Are all Players communicating with the Conductor? (The Conductor sends a request message to all the Players to
verify that they are up and running.)

Execut ing SSL scripts that use client cert ificates

If you are execut ing SSL scripts that use cl ient cert i ficates, you must manually copy the cl ient cert i ficates in
use to the Player machine(s) execut ing the script(s).

Manually copy the cl ient cert i ficates from the \Program Files\Compuware\QALoad\Certificates
directory to the same default directory on the Player machine.

Tips for running QALoad tests on UNIX systems

To successful ly run large QALoad tests on UNIX systems, you may need to make adjustments to your
sett ings as described below:

QALoad 5.02

232

General (AIX, Solaris, HP-UX, and RedHat Linux)

When you attempt to run a large number of virtual users on UNIX platforms, the virtual users do not
always synch. If virtual users do not synch, try increasing the Virtual User Startup Delay. By default ,
QALoad Conductor sets the VU Startup Delay to 1 mil l isecond. This default is not h igh enough for UNIX
platforms. If the UNIX Player receives a value less than 15 mil l iseconds, the delay wil l be 15 mil l iseconds
or more.

To increase t he delay:

1. In the QALoad Conductor, click Tools>Options.

2. Click the Player tab.

3. In the VU Startup Delay field, type the number of milliseconds to delay virtual user startup.

 Solaris

The default fi le descriptor l im it on Solaris has a "soft" l im it of 64, and a "hard" l im it of 1024 (Solaris 2.6).
Per the Solaris 2 FAQ (refer to http:/ /www.wins.uva.n l/pub/solaris/solaris2.html), the fi le descriptor l im it is
described in the getrl im it() manual page as: "One more than the maximum value that the system may
assign to a newly created descriptor. This l im it constrains the number of fi le descriptors that a process may
create."

To increase th is l im it , system administrators can modify the /etc/system fi le and reboot the system. For
example:

* set hard limit on file descriptors

set rlim_fd_max - 4096

*set soft limit on file descriptors

set rlim_fd_cur = 1024

HP-UX

On HP-UX, the default thread-per-process l im it is 64. This means that only 58 virtual users per Player wi l l
sync. To increase the thread-per-process l im it , the system administrator can use the System Administration
Manager (SAM) to re-configure and to compile the kernel by select ing Kernel
Con f igurat ion>Con f igurable Param eters>m ax_th read_proc. Increase the value to at least 2048.

On HP-UX 11i, the total number of threads default is 5000. Increase th is by changing the nkthread Kernel
parameter.

Timing file is too big

Depending on the length of the load test and the amount of data that was col lected, t im ing fi les can grow
to excessively large sizes that become difficult to handle. To prevent t im ing fi les from becoming too large,
try modifying the fol lowing sett ings:

! Disable automatic middleware checkpoint t im ings in the Conductor

! Use the Conductor's t im ing data th inning opt ions

Both of these sett ings are located on the Timing Options dialog box, which can be accessed from the Script
Assignment tab of the Conductor.

QALoad 5.02

233

Oracle Forms Server playback error codes

QALoad displays error codes during playback for specific except ion messages. While debugging, refer to the
table below that l ists error codes and descript ions that apply to Oracle Forms Server scripts.

Most of the errors l isted below are cl ient request errors due to JVM memory issues. When the error is due to
a server problem, the error message indicates a connect ion issue or a bad response from the server. Al l
these errors cause playback to fai l . When the error is cl ient-related, you can work around the JVM memory
issue by tweaking the Player machine's Threads Per Player value in QALoad Conductor. When the error is
server-related, the server is unable to handle the load. The server typical ly throws out connect ion requests,
does not respond to requests, or terminates connect ions during playback.

Error code Descript i on

OFS-ERROR-001 Failed to create the replay log fi le.

OFS-ERROR-002 Failed while processing server detai l message. Unknown control handle.

OFS-ERROR-003 Failed to send a heartbeat message.

OFS-ERROR-004 OracleAppsLogin: Error: icx_t icket not found in OracleAppsLogin, please
check URL, userid, and password.

OFS-ERROR-005 Failed to set Boolean property of a RunForm object.

OFS-ERROR-006 Failed to process Boolean property of a RunForm object.

OFS-ERROR-007 Failed to set Point property of a RunForm object.

OFS-ERROR-008 Failed to process point property of a RunForm object.

OFS-ERROR-009 Failed to set Byte property of a RunForm object.

OFS-ERROR-010 Failed to process Byte property of a RunForm object.

OFS-ERROR-011 Failed to set In teger property of a RunForm object.

OFS-ERROR-012 Failed to process Integer property of a RunForm object.

OFS-ERROR-013 Failed to set String property of a RunForm object.

OFS-ERROR-014 Failed to process String property of a RunForm object.

OFS-ERROR-015 Failed to set Void property of a RunForm object.

OFS-ERROR-016 Failed to process Void property of a RunForm object.

OFS-ERROR-017 Failed to process Character property of a RunForm object.

OFS-ERROR-019 Failed to process Float property of a RunForm object.

OFS-ERROR-020 Failed to set Date property of a RunForm object.

OFS-ERROR-021 Failed to process Date property of a RunForm object.

QALoad 5.02

234

OFS-ERROR-022 Failed to set Rectangle property of a RunForm object.

OFS-ERROR-023 Failed to process Rectangle property of a RunForm object.

OFS-ERROR-024 Failed to set ByteArray property of a RunForm object.

OFS-ERROR-025 Failed to set StringArray property of a RunForm object.

OFS-ERROR-027 Failed to process ByteArray property of a RunForm object.

OFS-ERROR-028 Failed to process StringArray property of a RunForm object.

OFS-ERROR-029 Failed to process nested message.

OFS-ERROR-030 Failed to do server-side connect ion.

OFS-ERROR-031 Failed to disconnect server-side connect ion.

OFS-ERROR-032 Failed because the server sent th is error message: <message>

OFS-ERROR-033 Failed to expand the GUI control array.

OFS-ERROR-034 Failed to get the stored propert ies.

OFS-ERROR-035 Failed to send terminal message using server-side connect ion.

OFS-ERROR-036 Failed to send Forms message using server-side connect ion.

OFS-ERROR-037 Failed to process the Void property of a Button object.

OFS-ERROR-038 Failed to add l istbox value. Bounds error. Listbox index: <index >, Listbox
value: < value>

OFS-ERROR-039 Failed to find Listbox value. Value: < value>

OFS-ERROR-040 Failed to set the String property of an ErrorDialog object.

OFS-ERROR-041 Failed to process the String property of an ErrorDialog object.

OFS-ERROR-042 Failed to process the nested message of an ErrorDialog object.

OFS-ERROR-043 Failed to set the Point property of a FormWindow object.

OFS-ERROR-044 Failed to process the Point property of a FormWindow object.

OFS-ERROR-045 Failed to set the Boolean property of a FormWindow object.

OFS-ERROR-046 Failed to process the Boolean property of a FormWindow object.

OFS-ERROR-047 Failed to set the Integer property of a FormWindow object.

OFS-ERROR-048 Failed to process the Integer property of a FormWindow object.

QALoad 5.02

235

OFS-ERROR-049 Failed to process the nested message of a FormWindow object.

OFS-ERROR-050 Failed to set the String property of a JavaContainer object.

OFS-ERROR-051 Failed to process the String property of a JavaContainer object.

OFS-ERROR-052 Failed to process the nested message of a JavaContainer object.

OFS-ERROR-053 Failed to set the String property of an LOV object.

OFS-ERROR-054 Failed to process the String property of an LOV object.

OFS-ERROR-055 Failed to set the Integer property of an LOV object.

OFS-ERROR-056 Failed to process the Integer property of an LOV object.

OFS-ERROR-057 Failed to set the Point property of an LOV object.

OFS-ERROR-058 Failed to process the Point property of an LOV object.

OFS-ERROR-059 Failed to set the Void property of an LOV object.

OFS-ERROR-060 Failed to process the Void property of an LOV object .

OFS-ERROR-061 Failed to process the nested message of an LOV object.

OFS-ERROR-062 Failed to set the String property of a LogonDialog object.

OFS-ERROR-063 Failed to process the String property of a LogonDialog object.

OFS-ERROR-064 Failed to process the nested message of a LogonDialog object.

OFS-ERROR-065 Failed to set the String property of a MenuParamDialog object.

OFS-ERROR-066 Failed to process the String property of a M enuParamDialog object.

OFS-ERROR-067 Failed to process the nested message of a M enuParamDialog object.

OFS-ERROR-068 Failed to set the String property of a PopList object.

OFS-ERROR-069 Failed to process the String property of a PopList object.

OFS-ERROR-070 Failed to set the Integer property of a PopList object.

OFS-ERROR-071 Failed to process the Integer property of a PopList object.

OFS-ERROR-072 Failed to set the Void property of a PopList object.

OFS-ERROR-073 Failed to process the Void property of a PopList object.

OFS-ERROR-074 Failed to process the nested message of a PopList object.

QALoad 5.02

236

OFS-ERROR-075 Failed to set the String property of a TextField object.

OFS-ERROR-076 Failed to process the String property of a TextField object.

OFS-ERROR-077 Failed to set the Point property of a TextField object .

OFS-ERROR-078 Failed to process the Point property of a TextField object.

OFS-ERROR-079 Failed to set the Integer property of a TextField object.

OFS-ERROR-080 Failed to process the Integer property of a TextField object.

OFS-ERROR-081 Failed to set the Void property of a TextField object .

OFS-ERROR-082 Failed to process the Void property of a TextField object.

OFS-ERROR-083 Failed to process the nested message of a TextField object.

OFS-ERROR-084 Failed to set the Integer property of a Tree object.

OFS-ERROR-085 Failed to process the Integer property of a Tree object.

OFS-ERROR-086 Failed to set the String property of a Tree object.

OFS-ERROR-087 Failed to process the String property of a Tree object .

OFS-ERROR-088 Failed to process the nested message of a Tree object.

OFS-ERROR-089 Failed to process the nested message of a Button object.

OFS-ERROR-090 Failed to execute SSL handshake.

OFS-ERROR-091 Failed to col lect Forms message.

OFS-ERROR-092 Failed to get the content length of the POST request.

OFS-ERROR-093 Failed to get new connect ion for a POST request.

OFS-ERROR-094 Failed to set up a new connect ion for an SSL-enabled POST request.

OFS-ERROR-095 Failed while post ing a NULL request for a large-data response.

OFS-ERROR-096 Failed to store data from the server reply.

OFS-ERROR-097 Failed to do a re-POST request.

OFS-ERROR-098 Server reply data is inval id. If the fol lowing Java msg is nul l , server has
terminated th is Forms session. Java Msg: <message>

OFS-ERROR-099 Failed to disconnect the URL connect ion.

OFS-ERROR-100 Failed to connect to Forms Servlet. Check the URL and i ts parameters.

QALoad 5.02

237

OFS-ERROR-101 Failed to do SSL connect ion to the Forms Servlet. Check the URL and i ts
parameters.

OFS-ERROR-102 Failed to log the Forms Servlet connect ion.

OFS-ERROR-103 Failed to log the HTTP reply header.

OFS-ERROR-104 Failed while reading the http reply header. Server has terminated the
Forms session.

OFS-ERROR-105 Failed while reading the server reply in an SSL connect ion.

OFS-ERROR-106 Failed to connect to the Forms Listener Servlet. Check the URL. If the URL
is val id, the server is not accept ing new connect ions.

OFS-ERROR-107 Failed to create a new URL connect ion for a Get request.

OFS-ERROR-108 Failed to connect to the Forms Listener Servlet in SSL mode. Check the
URL. If the URL is val id, the server is not accept ing new connect ions.

OFS-ERROR-109 Failed to log Listener Servlet connect ion.

OFS-ERROR-110 Failed to log in i t ial Forms Server connect ion.

OFS-ERROR-111 Failed to get a URL connect ion for the first POST request.

OFS-ERROR-112 Server did not return the encrypt ion keys for the first Post request. Forms
Server is not accept ing new connect ions.

OFS-ERROR-113 Failed to load loadplayerJava at startup. Library name: <l ibraryName>

OFS-ERROR-114 Failed to do SSL handshake.

OFS-ERROR-115 Failed to get SSL inputStream.

OFS-ERROR-117 Failed to close SSL socket.

OFS-ERROR-118 Failed to wri te the Forms Message.

OFS-ERROR-119 Failed to do a socket connect ion to the Forms Server.

OFS-ERROR-120 Server did not return the Forms encrypt ion key during a socket
connect ion.

OFS-ERROR-121 Failed to close the socket during a socket connect ion.

OFS-ERROR-122 Failed to wri te Forms message during a socket connect ion.

OFS-ERROR-123 Failed to send Forms message. Server terminated socket connect ion.

OFS-ERROR-124 Server reply is inval id. If Java msg is nul l , server has terminated th is Forms
session. Java Msg: <message>

OFS-ERROR-125 Failed to get the reply content. Check the URL. The URL may be inval id.

QALoad 5.02

238

OFS-ERROR-126 JVM memory issues.

OFS-ERROR-128 LoadValue fai led. LoadValue count is greater than the array length.

Heartbeat message failure on a virtual user

When a Player machine crashes or experiences a loss of communicat ion, the heartbeat message that the
Conductor sends out (i f enabled) fai ls. This si tuat ion is indicated in the runt ime Conductor through a
message on each virtual user that is affected. When the heartbeat message fai ls for a virtual user, the Status
column of the Detai ls view of a script displays the fol lowing message: "The Player running th is user fai led
to respond to a heartbeat message."

The opt ion for enabl ing a heartbeat message is located on the Player tab of the Opt ions dialog box in the
Conductor.

QALoad 5.02

239

Player

Overview of the QALoad Player
The QALoad Player simulates one or more virtual-users running C-based scripts. These scripts mimic user
act ivi t ies to load test the appl icat ion, network, and server components of a cl ient-server system.

The QALoad Player is used to simulate mult iple cl ients sending middleware cal ls back to a server.
General ly, these are database SQL cal ls — al though other types of middleware layers can also be tested.
When running virtual user simulat ion, QALoad Player can emulate mult iple users from a single platform
using the mult i-tasking features of 32-bit Windows. The number of users that a single hardware system can
emulate is determined by the processor speed, main memory size, middleware layer, and simulated
transact ion rate. Please contact your QALoad distributor for further sizing in formation.

Once started, QALoad Player is designed to funct ion ent irely in the background without any direct user
in teract ion. Al l commands to QALoad Player come from the QALoad Conductor. In fact, once QALoad
Player has been started, the only in teract ion you may have with i t is to change startup parameters or to
save the contents of the display window to a fi le.

Citrix and SAP 6.20/6.40 scripts play back in a virtual user window on the desktop. For SAP, you can enable
or disable the VU window from the Conductor's Custom middleware opt ions dialog box. Citrix replay
sessions are min imized by default , but can be restored on the desktop.

About the Player

Overview of the QALoad Player

The QALoad Player simulates one or more virtual-users running C-based scripts. These scripts mimic user
act ivi t ies to load test the appl icat ion, network, and server components of a cl ient-server system.

The QALoad Player is used to simulate mult iple cl ients sending middleware cal ls back to a server.
General ly, these are database SQL cal ls — al though other types of middleware layers can also be tested.
When running virtual user simulat ion, QALoad Player can emulate mult iple users from a single platform
using the mult i-tasking features of 32-bit Windows. The number of users that a single hardware system can
emulate is determined by the processor speed, main memory size, middleware layer, and simulated
transact ion rate. Please contact your QALoad distributor for further sizing in formation.

Once started, QALoad Player is designed to funct ion ent irely in the background without any direct user
in teract ion. Al l commands to QALoad Player come from the QALoad Conductor. In fact, once QALoad
Player has been started, the only in teract ion you may have with i t is to change startup parameters or to
save the contents of the display window to a fi le.

Citrix and SAP 6.20/6.40 scripts play back in a virtual user window on the desktop. For SAP, you can enable
or disable the VU window from the Conductor's Custom middleware opt ions dialog box. Citrix replay
sessions are min imized by default , but can be restored on the desktop.

QALoad Player menus

The fol lowing menus are avai lable from the QALoad Player:

Fi le menu
Edit menu
View menu

QALoad 5.02

240

Options menu
Help menu

Installing UNIX Players

For in formation about instal l ing UNIX Players, please refer to the QACenter Performance Edit ion
Instal lat ion and Configurat ion Guide.

You can access th is guide by cl icking
Start>Program s>Com puw are>QALoad>Docum en tat ion>Instal l at i on and Con f igurat ion Guide.

Tuning QALoad Player for use with Oracle

Oracle version 7 SQL*NET puts significant demands on the system running QALoad Player by demanding
at least 1MB of physical memory and approximately 3MB of virtual memory per simulated user.
Compuware recommends you fol low these guidel ines when using Oracle to opt imize QALoad Player
performance:

! Set the Execut ing Threads Startup Interval parameter on the Player Configurat ion dialog box ’s
Startup Parameters tab to between 2,000 and 4,000 mil l iseconds.

! Unless your appl icat ion cont inual ly logs in and out of Oracle, move the logon commands
(DO_olog and i ts associated DO_ologof) outside the Begin_Transact ion/End_Transact ion loop,
where the Oracnvrt program places them by default .

Dialog box and field descript ions

QALoad Player Main Window

The QALoad Player Main Window is divided into two parts:

! The top port ion contains fields, buttons, and opt ions that help you configure the Player for script
val idat ion. When an actual load test is in progress, th is area displays the fol lowing in formation:

 Version : The version of the QALoad Player.

 Player Nam e: The network name assigned to the Player workstat ion.

 Player Address: The network address of the Player workstat ion.

 Player Port : The port number on th is Player workstat ion being monitored by the QALoad
Conductor.

 Player i s runn ing… the type of virtual users th is Player is running.

 The number of virtual users and transact ions th is Player is running.

! The bottom port ion of the Player M ain Window displays Player messages whi le a script is running.

This sect ion describes the configurat ion opt ions on the top port ion of the Main Window.

Fields and Buttons

Com pi led Script

Navigate to the compiled script (.dl l) to val idate.

Users

QALoad 5.02

241

Type the number of users to emulate when val idat ing the selected script . Compuware recommends one
user for script val idat ion.

Transact ions

Type the number of t ransact ions to run when val idat ing the selected script . Compuware recommends one
transact ion for script val idat ion.

Start

Click the Start button to begin script val idat ion. Player messages wil l display below.

Abort

Click the Abort button to stop al l virtual users immediately.

Ex i t

Click the Exit button to exit the load test graceful ly, when each virtual user is fin ished.

Debug Data

Select th is check box to have the Player display a debug message indicat ing which command the script is
execut ing and to generate WWW replay log fi les.

RR__Prin t f

Select th is check box to display al l RR__Printf commands contained in the script in the Player window.

RR__Fai ledM sg

Select th is check box to view, in the Player window, the point where a middleware command with in your
script fai ls.

Check Poin ts

Select th is check box i f you want to display the Check Point command response t imes in the Player
window.

Auto Clear

Select th is check box to automatical ly clear any messages from the bottom port ion of the window before
running a new script .

Abort on Error

Select th is check box to abort script execut ion when an error is encountered.

Create Tim ing Fi l e

Select th is check box to create and save a Player t im ing fi le for th is Player to the default QALoad t im ing fi le
directory (normally \Program Files\Compuware\QALoad\TimingFiles).

Create JAR Fi le

Select th is check box so that when running a JAVA script , a JAR Fi le wi l l be created which contains al l the
dependencies of the script .

Run As

Select i f th is Player should run scripts as thread- or process-based.

QALoad 5.02

242

Save As

Use th is dialog box to save a text fi le of the messages reported by Player during a test, or to save an exist ing
buffer with a different name.

Access th is dialog box from the Fi le menu by selecting Save Buf fer or Save Buf fer As.

Player configurat ion

Use th is dialog box to set startup parameters for Player. The default startup parameters are saved in the
player sect ion of the qaload.in i fi le.

Access th is dialog box from the Opt ions menu by select ing Player Con f igurat ion .

Runt im e tab

Player Nam e: This is the name that the Player wi l l report to the QALoad Conductor during a request. It
may be any string of alphanumeric characters, provided that the length does not exceed 10 characters and
there are no embedded spaces.

Com pi led Scripts: This field points to the directory which wil l hold the compiled scripts. When a test is
started, Player looks for scripts in th is directory. The configurat ion screen wil l veri fy that the directory
exists.

Compuware recommends that you use a directory on a networked drive to hold the compiled scripts.
Otherwise you wil l need to manually copy the script fi les to each Player system whenever a script changes.

Local Datapool : This field points to the directory which wil l hold the local datapool fi le referenced by th is
Player workstat ion.

Tim ing Fi l e: This field points to the default directory where the t im ing fi les are located.

Java tab

jvm .dl l di rectory : (opt ional) This is the directory where the JVM.DLL fi le is located. If specified, th is
JVM.DLL wil l be used to run the Java scripts from a standalone Player; otherwise, the entry specified in the
Compiler Sett ings tab of the Configure QALoad Script Development Workbench dialog box wil l be used.

How to...

Installing UNIX Players

For in formation about instal l ing UNIX Players, please refer to the QACenter Performance Edit ion
Instal lat ion and Configurat ion Guide.

You can access th is guide by cl icking
Start>Program s>Com puw are>QALoad>Docum en tat ion>Instal l at i on and Con f igurat ion Guide.

Transferring scripts to a UNIX Player

Normally, the appropriate script is automatically uploaded from the QALoad Conductor to the Players and
compiled at runt ime. However, i f i t is ever necessary to manually transfer a script , use the procedure that
fol lows.

Note: The machine where the QALoad Script Development Workbench is installed must have Winsock-
based TCP/IP to transfer a script to the UNIX machine where you wish to run it.

QALoad 5.02

243

Transferring a Script

The fol lowing procedure describes how to transfer a script fi le from the Windows workstat ion where the
QALoad Script Development Workbench resides to the system running the QALoad Player.

1. Access the Script Development Workbench.

2. From the Session menu, choose the middleware session you want to start.

3. In the Workspace Pane, click the Scripts tab.

4. On the Scripts tab, select the script you want to transfer.

5. From the Tools menu, choose FTP to open the FTP Transfer dialog box. Note that the file name you selected to
transfer appears in the File to Transfer field.

6. Enter the Host Name, User Name, Password, and Destination Directory.

7. Click Transfer to send the file to the system where your QALoad Player is installed.

8. If you want to save the information you have entered for subsequent transfers, click Save Settings.

9. Click Close/Abort to exit the FTP Transfer dialog box.

Start QALoad Player from the command line

QALoad Player may be started from a console using the fol lowing command l ine format:

Player [player name] [number of users] [TCP service port] [rebase]

Note that al l parameters are opt ional and, i f omit ted, wi l l default to the startup parameters as defined in
the QALOAD.INI fi le.

Validate a script

To val idat e a scr ip t , f ol low t hese st eps:

1. In the Com pi led Script field, browse for the compiled script DLL you want to val idate. Compiled
scripts are usual ly located in the directory \Program Files\Compuware\QALoad\Scripts.

2. Type a value in the Num ber of Users field. Compuware recommends one user for script val idat ion.

3. Type a value in the Transact ions field. Compuware recommends one transact ion for script
val idat ion.

4. Select any appropriate opt ions to the right of the Compiled Script field. These opt ions determine
the type and amount of data that wi l l display in the Player Main Window. For descript ions of each
opt ions, see the topic QALoad Player Main Window .

5. In the Run As area, select whether the transact ion should run as th read- or process-based .

6. Click Start to run the script . The Player M ain Window wil l show the script 's progress. If the script
runs successful ly, i t is val id to use in a load test.

Set t ing up for DB2 playback

As with al l QALoad middleware support on UNIX, DB2 UNIX support is replay only. QALoad does not
support recording scripts from a UNIX environment. QALoad assumes that the DB2 environment is
working prior to instal lat ion of QALoad .

Note: To run DB2 load tests on AIX with 10 or more virtual users in thread-based mode, you must set the
DB2 environment variable EXTSHM to ON to work around a memory handling problem in DB2.

QALoad 5.02

244

To use EXTSHM w i t h DB2:

1. Before starting the client application, type the following command:
export EXTSHM=ON

2. When starting the DB2 server, type the following commands:
export EXTSHM=ON
db2set DB2ENVLIST=EXTSHM
db2start

For in formation about set t ing up your UNIX Player instal lat ion, refer to the QACenter Performance Edit ion
Instal lat ion and Configurat ion Guide. You can access th is guide by cl icking
Start>Program s>Com puw are>QALoad >Docum en tat ion>Instal l at i on and Con f igurat ion Guide.

QALoad 5.02

245

Analyze

Overview of QALoad Analyze
QALoad Analyze is the QALoad component used to create summary stat ist ics and graphs from t im ing data
col lected during a load test. Set cri teria for col lect ing and displaying test data in QALoad Analyze before or
after opening a test ’s t im ing fi le (.t im). For example, alter output opt ions, t ime ranges, and graphics display
opt ions.

Each t ime a t im ing fi le opens, QALoad Analyze automatical ly displays a Summary report in the Data
window. In addit ion, QALoad Analyze generates a working folder where al l fi les and reports related to the
t im ing fi le are stored. QALoad Analyze provides seven pre-defined reports as well as the abi l i ty to create
custom reports using XML fi le (.xml), XSL translat ion fi le (.xsl), and HTM fi le (.h tm) formats. View these
reports in QALoad Analyze or in a Web browser.

QALoad Analyze displays a t im ing fi le tab in the Workspace, each tab contain ing groups. . Use QALoad
Analyze’s in teract ive view to sort test data, produce detai led checkpoint data, produce a variety of graphs
and reports (with drag and drop funct ional i ty), export data to different formats, and email test results and
pre-defined reports.

About Analyze

Overview of QALoad Analyze

QALoad Analyze is the QALoad component used to create summary stat ist ics and graphs from t im ing data
col lected during a load test. Set cri teria for col lect ing and displaying test data in QALoad Analyze before or
after opening a test ’s t im ing fi le (.t im). For example, alter output opt ions, t ime ranges, and graphics display
opt ions.

Each t ime a t im ing fi le opens, QALoad Analyze automatical ly displays a Summary report in the Data
window. In addit ion, QALoad Analyze generates a working folder where al l fi les and reports related to the
t im ing fi le are stored. QALoad Analyze provides seven pre-defined reports as well as the abi l i ty to create
custom reports using XML fi le (.xml), XSL translat ion fi le (.xsl), and HTM fi le (.h tm) formats. View these
reports in QALoad Analyze or in a Web browser.

QALoad Analyze displays a t im ing fi le tab in the Workspace, each tab contain ing groups. . Use QALoad
Analyze’s in teract ive view to sort test data, produce detai led checkpoint data, produce a variety of graphs
and reports (with drag and drop funct ional i ty), export data to different formats, and email test results and
pre-defined reports.

Understanding durat ions

When you begin to analyze your test results, i t is important to understand how durat ions are calculated by
QALoad.

Transaction duration

Transact ion durat ion is the t ime that the script being tested takes to complete a transact ion, from the
BEGIN_TRANSACTION command to the END_TRANSACTION command.

Three factors comprise transact ion durat ion:

! The script processing time including, but not limited to, added script logic, QALoad processing of server replies, and
other QALoad processing.

QALoad 5.02

246

! Sleep time.

! The response time of the application under test including, but not limited to, the application server, database access,
and network.

Checkpoint duration

Checkpoint durat ion is the amount of t ime between begin and end checkpoint statements. The fol lowing
factors comprise checkpoint durat ion and apply to both automatic checkpoints and user-defined
checkpoints

If you select the Conductor's Enable t im ing of autom at i c m iddlew are checkpoin ts option or use the
BeginCheckpoint and EndCheckpoint funct ions in the script , the fol lowing factors comprise checkpoint
durat ion:

! The response time of the application under test, including, but not limited to, the application server, database access,
and network.

! Sleep time, if the Conductor's Include sleep times when calculating checkpoint timings option is selected.

! QALoad processing time is not included within these checkpoints in order to provide a more accurate value of
server, database, and network response times.

Checkpoint durat ions do not always sum to the same value as the transact ion durat ion. For more
in formation, see Comparing checkpoint durat ions to transact ion durat ion.

QALoad Analyze menus

QALoad Analyze menus and toolbar buttons

Click a menu or toolbar name in the fol lowing l ist for a descript ion.

Fi le
Edit
View
Tools
Window
Help

Analyze Toolbar buttons
Graph Toolbar buttons

File menu

I tem Descript i on

Open Opens a dialog box to select a t im ing fi le for Analyze to process. When a t im ing
fi le is opened, Analyze opens a Summary report in the Data window and
corresponding t im ing fi le tab in the Workspace.

Close Closes the current t im ing fi le view displayed in the Data window. In the
Workspace, the associated group and t im ing fi le tab wil l remain open.

Close Tim ing
Fi l e

Closes the current t im ing fi le and al l reports, detai l views, or graphs associated
with that t im ing fi le.

Prin t Opens the Print dialog box to set opt ions for prin t ing the current Summary
report .

QALoad 5.02

247

Prin t Preview Opens a window displaying the current Summary report as i t wi l l look when
printed.

Prin t Setup Opens the Print Setup dialog box to select a prin ter and to set opt ions for
prin t ing.

Export Opens the Save As dialog box to save a load test Detai l view as a CSV (*.csv) fi le,
HTML (*.htm, *.html) fi le, or save graphs to HTML (*.htm, *.html) fi les.

Send Opens the Send dialog box, which enables you to save test data outside Analyze,
package test data in to .zip fi les, or email test data.

Propert i es Opens the Propert ies dialog box, which displays detai ls about Analyze and the
current t im ing fi le. This dialog box also contains buttons that enable you to save
the displayed information to the cl ipboard or in a fi le.

Ex i t Exits the Analyze program.

Edit menu commands

Opt ion Descript i on

Copy Copies selected text to the cl ipboard.

Select Al l Selects al l counters, checkpoints, data
points, etc., of the act ive t im ing fi le in
the Workspace.

Unselect Al l Un-selects al l previously selected
counters, checkpoints, data points,
etc., in the Workspace of the act ive
t im ing fi le.

View menu commands

Opt ion Descript i on

Toolbar Displays or removes the toolbar from
the top of the screen.

Status Bar Displays or removes the status bar from
the bottom of the screen.

Detai l Opens a Detai l in formation view in the
Data Window for the selected
checkpoints.

QALoad 5.02

248

Graph Opens the Select Graph dialog box to
choose a graphical format for reviewing
the current data.

as Web Page Opens the current report , graph, or
detai l view, in the default Web browser.

Workspace Displays or h ides the Workspace.

Workbook Displays or h ides the Data window.

Tools menu commands

Opt ion Descript i on

Opt ions Provides access to opt ions for
customizing data.

Show Replay Launches the Conductor to replay a test
recording.

Conductor Starts QALoad's Conductor program,
which is used to control al l test ing
act ivi ty.

Workbench Starts the QALoad Script Development
Workbench, which is used to create and
manage test scripts.

Window menu commands

Opt ion Descript i on

Cascade Automatical ly moves and resizes al l the
act ive windows, so they overlap one
another.

Ti le
Hori zon tal l y

Moves and resizes al l the act ive
windows so they are l ined up
horizontal ly.

Ti le
Vert i cal l y

Moves and resizes al l the act ive
windows so they are l ined up
vert ical ly.

Arrange
Icons

Arranges any min imized windows
with in QALoad Analyze's parent
window.

Close Al l Closes al l open windows.

QALoad 5.02

249

Help menu

Opt ion Descript i on

Help Topics Displays QALoad's onl ine help
contents.

About QALoad
Analyze

Displays the program's About box
and copyright not ice.

QALoad Analyze toolbars

Analyze toolbar buttons

Click a toolbar button for a descript ion of that button.

Graph toolbar buttons

Change the style and appearance of a graph using opt ions avai lable from the Graph toolbar. The Graph
toolbar also contains buttons for standard Windows operat ions. Although i t normally appears atop a
graph, the toolbar is completely dockable. M ove the toolbar to another side of the graph, or off the graph
altogether, by cl icking any unpopulated area of the toolbar and dragging i t to another area.

Cl ick any button in the fol lowing toolbar for a descript ion of that button.

Display the Graph toolbar by right-cl icking in an open area of a graph and choosing the Toolbar opt ion
from the shortcut menu.

Accessing test data

Using t iming files

When you run a test using a part icular session ID fi le (set up in the Conductor), each Player compiles a
local t im ing fi le comprised of a series of t im ing records for each checkpoint of each script run on that
Player. Each t im ing record in the fi le consists of a response t ime/elapsed t ime pair of values specifying the
amount of t ime i t took a certain checkpoint to fin ish (response t ime) at a specific t ime in the test (elapsed
t ime).

At the end of a test, Player t im ing fi les are sent to the Conductor and are merged into a single t im ing fi le,
cal led the Primary t im ing fi le, for analysis. If you set up in tegrat ion with Compuware's ServerVantage
product, the Conductor col lects t im ing data from the ServerVantage central console and merges that data
in to the t im ing fi le as well .

Primary t im ing fi les are saved in the \Program Files\Compuware\QALoad\TimingFiles directory, and
are name <sessionID>_date_time.tim.

The Primary t im ing fi le created by the Conductor after a test run contains al l of the t im ing records of al l
Players in that test run. Use QALoad Analyze to view, sort , graph, and create reports using the test data in
the t im ing fi le.

Hint: In the event that something goes wrong on the network and a Player timing file is not passed to the
Conductor, it is still possible to analyze results from a Player timing file. Player timing files are saved in the

QALoad 5.02

250

\Program Files\Compuware\QALoad\TimingFiles directory and are named
tim_yyyymmdd_hhmmss_xxx.ptf, where yyyymmdd_hhmmss is the date/time the test was started, and xxx
is the Player number.

Accessing test data

When you open a t im ing fi le, QALoad ’s Analyze program summarizes the checkpoints recorded in the fi le
during the load test and presents the data in a report format cal led the Summary report .

Three ways to access QALoad Analyze and open a t im ing fi le contain ing test results are:

To access Analyze f rom t he QALoad Conduct or :

1. In the QALoad Conductor, click Tools>Options. The Options dialog box appears.

2. Click the General tab. In the General Options area, select the Launch Analyze After Test check box.

At the end of each test run, QALoad Conductor automatical ly launches QALoad Analyze and opens the
most recent t im ing fi le. Or, i f you did not select the Launch Analyze After Test check box before the test:

1. Click Tools>Analyze.

2. In QALoad Analyze, click File>Open. The Open Timing File dialog box appears. Select a timing file to work with by
double-clicking the file name in the list of available timing files.

Use the fol lowing method when accessing a previously-created t im ing fi le.

To access Analyze f rom t he W indow s St ar t m enu:

1. Click Start>Program Files>Compuware> QALoad >Analyze.

2. Click File>Open. The Open Timing File dialog box appears. Select a timing file to
work with by double-clicking the file name in the list of available timing files.

Use the fol lowing method when you are already working in the QALoad Script
Development Workbench and need to access a previously-created t im ing fi le.

To access Analyze f rom t he QALoad Scr ip t Developm ent W orkbench:

1. In the QALoad Script Development Workbench, click Tools>Analyze.

2. In QALoad Analyze, click File>Open. The Open Timing File dialog box appears.
Select a timing file to work with by double-clicking the file name in the list of available
timing files.

Accessing test data via groups

Located in the QALoad Analyze Workspace, each group displays data from a
t im ing fi le. The data displayed and the groups avai lable may vary, depending on
the type of data that was col lected during the load test.

Access groups to select data for generat ing a detai l view or graph. Cl ick a group
name below to view the type of data that is displayed by each group.

Reports
Checkpoints
Counters
Server Monitoring
Player Performance Counters

QALoad 5.02

251

Top Processes
RIP Fi les

Displaying detail data

Displaying detail data

Display detai led stat ist ics from a t im ing fi le such as checkpoints, counters, etc., in the QALoad Analyze
Data window. View stat ist ics for not only the act ive t im ing fi le, but also for other t im ing fi les and drag and
drop onto the act ive t im ing fi le detai l view.

To display det ai led st at ist ics:

1. In the workspace, with the appropriate Timing File tab selected, click the group for which you want to view statistics.

2. Select the appropriate checkpoints or counters (depending on which group you choose).

3. From the Analyze toolbar, click the Detail button or right-click on a selected checkpoint or counter and choose
Detail.

Detai l in formation is presented in the Data window in both a summary and data table. The information
displayed varies based on the group selected.

Note: If the test aborts, complete data for all the checkpoints and counters may not display.

The fol lowing detai l views are avai lable:

Checkpoints detail data

Checkpoint detai l data is displayed in two panes: a summary table and a data table.

Checkpoin ts Sum m ary Table

Shows stat ist ical averages for the selected checkpoin ts and displays a summary of the raw data col lected
from the load test. The fol lowing data may be displayed:

Tim ing Fi l e: Name of the t im ing fi le the checkpoint came from.

Script : Name of the script fi le.

Checkpoin t : Checkpoint name

Type: Type of checkpoint: response t ime or sleep t ime.

Group: Automatic (avai lable i f automatic checkpoint t im ings are enabled in the Conductor), or User (for
user-defined checkpoints).

#Tran s: Total number of data points that were used to calculate the stat ist ics. If data th inning is enabled,
th is column displays as "#Thinned Trans".

#Recs: Number of records recording during the test. If data th inning is enabled, th is column displays as
"#Thinned Recs".

Data Th in : If the Enable Tim ing Data Th inn ing check box was selected in the QALoad Conductor's
Timing Options dialog box prior to start ing a load test, the value typed in the Th in Every <xx>
Transact ions wi l l be in th is column. If not selected, the value is none.

Note: For a complete description of this QALoad Conductor option, see Timing Options.

M in : M in imum recorded response t ime.

QALoad 5.02

252

M ean : Average of the response t imes.

M ax : Maximum recorded response t ime.

StdDev : Standard deviat ion of al l response t imes. Standard deviat ion is an indicator of how widely values
are dispersed from the average (mean) value. A large standard deviat ion indicates a wide variance in
response t imes.

M edian : Median response t ime (in seconds). The median is the value at which half of the responses are
greater and half of the responses are less. If the number of responses is large, the median is usual ly close to
the mean.

Nth Percen t i l e: Displays that nth% of the responses have a value less than the value shown.

Pacing (Seconds): Rate at which the script executed transact ions.

VU ’s: Number of virtual users execut ing th is script .

Checkpoin ts Data Table

Provides a view of the raw data col lected during the load test. It can be useful for pinpoint ing anomalies
with load test results. The fol lowing data may be displayed:

Tim ing Fi l e: Name of the t im ing fi le the checkpoint came from.

Script : Name of the script fi le.

Checkpoin t : Checkpoint name.

Type: Type of checkpoint: response t ime or sleep t ime.

Group: Automatic (avai lable i f automatic checkpoint t im ings are enabled in the Conductor), or User (for
user-defined checkpoints).

VU: The virtual user that was running.

Player : Player machine the test results came from.

#Sam ples: Displays how many records were th inned into a single record i f data th inning was enabled. If
the value is 1, the data records were not th inned.

Elapsed (Seconds): Time into the test at which a data point was col lected.

Respon se (Seconds): Value of the data col lected.

Counters detail data

Counter detai l data is displayed as fol lows:

Coun ters Sum m ary Tabl e

Shows stat ist ical averages for the selected counters. It is a summary of raw data col lected from a load test.
 The fol lowing data may be displayed:

Tim ing Fi l e: Name of the t im ing fi le the counter came from.

Script : Name of the script fi le that contained the counter.

Group: Group name.

Note: Not all counters will belong to a group. Those counters that do will have a group name displayed. For
instance, custom and Web counters are logically organized by groups. However, Virtual Users and Total Virtual
Users do not belong to a group.

Nam e: Name of the counter.

QALoad 5.02

253

Note: Certain statistical data is shared across all detail views. For a description of these fields, click the
following: Statistical Information

Coun ters Data Table

Provides a view of the raw data col lected during a load test. It can be useful for pinpoint ing anomalies
with in load test results. The fol lowing data may be displayed:

Tim ing Fi l e: Name of the t im ing fi le the counter came from.

Script : Name of the script fi le that contained the counter.

Group: Group name. Custom and Web counters are logical ly organized by groups.

Nam e: Name of the counter.

Vi rtual User : Name of the virtual user.

Elapsed (Seconds): Time into the test at which a data point was col lected.

Value: Value of the data col lected. This column displays the value of instance counters.

Cum ulat i ve Value: Total number of occurrences during the elapsed t ime. This column displays the value
of cumulat ive counters.

Server monitoring detail data

QALoad provides performance counter data through three server monitoring methods. Cl ick the fol lowing
l inks for descript ions of the server monitoring detai l data opt ions:

! EcoTOOLS 6 - Availability Management application complimentary to QALoad for service level monitoring on UNIX
of performance counters for applications, servers, and databases during production.

! Remote Monitoring - Monitoring of performance counters from a machine under test without the use of agent
software on the machine.

! Server Analysis - Monitoring of performance counters from a machine under test using the ServerVantage agent
software installed on the machine.

! ServerVantage - Availability Management application complimentary to QALoad for service level monitoring of
performance counters for applications, servers, and databases during production. ServerVantage also provides
notification, event management, and reporting features.

Player performance counters detail data

Player performance counters detai l data is displayed as fol lows:

Player Performance Summary Table

Shows stat ist ical averages for the selected Player performance counters. It is a summary of the raw data
col lected from a load test. The fol lowing data may be displayed:

Tim ing Fi l e: Name of the t im ing fi le the counter came from.

Player : Player name.

Descript i on : Descript ion of the counter.

Note: Certain statistical data is shared across all detail views.

Player Performance Data Table

Provides a view of the raw data col lected during a load test. It can be useful for pinpoint ing anomalies
with in load test results. The fol lowing data may be displayed:

QALoad 5.02

254

Tim ing Fi l e: Name of the t im ing fi le the performance counter came from.

Player : Player name.

Descript i on : Name of the counter.

Elapsed (Seconds): Time into the test at which a data point was col lected.

Value (%): Value of the data col lected.

Top processes detail data

Top Processes detai l data is displayed as fol lows:

Top Processes Summary Table

Shows stat ist ical averages for the selected Top Processes data. It is a summary of the raw data col lected from
a load test. The fol lowing data may be displayed:

Tim ing Fi l e: Name of the t im ing fi le the counter came from.
Process: Name of the process monitored during the test.
#DataPts: Number of data points col lected for each part icular process.

Note: Certain statistical data is shared across all detail views. For a description of these fields, click the
following: Statistical Information

Top Processes Data Table

Provides a view of raw data col lected during a load test. It can be useful for pinpoint ing anomalies with in
load test results. The fol lowing data may be displayed:

Tim ing Fi l e: Name of the t im ing fi le the counter came from.
Process: Process name.
Elapsed (Seconds): Time into the test at which a data point was col lected.
% CPU: Percent of CPU used.

Sort ing test data

A Detai l view potent ial ly contains a large number of checkpoints, counters, etc., especial ly i f a load test
had many virtual users. To make information manageable, specify up to three levels of cri teria to sort by,
in ascending or descending order.

For example, i f a test ran using five scripts on 100 virtual users, sort the data by script name. Suppose each
virtual user ran more than one transact ion using a part icular script , then sort by both script name and by
virtual user. Or, to quickly locate any t im ing bott lenecks, sort by response t ime.

Use the Sort Detai ls dialog box to sort a detai l view. To access th is dialog box, select Tools>Sort from the
Analyze menu or cl ick Sort on the Analyze toolbar.

Speci fy sort opt ions for t he fol l ow ing grid : Select the Sum m ary opt ion to conduct sort on the Sum m ary
table. Select the Data opt ion to conduct a sort on the Data table.

Sort By : Select the first column to sort by from the list , then select the Ascending or Descending sort
order opt ion.

Then By : Select the second column to sort by from the l ist , then select the Ascending or Descending sort
order opt ion.

Then By : Select the th ird column to sort by from the l ist , then select the Ascending or Descending sort
order opt ion.

QALoad 5.02

255

Creat ing a chart or graph

Thinning data before graphing

Test results may contain more data than can reasonably be graphed. Thinning data before graphing
provides a more clear and manageable graph.

To set up dat a t h inning :

1. With a timing file open, click Tools>Options.

2. Click the Data Thinning tab.

3. Type the number of data points to plot on each graph and select the method by which to graph the data points.

4. Click OK.

For a descript ion of the opt ions on th is dialog box, see Options Dialog Box - Data Thinning Tab.

Graphing QALoad t iming data

A t im ing fi le can potent ial ly contain enough data that graphing al l of i t at one t ime results in an
unreadable graph. Before beginning, consider th inning the amount of data to be shown on a single graph.
Detai ls

Select the group to graph:

In the Workspace, with the appropriate Timing Fi le tab selected, cl ick the group for which to create a
graph.

Note: If the test aborts, complete data may not be available for all checkpoints and counters.

The fol lowing groups are avai lable, depending on the t im ing fi le:

Checkpoints
Counters
Server Monitoring
Player Performance Counters
Top Processes

Note: For each Group except Checkpoints, the graph type is a line graph. For graphing multiple checkpoints,
the graph type is either a line or bar graph. For graphing a single checkpoint only, in addition to line and bar
graphs, you can also create Response Time Distribution and Cumulative Response Time Distribution graphs.

Graphing checkpoints

Note: A timing file can potentially contain enough data that graphing all of it at one time results in an
unreadable graph. Before beginning, consider thinning the amount of data to be shown on a single graph.
Details

To graph checkpoin t s:

1. Open the appropriate .tim file in QALoad Analyze. In the Workspace, click the Checkpoints group. Checkpoint data is
listed in a tree-view.

2. Select the checkpoints to graph.

3. From the View menu, choose Graph. The Select Graph dialog box appears.

QALoad 5.02

256

4. In the Graph Type drop-down list, select from the following:

 Line (response t imes versus elapsed t imes for the selected data.)

 Bar (median, mean, or a percent i le response t ime of the selected checkpoints.)

Note: The following graph types are only available when graphing a single checkpoint:

 Response Time Distribut ion (how the response t imes of a single checkpoint are distributed.)

 Cumulat ive Response Time Distribut ion (the percentage of checkpoint t im ings that were equal
to or less than a specified value.)

Data for the selected checkpoint(s) is graphed in the Data window in the format selected in step 4.

Graphing counters

Note: A timing file can potentially contain enough data that graphing all of it at one time results in an
unreadable graph. Before beginning, consider thinning the amount of data to be shown on a single graph.
Details

To graph count er s:

1. Open the appropriate .tim file in QALoad Analyze. In the Workspace, click the Counters group. Counter data is
listed in a tree-view.

2. Select the counter(s) to graph.

3. From the View menu, choose Graph. Data for the selected counter(s) is graphed in a line graph format in the Data
window.

Graphing Player performance counters

Note: A timing file can potentially contain enough data that graphing all of it at one time results in an
unreadable graph. Before beginning, consider thinning the amount of data to be shown on a single graph.
Details

To graph Player per f orm ance count er s:

1. Open the appropriate .tim file in QALoad Analyze. Select the Player Performance Counters group.

2. In the Workspace, select the performance counter(s) to graph.

3. Click the View Graph button or right-click and choose Graph from the context menu. Data for the selected Agent(s)
is graphed in a line graph format in the Data window.

Graphing server monitoring data

Monitoring servers is a method of load test ing. QALoad provides performance counter data through three
server monitoring methods:

! EcoTOOLS 6 - An Availability Management application complementary to QALoad for service level monitoring of
performance counters for applications, servers, and databases on UNIX during production.

! Remote Monitoring - Performs the monitoring of performance counters from a machine under test without the use of
agent software on the machine.

! Server Analysis - Performs the monitoring of performance counters from a machine under test using the
ServerVantage agent software installed on the machine.

QALoad 5.02

257

! ServerVantage - An Availability Management application complementary to QALoad for service level monitoring of
performance counters for applications, servers, and databases during production. ServerVantage also provides
notification, event management, and reporting features.

Graphing top processes

Note: A timing file can potentially contain enough data that graphing all of it at one time results in an
unreadable graph. Before beginning, consider thinning the amount of data to be shown on a single graph.
Details

To graph t op processes:

1. Open the appropriate .tim file in QALoad Analyze. Select the Top Processes group.

Note: The Top Processes group is available only if you enable the option in the QALoad Conductor Server
Analysis Agent configuration screen before running a test.

2. In the Workspace, select the data point(s) to graph.

3. Click the View Graph button or right-click and choose Graph from the context menu. Data for the selected Agent(s)
is graphed in a line graph format in the Data window.

Customizing a chart or graph

Customizing a graph

Change the style and appearance of a graph using opt ions avai lable from the Graph toolbar. The Graph
toolbar contains buttons for standard Windows operat ions as well as for customizing a graph's appearance.
Display the Graph toolbar by right-cl icking in an open area of a graph and choosing the Toolbar opt ion
from the shortcut menu. Although i t in i t ial ly appears above the graph, the toolbar is completely dockable.
Move the toolbar to another side of the graph, or off the graph altogether, by cl icking on any unpopulated
area of the toolbar and dragging i t to another area.

The fol lowing features can be customized from the Graph toolbar. Cl ick on any feature in the fol lowing l ist
for addit ional in formation or instruct ions:

Graph type

Color

Grid orientat ion (horizontal and vert ical)

Legend box

Dimension (3D or 2D)

Rotat ion

Z-Cluster

Font

QALoad 5.02

258

Viewing reports

Viewing pre-defined reports

Pre-defined reports

QALoad Analyze provides pre-defined reports for viewing load test results without t ime-consuming data
manipulat ion.

In the Workspace, select the Reports group and cl ick the appropriate report . The reports are in HTML
generated by XSL fi les. View them in QALoad Analyze, or direct ly in a Web browser.

Note: Compuware provides each of the available pre-defined reports as convenience to view the results of a
load test without any data manipulation. In addition, create customized versions of these reports by selecting the
appropriate group and creating detail reports and graphs.

The fol lowing reports are avai lable -- cl ick a report name for detai ls.

Summary
Session
Concurren t Users
Respon se Tim e Analysi s
Output
Cl ien t Th roughput
Server M on i toring
Transact ion Throughput
Top Ten Longest Checkpoint Durat ions
Player Performance

Summary report

The Summary report is the primary output from each test run, one of the pre-
defined reports QALoad Analyze makes avai lable. When you open a t im ing fi le,
QALoad Analyze automatical ly displays the Load Test Summary in the Data
window. It presents t im ing in formation for each transact ion in the t im ing fi le
and the min imum, maximum, and median response t imes for each checkpoint.
The output is divided into two sect ions. The first sect ion presents the Summary
Test In formation and Test Time information. The second sect ion presents the
Script In formation t im ing summaries for each script .

Sam ple Sum m ary

For a brief descript ion of each report sect ion, scrol l down and cl ick a sect ion
heading, for example, Test In formation, in the fol lowing sample.

QALoad 5.02

259

Session report

Provides summary in formation about the test session. The information in th is report was obtained from
the Conductor’s configurat ion sett ings when the load test was started. To view a summary of test sett ings
that includes changes made while the test was running, see the Summary report .

For descript ions of the in formation provided in each sect ion, cl ick the sect ions in the fol lowing image.

QALoad 5.02

260

Concurrent Users report

Displays the total number of virtual users for the test, concurrent users vs. elapsed t ime, as well as graphs
for individual scripts that were part of the test.

Note: A totals graph will not display if the test contains only one script.

Response Time Analysis report

Provides an indicator of how well a script ran. The report displays a graph of each script 's transact ion
durat ion (response t ime vs. elapsed t ime) as well as the fol lowing checkpoint summary data:

#Tran s: Number of data points used to calculate the stat ist ics.
#Recs: Number of data records. This value, i f di fferent from the value of #Trans, reflects the number of
checkpoint records that are used for analysis after data th inning has been appl ied.
M in : M in imum recorded response t ime.

QALoad 5.02

261

M ax : Maximum recorded response t ime.
Std. Dev : Standard deviat ion of al l response t imes. A large standard deviat ion indicates a wide variance in
response t imes.
M edian : Median response t ime, in seconds.
n th%: n percent of the responses have a value less than the value shown.

Output report

Provides a cumulat ive l ist of al l errors, sorted by script and occurrence in t ime, that occurred during the
course of a load test.

Note: Failed messages are included in the errors count that appears in the Test Information section of the
report, but are detailed in the Script Messages section.

QALoad 5.02

262

Client Throughput report

Provides a graph of HTTP Reply analysis for key HTTP counters, HTTP counter vs. elapsed t ime.

Server Monitoring report

Server monitoring is a component of load test ing. QALoad provides performance counter data through
three server monitoring methods: Remote M onitoring, ServerVantage, and Server Analysis Agent
monitoring.

Transaction Throughput report

Provides the cumulat ive number of t ransact ions over elapsed t ime for each script and for the total test.

QALoad 5.02

263

Top Ten Longest Checkpoint Durations report

Provides graphs and l ists detai ls about checkpoints that had the longest checkpoint durat ion during the
test. Checkpoints with longest durat ions are those that consumed the most amount of t ime during the test.
This report contains the fol lowing sect ions:

! A summary section with overview information about the test.

! A bar graph of the ten longest checkpoint durations in the test, followed by details for each checkpoint in the graph.
These checkpoints can originate in any script that was included in the test.

! Bar graphs for each script that show up to the ten longest checkpoint durations, followed by details for each
checkpoint in the script.

QALoad 5.02

264

The report is generated by Analyze only i f each script has at least one checkpoint other than the durat ion
checkpoint. The data provided in the report can be used as a start ing point to ident i fy performance
problems.

Note: Transaction duration checkpoints are not included in the report.

QALoad 5.02

265

QALoad 5.02

266

Player Performance report

Displays transact ion durat ions in a graph format by player machine. This report helps ident i fy individual
player machines that have poor test results. In addi t ion to the bar graph that plots the average transact ion
durat ion for each player machine, the report also includes summary data for the overal l test, and detai ls for
each player machine. This report is generated by Analyze only i f two or more player machines were used in
the test.

Viewing integrated reports

Application Expert and QALoad integrated reports

QALoad integrates with Appl icat ion Expert version 8.0 and 9.0 to help analyze network performance
during a load test. Appl icat ion Expert is a Windows-based tool that enables users to examine the effects the
network wi l l have on the performance of new or modified appl icat ions prior to l ive deployment.
Appl icat ion Expert provides reports that help network managers ident i fy poorly performing appl icat ions.

When using the Appl icat ion Expert in tegrat ion in a load test, QALoad generates a trace fi le. This fi le is the
capture fi le created by the Appl icat ion Vantage Agent.

Note: The trace file extension for Application Expert version 8.0 is .opt; for version 9.0 it is .opx.

The name of the trace fi le is <Session>_<YYYYMMDD>_<HHMMSS>.opt/.opx where <Session> is the
name of the QALoad Conductor session used to execute the load test, and <YYYYMMDD> and <HHMMSS> are
the date and t ime the trace fi le was captured. It is located in the (default) directory \ Program
Fi les\ Compuware\ QALoad\ LogFiles.

Note: To generate the trace file, the ApplicationVantage Agent must be installed on the same machine as
QALoad Conductor. The Agent can be installed during the QALoad installation or installed independently.

At the end of a load test, a h igh-level stat ic report and various support ing fi les are automatical ly generated
from the trace fi le and located in the directory \ Program

QALoad 5.02

267

Files\ Compuware\ QALoad\ LogFiles\ <Session>_<YYYYMMDD>_<HHMMSS>. View the stat ic report at any
t ime in a Web browser such as M icrosoft In ternet Explorer. It contains the fol lowing Vantage views:

! Performance Overview

! Network Utilization and Transit Time

! Node Processing Detail

! Node Sending Detail

! Bounce Diagram

! Error Analysis

! Thread Analysis

! Conversion Map

A descript ion of each view is provided in the <Session>_<YYYYMMDD>_<HHMMSS>.xml fi le.

Note: To generate the high-level static report, Application Expert or Application Vantage must be installed on
the same machine as QALoad Conductor.

For addit ional test analysis, import the trace fi le in to Appl icat ion Expert or Appl icat ionVantage. To use
Appl icat ion Expert or Appl icat ion Vantage to further analyze the trace, refer to the Appl icat ion Expert or
Appl icat ionVantage User's Guides or onl ine help.

Publishing or sharing test results

Export ing test data

Convert test data in to three convenient formats for viewing or export ing:

HTM L — Export data in a detai l view or graph to HTML fi les for convenient viewing in a default Web
browser or for sending as attachments in an email message. See Export ing data to HTML for instruct ions.

Com m a-separated value (CSV) — Export data in a detai l view to comma-separated value (CSV) fi les which
can be imported in to popular spreadsheet appl icat ions. See Export ing data to CSV for instruct ions.

RIP — Any t ime a user fai ls during load test ing, QALoad Analyze generates a RIP fi le contain ing user errors.
If a t im ing fi le has RIP fi le data, you can export the RIP fi le to the working folder and view i t in QALoad
Analyze or the QALoad Script Development Workbench. See Export ing RIP fi le data for instruct ions.

Export ing data to HTML

To expor t dat a f rom a det ai l view t o HTM L:

1. Open a timing file.

2. Generate a detail view or graph.

3. Click anywhere in the detail view or graph, making it active.

4. From the File menu, choose Export>Data. The Save As dialog box appears.

5. Navigate to the appropriate location for saving the HTML file and name the file.

6. Select Web Page (*.htm;*.html) as the file type and click Save.

QALoad 5.02

268

Export ing data to CSV

To expor t dat a f rom t he Det ai l view t o a CSV f i le (*.csv) :

1. Open a timing file.

2. Generate a detail view.

3. Click anywhere in the detail view making it active.

4. From the File menu, choose Export>Data. The Save As dialog box appears.

5. Navigate to the appropriate location for saving the file. In the File name field, type a name for the file.

6. Select CSV (comma delimited) (*.csv) as the file type and click Save.

Export ing RIP file data

Note: If a timing file does not contain any RIP data, then a RIP Files group will not exist in the Workspace.

To expor t t he RIP f i le dat a t o t he w ork ing f older :

1. Open a timing file.

2. In the Workspace, click the RIP Files group.

3. In the tree view, select the appropriate RIP files check box.

4. Right-click on the selected files and choose Export. The Browse For Folder dialog box appears.

5. Select the folder you wish to export the RIP file data to. The default is the working folder.

6. Click OK. Analyze exports the RIP file to the working folder.

Sending email messages with test data

If you are using a M icrosoft mail program, QALoad Analyze can send an emai l message with a t im ing fi le or
pre-defined report at tached. The recipient(s) of the message wil l be able to open the fi les in a Web browser.

To em ai l p re-def ined repor t s:

1. Choose File>Send.

2. In the Send dialog box, select reports, views, and timing files from their respective tabs and click Add to add them to
the list of items you want to send.

3. In the Send To field, choose Email Recipient.

4. (optional) Click the Zip to file check box to send the files in the compressed .zip format. Type a name for the .zip file
in the adjacent field.

5. Click OK. Analyze creates a new Outlook email message that contains all of the pre-defined reports, .xml, .xsl, and
files associated with the timing file as attachments, or a single .zip file that contains those files as an attachment.
Address the email, add message text, and send the message.

Creat ing a .zip file of test results

You can create a .zip fi le to convenient ly package al l test data in to one fi le for sending to others or storing
local ly. Analyze creates a f i le in .zip format, which you can either save to a locat ion on your computer or
send as an attachment to an email .

QALoad 5.02

269

To creat e a .zip f i le:

1. Choose File>Send.

2. In the Send dialog box, select reports, views, and timing files from their respective tabs and click Add to add them to
the list of items you want to include in the .zip file.

3. In the Send To field, choose Email Recipient to email the zip file or choose File to save the file on your computer.

4. Click the Zip to file check box to send the files in the compressed .zip format. Type a name for the .zip file in the
adjacent field.

5. If you chose File in step 3, type the path of the location for the .zip file or click the browse button [...] to select a
location.

6. Click OK. Depending on which option you chose in step 3, Analyze performs one of the following actions:

 If you chose Em ai l Recipi en t , Analyze creates a new Outlook email message that
contains al l of the pre-defined reports, .xml, .xsl, and fi les associated with the t im ing
fi le as a single, compressed .zip fi le attachment. Address the email , add message text,
and send the message.

 If you chose Fi le, Analyze creates a single, compressed .zip fi le in the locat ion you
specified in step 5 that contains al l of the pre-defined reports, .xml, .xsl, and fi les
associated with the t im ing fi le.

Viewing reports

View reports generated by QALoad Analyze on a machine with QALoad instal led or on any machine with a
Web browser. In order to save the contents of a t im ing fi le's working folder, when viewing reports, clear
the Remove XML Working Folder opt ion. To properly set th is opt ion, see the Workspace tab on the
Options dialog box. For more in formation, see Options Dialog Box - Workspace Tab.

Viewing reports on a machine with QALoad Analyze

To view reports in QALoad Analyze, cl ick the Summary report button or any of the pre-defined report
buttons in the QALoad Analyze Workspace. See Load Test Summary for a quick in troduct ion to viewing
reports.

Viewing reports on a machine without QALoad Analyze

To view reports in a Web browser, copy the ent ire working folder for the t im ing fi le onto the machine. The
fol lowing fi les are required (where <Summary> represents the name of the report):

! <Summary>.htm

! <Summary>.xml

! <Summary>.xsl

In addit ion, the M icrosoft XML version 4.0 parser (provided with QALoad) is required to view QALoad
reports. View any of the pre-defined reports by cl icking the <Summary>.htm fi le to launch a report with the
assistance of the associated XML and XSL support fi les.

Other ways to view test data

View not only pre-defined reports, but also t im ing fi le detai l views and graphs by export ing or sending
email messages with test data to another machine. Cl ick the fol lowing l inks for more in formation:

! Exporting Test Data

! Sending Email Messages with Test Data

QALoad 5.02

270

Viewing test results in a Web browser

An important part of the load test ing process is viewing and studying the results of a test. You can view the
results of a load test not only on a machine where QALoad is instal led, but also on any machine with a
Web browser. QALoad Analyze provides pre-defined reports as well as .xml and .xsl fi les which can be
customized to meet desired specificat ions.

When you open a t im ing fi le, QALoad Analyze generates a working folder contain ing al l support ing fi les,
reports, and images generated from that t im ing fi le. This folder is located in the directory \Program
Files\Compuware\QALoad\TimingFiles\xxx.xml.source where <xxx> is the name of the t im ing fi le.

The fol lowing fi les are found in the working folder:

Fi le Nam e Descript i on

<timingfile>.xml.source Working folder generated in the Reports folder when opening a
t im ing fi le. The working folder name is always the <name of the
t im ing fi le> with a .xml.source extension.

<timingfile>.xml Original t im ing fi le with just enough information to create the
QALoad Analyze pre-defined reports. It is a representat ion of the
t im ing fi le, <t im ingfi le>.t im.

<timingfile>.complete.xml Original t im ing fi le contain ing al l data col lected during a load
test. It can be an extremely large fi le. Use th is fi le i f creat ing a
report using XSL that required th is data.

summary.htm Use th is HTM fi le to view the Summary report (or any other
avai lable pre-defined report) in any Web browser.

summary.xml Generated XML fi le for the Summary report (or any other
avai lable pre-defined report .)

summary.xsl Generated XSL fi le for the Summary report (or any other
avai lable pre-defined report .) Translates the .xml fi le specifying
HTML as i ts output and generates the HTML report . Use th is fi le
to customize the reports by writ ing in .xsl.

default.htm Report which provides a main screen to launch any other pre-
defined reports. Uses nav.htm for the navigat ion frame.

When closing a t im ing fi le, ei ther keep al l of the reports generated from the t im ing fi le in the working
folder, or delete them. To set th is opt ion, see the Workspace tab on the Options dialog box.

To view load test results in a Web browser, cl ick: How to View Reports.

QALoad 5.02

271

Language Ref er ence

Contents of QALoad Language Reference
The QALoad Language Reference provides command reference information for the fol lowing general and
middleware-specific commands:

ADO
Citrix
DB2
ODBC
ODBC/DB2
Oracle 7
Oracle 7/8
Oracle 8
Oracle Forms Server
QALoad
QARun Integrat ion
SAP Versions 4.x
SAP Versions 6.20/6.40
SSL
Tuxedo
Uniface
Uniface Polyserver
Winsock
WWW

ADO

ADO Index

ADO_Command(n)->Cancel
Terminates the execut ion of an asynchronous method cal l .

ADO_Command(n)->CreateParameter
Creates a new Parameter object with a specified name, type, direct ion, size, and value. Any values passed in
the arguments are writ ten to the corresponding Parameter propert ies. This method does not automatical ly
append the Parameter object to the Parameters col lect ion of a Command object.

ADO_Command(n)->Execute
Executes the query specified in the CommandText property or CommandStream property of the object.

ADO_Command(n)->GetCommandStream
Retrieves the value contained in the CommandStream property of th is instance of the ADO Command
object. The CommandStream property is retrieved using a pointer to a variant .

ADO_Command(n)->GetCommandText
Retrieves the value of the CommandText property for th is instance of the ADO Command object. A string
is returned as i ts argument.

ADO_Command(n)->GetCommandTimeout
Retrieves the value contained with in the CommandTimeout property of th is instance of the ADO
Command object.

QALoad 5.02

272

ADO_Command(n)->GetCommandType
Retrieves the value contained in the CommandType property of the current instant iat ion of the Command
object.

ADO_Command(n)->GetDialect
Retrieves the value contained with in the Dialect property of th is instance of the ADO Command object.

ADO_Command(n)->GetName
Al lows the script to retrieve the value of the Name property for th is instance of the ADO Command object.

ADO_Command(n)->GetNamedParameters
Retrieves the NamedParameters property of the Command object.

ADO_Command(n)->GetParameters
Retrieves provider parameter in formation for the stored procedure or parameterized query specified in the
Command object.

ADO_Command(n)->GetPrepared
Retrieves the VARIANT_BOOL value contained with in the Prepared property of th is instance of the ADO
Command object.

ADO_Command(n)->GetPropert ies
Retrieves the complete set of propert ies for th is part icular instance of the Command object. PropertySets
may change for different providers.

ADO_Command(n)->PutAct iveConnect ion
Determines the Connect ion object affected by the specified Command object or ADO Recordset.

ADO_Command(n)->PutCommandText
Sets the value of the CommandText property for th is instance of the ADO command object.

ADO_Command(n)->PutCommandTimeout
Sets the value contained with in the CommandTimeout property of th is instance of the ADO Command
object.

ADO_Command(n)->PutCommandType
Sets the value for the CommandType property of the current instant iat ion of the Command object.

ADO_Command(n)->PutDialect
Sets the value of the Dialect property of th is instance of the ADO Command object.

ADO_Command(n)->PutName
Enables the script to set the value of the Name property for th is instance of the ADO Command object .

ADO_Command(n)->PutNamedParameters
Sets the value of the NamedParameters property of the command object.

ADO_Command(n)->PutPrepared
The PutPrepared method cal l sets the VARIANT_BOOL value contained with in the Prepared property of
th is instance of the ADO Command object.

ADO_Command(n)->PutRefAct iveConnect ion
Determines the ADO Connect object affected by the specified ADO Command object or ADO Recordset.
Also sets the pointer to the QALoad ADO Connect object for th is instance of the actual ADO Command
object.

ADO_Connect(n)->BeginTrans
Begins a new transact ion.

ADO_Connect(n)->Close
Closes a Connect ion object.

ADO_Connect(n)->CommitTrans
Save changes, ends the transact ion. May start a new transact ion.

QALoad 5.02

273

ADO_Connect(n)->Execute
Executes the query passed in the CommandText argument on the connect ion to the method.

ADO_Connect(n)->GetAtt ributes
GetAttributes is read/write. It 's value is the sum of one or more XactAttributeEnum values. The default is
zero (0).

ADO_Connect(n)->GetCommandTimeout
Returns the value of the t imeout in a pointer to a long.

ADO_Connect(n)->GetConnect ionString
GetConnect ionString method retrieves the value of Connect ionString property of th is instant iat ion of the
ADO Connect object. The Connect ionString specifies a data source by passing argument=value statements.
These are separated by semi-colons.

ADO_Connect(n)->GetConnect ionTimeout
Use GetConnect ionTimeout on a Connect ion object to cancel a connect ion attempt, i f necessary, due to
network or server delays. If the t ime interval specified in the Connect ion Timeout property sett ing runs out
before a connect ion can be opened, an error occurs and the attempt to connect is cancel led. Set the
property to zero to wait indefin i tely.

ADO_Connect(n)->GetCursorLocat ion
Lets you choose a cursor locat ion from those accessible to the provider.

ADO_Connect(n)->GetDefaultDatabase
Retrieves the value of the DefaultDatabase property from th is instance of the ADO Connect object.

ADO_Connect(n)->GetIsolat ionLevel
Sets a Connect ion object 's isolat ion level. Takes effect the next t ime the BeginTrans method is cal led.

ADO_Connect(n)->GetMode
Sets or returns access permissions for the current connect ion. The GetMode property can only be set after
the Connect ion object is closed.

ADO_Connect(n)->GetProvider
Returns the provider name for a connect ion.

ADO_Connect(n)->GetState
Determines the state of a specified object at any t ime.

ADO_Connect(n)->GetVersion
Returns the version of ADO that is being used.

ADO_Connect(n)->Open
Establ ishes the connect ion to the data source.

ADO_Connect(n)->OpenSchema
Returns in formation about the data source. For example, tables, columns included in the tables, data types,
etc.

ADO_Connect(n)->PutAttributes
Sets the transact ion attribute for th is connect ion object.

ADO_Connect(n)->PutCommandTimeout
PutCommandTimeout Sends a t imeout in seconds before the command wil l t imeout with an error.

ADO_Connect(n)->PutConnect ionString
Specifies a data source

ADO_Connect(n)->PutConnect ionTimeout
Use PutConnect ionTimeout on a Connect ion object to abandon an attempt to connect due to network or
server delays. If a connect ion is not made in the specified t ime, an error occurs and the attempt to connect
is cancel led. Set the property to zero to wait indefin i tely.

QALoad 5.02

274

ADO_Connect(n)->PutCursorLocat ion
Lets you choose a cursor l ibrary from those accessible to the provider.

ADO_Connect(n)->PutDefaultDatabase
Sets the default database with in a connect ion object.

ADO_Connect(n)->PutIsolat ionLevel
Sets the isolat ion level of a Connect ion object.

ADO_Connect(n)->PutMode
Sets the access permissions being used on the currect connect ion.

ADO_Connect(n)->PutProvider
Sets the provider name for a connect ion.

ADO_Connect(n)->RollbackTrans
Reverses changes made in an open transact ion and ends the transact ion. This is l inked with BeginTrans.
This wi l l on ly be seen in the script i f a transact ion fai ls for some reason. If i t fai ls and you see th is cal l , look
over the script logic and see i f the transact ion can be committed.

ADO_Field(n)->AppendChunk
A special data handl ing method that wri tes data, in chunks, to the Field object.

ADO_Field(n)->GetActualSize
Retrieves the value contained with in the ActualSize property of th is instance of the ADO Field object.

ADO_Field(n)->GetAttributes
Retrieves the value contained with in the Attributes property of th is instance of the ADO Field object.

ADO_Field(n)->GetChunk
Retrieves chunks of binary or character data to an appropriate buffer.

ADO_Field(n)->GetDataFormat
Retrieves an IUnknown instance describing the data format for th is field.

ADO_Field(n)->GetDefinedSize
Retrieves the value contained with in the DefinedSize property of th is instance of the ADO Field object.

ADO_Field(n)->GetName
Retrieves the value contained with in the Name property of th is instance of the ADO Field object. Note that
the actual ADO cal l has a BSTR as the argument; therefore, there is some data conversion occuring with in
th is cal l .

ADO_Field(n)->GetNumericScale
Retrieves the value contained with in the NumericScale property of th is instance of the ADO Field object.

ADO_Field(n)->GetOriginalValue
Retrieves the value contained with in the Value property of th is instance of the ADO Field object before any
changes were made permanent by a cal l to an update method.

ADO_Field(n)->GetPrecision
Retrieves the value contained with in the Precision property of th is instance of the ADO Field object.

ADO_Field(n)->GetPropert ies
The CAField object has a col lect ion of property objects. Each property object corresponds to a characterist ic
of the ADO object specific to the provider.

ADO_Field(n)->GetStatus
Retrieves the value contained with in the Status property of th is instance of the ADO Field object. It takes a
pointer to a long as an argument. With in th is parameter, the Value of the status property of th is instance
of the Field object is returned.

ADO_Field(n)->GetType
Retrieves the value contained with in the Type property of th is instance of the ADO Field object. The Actual

QALoad 5.02

275

ADO cal l uses another enumerated type, DataTypeEnum, to handle the datatypes. Conversion to th is type
happens with in the QALoad cal l .

ADO_Field(n)->GetUnderlyingValue
Specifies the current value of a Field object in the database, after any updates to the recordset.

ADO_Field(n)->GetValue
Retrieves the value of a ADO Field object in to a pointer to a Variant. The argument wi l l handle any type of
data. This can be done by using the Variant datatype. Data is retrieved into a pointer to a Variant.

ADO_Field(n)->PutAttributes
The PutAttributes method cal l sets the value contained with in the Attributes property of th is instance of
the ADO Field object.

ADO_Field(n)->PutDataFormat
This updates the current value of the data format updates to the ADO Recordset.

ADO_Field(n)->PutDefinedSize
Sets the value contained with in the DefinedSize property of th is instance of the ADO Field object.

ADO_Field(n)->PutNumericScale
Sets the value contained with in the NumericScale property of th is instance of the ADO Field object.

ADO_Field(n)->PutPrecision
Sets the value contained with in the Precision property of th is instance of the ADO Field object.

ADO_Field(n)->PutType
Sets the value contained with in the Type property of th is instance of the ADO Field object.

ADO_Field(n)->PutValue
Resets the value of th is instance of the ADO Field object. This is the first step in updat ing a Recordset 's
value.

ADO_FieldSet(0)->GetNewEnum
In order to i terate through each ADO Field in a ADO FieldSet col lect ion, an ADOIEnumField object is
returned. The GetNewEnum cal l on the ADO FieldSet object creates the ADO IEnumField object al lowing
the enumerat ion to take place.

ADO_FieldSet(n)->Append
Append creates and appends a new Field object to the ADO FieldSet. An ADO Recordset object is composed
of ADO FieldSet objects. Appending ADO Fields to ADO FieldSet objects comprises a mechanism for
updat ing or retrieving in formation from a Data Provider.

ADO_FieldSet(n)->Append15
Append15 creates and appends a new field object to the ADO FieldSet. An ADO Recordset object is
composed of ADO FieldSet objects. Appending ADO Fields to ADO FieldSet objects comprise a mechanism
for updat ing or retrieving in formation from a Data Provider. The Append15 funct ion does NOT al low the
user to add the data to th is ADO Field object. It creates the ADO Field object in the ADO FieldSet
col lect ion, but does not add in the data.

ADO_FieldSet(n)->CancelUpdate
Cancels changes made to the current or new row of an ADO Recordset object, or the ADO Fieldset
col lect ion of an ADO Record object, before cal l ing the Update method.

ADO_FieldSet(n)->Delete
Deletes an object from the Fields col lect ion.

ADO_FieldSet(n)->GetCount
The method returns the number of ADO Field objects contained with in the ADO FieldSet col lect ion.

ADO_FieldSet(n)->GetItem
This cal l retrieves a ADO Field object from th is instance of the ADO FieldSet col lect ion. The result of the

QALoad 5.02

276

cal l is that a ADO Field object is brought back to be manipulated with in the script . ADO Field retrieval is a
part of the variabl izat ion process.

ADO_FieldSet(n)->Refresh
Updates the objects in a col lect ion to reflect objects avai lable from, and specif ic to, the provider. Using the
Refresh method on the ADO FieldSet col lect ion has no visible effect.

ADO_FieldSet(n)->Resync
Synchronizes the values of a Record object 's Fields col lect ion with the data source. The Count property is
not affected by th is method.

ADO_FieldSet(n)->Update
Saves any changes you make to the ADO FieldSet col lect ion of a Record object.

ADO_IEnum(n)->NextProperty
Enumerat ion through col lect ions of propert ies should be done very carerful ly, because in the example
below, we wil l reset al l of the propert ies to the same value. To reset different values, get rid of the loop and
set each property individual ly.

ADO_IEnumField(n)->NextField
Enumerat ion through col lect ions of ADO Fields should be done very careful ly, because in the example
given below, the script checks the status of each of the different ADO Fields. In order to do more
meaningful work, reset values of different ADO Fields then break them out of the look and use the
PutValue cal l to place new values in to the ADO Field objects.

ADO_IEnumParameter(n)->NextParameter
Enumerat ion through col lect ions of ADO Parameters should be done very careful ly, because in the
example given below, the script checks different values of each of the different ADO Parameters. In order
to do some more meaningful work, resett ing values of different ADO Parameters then break them out of
the look and use the PutValue cal l to place new values in to the ADO Parameter objects.

ADO_LoadVariant(n)

ADO_Parameter(n)->AppendChunk
A special data handl ing method that wri tes data, in chunks, to the Parameter object.

ADO_Parameter(n)->GetAttributes
Retrieves the value contained with in the Attributes property of th is instance of the ADO Parameter object.

ADO_Parameter(n)->GetDirect ion
Retrieves the value contained with in the Direct ion property of th is instance of the ADO Parameter object.

ADO_Parameter(n)->GetName
Retrieves the value contained with in the Name property of th is instance of the ADO Parameter object.

ADO_Parameter(n)->GetNumericScale
Retrieves the value contained with in the NumericScale property of th is instance of the ADO Parameter
object. Returns a Byte value indicat ing the number of decimal places to which numeric values wil l be
resolved. The NumericScale property is read/write.

ADO_Parameter(n)->GetPrecision
Retrieves the value contained with in the Precision property of th is instance of the ADO Parameter object.
Returns a Byte value showing the maximum number of digits used to represent values for a numeric
Parameter object. The Precision property is read/write.

ADO_Parameter(n)->GetSize
Retrieves the value contained with in the Size property of th is instance of the ADO Field object.

ADO_Parameter(n)->GetValue
Use the Value property to return data from ADO Parameter objects and to return parameter values with
ADO Parameter objects.

QALoad 5.02

277

ADO_Parameter(n)->PutAttributes
This method cal l retrieves the value contained with in the Attributes property of th is instance of the ADO
Parameter object.

ADO_Parameter(n)->PutDirect ion
Indicates Parameter type: input, output, input and output, or the return value from a stored procedure.

ADO_Parameter(n)->PutName
Sets the value contained with in the Name property of th is instance of the ADO Parameter object.

ADO_Parameter(n)->PutNumericScale
Sets the value contained with in the NumericScale property of th is instance of the ADO Parameter object.
Sends a byte value indicat ing the number of decimal places to which numeric values wil l be resolved. The
NumericScale property is read/write.

ADO_Parameter(n)->PutPrecision
Sets the value contained with in the Precision property of th is instance of the ADO Parameter object. Sends
a byte value showing the maximum number of digits used to represent values for a numeric ADO
Parameter object. The Precision property is read/ wri te.

ADO_Parameter(n)->PutSize
Retrieves the value contained with in the Size property of th is instance of the ADO Parameter object.

ADO_Parameter(n)->PutType
Sets the value contained with in the Type property of th is instance of the ADO Parameter object.

ADO_Parameter(n)->PutValue
Sets the value contained with in the Value property of th is instance of the ADO Parameter object.

ADO_ParameterSet(n)->Append
Appends a ADO Parameter object to the col lect ion of ADO Parameters.

ADO_ParameterSet(n)->Delete
Deletes an ADO Parameter object from the ADO ParameterSet col lect ion.

ADO_ParameterSet(n)->GetCount
The method returns the number of ADO Parameter objects contained with in the ADO ParameterSet
col lect ion.

ADO_ParameterSet(n)->GetItem
Locates a specific ADO Parameter in the ADO ParameterSet col lect ion.

ADO_ParameterSet(n)->GetNewEnum
In order to i terate through al l of the ADO Parameters in an ADO ParameterSet col lect ion, an
ADOIEnumParameter object is returned. The GetNewEnum cal l on the ADO ParameterSet object creates
the ADO IEnumParameter object al lowing the enumerat ion to take place.

ADO_ParameterSet(n)->Refresh
Updates the objects in a col lect ion to reflect objects avai lable from, and specif ic to, the provider. Using the
Refresh method on the ADO ParameterSet col lect ion has no visible effect.

ADO_Property(n)->GetAtt ributes
Describes column characterist ics by sett ing or return ing a Long value.

ADO_Property(n)->GetName
Retrieves the value of the Name attribute of th is instance of the Property object.

ADO_Property(n)->GetType
Indicates a property's type as conveyed as a DataTypeEnum.

ADO_Property(n)->GetValue
Sets or returns data from Field objects, parameter values with Parameter objects, or property sett ings with
Property objects.

QALoad 5.02

278

ADO_Property(n)->PutAttributes
Describes column characterist ics by return ing a long value, which indicates characterist ics of the table
represented by the Column object. The value can be a combinat ion of ColumnAttributesEnum constants.
The default value is zero (0), which is neither adColFixed nor adColNullable.

ADO_Property(n)->PutAttributes
Describes column characterist ics by return ing a long value, which indicates characterist ics of the table
represented by the Column object. The value can be a combinat ion of ColumnAttributesEnum constants.
The default value is zero (0), which is neither adColFixed nor adColNullable.

ADO_Property(n)->PutValue
Sets or returns data from Field objects, parameter values with Parameter objects, or property sett ings with
Property objects.

ADO_PropertySet(n)->GetCount
The method returns the number of ADO Property objects contained with in the ADO PropertySet
col lect ion.

ADO_PropertySet(n)->Get Item
Retrieves a specific ADO Property in the ADO PropertySet col lect ion.

ADO_PropertySet(n)->GetNewEnum
In order to i terate through al l of the ADO Propertys in an ADO PropertySet col lect ion, an ADOIEnum
object is returned. The GetNewEnum cal l on the ADO PropertySet object creates the ADO IEnum object
al lowing the enumerat ion to take place.

ADO_PropertySet(n)->Refresh
Updates the objects in a col lect ion to reflect objects avai lable from, and specif ic to, the provider. Using the
Refresh method on the ADO PropertySet col lect ion has no visible effect.

ADO_Record(n)->Cancel
Cancels execut ion of a pending, asynchronous method cal l .

ADO_Record(n)->Close
Use to close a Recordset, Record, or Stream object. Any associated data or exclusive access you may have
had to the data through th is part icular object wi l l be released. You can reopen the object later using the
Open method.

ADO_Record(n)->CopyRecord
Copies a fi le or directory (including i ts contents) to another locat ion.

ADO_Record(n)->DeleteRecord
Deletes a fi le or directory, and al l i ts subdirectories.

ADO_Record(n)->GetAct iveConnect ion
Use the Act iveConnect ion property to determine the ADO Connect object over which the specified ADO
Record object wi l l execute.

ADO_Record(n)->GetChildren
Returns an ADO Recordset, in the form of a Pointer to an ADO Recordset object, whose rows represent the
fi les and subdirectories in the directory represented by th is Record.

ADO_Record(n)->GetFields
Contains al l the Field objects of an ADO Recordset or ADO Record object.

ADO_Record(n)->GetMode
Sets or returns the access permissions being used on the current connect ion by the provider.

ADO_Record(n)->GetParentURL
Sets the current value of the source property for th is instance of the actual ADO Command object.

QALoad 5.02

279

ADO_Record(n)->GetRecordType
This method is used to check the contents of the ADO RecordType property for th is instance of ADO
Record object, return ing the RecordTypeEnum in a pointer to a long.

ADO_Record(n)->GetSource
Indicates the ent i ty represented by the ADO Record object.

ADO_Record(n)->GetState
You can use the State property to determine the state of a given ADO Record object at any t ime.

ADO_Record(n)->MoveRecord
Moves a fi le, or a directory and i ts contents, to another locat ion.

ADO_Record(n)->Open
Makes the cal l through to the Open method with in the ADO Record object to open an exist ing ADO
Record object, or create a new fi le or directory.

ADO_Record(n)->PutAct iveConnect ion
PutAct iveConnect ion is read/write when the ADO Record object is closed. It may contain a connect ion
string or reference to an open ADO Connect object. When the ADO Record object is open and contains a
reference to an open ADO Connect object, PutAct iveConnect ion is read-only.

ADO_Record(n)->PutMode
Sets the access permissions being used on the current connect ion by the provider. You can only set th is
property when the ADO Connect object is closed.

ADO_Record(n)->PutRefAct iveConnect ion
Specifies the ADO Connect object to be affected by the specified ADO Record object.

ADO_Record(n)->PutSource
Sets the current value of the source property for th is instance of the actual ADO Command object. The
Source property must refer to an object exist ing with in the scope of that ADO Connect.

ADO_Recordset(n)->_xClone
This is a h idden method. It is undocumented with in MSDN. However, a logical assumption would be that
i t makes a clone of the cal l ing ADO Recordset. This is given the arguments and the method name.

ADO_Recordset(n)->_xResync
This is a h idden method. It is undocumented with in MSDN. However, a logical assumption would be that
i t resynchronizes the ADO Recordset with the underlying data provider. This is given the arguments and
the method name.

ADO_Recordset(n)->_xSave
This is a h idden method. It is undocumented with in MSDN. However, a logical assumption would be that
i t saves ADO Recordset data to the locat ion given in the first argument. This is given the arguments and
the method name.

ADO_Recordset(n)->AddNew
Creates a new record for an updatable ADO Recordset object.

ADO_Recordset(n)->Cancel
Cancels execut ion of a pending, asynchronous method cal l .

ADO_Recordset(n)->CancelBatch
Cancels any pending updates in an ADO Recordset that is in batch update mode.

ADO_Recordset(n)->CancelUpdate
Cancels any changes made to the current row or discards a new row of an ADO Recordset object before
cal l ing the Update method.

ADO_Recordset(n)->Clone
Dupl icates an ADO Recordset object. Can specify that the clone be read-only.

QALoad 5.02

280

ADO_Recordset(n)->Close
Closes an open object and any dependent objects.

ADO_Recordset(n)->CompareBookmarks
Compares two bookmarks. Returns an indicat ion of their relat ive values.

ADO_Recordset(n)->Delete
Use to delete the current record or a group of records.

ADO_Recordset(n)->Find
Locates a row in an ADO Recordset that matches specified cri teria.

ADO_Recordset(n)->GetAbsolutePage
Ident i fies, by page number, where the current record resides.

ADO_Recordset(n)->GetAbsolutePosit ion
Specifies the ordinal posit ion of the current record of an ADO Recordset object.

ADO_Recordset(n)->GetAct iveCommand
Specifies the ADO Command object which created an ADO Recordset object.

ADO_Recordset(n)->GetAct iveConnect ion
For a Command, ADO Recordset, or ADO Record object, specifies the associated ADO Connect object.

ADO_Recordset(n)->GetBOF
Determines i f an ADO Recordset object contains records or i f you've gone beyond i ts l im its whi le moving
from record to record.

ADO_Recordset(n)->GetBookmark
Indicates a bookmark ident i fying an ADO Recordset object 's current record, or sets the current record to
that ident i fied by a bookmark.

ADO_Recordset(n)->GetCacheSize
Specifies the number of records in the ADO Recordset that are cached local ly.

ADO_Recordset(n)->GetCollect
This is a h idden method. It is undocumented with in MSDN. If you are looking at incorporat ing th is
method, please examine the example below and do as you see fi t .

ADO_Recordset(n)->GetCursorLocat ion
Specifies the locat ion of the cursor service.

ADO_Recordset(n)->GetCursorType
Specifies the type of cursor to use when opening the ADO Recordset object.

ADO_Recordset(n)->GetDataMember
Specifies the data member to be retrieved from the object referenced by the DataSource property.

ADO_Recordset(n)->GetDataSource
Specifies an object contain ing data to be represented as an ADO Recordset object.

ADO_Recordset(n)->GetEditMode
Specifies the current record's edit ing status.

ADO_Recordset(n)->GetEOF
Indicates that the current record posit ion is after the last record in an ADO Recordset object.

ADO_Recordset(n)->GetFields
Returns a container of an ADO Recordset or ADO Record object 's Field objects.

ADO_Recordset(n)->GetFi l ter
Specifies a fi l ter for data in an ADO Recordset.

ADO_Recordset(n)->GetIndex
This is a h idden method. It is undocummented with in MSDN.

QALoad 5.02

281

ADO_Recordset(n)->GetLockType
Specifies the type of locks placed on records during edit ing.

ADO_Recordset(n)->GetM arshalOptions
Specifies records to be marshaled back to the server.

ADO_Recordset(n)->GetM axRecords
Specifies the maximum number of records to return to an ADO Recordset from a query.

ADO_Recordset(n)->GetPageCount
Specifies the number of pages of data contained in the ADO Recordset object.

ADO_Recordset(n)->GetPageSize
Indicates the number of records that make up a single page in the ADO Recordset.

ADO_Recordset(n)->GetPropert ies
The CAField object has a col lect ion of property objects. Each property object corresponds to a characterist ic
of the ADO object specific to the provider.

ADO_Recordset(n)->GetRecordCount
Indicates the number of records in an ADO Recordset object.

ADO_Recordset(n)->GetRows
Retrieves mult iple records of an ADO Recordset object in to an array.

ADO_Recordset(n)->GetSort
Indicates one or more field names on which the ADO Recordset is sorted, and whether each field is sorted
in ascending or descending order.

ADO_Recordset(n)->GetSource
Indicates the data source for a Recordset object.

ADO_Recordset(n)->GetState
Indicates for al l appl icable objects whether the state of the object is open or closed.

ADO_Recordset(n)->GetStatus
Indicates the status of the current record with respect to batch updates or other bulk operat ions.

ADO_Recordset(n)->GetStayInSync
Indicates, in a h ierarchical ADO Recordset object, whether the reference to the underlying chi ld records
(that is, the chapter) changes when the parent row posit ion changes.

ADO_Recordset(n)->GetString
Returns the ADO Recordset as a string.

ADO_Recordset(n)->Move
Moves the posit ion of the current record in an ADO Recordset object.

ADO_Recordset(n)->MoveFirst
Use the MoveFirst method to move the current record posit ion to the first record in the ADO Recordset.

ADO_Recordset(n)->MoveLast
Use the MoveLast method to move the current record posit ion to the last record in the ADO Recordset. The
ADO Recordset object must support bookmarks or backward cursor movement; otherwise, the method cal l
wi l l generate an error.

ADO_Recordset(n)->MoveNext
Use the MoveNext method to move the current record posit ion one record forward (toward the bottom of
the ADO Recordset). If the last record is the current record and you cal l the MoveNext method, ADO sets
the current record to the posit ion after the last record in the ADO Recordset (EOF is True). An attempt to
move forward when the EOF property is already True generates an error.

ADO_Recordset(n)->MovePrevious
Use the MovePrevious method to move the current record posit ion one record backward (toward the top of

QALoad 5.02

282

the ADO Recordset). The ADO Recordset object must support bookmarks or backward cursor movement;
otherwise, the method cal l wi l l generate an error. If the first record is the current record and you cal l the
MovePrevious method, ADO sets the current record to the posit ion before the first record in the ADO
Recordset (BOF is True).

ADO_Recordset(n)->NextRecordset
Clears the current ADO Recordset object and returns the next ADO Recordset by advancing through a
series of commands.

ADO_Recordset(n)->Open
Using the Open method on an ADO Recordset object opens a cursor that represents records from a base
table, the results of a query, or a previously saved ADO Recordset.

ADO_Recordset(n)->PutAbsolutePage
Indicates on which page the current record resides.

ADO_Recordset(n)->PutAbsolutePosit ion
Indicates the ordinal posit ion of an ADO Recordset object 's current record.

ADO_Recordset(n)->PutAct iveConnect ion
Indicates to which Connect ion object the specified Command, ADO Recordset, or Record object current ly
belongs.

ADO_Recordset(n)->PutBookmark
Indicates a bookmark that uniquely ident i fies the current record in an ADO Recordset object or sets the
current record in an ADO Recordset object to the record ident i fied by a val id bookmark.

ADO_Recordset(n)->PutCacheSize
Indicates the number of records in the ADO Recordset that are cached local ly.

ADO_Recordset(n)->PutCollect
This is a h idden method. It is undocumented with in MSDN. If you are looking at incorporat ing th is
method, please examine the example below and do as you see fi t . Neither QALoad support professionals
nor development recommend adding th is method to a script .

ADO_Recordset(n)->PutCursorLocat ion
Indicates the locat ion of the cursor service.

ADO_Recordset(n)->PutCursorType
Use the CursorType property to specify the type of cursor that should be used when opening the ADO
Recordset object.

ADO_Recordset(n)->PutDataMember
Indicates the name of the data member that wi l l be retrieved from the object referenced by the DataSource
property.

ADO_Recordset(n)->PutFi l ter
Indicates a fi l ter for data in an ADO Recordset.

ADO_Recordset(n)->PutIndex
This is a h idden method. It is undocumented with in MSDN. If you are looking at incorporat ing th is
method, please examine the example below and do as you see fi t .

ADO_Recordset(n)->PutLockType
Indicates the type of locks placed on records during edit ing.

ADO_Recordset(n)->PutMarshalOptions
Indicates which records are to be marshaled back to the server.

ADO_Recordset(n)->PutMaxRecords
Indicates the maximum number of records to return to an ADO Recordset from a query.

ADO_Recordset(n)->PutPageSize
Indicates how many records const i tute one page in the ADO Recordset.

QALoad 5.02

283

ADO_Recordset(n)->PutRefAct iveConnect ion
Indicates to which ADO Connect object the specified ADO Command, ADO Recordset, or Record object
current ly belongs.

ADO_Recordset(n)->PutRefDataSource
Indicates an object that contains data to be represented as an ADO Recordset object.

ADO_Recordset(n)->PutRefSource
Sets a Command object as the data source for a Recordset object.

ADO_Recordset(n)->PutSort
Indicates one or more field names on which the ADO Recordset is sorted, and whether each field is sorted
in ascending or descending order.

ADO_Recordset(n)->PutSource
Indicates the data source for an ADO Recordset object.

ADO_Recordset(n)->PutStayInSync
Indicates, in a h ierarchical ADO Recordset object, whether the reference to the underlying chi ld records
(that is, the chapter) changes when the parent row posit ion changes.

ADO_Recordset(n)->ReQuery
Updates the data in an ADO Recordset object by re-execut ing the query on which the object is based.

ADO_Recordset(n)->Resync
Refreshes the data in the current ADO Recordset object, or Fields col lect ion of a Record object, from the
underlying database.

ADO_Recordset(n)->Save
Saves the ADO Recordset in a fi le or ADO Stream object.

ADO_Recordset(n)->Seek
The SeekEnum is an Enumerated value giving the direct ion of the seek operat ion.

ADO_Recordset(n)->Supports
Determines whether a specified ADO Recordset object supports a part icular type of funct ional i ty.

ADO_Recordset(n)->Update
Saves any changes you make to the current row of an ADO Recordset object.

ADO_Recordset(n)->UpdateBatch
Writes al l pending batch updates with in the ADO Recordset to disk.

ADO_Stream(n)->Cancel
Cancels execut ion of a pending ADO Stream, asynchronous method cal l .

ADO_Stream(n)->Close
Closes an open object and any dependent objects.

ADO_Stream(n)->CopyTo
Copies the specified number of characters or bytes (depending on Type) in the ADO Stream to another
ADO Stream object.

ADO_Stream(n)->Flush
Forces the contents of the ADO Stream remain ing in the ADO buffer to the underlying object with which
the ADO Stream is associated.

ADO_Stream(n)->GetCharset
Indicates the character set in to which the contents of a text ADO Stream should be translated.

ADO_Stream(n)->GetEOS
Indicates whether the current posit ion is at the end of the ADO Stream.

ADO_Stream(n)->GetLineSeparator
Indicates the binary character to be used as the l ine separator in text ADO Stream objects.

QALoad 5.02

284

ADO_Stream(n)->GetMode
Indicates the avai lable permissions for modifying data in a Connect ion, Record, or ADO Stream object.

ADO_Stream(n)->GetPosit ion
Indicates the current posit ion with in an ADO Stream object.

ADO_Stream(n)->GetSize
Returns a Long value that specifies the size of the ADO Stream in number of bytes. The default value is the
size of the ADO Stream, or -1 i f the size of the ADO Stream is not known.

ADO_Stream(n)->GetState
The ADO Stream object 's State property can have a combinat ion of values. For example, i f a statement is
execut ing, th is property wi l l have a combined value of adStateOpen and adStateExecut ing.

ADO_Stream(n)->GetType
Indicates the type of data contained in the ADO Stream (binary or text).

ADO_Stream(n)->LoadFromFile
Loads the contents of an exist ing fi le in to an ADO Stream.

ADO_Stream(n)->PutCharset
Indicates the character set in to which the contents of a text ADO Stream should be translated.

ADO_Stream(n)->PutLineSeparator
Indicates the binary character to be used as the l ine separator in text ADO Stream objects.

ADO_Stream(n)->PutMode
Indicates the avai lable permissions for modifying data in a Connect ion, Record, or ADO Stream object.

ADO_Stream(n)->PutPosit ion
Indicates the current posit ion with in an ADO Stream object.

ADO_Stream(n)->PutType
Indicates the type of data contained in the ADO Stream (binary or text).

ADO_Stream(n)->Read
Reads a specified number of bytes from a binary ADO Stream object.

ADO_Stream(n)->ReadText
Reads specified number of characters from a text ADO Stream object.

ADO_Stream(n)->SaveToFile
Saves the number of bytes contents of the current ADO Stream to the fi le from the current posit ion. It
sends the second param number of bytes to that Fi le.

ADO_Stream(n)->SetEOS
Sets the current posit ion with in the ADO Stream as the End of the ADO Stream

ADO_Stream(n)->SkipLine
Skips one ent ire l ine when reading a text ADO Stream.

ADO_Stream(n)->Write
Write wri tes BINARY Data to the ADO Stream buffer.

ADO_Stream(n)->WriteText
Writes a specified text string to an ADO Stream object.

ADOStream(n)->Open
Opens an ADO Stream object to manipulate streams of binary or text data.

ExtractVariantValue
Retrieves the contents of a variant and places that value in a string.

PrintVariant
Decodes variant data and places th is data in to a string.

QALoad 5.02

285

Object definit ions

Objects are an encapsulat ion of methods and data. M icrosoft ’s ADO (Act iveX Data Objects) model
encapsulates propert ies (data) and methods. A property contains the characterist ics of a part icular instance
of an object. In order to determine the state of an object, you need to retrieve a property set on that object.

In order to give a brief overview of ADO and how QALoad works with ADO, th is sect ion contains
defin i t ions for each of the QALoad ADO Objects and an explanat ion of the QALoad ADO Container
Object, the QALoad ADO Wrapper Object, the QALoad ADO Object Instance, and the M icrosoft ADO
Object.

The QALoad ADO Container Object is created and run by the script . It contains al l of the corresponding
QALoad ADO Wrapper Objects in the script . A container is essent ial ly a col lect ion of wrapper objects. The
QALoad ADO Wrapper Object wraps the M icrosoft ADO Objects. For example, i f the appl icat ion under test
uses 15 recordsets, then the recorded QALoad script wi l l have a QALoad CADORecordSet Container Object
that wi l l contain 15 QALoad CARecordSet Wrapper Objects which correspond to M icrosoft ADO RecordSet
Objects.

The QALoad ADO Object Instance is the instant iat ion of the wrapper objects used in the script to
manipulate the M icrosoft ADO Objects. The object instances are indexed in the script (count ing upwards
from zero.)

To see the relat ionship between each of the QALoad ADO Container Objects, their corresponding QALoad
ADO Wrapper Objects, and the M icrosoft ADO Objects they emulate, see the fol lowing table:

QALoad ADO
Con tainer Objects

QALoad ADO
Wrapper Objects

QALoad ADO Object
Instan ce

M icrosof t ADO
Objects

CADOCommand CACommand ADO_Command(n) Command

CADOConnect CAConnect ADO_Connect(n) Connect ion

CADOIEnum CAIEnum ADO_IEnum(n) IEnum

CADOField CAField ADO_Field(n) Field

CADOFieldSet CAFieldSet ADO_FieldSet(n) Fields

CADOParameter CAParameter ADO_Parameter(n) Parameter

CADOParameterSet CAParameterSet ADO_ParameterSet(n) Parameters

CADOProperty CAProperty ADO_Property(n) Property

CADOPropertySet CAPropertySet ADO_Propertyset(n) Propert ies

CADORecord CARecord ADO_Record(n) Record

CADORecordSet CARecordSet ADO_Recordset(n) RecordSet

CADOStream CAStream ADO_Stream(n) Stream

ADO_Command(n)->Cancel

Terminates the execut ion of an asynchronous method cal l .

Syntax

ADO_Command(n)->Cancel();

QALoad 5.02

286

Parameters

Param eter Descript i on

n An index to the object.

Example

ADO_Command(0)->CreateParameter("ParamTest1", adEmpty, adParamInput, 0, pvValue,
ADOParameter[0]);
ADOParameter.Release(0);
ADO_LoadVariant(pvValue, "8", "A Test Value");
ADO_Command(0)->CreateParameter("TestParam2", adEmpty, adParamInputOutput, 100, pvValue,
ADOParameter[0]);
ADOParameter.Release(0);
ADO_Command(0)->Cancel();
ADO_Command(0)->PutPrepared(-1);

ADO_Command(n)->CreateParameter

Creates a new Parameter object with a specified name, type, direct ion, size, and value. Any values passed in
the arguments are writ ten to the corresponding Parameter propert ies. This method does not automatical ly
append the Parameter object to the Parameters col lect ion of a Command object.

CreateParameter lets you set addit ional propert ies whose values ADO wil l val idate when appending the
Parameter object to the col lect ion. If specifying a variable length data type in the Type argument, you must
either pass a Size argument, or set the Size <mdprosize.htm> property of the Parameter object before
appending i t to the Parameters col lect ion. Otherwise, an error occurs.

If you specify a numeric data type (adNumeric or adDecimal) in the Type argument, then you must also set
the NumericScale <mdpronumericscale.htm> and Precision <mdproprecision.htm> propert ies.

Syntax

ADO_Command(n)->CreateParameter(char* sName, adTypeEnum Type, adDirectionEnum Direction,
long nLength, VARIANT* pvValue, CAParameter* pParameter);

Parameters

Param eter Descript i on

n An index to the object.

char* sName String contain ing the name of the parameter.

adTypeEnum Type Enumerated type describing the data type.

adDirectionEnum Direction Enumerated type describing the direct ion of parameter: in , out, in /out,
return, or unknown.

long nLength An integer variable specifying the maximum length, in bytes, of the
parameter.

VARIANT* pvValue Value of parameter at t ime of creat ion.

CAParameter* pParameter Created parameter.

QALoad 5.02

287

Example

ADO_Command(0)->GetCommandType(pLong);
ADO_Command(0)->PutCommandType(adCmdUnknown);
ADO_Command(0)->GetState(pLong);
ADO_LoadVariant(pvValue, "10", "2147614724");
ADO_Command(0)->CreateParameter("ParamTest1", adEmpty, adParaminput, 0, pvValue,
ADOParameter[0]);
ADO_LoadVariant(pvValue, "8", "A Test Value");

ADO_Command(n)->Execute

Executes the query specified in the CommandText property or CommandStream property of the object.

Syntax

ADO_Command(n)->Execute(VARIANT* pvRecNo, VARIANT*
pvParamList, long nCommandType, CARecordset* pRecordset);

Parameters

Param eter Descript i on

n An index to the object.

VARIANT* pvRecNo A long variable to which the provider returns the number of records
that the operat ion affected.

VARIANT* pvParamList A variant array of parameter values passed.

long nCommandType A long value that indicates how the provider should evaluate the
CommandText property of the Command object.

CARecordset* pRecordset QALoad wrapper object, returned ADORecordset.

Example

ADO_Command(0)->Cancel();
ADO_Command(0)->PutPrepared(-1);
ADO_LoadVariant(pvValue, "3", "-1");
ADO_LoadVariant(pvSource, "10", "2147614724");
ADO_Command(0)->Execute(pvValue, pvSource, 1,
ADORecordset[0]);

ADO_Command(n)->GetCommandStream

Retrieves the value contained in the CommandStream property of th is instance of the ADO Command
object. The CommandStream property is retrieved using a pointer to a variant .

Syntax

ADO_Command(n)->GetCommandStream(VARIANT* pvValue);

Parameters

Param eter Descript i on

n An index to the object.

QALoad 5.02

288

VARIANT* pvValue A pointer to a variant in to which the data is retrieved.

Example

ADO_Command(0)->GetCommandStream(pvValue);
ADO_Command(0)->GetDialect(pvSource);

ADO_Command(n)->GetCommandText

Retrieves the value of the CommandText property for th is instance of the ADO Command object. A string
is returned as i ts argument.

The CommandText property is returned inside a CLoadString.

Syntax

ADO_Command(n)->GetCommandText(sLoadStr);

Parameters

Param eter Descript i on

n An index to the object.

sLoadStr The CommandText property for which a value is to be returned.

Example

ADO_Command(0)->PutCommandText("Select * from test_table");
ADO_Command(0)->GetCommandText(sLoadStr);
ADO_Connect(0)>Open("PROVIDER=MSDASQL;dsn=FhLoadDB2;uid=sa; pwd="";database=Master;", "",
"", -1);

ADO_Command(n)->GetCommandTimeout

Retrieves the value contained with in the CommandTimeout property of th is instance of the ADO
Command object.
Use CommandTimeout on a Connect ion object or Command object to al low an Execute method cal l to be
cancel led due to network or server delays. If the command does not execute before the t ime interval runs
out, an error occurs and the command is cancel led. Set the property to zero to wait indefin i tely.

Syntax

ADO_Command(n)->GetCommandTimeout(pLong);

Parameters

Param eter Descript i on

n An index to the object.

pLong Pointer to a long contain ing the t ime interval.

Example

ADO_Command(0)->GetCommandTimeout(pLong);

ADO_Command(0)->PutCommandTimeout(250);

QALoad 5.02

289

ADO_Command(n)->GetCommandType

Retrieves the value contained in the CommandType property of the current instant iat ion of the Command
object.

GetCommandType should always be combined with adCmdText or adCmdStoredProc (for example,
adCmdText+adExecuteNoRecords). Note that using adExecuteNoRecords with the Open method or a
Command object used by that method returns an error.

Syntax

ADO_Command(n)->GetCommandType(pLong);

Parameters

Param eter Descript i on

n An index to the object.

pLong Pointer to a long contain ing a command type Enum.

Example

ADO_Command(0)->PutCommandTimeout(30);

ADO_Command(0)->GetCommandType(pLong);

ADO_Command(0)->PutCommandType(adCmdStoredProc);

ADO_Command(n)->GetDialect

Retrieves the value contained with in the Dialect property of th is instance of the ADO Command object.
The Dialect property contains a val id GUID (Global ly Unique Ident i fier) which represents the dialect of the
command text or stream. The default value for th is property is {C8B521FB-5CF3-11CE-ADE5-
00AA0044773D}, indicat ing that the provider should choose how to in terpret the command text or stream.

Syntax

ADO_Command(n)->GetDialect(CLoadString sLoadStr);

Parameters

Param eter Descript i on

n An index to the object.

CLoadString sLoadStr A CLoadString. Value of the Dialect property for th is instance of the
ADO Command.

Example

ADO_Command(0)->PutName("MyTest");

ADO_Command(0)->GetName(sLoadStr);

ADO_Command(0)->PutDialect("{C8B521FB-5CF3-11CE-ADE5-00AA0044773D}");

ADO_Command(0)->GetDialect(sLoadStr);

ADO_Command(0)->PutCommandText("Select * from test_table");

ADO_Command(0)->GetCommandText(sLoadStr);

QALoad 5.02

290

ADO_Command(n)->GetName

Allows the script to retrieve the value of the Name property for th is instance of the ADO Command object.

Syntax

ADO_Command(n)->GetName(sLoadStr);

Parameters

Param eter Descript i on

n An index to the object.

sLoadStr A CLoadString. Value of the Name property for th is instance of the
ADO Command.

Example

ADOConnect.Release(0);

ADO_Command(0)->PutName("aTest");

ADO_Command(0)->GetName(sLoadStr);

ADO_Command(0)->PutCommandText("Select * from test_table");

ADO_Command(n)->GetNamedParameters

Retrieves the NamedParameters property of the Command object. When true, the Command object
handles the parameters by name as opposed to order. The method of retrieving parameters depends on the
value of the NamedParameters property.

Syntax

ADO_Command(n)->GetNamedParameters(VARIANT_BOOL* pnParameter);

Parameters

Param eter Descript i on

pnParameter A short evaluat ing to either True (-1) or False (0).

Example

ADO_Command(0)->PutCommandTimeout(250);
ADO_Command(0)->GetCommandTimeout(pLong);
ADO_Command(0)->PutCommandTimeout(30);
ADO_Command(0)->GetNamedParameters(pVTBOOL);
ADO_Command(0)->GetCommandType(pLong);
ADO_Command(0)->PutCommandType(adCmdStoredProc);

ADO_Command(n)->GetParameters

Retrieves provider parameter in formation for the stored procedure or parameterized query specified in the
Command object.

A Command object has a col lect ion of Parameters associated with i t , holding zero or more Parameters
with in i t . Using the Refresh method on a Command object ’s Parameters col lect ion retrieves provider
parameter in formation for the stored procedure or parameterized query specified in the Command object.

Note: The n associated with the ADO_Command object and that associated with the ADOConnect
parameter reference different instances of different QALoad ADO replay objects.

QALoad 5.02

291

Syntax

ADO_Command(n)->GetParameters(ADOParameterSet[n]);

Parameters

Param eter Descript i on

n An index to the object.

ADOParameterSet[n] An instance of the ADO ParameterSet object. This instance is being
created and fi l led as a result of th is cal l .

Example

ADO_Command(0)->PutRefActiveConnection(ADOConnect[0]);
ADO_Command(0)->PutCommandType(adCmdStoredProc);
ADO_Command(0)->PutCommandText("op_Getparamvb6");
BeginCheckpoint("ADOCommand::GetParameters");
ADO_Command(0)->GetParameters(ADOParameterSet[0]);
EndCheckpoint("ADOCommand::GetParameters");

ADO_Command(n)->GetPrepared

Retrieves the VARIANT_BOOL value contained with in the Prepared property of th is instance of the ADO
Command object.

A VARIANT_BOOL is a short evaluat ing to either True (-1) or False (0).
As a result , the provider wi l l save a compiled version of the query specified in the CommandText property
before a Command object ’s first execut ion. This might slow down the in i t ial execut ion; however,
performance wil l improve in subsequent execut ions because the provider wi l l use the compiled version of
the command.

Syntax

ADO_Command(n)->GetPrepared(pVTBOOL);

Parameters

Param eter Descript i on

n An index to an object.

pVTBOOL Pointer to the VARIANT_BOOL value contained in the Prepared
property of th is instance of the ADO Command object.

Example

ADOParameter.Release(0);
ADO_Command(0)->Cancel();
ADO_Command(0)->PutPrepared(-1);

ADO_Command(n)->GetPropert ies

Retrieves the complete set of propert ies for th is part icular instance of the Command object. PropertySets
may change for different providers.

Syntax

ADO_Command(n)->GetProperties(CAPropertySet* pPropertySet);

QALoad 5.02

292

Parameters

Param eter Descript i on

n An index to the object.

CAPropertySet *nPropertySet Set of CAProperty objects. Each CAProperty object contains a
single characterist ic, a piece of data, which part ial ly describes
the state of a part icular instance of an object.

Example

ADO_LoadVariant(pvValue, "8", "test_number");
ADO_Command(0)->GetItem(pvValue, ADOCommand[0]);
ADO_Command(0)->GetProperties(ADOPropertySet[0]);
ADOPropertySet.Release(0);

ADO_Command(n)->PutAct iveConnect ion

Determines the Connect ion object affected by the specified Command object or ADO Recordset.
Preceding each cal l to PutAct iveConnect ion, a cal l to LoadVariant must be made. This flavor of
LoadVariant takes ADO Connect in formation and loads that in to a pointer to a variant.

Note: The n associated with the ADO_Command object and that associated with the ADOConnect
parameter reference different instances of different QALoad ADO replay objects.

Syntax

LoadVariant (pvValue, ADOConnect[n]);
ADO_Command(n)->PutActiveConnection(pvValue);

Parameters

Param eter Descript i on

n An index to the object.

pvValue Pointer to a variant contain ing the ADO Connect ion Object.

Example

ADO_Command(2)->PutCommandText("sp_GetParameterSet");
ADO_Command(2)->PutCommandType(adCmdStoredProc);
LoadVariant(pvValue, ADOConnect[0]);
ADO_Command(2)->PutActiveConnection(pvValue);
BeginCheckpoint("ADOCommand::GetParameters");
ADO_Command(2)->GetParameters(ADOParameterSet[0]);
EndCheckpoint("ADOCommand::GetParameters");

ADO_Command(n)->PutCommandText

Sets the value of the CommandText property for th is instance of the ADO command object.
One method of sett ing up a command, for instance a SQL statement of some sort , would be by using
PutCommandText.

Syntax

ADO_Command(n)->PutCommandText("Text");

QALoad 5.02

293

Parameters

Param eter Descript i on

n An index to the object.

text The ANSI value of the CommandText property.

Example

ADO_Command(0)->PutRefActiveConnection(ADOConnect[0]);
ADO_Command(0)->PutCommandType(adCmdStoredProc);
ADO_Command(0)->PutCommandText("Select * from test_table");
BeginCheckpoint("ADOCommand::GetParameters");
ADO_Command(0)->GetParameters(ADOParameterSet[0]);
EndCheckpoint("ADOCommand::GetParameters");

ADO_Command(n)->PutCommandTimeout

Sets the value contained with in the CommandTimeout property of th is instance of the ADO Command
object.
Use CommandTimeout on a Connect ion or Command object to al low an Execute method cal l to be
cancel led due to network or server delays. If the command does not execute before the t ime interval runs
out, an error occurs and the command is cancel led. Set the property to zero to wait indefin i tely.

Syntax

ADO_Command(n)->PutCommandTimeout(long nCommandTimeout);

Parameters

Param eter Descript i on

n An index to the object.

long nCommandTimeout Timeout value (a non-negat ive in teger) to set for th is instance of the ADO
Command object.

Example

ADO_Connect(0)->PutConnectionString("DSN=My;UID=sa; PWD=" ";");
BeginCheckpoint("ADOConnect::Open");
ADO_Connect(0)->Open("", "", "", -1);
EndCheckpoint("ADOConnect::Open");
ADO_Command(0)->PutCommandTimeout(200);

ADO_Command(n)->PutCommandType

Sets the value for the CommandType property of the current instant iat ion of the Command object.
This is general ly done using an enumerated type — in th is case the CommandTypeEnum would be used.
Since al l of the different enumerated types with in ADO essent ial ly boi l down to longs, longs are accepted
as the argument.

Caution: Randomly introducing numbers into the script to do this operation will have unpredictable results.

PutCommandType should always be combined with adCmdText or adCmdStoredProc (for example,
adCmdText+adExecuteNoRecords). Using adExecuteNoRecords with the Open method, or a Command
object used by that method, results in an error.

QALoad 5.02

294

Syntax

ADO_Command(3)-> PutCommandType (adCmdText);

Parameters

Param eter Descript i on

n An index to the object.

CommandTypeEnum The enumerated datatype ident i fies the type of Command.

Example

ADO_Command(0)->PutCommandTimeout(30);
ADO_Command(0)->GetCommandType(pLong);
ADO_Command(0)->PutCommandType(adCmdStoredProc);

ADO_Command(n)->PutDialect

Sets the value of the Dialect property of th is instance of the ADO Command object.

The Dialect property contains a val id GUID (Global ly Unique Ident i fier) that represents the dialect of the
command text or stream. The default value for th is property is {C8B521FB-5CF3-11CE-ADE5-
00AA0044773D}, which indicates that the provider should choose how to in terpret the command text or
stream.

When the Dialect property is set, ADO val idates the GUID and raises an error i f the value suppl ied is not a
val id GUID. Refer to your provider documentat ion to determine the GUID values supported by the Dialect
property.

Syntax

ADO_Command(n)->PutDialect("GUID");

Parameters

Param eter Descript i on

n An index to the object.

"GUID" A unique ident i fier for a dialect.

Example

ADO_Command(0)->PutName("MyTest");
ADO_Command(0)->GetName(sLoadStr);
ADO_Command(0)->PutDialect("{C8B521FB-5CF3-11CE-ADE5-00AA0044773D"}");
ADO_Command(0)->GetDialect(sLoadStr);
ADO_Command(0)->PutCommandText("Select * from test_table");
ADO_Command(0)->GetCommandText(sLoadStr);

ADO_Command(n)->PutName

Enables the script to set the value of the Name property for th is instance of the ADO Command object .

Syntax

ADO_Command(n)->PutName("Name");

QALoad 5.02

295

Parameters

Param eter Descript i on

n An index to the object.

Name Value of the Name property for th is instance of the ADO Command
object.

Example

ADOConnect.Release(0);
ADO_Command(0)->PutName("aTest");
ADO_Command(0)->GetName(sLoadStr);
ADO_Command(0)->PutCommandText("Select * from test_table");

ADO_Command(n)->PutNamedParameters

Sets the value of the NamedParameters property of the command object.
When true, the Command object handles the parameters by name as opposed to order. The method of
retrieving parameters depends on the value of the NamedParameters property.

Syntax

ADO_Command(n)->PutNamedParameters(short nParameter);

Parameters

Param eter Descript i on

short nParameter A short evaluat ing to either True (-1) or False (0).

Example

ADO_Command(0)->GetCommandTimeout(pLong);
ADO_Command(0)->PutCommandTimeout(30);
ADO_Command(0)->GetNamedParameters(pVTBOOL);
ADO_Command(0)->PutNamedParameters(0);

ADO_Command(n)->PutPrepared

The PutPrepared method cal l sets the VARIANT_BOOL value contained with in the Prepared property of
th is instance of the ADO Command object.

A VARIANT_BOOL is a short evaluat ing to either True (-1) or False (0).

Syntax

ADO_Command(n)->PutPrepared(-1);

Parameters

Param eter Descript i on

n An index to the object.

flag TRUE (-1) or FALSE (0).

QALoad 5.02

296

Example

ADOParameter.Release(0);
ADO_Command(0)->Cancel();
ADO_Command(0)->PutPrepared(-1);

ADO_Command(n)->PutRefAct iveConnect ion

Determines the ADO Connect object affected by the specified ADO Command object or ADO Recordset.
Also sets the pointer to the QALoad ADO Connect object for th is instance of the actual ADO Command
object.

Note: The n associated with the ADO Command object and that associated with the ADOConnect parameter
reference different instances of different QALoad ADO replay objects.

Syntax

ADO_Command(n)->PutRefActiveConnection(ADOConnect[n]);

Parameters

Param eter Descript i on

n An index to the object.

ADOConnect[n] The connect ion object (ADO Connect).

Example

ADO_Command(1)->PutRefActiveConnection(ADOConnect[0]);
ADO_Command(1)->PutCommandType(adCmdStoredProc);
ADO_Command(1)->PutCommandText("op_Getparamvb6_Batch");
BeginCheckpoint("ADOCommand::GetParameters");
ADO_Command(1)->GetParameters(ADOParameterSet[0]);
EndCheckpoint("ADOCommand::GetParameters");

ADO_Connect (n)->BeginTrans

Begins a new transact ion.

If your provider supports nested transact ions, you can cal l the BeginTrans method with in an open
transact ion to start a new, nested transact ion. The method returns the level of nest ing: 1 indicates a top-
level t ransact ion, 2 indicates a second-level t ransact ion, etc.

Syntax

ADO_Connect(n)->BeginTrans(pLong);

Parameters

Param eter Descript i on

n An index to the object.

pLong Pointer to a long contain ing the level of nest ing used on th is transact ion.

Example

ADO_Connect(1)->BeginTrans(pLong);
BeginCheckpoint("ADOConnect::Execute");
ADO_Connect(1)->Execute("DELETE FROM Temp WHERE HI =" 291667 ", pvValue, -1,
ADORecordset[7]);

QALoad 5.02

297

EndCheckpoint("ADOConnect::Execute");
ADORecordset.Release(7, ADOBM);

ADO_Connect (n)->Close

Closes a Connect ion object.

This method closes a Connect ion object and any act ive Recordset objects associated with the Connect ion.
Any Command object associated with the Connect ion object wi l l st i l l exist , but wi l l no longer be
associated with a Connect ion object.

Note: There is currently no provision to independently track the Recordsets or command associated with
each different Connection object.

Syntax

ADO_Connect(n)->Close();

Parameters

Param eter Descript i on

n An index to the object.

Example

ADO_Connect(1)->Close();
ADOConnect.Release(1);

ADO_Connect (n)->CommitTrans

Save changes, ends the transact ion. May start a new transact ion.

Only affects the most recent ly opened transact ion. Close or rol lback a transact ion to resolve h igher-level
t ransact ions.
After you cal l the BeginTrans method, the provider wi l l no longer instantaneously commit changes you
make unt i l you cal l CommitTrans or Rol lbackTrans to end the transact ion.

Syntax

ADO_Connect(n)->CommitTrans();

Parameters

Param eter Descript i on

n An index to the object.

Example

ADO_Connect(1)->BeginTrans (pLong);
ADO_Recordset(18)->GetState (pLong);
ADO_LoadVariant(pvSource, "8", "SELECT rtrim(FIRSTNAME)");
ADO_LoadVariant(pvValue, "","","");
ADO_Recordset(15)->Open(pvSource, pvValue, adOpenForwardOnly, 0, 0);
ADO_LoadVariant(pvSource, "8", "SELECT rtrim(LASTNAME)");
ADO_LoadVariant(pvValue, "", "","");
ADO_Recordset(11)->Open(pvSource, pvValue, adOpenForwardOnly, 0, 0);
ADO_LoadVariant(pvSource, "8", "SELECT rtrim(ADDRESS)");
ADO_LoadVariant(pvValue, "","","");
ADO_Recordset(12)->Open(pvSource, pvValue, adOpenForwardOnly, 0, 0);

QALoad 5.02

298

ADO_Recordset(27)->Close();
ADORecordset.Release(27, ADOBM);
ADO_LoadVariant(pvSource, "8", "select max(lsystemID) from CITY");'
LoadVariant(pvValue, ADOConnect[1[);
ADO_Recordset(13)->Open(pvSource, pvValue, adOpenForwardOnly, adLockReadOnly, -1);
ADORecordset.Release(13, ADOBM);
ADO_LoadVariant(pvValue, "10", "2147614724");
ADO_LoadVariant(pvData, "10", "2147614724");
ADO_Recordset(19)->Update(pvValue, pvData);
ADO_Connect(1)->CommitTrans();

ADO_Connect (n)->Execute

Executes the query passed in the CommandText argument on the connect ion to the method.
If a row-return ing query is specified, results are stored in a new ADO Recordset object. If a row-return ing
query is not specified, a closed ADO Recordset object is returned.

Syntax

ADO_Connect->Execute("Command", pvValue, #,ADORecord sRecordset[#]);

Parameters

Param eter Descript i on

Command An ANSI representat ion of the command string.

pvValue A pointer to the variant return ing the number of records affected by th is cal l .

The opt ions used to make th is cal l run.

ADORecordset(#) The QALoad object contain ing the new recordset created by th is cal l .
The Recordset that is returned is returned inside of the ident i fied
ADORecordset(#) object.

Example

BeginCheckpoint("ADOConnect::Execute");
ADO_Connect->Execute("Command", pvValue, #, ADORecordset(#));
EndCheckpoint("ADOConnect::Execute");
ADORecordset.Release(0, ADOBM);

ADO_Connect (n)->GetAt t ributes

GetAttributes is read/write. It ’s value is the sum of one or more XactAttributeEnum values. The default is
zero (0).

Syntax

ADO_Connect(n)->GetAttributes(pLong);

Parameters

Param eter Descript i on

n An index to the object.

pLong A pointer to a long.

QALoad 5.02

299

Example

ADO_Connect(0)->GetAttributes(pLong);
ADO_Connect(0)->PutAttributes(262144);
ADO_Connect(0)->PutAttributes(393216);
ADO_Connect(0)->GetAttributes(pLong);

ADO_Connect (n)->GetCommandTimeout

Returns the value of the t imeout in a pointer to a long. Use GetCommandTimeout on a Connect ion object
or Command object to al low an Execute method cal l to be cancel led due to network or server delays. If the
command does not excute before the t ime interval runs out, an error occurs and the command is
cancel led. Set the property to zero to wait indefin i tely.

Syntax

ADO_Connect(n)->GetCommandTimeout(pLong);

Parameters

Param eter Descript i on

n An index to the object.

pLong A pointer to a long.

Example

ADO_Connect(0)->PutCommandTimeout(15);
ADO_Connect(0)->GetCommandTimeout(pLong);
ADO_Connect(0)->GetConnectionTimeout(pLong);
ADO_Connect(0)->PutConnectionTimeout(250);

ADO_Connect (n)->GetConnect ionString

GetConnect ionString method retrieves the value of Connect ionString property of th is instant iat ion of the
ADO Connect object. The Connect ionString specifies a data source by passing argument=value statements.
These are separated by semi-colons.

Syntax

ADO_Connect(n)->GetConnectionString(sLoadStr);

Parameters

Param eter Descript i on

n An index to the object.

sLoadStr This CLoadString retrieves the value of the Connect ionString property for th is
instance of ADO Connect ion.

Example

ADO_Connect(0)->GetAttributes(pLong);
ADO_Connect(0)->PutAttributes(0);
ADO_Connect(0)->GetConnectionString(sLoadStr);
ADO_Connect(0)->PutConnectionString("DSN=LoadTestBox;UID=SA;PWRD=H");

QALoad 5.02

300

ADO_Connect (n)->GetConnect ionTimeout

Use GetConnect ionTimeout on a Connect ion object to cancel a connect ion attempt, i f necessary, due to
network or server delays. If the t ime interval specified in the Connect ion Timeout property sett ing runs out
before a connect ion can be opened, an error occurs and the attempt to connect is cancel led. Set the
property to zero to wait indefin i tely.

Note: Before using GetConnection Timeout, ensure that your provider supports ADO’s ConnectionTimeout
functionality.

Syntax

ADO_Connect(n)->GetConnectionTimeout(pLong);

Parameters

Param eter Descript i on

n An index to the object.

pLong A pointer to a long return ing the value in seconds of the connect ion t imeout
property of th is ADOConnect ion object.

Example

ADO_Connect(0)->PutCommandTimeout(15);
ADO_Connect(0)->GetCommandTimeout(pLong);
ADO_Connect(0)->GetConnectionTimeout(pLong);
ADO_Connect(0)->PutConnectionTimeout(250);

ADO_Connect (n)->GetCursorLocat ion

Lets you choose a cursor l ibrary from those accessible to the provider. You can usual ly choose to use a
cl ient-side or server-side locat ion. This sett ing wil l on ly affect those connect ions made after sett ing the
property; i t has no effect on exist ing connect ions.

Syntax

ADO_Connect(n)->GetCursorLocation(pLong);

Parameters

Param eter Descript i on

n An index to the object.

pLong A pointer to a long’s representat ion of the CursorLocat ionEnum returned by
the cal l . This is then sent back to the script for the user.

Example

ADO_Connect(0)->GetCursorLocation(pLong);
ADO_Connect(0)->PutCursorLocation(adUseServer);
ADO_Connect(0)->GetCommandTimeout(pLong);

ADO_Connect (n)->GetDefaultDatabase

Retrieves the value of the DefaultDatabase property from th is instance of the ADO Connect object.

QALoad 5.02

301

Syntax

ADO_Connect(n)->GetDefaultDatabase(sLoadStr);

Parameters

Param eter Descript i on

n An index to the object.

sLoadStr The CLoadString which returns the DefaultDatabase information to the
script .

Example

ADO_Connect(0)->Open("PROVIDER=MSDASQL;dsn=FhLoadDB2;uid=sa; pwd="";database=Master;", "",
"", -1);
ADO_Connect(0)->GetDefaultDatabase(sLoadStr);
ADO_Connect(0)->PutDefaultDatabase("pubs");

ADO_Connect (n)-> Get Isolat ionLevel

Sets a Connect ion object ’s isolat ion level. Takes effect the next t ime the BeginTrans method is cal led.

Syntax

ADO_Connect(n)-> GetIsolationLevel(pLong);

Parameters

Param eter Descript i on

n An index to the object.

pLong A pointer to a long return ing the value of the isolat ion level property of th is
instance of the ADO Connect ion object.

Example

ADO_Connect(0)->GetIsolationLevel(pLong);
ADO_Connect(0)->PutIsolationLevel(adXactSerializable);

ADO_Connect (n)->GetMode

Sets or returns access permissions for the current connect ion. The GetMode property can only be set after
the Connect ion object is closed.

Syntax

ADO_Connect(n)->GetMode(pLong);

Parameters

Param eter Descript i on

n An index to the object.

pLong Retrieves the Connect ionModeEnum from the cal l and converts that to a
long* to be returned to the script .

Exam ple

QALoad 5.02

302

ADO_Connect(0)->PutIsolationLevel(adXactReadCommitted);
ADO_Connect(0)->GetMode(pLong);
ADO_Connect(0)->PutMode((ConnectModeEnum)12);
ADO_Connect(0)->GetProvider(sLoadStr6);

ADO_Connect (n)->GetProvider

Returns the provider name for a connect ion.

You can also set th is property using the contents of the Open method’s Connect ionString property or
argument. Note that you may get unwanted results i f you specify a provider in more than one place while
using the Open method. If a provider is not specified, th is property wi l l default to MSDASQL.

When the connect ion is closed, GetProvider is read/write. When the connect ion is open, GetProvider is
read-only. Before the sett ing can take effect, you must open the Connect ion object or access the
Connect ion object ’s Propert ies col lect ion. An inval id sett ing results in an error.

Syntax

ADO_Connect(n)->GetProvider(sLoadStr);

Parameters

Param eter Descript i on

n An index to the object.

sLoadStr This CLoadString holds the Provider in formation returned by th is cal l .

Example

ADO_Connect(0)->PutIsolationLevel(adXactReadCommitted);
ADO_Connect(0)->GetMode(pLong);
ADO_Connect(0)->PutMode((ConnectModeEnum)12);
ADO_Connect(0)->GetProvider(sLoadStr);

ADO_Connect (n)->GetState

Determines the state of a specified object at any t ime.
This property can have a combinat ion of values.

Syntax

ADO_Connect(n)->GetState(pLong);

Return Value

0 for closed, 1 for open

Parameters

Param eter Descript i on

n An index to the object.

pLong A pointer to a long holding the state in formation (0 or 1).

QALoad 5.02

303

Example

ADO_Connect(0)->PutProvider("MSDASQL");
ADO_Connect(0)->GetState(pLong);
ADO_Connect(0)->GetVersion(sLoadStr);

ADO_Connect (n)->GetVersion

Returns the version of ADO that is being used.
The version is avai lable as a dynamic property in the Propert ies col lect ion.

Syntax

ADO_Connect(n)->GetVersion(sLoadStr);

Parameters

Param eter Descript i on

n An index to the pointer.

sLoadStr The CLoadString string which returns version to the script .

Example

ADO_Connect(0)->PutProvider("MSDASQL");
ADO_Connect(0)->GetState(pLong);
ADO_Connect(0)->GetVersion(sLoadStr);

ADO_Connect (n)->Open

Establ ishes the connect ion to the data source.
When successful, i t creates a l ive connect ion against which you can issue commands.

Syntax

ADO_Connect(n)->Open("Connect String", "User", "Password", #);

Parameters

Param eter Descript i on

n An index to the object.

Connect String The Connect ionString property automatical ly inheri ts the value used for
the Connect ionString argument. Therefore, you can either set the
Connect ionString property of the Connect ion object before opening i t , or
use the Connect ionString argument to set or override the current
connect ion parameters during the Open method cal l .

User The UserID and Password arguments wi l l override the values specified in
Connect ionString.

Password

See the User parameter.

A ConnectOptionEnum value that determines whether th is method should
return after (synchronously) or before (asynchronously) the connect ion is
establ ished.

QALoad 5.02

304

Example

ADO_Connect(1)->PutConnectionString("DSN=My;UID=sa; PWD="";");
BeginCheckpoint("ADOConnect::Open");
ADO_Connect(1)->Open("", "", "", -1);
EndCheckpoint("ADOConnect::Open");
ADO_Connect(1)->PutCommandTimeout(200);

ADO_Connect (n)->OpenSchema

Returns in formation about the data source. For example, tables, columns included in the tables and data
types

Syntax

ADO_LoadVariant(pvValue, VT_TYPE, <VALUE>)
ADO_LoadVariant(pvData, VT_TYPE, <VALUE>)
ADOConnection(n)->OpenSchema(<SchemaEnum>, pvValue, pvData, ADORecordset[#]);

Parameters

Param eter Descript i on

n An index to the object.

nSchema SchemaEnum describing the type of schema query to run.

pvValue An array of query constraints for each QueryType opt ion, as l isted in
SchemaEnum.

pvData This parameter is required i f QueryType is set to adSchemaProviderSpecific;
otherwise, i t is not used.

ADORecordset[#] The recordset composing the result set.

Note: The Accompanying ADO_LoadVariant calls are made to set the proper values for the VARIANTs
pvValue and pvData. They are included automatically by QALoad ’s conversion process.

ADO_Connect (n)->PutAt t ributes

Sets the transact ion attribute for th is connect ion object.
The number represented by the string in the cal l wi l l be used by ADO during the cal l .

Syntax

ADO_Connect(n)->PutAttributes(XactAttributeEnum);

Parameters

Param eter Descript i on

n An index to the object.

XactAttributeEnum The sum of one or more XactAttributeEnum values (the default is 0). This
property is read/write.

QALoad 5.02

305

Example

ADO_Connect(0)->GetAttributes(pLong);
ADO_Connect(0)->PutAttributes((XactAttributeEnum) 262144);
ADO_Connect(0)->GetAttributes(pLong);

ADO_Connect (n)->PutCommandTimeout

PutCommandTimeout Sends a t imeout in seconds before the command wil l t imeout with an error.

Use PutCommandTimeout on a Connect ion object or Command object to al low an Execute method cal l to
be cancel led due to network or server delays. If the command does not excute before the t ime interval runs
out, an error occurs and the command is cancel led. Set the property to zero to wait indefin i tely.

Syntax

ADO_Connect(n)->PutCommandTimeout(#);

Parameters

Param eter Descript i on

n An index to the object.

The number of seconds before an except ion is generated by the command
overrunning the t imeout.

Example

ADO_Connect(0)->PutCommandTimeout(15);
ADO_Connect(0)->GetCommandTimeout(pLong);
ADO_Connect(0)->GetConnectionTimeout(pLong);
ADO_Connect(0)->PutConnectionTimeout(250);

ADO_Connect (n)->PutConnect ionString

Specifies a data source.

PutConnect ionString passes detai led connect ion strings that include argument=value statements. Use semi-
colons to separate the argument=value statements.

Syntax

ADO_Connect(n)->PutConnectionString(CLoadString);

Parameters

Param eter Descript i on

n An index to the object.

CLoadStr This ANSI string sets the value of the Connect ionString property for th is
instance of ADO Connect ion.

Example

ADO_Connect(0)->GetAttributes(pLong);
ADO_Connect(0)->PutAttributes(0);
ADO_Connect(0)->GetConnectionString(sLoadStr);
ADO_Connect(0)->PutConnectionString("DSN=LoadTestBox;UID=SA;PWRD=H");

QALoad 5.02

306

ADO_Connect (n)->PutConnect ionTimeout

Use PutConnect ionTimeout on a Connect ion object to abandon an attempt to connect due to network or
server delays. If a connect ion is not made in the specified t ime, an error occurs and the attempt to connect
is cancel led. Set the property to zero to wait indefin i tely.

Note: Before using PutConnection Timeout, ensure that your provider supports ADO’s ConnectionTimeout
functionality.

Syntax

ADO_Connect(n)->PutConnectionTimeout(#);

Parameters

Param eter Descript i on

n An index to the object.

The number of seconds to attempt a connect ion to the provider.

Example

ADO_Connect(0)->PutCommandTimeout(15);
ADO_Connect(0)->GetCommandTimeout(pLong);
ADO_Connect(0)->GetConnectionTimeout(pLong);
ADO_Connect(0)->PutConnectionTimeout(250);

ADO_Connect (n)->PutCursorLocat ion

Lets you choose a cursor l ibrary from those accessible to the provider. You can usual ly choose to use a
cl ient-side or server-side l ibrary. This sett ing wil l on ly affect those connect ions made after sett ing the
property; i t has no effect on exist ing connect ions.

Syntax

ADO_Connect(n)->PutCursorLocation(CursorLocationEnum);

Parameters

Param eter Descript i on

n An index to the object.

CursorLocationEnum A String representat ion of a CursorLocat ionEnum value.

Example

ADO_Connect(0)->GetCursorLocation(pLong);
ADO_Connect(0)->PutCursorLocation(adUseServer);
ADO_Connect(0)->GetCommandTimeout(pLong);

ADO_Connect (n)->PutDefaultDatabase

Sets the default database with in a connect ion object.

Access objects in a database other than the one specified in the DefaultDatabase property by qual i fying
object names with the desired database name. Upon connect ion, the provider wi l l wri te default database
information to the Defaul tDatabase property.

QALoad 5.02

307

Syntax

ADO_Connect(n)->PutDefaultDatabase("NAME");

Parameters

Param eter Descript i on

n An index to the object.

"NAME" The name of the default database to set with in the connect ion object.

Example

ADO_Connect(0)->Open("PROVIDER=MSDASQL;dsn=FhLoadDB2;uid=sa;
 pwd="";database=Master;", "", "", -1);
ADO_Connect(0)->GetDefaultDatabase(sLoadStr);
ADO_Connect(0)->PutDefaultDatabase("pubs");

ADO_Connect (n)->Put Isolat ionLevel

Sets the isolat ion level of a Connect ion object. The isolat ion level wi l l take effect the next t ime you cal l
BeginTrans.
The isolat ion level that is part of th is cal l is represented as a string. This string representat ion translates
in to a number that is used by ADO internal ly.

Syntax

ADO_Connect(n)->PutIsolationLevel(<IsolationLevelEnum>);

Parameters

Param eter Descript i on

n An index to the object.

IsolationLevelEnum The isolat ion level either in numeric format or in the adXactSerial izable
format. Possible values are:
adXactUnspecified (value=-1), adXactChaos (value=16),
adXactReadUncommitted (value=256), adXactBrowse (value=256),
adXactCursorStabi l i ty (value=4096), adXactReadCommitted (value=4096),
adXactRepeatableRead (value=65536), adXactSerial izable (value=1048576),
adXactIsolated (value=1048576).

Example

ADO_Connect(0)->GetIsolationLevel(pLong);
ADO_Connect(0)->PutIsolationLevel(adXactSerializable);

ADO_Connect (n)->PutMode

Sets the access permissions being used on the current connect ion.

Note: This property can only be set when the Connection object is closed.

Syntax

ADO_Connect(n)->PutMode(<ConnectionModeEnum>);

QALoad 5.02

308

Parameters

Param eter Descript i on

n An index to the object.

ConnectionModeEnum Sets the Connect ionModeEnum property for th is instance of the ADO
Connect object.

Example

ADO_Connect(0)->PutIsolationLevel(adXactReadCommitted);
ADO_Connect(0)->GetMode(pLong);
ADO_Connect(0)->PutMode((ConnectModeEnum)12);
ADO_Connect(0)->GetProvider(sLoadStr6);

ADO_Connect (n)->PutProvider

Sets the provider name for a connect ion.

You can also set th is property using the contents of the Open method’s Connect ionString property or
argument. Note that you may get unwanted results i f you specify a provider in more than one place while
using the Open method. If a provider is not specified, th is property wi l l default to MSDASQL.

When the connect ion is closed, PutProvider is read/write. When the connect ion is open, PutProvider is
read-only. Before the sett ing can take effect, you must open the Connect ion object or access the
Connect ion object ’s Propert ies col lect ion. An inval id sett ing results in an error.

Syntax

ADO_Connect(n)->PutProvider("Provider");

Parameters

Param eter Descript i on

n An index to the object.

"Provider" The name of the provider being used to access data.

Example

ADO_Connect(0)->PutIsolationLevel(adXactReadCommitted);
ADO_Connect(0)->GetMode(pLong);
ADO_Connect(0)->PutMode((ConnectModeEnum)12);
ADO_Connect(0)->PutProvider("MSDASQL");

ADO_Connect (n)->RollbackTrans

Reverses changes made in an open transact ion and ends the transact ion. This is l inked with BeginTrans.
This wi l l on ly be seen in the script i f a transact ion fai ls for some reason. If i t fai ls and you see th is cal l , look
over the script logic and see i f the transact ion can be committed.

Syntax

ADO_Connect(n)->RollbackTrans();

QALoad 5.02

309

Parameters

Param eter Descript i on

n An index to the object.

Example

ADO_Connect(1)->BeginTrans(pLong);
ADO_Recordset(18)->GetState(pLong);
ADO_LoadVariant(pvSource, "8", "SELECT rtrim(FIRSTNAME)");
ADO_LoadVariant(pvValue, "", "","");
ADO_Recordset(15)->Open(pvSource, pvValue, adOpenForwardOnly, 0, 0);
ADO_LoadVariant(pvSource, "8", "SELECT rtrim(LASTNAME)");
ADO_LoadVariant(pvValue, "", "", "");
ADO_Recordset(11)->Open(pvSource, pvValue, adOpenForwardOnly, 0, 0);
ADO_LoadVariant(pvSource, "8", "SELECT rtrim(ADDRESS)");
ADO_LoadVariant(pvValue, "", "", "");
ADO_Recordset(12)->Open(pvSource, pvValue, adOpenForwardOnly, 0, 0);
ADO_Recordset(27)->Close();
ADORecordset.Release(27, ADOBM);
ADO_LoadVariant(pvSource, "8", "select max(lsystemID) from CITY");
LoadVariant(pvValue, ADOConnect[1]);
ADO_Recordset(13)->Open(pvSource, pvValue, adOpenForwardOnly, adLockReadOnly, -1);
ADORecordset.Release(13, ADOBM);
ADO_LoadVariant(pvValue, "10", "2147614724");
ADO_LoadVariant(pvData, "10", "2147614724");
ADO_Recordset(19)->Update(pvValue, pvData);
ADO)Connect(1)->Rollback();

ADO_Field(n)->AppendChunk

A special data handl ing method that wri tes data, in chunks, to the Field object.

This is especial ly useful when memory is l im ited; you can use th is method to manipulate long values in
manageable chunks.
It may take numerous cal ls to AppendChunk to completely wri te the data to the appropriate field object.
When writ ing data values using ADO, the datatype being used as the parameter with the data value is often
a VARIANT datatype.

The first cal l to AppendChunk writes data to the field and overwrites any exist ing data. Subsequent cal ls
add to the data. Note that i f you append data to one field, then manipulate another field in the same
record, ADO assumes you are fin ished with the first field. If you then attempt to append data to the first
field, the exist ing data wi l l be overwrit ten.

The AppendChunk cal l wi l l be preceeded immediately in the script by a cal l to ADO_LoadVariant.
You can use the AppendChunk method in the Attributes property of a Field object i f the adFldLong bit in
the Attributes property is set to true.

Syntax

ADO_Field(n)->AppendChunk(pvValue)

Parameters

Param eter Descript i on

n An index to the object.

pvValue This pointer to a variant contains a chunk of data to be writ ten to the field

QALoad 5.02

310

object.

Example

ADO_Recordset(0)->GetFields(ADOFieldSet[0]);
ADO_LoadVariant(pvValue, "8", "SUSERRESUME");
ADO_FieldSet(0)->GetItem(pvValue, ADOField[0]);
ADO_LoadVariant(pvValue, "8", "Roger Smith\n2114 Edgemere Court\nGrosse Pointe" ",
 MI 48263\n\n\nObjective:\n \nA job controlling the Universe"
 "which I can do from the comfort of my own home.");
ADO_Field(0)->AppendChunk(pvValue);
ADO_LoadVariant(pvValue, "8", "\n\nExperience:\nCEO for General Motors during"
 "the Reagan administration. CEO for General Electric during"
 "the Carter Administration .. \n");
ADO_Field(0)->AppendChunk(pvValue); /* Type: 8 - VT_BSTR Data: admin */
ADO_LoadVariant(pvValue, "10", "2147614724");
ADO_LoadVariant(pvData, "10", "2147614724");
ADO_Recordset(18)->Update(pvValue, pvData);

ADO_Field(n)->GetActualSize

Retrieves the value contained with in the ActualSize property of th is instance of the ADO Field object.
GetActualSize returns a Long value. If your provider al lows th is property to reserve space for BLOB data,
the default is zero.

GetActualSize is read-only. If ADO fai ls to ident i fy the length of the object ’s value, th is property returns
adUnknown.

Syntax

ADO_Field(n)->GetActualSize(pLong);

Parameters

Param eter Descript i on

n An index to the object.

pLong A pointer to a long, which contains the value of the ActualSize property of th is
instance of the ADO Field Object.

Example

ADO_Field(3)->GetUnderlyingValue(pvValue);
ADO_Field(3)->GetName(sLoadStr);
ADO_Field(3)->GetActualSize(pLong);

ADO_Field(n)->GetAtt ributes

Retrieves the value contained with in the Attributes property of th is instance of the ADO Field object.
The Attributes property can be the sum of one or more FieldAttributeEnum values, and i t is normally read-
only. It is read/write, however, i f al l of the fol lowing condit ions are met:

! It is a new Field object;

! It has been appended to the Fields collection of a Record;

! The Value property for the Field has been specified; and

! The new Field has been added by the data provider (using the Fields collection’s Update method).

QALoad 5.02

311

Syntax

ADO_Field(n)->GetAttributes(pLong);

Parameters

Param eter Descript i on

n An index to the object.

pLong A pointer to a long, which contains the value of the Attributes property of th is
instance of the ADO Field Object.

Example

ADO_Field(1)->PutAttributes(32);
ADO_Field(1)->GetAttributes(pLong);
ADO_Field(1)->GetDefinedSize(pLong);
ADO_Field(1)->PutDefinedSize(100);
ADO_Field(1)->GetDefinedSize(pLong);

ADO_Field(n)->GetChunk

Retrieves chunks of binary or character data to an appropriate buffer.
This is a special funct ion in that i t may have to be cal led several t imes in order to properly handle the data
being returned from the field object.

Used on a Field object, th is method returns al l or part of the object ’s long binary or character data. Use th is
method to manipulate long values in manageable chunks of data.

Since the data is being returned from th is cal l , the ADO_LoadVariant is not cal led.

The returned data is assigned to a variable. If the variable size is greater than the remain ing data, only the
data is returned. The variable is not padded with empty spaces. An empty field returns a nul l value.

If more than one cal l to GetChunk is necessary, each subsequent cal l starts retrieving data from the point
where the previous cal l left off. Note that i f you retrieve data from one field, then manipulate another
field, ADO assumes you are fin ished with the first field.

Syntax

ADO_Field(n)->GetChunk(#, pvValue);

Parameters

Param eter Descript i on

n An index to the object.

Length of the chunk of data being retrieved.

pvValue Pointer to the variant holding the chunk of retrieved data.

Example

ADO_Recordset(0)->GetFields(ADOFieldSet[0]);
ADO_LoadVariant(pvValue, "8", "SUSERRESUME");
ADO_FieldSet(0)->GetItem(pvValue, ADOField[0]);
ADO_Field(0)->GetChunk(100, pvValue);
ADO_Field(0)->GetChunk(100, pvValue);

QALoad 5.02

312

ADO_Field(n)->GetDataFormat

Retrieves an IUnknown instance describing the data format for th is field.

Syntax

ADO_Field(n)->GetDataFormat(&pIUnknown pDataFormat);

Parameters

Param eter Descript i on

n An index to the object.

pDataFormat Pointer to an IUnknown interface.

Example

ADO_Field(1)->GetDataFormat(&pIUnknown);
ADO_Field(1)->GetAttributes(pLong);
ADO_Field(1)->GetDefinedSize(pLong);

ADO_Field(n)->GetDefinedSize

Retrieves the value contained with in the DefinedSize property of th is instance of the ADO Field object.
Used to determine the data capacity of a Field object.

Syntax

ADO_Field(n)->GetDefinedSize(pLong);

Parameters

Param eter Descript i on

n An index to the object.

pLong A pointer to a long with the value of the DefinedSize property of th is Instance of
the ADO Field object.

Example

ADO_Field(1)->GetDataFormat(pIUnknown);
ADO_Field(1)->GetAttributes(pLong);
ADO_Field(1)->GetDefinedSize(pLong);
ADO_Field(1)->PutDefinedSize(4);

ADO_Field(n)->GetName

Retrieves the value contained with in the Name property of th is instance of the ADO Field object. Note that
the actual ADO cal l has a BSTR as the argument; therefore, there is some data conversion occuring with in
th is cal l .
GetName is normally read-only. It is read/write i f al l of the fol lowing condit ions are met:

! It is a new Field object

! The new Field object has been appended to the Fields collection of a Record

! The Value property for the Field has been specified and

! The data provider has added the new Field (using the Fields collection’s Update method).

QALoad 5.02

313

Syntax

ADO_Field(n)->GetName(sLoadStr);

Parameters

Param eter Descript i on

n An index to the object.

sLoadStr A CLoadString. Value of the Name property for th is ADO Field Object.

Example

ADO_Field(3)->GetUnderlyingValue(pvValue);
ADO_Field(3)->GetName(sLoadStr);
ADO_Field(3)->GetActualSize(pLong);

ADO_Field(n)->GetNumericScale

Retrieves the value contained with in the NumericScale property of th is instance of the ADO Field object.
GetNumericScale sets or returns a byte value indicat ing the number of decimal places to which numeric
values wil l be resolved.

GetNumericScale is normally read-only. It is read/write, however, i f al l of the fol lowing condit ions are met:

! on a new Field object

! the new Field object has been appended to the Fields collection of a Record

! the Value property for the Field has been specified and,

! the data provider has added the new Field (using the Fields collection’s Update method).

Syntax

ADO_Field(n)->GetNumericScale(&cUChar);

Parameters

Param eter Descript i on

n An index to the object.

pUChar Pointer to an unsigned character

Example

ADO_Field(1)->PutDefinedSize(4);
ADO_Field(2)->GetNumericScale(&cUChar);
ADO_Field(2)->PutNumericScale(0x03);
ADO_Field(2)->GetPrecision(pUChar);
ADO_Field(2)->PutPrecision(0x07);

ADO_Field(n)->GetOriginalValue

Retrieves the value contained with in the Value property of th is instance of the ADO Field object before any
changes were made permanent by a cal l to an update method.

Syntax

ADO_Field(n)->GetOriginalValue(pvValue);

QALoad 5.02

314

Parameters

Param eter Descript i on

n An index to the object.

pvValue The pointer to the VARIANT in which the original value is returned.

Example

ADO_FieldSet(0)->GetItem(pvValue, ADOField[0]);
ADO_Field(0)->GetOriginalValue(pvValue);

ADO_Field(n)->GetPrecision

Retrieves the value contained with in the Precision property of th is instance of the ADO Field object.
You can use i t to determine the maximum number of digits used to represent a numeric Parameter or field
object.

Note that the data being returned is in the form of a pointer to an unsigned char. This is essent ial ly a byte
depict ing the size of a column from 0 bytes to 256 bytes.

Syntax

ADO_Field(n)->GetPrecision(&cUChar);

Parameters

Param eter Descript i on

n An index to the object.

pUChar Pointer to an unsigned character

Example

ADO_Field(1)->PutDefinedSize(4);
ADO_Field(2)->GetNumericScale(&cUChar);
ADO_Field(2)->PutNumericScale(0x03);
ADO_Field(2)->GetPrecision(pUChar);
ADO_Field(2)->PutPrecision(0x07);

ADO_Field(n)->GetPropert ies

The CAField object has a col lect ion of property objects. Each property object corresponds to a characterist ic
of the ADO object specific to the provider.

Retrieves the complete set of propert ies for th is part icular instance of the Field object. PropertySets may
change for different providers.

Syntax

ADO_Field(n)->GetProperties(CAPropertySet* pPropertySet);

Parameters

Param eter Descript i on

n An index to the object.

QALoad 5.02

315

pPropertySet Set of CAProperty objects. Each CAProperty object contains a single
characterist ic, a piece of data, which part ial ly describes the state of a part icular
instance of an object.

Example

ADO_LoadVariant(pvValue, "8", "test_number");
ADO_FieldSet(0)->GetItem(pvValue, ADOField[0]);
ADO_Field(0)->GetProperties(ADOPropertySet[0]);
ADOPropertySet.Release(0);

ADO_Field(n)->GetStatus

Retrieves the value contained with in the Status property of th is instance of the ADO Field object. It takes a
pointer to a long as an argument. With in th is parameter, the Value of the status property of th is instance
of the Field object is returned.

Syntax

ADO_Field(n)->GetStatus(pLong);

Parameters

Param eter Descript i on

n An index to the object.

pLong Pointer to the value with in the Status property of th is instance of the ADO
Field object.

Example

ADO_Field(2)->GetStatus(pLong);

ADO_Field(n)->GetType

Retrieves the value contained with in the Type property of th is instance of the ADO Field object. The Actual
ADO cal l uses another enumerated type, DataTypeEnum, to handle the data types. Conversion to th is type
happens with in the QALoad cal l .

GetType is read/write i f al l of the fol lowing condit ions are met:

! on a new Field objects

! the new Field object has been appended to the Fields collection of a Record

! the Value property for the Field has been specified

! the data provider has added the new Field (using the Fields collection’s Update method).

Syntax

ADO_Field(n)->GetType(pLong);

Parameters

Param eter Descript i on

n An index to the object.

pLong A pointer to a long contain ing the data type of the f ield element.

QALoad 5.02

316

Example

ADO_Field(2)->PutPrecision(0x00);
ADO_Field(1)->GetType(pLong);
ADO_Field(1)->PutType((DataTypeEnum)8);

ADO_Field(n)->GetUnderlyingValue

Specifies the current value of a Field object in the database, after any updates to the recordset.
This is the current value visible to your transact ion. It may be the result of a recent update by another
transact ion. Note that th is could be different from the OriginalValue property that was original ly returned
to the Recordset.

Syntax

ADO_Field(n)->GetUnderlyingValue(pvValue);

Parameters

Param eter Descript i on

n An index to the object.

pvValue The pointer to the variant holding the underlying value returned from the
cal l .

Example

ADO_Field(3)->PutValue(pvValue);
ADO_Field(3)->GetUnderlyingValue(pvValue);
ADO_Field(3)->GetName(sLoadStr);

ADO_Field(n)->GetValue

Retrieves the value of a ADO Field object in to a pointer to a Variant. The argument wi l l handle any type of
data. This can be done by using the Variant datatype. Data is retrieved into a pointer to a Variant.

Syntax

ADO_Field(n)->GetValue(pvValue);

Parameters

Param eter Descript i on

n An index to the object.

pvValue Pointer to the value contained with in the Value property of th is instance of
the ADO Field object.

Example

ADO_Field(3)->GetValue(pvValue);
LoadVariant(pvValue, "8", "T ");
ADO_Field(3)->PutValue(pvValue);

ADO_Field(n)->PutAtt ributes

The PutAttributes method cal l sets the value contained with in the Attributes property of th is instance of
the ADO Field object.

QALoad 5.02

317

This property can be the sum of one or more FieldAttributeEnum values. It is normally read-only; however,
i t can be read/write i f al l of the fol lowing condit ions are present:

! It is a new Field object

! The new Field object has been appended to the Fields collection of a Record

! The Value property for the Field has been specified

! The new Field has been successfully added by the data provider (using the Field collection’s Update method).

Syntax

ADO_Field(n)-PutAttributes (n);

Parameters

Param eter Descript i on

n An index to the object.

Example

ADO_Field(1)->PutAttributes((FieldAttributeEnum)32);
ADO_Field(1)->GetAttributes(pLong);
ADO_Field(1)->GetDefinedSize(pLong);
ADO_Field(1)->PutDefinedSize(100);
ADO_Field(1)->GetDefinedSize(pLong);

ADO_Field(n)->PutDataFormat

This updates the current value of the data format updates to the ADO Recordset.

Syntax

ADO_Field(n)->PutDataFormat(pIUnknown);

Parameters

Param eter Descript i on

n An index to the object.

pIUnknown Pointer to the IUnknown interface.

ADO_Field(n)->PutDefinedSize

Sets the value contained with in the DefinedSize property of th is instance of the ADO Field object.
Note that the DefinedSize and ActualSize propert ies are different. For example, i f a DefinedSize property of
25 only contained a few characters, the ActualSize property value would be the length of those few
characters.

Syntax

ADO_Field(n)->PutDefinedSize(#);

Parameters

Param eter Descript i on

n An index to the object.

QALoad 5.02

318

Size of the data contained with in th is field.

Example

ADO_Field(1)->GetDataFormat(pIUnknown);
ADO_Field(1)->GetAttributes(pLong);
ADO_Field(1)->GetDefinedSize(pLong);
ADO_Field(1)->PutDefinedSize(4);

ADO_Field(n)->PutNumericScale

Sets the value contained with in the NumericScale property of th is instance of the ADO Field object.

PutNumericScale also sets or returns a byte value indicat ing the number of decimal places to which
numeric values wil l be resolved.

PutNumericScale is normally read-only; however, i t is read/write i f al l of the fol lowing condit ions are met:

! It applies to a new Field object

! The new Field object has been appended to the Fields collection of a Record

! The Value property for the Field has been specified

! The data provider has added the new Field (using the Fields collection’s Update method).

Syntax

ADO_Field(n)->PutNumericScale(0x##);

Parameters

Param eter Descript i on

n An index to the object.

0x## Unsigned character being passed in i ts hexadecimal representat ion. Note that
the range on the # is 0 - F - 0123456789ABCDEF

Example

ADO_Field(1)->PutDefinedSize(4);
ADO_Field(2)->GetNumericScale(pUChar);
ADO_Field(2)->PutNumericScale(0x03);
ADO_Field(2)->GetPrecision(pUChar);
ADO_Field(2)->PutPrecision(0x07);

ADO_Field(n)->PutPrecision

Sets the value contained with in the Precision property of th is instance of the ADO Field object.
You can use i t to determine the maximum number of digits used to represent a numeric Parameter or Field
object.

Syntax

ADO_Field(n)->PutPrecision(0x##);

Parameters

Param eter Descript i on

n An index to the object.

QALoad 5.02

319

0x## Unsigned character being passed in i ts hexadecimal representat ion. Note that
the range on the # is 0 - F - 0123456789ABCDEF

Example

ADO_Field(1)->PutDefinedSize(4);
ADO_Field(2)->GetNumericScale(pUChar);
ADO_Field(2)->PutNumericScale(0x03);
ADO_Field(2)->GetPrecision(pUChar);
ADO_Field(2)->PutPrecision(0x07);

ADO_Field(n)->PutType

Sets the value contained with in the Type property of th is instance of the ADO Field object.
There is a conversion from the long argument to a DataTypeEnum*, which is accomplished through a cast.

PutType is read/write for a new Field object that has been appended to a Record’s Fields col lect ion i f the
fol lowing condit ions are met:

! The Value property for the Field has been specified

! The data provider has added the new Field (using the Fields collection’s Update method).

Syntax

ADO_Field(n)->PutType(DataTypeEnum);

Parameters

Param eter Descript i on

n An index to the object.

DataTypeEnum The datatype of the field element.

Example

ADO_Field(2)->PutPrecision(0x00);
ADO_Field(1)->GetType(pLong);
ADO_Field(1)->PutType((DataTypeEnum)8);

ADO_Field(n)->PutValue

Resets the value of th is instance of the ADO Field object. This is the first step in updat ing a Recordset ’s
value.
In order to accommodate any type of data, ADO uses the Variant datatype with PutValue.

Note: This call, and all other calls that use the Variant datatypes, will have to use an accompanying Setup
function call, the call to ADO_LoadVariant.

Syntax

ADO_Field(n)->PutValue(pvValue);

Parameters

Param eter Descript i on

n An index to the object.

pvValue The pointer to the variant that returns the data contained in the ADO Field

QALoad 5.02

320

object.

Example

ADO_Recordset(2)->GetFields(ADOFieldSet[0]);
ADO_LoadVariant(pvValue, "8", "active");
ADO_FieldSet(0)->GetItem(pvValue, ADOField[0]);
ADO_LoadVariant(pvValue, "8", "Y");
ADO_Field(0)->PutValue(pvValue);
ADOFieldSet.Release(0);
ADOField.Release(0);
ADO_LoadVariant(pvValue, "10", "2147614724"); // VT_ERROR;
ADO_LoadVariant(pvData, "10", "2147614724"); // VT_ERROR;
ADO_Recordset(2)->Update(pvValue, pvData);
ADO_Recordset(2)->Close();
ADORecordset.Release(2, ADOBM);

ADO_FieldSet(0)->GetNewEnum

In order to i terate through each ADO Field in a ADO FieldSet col lect ion, an ADOIEnumField object is
returned. The GetNewEnum cal l on the ADO FieldSet object creates the ADO IEnumField object al lowing
the enumerat ion to take place.

Syntax

ADO_FieldSet(n)->GetNewEnum(ADOIEnumField[#]);

Parameters

Param eter Descript i on

n An index to the object.

ADOIEnumField ADO IEnumField object.

Example

ADO_FieldSet(0)->GetNewEnum(ADOIEnumField[0]);
while(ADO_IEnumField(0)->NextField(1, 0, ADOField[0]))
{
ADO_Field(0)->GetStatus(pLong);
ADOField.Release(0);
}

ADO_FieldSet(n)->Append

Append creates and appends a new Field object to the ADO FieldSet. An ADO Recordset object is composed
of ADO FieldSet objects. Appending ADO Fields to ADO FieldSet objects comprises a mechanism for
updat ing or retrieving in formation from a Data Provider.

Syntax

ADO_FieldSet(n)->Append("<Name>", <DataTypeEnum>, <size>, <FieldAttributeEnum>, pvValue);

Parameters

Param eter Descript i on

n An index to the object.

Name The name of the Field being added to the col lect ion of fields.

QALoad 5.02

321

DataTypeEnum The Data type of the field being added to the col lect ion

Size Size of the data for the field being added to the col lect ion

FieldAttributeEnum An addit ional descriptor for the Field being added to the col lect ion, for
example, Nul lable, Fixed length

pvValue The Field’s actual data in the form of a Pointer to a VARIANT.

Example

ADO_Recordset(1)->GetFields(ADOFieldSet[1]);
ADO_LoadVariant(pvValue, "8", "New ColumnData");
ADO_FieldSet(1)->Append("testfld1" ,adBSTR, 0 , adFldUnspecified, pvValue);

ADO_FieldSet(n)->Append15

Append15 creates and appends a new field object to the ADO FieldSet. An ADO Recordset object is
composed of ADO FieldSet objects. Appending ADO Fields to ADO FieldSet objects comprise a mechanism
for updat ing or retrieving in formation from a Data Provider. The Append15 funct ion does NOT al low the
user to add the data to th is ADO Field object. It creates the ADO Field object in the ADO FieldSet
col lect ion, but does not add in the data.

Syntax

ADO_FieldSet(n)->Append15("<Name>", <DataTypeEnum>, <size>, <FieldAttributeEnum>);

Parameters

Param eter Descript i on

n An index to the object.

Name The name of the Field being added to the col lect ion of fields.

DataTypeEnum The Data type of the field being added to the col lect ion

Size Size of the data for the field being added to the col lect ion

FieldAttributeEnum An addit ional descriptor for the Field being added to the col lect ion, for
example, Nul lable, Fixed length

Example

ADO_Recordset(1)->GetFields(ADOFieldSet[1]);
ADO_FieldSet(1)->Append15("testfld1", adBSTR, 0, adFldUn specified);
ADO_LoadVariant(pvValue, "8", "testfld1");
ADO_FieldSet(1)->GetItem(pvValue, ADOField[0]);
ADO_LoadVariant(pvValue, "8", "New ColumnData");
ADO_FieldSet(1)->PutValue(pvValue);

ADO_FieldSet(n)->CancelUpdate

Cancels changes made to the current or new row of an ADO Recordset object, or the ADO Fieldset
col lect ion of an ADO Record object, before cal l ing the Update method.

Syntax

ADO_FieldSet(n)->CancelUpdate();

QALoad 5.02

322

Parameters

Param eter Descript i on

n An index to the object.

Example

None.

ADO_FieldSet(n)->Delete

Deletes an object from the Fields col lect ion. Takes the form of a Variant designat ing a Field object to
delete. The Variant can be the name or ordinal posit ion of the Field object.

Syntax

ADO_LoadVariant(pvValue, "Type", "Value");
ADO_FieldSet(n)->Delete(pvValue);

Parameters

Param eter Descript i on

n An index to the object.

pvValue A pointer to a Variant. The variant depicts the field to remove.

Example

ADO_Recordset(1)->GetFields(ADOFieldSet[1]); LoadVariant(pvValue, "2", "1");
ADO_FieldSet(1)->Delete(pvValue);
ADOFieldSet.Release(1);

ADO_FieldSet(n)->GetCount

The method returns the number of ADO Field objects contained with in the ADO FieldSet col lect ion.

Syntax

ADO_FieldSet(n)->GetCount(pLong);

Parameters

Param eter Descript i on

n An index to the object.

pLong A Pointer to a long contain ing the number of ADO Field objects in th is ADO
FieldSet Col lect ion.

Example

ADO_Recordset(0)->GetFields(ADOFieldSet[0]);
ADO_FieldSet(0)->GetCount(pLong);
ADO_FieldSet(0)->Refresh();

QALoad 5.02

323

ADO_FieldSet(n)->Get Item

This cal l retrieves a ADO Field object from th is instance of the ADO FieldSet col lect ion. The result of the
cal l is that a ADO Field object is brought back to be manipulated with in the script . ADO Field retrieval is a
part of the variabl izat ion process.
In the example, sSSN is declared as a local variable and is a key element used in several cal ls to the data
provider. This is variabl ized with in the script and l inked to a datapool earl ier in the script .

Syntax

ADO_LoadVariant(pvValue, "Type", "Value");
ADO_FieldSet(n)->GetItem(pvValue, ADOField[#]);

Parameters

Param eter Descript i on

n An index to the object.

pvValue This input parameter is used to pick the part icular ADO Field instance from the
ADO FieldSet col lect ion.

ADOField[#] This output parameter is used to store away the ADO Field returned by th is cal l .

Example

ADO_Recordset(2)->GetFields(ADOFieldSet[0]);
ADO_LoadVariant(pvValue, "8", "SSN");
ADO_FieldSet(0)->GetItem(pvValue, ADOField[0]);
ADO_LoadVariant(pvValue, "8", sSSN);
ADO_Field(0)->PutValue(pvValue);
ADOFieldSet.Release(0);
ADOField.Release(0);
ADO_LoadVariant(pvValue, "10", "2147614724");
ADO_LoadVariant(pvData, "10", "2147614724");
ADO_Recordset(2)->Update(pvValue, pvData);
ADO_Recordset(2)->Close();
ADORecordset.Release(2, ADOBM);

ADO_FieldSet(n)->Refresh

Updates the objects in a col lect ion to reflect objects avai lable from, and specif ic to, the provider. Using the
Refresh method on the ADO FieldSet col lect ion has no visible effect.

Syntax

ADO_FieldSet(n)->Refresh();

Parameters

Param eter Descript i on

n An index to the object.

Example

ADO_Recordset(0)->GetFields(ADOFieldSet[0]);
ADO_FieldSet(0)->GetCount(pLong);
ADO_FieldSet(0)->Refresh();

QALoad 5.02

324

ADO_FieldSet(n)->Resync

Synchronizes the values of a Record object ’s Fields col lect ion with the data source. The Count property is
not affected by th is method.

Syntax

ADO_FieldSet(n)->Resync(<ResyncEnum>);

Parameters

Param eter Descript i on

n An index to the object.

ResyncEnum This has 2 values adResyncAllValues and AdResyncUnderlying Values, either is
a val id value.

Example

ADO_LoadVariant(pvValue, "8", "test_number");
ADO_FieldSet(0)->GetItem(pvValue, ADOField[0]);
ADOField.Release(0);
ADO_FieldSet(0)->Update();
ADO_FieldSet(0)->Resync(adResyncAllValues);

ADO_FieldSet(n)->Update

Saves any changes you make to the ADO FieldSet col lect ion of a Record object.

Syntax

ADO_FieldSet(n)->Update();

Parameters

Param eter Descript i on

n An index to the object.

Example

ADOField.Release(0);
ADO_LoadVarian(pvValue, "8", "test_number");
ADO_FieldSet(0)->GetItem(pvValue, ADOField[0]);
ADO_LoadVariant(pvValue, "2", "15");
ADO_Field(0)->PutValue(pvValue);
ADOField.Release(0);
ADO_FieldSet(0)->Update();

ADO_IEnum(n)->NextProperty

Enumerat ion through col lect ions of propert ies should be done very carerful ly, because in the example
below, we wil l reset al l of the propert ies to the same value. To reset different values, get rid of the loop and
set each property individual ly.

Syntax

ADO_IEnum(n)->NextProperty(<bFetched>, <bRetrieved>, ADOProperty(0));

QALoad 5.02

325

Parameters

Param eter Descript i on

n An index to the object.

BFetched Retrieve th is property 0 FALSE 1 TRUE.

BRetrieved Has th is been retrieved: 0 FALSE 1 TRUE.

ADOProperty[#] The ADO Property returned to be worked on.

Example

ADO_Connect(0)->GetProperties(ADOPropertySet[0]);
ADO_PropertySet(0)->GetNewEnum(ADOIEnum[0]);
while(ADO_IEnum(0)->NextProperty(1, 0, ADOProperty[0]))
{
ADO_Property(0)->GetAttributes(pLong);
ADO_Property(0)->GetName(sLoadStr);
ADO_Property(0)->GetType(pLong);
ADO_LoadVariant(pvValue, "8", "A Test String");
ADO_Property(0)->PutValue(pvValue);
ADOProperty.Release(0);
}
ADOIEnum.Release(0);
ADOPropertySet.Release(0);

ADO_IEnumField(n)->NextField

Enumerat ion through col lect ions of ADO Fields should be done very careful ly, because in the example
given below, the script checks the status of each of the different ADO Fields. In order to do more
meaningful work, reset values of different ADO Fields then break them out of the look and use the
PutValue cal l to place new values in to the ADO Field objects.

Syntax

ADO_IEnumField(n)->NextField(1, 0, ADOField(0));

Parameters

Param eter Descript i on

n An index to the object.

BFetched Retrieve th is property: 0 FALSE 1 TRUE

BRetrieved Has th is been retrieved: 0 FALSE 1 TRUE

ADOField[n] The instance of the ADO Field object that we are in terested in .

Example

ADO_FieldSet(0)->GetNewEnum(ADOIEnumField[0]);
while(ADO_IEnumField(0)->NextField(1, 0, ADOField[0]))
{
ADO_Field(0)->GetStatus(pLong);
ADOField.Release(0);
}
ADOIEnumField.Release(0);

QALoad 5.02

326

ADO_IEnumParameter(n)->NextParameter

Enumerat ion through col lect ions of ADO Parameters should be done very careful ly, because in the
example given below, the script checks different values of each of the different ADO Parameters. In order
to do some more meaningful work, resett ing values of different ADO Parameters then break them out of
the look and use the PutValue cal l to place new values in to the ADO Parameter objects.

Syntax

ADO_IEnumParameter(n)->NextParameter(1, 0, ADOParameter[0]);

Parameters

Param eter Descript i on

n An index to the object.

BFetched Retrieve th is property 0 FALSE 1 TRUE

BRetrieved Has th is been retrieved: 0 FALSE 1 TRUE

ADOParameter[n] The ADO Parameter being returned to be worked on

Example

ADO_Command(0)->GetParameters(ADOParameterSet[0]);
ADO_ParameterSet(0)->GetNewEnum(ADOIEnumParameter[0]);
while(ADO_IEnumParameter(0)->NextParameter(1, 0,
ADOParameter[0]))
{
ADO_Parameter(0)->GetAttributes(pLong);
ADO_Parameter(0)->GetName(sLoadStr);
ADO_Parameter(0)->GetDirection(pLong);
ADO_Parameter(0)->GetNumericScale(&cUChar);
ADOParameter.Release(0);
}
ADOIEnumParameter.Release(0);

ADO_LoadVariant (n)

Loads the value sValue, of type sType, in to the Variant structure.

Syntax

ADO_LoadVariant (<VariantName>, "<Type>", "<Value>");

Parameters

Param eter Descript i on

n An index to the object.

VariantName The variable that is being set up by th is method.

Type The VT_TYPE of the data. The VT_TYPE is the key to the in formation contained
with in any Variant data st ructure. It reveals which of the data elements with in
the variant structure contains data.

sValue The actual data that wi l l be placed into whatever VT_TYPE is cal led for.

ADOCommand[#] A pointer to a specific instance of ADO Command.

QALoad 5.02

327

Example

ADO_Connect(0)->GetProperties(ADOPropertySet[0]);
ADO_PropertySet(0)->GetNewEnum(ADOIEnum[0]);
while(ADO_IEnum(0)->NextProperty(1, 0, ADOProperty[0]))
{
ADO_Property(0)

ADO_Parameter(n)->AppendChunk

A special data handl ing method that wri tes data, in chunks, to the Parameter object.
This is especial ly useful when memory is l im ited; you can use th is method to manipulate long values in
manageable chunks.
It may take numerous cal ls to AppendChunk to completely wri te the data to the appropriate object. When
writ ing data values using ADO, the datatype being used as the parameter with the data value is often a
VARIANT datatype.

The first cal l to AppendChunk writes data to the parameter and overwrites any exist ing data. Subsequent
cal ls add to the data. Note that i f you append data to one parameter, then manipulate another parameter
in the same record, ADO assumes you are fin ished with the first parameter. If you then attempt to append
data to the first parameter, the exist ing data wi l l be overwrit ten.

The AppendChunk cal l wi l l be preceeded immediately in the script by a cal l to ADO_LoadVariant.

You can use the AppendChunk method in the Attributes property of a parameter object i f the adFldLong
bit in the Attributes property is set to true.

Syntax

ADO_LoadVariant(pvValue, "TypeString", "ValueString");
ADO_Parameter(n)->AppendChunk(pvValue);

Parameters

Param eter Descript i on

n An index to the object.

pvValue The Variant contain ing the chunk of data to send to the ADO_Parameter
object instance.

Example

ADO_Parameter(0)->PutType(adBSTR);
ADO_LoadVariant(pvValue, "8", "a big chunk of data");
BeginCheckpoint("ADODataBinder::AppendChunk");
ADO_Parameter(0)->AppendChunk(pvValue);
EndCheckpoint("ADODataBinder::AppendChunk");
ADO_LoadVariant(pvValue, "8", "some more data");
BeginCheckpoint("ADODataBinder::AppendChunk");
ADO_Parameter(0)->AppendChunk(pvValue);
EndCheckpoint("ADODataBinder::AppendChunk");

ADO_Parameter(n)->GetAt t ributes

Retrieves the value contained with in the Attributes property of th is instance of the ADO Parameter object.

Syntax

ADO_Parameter(n)->GetAttributes(pLong);

QALoad 5.02

328

Parameters

Param eter Descript i on

n An index to the object.

pLong Pointer to a long contain ing the attribute or Direct ion value of the Parameter
object.

Example

ADO_Parameter(0)->GetAttributes(pLong);
ADO_Parameter(0)->GetName(sLoadStr);
ADO_Parameter(0)->GetDirection(pLong);
ADO_Parameter(0)->GetNumericScale(pUChar);

ADO_Parameter(n)->GetDirect ion

Retrieves the value contained with in the Direct ion property of th is instance of the ADO Parameter object.

Syntax

ADO_Parameter(n)->GetDirection(pLong);

Parameters

Param eter Descript i on

n An index to the object.

pLong Pointer to a long contain ing the attribute or Direct ion value of the Parameter
object.

Example

ADO_Parameter(0)->GetAttributes(pLong);
ADO_Parameter(0)->GetName(sLoadStr);
ADO_Parameter(0)->GetDirection(pLong);
ADO_Parameter(0)->GetNumericScale(pUChar);

ADO_Parameter(n)->GetName

Retrieves the value contained with in the Name property of th is instance of the ADO Parameter object.
GetName is read/write for Parameter objects that haven ’t been appended to the Parameters col lect ion. It is
read-only for appended Parameter objects, and al l other objects. Note that, wi th in a col lect ion, names do
not have to be unique.

Syntax

ADO_Parameter(n)->GetName(sLoadStr);

Parameters

Param eter Descript i on

n An index to the object.

sLoadStr A CLoadString value being returned with the name of the Parameter.

QALoad 5.02

329

Example

ADO_Parameter(0)->GetAttributes(pLong);
ADO_Parameter(0)->GetName(sLoadStr);
ADO_Parameter(0)->GetDirection(pLong);
ADO_Parameter(0)->GetNumericScale(pUChar);
ADO_Parameter(0)->GetPrecision(pUChar);
ADO_Parameter(0)->GetSize(pLong);
ADO_Parameter(0)->GetType(pLong);
ADO_Parameter(0)->GetValue(pvValue);

ADO_Parameter(n)->GetNumericScale

Retrieves the value contained with in the NumericScale property of th is instance of the ADO Parameter
object. Returns a Byte value indicat ing the number of decimal places to which numeric values wil l be
resolved. The NumericScale property is read/write.

Syntax

ADO_Parameter(n)->GetNumericScale(&cUChar);

Parameters

Param eter Descript i on

n An index to the object.

&cUchar The address of an unsigned character.

Example

ADO_Parameter(0)->GetAttributes(pLong);
ADO_Parameter(0)->GetName(sLoadStr);
ADO_Parameter(0)->GetDirection(pLong);
ADO_Parameter(0)->GetNumericScale(&cUChar);
ADO_Parameter(0)->GetPrecision(&cUChar);
ADO_Parameter(0)->GetSize(pLong);
ADO_Parameter(0)->GetType(pLong);

ADO_Parameter(n)->GetPrecision

Retrieves the value contained with in the Precision property of th is instance of the ADO Parameter object.
Returns a Byte value showing the maximum number of digits used to represent values for a numeric
Parameter object. The Precision property is read/write.

Syntax

ADO_Parameter(n)->GetPrecision(&cUChar);

Parameters

Param eter Descript i on

n An index to the object.

&cUchar The address of an unsigned character.

Example

ADO_Parameter(0)->GetAttributes(pLong);
ADO_Parameter(0)->GetName(sLoadStr);
ADO_Parameter(0)->GetDirection(pLong);

QALoad 5.02

330

ADO_Parameter(0)->GetNumericScale(&cUChar);
ADO_Parameter(0)->GetPrecision(&cUChar);
ADO_Parameter(0)->GetSize(pLong);
ADO_Parameter(0)->GetType(pLong);

ADO_Parameter(n)->GetSize

Retrieves the value contained with in the Size property of th is instance of the ADO Field object.

GetSize indicates the maximum size of a Parameter object, in bytes or characters. You can use i t to
determine the maximum size for values of Parameter object ’s Value property.

If the data type specified for a Parameter object is of variable length, set the object ’s Size property before
appending i t to the Parameters col lect ion. If you do not, an error occurs.

Syntax

ADO_Parameter(n)->GetSize(pLong);

Parameter

Param eter Descript i on

n An index to the object.

pLong A pointer to a long contain ing the maximum size of the parameters data.

Example

ADO_Parameter(0)->GetAttributes(pLong);
ADO_Parameter(0)->GetName(sLoadStr);
ADO_Parameter(0)->GetDirection(pLong);
ADO_Parameter(0)->GetNumericScale(pUChar);
ADO_Parameter(0)->GetPrecision(pUChar);
ADO_Parameter(0)->GetSize(pLong);
ADO_Parameter(0)->GetType(pLong);
ADO_Parameter(0)->GetValue(pvValue);

ADO_Parameter(n)->GetValue

Use the Value property to return data from ADO Parameter objects and to return parameter values with
ADO Parameter objects.

Syntax

ADO_Parameter(n)->GetValue(pvValue);

Parameters

Param eter Descript i on

n An index to the object.

pvValue Pointer to a variant used to retrieve data from the Parameter object.

 Example

ADO_Parameter(2)->PutSize(8);
ADO_Parameter(2)->PutType(adDouble);

QALoad 5.02

331

ADO_LoadVariant(pvValue, "5", "5.6 ");
ADO_Parameter(2)->PutValue(pvValue);
ADO_Parameter(3)->GetValue(pvValue);

ADO_Parameter(n)->PutAt t ributes

This method cal l retrieves the value contained with in the Attributes property of th is instance of the ADO
Parameter object.

PutAttributes is read/write. It ’s value can be the sum of one or more ParameterAttributesEnum values. The
default is adParamSigned.

The fol lowing are ParameterAttributesEnum values:

! adParamSigned

! adParamNullable

! adParamLong

Syntax

ADO_Parameter(n)->PutAttributes(<ParameterAttributesEnum>);

Parameters

Param eter Descript i on

n An index to the object.

ParameterAttributesEnum Special enumerated data type used.

Example

ADO_Command(0)->Execute(pvValue, pvSource, -1,
ADORecordset[0]);
ADO_Parameter(0)->PutAttributes(adParamLong);
ADO_Parameter(0)->PutType(adBSTR);

ADO_Parameter(n)->PutDirect ion

Indicates Parameter type: input, output, input and output, or the return value from a stored procedure.
This method cal l sets the value contained with in the Direct ion property of th is instance of the ADO
Parameter object.

Syntax

ADO_Parameter(n)->PutDirection(ParameterDirectionEnum);

Parameters

Param eter Descript i on

n An index to the object.

ParameterDirectionEnum Possible values are:

adParamInput (value=1): The default indicat ing the parameter represents
an input parameter.
adParamInputOutput (value=3): The parameter represents both an input
and output parameter.
adParamOutput (value=2): The parameter represents an output parameter.

QALoad 5.02

332

adParamReturnValue (value=4): The parameter represents a return value.
adParamUnknown (value=0): The parameter direct ion is unknown.

Example

ADO_Parameter(0)->GetAttributes(pLong);
ADO_Parameter(0)->GetName(sLoadStr);
ADO_Parameter(0)->GetDirection(pLong);
ADO_Parameter(0)->GetNumericScale(&cUChar);
ADO_Parameter(1)->PutDirection(adParamOutput);

ADO_Parameter(n)->PutName

Sets the value contained with in the Name property of th is instance of the ADO Parameter object.
PutName is read/write for Parameter objects that are not appended to the Parameters col lect ion. It is read-
only for appended Parameter objects and al l other objects. Note that, with in a col lect ion, names do not
have to be unique.

Syntax

ADO_Parameter(n)->PutName("NameString");

Parameters

Param eter Descript i on

n An index to the object.

"NameString" A string contain ing the name of the parameter.

Example

ADO_Parameter(2)->PutAttributes(128);
ADO_Parameter(2)->PutDirection(adParamOutput);
ADO_Parameter(2)->PutName("testParam");
ADO_Parameter(2)->PutNumericScale(0x03);
ADO_Parameter(2)->PutPrecision(0x02);
ADO_Parameter(2)->PutSize(4);
ADO_Parameter(2)->PutType(adDouble);
ADO_LoadVariant(pvValue, "5", "5.6 ");
ADO_Parameter(2)->PutValue(pvValue);

ADO_Parameter(n)->PutNumericScale

Sets the value contained with in the NumericScale property of th is instance of the ADO Parameter object.
Sends a byte value indicat ing the number of decimal places to which numeric values wil l be resolved. The
NumericScale property is read/write.

Syntax

ADO_Parameter(n)->PutNumericScale(0x##);

Parameters

Param eter Descript i on

n An index to the object.

0x## This byte value sets the numeric scale.

QALoad 5.02

333

Example

ADO_Parameter(2)->PutAttributes(adParamLong);
ADO_Parameter(2)->PutDirection(adParamOutput);
ADO_Parameter(2)->PutName("testParam");
ADO_Parameter(2)->PutNumericScale(0x03);
ADO_Parameter(2)->PutPrecision(0x02);
ADO_Parameter(2)->PutSize(4);

ADO_Parameter(n)->PutPrecision

Sets the value contained with in the Precision property of th is instance of the ADO Parameter object. Sends
a byte value showing the maximum number of digits used to represent values for a numeric ADO
Parameter object. The Precision property is read/ wri te.

Syntax

ADO_Parameter(n)->PutPrecision(0x##);

Parameters

Param eter Descript i on

n An index to the object.

0x## This byte value sets the precision.

Example

ADO_Parameter(2)->PutAttributes(adParamLong);
ADO_Parameter(2)->PutDirection(adParamOutput);
ADO_Parameter(2)->PutName("testParam");
ADO_Parameter(2)->PutNumericScale(0x03);
ADO_Parameter(2)->PutPrecision(0x02);
ADO_Parameter(2)->PutSize(4);

ADO_Parameter(n)->PutSize

Retrieves the value contained with in the Size property of th is instance of the ADO Parameter object.
Specifies the maximum size of a Parameter object, in bytes or characters. You can use i t to determine the
maximum size for values of a Parameter object ’s Value property.
If the data type specified for a Parameter object is of variable length, set the object ’s Size property before
appending i t to the Parameters col lect ion. If you do not, an error occurs.

Syntax

ADO_Parameter(n)->PutSize(#);

Parameters

Param eter Descript i on

n An index to the object.

A long integer representat ion of the size of the parameter.

Example

ADO_Parameter(0)->GetSize(pLong);
ADO_Parameter(0)->GetType(pLong);

QALoad 5.02

334

ADO_Parameter(1)->PutSize(4);
ADO_Parameter(1)->PutType(adInteger);

ADO_Parameter(n)->PutType

Sets the value contained with in the Type property of th is instance of the ADO Parameter object.

PutType is read/write when each of the fol lowing condit ions are present:

! On a new Parameter object

! The new Parameter object has been appended to a Record’s Fields collection

! The Parameter’s Value property has been specified

! The data provider has added the new Parameter (using the Parameters collection’s Update method).

Syntax

ADO_Parameter(n)->PutType(<DataTypeEnum>);

Parameters

Param eter Descript i on

n An index to the object.

DataTypeEnum These are the various different types of data that are val id parameter types.

Example

ADO_Parameter(2)->PutAttributes(128);
ADO_Parameter(2)->PutDirection(adParamOutput);
ADO_Parameter(2)->PutName("testParam");
ADO_Parameter(2)->PutNumericScale(0x03);
ADO_Parameter(2)->PutPrecision(0x02);
ADO_Parameter(2)->PutSize(4);
ADO_Parameter(2)->PutType(adDouble);
ADO_LoadVariant(pvValue, "5", "5.6 ");
ADO_Parameter(2)->PutValue(pvValue);

ADO_Parameter(n)->PutValue

Sets the value contained with in the Value property of th is instance of the ADO Parameter object.

PutValue can be used to set or return data from ADO Parameter objects, parameter values with ADO
Parameter objects, or property sett ings with Property objects.

Syntax

ADO_Parameter(n)->PutValue(pvValue);

Parameters

Param eter Descript i on

n An index to the object.

pvValue The value being loaded into th is parameter.

QALoad 5.02

335

Example

ADO_Parameter(2)->PutSize(8);
ADO_Parameter(2)->PutType(adDouble);
ADO_LoadVariant(pvValue, "5", "5.6 ");
ADO_Parameter(2)->PutValue(pvValue);
ADO_Parameter(3)->GetValue(pvValue);
ADO_Parameter(3)->GetValue(pvValue);

ADO_ParameterSet (n)->Append

Appends a ADO Parameter object to the col lect ion of ADO Parameters.

As in the example below, the ADO Parameters are created and given a value using CreateParameter cal ls,
then the ADO Parameters are Appended to the ADO ParameterSet container.

Syntax

ADO_ParameterSet(n)->Append(ADOParameter[#]);

Parameters

Param eter Descript i on

n An index to the object.

ADOParameter[#] ADO Parameter object being added to th is col lect ion.

Example

ADO_LoadVariant(pvValue, "8", "ParameterData0");
ADO_Command(0)->CreateParameter("Param3", adInteger, adParamInput,
 0, pvVAlue, ADOParameter[0]);
ADO_LoadVariant(pvValue, "8", "ParameterData1");
ADO_Command(0)->CreateParameter("Param4", adInteger, adParamInput,
 0, pvValue, ADOParameter[1]);
ADO_ParameterSet(0)->Append(ADOParameter[0]);
ADO_ParameterSet(0)->Append(ADOParameter[1]);

ADO_ParameterSet (n)->Delete

Deletes an ADO Parameter object from the ADO ParameterSet col lect ion.

Takes the form of a Variant designat ing an ADO Parameter object to delete. The Variant can be the name
or ordinal posit ion of the ADO Parameter object.

Syntax

ADO_ParameterSet(n)->Delete(pvValue);

Parameters

Param eter Descript i on

n An index to the object.

pvValue A pointer to a variant contain ing in formation describing the ADO
Parameter to be deleted from the ADO ParameterSet col lect ion.

QALoad 5.02

336

Example

ADO_LoadVariant(pvValue, "2", "3");
BeginCheckpoint("ADOParameterSet::Delete");
ADO_ParameterSet(0)->Delete(pvValue);
EndCheckpoint("ADOParameterSet::Delete");

ADO_ParameterSet (n)->GetCount

The method returns the number of ADO Parameter objects contained with in the ADO ParameterSet
col lect ion.

Syntax

ADO_ParameterSet(n)->GetCount(pLong);

Parameters

Param eter Descript i on

n An index to the object.

pLong A pointer to a long contain ing the number of ADO Parameter objects in th is
ADO ParameterSet Col lect ion.

Example

ADO_ParameterSet(0)->GetCount(pLong);
ADO_ParameterSet(0)->Refresh();

ADO_ParameterSet (n)->Get Item

Locates a specific ADO Parameter in the ADO ParameterSet col lect ion.

An ADO ParameterSet col lect ion is an array of ADO Parameter objects. GetItem indexes through the array
to locate a specific object.

Syntax

ADO_LoadVariant(pvValue, "Type", "Value");
ADO_ParameterSet(n)->GetItem(pvValue, ADOParameter[#]);

Parameters

Param eter Descript i on

n An index to the object.

pvValue The variant contains in formation about the parameter to retrieve from the
col lect ion.

ADOParameter[#] The retrieved parameter.

Example

BeginCheckpoint("ADOParameterSet::GetItem");
ADO_ParameterSet(0)->GetItem(pvValue, ADOParameter[0]);
EndCheckpoint("ADOParameterSet::GetItem");

QALoad 5.02

337

ADO_ParameterSet (n)->GetNewEnum

In order to i terate through al l of the ADO Parameters in an ADO ParameterSet col lect ion, an
ADOIEnumParameter object is returned. The GetNewEnum cal l on the ADO ParameterSet object creates
the ADO IEnumParameter object al lowing the enumerat ion to take place.

Syntax

ADO_ParameterSet(n)->GetNewEnum(ADOIEnumParameter[#]);

Parameters

Param eter Descript i on

n An index to the object.

ADOIEnumParameter ADO IEnumParameter object.

Example

ADO_ParameterSet(0)->GetNewEnum(ADOIEnumParameter[0]);
while(ADO_IEnumParameter(0)->NextParameter(1, 0, ADOParameter[0]));
{
ADO_Parameter(0)->GetStatus(pLong);
ADOParameter.Release(0);
}

ADO_ParameterSet (n)->Refresh

Updates the objects in a col lect ion to reflect objects avai lable from, and specif ic to, the provider. Using the
Refresh method on the ADO ParameterSet col lect ion has no visible effect.

Syntax

ADO_ParameterSet(n)->Refresh();

Parameters

Param eter Descript i on

n An index to the object.

Example

ADO_ParameterSet(0)->GetCount(pLong);
ADO_ParameterSet(0)->Refresh();

ADO_Property(n)->GetAt t ributes

Describes column characterist ics by sett ing or return ing a Long value.

The value indicates characterist ics of the table represented by the Column object. It can be a combinat ion
of ColumnAttributesEnum constants. The default value is zero (0).

Syntax

ADO_Property(n)->GetAttributes(pLong);

Parameters

Param eter Descript i on

QALoad 5.02

338

n An index to the object.

pLong A pointer to a long integer contain ing the value of the Attributes property.

Example

ADO_Property(0)->GetAttributes(pLong);
ADO_Property(0)->GetName(sLoadStr);
ADO_Property(0)->GetType(pLong);
ADO_Property(0)->GetValue(pvValue);

/* Type:8 - VT_BSTR Data: Master */

ADO_LoadVariant(pvValue, "8", "A Test String");
ADO_Property(0)->PutValue(pvValue);
ADO_LoadVariant(pvValue, "8", "Master");
ADO_Property(0)->PutValue(pvValue);
ADOProperty.Release(0);

ADO_Property(n)->GetName

Retrieves the value of the Name attribute of th is instance of the Property object.

Syntax

ADO_Property(n)->GetName(sLoadStr);

Parameters

Param eter Descript i on

n An index to the object.

sLoadStr Value of the Name property for th is instance of the ADO Property.

Example

ADO_Property(0)->GetAttributes(pLong);
ADO_Property(0)->GetName(sLoadStr);
ADO_Property(0)->GetType(pLong);
ADO_Property(0)->GetValue(pvValue);
ADO_LoadVariant(pvValue, "8", "A Test String");
ADO_Property(0)->PutValue(pvValue);
ADO_LoadVariant(pvValue, "8", "Master");
ADO_Property(0)->PutValue(pvValue);
ADOProperty.Release(0);

ADO_Property(n)->GetType

Indicates a property’s type as conveyed as a DataTypeEnum.

Syntax

ADO_Property(n)->GetType(pLong);

Parameters

Param eter Descript i on

n An index to the object.

QALoad 5.02

339

pLong A pointer to a long contain ing the DataTypeEnum value for the property.

Example

ADO_Property(0)->GetAttributes(pLong);
ADO_Property(0)->GetName(sLoadStr);
ADO_Property(0)->GetType(pLong);
ADO_Property(0)->GetValue(pvValue);
ADO_LoadVariant(pvValue, "8", "A Test String");
ADO_Property(0)->PutValue(pvValue);
ADO_LoadVariant(pvValue, "8", "Master");
ADO_Property(0)->PutValue(pvValue);
ADOProperty.Release(0);

ADO_Property(n)->GetValue

Sets or returns data from Field objects, parameter values with Parameter objects, or property sett ings with
Property objects.

Note: You can use the Value property to set and return long binary data.

Syntax

ADO_Property(n)->GetValue(pvValue);

Parameters

Param eter Descript i on

n An index to the object.

pvValue A Pointer to a variant in which the value of th is property wi l l be returned.

Example

ADO_Property(0)->GetAttributes(pLong);
ADO_Property(0)->GetName(sLoadStr);
ADO_Property(0)->GetType(pLong);
ADO_Property(0)->GetValue(pvValue);
ADO_LoadVariant(pvValue, "8", "A Test String");
ADO_Property(0)->PutValue(pvValue);
ADO_LoadVariant(pvValue, "8", "Master");
ADO_Property(0)->PutValue(pvValue);
ADOProperty.Release(0);

ADO_Property(n)->PutAt t ributes

Describes column characterist ics by return ing a long value, which indicates characterist ics of the table
represented by the Column object. The value can be a combinat ion of ColumnAttributesEnum constants.
The default value is zero (0), which is neither adColFixed nor adColNullable.

Syntax

ADO_Property(n)->PutAttributes(#);

Parameters

Param eter Descript i on

n An index to the object.

QALoad 5.02

340

A long integer value that should reflect one of the fol lowing:
adPropNotSupported (value=0), adPropRequired (value=1),
adPropOptional (value=2), adPropRead (value=512), adPropWrite
(value=1024), or a combinat ion of them.

ADO_Property(n)->PutValue

Sets or returns data from Field objects, parameter values with Parameter objects, or property sett ings with
Property objects.

Note: You can use the Value property to set and return long binary data.

Syntax

ADO_LoadVariant(pvValue, "Type", "Value");
ADO_Property(n)->PutValue(pvValue);

Parameters

Param eter Descript i on

n An index to the object.

pvValue The pointer to the VARIANT retrieves the Value of the property that is in
the get, and the value is set in the Put cal l .

Example

ADO_Property(0)->GetAttributes(pLong);
ADO_Property(0)->GetName(sLoadStr);
ADO_Property(0)->GetType(pLong);
ADO_Property(0)->GetValue(pvValue);
ADO_LoadVariant(pvValue, "8", "A Test String");
ADO_Property(0)->PutValue(pvValue);
ADO_LoadVariant(pvValue, "8", "Master");
ADO_Property(0)->PutValue(pvValue);
ADOProperty.Release(0);

ADO_PropertySet(n)->GetCount

The method returns the number of ADO Property objects contained with in the ADO PropertySet
col lect ion.

Syntax

ADO_PropertySet(n)->GetCount(pLong);

Parameters

Param eter Descript i on

n An index to the object.

pLong A pointer to a long contain ing the number of ADO Property objects in th is
ADO PropertySet Col lect ion.

QALoad 5.02

341

Example

ADO_PropertySet(0)->GetCount(pLong);
ADO_PropertySet(0)->Refresh();

ADO_PropertySet(n)->Get Item

Retrieves a specific ADO Property in the ADO PropertySet col lect ion.

An ADO PropertySet col lect ion is an array of ADO Property objects. GetItem indexes through the array to
locate a specific object.

Syntax

ADO_PropertySet(n)->GetItem(pvValue, ADOProperty);

Parameters

Param eter Descript i on

n An index to the object.

pvValue A pointer to a variant describing the property to be retrieved.

ADOProperty An instance of an ADO Property object.

Example

ADO_LoadVariant(pvValue, "2", "3");
ADO_PropertySet(0)->GetItem(pvValue, ADOProperty[0]);

ADO_PropertySet(n)->GetNewEnum

In order to i terate through al l of the ADO Propertys in an ADO PropertySet col lect ion, an ADOIEnum
object is returned. The GetNewEnum cal l on the ADO PropertySet object creates the ADO IEnum object
al lowing the enumerat ion to take place.

Syntax

ADO_PropertySet(n)->GetNewEnum(ADOIEnum [#]);

Parameters

Param eter Descript i on

n An index to the object.

ADOIEnum ADO IEnum object.

Example

ADO_PropertySet(0)->GetNewEnum(ADOIEnum [0]);
while(ADO_IEnum(0)->NextProperty(1, 0, ADOProperty[0]))
{
ADO_Property(0)->GetStatus(pLong);
ADOProperty.Release(0);
}

QALoad 5.02

342

ADO_PropertySet(n)->Refresh

Updates the objects in a col lect ion to reflect objects avai lable from, and specif ic to, the provider. Using the
Refresh method on the ADO PropertySet col lect ion has no visible effect.

Syntax

ADO_PropertySet(n)->Refresh();

Parameters

Param eter Descript i on

n An index to the object.

Example

ADO_PropertySet(0)->GetCount(pLong);
ADO_PropertySet(0)->Refresh();

ADO_Record(n)->Cancel

Cancels execut ion of a pending, asynchronous method cal l .

Syntax

ADO_Record(n)->Cancel();

Parameters

Param eter Descript i on

n An index to the object.

Example

ADO_Record(1)->CopyRecord("Home", "Away", "sa", adCopyOverWrite, -1);
ADO_Record(1)->Cancel();

ADO_Record(n)->Close

Use to close a Recordset, Record, or Stream object. Any associated data or exclusive access you may have
had to the data through th is part icular object wi l l be released. You can reopen the object later using the
Open method.

Syntax

ADO_Record(n)->Close();

Parameters

Param eter Descript i on

n An index to the object.

Example

ADO_Record(1)->CopyRecord("C:\\Home", "D:\\Away", "sa", "sa", adCopyOverWrite, -1);
ADO_Record(1)->Cancel();
ADO_Record(1)->Close();

QALoad 5.02

343

ADO_Record(n)->CopyRecord

Copies a fi le or directory (including i ts contents) to another locat ion.

Tip: Ensure that the values of Source and Destination are not identical or you will receive a run-time error.
One of the server, path, or resource names must differ.

All subdirectories are copied recursively, unless adCopyNonRecursive is specif ied. In a recursive operat ion,
Dest inat ion must not be a subdirectory of Source; otherwise, the operat ion wil l not be able to fin ish.
Insert your product name (QALoad , for example)’s implementat ion of the CopyRecord method makes the
cal l through to the CopyRecord method with in the ADO Record object.
Note that the CopyRecordOptionsEnum is often in the form of a number. This occurs when the
CopyRecordOptionsEnum is formed from a combinat ion of values.

Syntax

ADO_Record(n)->CopyRecord(("Source", "Target", "User", "Password",
 CopyRecordOptionsEnum, Async);

Parameters

Param eter Descript i on

n An index to the object.

Source String value contain ing a URL that specifies the ent i ty that is to be copied.

Target String value contain ing a URL that specifies the locat ion to which the
Source wil l be copied.

User This is the user name used to determine whether a part icular user has
permission to use th is in formation.

Password A String value. The password for the part icular user to veri fy that the user
has permission to perform the operat ion.

CopyRecordOptionsEnum Copy opt ions.

Async If th is is an asynchronous operat ion.

Example

ADO_Record(1)->CopyRecord("C:\\Home", "D:\\Away", "sa", "sa", adCopyOverWrite, -1);
ADO_Record(1)->Cancel();
ADO_Record(1)->Close();

ADO_Record(n)->DeleteRecord

Deletes a fi le or directory, and al l i ts subdirectories.

After th is method is fin ished, any operat ions on the fi le or directory represented by th is Record could fai l .
Close the Record after cal l ing th is method.

Insert your product name (QALoad , for example)’s implementat ion of the DeleteRecord method makes
the cal l through to the DeleteRecord method with in the ADO Record object.

Syntax

ADO_Record(n)->DeleteRecord("Source", #);

QALoad 5.02

344

Parameters

Param eter Descript i on

n An index to the object.

Source A string value that contains a URL ident i fying the ent i ty (for example, the
fi le or directory) to be deleted.

Is th is an asynchronous cal l (-1 TRUE, 0 FALSE)

Example

ADO_Record(1)->DeleteRecord("\\\\QAServer\\Temp\\GeoffR", 0);
ADO_Record(1)->Cancel();
ADO_Record(1)->CLose();

ADO_Record(n)->GetAct iveConnect ion

Use the Act iveConnect ion property to determine the ADO Connect object over which the specified ADO
Record object wi l l execute.

Syntax

ADO_Record(n)->GetActiveConnection(pvValue);

Parameters

Param eter Descript i on

n An index to the object.

pvValue A Pointer to a Variant contain ing the ADO Connect object.

Example

LoadVariant(pvValue, ADOConnect[1]);
ADO_Record(1)->GetActiveConnection(pvValue);
ADO_Record(1)->Cancel();
ADO_Record(1)->Close();

ADO_Record(n)->GetChildren

Returns an ADO Recordset, in the form of a Pointer to an ADO Recordset object, whose rows represent the
fi les and subdirectories in the directory represented by th is Record.

Syntax

ADO_Record(n)->GetChildren(ADORecordset[#]);

Parameters

Param eter Descript i on

n An index to the object.

ADORecordset[#] This is the in formation retrieved from th is cal l . The GetChildren cal l
retrieves the data in to a ADO Recordset pointer.

QALoad 5.02

345

Example

ADO_Record(1)->GetChildren(ADORecordset[1]);
ADO_Record(1)->Close();

ADO_Record(n)->GetFields

Contains al l the Field objects of an ADO Recordset or ADO Record object.

Insert your product name (QALoad , for example)’s implementat ion of the GetFields method takes care of
making the cal l through to the GetFields method with in the ADO Record object. In th is cal l , the ADO
Fields object that is returned is wrapped with in the ADO FieldSet object.

Syntax

ADO_Record(n)->GetFields(ADOFieldSet[#]);

Parameters

Param eter Descript i on

n An index to the object.

ADOFieldSet[#] Set of fields that compose the record.

Example

ADO_Record(1)->GetFields(ADOFieldSet[0]);
ADO_LoadVariant(pvValue, "8", "dsn_name");
ADO_FieldSet(0)->GetItem(pvValue, ADOField[0]);
ADO_Field(0)->GetValue(pvValue); /* Type: 8 - VT_BSTR Data: FOCFG */
ADOFieldSet.Release(0);
ADOField.Release(0);
ADO_Record(1)->MoveNext();
ADO_Record(1)->GetEOF(pVTBOOL);
ADO_Record(1)->GetFields(ADOFieldSet[0]);
ADO_LoadVariant(pvValue, "8", "dsn_name");
ADO_FieldSet(0)->GetItem(pvValue, ADOField[0]);
ADO_Field(0)->GetValue(pvValue); /* Type: 8 - VT_BSTR Data: FOCRP */
ADOFieldSet.Release(0);
ADOField.Release(0);

ADO_Record(n)->GetMode

Sets or returns the access permissions being used on the current connect ion by the provider.
Note that you can only set th is property when the Connect ion object is closed.

Syntax

ADO_Record(n)->GetMode(pLong);

Parameters

Param eter Descript i on

n An index to the object.

pLong Retrieves the Connect ionModeEnum from the cal l and converts that to a long*
to be returned to the script .

QALoad 5.02

346

Example

ADO_Record(1)->GetMode(pLong);
ADO_Record(1)->Cancel();
ADO_Record(1)->Close();

ADO_Record(n)->GetParentURL

Sets the current value of the source property for th is instance of the actual ADO Command object.
This property depends on which source is used to open the Record object.

Syntax

ADO_Record(n)->GetParentURL(sLoadStr);

Parameters

Param eter Descript i on

n An index to the object.

sLoadStr CLoadString holding the parent URL retrieved by the cal l .

Example

ADO_Record(1)->PutSource("\\\\QAServer\\MyDirectory");
ADO_Record(1)->GetParentURL(sLoadStr);
ADO_Record(1)->Close();
ADORecord.Release(1);

ADO_Record(n)->GetRecordType

This method is used to check the contents of the ADO RecordType property for th is instance of ADO
Record object, return ing the RecordTypeEnum in a pointer to a long.

Syntax

ADO_Record(n)->GetRecordType(pLong);

Parameters

Param eter Descript i on

n An index to the object.

pLong Pointer to a long contain ing a RecordTypeEnum value.

RecordTypeEnum Contains the fol lowing values:
adSimpleRecord (value=0), adCollect ionRecord (value=1), adStructDoc
(value=2).

Example

ADO_Record(1)->PutSource("\\\\QAServer\\MyDirectory");
ADO_Record(1)->GetRecordType(pLong);
ADO_Record(1)->Close();
ADORecord.Release(1);

QALoad 5.02

347

ADO_Record(n)->GetSource

Indicates the ent i ty represented by the ADO Record object.

The GetSource method retrieves the current value of the source property of the ADO Record object.

Syntax

ADO_Record(n)->GetSource(pvValue);

Parameters

Param eter Descript i on

n An index to the object.

pvValue Variant holding the value of the source of the Record object.

Example

ADO_Record(1)->GetSource(pvValue);
ADO_Record(1)->GetRecordType(pLong);
ADO_Record(1)->Close();
ADORecord.Release(1);

ADO_Record(n)->GetState

You can use the State property to determine the state of a given ADO Record object at any t ime.

Syntax

ADO_Record(n)->GetState(pLong);

Parameters

Param eter Descript i on

n An index to the object.

pLong Pointer to a long integer holding the state of the Record object.

Example

ADO_Record(1)->GetState(pLong);
ADO_Record(1)->GetRecordType(pLong);
ADO_Record(1)->Close();
ADORecord.Release(1)

ADO_Record(n)->MoveRecord

Moves a fi le, or a directory and i ts contents, to another locat ion.

A run-t ime error wi l l occur i f the values of Source and Dest inat ion are the same. At least one of the server,
path, and resource names must differ.

Al l hypertext l inks wi l l be updated unless otherwise specified by Options. If an exist ing fi le or directory is
ident i fied, th is method wil l fai l un less you specify adMoveOverWrite.

Note that the MoveRecordOptionsEnum is often in the form of a number. This occurs when the
MoveRecordOptionsEnum is formed from a combinat ion of values.

QALoad 5.02

348

Syntax

ADO_Record(n)->MoveRecord("Source", "Target", "User", "Password", MoveRecordOptionsEnum,
Async);

Parameters

Param eter Descript i on

n An index to the object.

Source String value contain ing a URL that specifies the ent i ty that is to be
copied.

Target String value contain ing a URL that specifies the locat ion to which the
Source wil l be copied.

User This is the user name used to determine whether a part icular user has
permission to use th is in formation.

Password A String value. The password for the part icular user to veri fy that the user
has permission to perform the operat ion.

CopyRecordOptionsEnum Copy opt ions.

Async If th is is an asynchronous operat ion.

Example

ADO_Record(1)->MoveRecord("C:\\Home", "D:\\Away", "sa", "sa", adCopyOverWrite, -1);
ADO_Record(1)->Cancel();
ADO_Record(1)->Close();

ADO_Record(n)->Open

Makes the cal l through to the Open method with in the ADO Record object to open an exist ing ADO
Record object, or create a new fi le or directory.

If the ent i ty represented by the Record object can ’t be accessed with a URL, the values of the ParentURL
property and the field accessed with the adRecordURL constant wi l l be nul l .

Note: The two SetupVariantValue calls must be present. They also present opportunities for variablization of
the scripts.

Syntax

ADO_LoadVariant(pvSource, "Type", "Data");
ADO_LoadVariant(pvValue, "Type", "Data");
ADO_Record(n)->Open(pvSource, pvValue, ConnectModeEnum, RecordCreateOptionsEnum, #, "sUser",
"sPassword");

Parameters

Param eter Descript i on

n An index to the object.

Source A pointer to a variant that may represent the URL of the ent i ty to be
represented by th is ADO Record object, an ADO Command, an open ADO

QALoad 5.02

349

Recordset or another ADO Record object, a string contain ing a SQL SELECT
statement or a table name.

ActiveConnection A pointer to a variant that represents the connect string or open ADO
Connect object.

Mode A ConnectModeEnum value, whose default value is adModeUnknown, that
specifies the access mode for the resultant Record object.

CreateOptions A RecordCreateOptionsEnum value, whose default value is
adFail IfNotExists, that specifies whether an exist ing fi le or directory should
be opened, or a new fi le or directory should be created.

Options A RecordOpenOptionsEnum value, whose default value is
adOpenRecordUnspecified, that specifies opt ions for oening the ADO
Record.

UserName A String value that contains the user ID that, i f needed, authorizes access to
Source.

Password A String value that contains the password that, i f needed, veri fies
UserName.

Example

ADO_LoadVariant(pvSource, "8", "\\\\QAServer\\ MyDirectory");
ADO_LoadVariant(pvValue, "8", "\\\\QAServer\\ BossDirectory");
ADO_Record(1)->Open(pvSource, pvValue, adModeReadWrite, adCreateCollection, adOpenOutput,
"sa", "sa");
ADO_Record(1)->GetRecordType(pLong);
ADO_Record(1)->Close();

ADO_Record(n)->PutAct iveConnect ion

PutAct iveConnect ion is read/write when the ADO Record object is closed. It may contain a connect ion
string or reference to an open ADO Connect object. When the ADO Record object is open and contains a
reference to an open ADO Connect object, PutAct iveConnect ion is read-only.

Syntax

ADO_Record(n)->PutActiveConnection("Connection");

Parameters

Param eter Descript i on

n An index to the object.

Connection A Connect ion string.

Example

ADO_Record(1)->PutActiveConnection("DSN=QAServer; UID=sa; PWD=sa");
ADO_Record(1)->GetRecordType(pLong);
ADO_Record(1)->Close();

QALoad 5.02

350

ADO_Record(n)->PutMode

Sets the access permissions being used on the current connect ion by the provider. You can only set th is
property when the ADO Connect object is closed.

Syntax

ADO_Record(n)->PutMode(<ConnectModeEnum>);

Parameters

Param eter Descript i on

n An index to the object.

Example

ADO_Record(1)->PutMode(adModeShareDenyNone);
ADO_Record(1)->GetRecordType(pLong);
ADO_Record(1)->Close();

ADO_Record(n)->PutRefAct iveConnect ion

Specifies the ADO Connect object to be affected by the specified ADO Record object. The Argument being
passed to th is cal l is an ADO Connect. This is resolved through the ADOConnect[#] operator cal l .

In the example below the ADO Record is associat ing i tself with ADO Connect object index 2.

Syntax

ADO_Record(n)->PutRefActiveConnection(ADOConnect[#]);

Parameters

Param eter Descript i on

n An index to the object.

ADOConnection An exist ing instance of an ADO Connect object.

Example

ADO_Record(1)->PutRefActiveConnection(ADOConnect[2]);
ADO_Record(1)->GetRecordType(pLong);
ADO_Record(1)->Close();

ADO_Record(n)->PutSource

Sets the current value of the source property for th is instance of the actual ADO Command object. The
Source property must refer to an object exist ing with in the scope of that ADO Connect.

The Source property returns the Source argument of the ADO Record object Open method. It can contain
an absolute or relat ive URL string. An absolute URL can be used without sett ing the Act iveConnect ion
property to direct ly open the ADO Record object. An implici t ADO Connect object is created in th is case.

Syntax

ADO_Record(n)->PutSource("Source");

QALoad 5.02

351

Parameters

Param eter Descript i on

n An index to the object.

Source A string representat ion of an absolute or relat ive URL.

Example

ADO_Record(1)->PutSource("\\\\QAServer\\Development Home.htm");
ADO_Record(1)->GetRecordType(pLong);
ADO_Record(1)->Close();

ADO_Recordset(n)->_xClone

This is a h idden method. It is undocumented with in MSDN. However, a logical assumption would be that
i t makes a clone of the cal l ing ADO Recordset. This is given the arguments and the method name.

Note: Compuware does not recommend adding this method to a script.

Syntax

ADO_Recordset(n)->_xClone(ADORecordset[#], ADOBM);

Parameters

Param eter Descript i on

n An index to the object.

ADORecordset[#] This is the new instance of the ADO Recordset cloned from the cal l ing of th is
method.

ADOBM The global container of ADO Bookmarks.

Example

ADO_Recordset(1)->Open(pvSource, pvValue, adOpenStatic, adLockOptimistic, -1);
ADO_Recordset(1)->GetEOF(pVTBOOL);
ADO_Recordset(1)->_xClone(ADORecordset[2], ADOBM);

ADO_Recordset(n)->_xResync

This is a h idden method. It is undocumented with in MSDN. However, a logical assumption would be that
i t re-synchronizes the ADO Recordset with the underlying data provider. This is given the arguments and
the method name.

Note: Compuware does not recommend adding this method to a script.

Syntax

ADO_Recordset(n)->_xResync(<AffectEnum>);

Parameters

Param eter Descript i on

n An index to the object.

QALoad 5.02

352

AffectEnum adAffectCurrent, adAffectGroup, adAffectAl l , AdAffectAl lChapters: are al l of
the different values that could be present as an argument.

Example

ADO_Connect(1)->Execute("DELETE FROM MyTemp", pvValue, -1, ADORecordset[4]);
ADO_Recordset(4)->_xResync(adAffectAll);

ADO_Recordset(n)->_xSave

This is a h idden method. It is undocumented with in MSDN. However, a logical assumption would be that
i t saves ADO Recordset data to the locat ion given in the first argument. This is given the arguments and
the method name.

Note: Compuware does not recommend adding this method to a script.

Syntax

ADO_Recordset(n)->_xSave("<String>", <PersistEnum>);

Parameters

Param eter Descript i on

n An index to the object.

String The fi le to which the ADO Recordset in formation is being saved.

PersistEnum adPersistXML, adPersistADTG are the two PersistEnum values.

ADO_Recordset(n)->AddNew

Creates a new record for an updatable ADO Recordset object. After AddNew is cal led, the new record
becomes current and remains so after you cal l the Update method. If the ADO Recordset object doesn ’t
support bookmarks, you may not be able to access the new record after moving to another record. You
may need to cal l the Requery method to make the new record accessible.

In the example below, an empty row is being added to the end of the just opened ADO Recordset.

Syntax

ADO_Recordset(n)->AddNew(pvSource, pvValue);

Parameters

Param eter Descript i on

n An index to the object.

PvSource A pointer to a Variant contain ing an Array of fields that compose the ADO
Recordset.

pvValue A pointer to an array of values corresponding to the array of fields.

Example

ADO_LoadVariant(pvSource, "8", "select sPhone, sExtension,
 sDescription" ", iRecordID, sStudentID from PHONE
 where""sStudentID='S123456'");

QALoad 5.02

353

LoadVariant(pvValue, ADOConnect[1]);
ADO_Recordset(27)->Open(pvSource, pvValue, adOpenDynamic,
 adLockBatchOptimistic, -1);
ADO_Recordset(27)->GetEOF(pVTBOOL);
ADO_LoadVariant(pvSource, "10", "2147614724");
ADO_LoadVariant(pvSource, "10", "2147614724");
ADO_Recordset(27)->AddNew(pvSource, pvValue);

ADO_Recordset(n)->Cancel

Cancels execut ion of a pending, asynchronous method cal l .

Syntax

ADO_Recordset(n)->Cancel();

Parameters

Param eter Descript i on

n An index to the object.

Example

ADO_Recordset(0)->PutCursorLocation(adUseServer);
ADO_LoadVariant(pvSource, "8", "SELECT * FROM test_table ");
LoadVariant(pvValue, ADOConnect[0]);
BeginCheckpoint("ADORecordset::Open");
ADO_Recordset(0)->Open(pvSource, pvValue, adOpenStatic, adLockOptimistic, -1);
EndCheckpoint("ADORecordset::Open");
ADO_Recordset(0)->Cancel();

ADO_Recordset(n)->CancelBatch

Cancels any pending updates in an ADO Recordset that is in batch update mode.
If the ADO Recordset is in immediate update mode, and you cal l CancelBatch without adAffectCurrent, an
error results.

Syntax

ADO_Recordset(n)->CancelBatch(<AffectEnum>);

Parameters

Param eter Descript i on

n An index to the object.

AffectEnum adAffectCurrent, adAffectGroup, adAffectAl l , AdAffectAl lChapters: are al l of
the different values that could be present as an argument.

Example

ADO_Recordset(27)->Open(pvSource, pvValue, adOpenDynamic, adLockBatchOptimistic, -1);
ADO_Recordset(27)->CancelBatch(adAffectCurrent);

ADO_Recordset(n)->CancelUpdate

Cancels any changes made to the current row or discards a new row of an ADO Recordset object before
cal l ing the Update method.

QALoad 5.02

354

You can only cancel changes to a current or new row after cal l ing the Update method under the fol lowing
condit ions:

! The changes are part of a transaction that you can roll back with the RollbackTrans method, or

! The changes are part of a batch update.

Syntax

ADO_Recordset(n)->CancelUpdate();

Parameters

Param eter Descript i on

n An index to the object.

Example

ADO_Recordset(27)->Open(pvSource, pvValue, adOpenDynamic, adLockBatchOptimistic, -1);
ADO_Recordset(27)->CancelUpdate();

ADO_Recordset(n)->Clone

Duplicates an ADO Recordset object. Can specify that the clone be read-only.

Use to create dupl icate ADO Recordset objects, espcial ly i f you want to main tain more than one current
record in a given set of records. Using th is method is more efficient than creat ing and opening a new ADO
Recordset object with the same defin i t ion as the original.

Syntax

ADO_Recordset(n)->Clone(<LockTypeEnum>, ADORecordset[#], ADOBM);

Parameters

Param eter Descript i on

n An index to the object.

LockTypeEnum This is the type of locking that should occur to the recordset whi le the
cloning operat ion is taking place.

ADORecordset[#] This is the new instance of the ADO Recordset cloned from the cal l ing
ADO_Recordset(n).

ADOBM The global ly avai lable container of LoadBookmarks.

Example

ADO_Recordset(1)->Open(pvSource, pvValue, adOpenStatic, adLockOptimistic, -1);
ADO_Recordset(1)->GetEOF(pVTBOOL);
ADO_Recordset(1)->Clone(adLockOptimistic, ADORecordset[2], ADOBM);

ADO_Recordset(n)->Close

Closes an open object and any dependent objects.

When used to close an ADO Recordset, releases the associated data and any exclusive access you may have
had to the data through th is object.

QALoad 5.02

355

Act iveX Data Objects (ADO) comprises a series of objects, which have states. In the ADO Recordset and
ADO Connect objects i t is important to close the object before releasing the object.

Syntax

ADO_Recordset(n)->Close();

Parameters

Param eter Descript i on

n An index to the object.

Example

ADO_LoadVariant(pvSource, "8", "SELECT * FROM Test_Table ");
LoadVariant(pvValue, ADOConnect[0]);
BeginCheckpoint("ADORecordset::Open");
ADO_Recordset(0)->Open(pvSource, pvValue, adOpenStatic, adLockOptimistic, -1);
EndCheckpoint("ADORecordset::Open");
ADO_Recordset(0)->Close();
ADORecordset.Release(0, ADOBM);

ADO_Recordset(n)->CompareBookmarks

Compares two bookmarks. Returns an indicat ion of their relat ive values.

Compared bookmarks must apply to the same ADO Recordset object, or an ADO Recordset object and i ts
clone. Bookmarks from di fferent ADO Recordset objects can ’t be compared rel iably, even when created
from the same source or command. An ADO Recordset object ’s underlying provider must support
comparisons, or you won ’t be able to compare bookmarks.

Syntax

ADO_Recordset(n)->CompareBookmarks(ADOBM[#], ADOBM[#}, pLong);

Parameters

Param eter Descript i on

n An index to the object.

ADOBM[#] A pointer to a CLoadBookmark.

ADOBM[#] A pointer to a CLoadBookmark.

pLong A pointer to a long, contain ing the return value.

Example

BeginCheckpoint("ADORecordset::Open");
ADO_Recordset(0)->Open(pvSource, pvValue, adOpenStatic, adLockOptimistic, -1);
EndCheckpoint("ADORecordset::Open");
BeginCheckpoint("ADORecordset::CompareBookmarks");
ADO_Recordset(0)->CompareBookmarks(ADOBM[0], ADOBM[0], pLong);
EndCheckpoint("ADORecordset::CompareBookmarks");

QALoad 5.02

356

ADO_Recordset(n)->Delete

Use to delete the current record or a group of records.

This method marks the current record or a group of records in an ADO Recordset object for delet ion. If the
object does not al low record delet ion, an error occurs. In immediate update mode, delet ions occur
immediately.

Syntax

ADO_Recordset(n)->Delete(<AffectEnum>);

Parameters

Param eter Descript i on

n An index to the object.

<AffectEnum> The Parameter wi l l vary in representat ion between the string representat ion
and a pure numeric representat ion.

Example

ADO_Recordset(0)->AddNew(pvSource, pvValue);
EndCheckpoint("ADORecordset::AddNew");
BeginCheckpoint("ADORecordset::Find");
ADO_Recordset(0)->Find("test_number = 99", 0, adSearchForward, ADOBM[2]);
EndCheckpoint("ADORecordset::Find");
ADO_Recordset(0)->Delete(adAffectCurrent);

ADO_Recordset(n)->Find

Locates a row in an ADO Recordset that matches specified cri teria.

You may specify the search direct ion, start ing row, and offset from the start ing row.
When the cri teria is met, the found record becomes the current row posit ion. If not, the current row
posit ion is set to the end or start of the ADO Recordset.

Syntax

ADO_Recordset(n)->Find ("criteria," <SkipRows>, <Direction>, ADOBM[#]);

Parameters

Param eter Descript i on

n An index to the object.Cri teria String value contain ing a statement that
specifies the column name, comparison operator, and value to use in
the search.

SkipRows (Optional) Long value specifying the row offset from the current row or
Start bookmark to begin the search. Default is zero. The search starts on
the current row, by defaul t .

SearchDirection (Optional) SearchDirect ionEnum value specifying i f the search should
begin on the current or next avai lable row in the direct ion of the
search.

Val id values are:
adSearchForward: unsuccessful search wil l stop at the end of the

QALoad 5.02

357

Recordset.
adSearchBackward: unsuccessful search wil l stop at the start of the
Recordset.

Start (Optional) Variant bookmark that is the start ing posit ion for the search.

Example

ADO_Recordset(0)->AddNew(pvSource, pvValue);
EndCheckpoint("ADORecordset::AddNew");
BeginCheckpoint("ADORecordset::Find");
ADO_Recordset(0)->Find("test_number = 99", 0, adSearchForward, ADOBM[2]);
EndCheckpoint("ADORecordset::Find");
ADO_Recordset(0)->Delete(adAffectCurrent);

ADO_Recordset(n)->GetAbsolutePage

Ident i fies, by page number, where the current record resides.

Syntax

ADO_Recordset(n)->GetAbsolutePage(pLong);

Parameters

Param eter Descript i on

n An index to the object.

pLong Pointer to a long return ing the page number.

Example

ADO_Recordset(0)->GetAbsolutePage(pLong);
ADO_Recordset(0)->PutAbsolutePage((PositionEnum)9);
ADO_Recordset(0)->GetRecordCount(pLong);
ADO_Recordset(0)->GetAbsolutePosition(pLong);
ADO_Recordset(0)->PutAbsolutePosition((PositionEnum)38);
ADO_Recordset(0)->GetActiveConnection(pvValue);

ADO_Recordset(n)->GetAbsolutePosit ion

Specifies the ordinal posit ion of the current record of an ADO Recordset object. Use th is method to locate a
record based on i ts ordinal posit ion, or to determine the current record’s ordinal posit ion. This is only
avai lable i f your provider supports the appropriate funct ional i ty.

Syntax

ADO_Recordset(n)->GetAbsolutePosition(pLong);

Parameters

Param eter Descript i on

n An index to the object.

pLong Pointer to a long.

QALoad 5.02

358

Example

ADO_Recordset(0)->GetAbsolutePage(pLong);
ADO_Recordset(0)->PutAbsolutePage((PositionEnum)9);
ADO_Recordset(0)->GetRecordCount(pLong);
ADO_Recordset(0)->GetAbsolutePosition(pLong);
ADO_Recordset(0)->PutAbsolutePosition((PositionEnum)38);
ADO_Recordset(0)->GetActiveConnection(pvValue);

ADO_Recordset(n)->GetAct iveCommand

Specifies the ADO Command object which created an ADO Recordset object. A Null object reference is
returned i f the ADO Recordset was not created by an ADO Command object.

Use th is property to determine the ADO Command object when only the ADO Recordset object is known.

This funct ion is only converted i f there is an ADO Command object associated with th is ADO Recordset.
This is determined at conversion t ime.

Syntax

ADO_Recordset(n)->GetActiveCommand(ADOCommand[#]);

Parameters

Param eter Descript i on

n An index to the object.

ADOCommand The ADO Command instance that is t ied to th is ADO Recordset.

ADO_Recordset(n)->GetAct iveConnect ion

For a Command, ADO Recordset, or ADO Record object, specifies the associated ADO Connect object.

This property is read-only for open ADO Recordset objects or those whose Source property is set to a val id
Command object. Otherwise, i t is read/write.

Syntax

ADO_Recordset(n)->GetActiveConnection(pvValue);

Parameters

Param eter Descript i on

n An index to the object.

pvValue Pointer to the Connect ion object.

Example

ADO_Recordset(0)->GetAbsolutePage(pLong);
ADO_Recordset(0)->PutAbsolutePage((PositionEnum)9);
ADO_Recordset(0)->GetRecordCount(pLong);
ADO_Recordset(0)->GetAbsolutePosition(pLong);
ADO_Recordset(0)->PutAbsolutePosition((PositionEnum)38);
ADO_Recordset(0)->GetActiveConnection(pvValue);

QALoad 5.02

359

ADO_Recordset(n)->GetBOF

Determines i f an ADO Recordset object contains records or i f you’ve gone beyond i ts l im its whi le moving
from record to record.

If the current record posit ion is before the first record, GetBOF returns True (-1). If i t is on or after the first
record, GetBOF returns False (0).

Syntax

ADO_Recordset(n)->GetBOF(pVT_BOOL);

Parameters

Param eter Descript i on

n An index to the object.

pPT_BOOL A pointer to a VARIANT_BOOL.

Example

ADO_Recordset(0)->GetActiveConnection(pvValue);
ADO_Recordset(0)->GetBOF(pVTBOOL);
ADO_Recordset(0)->PutSource("Select * from test_table where " "keyval < 100");
LoadVariant(pvValue, ADOConnect[1]);
ADO_Recordset(0)->PutActiveConnection(pvValue);
ADO_LoadVariant(pvSource, "10", "2147614724");
ADO_LoadVariant(pvValue, "10", "2147614724");
ADO_Recordset(0)->Open(pvSource, pvValue, adOpenStatic, adLockPessimistic, -1);

ADO_Recordset(n)->GetBookmark

Indicates a bookmark ident i fying an ADO Recordset object ’s current record, or sets the current record to
that ident i fied by a bookmark.

Use to save the posit ion of the current record and return to i t at any t ime. Bookmarks are avai lable only in
ADO Recordset objects that support bookmark funct ional i ty.

Syntax

ADO_Recordset(n)->GetBookmark(ADOBM[#]);

Parameters

Param eter Descript i on

n An index to the object.

ADOBM[#] A Pointer to a CLoadBookmark instance.

Example

ADO_Recordset(0)->GetEOF(pVTBOOL);
ADO_Recordset(0)->GetBookmark(ADOBM[0]);

ADO_Recordset(n)->GetCacheSize

Specifies the number of records in the ADO Recordset that are cached local ly. Use to control how many
records the provider keeps in i ts buffer and how many to retrieve at one t ime into local memory.

QALoad 5.02

360

Syntax

ADO_Recordset(n)->GetCacheSize(pLong);

Parameters

Param eter Descript i on

n An index to the object.

pLong Pointer to a long value of the number of records in the ADO Recordset
cached local ly.

Example

ADO_Recordset(0)->PutPageSize(4);
ADO_Recordset(0)->GetPageSize(pLong);
ADO_Recordset(0)->GetCacheSize(pLong);
ADO_Recordset(0)->PutCacheSize(6);

ADO_Recordset(n)->GetCollect

This is a h idden method. It is undocumented with in MSDN. If you are looking at incorporat ing th is
method, please examine the example below and do as you see fi t .

Note: Compuware does not recommend adding this method to a script.

Syntax

ADO_Recordset(n)->GetCollect(pvValue, pvData);

Parameters

Param eter Descript i on

n An index to the object.

PvValue A Pointer to a variant — perhaps the field name or ordinal.

PvData A Pointer to a variant— perhaps the data for that field.

Example

ADO_Recordset(5)->GetState(pLong);
ADO_LoadVariant(pvValue, "8", "sFirstName");
ADO_Recordset(5)->GetCollect(pvValue, pvData);
ADO_LoadVariant(pvValue, "8", "sLastName");
ADO_Recordset(5)->GetCollect(pvValue, pvData);
ADO_LoadVariant(pvValue, "8", "sMiddleInitial");
ADO_Recordset(5)->GetCollect(pvValue, pvData);
ADO_LoadVariant(pvValue, "8", "sSSN");
ADO_Recordset(5)->GetCollect(pvValue, pvData);

ADO_Recordset(n)->GetCursorLocat ion

Specifies the l ibrary that the cursor service uses.

Al lows you to choose between various cursor l ibraries accessible to the provider. Normally, the l ibrary can
be cl ient-side or on the server.

QALoad 5.02

361

Syntax

ADO_Recordset(n)->GetCursorLocation(pLong);

Parameters

Param eter Descript i on

n An index to the object.

pLong A pointer to a long’s representat ion of the CursorLocat ionEnum returned
by the cal l . This is then sent back to the script for the user.

Example

ADO_Recordset(0)->GetCacheSize(pLong);
ADO_Recordset(0)->PutCacheSize(1);
ADO_Recordset(0)->GetCursorLocation(pLong);
ADO_Recordset(0)->PutCursorLocation(adUseClient);

ADO_Recordset(n)->GetCursorType

Specifies the type of cursor to use when opening the ADO Recordset object.
If the CursorLocat ion property is set to adUseClient, the only sett ing supported is adOpenStat ic. If an
unsupported value is set, the closest supported CursorType wil l be used instead.

Syntax

ADO_Recordset(n)->GetCursorType(pLong);

Parameters

Param eter Descript i on

n An index to the object.

pLong A pointer to a long’s representat ion of the CursorLocat ionEnum returned by the
cal l . This is then sent back to the script for the user.

Example

ADO_Recordset(0)->GetCursorLocation(pLong);
ADO_Recordset(0)->PutCursorLocation(adUseServer);
ADO_Recordset(0)->GetCursorType(pLong);
ADO_Recordset(0)->PutCursorType(adOpenDynamic);

ADO_Recordset(n)->GetDataMember

Specifies the data member to be retrieved from the object referenced by the DataSource property.
Creates data-bound controls with the Data Environment.

Syntax

ADO_Recordset(n)->GetDataMember(sLoadStr);

Parameters

Param eter Descript i on

n An index to the object.

QALoad 5.02

362

SLoadStr A CLoadString contain ing a string representat ion of the data Member.

Example

ADO_Recordset(0)->Open(pvSource, pvValue, adOpenKeyset, adLockOptimistic, -1);
ADO_Recordset(0)->GetDataMember(sLoadStr);
ADO_Recordset(0)->GetFields(ADOFieldSet[0]);

ADO_Recordset(n)->GetDataSource

Specifies an object contain ing data to be represented as an ADO Recordset object. Creates data-bound
controls with the Data Environment. GetDataSource takes a handle to an IUnknown as i ts argument. This
is a pointer to a pointer. Please be careful dereferencing th is element.

Syntax

ADO_Recordset(n)->GetDataSource(&pIUnknown);

Parameters

Param eter Descript i on

n An index to the object.

&pIUnknown A pointer to a pointer to a returned COM object.

Example

ADO_Recordset(1)->GetDataSource(&pIUnknown);
ADO_Recordset(2)->GetActiveConnection(pvValue);
ADO_Recordset(2)->GetCursorType(pLong);

ADO_Recordset(n)->GetEditMode

Specifies the current record’s edit ing status.

Indicates whether changes have been made to th is buffer associated with the current record, or whether a
new record has been created. Use to determine the current record’s edit ing status.

Syntax

ADO_Recordset(n)->GetEditMode(pLong);

Parameters

Param eter Descript i on

n An index to the object.

pLong A pointer to a long.

Example

ADO_Recordset(0)->GetEditMode(pLong);
ADO_Recordset(0)->GetFilter(pvValue);
ADO_LoadVariant(pvValue, "8", "tinyint_col = 99");
ADO_Recordset(0)->PutFilter(pvValue);

QALoad 5.02

363

ADO_Recordset(n)->GetEOF

Indicates that the current record posit ion is after the last record in an ADO Recordset object. Returns True
(-1) i f the current record posit ion is after the last record and False (0) i f i t is on or before the last record.

Syntax

ADO_Recordset(n)->GetEOF(pVTBOOL);

Parameters

Param eter Descript i on

n An index to the object.

pVTBOOL True (-1) or false (0).

Example

BeginCheckpoint("ADORecordset::Open");
ADO_Recordset(0)->Open(pvSource, pvValue, adOpenStatic, adLockOptimistic, -1);
EndCheckpoint("ADORecordset::Open");
ADO_Recordset(0)->MoveFirst();
ADO_Recordset(0)->GetEOF(pVTBOOL);
ADO_Recordset(0)->MoveNext();

ADO_Recordset(n)->GetFields

Returns a container of an ADO Recordset or ADO Record object ’s Field objects.

QALoad ’s implementat ion of the GetFields method takes care of making the cal l through to the GetFields
method with in the ADO Recordset object. The Argument is one of the ADOFieldSet elements.

Retrieves an ADO Recordset object ’s ADO FieldSet object. This is an importan t step in variabl izat ion.

Note: This function is not currently being converted in the script; however, this method can be used in
conjunction with ADO_Field(n)->GetItem() to return data from a specific field of a particular recordset. It can be
turned on or off using the QALoad Script Development Workbench’s Convert Options wizard.

Syntax

ADO_Recordset(n)->GetFields(ADOFieldSet[#]);

Parameters

Param eter Descript i on

n An index to the object.

ADOFieldSet An instance of the container of fields for a part icular recordset.

Example

The fol lowing example i l lustrates return ing the first field from the current recordset.

ADO_LoadVariant(pvSource, "8", "select * from test_table");
ADO_LoadVariant(pvValue, "8", "PROVIDER=MSDASQL;
dsn=" "FhLoadDB2;uid=sa;pwd=;database=Master;");
ADO_Recordset(0)->Open(pvSource, pvValue, adOpenDynamic, adLockPessimistic, 1);
ADO_Recordset(0)->GetFields(ADOFieldSet[0]);
ADO_FieldSet(0)->GetCount(pLong);
ADO_FieldSet(0)->Refresh();

QALoad 5.02

364

ADO_LoadVariant(pvValue, "2", "1");
ADO_FieldSet(0)->GetItem(pvValue, ADOField[0]);

ADO_Recordset(n)->GetFilter

Specifies a fi l ter for data in an ADO Recordset.
Use to screen out records in an ADO Recordset object. The fi l tered ADO Recordset becomes the current
cursor.

Syntax

ADO_Recordset(n)->GetFilter(pLong);

Parameters

Param eter Descript i on

n An index to the object.

pvValue A pointer to a VARIANT.

Example

ADO_Recordset(0)->GetEditMode(pLong);
ADO_Recordset(0)->GetFilter(pvValue);
ADO_LoadVariant(pvValue, "8", "tinyint_col = 99");
ADO_Recordset(0)->PutFilter(pvValue);

ADO_Recordset(n)->Get Index

This is a h idden method. It is undocummented with in MSDN.

Note: Neither QALoad support professionals nor development recommend adding this method to a script.

Syntax

ADO_Recordset(n)->GetIndex(sLoadStr);

Parameters

Param eter Descript i on

n An index to the object.

sLoadStr A CLoadString object encapsulat ing some string data.

ADO_Recordset(n)->GetLockType

Specifies the type of locks placed on records during edit ing.

Set before opening an ADO Recordset to determine what type of locking the provider should use when
opening the ADO Recordset. Read the property to return the type of locking in us.

Syntax

ADO_Recordset(n)->GetLockType(pLong);

QALoad 5.02

365

Parameters

Param eter Descript i on

n An index to the object.

pLong A pointer to a long.

Example

ADO_Recordset(0)->GetCursorType(pLong);
ADO_Recordset(0)->PutCursorType(adOpenForwardOnly);
ADO_Recordset(0)->GetLockType(pLong);
ADO_Recordset(0)->PutLockType(adLockOptimistic);

ADO_Recordset(n)->GetMarshalOpt ions

Specifies records to be marshaled back to the server.

Syntax

ADO_Recordset(n)->GetMarshalOptions(pLong);

Parameters

Param eter Descript i on

n An index to the object.

pLong Pointer to a long.

Example

ADO_Recordset(0)->Open(pvSource, pvValue, adOpenStatic, adLockPessimistic, -1);
ADO_Recordset(0)->GetMarshalOptions(pLong);
ADO_Recordset(0)->PutPageSize(4);

ADO_Recordset(n)->GetMaxRecords

Specifies the maximum number of records to return to an ADO Recordset from a query.

Use to l im it the number of records that the provider returns. The default , zero, indicates the provider wi l l
return al l requested records.

Syntax

ADO_Recordset(n)->GetMaxRecords(pLong);

Parameters

Param eters Descript i on

n An index to the object.

pLong A pointer to a long.

Example

ADO_Recordset(0)->GetLockType(pLong);
ADO_Recordset(0)->PutLockType(adLockReadOnly);

QALoad 5.02

366

ADO_Recordset(0)->GetMaxRecords(pLong);
ADO_Recordset(0)->PutMaxRecords(10);

ADO_Recordset(n)->GetPageCount

Specifies the number of pages of data contained in the ADO Recordset object.

Syntax

ADO_Recordset(n)->GetPageCount(pLong);

Parameters

Param eter Descript i on

n An index to the object.

pLong A pointer to a long.

Example

ADO_Recordset(0)->PutPageSize(4);
ADO_Recordset(0)->GetPageCount(pLong);
ADO_Recordset(0)->GetAbsolutePage(pLong);

ADO_Recordset(n)->GetPageSize

Indicates the number of records that make up a single page in the ADO Recordset.

Use to determine how many records make up a logical page of data, which al lows you to use the
AbsolutePage property.

Syntax

ADO_Recordset(n)->GetPageSize(pLong);

Parameters

Param eter Descript i on

n An index to the object.

pLong A pointer to a long.

Example

ADO_Recordset(0)->GetMarshalOptions(pLong);
ADO_Recordset(0)->GetPageSize(pLong);
ADO_Recordset(0)->PutPageSize(4);
ADO_Recordset(0)->GetPageCount(pLong);
ADO_Recordset(0)->GetAbsolutePage(pLong);

ADO_Recordset(n)->GetPropert ies

The CAField object has a col lect ion of property objects. Each property object corresponds to a characterist ic
of the ADO object specific to the provider.

Retrieves the complete set of propert ies for th is part icular instance of the Recordset object. Property sets
may change for different providers.

QALoad 5.02

367

Syntax

ADO_Recordset(n)->GetProperties(CAPropertySet* pPropertySet);

Parameters

Param eter Descript i on

n An index to the object.

pPropertySet Set of CAProperty objects. Each CAProperty object contains a single
characterist ic, a piece of data, which part ial ly describes the state of a part icular
instance of an object.

Example

ADO_Recordset(0)->GetMaxRecords(pLong);
ADO_Recordset(0)->GetMaxRecords(pLong);
ADO_Recordset(0)->GetState(pLong);
ADO_Recordset(0)->GetProperties(ADOPropertySet[0]);
ADOPropertySet.Release(0);

ADO_Recordset(n)->GetRecordCount

Indicates the number of records in an ADO Recordset object.

Use to determine how many records are in an ADO Recordset object. If ADO cannot determine the
number, or i f the provider or cursor type doesn ’t support RecordCount, GetRecordCount returns -1. An
error results i f GetRecordCount is used on a closed ADO Recordset.

Syntax

ADO_Recordset(n)->GetRecordCount(pLong);

Parameters

Param eter Descript i on

n An index to the object.

pLong A pointer to a long.

Example

ADO_Recordset(0)->GetAbsolutePage(pLong);
ADO_Recordset(0)->PutAbsolutePage((PositionEnum)9);
ADO_Recordset(0)->GetRecordCount(pLong);
ADO_Recordset(0)->GetAbsolutePosition(pLong);
ADO_Recordset(0)->PutAbsolutePosition((PositionEnum)38);
ADO_Recordset(0)->GetActiveConnection(pvValue);

ADO_Recordset(n)->GetRows

Retrieves mult iple records of an ADO Recordset object in to an array.

Use the GetRows method to copy records from an ADO Recordset in to a two-dimensional array. The first
subscript ident i fies the field and the second ident i fies the record number. The array variable is
automatical ly dimensioned to the correct size when the GetRows method returns the data.

QALoad 5.02

368

Syntax

ADO_Recordset(n)->GetRows(#, pvSource, pvData, pvValue);

Or

ADO_Recordset(n)->GetRows(#, ADOBM[#], pvData, pvValue);

Parameters

Param eter Descript i on

n An index to the object.

pvSource A pointer to a variant contain ing the start ing point for return ing the data.

ADOBM[#] A CLoadBookmark giving the start ing point for the row retrieval.

pvData A pointer to a variant contain ing an Array of fields to return.

pvValue A Pointer to a variant contain ing a SafeArray in to which the data is
returned.

Example

ADO_LoadVariant(pvSource, "8", "select sID, sTable, sField, sPermits from" "Permits where
sid = (select suserid from" "User where suserid = 'admin') or sid " "in (select sgroupid
from UserGroup where suserid = 'admin') " "order by sPermits desc, sTable asc");
LoadVariant(pvValue, ADOConnect[1]);
ADO_Recordset(0)->Open(pvSource, pvValue, adOpenDynamic, adLockReadOnly, -1);
ADO_Recordset(0)->GetRecordCount(pLong);
ADO_LoadVariant(pvSource, "10", "2147614724");
ADO_LoadVariant(pvData, "10", "2147614724");
ADO_Recordset(0)->GetRows(-1, pvSource, pvData, pvValue);
EndCheckpoint("ADORecordset::GetRows");

ADO_Recordset(n)->GetSort

Indicates one or more field names on which the ADO Recordset is sorted, and whether each field is sorted
in ascending or descending order.

Syntax

ADO_Recordset(n)->GetSort(sLoadStr);

Parameters

Param eter Descript i on

n An index to the object.

SLoadStr A CLoadString contain ing the field to sort by.

ADO_Recordset(n)->GetSource

Indicates the data source for a Recordset object.

Use the Source property to specify a data source for a Recordset object using one of the fol lowing: a
Command object variable, an SQL statement, a stored procedure, or a table name.

QALoad 5.02

369

The Variant that is passed into the funct ion is in it ial ized before the cal l is made so that i t wi l l properly
receive the variant in formation coming back from the cal l .

Syntax

ADO_Recordset(n)->GetSource(pvSource);

Parameters

Param eter Descript i on

n An index to the object.

pvSource A pointer to a VARIANT.

Example

ADO_LoadVariant(pvValue, "3", "0");
ADO_Recordset(0)->PutFilter(pvValue);
ADO_Recordset(0)->GetSource(pvSource);
ADO_Recordset(0)->GetStatus(pLong);

ADO_Recordset(n)->GetState

Indicates for al l appl icable objects whether the state of the object is open or closed.

Indicates for al l appl icable objects execut ing an asynchronous method, whether the current state of the
object is connect ing, execut ing, or retrieving.

Syntax

ADO_Recordset(n)->GetState(pLong);

Parameters

Param eter Descript i on

n An index to the object.

pLong A pointer to a long.

Example

ADO_Recordset(0)->PutMaxRecords(0);
ADO_Recordset(0)->GetState(pLong);
ADO_Recordset(0)->GetStayInSync(pVTBOOL);

ADO_Recordset(n)->GetStatus

Indicates the status of the current record with respect to batch updates or other bulk operat ions.

Syntax

ADO_Recordset(n)->GetStatus(pLong);

Parameters

Param eter Descript i on

n An index to the object.

QALoad 5.02

370

pLong A pointer to a long.

Example

ADO_LoadVariant(pvValue, "3", "0");
ADO_Recordset(0)->PutFilter(pvValue);
ADO_Recordset(0)->GetSource(pvSource);
ADO_Recordset(0)->GetStatus(pLong);

ADO_Recordset(n)->GetStayInSync

Indicates, in a h ierarchical ADO Recordset object, whether the reference to the underlying chi ld records
(that is, the chapter) changes when the parent row posit ion changes.

This property appl ies to h ierarchical recordsets, such as those supported by the M icrosoft Data Shaping
Service for OLE DB, and must be set on the parent ADO Recordset before the chi ld ADO Recordset is
retrieved. This property simpli fies navigat ing h ierarchical recordsets.

Since the VARIANT_BOOL datatype used by ADO is a direct mapping to the short datatype, QALoad uses
the short datatype for th is cal l .

Syntax

ADO_Recordset(n)->GetStayInSync(pVTBOOL);

Parameters

Param eter Descript i on

n An index to the object.

pVTBOOL A pointer to a VARIANT_BOOL.

Example

ADO_Recordset(0)->GetStayInSync(pVTBOOL);
ADO_Recordset(0)->PutStayInSync(FALSE);
ADO_LoadVariant(pvSource, "8", "select * from test_table where keyval < 100" ;
ADO_LoadVariant(pvValue, "8", "PROVIDER=MSDASQL;dsn="
"FhLoadDB2;uid=sa;pwd=;database=Master;");
BeginCheckpoint("ADORecordset::Open");
ADO_Recordset(0)->Open(pvSource, pvValue, adOpenUnspecified, adLockUnspecified, -1);
EndCheckpoint("ADORecordset::Open");

ADO_Recordset(n)->GetString

Returns the ADO Recordset as a string.

Row data, but no schema data, is saved to the string. Therefore, an ADO Recordset cannot be re-opened
using th is string.

Syntax

ADO_Recordset(n)->GetString(sLoadStr);

Parameters

Param eter Descript i on

QALoad 5.02

371

n An index to the object.

sLoadStr A CLoadString contain ing the string being returned.

Example

ADO_Recordset(0)->MoveFirst();
BeginCheckpoint("ADORecordset::GetString");
ADO_Recordset(0)->GetString(adClipString, -1, "", "", "", sLoadStr);
EndCheckpoint("ADORecordset::GetString");
ADO_LoadVariant(pvValue, "3", "1");
BeginCheckpoint("ADORecordset::Move");
ADO_Recordset(0)->Move(5, pvValue);
EndCheckpoint("ADORecordset::Move");

ADO_Recordset(n)->Move

Moves the posit ion of the current record in an ADO Recordset object.

If the NumRecords argument is greater than zero, the current record posit ion moves forward (toward the
end of the ADO Recordset). If NumRecords is less than zero, the current record posit ion moves backward
(toward the beginning of the ADO Recordset).

If the Move cal l would move the current record posit ion to a point before the first record, ADO sets the
current record to the posit ion before the first record in the recordset (BOF is True). An attempt to move
backward when the BOF property is already True generates an error.

Syntax

ADO_Recordset(n)->Move(#, pvValue);

or

ADO_Recordset(n)->Move(#, ADOBM[#]);

Parameters

Param eter Descript i on

n An index to the object.

Specifies the number of records that the current record posit ion moves.

pvValue A String value evaluates to a bookmark serving as the start ing point.

ADOBM[#] ACLoadBookmark serving as the start ing point.

Example

BeginCheckpoint("ADORecordset::GetString");
ADO_Recordset(0)->GetString(adClipString, -1, "", "", "", sLoadStr);
EndCheckpoint("ADORecordset::GetString");
ADO_LoadVariant(pvValue, "3", "1");
BeginCheckpoint("ADORecordset::Move");
ADO_Recordset(0)->Move(5, pvValue);
EndCheckpoint("ADORecordset::Move");

ADO_Recordset(n)->MoveFirst

Use the MoveFirst method to move the current record posit ion to the first record in the ADO Recordset.

QALoad 5.02

372

Syntax

ADO_Recordset(n)->MoveFirst();

Parameters

Param eter Descript i on

n An index to the object.

Example

ADO_LoadVariant(pvSource, "8", "SELECT * From test_table ");
LoadVariant(pvValue, ADOConnect[0]);
BeginCheckpoint("ADORecordset::Open");
ADO_Recordset(0)->Open(pvSource, pvValue, adOpenStatic, adLockOptimistic, -1);
EndCheckpoint("ADORecordset::Open");
ADO_Recordset(0)->MoveFirst();
ADO_Recordset(0)->GetEOF(pVTBOOL);
ADO_Recordset(0)->MoveNext();

ADO_Recordset(n)->MoveLast

Use the MoveLast method to move the current record posit ion to the last record in the ADO Recordset. The
ADO Recordset object must support bookmarks or backward cursor movement; otherwise, the method cal l
wi l l generate an error.

Syntax

ADO_Recordset(n)->MoveLast();

Parameters

Param eter Descript i on

n An index to the object.

Example

ADO_Recordset(0)->MoveFirst();
ADO_Recordset(0)->MoveNext();
ADO_Recordset(0)->MovePrevious();
ADO_Recordset(0)->MoveLast();

ADO_Recordset(n)->MoveNext

Use the MoveNext method to move the current record posit ion one record forward (toward the bottom of
the ADO Recordset). If the last record is the current record and you cal l the MoveNext method, ADO sets
the current record to the posit ion after the last record in the ADO Recordset (EOF is True). An attempt to
move forward when the EOF property is already True generates an error.

Syntax

ADO_Recordset(n)->MoveNext();

Parameters

Param eter Descript i on

n An index to the object.

QALoad 5.02

373

Example

ADO_LoadVariant(pvSource, "8", "SELECT * From test_table ");
LoadVariant(pvValue, ADOConnect[0]);
BeginCheckpoint("ADORecordset::Open");
ADO_Recordset(0)->Open(pvSource, pvValue, adOpenStatic, adLockOptimistic, -1);
EndCheckpoint("ADORecordset::Open");
ADO_Recordset(0)->MoveFirst();
ADO_Recordset(0)->GetEOF(pVTBOOL);
ADO_Recordset(0)->MoveNext();

ADO_Recordset(n)->MovePrevious

Use the MovePrevious method to move the current record posit ion one record backward (toward the top of
the ADO Recordset). The ADO Recordset object must support bookmarks or backward cursor movement;
otherwise, the method cal l wi l l generate an error. If the first record is the current record and you cal l the
MovePrevious method, ADO sets the current record to the posit ion before the first record in the ADO
Recordset (BOF is True).

Syntax

ADO_Recordset(n)->MovePrevious();

Parameters

Param eter Descript i on

n An index to the object.

Example

ADO_Recordset(0)->MoveFirst();
ADO_Recordset(0)->MoveNext();
ADO_Recordset(0)->MovePrevious();
ADO_Recordset(0)->MoveLast();

ADO_Recordset(n)->NextRecordset

Clears the current ADO Recordset object and returns the next ADO Recordset by advancing through a
series of commands.

Use the NextRecordset method to return the results of the next command in a compound command
statement or of a stored procedure that returns mult iple results. If you open an ADO Recordset object based
on a compound command statement (for example, "SELECT * FROM table1;SELECT * FROM table2") using
the Execute method on a Command or the Open method on an ADO Recordset, ADO executes only the
first command and returns the results to recordset.

Syntax

ADO_Recordset(n)->NextRecordset(pvValue, ADORecordset[#]);

Parameters

Param eter Descript i on

n An index to the object.

pvValue A pointer to a VARIANT.

ADORecordset ADORecordset instant iated by the returned data.

QALoad 5.02

374

ADO_Recordset(n)->Open

Using the Open method on an ADO Recordset object opens a cursor that represents records from a base
table, the results of a query, or a previously saved ADO Recordset.

Syntax

ADO_Recordset(n)->Open(pvSource, pvValue, <CursorTypeEnum>, <LockTypeEnum>, #);

Parameters

Param eter Descript i on

n An index to the object.

pvSource A pointer to a VARIANT.

pvValue A pointer to a VARIANT.

CursorTypeEnum The CursorTypeEnum argument can be any of several string type values
<ad!^%& > or a simple numeric representat ion.

LockTypeEnum This is the type of locking that should occur to the recordset whi le the
cloning operat ion is taking place.

Either a CommandTypeEnum or an ExecuteOptionEnum.

Example

ADO_LoadVariant(pvSource, "8", "SELECT * FROM Test_Table");
LoadVariant(pvValue, ADOConnect[0]);
BeginCheckpoint("ADORecordset::Open");
ADO_Recordset(0)->Open(pvSource, pvValue, adOpenStatic, adLockOptimistic, -1);
EndCheckpoint("ADORecordset::Open");
ADO_Recordset(0)->Close();
ADORecordset.Release(0, ADOBM);

ADO_Recordset(n)->PutAbsolutePage

Indicates on which page the current record resides.

Use the AbsolutePage property to ident i fy the page number on which the current record of the ADO
Recordset is located.

Syntax

ADO_Recordset(n)->PutAbsolutePage(<PositionEnum>);

Parameters

Param eter Descript i on

n An index to the object.

PositionEnum Any one of the fol lowing values:
adPosUnknown, adPosBOF, or adPosEOF.

Example

ADO_Recordset(0)->GetAbsolutePage(pLong);
ADO_Recordset(0)->PutAbsolutePage((PositionEnum)9);

QALoad 5.02

375

ADO_Recordset(0)->GetRecordCount(pLong);
ADO_Recordset(0)->GetAbsolutePosition(pLong);
ADO_Recordset(0)->PutAbsolutePosition((PositionEnum)38);
ADO_Recordset(0)->GetActiveConnection(pvValue);

ADO_Recordset(n)->PutAbsolutePosit ion

Indicates the ordinal posit ion of an ADO Recordset object 's current record.

Use the AbsolutePosit ion property to move to a record based on i ts ordinal posit ion in the ADO Recordset
object, or to determine the ordinal posit ion of the current record. The provider must support the
appropriate funct ional i ty for th is property to be avai lable.

Syntax

ADO_Recordset(n)->PutAbsolutePosition(<PositionEnum>);

Parameters

Param eter Descript i on

n An index to the object.

PositionEnum Any one of the fol lowing values:
adPosUnknown, adPosBOF, or adPosEOF.

Example

ADO_Recordset(0)->GetAbsolutePage(pLong);
ADO_Recordset(0)->PutAbsolutePage((PositionEnum)9);
ADO_Recordset(0)->GetRecordCount(pLong);
ADO_Recordset(0)->GetAbsolutePosition(pLong);
ADO_Recordset(0)->PutAbsolutePosition((PositionEnum)38);
ADO_Recordset(0)->GetActiveConnection(pvValue);

ADO_Recordset(n)->PutAct iveConnect ion

Indicates to which Connect ion object the specified Command, ADO Recordset, or Record object current ly
belongs.

For open ADO Recordset objects or for ADO Recordset objects whose Source property is set to a val id
Command object, the Act iveConnect ion property is read-only. Otherwise, i t is read/write.

Syntax

LoadVariant(pvValue, ADOConnect[#]);
ADO_Recordset(n)->PutActiveConnection(pvValue);

Parameters

Param eter Descript i on

n An index to the object.

pvValue A pointer to a VARIANT.

Example

ADO_Recordset(0)->GetActiveConnection(pvValue);
ADO_Recordset(0)->GetBOF(pVTBOOL);
ADO_Recordset(0)->PutSource("Select * from test_table where " "keyval < 100");

QALoad 5.02

376

LoadVariant(pvValue, ADOConnect[1]);
ADO_Recordset(0)->PutActiveConnection(pvValue);
ADO_LoadVariant(pvSource, "10", "2147614724");
ADO_LoadVariant(pvValue, "10", "2147614724");
ADO_Recordset(0)->Open(pvSource, pvValue, adOpenStatic, adLockPessimistic, -1);

ADO_Recordset(n)->PutBookmark

Indicates a bookmark that uniquely ident i fies the current record in an ADO Recordset object or sets the
current record in an ADO Recordset object to the record ident i fied by a val id bookmark.

Use the Bookmark property to save the posit ion of the current record and return to that record at any t ime.
Bookmarks are avai lable only in ADO Recordset objects that support bookmark funct ional i ty.

Syntax

ADO_Recordset(n)->PutBookmark(ADOBM[#]);

Parameters

Param eter Descript i on

n An index to the object.

ADOBM[#] A CLoadBookmark object contain ing a bookmark associated with the
element.

Example

BeginCheckpoint("ADORecordset::GetBookmark");
ADO_Recordset(0)->GetBookmark(ADOBM[0]);
EndCheckpoint("ADORecordset::GetBookmark");
ADO_Recordset(0)->MoveLast();
BeginCheckpoint("ADORecordset::PutBookmark");
ADO_Recordset(0)->PutBookmark(ADOBM[0]);
EndCheckpoint("ADORecordset::PutBookmark");

ADO_Recordset(n)->PutCacheSize

Indicates the number of records in the ADO Recordset that are cached local ly.

Use the CacheSize property to control how many records the provider keeps in i ts buffer and how many to
retrieve at one t ime into local memory. For example, i f the CacheSize is 10, after fi rst opening the ADO
Recordset object, the provider retrieves the first 10 records in to local memory.

Syntax

ADO_Recordset(n)->PutCacheSize(#);

Parameters

Param eter Descript i on

n An index to the object.

The size of the cache, a posit ive in teger.

Example

ADO_Recordset(0)->GetPageSize(pLong);
ADO_Recordset(0)->PutPageSize(4);

QALoad 5.02

377

ADO_Recordset(0)->GetCacheSize(pLong);
ADO_Recordset(0)->PutCacheSize(6);

ADO_Recordset(n)->PutCollect

This is a h idden method. It is undocumented with in MSDN. If you are looking at incorporat ing th is
method, please examine the example below and do as you see fi t . Neither QALoad support professionals
nor development recommend adding th is method to a script .

Syntax

ADO_Recordset(n)->PutCollect(pvValue, pvSource);

Parameters

Param eter Descript i on

n An index to the object.

PvValue A Pointer to a variant — perhaps the field name or ordinal.

PvData A Pointer to a variant — perhaps the data for that field.

Example

ADO_LoadVariant(pvValue, "8", "sSSN");
ADO_LoadVariant(pvData, "8", "333555333");
ADO_Recordset(2)->PutCollect(pvValue, pvData);
ADO_LoadVariant(pvValue, "8", "sLastName");
ADO_LoadVariant(pvData, "8", "Gifford");
ADO_Recordset(2)->PutCollect(pvValue, pvData);
ADO_LoadVariant(pvValue, "8", "sFirstName");
ADO_LoadVariant(pvData, "8", "Roger");
ADO_Recordset(2)->PutCollect(pvValue, pvData);
ADO_LoadVariant(pvValue, "8", "sMiddleInitial");
ADO_LoadVariant(pvData, "8", "X");
ADO_Recordset(2)->PutCollect(pvValue, pvData);

ADO_Recordset(n)->PutCursorLocat ion

Indicates the locat ion of the cursor service.

This property al lows you to choose between various cursor l ibraries accessible to the provider. Usual ly, you
can choose between using a cl ient-side cursor l ibrary or one that is located on the server.

Syntax

ADO_Recordset(n)->PutCursorLocation(<CursorLocationEnum>);

Parameters

Param eter Descript i on

n An index to the object.

CursorLocationEnum The place where the cursor is drawn from. Any one of the fol lowing:
adUseNone, adUseServer, adUseClient, adUseClientBatch.

QALoad 5.02

378

Example

ADO_Recordset(0)->GetCacheSize(pLong);
ADO_Recordset(0)->PutCacheSize(1);
ADO_Recordset(0)->GetCursorLocation(pLong);
ADO_Recordset(0)->PutCursorLocation(adUseClient);

ADO_Recordset(n)->PutCursorType

Use the CursorType property to specify the type of cursor that should be used when opening the ADO
Recordset object.

Only a sett ing of adOpenStat ic is supported i f the CursorLocat ion property is set to adUseClient. If an
unsupported value is set, then no error wi l l result ; the closest supported CursorType wil l be used instead.

Syntax

ADO_Recordset(n)->PutCursorType(<CursorTypeEnum>);

Parameters

Param eter Descript i on

n An index to the object.

CursorTypeEnum The CursorTypeEnum argument can be:
adOpenUnspecified, adOpenForwardOnly, adOpenKeyset,
adOpenDynamic, or adOpenStat ic.

Example

ADO_Recordset(0)->GetCursorLocation(pLong);
ADO_Recordset(0)->PutCursorLocation(adUseServer);
ADO_Recordset(0)->GetCursorType(pLong);
ADO_Recordset(0)->PutCursorType(adOpenDynamic);

ADO_Recordset(n)->PutDataMember

Indicates the name of the data member that wi l l be retrieved from the object referenced by the DataSource
property.

This property is used to create data-bound controls with the Data Environment. The Data Environment
maintains col lect ions of data (data sources) contain ing named objects (data members) that wi l l be
represented as an ADO Recordset object.

Syntax

ADO_Recordset(n)->PutDataMember("<DataMember>");

Parameters

Param eter Descript i on

n An index to the object.

<DataMember> Name of the data member being returned from the Recordset object.

QALoad 5.02

379

ADO_Recordset(n)->PutFilter

Indicates a fi l ter for data in an ADO Recordset.

Use the Fi l ter property to select ively screen out records in an ADO Recordset object. The fi l tered ADO
Recordset becomes the current cursor.

Syntax

ADO_Recordset(n)->PutFilter(pvValue);

Parameters

Param eter Descript i on

n An index to the object.

pvValue A pointer to a VARIANT.

Example

ADO_Recordset(0)->GetEditMode(pLong);
ADO_Recordset(0)->GetFilter(pvValue);
ADO_LoadVariant(pvValue, "8", "tinyint_col = 99");
ADO_Recordset(0)->PutFilter(pvValue);

ADO_Recordset(n)->Put Index

This is a h idden method. It is undocumented with in MSDN. If you are looking at incorporat ing th is
method, please examine the example below and do as you see fi t .

Neither QALoad support professionals nor development recommend adding th is method to a script .

Syntax

ADO_Recordset(n)->PutIndex("Index");

Parameters

Param eter Descript i on

n An index to the object.

Index The Index on the recordset.

ADO_Recordset(n)->PutLockType

Indicates the type of locks placed on records during edit ing.

Set the LockType property before opening an ADO Recordset to specify what type of locking the provider
should use when opening i t . Read the property to return the type of locking in use on an open ADO
Recordset object.

Note: The LockTypeEnum argument can be any of several elements listed below, or it may be a cast
number — (LockTypeEnum)0. For best results when load testing, please feel free to replace the lock type with
adLockOptimistic.

adLockUnspecified
adLockReadOnly
adLockPessimistic

QALoad 5.02

380

adLockOptimistic
adLockBatchOptimistic

Syntax

ADO_Recordset(n)->PutLockType(<LockTypeEnum>);

Parameters

Param eter Descript i on

n An index to the object.

LockTypeEnum An enumerat ion of lock types.

Example

ADO_Recordset(0)->GetCursorType(pLong);
ADO_Recordset(0)->PutCursorType(adOpenForwardOnly);
ADO_Recordset(0)->GetLockType(pLong);
ADO_Recordset(0)->PutLockType(adLockOptimistic);

ADO_Recordset(n)->PutMarshalOpt ions

Indicates which records are to be marshaled back to the server.

Syntax

ADO_Recordset(n)->PutMarshalOptions(<MarshalOptionsEnum>);

Parameters

Param eter Descript i on

n An index to the object.

MarshalOptionsEnum Indicator about records to send across.

Example

ADO_Recordset(2)->PutMarshalOptions(adMarshalModifiedOnly);
ADO_LoadVariant(pvValue, "8", "sSSN");
ADO_LoadVariant(pvData, "8", "333555333");
ADO_Recordset(2)->PutCollect(pvValue, pvData);
ADO_LoadVariant(pvValue, "8", "sLastName");
ADO_LoadVariant(pvData, "8", "Gifford");
ADO_Recordset(2)->PutCollect(pvValue, pvData);
ADO_LoadVariant(pvValue, "8", "sFirstName");
ADO_LoadVariant(pvData, "8", "Roger");
ADO_Recordset(2)->PutCollect(pvValue, pvData);
ADO_LoadVariant(pvValue, "8", "sMiddleInitial");
ADO_LoadVariant(pvData, "8", "X");
ADO_Recordset(2)->PutCollect(pvValue, pvData);

ADO_Recordset(n)->PutMaxRecords

Indicates the maximum number of records to return to an ADO Recordset from a query.

Use the MaxRecords property to l im it the number of ADO Records that the provider returns from the data
source. The default sett ing of th is property is zero, which means the provider returns al l requested records.

QALoad 5.02

381

Syntax

ADO_Recordset(n)->PutMaxRecords(#);

Parameters

Param eter Descript i on

n An index to the object.

Maximum number of records to return from a Recordset query.

Example

ADO_Recordset(0)->GetLockType(pLong);
ADO_Recordset(0)->PutLockType(adLockReadOnly);
ADO_Recordset(0)->GetMaxRecords(pLong);
ADO_Recordset(0)->PutMaxRecords(10);

ADO_Recordset(n)->PutPageSize

Indicates how many records const i tute one page in the ADO Recordset.

Use the PageSize property to determine how many ADO Records make up a logical page of data.
Establ ish ing a page size al lows you to use the AbsolutePage property to move to the first record of a
part icular page.

Syntax

ADO_Recordset(n)->PutPageSize(#);

Parameters

Param eter Descript i on

n An index to the object.

Number of records forming a page in the Recordset.

Example

ADO_Recordset(0)->GetMarshalOptions(pLong);
ADO_Recordset(0)->GetPageSize(pLong);
ADO_Recordset(0)->PutPageSize(4);
ADO_Recordset(0)->GetPageCount(pLong);
ADO_Recordset(0)->GetAbsolutePage(pLong);

ADO_Recordset(n)->PutRefAct iveConnect ion

Indicates to which ADO Connect object the specified ADO Command, ADO Recordset, or Record object
current ly belongs.

For open ADO Recordset objects or for ADO Recordset objects whose Source property is set to a val id ADO
Command object, the Act iveConnect ion property is read-only. Otherwise, i t is read/write.

Syntax

ADO_Recordset(n)->PutRefActiveConnection(ADOConnect[#]);

QALoad 5.02

382

Parameters

Param eter Descript i on

n An index to the object.

ADOCommand[#] The connect ion that is act ive.

Example

ADO_Recordset(0)->GetActiveConnection(pvValue);
ADO_Recordset(0)->GetBOF(pVTBOOL);
ADO_Recordset(0)->PutSource("Select * from test_table where " "keyval < 100");
LoadVariant(pvValue, ADOConnect[1]);
ADO_Recordset(0)->PutActiveConnection(pvValue);
ADO_LoadVariant(pvSource, "10", "2147614724");
ADO_LoadVariant(pvValue, "10", "2147614724");
ADO_Recordset(0)->Open(pvSource, pvValue, adOpenStatic, adLockPessimistic, -1);

ADO_Recordset(n)->PutRefDataSource

Indicates an object that contains data to be represented as an ADO Recordset object.

This property is used to create data-bound controls with the Data Environment. The Data Environment
maintains col lect ions of data (data sources) contain ing named objects (data members) that wi l l be
represented as an ADO Recordset object.

Syntax

ADO_Recordset(n)->PutRefDataSource(pIUnknown);

Parameters

Param eter Descript i on

n An index to the object.

PIUnknown A pointer to a COM object.

ADO_Recordset(n)->PutRefSource

Sets a Command object as the data source for a Recordset object.

Use the Source property to specify a data source for a Recordset object using one of the fol lowing: a
Command object variable, SQL statement, stored procedure, or table name.

Syntax

ADO_Recordset(n)->PutRefSource(VARIANT* pvValue);

Parameters

Param eter Descript i on

pvValue A pointer to a variant that contains a reference to a val id Command object.

Example

ADO_Recordset(0)->PutActiveConnection(pvValue);
LoadVariant(pvValue, ADOCommand[0]);

QALoad 5.02

383

ADO_Recordset(0)->PutRefSource(pvValue);
ADO_LoadVariant(pvSource, "10", "2147614724");

ADO_Recordset(n)->PutSort

Indicates one or more field names on which the ADO Recordset is sorted, and whether each field is sorted
in ascending or descending order.

Syntax

ADO_Recordset(n)->PutSort("SortString");

Parameters

Param eter Descript i on

n An index to the object.

SortString char*

ADO_Recordset(n)->PutSource

Indicates the data source for an ADO Recordset object.

Use the Source property to specify a data source for an ADO Recordset object using one of the fol lowing: a
Command object variable, an SQL statement, a stored procedure, or a table name.

Syntax

ADO_Recordset(n)->PutSource("<DataSource>");

Parameters

Param eter Descript i on

n An index to the object.

<Datasource> A char* representat ion of a data source.

Example

ADO_Recordset(0)->PutSource("Select sUID, sPWD, sPhone" "from USER Where lcase(sUID)=’sa’
and sPWD = 'sa'");
ADO_LoadVariant(pvSource, "8", "Select sUID, sPWD, sPhone" "from USER Where
lcase(sUID)='sa' and sPWD = 'sa'");
LoadVariant(pvValue, ADOConnect[1]);
ADO_Recordset(0)->Open(pvSource, pvValue, adOpenKeyset, adLockOptimistic, -1);
ADO_Recordset(0)->GetRecordCount(pLong);
ADO_Recordset(0)->GetFields(ADOFieldSet[0]);

ADO_Recordset(n)->PutStayInSync

Indicates, in a h ierarchical ADO Recordset object, whether the reference to the underlying chi ld records
(that is, the chapter) changes when the parent row posit ion changes.

This property appl ies to h ierarchical ADO Recordsets, such as those supported by the M icrosoft Data
Shaping Service for OLE DB, and must be set on the parent ADO Recordset before the chi ld ADO Recordset
is retrieved. This property simpli fies navigat ing h ierarchical ADO Recordsets.

QALoad 5.02

384

Syntax

ADO_Recordset(n)->PutStayInSync(<BOOL>);

Parameters

Param eter Descript i on

n An index to the object.

BOOL TRUE or FALSE.

Example

ADO_Recordset(0)->GetStayInSync(FALSE);
ADO_Recordset(0)->PutStayInSync(pVTBOOL);
ADO_LoadVariant(pvSource, "8", "select * from test_table where keyval < 100" ;
ADO_LoadVariant(pvValue, "8", "PROVIDER=MSDASQL;dsn="
"FhLoadDB2;uid=sa;pwd=;database=Master;");
BeginCheckpoint("ADORecordset::Open");
ADO_Recordset(0)->Open(pvSource, pvValue, adOpenUnspecified, adLockUnspecified, -1);
EndCheckpoint("ADORecordset::Open");

ADO_Recordset(n)->ReQuery

Updates the data in an ADO Recordset object by re-execut ing the query on which the object is based.

Use the Requery method to refresh the ent ire contents of an ADO Recordset object from the data source by
reissuing the original command and retrieving the data a second t ime.

Syntax

ADO_Recordset(n)->ReQuery(#);

Parameters

Param eter Descript i on

n An index to the object.

-1 TRUE or 0 FALSE

Example

ADO_Recordset(0)->MoveFirst();
ADO_Recordset(0)->MoveNext();
ADO_Recordset(0)->MovePrevious();
ADO_Recordset(0)->MoveLast();
ADO_Recordset(0)->Requery(-1);
ADO_Recordset(0)->Supports((CursorOptionEnum)8388608, pVTBOOL);
ADO_Recordset(0)->Close();

ADO_Recordset(n)->Resync

Refreshes the data in the current ADO Recordset object, or Fields col lect ion of a Record object, from the
underlying database.

Use the Resync method to resynchronize records in the current ADO Recordset with the underlying
database. This is useful i f you are using either a stat ic or forward-only cursor, but you want to see any
changes in the underlying database.

QALoad 5.02

385

Syntax

ADO_Recordset(n)->Resync(<AffectEnum>, <ResyncEnum>);

Parameters

Param eter Descript i on

n An index to the object.

AffectEnum An enumerated type , any one of the fol lowing values:
adAffectCurrent, adAffectGroup, adAffectAl l , adAffectAl lChapters.

ResyncEnum An enumerated type , any one of the fol lowing values:
adResyncUnderlyingValues, adResyncAllValues.

Example

ADO_Recordset(0)->Resync(adAffectAll, adResyncAllValues);
ADO_Recordset(0)->GetStayInSync(pVTBOOL);

ADO_Recordset(n)->Save

Saves the ADO Recordset in a fi le or ADO Stream object. The Save method can only be invoked on an open
ADO Recordset. Use the Open method to later restore the ADO Recordset from Dest inat ion.

If the Fi l ter property is in effect for the ADO Recordset, then only the rows accessible under the fi l ter are
saved. If the ADO Recordset is h ierarchical, then the current ch i ld ADO Recordset and i ts ch i ldren are
saved, including the parent ADO Recordset. If the Save method of a chi ld ADO Recordset is cal led, the
chi ld and al l i ts ch i ldren are saved, but the parent is not.

The first t ime you save the ADO Recordset, i t is opt ional to specify Dest inat ion. If you omit Dest inat ion, a
new fi le wi l l be created with a name set to the value of the Source property of the ADO Recordset.

Note: The second argument here can be given as adPersistXML or adPersistADTG.

Syntax

ADO_Recordset(n)->Save(pvValue, <PersistModeEnum>);

Parameters

Param eter Descript i on

n An index to the object.

pvValue A pointer to a VARIANT.

PersistModeEnum An enumerated type.

Example

ADO_Recordset(0)->MovePrevious();
ADO_Recordset(0)->MoveLast();
ADO_Recordset(0)->Requery(-1);
ADO_LoadVariant(pvValue, "8", "saver.xml");
ADO_Recordset(0)->Save(pvValue, adPersistXML);

QALoad 5.02

386

ADO_Recordset(n)->Seek

The SeekEnum is an Enumerated value giving the direct ion of the seek operat ion.

Syntax

ADO_Recordset(n)->Seek(pvValue, <SeekEnum>);

Parameters

Param eter Descript i on

n An index to the object.

pvValue A pointer to a Variant contain ing an array of Varian t values.

SeekEnum Direct ion of the seek.

ADO_Recordset(n)->Supports

Determines whether a specified ADO Recordset object supports a part icular type of funct ional i ty. If the
ADO Recordset object supports the features whose corresponding constants are in CursorOptions, the
Supports method returns True. Otherwise, i t returns False.

Syntax

ADO_Recordset(n)->Supports(CursorOptionEnum, pVT_BOOL);

Parameters

Param eter Descript i on

n An index to the object.

CursorOptionEnum An enumerated type.

pVT_BOOL A pointer to a VARIANT_BOOL.

Example

ADO_Recordset(0)->MoveFirst();
ADO_Recordset(0)->MoveNext();
ADO_Recordset(0)->MovePrevious();
ADO_Recordset(0)->MoveLast();
ADO_Recordset(0)->Requery(-1);
ADO_Recordset(0)->Supports((CursorOptionEnum)8388608, pVTBOOL);
ADO_Recordset(0)->Close();

ADO_Recordset(n)->Update

Saves any changes you make to the current row of an ADO Recordset object.

Use the Update method to save any changes you make to the current record of an ADO Recordset object
since cal l ing the AddNew method or since changing any field values in an exist ing record. The ADO
Recordset object must support updates.

Syntax

ADO_Recordset(n)->Update(pvValue, pvData);

QALoad 5.02

387

Parameters

Param eter Descript i on

n An index to the object.

pvValue A pointer to a VARIANT.

pvData A pointer to a VARIANT.

Example

ADO_Recordset(2)->GetFields(ADOFieldSet[0]);
ADO_LoadVariant(pvValue, "8", "FirstName");
ADO_FieldSet(0)->GetItem(pvValue, ADOField[0]);
ADO_LoadVariant(pvValue, "3", "John");
ADO_Field(0)->PutValue(pvValue);
ADOFieldSet.Release(0);
ADOField.Release(0);
ADO_Recordset(2)->GetFields(ADOFieldSet[0]);
ADO_LoadVariant(pvValue, "8", "LastName");
ADO_FieldSet(0)->GetItem(pvValue, ADOField[0]);
ADO_LoadVariant(pvValue, "8", "Doe");
ADO_Field(0)->PutValue(pvValue);
ADOFieldSet.Release(0);
ADOField.Release(0);
ADO_LoadVariant(pvValue, "10", "2147614724");
ADO_LoadVariant(pvData, "10", "2147614724");
ADO_Recordset(2)->Update(pvValue, pvData);
ADO_Recordset(2)->Close();

ADO_Recordset(n)->UpdateBatch

Writes al l pending batch updates with in the ADO Recordset to disk.

Syntax

ADO_Recordset(n)->UpdateBatch(<AffectEnum>);

Parameters

Param eter Descript i on

n An index to the object.

AffectEnum An enumerated type.

Example

ADO_Recordset(0)->Delete(adAffectCurrent);
ADO_LoadVariant(pvValue, "10", "2147614724");
ADO_LoadVariant(pvData, "10", "2147614724");
BeginCheckpoint("ADORecordset::Update");
ADO_Recordset(0)->Update(pvValue, pvData);
EndCheckpoint("ADORecordset::Update");
BeginCheckpoint("ADORecordset::UpdateBatch");
ADO_Recordset(0)->UpdateBatch(adAffectAll);
EndCheckpoint("ADORecordset::UpdateBatch");
ADO_Recordset(0)->Supports((CursorOptionEnum)8388608, pVTBOOL);

QALoad 5.02

388

ADO_Stream(n)->Cancel

Cancels execut ion of a pending ADO Stream, asynchronous method cal l .

Syntax

ADO_Stream(n)->Cancel();

Parameters

Param eter Descript i on

n An index to the object.

Example

ADO_LoadVariant(pvSource, "10", "2147614724");
ADO_Stream(0)->Open(pvSource, adModeUnknown, adOpenStreamUnspecified,"","");
ADO_Stream(0)->Cancel();
ADO_Stream(0)->Close();

ADO_Stream(n)->Close

Closes an open object and any dependent objects.

Using the Close method to close an ADO Stream object releases the associated data and any exclusive
access you may have had to the data through th is part icular object. You can later cal l the Open method to
reopen the object with the same, or modified, attributes.

Close the ADO Stream and give up al l rights you may have had to the data.

Syntax

ADO_Stream(n)->Close();

Parameters

Param eter Descript i on

n An index to the object.

Example

ADO_LoadVariant(pvSource, "10", "2147614724");
ADO_Stream(0)->Open(pvSource, adModeUnknown, adOpenStreamUnspecified, "","");
ADO_Stream(0)->Cancel();
ADO_Stream(0)->Close();

ADO_Stream(n)->CopyTo

Copies the specified number of characters or bytes (depending on Type) in the ADO Stream to another
ADO Stream object.

This method copies the specified number of characters or bytes, start ing from the current posit ion specif ied
by the Posit ion property. If the specified number is more than the avai lable number of bytes unt i l EOS,
then only characters or bytes from the current posit ion to EOS are copied. If the value of NumChars is 1, or
omit ted, al l characters or bytes start ing from the current posit ion are copied.

If there are exist ing characters or bytes in the dest inat ion ADO Stream, al l contents beyond the point

QALoad 5.02

389

where the copy ends remain, and are not truncated. Posit ion becomes the byte immediately fol lowing the
last byte copied. If you want to truncate these bytes, cal l SetEOS.

Syntax

ADO_Stream(n)->CopyTo(ADOStream[#], #);

Parameters

Param eter Descript i on

n An index to the object.

ADOStream[#] An instance of an ADO Source object.

A posit ive in teger.

Example

ADO_Stream(0)->GetSize(pLong);
ADO_Stream(0)->PutPosition(0);
ADO_LoadVariant(pvSource, "10", "2147614724");
ADO_Stream(1)->Open(pvSource, adModeUnknown, adOpenStreamUnspecified, "","");
ADO_Stream(0)->CopyTo(ADOStream[1], 5);
ADO_Stream(0)->ReadText(20, sLoadStr);

ADO_Stream(n)->Flush

Forces the contents of the ADO Stream remain ing in the ADO buffer to the underlying object with which
the ADO Stream is associated.

This method may be used to send the contents of the ADO Stream buffer to the underlying object
represented by the URL that is the source of the ADO Stream object. This method should be cal led when
you want to ensure that al l changes made to the contents of an ADO Stream have been writ ten. However,
with ADO it is not usual ly necessary to cal l Flush, as ADO cont inuously flushes i ts buffer as much as
possible in the background.

Changes to the content of an ADO Stream are made automatical ly, and not cached unt i l Flush is cal led.

Syntax

ADO_Stream(n)->Flush();

Parameters

Param eter Descript i on

n An index to the object.

Example

ADO_Stream(0)->CopyTo(ADOStream[1], 5);
ADO_Stream(0)->ReadText(20, sLoadStr);
ADO_Stream(1)->Flush();
ADO_Stream(0)->Cancel();
ADO_Stream(0)->Close();

QALoad 5.02

390

ADO_Stream(n)->GetCharset

Indicates the character set in to which the contents of a text ADO Stream should be translated.

In a text ADO Stream object, text data is stored as Unicode. The Charset property translates the data read
from the ADO Stream into the specified character set. Similarly, data writ ten to the ADO Stream in the
specified character set is translated in to Unicode for storage in the ADO Stream object.

Syntax

ADO_Stream(n)->GetCharset(sLoadStr);

Parameters

Param eter Descript i on

n An index to the object.

sLoadStr A CLoadString object.

Example

ADO_Stream(1)->Cancel();
ADO_Stream(1)->Close();
ADO_Stream(0)->GetCharset(sLoadStr);
ADO_Stream(0)->PutCharset("Unicode");

ADO_Stream(n)->GetEOS

Indicates whether the current posit ion is at the end of the ADO Stream.

Returns a Boolean value that indicates whether the current posit ion is at the end of the ADO Stream. EOS
returns True i f there are no more bytes in the ADO Stream; i t returns False i f there are more bytes fol lowing
the current posit ion.

At replay, QALoad checks the current posit ion in the stream to determine whether or not th is is the end of
the stream.

Syntax

ADO_Stream(n)->GetEOS(pVTBOOL);

Parameters

Param eter Descript i on

n An index to the object.

pVT_BOOL A pointer to a VARIANT_BOOL.

Example

ADO_Stream(0)->CopyTo(ADOStream[1], 20);
ADO_Stream(0)->ReadText(20, sLoadStr);
ADO_Stream(1)->GetEOS(pVTBOOL);
ADO_Stream(1)->Flush();

QALoad 5.02

391

ADO_Stream(n)->GetLineSeparator

Indicates the binary character to be used as the l ine separator in text ADO Stream objects.

LineSeparator is used only with text ADO Stream objects (Type is adTypeText). This property is ignored i f
Type is adTypeBinary.

Syntax

ADO_Stream(n)->GetLineSeparator(pLong);

Parameters

Param eter Descript i on

n An index to the object.

pLong A pointer to a 4-byte in teger.

Example

ADO_Stream(1)->GetEOS(pVTBOOL);
ADO_Stream(1)->PutLineSeparator(adCR);
ADO_Stream(1)->GetLineSeparator(pLong);
ADO_Stream(1)->Flush();

ADO_Stream(n)->GetMode

Indicates the avai lable permissions for modifying data in a Connect ion, Record, or ADO Stream object.

Use the Mode property to set or return the access permissions in use by the provider on the current
connect ion. You can set the Mode property only when the Connect ion object is closed.

Syntax

ADO_Stream(n)->GetMode(pLong);

Parameters

Param eter Descript i on

n An index to the object.

pLong A pointer to a 4-byte in teger.

Example

ADO_Stream(0)->GetLineSeparator(pLong);
ADO_Stream(0)->PutLineSeparator(adCRLF);
ADO_Stream(0)->GetState(pLong);
ADO_Stream(0)->GetMode(pLong);
ADO_Stream(0)->PutMode(adModeShareDenyNone);

ADO_Stream(n)->GetPosit ion

Indicates the current posit ion with in an ADO Stream object.

Sets or returns a Long value that specifies the offset , in number of bytes, of the current posit ion from the
beginning of the ADO Stream. The default is 0, which represents the first byte in the ADO Stream.
At replay, QALoad , checks the current posit ion and feeds that posit ion back to the user in the pointer.

QALoad 5.02

392

Syntax

ADO_Stream(n)->GetPosition(pLong);

Parameters

Param eter Descript i on

n An index to the object.

pLong A pointer to a 4-byte in teger.

Example

ADO_Stream(0)->GetPosition(pLong);
ADO_Stream(0)->PutPosition(0);
ADO_LoadVariant(pvSource, "10", "2147614724");
ADO_Stream(1)->Open(pvSource, adModeUnknown, adOpenStreamUnspecified, "", "");
ADO_Stream(1)->PutType(adTypeText);
ADO_Stream(0)->CopyTo(ADOStream[1], 20);

ADO_Stream(n)->GetSize

Returns a Long value that specifies the size of the ADO Stream in number of bytes. The default value is the
size of the ADO Stream, or -1 i f the size of the ADO Stream is not known.

At replay, QALoad checks the size of the ADO Stream that is referenced by th is cal l .

Syntax

ADO_Stream(n)->GetSize(pLong);

Parameters

Param eter Descript i on

n An index to the object.

pLong A pointer to a 4-byte in teger.

Example

ADO_Stream(0)->PutType(adTypeText);
ADO_Stream(0)->LoadFromFile("D:\\Ward.txt");
ADO_Stream(0)->GetSize(pLong);
ADO_Stream(0)->PutPosition(0);

ADO_Stream(n)->GetState

The ADO Stream object 's State property can have a combinat ion of values. For example, i f a statement is
execut ing, th is property wi l l have a combined value of adStateOpen and adStateExecut ing.

GetState returns 0 for a not open state and 1 for an open state.

Syntax

ADO_Stream(n)->GetState(pLong);

Parameters

Param eter Descript i on

QALoad 5.02

393

n An index to the object.

pLong A pointer to a 4-byte in teger.

Example

ADO_Stream(0)->LoadFromFile("D:\\Ward.txt");
ADO_Stream(0)->GetSize(pLong);
ADO_Stream(0)->GetState(pLong);

ADO_Stream(n)->GetType

Indicates the type of data contained in the ADO Stream (binary or text).

Sets or returns a StreamTypeEnum value that specifies the type of data contained in the ADO Stream
object. The default value is adTypeText. However, i f binary data is in i t ial ly wri t ten to a new, empty ADO
Stream, the Type wil l be changed to adTypeBinary.

Syntax

ADO_Stream(n)->GetType(pLong);

Parameters

Param eter Descript i on

n An index to the object.

pLong A pointer to a 4-byte in teger.

Example

ADO_Stream(0)->GetPosition(pLong);
ADO_Stream(0)->PutPosition(0);
ADO_Stream(0)->GetType(pLong);
ADO_LoadVariant(pvSource, "10", "2147614724");
ADO_Stream(1)->Open(pvSource, adModeUnknown, adOpenStreamUnspecified, "", "");

ADO_Stream(n)->LoadFromFile

Loads the contents of an exist ing fi le in to an ADO Stream.

This method may be used to load the contents of a local fi le in to an ADO Stream object. This may be used
to upload the contents of a local fi le to a server.

The ADO Stream object must be already open before cal l ing LoadFromFile. This method does not change
the binding of the ADO Stream object; i t wi l l st i l l be bound to the object speci fied by the URL with which
the ADO Stream was original ly opened. LoadFromFi le overwrites the current contents of the ADO Stream
object with data read from the fi le.

Syntax

ADO_Stream(n)->LoadFromFile("filename");

Parameters

Param eter Descript i on

n An index to the object.

QALoad 5.02

394

<FileName> A string representat ion of a fi le name.

Example

ADO_LoadVariant(pvSource, "10", "2147614724");
ADO_Stream(0)->Open(pvSource, adModeUnknown, adOpenStreamUnspecified, "", "");
ADO_Stream(0)->PutType(adTypeText);
ADO_Stream(0)->LoadFromFile("D:\\Ward.txt");
ADO_Stream(0)->GetSize(pLong);
ADO_Stream(0)->GetState(pLong);

ADO_Stream(n)->Open

Opens an ADO Stream object to manipulate streams of binary or text data.

When a Record object is passed in as the source parameter, the User ID and Password parameters are not
used because access to the Record object is already avai lable. Similarly, the Mode of the Record object is
transferred to the ADO Stream object.

When Source is not specif ied, the ADO Stream opened contains no data and has a Size of zero (0). To avoid
losing any data that is wri t ten to th is ADO Stream when the ADO Stream is closed, save the ADO Stream
with the CopyTo or SaveToFile methods, or save i t to another memory locat ion.

While the ADO Stream is not open, i t is possible to read al l the read-only propert ies of the ADO Stream. If
an ADO Stream is opened asynchronously, al l subsequent operat ions (other than checking the State and
other read-only propert ies) are blocked unt i l the Open operat ion is completed.

Open the ADO Stream to manipulate binary or text data.

Syntax

ADO_LoadVariant(pvValue, "Type", "Value");
ADOStream(n)->Open(pvSource, <ConnectionModeEnum>,
 <StreamOpenOptionsEnum>, "User", "Password");

Parameters

Param eter Descript i on

n An index to the object.

pvValue A pointer to a VARIANT.

ConnectionModeEnum An enumerated data set.

UserName A user name string.

Password A password string.

Example

ADO_LoadVariant(pvSource, "10", "2147614724");
ADO_Stream(0)->Open(pvSource, adModeUnknown, adOpenStreamUnspecified, "", "");
ADO_Stream(0)->PutType(adTypeText);
ADO_Stream(0)->LoadFromFile("D:\\Ward.txt");
ADO_Stream(0)->GetSize(pLong);
ADO_Stream(0)->GetState(pLong);

QALoad 5.02

395

ADO_Stream(n)->PutCharset

Indicates the character set in to which the contents of a text ADO Stream should be translated.

In a text ADO Stream object, text data is stored as Unicode. The Charset property translates the data read
from the ADO Stream into the specified character set. Similarly, data writ ten to the ADO Stream in the
specified character set is translated in to Unicode for storage in the ADO Stream object.

Syntax

ADO_Stream(n)->PutCharset("charset");

Parameters

Param eter Descript i on

n An index to the object.

Charset A string representat ion of a character set.

Example

ADO_Stream(0)->PutCharset("ascii");
ADO_Stream(0)->LoadFromFile("D:\\Ward.txt");
ADO_Stream(0)->GetSize(pLong);
ADO_Stream(0)->GetState(pLong);
ADO_Stream(0)->PutPosition(15);
ADO_Stream(0)->GetPosition(pLong);
ADO_Stream(0)->PutPosition(0);
ADO_Stream(0)-GetType(pLong);

ADO_Stream(n)->PutLineSeparator

Indicates the binary character to be used as the l ine separator in text ADO Stream objects.

LineSeparator is used only with text ADO Stream objects (Type is adTypeText). This property is ignored i f
Type is adTypeBinary.

Syntax

ADO_Stream(n)->PutLineSeparator(LineSeparatorEnum);

Parameters

Param eter Descript i on

n An index to the object.

LineSeparatorEnum Text or binary.

Example

ADO_Stream(0)->CopyTo(ADOStream[1], 20);
ADO_Stream(0)->ReadText(20, sLoadStr);
ADO_Stream(1)->GetEOS(pVTBOOL);
ADO_Stream(1)->PutLineSeparator(adCR);

QALoad 5.02

396

ADO_Stream(n)->PutMode

Indicates the avai lable permissions for modifying data in a Connect ion, Record, or ADO Stream object.
Use the Mode property to set or return the access permissions in use by the provider on the current
connect ion.

Note: You can set the Mode property only when the Connection object is closed.

Syntax

ADO_Stream(n)->PutMode(<ConnectModeEnum>);

Parameters

Param eter Descript i on

n An index to the object.

Example

ADO_Stream(0)->LoadFromFile("D:\\Ward.txt");
ADO_Stream(0)->GetSize(pLong);
ADO_Stream(0)->GetState(pLong);
ADO_Stream(0)->PutMode(adModeShareDenyNone);
ADO_Stream(0)->PutPosition(15);

ADO_Stream(n)->PutPosit ion

Indicates the current posit ion with in an ADO Stream object.

Sets or returns a Long value that specifies the offset , in number of bytes, of the current posit ion from the
beginning of the ADO Stream. The default is 0, which represents the first byte in the ADO Stream.

At replay, QALoad sets the current posit ion in the ADO Stream.

Syntax

ADO_Stream(n)->PutPosition(#);

Parameters

Param eter Descript i on

n An index to the object.

Example

ADO_Stream(0)->PutPosition(0);
ADO_Stream(0)->GetType(pLong);
ADO_LoadVariant(pvSource, "10", "2147614724");
ADO_Stream(1)->Open(pvSource, adModeUnknown, adOpenStreamUnspecified, "", "");

ADO_Stream(n)->PutType

Indicates the type of data contained in the ADO Stream (binary or text).

Sets or returns a StreamTypeEnum value that specifies the type of data contained in the ADO Stream
object. The default value is adTypeText. However, i f binary data is in i t ial ly wri t ten to a new, empty ADO
Stream, the Type wil l be changed to adTypeBinary.

QALoad 5.02

397

Syntax

ADO_Stream(n)->PutType(<StreamTypeEnum>);

Parameters

Param eter Descript i on

n An index to the object.

Example

ADO_Stream(0)->Open(pvSource, adModeUnknown, adOpenStreamUnspecified, "", "");
ADO_Stream(0)->PutType(adTypeText);
ADO_Stream(0)->PutCharset("ascii");
ADO_Stream(0)->LoadFromFile("D:\\Ward.txt");

ADO_Stream(n)->Read

Reads a specified number of bytes from a binary ADO Stream object.

If NumBytes is more than the number of bytes left in the ADO Stream, only the bytes remain ing are
returned. The data read is not padded to match the length specified by NumBytes. If there are no bytes left
to read, a variant with a nul l value is returned. Read cannot be used to read backwards.

Syntax

ADO_Stream(n)->Read(<NumBytes>, sLoadStr);

Parameters

Param eter Descript i on

n An index to the object.

NumBytes A non negat ive in teger value corresponding to the number of bytes to read.

sLoadStr A CLoadString in to which the data is read.

ADO_Stream(n)->ReadText

Reads specified number of characters from a text ADO Stream object.

If NumChar is more than the number of characters left in the ADO Stream, only the characters remain ing
are returned. The string read is not padded to match the length specified by NumChar. If there are no
characters left to read, a variant whose value is nul l is returned.

ReadText cannot be used to read backwards.

Syntax

ADO_Stream(n)->ReadText(<NumChar>, sLoadStr);

Parameters

Param eter Descript i on

n An index to the object.

QALoad 5.02

398

NumChar A non negat ive in teger value corresponding to the number of characters to
read.

sLoadStr A CLoadString in to which the data is read.

Example

ADO_Stream(1)->PutType(adTypeText);
ADO_Stream(0)->CopyTo(ADOStream[1], 20);
ADO_Stream(0)->ReadText(20, sLoadStr);
ADO_Stream(1)->GetEOS(pVTBOOL);

ADO_Stream(n)->SaveToFile

Saves the number of bytes contents of the current ADO Stream to the fi le from the current posit ion. It
sends the second param number of bytes to that Fi le.

SaveToFile may be used to copy the contents of an ADO Stream object to a local fi le. There is no change in
the contents or propert ies of the ADO Stream object . The ADO Stream object must be open before cal l ing
SaveToFile.

This method does not change the associat ion of the ADO Stream object to i ts underlying source. The ADO
Stream object wi l l st i l l be associated with the original URL that was i ts source when opened.

Syntax

ADO_Stream(n)->SaveToFile("FileName", <SaveOptionsEnum>);

Parameters

Param eter Descript i on

n An index to the object.

FileName A String forming the name of the fi le to save the stream to.

SaveOptionsEnum Create or overwrite are the different opt ions.

Example

ADO_Stream(1)->PutType(adTypeText);
ADO_Stream(0)->CopyTo(ADOStream[1], 20);
ADO_Stream(0)->ReadText(20, sLoadStr);
ADO_Stream(1)->GetEOS(pVTBOOL);
ADO_Stream(1)->PutLineSeparator(adCR);
ADO_Stream(1)->GetLineSeparator(pLong);
ADO_Stream(1)->SaveToFile("D:\\StreamReceive.txt", adSaveCreateOverWrite);
ADO_Stream(1)->Flush();

ADO_Stream(n)->SetEOS

Sets the current posit ion with in the ADO Stream as the End of the ADO Stream. SetEOS updates the value
of the EOS property, by making the current Posit ion the end of the ADO Stream. Any bytes or characters
fol lowing the current posi t ion are truncated.

Syntax

ADO_Stream(n)->SetEOS();

QALoad 5.02

399

Parameters

Param eter Descript i on

n An index to the object.

Example

ADO_Stream(1)->SaveToFile("D:\\Streamward.txt", adSaveCreateOverWrite);
ADO_Stream(1)->GetPosition(pLong);
if(*pLong >=20)
 ADO_Stream(1)->SetEOS();
ADO_Stream(1)->Flush();

ADO_Stream(n)->SkipLine

Skips one ent ire l ine when reading a text ADO Stream.

Al l characters up to, and including the next l ine separator, are skipped. By default , the LineSeparator is
adCRLF. If you attempt to skip past EOS, the curren t posit ion wil l simply remain at EOS.

Skip a l ine in the text buffer that is the ADO Stream.

Syntax

ADO_Stream(n)->SkipLine();

Parameters

Param eter Descript i on

n An index to the object.

Example

ADO_Stream(1)->PutType(adTypeText);
ADO_Stream(0)->CopyTo(ADOStream[1], 150);
ADO_Stream(0)->ReadText(50, sLoadStr);
ADO_Stream(0)->SkipLine();
ADO_Stream(1)->ReadText(50, sLoadStr);
ADO_Stream(1)->GetEOS(pVTBOOL);

ADO_Stream(n)->Write

Write wri tes BINARY Data to the ADO Stream buffer. Specified bytes are writ ten to the ADO Stream object
without any in tervening spaces between each byte.

The current Posit ion is set to the byte fol lowing the writ ten data. The Write method does not truncate the
rest of the data in a stream. If you want to truncate these bytes, cal l SetEOS.

If you write past the current EOS posit ion, the Size of the ADO Stream wil l be increased to contain any new
bytes, and EOS wil l move to the new last byte in the ADO Stream.

Syntax

ADO_LoadVariant(pvValue, "type", "value");
ADO_Stream(n)->Write(pvValue);

QALoad 5.02

400

Parameters

Param eter Descript i on

n An index to the object.

ADO_Stream(n)->WriteText

Writes a specified text string to an ADO Stream object.

Specified strings are writ ten to the ADO Stream object without any in tervening spaces or characters
between each string.

The current Posit ion is set to the character fol lowing the writ ten data. The WriteText method does not
truncate the rest of the data in a stream. If you want to truncate these characters, cal l SetEOS.

Syntax

ADO_Stream(n)->WriteText("texttowrite", <StreamWriteEnum>);

Parameters

Param eter Descript i on

n An index to the object.

Example

ADO_Stream(1)->GetSize(pLong);
ADO_Stream(1)->PutPosition(*pLong);
ADO_Stream(1)->SetEOS();
ADO_Stream(1)->WriteText("This is the way we drink water", adWriteLine);

ExtractVariantValue

Retrieves the contents of a variant and places that value in a string.

The result ing string can be used to provide users easier access to variant data. To prevent memory leaks,
free the string after use with the free() method.

Syntax

char* ExtractVariantValue (VARIANT* pValue);

Parameters

Param eter Descript i on

pValue The variant from the script

Example

// extract value from a field
ADO_Field(0)->GetValue(pvValue);
// use that value to create a new query
char* pszVal = ExtractVariantValue(pvValue);
char* pszSelect = (char*_malloc(128);
sprintf(pszSelect, "select * from test_table where keyval = '%s'", pszVal);
// clean up to avoid memory leaks
free(pszVal);

QALoad 5.02

401

// open a new recordset
ADO_LoadVariant(pvSource, "8", pszSelect);
free(pszSelect);
ADO_LoadVariant(pvValue, "8",
"PROVIDER=MSDASQL;dsn=FhLoadDB2;uid=sa;pwd=;database=""Master");
ADO_Recordset(4)->Open(pvSource, pvValue, adOpenUnspecified, adLockUnspecified, -1);

PrintVariant

Decodes variant data and places th is data in to a string.

The result ing string is combined with the specified comment and printed to the Player window during a
load test.

Syntax

void PrintVariant (VARIANT* pValue, char* sComment);

Parameters

Param eter Descript i on

pValue The variant from the script .

sComment Comment to send to the Player window.

Example

// extract the value in the first column
ADO_Recordset(3)->GetFields(ADOFieldSet[0]);
ADO_LoadVariant(pvValue, "3", "0");
ADO_FieldSet(0)->GetItem(pvValue, ADOField[0]);
ADO_Field(0)->GetValue(pvValue);
// print that value
PrintVariant(pvValue, "Value of the item in the first column");

Cit rix

Cit rix Index

BeginBlock
End of an i f block of code.

CitrixIn it
In i t ial izes Citrix replay middleware resources.

CitrixUninit
Un-in it ial izes the Citrix replay middleware resources. If the connect ion is st i l l open, the funct ion
disconnects i t .

CTX_error_handler
Outputs a fatal error message to the Conductor, which causes the virtual user to either fai l or report a
warning.

CtxClick
Cl icks the specified button, using the specified modifier, at the current locat ion.

CtxConnect
Connects to the Citrix server with the specified hostname and output mode.

QALoad 5.02

402

CtxDisconnect
Disconnects from the Citrix server.

CtxDomainLoginInfo
Connects to the Citrix server with the specified user name, password, and domain.

CtxDoubleClick
Double-cl icks the mouse at the current locat ion.

CtxKeyDown
Inputs the keystroke speci fied by the key argument, which corresponds to the VK code.

CtxKeyUp
Inputs the keystroke speci fied by the key argument, which corresponds to the VK code.

CtxMouseDown
Presses the specified mouse button.

CtxMouseMove
Moves the mouse to the given coordinates with the given button and modifier.

CtxMouseUp
Releases the specified mouse button.

CtxPing
Sends a ping request and waits for the response.

CtxPoint
Moves the mouse to the specified locat ion on the screen.

CtxScreenEventExists
Waits for the specified screen update to occur at the specified coordinates.

CtxSetApplicat ion
Connects to the Citrix server with the specified appl icat ion name and appl icat ion working directory name.

CtxSetCitrixPort
Sets the port for the Citrix cl ient to use to connect to the server.

CtxSetConnectTimeout
Sets the number of seconds to wait for connect ions to the server to complete.

CtxSetDisconnectTimeout
Sets the number of seconds to wait for disconnect ions from the server to complete.

CtxSetEnableCounters
Enables or disables custom counters for Citrix cl ient-side stat ist ics.

CtxSetEnableWildcardMatching
Enables or disables wildcard and substring name comparisons for matching Citrix window creat ion events.

CtxSetICAFile
Uses the specified ICA fi le when connect ing to a publ ished appl icat ion or desktop.

CtxSetLoginInfo
Connects to the Citrix server with the specified user name and password.

CtxSetPingTimeout
Sets the number of seconds to wait for a ping to be acknowledged.

CtxSetWaitPointTimeout
Sets the number of seconds to wait for a wait point .

CtxSetWindowMatchTit le
Sets the string to match the names of previously-created windows.

QALoad 5.02

403

CtxSetWindowRetries
Sets the retry in formation for window veri ficat ion.

CtxSetWindowTimeout
Sets the number of seconds to wait for windows to be act ivated and destroyed.

CtxSetWindowVerificat ion
Enables or disables window veri ficat ion for act ions.

CtxType
Inputs the specified key strokes.

CtxTypeChar
Sends the specified ASCII character to the Citrix server.

CtxTypeVK
Sends the VK code that corresponds to a key typed by the user.

CtxWaitForCaptionChange
Waits for the specified window's capt ion to be changed.

CtxWaitForScreenUpdate
Waits for the specified screen update to occur at the specified coordinates.

CtxWaitForWindowActive
Waits for the specified window to be act ivated (brought to the foreground).

CtxWaitForWindowCreate
Waits for the specified window to be created.

CtxWaitForWindowDestroy
Waits for the specified window to be destroyed.

CtxWaitForWindowLgIconChange
Waits for the specified window's capt ion to be changed.

CtxWaitForWindowMinimize
Waits for the specified window to be min imized.

CtxWaitForWindowMove
Waits for the specified window to be moved to the specified coordinates.

CtxWaitForWindowResize
Waits for the specified window to be resized to the specified dimensions.

CtxWaitForWindowSmIconChange
Waits for the specified window's capt ion to be changed.

CtxWaitForWindowStyleChange
Waits for the specified window's style to be changed as specified.

CtxWindowEventExists
Checks to see i f the specified window event has already occurred, and, i f not, waits for the specified t ime
for the event to occur.

EndBlock
End of an else block of code.

BeginBlock

End of an i f block of code.

Syntax

void BeginBlock();

QALoad 5.02

404

Return Value

None

Parameters

None

Example

// Window CWI_5 ("Citrix License Warning Notice") created 1087837373.062

if(CtxWindowEventExists(EVT_STR_CTXWINDOWCREATE, 3000, CWI_5))
BeginBlock();
CtxWaitForWindowCreate(CWI_5, 46);
EndBlock();

Cit rixInit

In i t ial izes the Citrix replay middleware resources.

Syntax

void CitrixInit (int flags);

Return Value

None

Parameters

Param eter Descript i on

flags Reserved

Example

CitrixInit(2);

Cit rixUninit

Un-in it ial izes the Citrix replay middleware resources. If the connect ion is st i l l open, th is funct ion
disconnects i t .

Syntax

void CitrixUninit();

Return Value

None

Parameters

None

Example

CitrixUninit();

CTX_error_handler

Outputs a fatal error message to the Conductor, which causes the virtual user to either fai l or report a
warning.

QALoad 5.02

405

Syntax

void CTX_error_handler(PLAYERINFO *, char *msg);

Parameters

Param eter Descript i on

PLAYERINFO Pointer to the PLAYERINFO struct, sinfo.

msg Message to be passed to the Conductor.

Example

{

 char buffer[1024];
 sprintf(buffer, "App did not start. Stop script now!");
 CTX_error_handler(s_info, buffer);

}

CtxClick

Clicks the specified button, using the specified modifier, at the current locat ion.

Syntax

void CtxClick(const CtxWI* windowInfo, long holdTime, long button, long ModifierKeys);

Parameters

Param eter Descript i on

windowInfo Pointer to a Citrix Window Information object contain ing window data.

holdTime Number of mil l iseconds to hold down the button.

button A mouse button to use for th is act ion.

NONE: No mouse button was specified
L_BUTTON: The left mouse button
R_BUTTON: The right mouse button
M_BUTTON: The middle mouse button

ModifierKeys A keyboard modifier to use for th is act ion.

NONE: No keyboard modifier was specified
SHIFT: Shift key
CONTROL: Control key
ALT: Alt key
EXTENDED: An extended key

Example

CtxWI *CWI_7001c = new CtxWI(0x1001c, "Warning !!", 299, 139, 427, 351);

...

CtxClick(CWI_7001c, 109, L_BUTTON, NONE);

QALoad 5.02

406

CtxConnect

Connects to the Citrix server with the specified hostname and output mode.

Syntax

void CtxConnect (const char *hostname, int outputmode);

Parameters

Param eter Descript i on

*hostname Name of the server to connect to.

outputmode Type of playback output/display. The fol lowing modes are avai lable:

OUTPUT_MODE_NORMAL: Seamless rendering and display with window
management.
OUTPUT_MODE_WINDOWLESS: Graphics are not displayed.
OUTPUT_MODE_RENDERLESS: Graphics are not used or displayed and there is
no window management.

Example

const char *CitrixServer = "qaccitrix";
const int CitrixOutputMode = OUTPUT_MODE_NORMAL;

...

CtxConnect(CitrixServer, CitrixOutputMode);

CtxDisconnect

Disconnects from the Citrix server.

Syntax

void CtxDisconnect();

Return Value

None

Parameters

None

Example

CtxDisconnect();

CtxDoubleClick

Double-cl icks the mouse at the current locat ion. If Window Verificat ion is enabled, ensure that the
specified window is in the foreground.

Syntax

void CtxDoubleClick(const CtxWI* windowInfo);

Parameters

Param eter Descript i on

QALoad 5.02

407

windowInfo Pointer to a Citrix Window Information object contain ing window data.

Example

CtxWI *CWI_7001c = new CtxWI(0x1001c, "Warning !!", 299, 139, 427, 351);

...

CtxDoubleClick(CWI_7001c);

CtxKeyDown

Inputs the key stroke specified by the key argument, which corresponds to the VK code. Ensure that wi is
the foreground window.

Syntax

void CtxKeyDown(const CtxWI *wi, int key);

Parameters

Param eter Descript i on

*wi Pointer to a Citrix Window Information object contain ing window data.

key Virtual Key code to type.

Example

CtxWI *CWI_2006c = new CtxWI(0x40034, "blah", 303, 208, 418, 145);

...

CtxKeyDown(CWI_2006c, 107); // '+'
DO_MSLEEP(93);
CtxKeyUp(CWI_2006c, 107); // '+'

CtxKeyUp

Inputs the key stroke specified by the key argument, which corresponds to the VK code. Ensure that wi is
the foreground window.

Syntax

void CtxKeyUp(const CtxWI *wi, int key);

Parameters

Param eter Descript i on

*wi Pointer to a Citrix Window Information object contain ing window data.

key Virtual Key code to type.

Example

CtxWI *CWI_2006c = new CtxWI(0x40034, "blah", 303, 208, 418, 145);

...

CtxKeyDown(CWI_2006c, 103); // '7'
DO_MSLEEP(93);
CtxKeyUp(CWI_2006c, 103); // '7'

QALoad 5.02

408

CtxMouseDown

Presses the specified mouse button.

Syntax

void CtxMouseDown(const CtxWI* windowInfo, long button, long ModifierKeys, long Xpos, long
Ypos);

Parameters

Param eter Descript i on

windowInfo Pointer to a Citrix Window Information object contain ing window data.

button A mouse button to use for th is act ion.

NONE: No mouse button was specified
L_BUTTON: The left mouse button
R_BUTTON: The right mouse button
M_BUTTON: The middle mouse button

ModifierKeys A keyboard modifier to use for th is act ion.

NONE: No keyboard modifier was specified
SHIFT: Shift key
CONTROL: Control key
ALT: Alt key
EXTENDED: An extended key

Xpos Move the mouse to th is X coordinate.

Ypos Move the mouse to th is Y coordinate.

Example

CtxWI *CWI_2006c = new CtxWI(0x40034, "blah", 303, 208, 418, 145);

...

CtxMouseDown(CWI_2006c, L_BUTTON, NONE, 274, 316);
DO_MSLEEP(109);
CtxMouseUp(CWI_2006c, L_BUTTON, NONE, 274, 316);

CtxMouseMove

Move the mouse to the specified locat ion on the screen.

Syntax

void CtxMouseMove(long x, long y);

Parameters

Param eter Descript i on

x Move the mouse to th is X coordinate.

y Move the mouse to th is Y coordinate.

Example

CtxMouseMove(274, 316);

QALoad 5.02

409

CtxMouseUp

Releases the specified mouse button.

Syntax

void CtxMouseUp(const CtxWI* windowInfo, long button, long ModifierKeys, long Xpos, long
Ypos);

Parameters

Param eter Descript i on

windowInfo Pointer to a Citrix Window Information object contain ing window data.

button A mouse button to use for th is act ion.

NONE: No mouse button was specified
L_BUTTON: The left mouse button
R_BUTTON: The right mouse button
M_BUTTON: The middle mouse button

ModifierKeys A keyboard modifier to use for th is act ion.

NONE: No keyboard modifier was specified
SHIFT: Shift key
CONTROL: Control key
ALT: Alt key
EXTENDED: An extended key

Xpos Move the mouse to th is X coordinate.

Ypos Move the mouse to th is Y coordinate.

Example

CtxWI *CWI_2006c = new CtxWI(0x40034, "blah", 303, 208, 418, 145);

...

CtxMouseDown(CWI_2006c, L_BUTTON, NONE, 274, 316);
DO_MSLEEP(109);
CtxMouseUp(CWI_2006c, L_BUTTON, NONE, 274, 316);

CtxPing

Sends a ping request and wait for the response.

Syntax

void CtxPing(const char *identifier);

Parameters

Param eter Descript i on

*identifier A string to send to the server.

Example

CtxPing(“7”);

QALoad 5.02

410

CtxPoint

See also Citrix

Moves the mouse to the specified locat ion on the screen.

Syntax

void CtxPoint(long X, long Y);

Parameters

Param eter Descript i on

X X coordinate.

Y Y coordinate.

Example

CtxPoint(509, 422);

CtxScreenEventExists

Waits for the specified screen update to occur at the specified coordinates.

Syntax

BOOL CtxScreenEventExists(char *EventType, int nmWait, const char *EventInfo);

Parameters

Param eter Descript i on

EventType Citrix screen event. Val id values are:

EVT_STR_CTXSCREENUPDATE: "ScreenUpdate"

nmWait Amount of t ime in mill iseconds to wait for the event.

*wi Event string.

Example

CtxClick(CWI_2, 188, L_BUTTON, NONE); //1087322563.276

 if(CtxScreenEventExists(EVT_STR_CTXSCREENUPDATE,3000,"0 0 224 3910"))
 BeginBlock();
 RR__printf("Screen Update Found Test1");
 EndBlock();

CtxSetApplicat ion

Connects to the Citrix server with the specified appl icat ion name and appl icat ion working directory name.

A session is created on the server where only the specified appl icat ion appears. The working directory
parameter is opt ional. Specify NULL for no working directory.

Syntax

void CtxSetApplication (const char *appName, const char *dirName);

QALoad 5.02

411

Parameters

Param eter Descript i on

*appName The appl icat ion to start up after connect ing.

*dirName The working directory for the appl icat ion.

Examples

//Create a session containing only the application called
// application.exe. No working directory is specified.

CtxSetApplication("c:\\stuff\\application.exe", NULL);

CtxSetCit rixPort

Sets the port for the Citrix cl ient to use to connect to the server.

Syntax

void CtxSetCitrixPort (int port);

Parameters

Param eter Descript i on

port The port number.

Example

CtxSetCitrixPort (1494);

CtxSetConnectTimeout

Sets the number of seconds to wait for connect ions to the server to complete.

Syntax

void CtxSetConnectTimeout(int timeout);

Parameters

Param eter Descript i on

timeout Number of seconds to wai t when attempting to connect.

Example

//Use a timeout of 1 minute, 30 seconds for connect
CtxSetConnectTimeout(90);

CtxSetDisconnectTimeout

Sets the number of seconds to wait for disconnect ions from the server to complete.

Syntax

void CtxSetDisconnectTimeout(int timeout);

QALoad 5.02

412

Parameters

Param eter Descript i on

timeout Number of seconds to wai t when attempting to disconnect.

Example

//Use a timeout of 1 minute, 30 seconds for disconnect
CtxSetDisconnectTimeout(90);

CtxSetDomainLoginInfo

Connects to the Citrix server with the specified user name, password, and domain.

Syntax

void CtxSetDomainLoginInfo (const char *username, const char *password, const char *domain);

Parameters

Param eter Descript i on

*username The user name to use when connect ing.

*password The password to use when connect ing.

*domain The domain to use when connect ing.

Example

const char *CitrixUsername="citrix";

// QALoad "encrypts" the password in the script. The
// login functions also support regular strings.

const char *CitrixPassword ="~encr~657E06726F697206";
const char *CitrixDomain ="domain3";

...

CtxSetDomainLoginInfo (CitrixUsername, CitrixPassword, CitrixDomain);

CtxSetEnableCounters

Enables or disables custom counters for Citrix cl ient-side stat ist ics.

Syntax

void CtxSetEnableCounters (BOOL enable);

Parameters

Param eter Descript i on

enable TRUE or FALSE

Example

CtxSetEnableCounters (TRUE);

QALoad 5.02

413

CtxSetEnableWildcardMatching

Enables or disables wildcard and substring name comparisons for matching Citrix window creat ion events.

Syntax

void CtxSetEnableWildcardMatching (BOOL enable);

Parameters

Param eter Descript i on

enable TRUE or FALSE

Example

CtxSetEnableWildcardMatching (TRUE); //Wildcards are enabled for this script

BEGIN_TRANSACTION();

See CtxSetWindowMatchTit le for another example of wi ldcards.

CtxSet ICAFile

Uses the specified ICA fi le when connect ing to a publ ished appl icat ion or desktop.

The ICA fi le can be used to specify a number of configurat ion opt ions. A Citrix MetaFrame administrator
can provide an ICA fi le for your environment.

Syntax

void CtxSetICAFile (const char *filename);

Parameters

Param eter Descript i on

filename The unquali fied name or URL for the ICA fi le to use.

Example

CtxSetICAFile ("published-app.ica");

CtxSetLoginInfo

Connects to the Citrix server with the specified user name and password.

Syntax

void CtxSetLoginInfo (const char *username, const char *password);

Parameters

Param eter Descript i on

*username The user name to use when connect ing.

*password The password to use when connect ing.

Example

const char *CitrixUsername = "citrix";

QALoad 5.02

414

// QALoad "encrypts" the password in the script. The
// login functions also support regular strings.

const char *CitrixPassword ="~encr~657E06726F697206";
...
CtxSetLoginInfo (CitrixUsername, CitrixPassword);

CtxSetPingTimeout

Sets the number of seconds to wait for a ping to be acknowledged.

Syntax

void CtxSetPingTimeout (int timeout);

Parameters

Param eter Descript i on

timeout The number of seconds to wait for the ping to be acknowledged.

Example

CtxSetPingTimeout (30);

CtxSetWaitPointTimeout

Sets the number of seconds to wait for a wait point .

Syntax

void CtxSetWaitPointTimeout (int timeout);

Parameters

Param eter Descript i on

timeout Number of seconds to wai t for a waitpoint.

Example

CtxSetWaitPointTimeout (30);

CtxSetWindowMatchTit le

Sets the string to match the names of previously-created windows in the WaitForWindowCreate method of
the Citrix Window Information object.

This name is used for comparison i f wi ldcards have been enabled by the SetEnableWildcardMatching
method cal l earl ier in the script .

Syntax

void CtxSetWindowMatchTitle (CtxWI* windowInfo, char* strWindowMatchName);

Parameters

Param eter Descript i on

windowInfo Pointer to a Citrix Window Information object that contains window
data.

QALoad 5.02

415

strWindowMatchName A character string of the name to match with wi ldcards.

Example

CtxSetWindowMatchTitle(CWI_1, "*Microsoft Word"); //Sets the wildcard match name

CtxWaitForWindowCreate(CWI_1); //With the match name set above, finding
//any current window with a title ending in "Microsoft Word" will match
//and allow this function to return successfully.

CtxSetWindowRetries

Sets the retry in formation for window veri ficat ion.

If a window does not exist in i t ial ly, the middleware waits for the number of mil l iseconds specified before
retrying. The veri ficat ion takes place for the number of t imes specified.

Syntax

void CtxSetWindowRetries(int retries, int waittime);

Parameters

Param eter Descript i on

retries The number of t imes to retry veri fying the window.

waittime The number of mil l iseconds to wait between retries.

Example

//Use 3 retries with a 3-second delay
CtxSetWindowRetries(3, 3000);

CtxSetWindowTimeout

Set the number of seconds to wait for windows to be act ivated and destroyed.

Syntax

void CtxSetWindowTimeout (int timeout);

Parameters

Param eter Descript i on

timeout Number of seconds to wai t for a window to be created.

Example

CtxSetWindowTimeout (30);

CtxSetWindowVerificat ion

Enables or disables window veri ficat ion for act ions.

Syntax

void CtxSetWindowVerifiation (BOOL enable);

QALoad 5.02

416

Parameters

Param eter Descript i on

enable TRUE or FALSE

Example

CtxSetWindowVerification (TRUE);

CtxType

Inputs the specified key strokes. If Window Verificat ion is enabled, ensure that wi is the foreground
window.

Syntax

void CtxType(const CtxWI *wi, char *text);

Parameters

Param eter Descript i on

*wi Pointer to a Citrix Window Information object contain ing window data.

*text ASCII text to type into the window.

Example

CtxWI *CWI_40034 = new CtxWI(0x40034, "blah", 303, 208, 418, 145);

...

CtxType(CWI_40034, “HELLO”);

CtxTypeChar

See also Citrix

Sends the specified ASCII character to the Citrix server.

Inputs the key stroke specified by the key argument, which corresponds to the character. Ensure that wi is
the foreground window. This is equivalent to KeyDown(key) and KeyUp(Key).

Syntax

void CtxTypeChar(const CtxWI *wi, long vk, int mod);

Parameters

Param eter Descript i on

*wi Pointer to a Citrix Window Information object contain ing window data.

vk ASCII character to type.

mod A keyboard modifier to use for th is act ion.

Example

CtxTypeChar(CWI_3001e, 'F', ALT); //Send ALT-F

QALoad 5.02

417

CtxTypeVK

Sends the VK code that corresponds to a key typed by the user.

Inputs the key stroke specified by the key argument, which corresponds to the VK code. Ensure that wi is
the foreground window. This is equivalent to KeyDown(key) and KeyUp(Key).

Syntax

void CtxTypeVK(const CtxWI *wi, long key, int mod);

Parameters

Param eter Descript i on

*wi Pointer to a Citrix Window Information object contain ing window data.

key Virtual Key code to type.

mod KEY_MODIFIER

Example

CtxTypeVK(CWI_3001e, VK_RIGHT, EXTENDED); //Send the right arrow key

CtxWaitForCapt ionChange

Waits for the specified window's capt ion to be changed.

Syntax

void CtxWaitForCaptionChange(const CtxWI *wi, const char *newcaption, long nmWait);

Parameters

Param eter Descript i on

*wi Pointer to a Citrix Window Information object contain ing window data.

*newcaption String represent ing new window capt ion.

nmWait Amount of t ime to wait for the event.

Example

DO_MSLEEP (234);

// Wait for the title of the window that matches CWI_11 to change to "new title"
CtxWaitForCaptionChange (CWI_11, "new title", 2000);

DO_MSLEEP (125);

CtxWaitForScreenUpdate

Waits for the specified screen update to occur at the specified coordinates.

Syntax

void CtxWaitForScreenUpdate(long x, long y, long w, long h, long nmWait);

QALoad 5.02

418

Parameters

Param eter Descript i on

x X coordinate

y Y coordinate

w Width of the screen update

h Height of the screen update

nmWait Amount of t ime in mill iseconds to wait for the event

Example

CtxWaitForScreenUpdate(154, 154, 253, 261, 500);

CtxWaitForWindowAct ivate

Waits for the specified window to be act ivated (brought to the foreground).

Syntax

void CtxWaitForWindowActivate(const CtxWI *wi, long nmWait);

Parameters

Param eter Descript i on

*wi Pointer to a Citrix Window Information object contain ing window data.

nmWait Amount of t ime in mill iseconds to wait for the event.

Example

CtxWI *CWI_40034 = new CtxWI(0x40034, "Please wait...", 303, 208, 418, 145);

...

CtxWaitForWindowActivate(CWI_40034, 500);

CtxWaitForWindowCreate

Waits for the specified window to be created.

Syntax

void CtxWaitForWindowCreate(const CtxWI *wi, long nmWait);

Parameters

Param eter Descript i on

*wi Pointer to a Citrix Window Information object contain ing window data.

nmWait Amount of t ime in mill iseconds to wait for the event.

Example

CtxWI *CWI_40034 = new CtxWI(0x40034, "Please wait...", 303, 208, 418, 145);

QALoad 5.02

419

...

CtxWaitForWindowCreate(CWI_40034, 500);

CtxWaitForWindowDestroy

Waits for the specified window to be destroyed.

Syntax

void CtxWaitForWindowDestroy(const CtxWI *wi, long nmWait);

Parameters

Param eter Descript i on

*wi Pointer to a Citrix Window Information object contain ing window data.

nmWait Amount of t ime in mill iseconds to wait for the event.

Example

CtxWI *CWI_40034 = new CtxWI(0x40034, "Please wait...", 303, 208, 418, 145);

...

CtxWaitForWindowDestroy(CWI_40034, 500);

CtxWaitForWindowLgIconChange

Waits for the specified window's capt ion to be changed.

Syntax

void CtxWaitForWindowLgIconChange(const CtxWI *wi, const char *hash, long nmWait);

Parameters

Param eter Descript i on

*wi Pointer to a Citrix Window Information object contain ing window data.

*hash Unique hash of icon bitmap.

nmWait Amount of t ime in mill iseconds to wait for the event.

Example

// Window CWI_13 ("Windows Task Manager") created 1101909450.125

CtxWaitForWindowCreate(CWI_13, 110);

CtxPoint(327, 2); //1101909452.531

CtxWaitForWindowLgIconChange(CWI_13, "c48b65c8b825324a5ff73638118fb8fc", 1218);

CtxWaitForWindowMinimize

Waits for the specified window to be min imized.

Syntax

void CtxWaitForWindowMinimize(const CtxWI *wi, long nmWait);

QALoad 5.02

420

Parameters

Param eter Descript i on

*wi Pointer to a Citrix Window Information object contain ing window data.

nmWait Amount of t ime in mill iseconds to wait for the event.

Example

CtxWI *CWI_40034 = new CtxWI(0x40034, "Please wait...", 303, 208, 418, 145);

...

CtxWaitForWindowMinimize(CWI_40034, 500);

CtxWaitForWindowMove

Waits for the specified window to be moved to the specified coordinates.

Syntax

void CtxWaitForWindowMove(const CtxWI *wi, long x, long y, long nmWait);

Parameters

Param eter Descript i on

*wi Pointer to a Citrix Window Information object contain ing window data

x X coordinate

y Y coordinate

nmWait Amount of t ime in mill iseconds to wait for the event

Example

CtxWI *CWI_40034 = new CtxWI(0x40034, "Please wait...", 303, 208, 418, 145);

...

CtxWaitForWindowMove(CWI_40034, 132, 297, 2000);

CtxWaitForWindowResize

Waits for the specified window to be resized to the specified dimensions.

Syntax

void CtxWaitForWindowResize(const CtxWI *wi, long w, long h, long nmWait);

Parameters

Param eter Descript i on

*wi Pointer to a Citrix Window Information object contain ing window data.

w X coordinate.

QALoad 5.02

421

h Y coordinate.

nmWait Amount of t ime in mill iseconds to wait for the event.

Example

CtxWI *CWI_40034 = new CtxWI(0x40034, "Please wait...", 303, 208, 418, 145);

...

CtxWaitForWindowResize(CWI_40034, 100, 200, 500);

CtxWaitForWindowSmIconChange

Waits for the specified window's capt ion to be changed.

Syntax

void CtxWaitForWindowSmIconChange(const CtxWI *wi, const char *hash, long nmWait);

Parameters

Param eter Descript i on

*wi Pointer to a Citrix Window Information object contain ing window data.

*hash Unique hash of icon bitmap.

nmWait Amount of t ime in mill iseconds to wait for the event.

Example

// Window CWI_13 ("Windows Task Manager") created 1101909450.125

CtxWaitForWindowCreate(CWI_13, 110);

CtxPoint(327, 2); //1101909452.531

CtxWaitForWindowSmIconChange(CWI_13, "924f75dd0db6ecb28d3e513053a8038e", 1391);

CtxWaitForWindowStyleChange

Waits for the specified window's style to be changed as specified.

Syntax

void CtxWaitForWindowStyleChange(const CtxWI *wi, long style, long extendedStyle, long
nmWait);

Parameters

Param eter Descript i on

*wi Pointer to a Citrix Window Information object contain ing window data.

style Bit mask that corresponds to the window style.

extendedStyle Bit mask that corresponds to the extended window style.

nmWait Amount of t ime in mill iseconds to wait for the event.

QALoad 5.02

422

Example

Point (155, 1);

DO_MSLEEP (515);

//Wait for the window that matches CWI_11 to maximize
CtxWaitForWindowStyleChange (CWI_11, 0x14ca0044, 0x50100, 500);

DO_MSLEEP (11047);

CtxWindowEventExists

Checks to see i f the specified window event has already occurred and, i f not, waits for the specified t ime for
the event to occur.

Syntax

BOOL CtxWindowEventExists(char *EventType, int nmWait, const CtxWI *wi);

Parameters

Param eter Descript i on

EventType Citrix window event. Val id values are:

EVT_STR_CTXWINDOWCREATE: "WindowCreate"
EVT_STR_CTXWINDOWACTIVATE: "WindowActivate"
EVT_STR_CTXWINDOWMOVE: "WindowMove"
EVT_STR_CTXWINDOWDEACTIVATE: "WindowDeact ivate"
EVT_STR_CTXWINDOWDESTROY: "WindowDestroy"
EVT_STR_CTXWINDOWSIZE: "WindowResize"
EVT_STR_CTXWINDOWMINIMIZE: "WindowMinimize"
EVT_STR_CTXWINDOWCAPTIONCHANGE: "WindowCaptionChange"
EVT_STR_CTXWINDOWSMALLICONCHANGE: "WindowSmall IconChange"
EVT_STR_CTXWINDOWLARGEICONCHANGE: "WindowLargeIconChange"
EVT_STR_CTXWINDOWSTYLECHANGE: "WindowStyleChange"

nmWait Amount of t ime in mill iseconds to wait for the event.

*wi Pointer to a Citrix Window Information object contain ing window data.

Example

// Window CWI_15 ("Open") destroyed 1087837404.827

if(CtxWindowEventExists(EVT_STR_CTXWINDOWCREATE,3000,CWI_16))
BeginBlock();

 CtxPoint(337, 265); //1087837404.905

 // Window CWI_16 ("11111111 - Microsoft Word") created 1087837404.905

 CtxWaitForWindowCreate(CWI_16, 31);

 // Window CWI_14 ("Document1 - Microsoft Word") destroyed 1087837404.905

 DO_MSLEEP(7547);
 CtxPoint(628, 9); //1087837414.592

 DO_MSLEEP(2141);
 CtxClick(CWI_16, 281, L_BUTTON, NONE); //1087837414.873

 DO_MSLEEP(234);

 // Window CWI_16 ("11111111 - Microsoft Word") destroyed 1087837415.108

QALoad 5.02

423

 CtxPoint(113, 93); //1087837418.779

 // Window CWI_17 ("") created 1087837418.779

EndBlock()

EndBlock

End of an else block of code.

Syntax

void EndBlock();

Return Value

None

Parameters

None

Example

// Window CWI_5 ("Citrix License Warning Notice") created 1087837373.062

if(CtxWindowEventExists(EVT_STR_CTXWINDOWCREATE, 3000, CWI_5))
BeginBlock();
CtxWaitForWindowCreate(CWI_5, 46);
EndBlock();

DB2

DB2 Index

DO_FreeDB2
Releases the memory used by QALoad 's DB2 driver. It should only be cal led once at the end of a script .

DO_in itDB2
In i t ial izes QALoad 's in ternal DB2 variables. Must be cal led at the beginning of the script prior to any other
cal ls.

DO_SQLBindFileToCol
SQLBindFileToCol() is used to bind a LOB column in a result set to a fi le reference or an array of fi le
references. This al lows data in that column to be transferred direct ly in to a fi le when each row is fetched
for the statement handle.

DO_SQLBindFileToParam
SQLBindFileToParam() binds a fi le to a part icular parameter in a statement that wi l l be executed.

DO_SQLBindParameter
Used main ly when binding output parameters from stored procedures.

DO_SQLBuildDataLink
Used to bui ld a datal ink value.

DO_SQLGetConnectAttr
Gets a characterist ic of a connect ion.

DO_SQLGetDataLinkAttr

QALoad 5.02

424

DO_SQLGetDataLinkAttr is used with a datal ink value that has been retrieved from the database or bui l t
using SQLBuildDataLink. The attribute value determines the attribute from the datal ink that is returned.

DO_SQLGetLength
DO_SQLGetLength determines the amount of space needed for a string to be sent over. The String values
can be of different types.

DO_SQLGetPosit ion
SQLGetPosit ion() returns the start ing posit ion of one string with in a LOB value (the source).

DO_SQLGetStmtAttr
Gets a characterist ic of a statement.

DO_SQLGetSubString
Used to retrieve a port ion of a large object value, referenced by a large object locator that has been returned
from the server (returned by a fetch or a previous SQLGetSubString() cal l during the current transact ion.)

DO_SQLParamData
Used in conjunct ion with DO_SQLPutData to supply parameter data at statement execut ion t ime.

DO_SQLPutData
DO_SQLPutData() is cal led fol lowing a SQLParamData() cal l return ing SQL_NEED_DATA to supply
parameter data values. Th is funct ion can be used to send large parameter values in pieces.

DO_SQLSetConnect ion
DO_SQLSetConnect ion al lows a user to specify the current act ive connect ion. This funct ion wil l on ly be
used in cases with mult iple open connect ions.

DO_FreeDB2

Releases the memory used by QALoad ’s DB2 driver. It should only be cal led once at the end of a script .
This funct ion is the cleanup funct ion for DB2 scripts. There are many stages to cleanup. The first stage in
the cleanup is to free al l malloced column attributes for each given statement. Al l of the columns and
parameters for each of the statements that have been al located are freed. Final ly each open connect ion is
closed and freed.

DO_FreeDB2 takes a single argument, the PLAYERINFO structure, and should only be cal led once.

Syntax

DO_FreeDB2(sInfo);

Parameters

Param eter Descript i on

sInfo Structure used by each virtual user.

Example

DO_SQLFreeHandle(SQL_HANDLE_STMT, S0);
DO_SQLDisconnect(C0);
END_TRANSACTION();
DO_FreeDB2(sInfo);
REPORT(SUCCESS);
EXIT();

QALoad 5.02

425

DO_initDB2

In i t ial izes QALoad ’s in ternal DB2 variables. Must be cal led at the beginning of the script prior to any other
cal ls.

Syntax

DO_initDB2(bHandleLOBs, sInfo);

Parameters

Param eter Descript i on

bHandleLOBs Determines how QALoad wil l deal with LOBs. In cal ls to
SQLBindFileToParam, the script uses a default fi le as the LOB being sent in to
the database. This fi le is of a known length so i t can be used for each
different type of LOB handled by DB2.

sInfo This needs to be passed in order to properly in i t ial ize the Thread Local
Storage.

Example

SET_ABORT_FUNCTION(abort_function);
DO_initDB2(FALSE, sInfo);
SYNCHRONIZE();
BEGIN_TRANSACTION();
DO_SLEEP(2);
DO_SQLConnect(C0, "DB2RGR", "db2sa", "db2sa");

DO_SQLBindFileToCol

SQLBindFileToCol() is used to bind a LOB column in a result set to a fi le reference or an array of fi le
references. This al lows data in that column to be transferred direct ly in to a fi le when each row is fetched
for the statement handle.

The LOB fi le reference arguments (fi le name, fi le name length, fi le reference opt ions) refer to a fi le with in
the appl icat ion 's environment (on the cl ient). Before fetching each row, the appl icat ion must make sure
that these variables contain the name of a fi le, the length of the fi le name, and a fi le opt ion
(new/overwrite/append). These values can be changed between each fetch.

Syntax

DO_SQLBindFileToCol(nStatemetIndex, nColumnNumber,
 sFileName, nFileNameLength,
 nFileOpions, nMaxFileNameLength);

Parameters

Param eter Descript i on

nStatementIndex The index for the statement handle structure that th is funct ion cal l is part
of.

nColumnNumber Number ident i fying the column. Columns are numbered sequential ly, from
left to right, start ing at 1.

sFileName The name of the fi le that wi l l receive the LOB from the statement
execut ion.

QALoad 5.02

426

nFileNameLength The length of the fi le. The maximum value of the fi le name length is 255.

nFileOpions The fi le opt ions determine the behavior of the fi le: whether th is should
create the fi le, append to the fi le, or whether i t should overwrite the fi le.
These are the behaviors that the SQLBindFileToCol can exhibit .
SQL_FILE_CREATE
Create a new fi le. If a fi le by th is name already exists, SQL_ERROR wil l be
returned.
SQL_FILE_OVERWRITE
If the fi le already exists, overwrite i t . Otherwise, create a new fi le.
SQL_FILE_APPEND
If the fi le already exists, append the data to i t . Otherwise, create a new fi le.
Only one opt ion can be chosen per fi le, there is no default .

nMaxFileNameLength This specifies the length of the Fi leName buffer.

Example

/* Bind blob column to a file */

rc = SQLBindFileToCol(hstmt, 1, FName, &FNLength, &FOption, 13, NULL, &FNInd);
CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc);

DO_SQLBindFileToParam

SQLBindFileToParam() binds a fi le to a part icular parameter in a statement that wi l l be executed.

SQLBindFileToParam() is used to associate (bind) a parameter marker in an SQL statement to a fi le
reference or an array of fi le references. This enables data from the fi le to be transferred direct ly in to a LOB
column when that statement is executed. The LOB fi le reference arguments (fi le name, fi le name length,
fi le reference opt ions) refer to a fi le with in the appl icat ion 's environment (on the cl ient). Before cal l ing
SQLExecute() or SQLExecDirect(), the appl icat ion must make sure that th is in formation is avai lable in the
deferred input buffers. These values can be changed between SQLExecute() cal ls.

Syntax

DO_SQLBindFileToParam(nStatmentIndex, ParaNumber, nSQLType,
 sFileName, nFileNameLength,
 nFileOptions, nMaxFileNameLength, pIndicator);

Parameters

Param eter Descript i on

nStatement Index Statement Handle.

ParamNumber Parameter marker number. Parameters are numbered sequential ly, from left
to right, start ing at 1.

nSQLType SQL Data Type of the column. The data type must be: SQL_BLOB,
SQL_CLOB, SQL_DBCLOB.

sFileName Pointer to the locat ion that wi l l contain the fi le name or an array of fi le
names when the statement (StatementHandle) is executed. This is either the
complete path name of the fi le or a relat ive fi le name. If a relat ive fi le name
is provided, i t is appended to the current path of the cl ient process.

QALoad 5.02

427

This argument cannot be NULL.

nFileNameLength Pointer to the locat ion that wi l l contain the length of the fi le name (or an
array of lengths) at the t ime of the next SQLExecute() or SQLExecDirect()
using the StatementHandle.
If th is pointer is NULL, then a length of SQL_NTS is assumed. The
maximum value of the fi le name length is 255.

nFileOptions Pointer to the locat ion that wi l l contain the fi le opt ion (or an array of fi le
opt ions) to be used when reading the fi le. The locat ion wil l be accessed
when the statement (StatementHandle) is executed. Only one opt ion is
supported (and i t must be specified): SQL_FILE_READ . A regular fi le that can
be opened, read and closed. (The length is computed when the fi le is
opened.)
This pointer cannot be NULL.

nMaxFileNameLength This specifies the length of the Fi leName buffer. If the appl icat ion cal ls
SQLParamOptions() to specify mult iple values for each parameter, th is is
the length of each element in the Fi leName array.

pIndicator Pointer to the locat ion that contains an indicator value (or array of values),
which is set to SQL_NULL_DATA if the data value of the parameter is to be
nul l . It must be set to 0 (or the pointer can be set to nul l) when the data
value is not nul l .

Example

/* Bind the Blob file to the parameter */

rc = SQLBindFileToParam (hstmt, 3, SQL_BLOB, FName,
 &FNlength, &FOption, 255, &FInd) ;
CHECK_HANDLE(SQL_HANDLE_STMT, hstmt, rc) ;

DO_SQLBindParameter

Used main ly when binding output parameters from stored procedures.

Bind parameters are ident i fied in an SQL statement with the quest ion mark (?) character. Each ? character
is a separate bind parameter, with the first bind parameter start ing at 1.

Return type

SQL_PARAM_INPUT
SQL_PARAM_INPUT_OUTPUT
SQL_PARAM_OUTPUT

C data type

The fol lowing constants should be used when speci fying the C data type:

SQL_C_BINARY
SQL_C_LONG
SQL_C_BIT
SQL_C_DEFAULT
SQL_C_BLOB_LOCATOR
SQL_C_SBIGINT
SQL_C_CHAR
SQL_C_SHORT
SQL_C_CLOB_LOCATOR
SQL_C_TYPE_DATE
SQL_C_DBCHAR

QALoad 5.02

428

SQL_C_TYPE_TIME
SQL_C_DBCLOB_LOCATOR
SQL_C_TYPE_TIMESTAMP
SQL_C_DOUBLE
SQL_C_TINYINT
SQL_C_FLOAT
SQL_C_UBIGINT

SQL data type

SQL_BIGINT
SQL_BINARY
SQL_BLOB
SQL_BLOB_LOCATOR
SQL_CHAR
SQL_CLOB
SQL_CLOB_LOCATOR
SQL_DBCLOB
SQL_DBCLOB_LOCATOR
SQL_DECIMAL
SQL_DOUBLE
SQL_FLOAT
SQL_GRAPHIC
SQL_INTEGER
SQL_LONGVARBINARY
SQL_LONGVARCHAR
SQL_LONGVARGRAPHIC
SQL_NUMERIC
SQL_REAL
SQL_SMALLINT
SQL_TYPE_DATE
SQL_TYPE_TIME
SQL_TYPE_TIMESTAMP
SQL_VARBINARY
SQL_VARCHAR
SQL_VARGRAPHIC

Dates and t imes are input in the fol lowing formats:

SQL_DATE: YYYY:MM:DD (for example: 1996:10:25)
SQL_TIME: HH:MM:SS (for example: 17:28:01)
SQL_TIMESTAMP: YYYY:MM:DD:HH:MM:SS

Syntax

DO_SQLBindParameter(CommandIndex, nParamNum,
 ParamType, CDataType, DataType,
 ColumnDefinition, Scale,
 InputString, cbValueMax);

Parameters

Param eter Descript i on

CommandIndex Index in to the table of ODBC command handles.

nParamNum Bind parameter number, f i rst parameter is 1.

ParamType Defines the direct ion of the parameter input, output, or input/output of the
bind cal l .

CDataType C data type.

DataType SQL data type.

QALoad 5.02

429

ColumnDefinition Precision of the column. (The same as using the nat ive ODBC cal l for the
given C or SQL type.)

Scale Scale of the column. (The same as using the nat ive ODBC cal l for the given
C or SQL type.)

InputString A character string that defines the input data to the bind cal l .

cbValueMax The length of the output variable being passed.

Example

#define MY_SIZE 16

char* sRow1 = NULL;
char* sRow2 = NULL;
char* sRow3 = NULL;
char* sRow4 = NULL;

DO_SQLAllocConnect(C0);
DO_SQLConnect(C0, "fhloaddb2", "sa", "");
DO_SQLAllocStmt(C0, S0);
DO_SQLBindParameter(S0, 1, SQL_PARAM_INPUT,
SQL_C_ULONG, SQL_INTEGER, 0, 0, 4, 4);
DO_SQLBindParameter(S0, 2, SQL_PARAM_OUTPUT,
SQL_C_ULONG, SQL_Integer, 0, 0, 4);
DO_SQLBindParameter(S0, 3, SQL_PARAM_OUTPUT,
SQL_C_ULONG, SQL_Integer, 0, 0, 4, 4);
DO_SQLBindParameter(S0, 4, SQL_PARAM_OUTPUT,
SQL_C_ULONG, SQL_INTEGER, 0, 0, 4, 4);
DO_SQLBindParameter(S0, 5, SQL_PARAM_OUTPUT,
SQL_C_ULONG, SQL_INTEGER, 0, 0, 4, 4);
strcpy(sql_statement, "{call setup_rows (?,?,?,?,?) }");
DO_SQLPrepare(S0, sql_statement);
DO_LoadMem(S0, 1, "17", 4);
DO_LoadMem(S0, 2, "1234", 4);
DO_LoadMem(S0, 3, "1235", 4);
DO_LoadMem(S0, 4, "1236", 4);
DO_LoadMem(S0, 5, "1237", 4);
DO_SQLExecute(S0);

sRow1 = DO_SQLRetrieveParamValue(S0, 2);
sRow2 = DO_SQLRetrieveParamValue(S0, 3);
sRow3 = DO_SQLRetrieveParamValue(S0, 4);
sRow4 = DO_SQLRetrieveParamValue(S0, 5);

Note: Make sure to free each of the char* local variables used for parameter retrieval at the end of each
transaction loop.

DO_SQLBuildDataLink

Used to bui ld a datal ink value.

DO_SQLBuildDataLink is necessary for load test ing for appl icat ions that use datal inks. A datal ink is a
logical reference from the database to a fi le stored outside of the in terface. The maximum length of the
string including the nul l terminat ing character wi l l be the bufferlength of bytes.

Syntax

DO_SQLBuildDataLink(nStatementIndex, sLinkType,
 nLinkTypeLen, sDataLinkLocation,

QALoad 5.02

430

 nDataLinkLocationLength, sComment,
 nCommentLength, nDataLinkValueLength);

Parameters

Param eter Descript i on

nStatementIndex Statement Handle.

sLinkType This is always set to SQL_DATALINK_URL.

nLinkTypeLen Should always be set to the length of the sLinkType argument.

sDataLinkLocation The complete URL value to be assigned.

nDataLinkLoctionLength Set to the length of the sDataLinkLocat ion.

sComment A Comment to be assigned to the datal ink.

nCommentLength The length of the sComment argument.

nDataLinkValueLength The length of the buffer assigned returned value.

DO_SQLGetConnectAt t r

Gets a characterist ic of a connect ion.

Syntax

DO_SQLGetConnectAttr(nConnectionIndex, nAttribute, nBuffer Length);

Parameters

Param eter Descript i on

nConnectionIndex Index of a connect ion handle.

nAttribute For example: SQL_ATTR_AUTOCOMMIT is an attribute with set values
SQL_TRUE or SQL_FALSE. Other connect ion attributes have different values.
Note that QALoad does not al low SQL_ATTR_ENABLE_ASYNC to be true for
DB2. No asynchronous transact ions wil l be handled.

nBufferLength Length of the return value.

Example

DO_SQLAllocHandle(SQL_HANDLE_DBC, 0, C0);
DO_SQLConnect(C0, "DB2MAST", "db2sa", "db2sa");
DO_SLEEP(1);
DO_SQLSetConnectAttr(C0, SQL_ATTR_AUTOCOMMIT, "SQL_AUTOCOMMIT_ON", SQL_IS_INTEGER);
DO_SQLGetConnectAttr(C0, 102, 0);

DO_SQLGetDataLinkAt t r

DO_SQLGetDataLinkAttr is used with a datal ink value that has been retrieved from the database or bui l t
using SQLBuildDataLink. The attribute value determines the attribute from the datal ink that is returned.
This funct ion should not be necessary for a load test.

QALoad 5.02

431

Syntax

DO_SQLGetDataLinkAttr (nStatementIndex, sAttributeType, sDataLinkName, nDataLinkNameLength,
nBufferLength);

Parameters

Param eter Descript i on

nStatementIndex Corresponds to the statement index.

sAttributeType The fol lowing are the different Attribute types that are used with th is
funct ion:
SQL_ATTR_DATALINK_COMMENT
SQL_ATTR_DATALINK_LINKTYPE
SQL_ATTR_DATALINK_URLCOMPLETE
SQL_ATTR_DATALINK_URLPATH
SQL_ATTR_DATALINK_URLPATHONLY
SQL_ATTR_DATALINK_URLSCHEME
SQL_ATTR_DATALINK_URLSERVER

sDataLinkName The name of the datal ink.

nDataLinkNameLength The length of the datal ink name.

nBufferLength The length of the data being returned as the datal ink value.

DO_SQLGetLength

DO_SQLGetLength determines the amount of space needed for a string to be sent over. The String values
can be of different types.

DO_SQLGetLength uses 3 parameters as inputs: the StatementIndex, the LOB Type, and a LOB Locator.

Syntax

DO_SQLGetLength (nStatementIndex, LOBType, nLocator);

Parameters

Param eter Descript i on

nStatementIndex Statement Index. This can be any statement handle which has been al located
but which does not current ly have a prepared statement assigned to i t .

LOBType The C type of the source LOB locator. This may be:
SQL_C_BLOB_LOCATOR
SQL_C_CLOB_LOCATOR
SQL_C_DBCLOB_LOCATOR

nLocator Must be set to the LOB locator value.

Example

DO_SQLGetLength (S3, SQL_C_CLOB_LOCATOR, 27288774);
DO_SQLGetPosition(S3, SQL_C_CLOB_LOCATOR, 27288774, 1202, "artist", 6, 1);
DO_SQLGetSubString(S3, SQL_C_CLOB_LOCATOR, 27288774, 398, 100, SQL_C_CHAR, 110);

QALoad 5.02

432

DO_SQLGetPosit ion

SQLGetPosit ion() returns the start ing posit ion of one string with in a LOB value (the source).

The source value must be a LOB locator. The search string can be a LOB locator or a l i teral string. The
source and search LOB locators can be any that have been returned from the database from a fetch or a
SQLGetSubString() cal l during the current transact ion.

Syntax

DO_SQLGetPosition(StatementIndex, LOBType, LOBLocator, SearchLocator, SearchLiteral,
SearchLiteralLength, nFromPosition 1);

Parameters

Param eter Descript i on

nStatementIndex Statement Index. This can be any statement handle which has been
al located but which does not current ly have a prepared statement assigned
to i t .

LOBType The type of LOB that is being searched in the cal l . The C type of the source
LOB locator. This may be:
SQL_C_BLOB_LOCATOR
SQL_C_CLOB_LOCATOR
SQL_C_DBCLOB_LOCATOR

LOBLocator A DB2-generated number that gives a locat ion with in a database where th is
LOB is stored.

nSearchLocator If the SearchLiteral pointer is NULL and the SearchLiteralLength is set to 0,
then SearchLocator must be set to the LOB locator associated with the
search string otherwise, th is argument is ignored.

nSearchLiteral This argument points to the area of storage that contains the search string
l i teral.
If SearchLiteralLength is 0, th is pointer must be NULL.

nSearchLiteralLength The length of the string in SearchLiteral(in bytes).
If th is argument value is 0, then the argument SearchLocator is meaningful.

nFromPosition For BLOBs and CLOBs, th is is the posit ion of the first byte with in the
source string at which the search is to start , to be returned by the funct ion.
For DBCLOBs, th is is the first character. The start byte or character is
numbered 1.

Example

DO_SQLGetLength(S3, SQL_C_CLOB_LOCATOR, 27288774);
DO_SQLGetPosition(S3, SQL_C_CLOB_LOCATOR, 27288774, 1202, "Elvis", 5, 1);
DO_SQLGetSubString(S3, SQL_C_CLOB_LOCATOR, 27288774, 398, 100, SQL_C_CHAR, 110);

DO_SQLGetStmtAt t r

Gets a characterist ic of a statement.

Syntax

DO_SQLGetStmtAttr(nStmtIndex, nAttribute, nBufferLength);

QALoad 5.02

433

Parameters

Param eter Descript i on

nStmtIndex Index in to the table of DB2 statement handles.

nAttribute For example: SQL_ATTR_APP_ROW_DESC. Note that even at the statement
level, QALoad does not permit asynchronous transact ions.

nBufferLength Length of the return value.

Example

DO_SQLAllocHandle(SQL_HANDLE_STMT, C0, S0);
DO_SQLBindCol(S0, 1, SQL_C_Long, 60, 60);
strcpy(sql_statement, /*>> 1 <<*/ "SELECT keyval FROM testdb.test_table WHERE keyval = {
01} ");
DO_substr(sql_statement, 1, "30");
DO_SQLExecDirect(S0, sql_statement);
DO_SQLGetStmtAttr(S0, 6, 0);
DO_SQLFreeHandle(SQL_HANDLE_STMT, S0);

DO_SQLGetSubString

Used to retrieve a port ion of a large object value, referenced by a large object locator that has been returned
from the server (returned by a fetch or a previous SQLGetSubString() cal l during the current transact ion.)

Syntax

DO_SQLGetSubString(nStatementIndex, nLocatorCType, Locator, nFromPosition, nForLength,
nTargetType, nBufferLength)

Parameters

Param eter Descript i on

nStatementIndex Statement Index. This can be any statement handle which has been
al located but which does not current ly have a prepared statement assigned
to i t .

sLocatorCType The C type of the source LOB locator. This may be:
SQL_C_BLOB_LOCATOR
SQL_C_CLOB_LOCATOR
SQL_C_DBCLOB_LOCATOR.

Locator Must be set to the source LOB locator value.

nFromPosition For BLOBs and CLOBs, th is is the posit ion of the first byte with in the source
string at which the search is to start . To be returned by the funct ion. For
DBCLOBs, th is is the first character. The start byte or character is numbered
1.

nForLength The length of the string to be returned by the finct ions. For BLOBs and
CLOBs, th is is the length in bytes. For DCLOBs, th is is the length in
characters.
If FromPosit ion is less than the length of the source string but FromPositon
+ ForLength -1 extends beyond the end of the source string, the result is
padded on the right with the necessary number of characters.

QALoad 5.02

434

nTargetType The C data type of the rgbValue. The target must always be either a LOB
indicator C buffer type:
SQL_C_CLOB_LOCATOR
SQL_C_BLOB_LOCATOR
SQL_C_DBCLOB_LOCATOR
or a C string variable:
SQL_C_Binary
SQL_C_Char
SQL_C_DBChar.

nBufferLength A long integer value; the length of the buffer for the data that is being
returned.

Example

DO_SQLExecute(S2);
DO_SQLGetLength(S3, SQL_C_CLOB_LOCATOR, 27288774);
DO_SQLGetPosition(S3, SQL_C_CLOB_LOCATOR, 27288774, 1202, "artist", 6, 1);
DO_SQLGetSubString(S3, SQL_C_CLOB_LOCATOR, 27288774, 398, 100, SQL_C_CHAR, 110);
DO_SQLTransact(C0, SQL_COMMIT);

DO_SQLParamData

Used in conjunct ion with DO_SQLPutData to supply parameter data at statement execut ion t ime.

Syntax

int SQLParamData(int nStatementIndex);

Parameters

Param eter Descript i on

nStmtIndex Index in to the table of DB2 statement handles.

Example

DO_SQLAllocHandle(SQL_HANDLE_STMT, C0, S0);
strcpy(sql_statement, "INSERT INTO dbo.TEST_TABLE (keyval, test_number, longvarchar_col)
VALUES (?, ?, ?)");
DO_SQLPrepare(S0, sql_statement);
DO_SQLBindParameter(S0, 1, SQL_PARAM_INPUT, SQL_C_LONG, SQL_INTEGER, 0, 0, 4, 0);
DO_SQLBindParameter(S0, 2, SQL_PARAM_INPUT, SQL_C_LONG, SQL_INTEGER, 0, 0, 4, 0);
DO_SQLBindParameter(S0, 3, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR, 16, 0, 0,
SQL_DATA_AT_EXEC);
DO_LoadMem(S0, 1, "26293", 0);
DO_LoadMem(S0, 2, "9", 0);
DO_SQLExecute(S0);
DO_SQLParamData(S0);
DO_SQLPutData(S0, "AAA", -3);
DO_SQLParamData(S0);
DO_SQLEndTran(SQL_HANDLE_DBC, C0, SQL_COMMIT);
DO_SQLFreeHandle(SQL_HANDLE_STMT, S0);

DO_SQLSetConnect ion

DO_SQLSetConnect ion al lows a user to specify the current act ive connect ion. This funct ion wil l on ly be
used in cases with mult iple open connect ions.

QALoad 5.02

435

Syntax

SQLSetConnection(nConnectionIndex);

Parameters

Param eter Descript i on

nConnectionIndex Points to a structure that ODBC/DB2 uses to track different connect ion
sett ings, statements within the connect ion, and descriptors al located with in
the connect ion.

Example

DO_SQLAllocConnect(C0);
DO_SQLConnect(C0, "DB2RGR", "db2Admin", "db2Admin");
...
...
...
DO_SQLAllocConnect(C1);
DO_SQLConnect(C1, "PUB", "db2Admin", "db2Admin");
...
...
...
DO_SQLSetConnect(C0);

ODBC

ODBC Index

DO_FreeODBC
Releases the memory used by QALoad's ODBC/DB2 driver. It should only be cal led once at the end of a
script .

DO_in itODBC
In it ial izes QALoad's in ternal ODBC variables. Must be cal led at the beginning of the script prior to any
other cal ls.

DO_SQLBindParameter
Used to describe a memory locat ion between the appl icat ion and the database. This memory locat ion is
used to exchange data between the appl icat ion and the database.

DO_FreeODBC

Releases the memory used by QALoad ’s ODBC/DB2 driver. It should only be cal led once at the end of a
script .

Syntax

DO_FreeODBC(sInfo);

Parameters

Param eter Descript i on

sInfo Structure used by each virtual user.

QALoad 5.02

436

Example

END_TRANSACTION();
DO_FreeODBC(sInfo);
REPORT(SUCCESS);
EXIT();

DO_initODBC

In i t ial izes QALoad ’s in ternal ODBC variables. Must be cal led at the beginning of the script before any
other cal ls.

Syntax

DO_initODBC(nVersion, sInfo);

Parameters

Param eter Descript i on

nVersion This argument deals with the version of ODBC. ODBC uses different funct ions
to al locate and free different structures to handle different propert ies of
connect ions, statements, and the environment. In order to handle the behavior
properly, QALoad detects and passes the version number in to the script .

sInfo This needs to be passed in order to properly in i t ial ize the Thread Local Storage.

Example

SET_ABORT_FUNCTION(abort_function);
DEFINE_TRANS_TYPE("wilson.c");
// Checkpoints have been included by the convert process
DefaultCheckpointsOn();
DO_initODBC(3, sInfo);

DO_SQLBindParameter

Used to describe a memory locat ion between the appl icat ion and the database. This memory locat ion is
used to exchange data between the appl icat ion and the database.

Bind parameters are ident i fied in a SQL statement with the quest ion mark (?) character. Each ? character is
a separate bind parameter, with the first bind parameter start ing at 1.

Syntax

DO_SQLBindParameter(int CommandIndex, unsigned short nParamNum, short ParamType, short
CDataType, short DataType, long ColumnDefinition, short Scale, SDWORD InputString, int
cbValueMax);

Parameters

Param eter Descript i on

CommandIndex Index in to the table of ODBC command handles.

nParamNum Bind parameter number. The first parameter is 1.

ParamType Defines the direct ion of the parameter input, output, or input/output of the
bind cal l . Val id values are:

SQL_PARAM_INPUT: Parameter is input only

QALoad 5.02

437

SQL_PARAM_INPUT_OUTPUT: Parameter is input and output
SQL_PARAM_OUTPUT: Parameter is output only

CDataType C data type. Val id values are:

SQL_C_BIT: Bit
SQL_C_LONG: Long
SQL_C_UTINYINT: Unsigned t iny in teger
SQL_C_CHAR: Char
SQL_C_STINYINT: Signed t iny in teger
SQL_C_BINARY: Binary
SQL_C_TINYINT: Tiny in teger
SQL_C_FLOAT: Float
SQL_C_SSHORT: Signed short
SQL_C_DOUBLE: Double
SQL_C_USHORT: Unsigned short
SQL_C_DATE: Date in YYYY:MM:DD format (for example: 1996:10:25)
SQL_C_SHORT: Short
SQL_C_TIME: Time in HH:MM:SS format (for example: 17:28:01)
SQL_C_SLONG: Signed long
SQL_C_TIMESTAMP: Timestamp in YYYY:MM:DD:HH:MM:SS format
SQL_C_ULONG: Unsigned long
SQL_C_NUMERIC: Numeric

DataType SQL data type. Val id values are:

SQL_CHAR: Char
SQL_NUMERIC: Numeric
SQL_DECIMAL: Decimal
SQL_INTEGER: Integer
SQL_SMALLINT: Small in teger
SQL_FLOAT: Float
SQL_REAL: Real
SQL_DOUBLE: Double
SQL_VARCHAR: Varchar
SQL_TIME: Time in HH:MM:SS format (for example: 17:28:01)
SQL_LONGVARCHAR: Long varchar
SQL_BINARY: Binary
SQL_VARBINARY: Variable binary
SQL_LONGVARBINARY: Long variable binary
SQL_BIGINT: Big in teger
SQL_TINYINT: Tiny in teger
SQL_BIT: Bit

ColumnDefinition Precision of the column. (The same as using the nat ive ODBC cal l for the given
C or SQL type.)

Scale Scale of the column. (The same as using the nat ive ODBC cal l for the given C or
SQL type.)

InputString A string that defines the input data to the bind cal l .

cbValueMax The length of the output variable being passed.

Example

DO_SQLAllocHandle(SQL_HANDLE_STMT, C0, S0);
strcpy(sql_statement, "INSERT INTO dbo.TEST_TABLE (keyval, test_number, longvarchar_col)

QALoad 5.02

438

VALUES (?, ?, ?)");
DO_SQLPrepare(S0, sql_statement);
DO_SQLBindParameter(S0, 1, SQL_PARAM_INPUT, SQL_C_LONG, SQL_INTEGER, 0, 0, 4, 0);
DO_SQLBindParameter(S0, 2, SQL_PARAM_INPUT, SQL_C_LONG, SQL_INTEGER, 0, 0, 4, 0);
DO_SQLBindParameter(S0, 3, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR, 16, 0, 0,
SQL_DATA_AT_EXEC);
DO_LoadMem(S0, 1, "26293", 0);
DO_LoadMem(S0, 2, "9", 0);
DO_SQLExecute(S0);
DO_SQLParamData(S0);
DO_SQLPutData(S0, "AAA", -3);
DO_SQLParamData(S0);
DO_SQLEndTran(SQL_HANDLE_DBC, C0, SQL_COMMIT);
DO_SQLFreeHandle(SQL_HANDLE_STMT, S0);

ODBC/ DB2

ODBC/ DB2 Index

DO_LoadM em
Fi l ls the memory locat ion described in a corresponding DO_SQLBindParameter cal l . The data, sData, is
always represented as a string. DO_LoadMem enables sending mult iple pieces of data in to the same bind
cal l by loading memory that was added with a DO_SQLBindParameter cal l .

DO_SQLAllocConnect
The connect ion handle must be al located before the actual connect ion can take place. It is important that
each DO_SQLAllocConnect cal l is matched up with a similar DO_SQLFreeConnect, ei ther inside of the
transact ion loop or outside of the transact ion loop.

DO_SQLAllocHandle
Al locates handles. Replaces DO_ SQLAllocStmt.

DO_SQLAllocStmt
Al locates a statement handle and assigns i t to a previously open connect ion.

DO_SQLBindCol
Binds appl icat ion buffers to a specific column of a statement. The columns are ident i fied by number in the
result set.

DO_SQLCancel
Cancels the processing of the present SQL statement.

DO_SQLCloseCursor
Closes a cursor associated with a handle and discards the results.

DO_SQLColAttribute
Returns descriptor in formation for a column in a result set.

DO_SQLColumns
Retrieves the column information of the selected tables.

DO_SQLConnect
Performs a connect ion to the database.

DO_SQLCopyDesc

QALoad 5.02

439

If the values of the SourceDescHandle and TargetDescHandle parameters are associated with the same
driver, the driver copies al l descriptor fields. This is true even i f the drivers are on different connect ions or
environments. If the values of the parameters are not associated with the same driver, only ODBC-defined
fields are copied.

DO_SQLDescribeCol
Returns descriptor in formation to the statement handle.

DO_SQLDisconnect
Closes the connect ion from the appl icat ion to the database server.

DO_SQLDriverConnect
Connects the appl icat ion to the database.

DO_SQLEndTran
Provides the mechanism for al l open transact ions or al l open transact ions on a part icular connect ion to be
resolved.

DO_SQLExecDirect
Prepares and executes a SQL statement.

DO_SQLExecute
Executes a prepared command using the current values of the parameter marker variables, i f any parameter
markers exist in the command.

DO_SQLFetch
Retrieves a single row of data.

DO_SQLFreeConnect
Performs the cleanup of connect ion handles for ODBC/DB2 with in a QALoad script .

DO_SQLFreeHandle
In ODBC, DO_SQLFreeHandle handles statement and descriptor cleanup. In DB2, DO_SQLFreeHandle
handles the addit ional cleanup of connect ion handles. Each occurance of DO_SQLFreeHandle must have a
corresponding DO_SQLAllocHandle, either both with in the transact ion loop or both outside of the
transact ion loop.

DO_SQLFreeStmt
Stops processing associated with a specific command_index and:

DO_SQLGetCursorName
Use on an open ODBC/DB2 statement to return a char * contain ing the cursor act ive on a part icular
statement.

DO_SQLGetData
Retrieves data for a single column in the form of a string.

DO_SQLGetDescField
Returns the value of a field of a descriptor record.

DO_SQLGetDescRec
Returns the sett ings or values from fields of a descriptor record set by DO_SQLSetDescRec, including name,
data type, and column or parameter data storage. Does not retrieve values for header fields.

DO_SQLGetEnvAttr

QALoad 5.02

440

Gets a characterist ic of an environment.

DO_SQLGetTypeInfo
Returns in formation about data types supported by the data source.

DO_SQLNumResultCols
Determines the number of columns being returned in a result set.

DO_SQLPrepare
Prepares an SQL statement and associates the results with the command_index. The command is not
executed unt i l the DO_SQLExecute command is cal led.

DO_SQLRetrieveParamValue
Retrieves a value of a SQL_PARAM_INPUT_OUTPUT or SQL_PARAM_OUTPUT parameter, fol lowing the
execut ion of the corresponding SQL statement.

DO_SQLRowCount
Returns an in teger indicat ing the number of rows affected by the last SQL statement associated with the
specified command_index.

DO_SQLSetConnectAttr
Sets a characterist ic of the connect ion.

DO_SQLSetConnectOption
Sets opt ions on the connect ion handle.

DO_SQLSetCursorName
Associates a cursor name with an act ive command_index.

DO_SQLSetDescField
Sets a descriptor field. A cal l to DO_SQLSetDescField can set a field of any descriptor type that can be set.

DO_SQLSetDescRec
Sets mult iple descriptor fields with a single cal l .

DO_SQLSetEnvAttr
Sets different aspects of the ODBC environment.

DO_SQLSetPos
Sets cursor locking and di rect ion propert ies.

DO_SQLSetStmtAttr
Sets statement attributes and, as a result , sets descriptor fields.

DO_SQLSetStmtOption
Sets the boundaries of a specific statement handle.

DO_SQLSpecialColumns
Retrieves in formation about columns with in a specified table. DO_SQLSpecialColumns retrieves the
fol lowing in formation:

DO_SQLStat ist ics
Retrieves a l ist of stat ist ics about a single table and the indexes associated with the table. The driver returns
the in formation as a result set.

QALoad 5.02

441

DO_SQLTables
Returns the l ist of table names stored in a specific data source. The driver returns the in formation as a
result set.

DO_SQLTransact
Requests a commit or rol lback operat ion for al l update, insert , and delete transact ions in progress on al l
command indexes associated with a connect ion. Can also request that a commit or rol lback operat ion be
performed for al l connect ions by specifying a connect ion index of -1.

DO_substr
Finds a value with in a string.

GetBindColumnData
Retrieves data from one of the rows that are returned by DO_SQLFetch cal ls, after a combinat ion of
DO_SQLSetStmtAttr and DO_SQLBindCol cal ls.

Using descriptors

Descriptors are new to ODBC with release ODBC 3.x. They are also present in DB2. They offer a way of
t racking column metadata. Descriptors can be used for a number of different purposes, and can be shared
by different statements. In most cases, an appl icat ion doesn ’t require access to descriptors; however, in
some cases accessing descriptors can simpli fy a number of operat ions.

There are four types of descriptors:

! Application Parameter Descriptor (APD)
Contains either the input parameters set up by the application or the output columns following the execution of a
CALL statement within SQL.

! Application Row Descriptor (ARD)
Contains the row data as the row is presented to the application.

! Implementation Row Descriptor (IRD)
Contains the row as it comes from the database.

! Implementation Parameter Descriptor (IPD)
Contains the parameter elements after conversion heading to the database.

For more in formation on ODBC descriptors, refer to your ODBC 3.0 Programmer’s Reference Volume and
SDK Guide.

Handling connection descriptors

It is important to note that QALoad processes descriptor handles in the same way i t processes statement
handles. Each connect ion handle is associated with a unique descriptor handle. Each t ime a descriptor is
al located during conversion, QALoad associates descriptors with connect ions the same way that ODBC and
DB2 do.

Connect ion handle allocat ion

DB2 now uses DO_SQLAllocHandle, with a SQL_HANDLE_DBC type, or DO_SQLAllocConnect to al locate
the connect ion handle. This al lows you to set the connect ion attributes and opt ions before the actual
connect ion is made. (Previously, connect ion handle al locat ion was done with SQLConnect and
SQLDriverConnect.)

QALoad 5.02

442

DO_LoadMem

Fil ls the memory locat ion described in a corresponding DO_SQLBindParameter cal l .

The data, sData, is always represented as a string. DO_LoadMem enables sending mult iple pieces of data
in to the same bind cal l by loading memory that was added with a DO_SQLBindParameter cal l .

Syntax

DO_LoadMem(nStmtIndex, nParamNum, sData, nBufLen);

Parameters

Param eter Descript i on

nStmtIndex Index in to the table of statement handles.

nParamNum Number of the parameter. This matches the value in DO_SQLBindCol.

sData String representat ion of the data.

nBufLength Length of the string.

Example

DO_SQLPrepare(S0, sql_statement);
DO_SQLBindParameter(S0, 1, SQL_PARAM_OUTPUT, SQL_C_ULONG, SQL_INTEGER, 0, 0, 4, 4);
DO_SQLBindParameter(S0, 2, SQL_PARAM_OUTPUT, SQL_C_ULONG, SQL_INTEGER, 0, 0, 4, 4);
DO_SQLBindParameter(S0, 3, SQL_PARAM_OUTPUT, SQL_C_ULONG, SQL_INTEGER, 0, 0, 4, 4);
DO_SQLBindParameter(S0, 4, SQL_PARAM_OUTPUT, SQL_C_ULONG, SQL_INTEGER, 0, 0, 4, 4);
DO_SQLBindParameter(S0, 5, SQL_PARAM_OUTPUT, SQL_C_ULONG, SQL_INTEGER, 0, 0, 4, 4);
DO_LoadMem(S0, 1, "22", 4);
DO_LoadMem(S0, 2, "0", 4);
DO_LoadMem(S0, 3, "0", 4);
DO_LoadMem(S0, 4, "0", 4);
DO_LoadMem(S0, 5, "0", 4);
DO_SQLExecute(S0);

 DO_SQLAllocConnect

Allocates connect ion handle.

The connect ion handle must be al located before the actual connect ion can take place. It is important that
each DO_SQLAllocConnect cal l is matched up with a similar DO_SQLFreeConnect, ei ther inside of the
transact ion loop or outside of the transact ion loop.

Use DO_SQLAllocHandle in place of DO_SQLAllocConnect i f using DB2 or ODBC version 3 or h igher.

Syntax

DO_SQLAllocConnect(HDBCIndex);

Parameters

Param eter Descript i on

HDBCIndex Points to a structure that ODBC/DB2 uses to track different connect ion
sett ings, statements within the connect ion, and descriptors al located with in
the connect ion.

QALoad 5.02

443

Example

DO_SQLAllocConnect(C0);
DO_SQLConnect(C0, "DB2RGR", "db2sa", "db2sa");
DO_SQLDisconnect(C0);
DO_SQLFreeConnect(C0);

DO_SQLAllocHandle

Allocates handles. Replaces DO_ SQLAllocStmt.

Previous versions of ODBC used different statements to al locate different structures. ODBC 3.x uses a single
handle al locat ion funct ion instead, which is represented by DO_SQLAllocHandle in QALoad . DB2
supports both methods.

Syntax

DO_SQLAllocHandle (handleType , IncomingIndex, OutgoingIndex)

Parameters

Param eter Descript i on

handleType The type of handle to be al located. Each handle takes different arguments:
SQL_HANDLE_ENV, SQL_HANDLE_DBC (connect ion handle);
SQL_HANDLE_STMT (statement handle); and SQL_HANDLE_DESC
(descriptor handle).

IncomingIndex The structure that the outgoing handle wi l l belong to. An environment
handle is the incoming handle for a connect ion. A connection handle is the
incoming handle for statements and for descriptors. When al locat ing the
environment, pass in the fol lowing value for the incoming handle
argument: SQL_NULL_HANDLE.

OutgoingIndex Points to the locat ion of the structure that wi l l store in formation for each
of the different structures that ODBC uses.

Example

DO_SQLAllocHandle(SQL_HANDLE_STMT, C0, S0);
DO_SQLBindCol(S0, 1, SQL_C_LONG, 4, 4);
strcpy(sql_statement, /* >> 2 << */ "select MAX(keyval) from test_table");
DO_SQLExecDirect(S0, sql_statement);
DO_SQLFreeHandle(SQL_HANDLE_STMT, S0);

DO_SQLAllocStmt

Allocates a statement handle and assigns i t to a previously open connect ion.

Syntax

DO_SQLAllocStmt(nConnectionIndex, nStatementIndex);

Parameters

Param eter Descript i on

nConnectionIndex Index in to the table of ODBC connect ion handles.

QALoad 5.02

444

nStatementIndex Index in to the table of ODBC statement handles.

Example

DO_SQLSetConnectOption(C0, SQL_ACCESS_MODE, 0);
DO_SQLAllocStmt(C0, S0);
DO_SQLSetStmtOption(S0, SQL_QUERY_TIMEOUT, 60);

DO_SQLBindCol

Binds appl icat ion buffers to a specific column of a statement. The columns are ident i fied by number in the
result set.

Syntax

DO_SQLBindCol(int StatementIndex, int ColumnNum, int CDataType, long BufferLength, long
pBufferLength);

Parameters

Param eter Descript i on

StatementIndex Index in to the table of ODBC statement handles.

ColumnNum Number of the result set column to bind.

CDataType The C data type being returned to the appl icat ion.

SQL_C_BIT: Bit
SQL_C_UTINYINT: Unsigned t iny in teger
SQL_C_STINYINT: Signed t iny in teger
SQL_C_TINYINT: Tiny in teger
SQL_C_SSHORT: Signed short
SQL_C_USHORT: Unsigned short
SQL_C_SLONG: Signed long
SQL_C_ULONG: Unsigned long
SQL_C_LONG: Long
SQL_C_CHAR: Char
SQL_C_BINARY: Binary
SQL_C_FLOAT: Float
SQL_C_DOUBLE: Double
SQL_C_NUMERIC: Numeric
SQL_C_DATE: Date in YYYY:MM:DD format (for example: 1996:10:25)
SQL_C_TIME: Time in HH:MM:SS (for example: 17:28:01)
SQL_C_TIMESTAMP: Timestamp in YYYY:MM:DD:HH:MM:SS format

BufferLength The length of the buffer for the data that is being returned.

PBufferLength The length/ indicator buffer to bind to the column.

Example

BEGIN_TRANSACTION();

DO_SQLAllocHandle(SQL_HANDLE_DBC, 0, C0);
DO_SQLConnect(C0, "FHLOADDB2", "sa", "");
DO_SQLAllocHandle(SQL_HANDLE_STMT, C0, S0);
DO_SQLSetStmtAttr(S0, SQL_ATTR_ROW_ARRAY_SIZE, 5, SQL_IS_UINTEGER); // Changed from 5 to 0
DO_SQLSetStmtAttr(S0, SQL_ATTR_ROWS_FETCHED_PTR, 0, SQL_IS_POINTER);
DO_SQLSetStmtAttr(S0, SQL_ATTR_ROW_STATUS_PTR, 0, SQL_IS_POINTER);

QALoad 5.02

445

DO_SQLBindCol(S0, 1, SQL_C_SLONG, 4, 0);
DO_SQLBindCol(S0, 2, SQL_C_CHAR, 20, 0);
DO_SQLBindParameter(S0, 1, SQL_PARAM_INPUT, SQL_C_SLONG, SQL_INTEGER, 10, 0, 4, 4);

DO_LoadMem(S0, 1, "1", 4);

strcpy(sql_statement, /* >> 0 << */
"SELECT KEYVAL, VARCHAR_COL FROM TEST_TABLE WHERE KEYVAL > {01}");
DO_substr(sql_statement, 1, "200");
DO_SQLExecDirect(S0, sql_statement);

// Retrieve the data
DO_SQLFetch(0);
RR__printf(GetBindColumnData(0, 1, 1));
RR__printf(GetBindColumnData(0, 2, 1));
RR__printf(GetBindColumnData(0, 1, 2));
RR__printf(GetBindColumnData(0, 2, 2));
RR__printf(GetBindColumnData(0, 1, 3));
RR__printf(GetBindColumnData(0, 2, 3));
RR__printf(GetBindColumnData(0, 1, 4));
RR__printf(GetBindColumnData(0, 2, 4));
RR__printf(GetBindColumnData(0, 1, 5));
RR__printf(GetBindColumnData(0, 2, 5));

DO_SQLCancel

Cancels the processing of the present SQL statement.

This is rarely used with in a script , al though you could use i t i f on ly a subset of the rows are needed from a
Select command.

Syntax

DO_SQLCancel(StatementIndex);

Return Value

None

Parameters

Param eter Descript i on

StatementIndex Index in to the table of ODBC statement handles.

Example

DO_SQLCancel(S0);

DO_SQLCloseCursor

Closes a cursor associated with a handle and discards the results.

This cleanup funct ion in teracts min imally with do_odbc.

Syntax

DO_SQLCloseCursor(StatementIndex)

Parameters

Param eter Descript i on

QALoad 5.02

446

StatementIndex Index in to the table of ODBC statement handles.

Example

DO_SQLFreeStmt(S0, SQL_DROP);
DO_SQLFreeStmt(S1, SQL_CLOSE);
DO_SQLSetStmtAttr(S1, SQL_ATTR_NOSCAN, SQL_NOSCAN_OFF,);
strcpy(sql_statement, /* >> 5 << */ "SELECT keyval, test_number, test_type FROM
dbo.test.table");
DO_SQLExecDirect(S1, sql_statement);
DO_SQLCloseCursor(S1);
DO_SQLFreeHandle(S1);

DO_SQLColAtt ribute

Returns descriptor in formation for a column in a result set.

In ODBC 3.x, th is funct ion replaces SQLColAttributes. SQLColAttribute returns descriptor in formation as a
character string, a 32-bit descriptor-dependent value, or an in teger value.

The SQLColAttribute replaces SQLColAttributes because i t in teracts with Descriptor in formation that was
not present in prior versions of ODBC.

Syntax

DO_SQLColAttribute(StatementIndex, ColumnNum, ColumnAttribute, BufferLen)

Parameters

Param eter Descript i on

StatementIndex Index in to the table of ODBC statement handles.

ColumnNum The column for the in formation.

ColumnAttribute The attribute to be retrieved.

BufferLen Amount of space for the in formation to be retrieved.

Example

DO_SQLAllocHandle(SQL_HANDLE_STMT, C0, S0);
DO_SQLBindParameter(S0, 1, SQL_PARAM_INPUT,
 SQL_C_ULONG, SQL_INTEGER,
 10, 0, "19", 4, 4);
strcpy(sql_statement, /* >> 1 << */ "select
 varchar_col, char_col, timestamp_col
 from test_table where keyval < ?");
DO_SQLExecDirect(S0, sql_statement);
DO_SQLBindCol(S0, 1, SQL_C_CHAR, 50, 196658);
DO_SQLBindCol(S0, 2, SQL_C_CHAR, 50, 50);
DO_SQLBindCol(S0, 3, SQL_C_TIMESTAMP, 50, 2012741682);
DO_SQLColAttribute(S0, 1, SQL_DESC_BASE_COLUMN_NAME, 50);
DO_SQLFreeHandle(SQL_HANDLE_STMT, S0);

DO_SQLColumns

Retrieves the column information of the selected tables.

QALoad 5.02

447

DO_SQLColumns is used to retrieve in formation from a series of columns with in a table. Use
DO_SQLNumResultsCols to sort through the result set.

Syntax

DO_SQLColumns(StatementIndex, QualifierName, TableOwner, TableName, ColumnName);

Return Value

The fol lowing in formation is retrieved for each matching column:

Colum n Nam e Data Type Com m ents

TABLE_QUALIFIER Varchar(128) Table qual i fier ident i fier; NULL i f not appl icable to the data
source.

TABLE_OWNER Varchar(128) Table owner ident i fier; NULL i f not appl icable to the data source.

TABLE_NAME Varchar(128) Table ident i fier.

COLUMN_NAME Varchar(128) Column ident i fier.

DATA_TYPE Small in t ODBC SQL data type.

TYPE_NAME Varchar(128) Data source-dependent data type name; for example, CHAR,
VARCHAR, MONEY, LONG VARBINARY, or CHAR () for bit data.

PRECISION In teger Precision of the column on the data source.

LENGTH In teger Transfer size of the data. The length in bytes of data transferred
on an SQLGetData or SQLFetch operat ion i f SQL_C_DEFAULT is
specified. For numeric data, th is size may be different than the
size of the data stored on the data source. This value is the same
as the PRECISION column for character or binary data.

SCALE Small in t Scale of the column on the data source.

RADIX Small in t Either 10 or 2. If i t is 10, the values in PRECISION and SCALE give
the number of decimal digits al lowed for the column.
If i t is 2, the values in PRECISION and SCALE give the number of
bits al lowed in the column.

NULLABLE Small in t SQL_NO_NULLS if the column does not accept NULL values.

REMARKS Varchar(254) A descript ion of the column.

Parameters

Param eter Descript i on

StatementIndex Index in to the table of ODBC statement handles.

QualifierName Table qual i fier ident i fier (accepts search patterns).

TableOwner Name of the table owner (accepts search patterns).

TableName Table name (accepts search patterns).

ColumnName Column name to retrieve (accepts search patterns).

QALoad 5.02

448

Example

DO_SQLAllocStmt(C0, S1);
DO_SQLColumns(S1, "", "", "qctest", "");

DO_SQLConnect

Performs a connect ion to the database.

The authorizat ion string, if required by the database, must be present, since many drivers prompt the user
for a password at runt ime i f the password is not present. This presents a problem when playing back
mult iple virtual users, as i t is impract ical for the test operator to respond to each prompt individual ly.

The cal l is for completeness only. QALoad translates a SQLConnect command into a SQLDriverConnect
command. This faci l i tates the automatic detect ion of the Authorizat ion string (password).

Syntax

DO_SQLConnect(ConnectionIndex, DSN, UDI, AuthStr);

Parameters

Param eter Descript i on

ConnectionIndex Index in to the table of connect ions.

DSN Data source name.

UDI User ident i fier.

AuthStr Authorizat ion string (password).

Example

DO_SQLAllocConnect(C0);
DO_SQLConnect(C0, "load", "db2", "sa");

DO_SQLCopyDesc

Copies the fields of the source descriptor handle to the target descriptor handle.

If the values of the SourceDescHandle and TargetDescHandle parameters are associated with the same
driver, the driver copies al l descriptor fields. This is true even i f the drivers are on different connect ions or
environments.

If the values of the parameters are not associated wi th the same driver, only ODBC-defined fields are
copied.

At th is t ime QALoad does not store descriptor in formation. QALoad rel ies on ODBC to handle the cal ls and
the descriptor data for the appl icat ion.

Syntax

DO_SQLCopyDesc(SourceDescriptorHandleIndex, TargetDescriptorHandle);

Parameters

Param eter Descript i on

QALoad 5.02

449

SourceDescriptorHandleIndex The descriptor to copy over.

TargetDescriptorHandle The descriptor receiving the copied in formation.

Example

DO_SQLAllocHandle(SQL_HANDLE_DESC, C0, D1);
DO_SQLAllocHandle(SQL_HANDLE_DESC, C0, D2);
DO_SQLSetDescField(D1, 0, SQL_DESC_COUNT, 2, -6);
DO_SQLSetDescRec(D1, 1, 4, 0, 4, 10, 0, 4291980l, 1242388, 1242384);
DO_SQLSetDescRec(D1, 2, 4, 0, 4, 10, 0, 4292220l, 1242388, 1242384);
DO_SQLCopyDesc(D1, D2);
DO_SQLGetDescRec(D2, 1, 4);
DO_SQLFreeHandle(SQL_HANDLE_DESC, D2);
DO_SQLFreeHandle(SQL_HANDLE_DESC, D1);

DO_SQLDescribeCol

Returns descriptor in formation to the statement handle.

The information is returned as a set of pointers describing the column name, column precision, column
scale, and SQL type of the column. This in formation can be used as metadata for generic data handl ing.

Syntax

DO_SQLDescribeCol(StatementIndex, ColumnNumber, BufferLength)

Parameters

Param eter Descript i on

StatementIndex The statement handle for the funct ion cal l .

ColumnNumber The number of the column in the table that SQLdescribeCol is retrieving
in formation about. Column numbers start at 1 and advance from there.

BufferLength The length of the buffer for the column name in bytes.

Example

DO_SQLFreeStmt(S0, SQL_CLOSE);
DO_SQLSetStmtAttr(S0, SQL_ATTR_NOSCAN, SQL_NOSCAN_OFF,);
strcpy(sql_statement, /* >> 3 << */ "SELECT * FROM dbo.test.table");
DO_SQLExecDirect(S0, sql_statement);
pcol = DO_SQLNumResultCols(S0);
DO_SQLDescribeCol(S0, 1, 129);
DO_SQLColAttribute(S0, 1, SQL_DESC_AUTO_UNIQUE_VALUE, 0);
DO_SQLColAttribute(S0, 1, SQL_DESC_FIXED_PREC_SCALE, 0);
DO_SQLColAttribute(S0, 1, SQL_DESC_UPDATABLE, 0);
DO_SQLDescribeCol(S0, 2, 129);
DO_SQLColAttribute(S0, 2, SQL_DESC_AUTO_UNIQUE_VALUE, 0);
DO_SQLColAttribute(S0, 2, SQL_DESC_FIXED_PREC_SCALE, 0);
DO_SQLColAttribute(S0, 2, SQL_DESC_UPDATABLE, 0);
DO_SQLDescribeCol(S0, 3, 129);
DO_SQLColAttribute(S0, 3, SQL_DESC_AUTO_UNIQUE_VALUE, 0);
DO_SQLColAttribute(S0, 3, SQL_DESC_FIXED_PREC_SCALE, 0);
DO_SQLColAttribute(S0, 3, SQL_DESC_UPDATABLE, 0);

QALoad 5.02

450

DO_SQLDisconnect

Closes the connect ion from the appl icat ion to the database server.

Syntax

DO_SQLDisconnect(ConnectionIndex);

Parameters

Param eter Descript i on

ConnectionIndex Index in to the table of connect ions.

Example

DO_SQLDisconnect(C0);

DO_SQLDriverConnect

Connects the appl icat ion to the database.

Normally, the format of the connect ion string can vary between databases and ODBC drivers, but general ly
includes, at a min imum, the dataset name (DSN), user ID (UID), and password (PWD). If a password is
required for the connect ion, i t is important to include i t in DO_ SQLDriverConnect so the ODBC driver
does not prompt the user at runt ime for the connect ion string.

Syntax

DO_SQLDriverConnect(ConnectionIndex, ConnectionString);

Parameters

Param eter Descript i on

ConnectionIndex Index in to the table of connect ions.

ConnectionString Complete ODBC connect ion string (see descript ion).

Example

DO_SQLDriverConnect(C0, "DSN=Dan32;UID=dba;PWD=sql");

DO_SQLEndTran

Provides the mechanism for al l open transact ions or al l open transact ions on a part icular connect ion to be
resolved.

Syntax

DO_SQLEndTran(nHandleType, nHandleIndex, nOperation);

Parameters

Param eter Descript i on

nHandleType The type of Handle on wh ich the transact ion is being committed or rol led
back: SQL_HANDLE_ENV, SQL_HANDLE_DBC.

nHandleIndex Index in to the table of statement or connect ion handles, or -666 which is

QALoad 5.02

451

used as a marker for the Environment handle.

nOperation Either Commit the transact ion or Rol l i t back (SQL_COMMIT or
SQL_ROLLBACK).

Example

The fol lowing example commits al l of the transact ions open on connect ion index 1:

DO_SQLExecDirect(S3, sql_statement);
DO_SQLEndTran(SQL_HANDLE_DBC, C1, SQL_COMMIT);

In order to resolve al l t ransact ions, the cal l to DO_SQLEndTran has the value -666 as the handle index.
This is a marker for the Environment handle.

DO_SQLEndTran(SQL_HANDLE_ENV, -666, SQL_COMMIT);

DO_SQLExecDirect

Prepares and executes a SQL statement.

Syntax

DO_SQLExecDirect(StatementIndex, SQLStatement);

Parameters

Param eter Descript i on

StatementIndex Index in to the table of statement handles.

SQLStatement SQL statement to be executed.

Example

DO_SQLExecDirect(S0, "Select * from emp_tutorial");

DO_SQLExecute

Executes a prepared command using the current values of the parameter marker variables i f any parameter
markers exist in the command.

Syntax

DO_SQLExecute(StatementIndex);

Parameters

Param eter Descript i on

StatementIndex Index in to the table of statemtent handles.

Example

DO_SQLPrepare(S0, sql_statement);
DO_LoadMem(S0, 1, "17", 4); \
DO_LoadMem(S0, 2, "1234", 4);
DO_LoadMem(S0, 3, "1235", 4);
DO_LoadMem(S0, 4, "1236", 4);

QALoad 5.02

452

DO_LoadMem(S0, 5, "1237", 4);
DO_SQLExecute(S0);

DO_SQLFetch

Retrieves a single row of data.

Syntax

DO_SQLFetch(StatementIndex)

Parameters

Param eter Descript i on

StatementIndex The index of the statement handle.

Example

DO_SQLAllocHandle(SQL_HANDLE_STMT, C0, S0);

strcpy(sql_statement, /* >> 1 << */ "SELECT MAX(keyval) FROM TESTDB.TEST_TABLE");

DO_SQLExecDirect(S0, sql_statement);

while (DO_SQLFetch(S0) != SQL_NO_DATA_FOUND)
{
pReturnValue = DO_SQLGetData(S0, 1, SQL_C_LONG, 4);
free(pReturnValue);
}

DO_SQLFreeHandle(SQL_HANDLE_STMT, S0);

DO_SQLFreeConnect

Performs the cleanup of connect ion handles for ODBC/DB2 with in a QALoad script .

The handle cleanup that was being performed in DO_SQLDisconnect is now being performed in
DO_SQLFreeConnect or in DO_SQLFreeHandle.

Syntax

DO_SQLFreeConnect(ConnectionIndex);

Parameters

Param eter Descript i on

ConnectionIndex Points to a structure that DB2/ODBC uses to track different connect ion sett ings,
statements with in the connect ion, and descriptors al located with in the
connect ion.

Example

DO_SQLAllocConnect(C0);
DO_SQLConnect(C0, "DB2RGR", "db2sa", "db2sa");
DO_SQLDisconnect(C0);
DO_SQLFreeConnect(C0);

QALoad 5.02

453

DO_SQLFreeHandle

In ODBC, DO_SQLFreeHandle handles statement and descriptor cleanup. In DB2, DO_SQLFreeHandle
handles the addit ional cleanup of connect ion handles.

Each occurance of DO_SQLFreeHandle must have a corresponding DO_SQLAllocHandle, either with in the
transact ion loop or outside of the transact ion loop.

DO_SQLFreeHandle replaces DO_SQLFreeStmt. Like DO_SQLAllocHandle, DO_SQLFreeHandle takes
different parameters than i ts predecessor. DO_SQLFreeHandle is compatible with ODBC 3.x.

Syntax

DO_SQLFreeHandle(HandleType, HandleIndex)

Parameters

Param eter Descript i on

HandleType Type of handle to be freed. Each handle has i ts own arguments:
SQL_HANDLE_ENV, SQL_HANDLE_DBC (connect ion handle);
SQL_HANDLE_STMT (statement handle); and SQL_HANDLE_DESC (descriptor
handle).

HandleIndex The address of the structure that ODBC should release from memory.

Example

DO_SQLAllocHandle(SQL_HANDLE_STMT, C0, S0);
DO_SQLBindCol(S0, 1, SQL_C_LONG, 4, 4);
strcpy(sql_statement, /* >> 2 << */ "select MAX(keyval) from test_table");
DO_SQLExecDirect(S0, sql_statement);
DO_SQLFreeHandle(SQL_HANDLE_STMT, S0);

DO_SQLFreeStmt

Stops processing associated with a specific command_index and:

! Closes any open cursors associated with the command_index.
! Discards pending results.
! Frees all resources associated with command_index.

Consult your ODBC reference manual for detai ls regarding the opt ion parameter.

Syntax

DO_SQLFreeStmt(StatementIndex, Option);

Parameters

Param eter Descript i on

StatementIndex Index in to the table of statement handles.

Option One of the fol lowing predefined constants: SQL_CLOSE, SQL_DROP,
SQL_UNBIND, SQL_RESET_PARAMS.

Example

DO_SQLFreeStmt(S0, SQL_DROP);

QALoad 5.02

454

DO_SQLGetCursorName

Use on an open ODBC/DB2 statement to return a char * contain ing the cursor act ive on a part icular
statement.

This cursor can then be used in the execut ion of another query on another statement. Be aware that the
pReturnValue must be freed by the script or a memory leak results.

Syntax

DO_SQLGetCursorName (StatementIndex, nBufferLength);

Parameters

Param eter Descript i on

StatementIndex Index in to the table of statement handles.

nBufferLength The length of the buffer in bytes.

Example

In the fol lowing example, the pReturnValue is being placed in the sCursorName string immediately before
the pReturnValue is freed.

char * DO_SQLGetCursor(<connection index>, <buffer length in bytes>);

An example on i ts correct use is as fol lows:

char sCursorName[19];
char *pReturnValue;
...
...
pReturnValue = DO_SQLGetCursorName(S1, 19);
sprintf(sCursorName, "%s", pReturnValue);
free(pReturnValue);
strcpy(sql_statement, /* >> 3 << */ "UPDATE TESTDB.Test_Table set test_number = test_number
where current of ");
sprintf(sql_statement, "%s%s", sql_statement, sCursorName);
DO_SQLExecDirect(S2, sql_statement);

DO_SQLGetData

Retrieves data for a single column in the form of a string.

Cal l DO_SQLGetData after one or more rows have been retrieved from the result set by DO_SQLFetch.
DO_SQLGetData al lows large pieces of data to be returned by retrieving the data in parts i f the variable
length data is too large for a single cal l .

Syntax

DO_SQLGetData(nStmtIndex, nColNum, nCType, nBufLen)

Return Value

DO_SQLGetData can return the fol lowing values in the length/ indicator buffer:

! Length of the data available to return
! SQL_NO_TOTAL
! SQL_NULL_DATA

QALoad 5.02

455

Parameters

Param eter Descript i on

nStmtIndex The index of the statement handle.

nColNum The column number being returned.

nCType The datatype.

nBufLen The length of the buffer the data is returned in.

Example

strcpy(sql_statement, /* >> 1 << */ "SELECT MAX(keyval) FROM TESTDB.TEST_TABLE");

DO_SQLExecDirect(S0, sql_statement);

while (DO_SQLFetch(S0) != SQL_NO_DATA_FOUND)
{
pReturnValue = DO_SQLGetData(S0, 1, SQL_C_LONG, 4);
free(pReturnValue);
}

DO_SQLGetDescField

Returns the value of a field of a descriptor record.

Use DO_SQLGetDescField to return the value of a descriptor record field. DO_SQLGetDescField can return
the value of any field in any descriptor type. Make repeated cal ls to DO_SQLGetDescField to return sett ings
from mult iple fields of one or mult iple descriptors in arbitrary order. DO_SQLGetDescField can also return
driver-defined descriptor f ields.

Syntax

DO_SQLGetDescField(DescriptorIndex, RecordNumber, FieldID, BufferLength,)

Parameters

Param eter Descript i on

DescriptorIndex Points to the descriptor st ructure in memory.

RecordNumber The record number of the descriptor structure to be retrieved.

FieldID The field of the descriptor record to be retrieved.

BufferLen The length of a character string or SQL_NTS being returned.
SQL_LEN_BINARY_ATTR (macro) results i f binary data is returned.
SQL_IS_POINTER is Value, not binary or string data.

Example

DO_SQLAllocHandle(SQL_HANDLE_DESC, C0, D0);
strcpy(sql_statement, /* >> 1 << */ "UPDATE test_table SET integer_col = ? WHERE keyval =
?");
DO_SQLPrepare(S0, sql_statement);
DO_SQLSetDescRec(D0, 1, 4);
DO_SQLSetDescRec(D0, 2, 4);
DO_SQLGetDescField(D0, 1, SQL_DESC_CONCISE_TYPE, 261312);
DO_SQLGetDescField(D0, 2, SQL_DESC_CONCISE_TYPE, 261312

QALoad 5.02

456

DO_SQLGetDescRec

Returns the sett ings or values from fields of a descriptor record set by DO_SQLSetDescRec.

These fields include name, data type, and column or parameter data storage. Does not retrieve values for
header fields.

To prevent the return of a sett ing, set the corresponding parameter to a nul l pointer.

Syntax

DO_SQLGetDescRec(nDescIndex, nRecordNumber, nBufLen);

Return Value

For a column or parameter, DO_SQLGetDescRec can retrieve the value of the fol lowing fields:
SQL_DESC_NAME
SQL_DESC_TYPE
SQL_DESC_OCTET_LENGTH
SQL_DESC_DATETIME_INTERVAL_CODE (types SQL_DATETIME and SQL_INTERVAL)
SQL_DESC_PRECISION
SQL_DESC_SCALE
SQL_DESC_NULLABLE

Parameters

Param eter Descript i on

nDescIndex Points to the locat ion of the descriptor structure in memory.

nRecordNumber The descriptor record with fields to be set.

nBufLen Descriptor record buffer length.

Example

DO_SQLSetDescRec(D1, 2, 4, 0, 4, 10, 0, 4292220l, 1242388, 1242384);
DO_SQLCopyDesc(D1, D2);
DO_SQLGetDescRec(D2, 1, 4);
DO_SQLFreeHandle(SQL_HANDLE_DESC, D2);
DO_SQLFreeHandle(SQL_HANDLE_DESC, D1);

DO_SQLGetEnvAt t r

Gets a characterist ic of an environment.

Syntax

DO_SQLGetEnvAttr(nAttribute, strAttrValue, nBufferLength, nStringLength);

Parameters

Param eter Descript i on

nAttribute An environment attribute such as SQL_ATTR_CONNECTTYPE.

StrAttrValue Current attribute value.

nBufferLength Maximum size of attribute value.

QALoad 5.02

457

nStringLength Total number of bytes returned.

Example

int rc = DO_SQLGetEnvAttr(SQL_ATTR_CONNECTTYPE, &connecttype, 0, NULL);

DO_SQLGetTypeInfo

Returns in formation about data types supported by the data source.

Syntax

DO_SQLGetTypeInfo(StatementIndex, SQLType);

Return Value

Data is returned as a resul t set with the fol lowing columns:

Colum n nam e Data type

TYPE_NAME Varchar(128)

DATA_TYPE Small in t

PRECISION In teger

LITERAL_PREFIX Varchar(128)

LITERAL_SUFFIX Varchar(128)

CREATE_PARAMS Varchar(128)

NULLABLE Small in t

CASE_SENSITIVE Small in t

SEARCHABLE Small in t

MONEY Small in t

AUTO_INCREMENT Small in t

LOCAL_TYPE_NAME Varchar(128)

For detai ls on the commands above, consult an ODBC reference manual.

Parameters

Param eter Descript i on

StatementIndex Index in to the table of statement handles.

SQLType (ODBC) One of the fol lowing predefined constants:

SQL_BIGINT, SQL_BINARY, SQL_BIT, SQL_CHAR, SQL_DATE,
SQL_DECIMAL, SQL_DOUBLE, SQL_FLOAT, SQL_INTEGER,
SQL_LONGVARBINARY, SQL_LONGVARCHAR, SQL_NUMERIC,
SQL_REAL, SQL_SMALLINT, SQL_TIME, SQL_TIMESTAMP, SQL_TINYINT,

QALoad 5.02

458

SQL_VARBINARY, SQL_VARCHAR, SQL_ALL_TYPES.

SQLType (DB2) One of the fol lowing predefined constants:

SQL_BIGINT, SQL_BINARY, SQL_BLOB, SQL_BLOB_LOCATOR,
SQL_CHAR, SQL_CLOB, SQL_CLOB_LOCATOR, SQL_DBCLOB,
SQL_DBCLOB_LOCATOR, SQL_DECIMAL, SQL_DOUBLE, SQL_FLOAT,
SQL_GRAPHIC, SQL_INTEGER, SQL_LONGVARBINARY,
SQL_LONGVARCHAR, SQL_LONGVARGRAPHIC, SQL_NUMERIC,
SQL_REAL, SQL_SMALLINT, SQL_TYPE_DATE, SQL_TYPE_TIME,
SQL_TYPE_TIMESTAMP, SQL_VARBINARY, SQL_VARCHAR,
SQL_VARGRAPHIC.

Example

DO_SQLAllocStmt(C0, S0);
DO_SQLGetTypeInfo(S0, SQL_ALL_TYPES);
DO_SQLSetStmtOption(S0, SQL_ROWSET_SIZE, 16);
DO_checkpoint(9, 1);
DO_SQLFreeStmt(S0, SQL_DROP);

DO_SQLNumResultCols

Determines the number of columns being returned in a result set.

This funct ion returns an in teger indicat ing the number of columns in the result set. Knowing the number
of columns in the result set al lows the appl icat ion to use SQLDescribeCol and SQLColAttributes.

Syntax

DO_SQLNumResultCols(StatementIndex);

Parameters

Param eter Descript i on

StatementIndex Index in to the table of statement handles.

Example

int pcol = DO_SQLNumResultCols(S1);

DO_SQLPutData

Use to place data in to the database at run t ime.

You can also use th is method to place data that is too large for a single bind. This method al lows mult iple
cal ls to SQLPutData().

Syntax

DO_SQLPutData(int nStatementIndex, SQLPOINTER sData, long nIndLen);

Parameters

Param eter Descript i on

nStatementIndex Index to the table of statement handles.

QALoad 5.02

459

sData The actual data in string form.

nIndLen The length of the data.

Example

DO_SQLAllocHandle(SQL_HANDLE_STMT, C0, S0);
strcpy(sql_statement, "INSERT INTO dbo.TEST_TABLE (keyval, test_number, longvarchar_col)
VALUES (?, ?, ?)");
DO_SQLPrepare(S0, sql_statement);
DO_SQLBindParameter(S0, 1, SQL_PARAM_INPUT, SQL_C_LONG, SQL_INTEGER, 0, 0, 4, 0);
DO_SQLBindParameter(S0, 2, SQL_PARAM_INPUT, SQL_C_LONG, SQL_INTEGER, 0, 0, 4, 0);
DO_SQLBindParameter(S0, 3, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR, 16, 0, 0,
SQL_DATA_AT_EXEC);
DO_LoadMem(S0, 1, "26293", 0);
DO_LoadMem(S0, 2, "9", 0);
DO_SQLExecute(S0);
DO_SQLParamData(S0);
DO_SQLPutData(S0, "AAA", -3);
DO_SQLParamData(S0);
DO_SQLEndTran(SQL_HANDLE_DBC, C0, SQL_COMMIT);
DO_SQLFreeHandle(SQL_HANDLE_STMT, S0);

DO_SQLPrepare

Prepares a SQL statement and associates the results with the command_index. The command is not
executed unt i l the DO_SQLExecute command is cal led.

Syntax

DO_SQLPrepare(StatementIndex, SQLString);

Parameters

Param eter Descript i on

StatementIndex Index in to the table of statement handles.

SQLString Text of the SQL statement to execute.

Example

char *sql_statement = "SELECT name from emp_tut";
DO_SQLPrepare(S1, sql_statement);
DO_SQLExecute (S1);

DO_SQLRetrieveParamValue

Retrieves a value of a SQL_PARAM_INPUT_OUTPUT or SQL_PARAM_OUTPUT parameter, fol lowing the
execut ion of the corresponding SQL statement.

Syntax

DO_SQLRetrieveParamValue(nStmtIndex, nParamNumber);

Parameters

Param eter Descript i on

nStmtIndex Index in to the table of ODBC/DB2 statement handles.

QALoad 5.02

460

nParamNumber Index of the parameter.

Example

char* sRow1 = NULL;
char* sRow2 = NULL;
char* sRow3 = NULL;
char* sRow4 = NULL;
DO_SQLBindParameter(S0, 1, SQL_PARAM_INPUT, SQL_C_ULONG, SQL_INTEGER, 0, 0, 4, 4);
DO_SQLBindParameter(S0, 2, SQL_PARAM_OUTPUT, SQL_C_ULONG, SQL_INTEGER, 0, 0, 4);
DO_SQLBindParameter(S0, 3, SQL_PARAM_OUTPUT, SQL_C_ULONG, SQL_INTEGER, 0, 0, 4, 4);
DO_SQLBindParameter(S0, 4, SQL_PARAM_OUTPUT, SQL_C_ULONG, SQL_INTEGER, 0, 0, 4, 4);
DO_SQLBindParameter(S0, 5, SQL_PARAM_OUTPUT, SQL_C_ULONG, SQL_INTEGER, 0, 0, 4, 4);
strcpy(sql_statement, "{call setup_rows (?,?,?,?,?) }");
DO_SQLPrepare(S0, sql_statement);
DO_LoadMem(S0, 1, "17", 4);
DO_LoadMem(S0, 2, "1234", 4);
DO_LoadMem(S0, 3, "1235", 4);
DO_LoadMem(S0, 4, "1236", 4);
DO_LoadMem(S0, 5, "1237", 4);
DO_SQLExecute(s0);
sRow1 = DO_SQLRetrieveParamValue(S0, 2);
sRow2 = DO_SQLRetrieveParamValue(S0, 3);
sRow3 = DO_SQLRetrieveParamValue(S0, 4);
sRow4 = DO_SQLRetrieveParamValue(S0, 5);

DO_SQLRowCount

Returns an in teger indicat ing the number of rows affected by the last SQL statement associated with the
specified command_index.

For inserts, updates, and deletes, the SQLRowCount value is avai lable immediately after the command is
executed. For Select commands, the value of th is funct ion depends on the capabi l i t ies of the specific ODBC
driver used.

Syntax

DO_SQLRowCount(nStatementIndex);

Parameters

Param eter Descript i on

nStatementIndex Index in to the table of statement handles.

Example

DO_SQLExecDirect(S1, sql_statement);
int pcrow = DO_SQLRowCount(S1);
DO_SQLFreeStmt(S1, SQL_CLOSE);

DO_SQLSetConnectAt t r

Sets a characterist ic of the connect ion.

Connect ion attributes are characterist ics of the connect ion. They can be set before or after connect ing.
Connect ion attributes become part of the connect handle structure.

QALoad 5.02

461

Syntax

DO_SQLSetConnectAttr(nConnectionIndex, nAttribute, nAttrValue, nStrLength);

Parameters

Param eter Descript i on

nConnectionIndex Points to a structure that ODBC/DB2 uses to track different connect ion
sett ings, statements within the connect ion, and descriptors al located with in
the connect ion.

nAttribute For example: SQL_ATTR_AUTOCOMMIT is an attribute with set values
SQL_TRUE or SQL_FALSE. Other connect ion attributes have different
values. Note that QALoad does not al low SQL_ATTR_ENABLE_ASYNC to be
true for ODBC. No asynchronous transact ions wil l be handled.

nAttrValue The value set for the attribute.

nStrLength Can be a length pointer, or is ignored by ODBC and DB2.

Example

DO_SQLAllocConnect(C0);
DO_SQLSetConnectAttr(C0, SQL_ATTR_AUTOCOMMIT,
"SQL_AUTOCOMMIT_ON", SQL_IS_INTEGER);
DO_SQLConnect(C0, "EDGARDO", "db2Admin", "db2Admin");
DO_SQLAllocStmt(C0, S0);

DO_SQLSetConnectOpt ion

Sets opt ions on the connect ion handle.

The fol lowing is a l ist of value opt ion constants and the meanings of their respect ive value parameters.

Param eter Value Type Value Descri pt i on

SQL_ACCESS_MODE in teger Determines type of access th is program uses.

SQL_AUTOCOMMIT in teger 0 = Autocommit off
1 = Autocommit on

SQL_LOGIN_TIMEOUT in teger Number of seconds to wai t for a login request to complete
before return ing to the appl icat ion. The default is 15.

SQL_OPT_TRACE in teger In teger value tel l ing the Driver Manager whether or not to
perform tracing.
0 = Tracing off (Default)
1 = Tracing on

SQL_OPT_TRACEFILE string Nul l-terminated character string contain ing the name of
the trace fi le. If t racing is enabled, the Driver Manager
wri tes to th is fi le each t ime the appl icat ion cal ls a funct ion.
If no trace fi le name is specified, the Driver Manager wri tes
to SQL.LOG.

SQL_TRANSLATE_DLL string Nul l-terminated character string contain ing the name of a
DLL contain ing the funct ions SQLClientToDataSource and

QALoad 5.02

462

SQLDataSourceToClient the driver loads and uses to
perform tasks such as character set translat ion. This opt ion
may only be specified i f the driver has connected to the
data source.

SQL_TRANSLATE_OPTION in teger 32-bit flag value that is passed to the translate DLL. This
opt ion may only be specified i f the driver has connected to
the data source.

SQL_TXN_ISOLATION in teger 32-bit bi tmask that sets the transact ion isolat ion level for
the current connect ion index. Refer to ODBC
documentat ion for detai ls on sett ing th is parameter.

Syntax

DO_SQLSetConnectOption(ConnectionIndex, Option, Value);

Parameters

Param eter Descript i on

ConnectionIndex Index in to a table of ODBC connect ion handles.

Option One of the val id opt ion constants.

Value Value associated with the opt ion. Depending on the type of opt ion used, i t
can either be NULL, an in teger, or a pointer to a string.

Example

DO_SQLAllocStmt(C0, S0);
DO_SQLSetStmtOption(S0, 1229, 0);
DO_SQLSetStmtOption(S0, SQL_CONCURRENCY, 1);
DO_SQLSetConnectOption(C0, SQL_AUTOCOMMIT, 0);
DO_SQLSetConnectOption(C0, SQL_TXN_ISOLATION, 1);
DO_SQLFreeStmt(S0, SQL_CLOSE);
DO_SQLFreeStmt(S0, SQL_UNBIND);

DO_SQLSetCursorName

Associates a cursor name with an act ive command_index.

The only SQL statements that accept cursor names are UPDATE and DELETE.

Syntax

DO_SQLSetCursorName(StatementIndex, CursorName);

Parameters

Param eter Descript i on

StatementIndex Index in to the table of statement handles.

CursorName Name of the cursor.

Example

DO_SQLSetCursorName(S1, "C1");
........

QALoad 5.02

463

........
DO_SQLPrepare(S1,"UPDATE EMPLOYEE SET date=? WHERE CURRENT OF C1");

DO_SQLSetDescField

Sets a descriptor field. A cal l to DO_SQLSetDescField can set a field of any descriptor type that can be set.

Cal l DO_SQLSetDescField fi rst when deal ing with an expl ici t ly al located descriptor, as i t al locates the rows
of an expl ici t ly al located descriptor.

Syntax

DO_SQLSetDescField(DescriptorHandle, RecordNumber, FieldID, Value, BufferLen)

Parameters

Param eter Descript i on

DescriptorHandle Points to a structure used to describe rows of a resul t set, or a set of
parameters to be bound to a statement.

RecordNumber The record number of the descriptor.

FieldID An attribute to set for the record.

Value The value to set the FieldID to.

BufferLen Length of the value coming in.

Example

DO_SQLSetDescField(D0, 0, SQL_DESC_COUNT, 2, -6);
DO_SQLSetDescRec(D0, 1, SQL_INTEGER, 0, 4, 10, 0, "10", 4, 4);
DO_SQLSetDescRec(D0, 2, SQL_INTEGER, 0, 4, 10, 0, "10", 4, 4);
DO_SQLCopyDesc(D0, D1);
DO_SQLFreeHandle(SQL_HANDLE_DESC, D1);
DO_SQLGetDescRec(D2, 1, 0);
DO_SQLFreeHandle(SQL_HANDLE_DESC, D2);
DO_SQLFreeHandle(SQL_HANDLE_DESC, D1);

DO_SQLSetDescRec

Sets mult iple descriptor fields with a single cal l .

Use DO_SQLSetDescRec to change fields affect ing the binding of a column or parameter without cal l ing
DO_SQLBindCol, DO_SQLBindParameter, or DO_SQLSetDescField. DO_SQLSetDescRec can set fields on a
descriptor not current ly associated with a statement, sets more fields than DO_SQLSetDescRec, can set
fields on both an APD and an IPD in one cal l , and does not require a descriptor handle.

Because descriptors are associated with connect ions, a descriptor can carry over from one statement to the
next and can be associated with different statements for cont inued bindings.

Syntax

DO_SQLSetDescRec(nDescIndex, nRecordNumber, nFieldId, nSubType, nLength, nPrecision,
nScale, pData, pStrLen, pIndicator)

QALoad 5.02

464

Parameters

Param eter Descript i on

nDescIndex Points to the locat ion of the descriptor structure in memory.

nRecordNumber The descriptor record with fields to be set.

nFieldId The C data type of the field to be set.

nSubType Applicable only for in terval data types and for date and t ime data types,
which have subtypes.

nLength The length, in bytes, of a character string or binary datatype.

nPrecision The maximum number of digits used by the column or parameter.

nScale Scales the maximum number of digits to the right of the decimal point.

pData Points to parameter or column value.

pStrLen Points to a variable that wi l l contain the total length in bytes of a dynamic
argument.

pIndicator Points to an indicator variable that contains SQL_NULL_DATA if the
column value is a NULL. Otherwise the variable is 0.

Example

DO_SQLSetDescField(D0, 0, SQL_DESC_COUNT, 2, -6);
DO_SQLSetDescRec(D0, 1, SQL_INTEGER, 0, 4, 10, 0, "10", 4, 4);
DO_SQLSetDescRec(D0, 2, SQL_INTEGER, 0, 4, 10, 0, "10", 4, 4);
DO_SQLCopyDesc(D0, D1);
DO_SQLFreeHandle(SQL_HANDLE_DESC, D1);

DO_SQLSetEnvAt t r

Sets different aspects of the ODBC environment.

For ODBC 3.x, cal l th is funct ion immediately after cal l ing DO_SQLAllocHandle to alert the environment
handle as to which set of cal ls, ODBC 2.x or ODBC 3.x , the appl icat ion wil l adhere.

Although QALoad captures and converts DO_SQLSetEnvAttr, you must enter the environment connect ion
elements manually. The attributes must be set before the connect ion is al located. Therefore, the cal ls to
DO_ SQLSetEnvAttr must be handled by script manipulat ion with in pro_In itODBC, after the cal l to
SQLSetEnvAttr made in this funct ion.

DO_SQLSetEnvAttr can only be cal led i f a connect ion handle is not al located on the environment.
Environment attributes set by the appl icat ion persist unt i l DO_SQLFreeHandle is cal led on the
environment.

Syntax

DO_SQLSetEnvAttr(Attribute, AttributeValue, Indicator)

Parameters

Param eter Descript i on

QALoad 5.02

465

Attribute The specific property the appl icat ion is sett ing.

AttributeValue The value of the specific property that the appl icat ion is sett ing.

Indicator Can be a length pointer, or is ignored by ODBC/DB2.

Example

DO_SQLAllocHandle(SQL_HANDLE_ENV, 0, c0);
DO_SQLSetEnvAttr(SQL_ATTR_ODBC_VERSION, (SQLPOINTER)SQL_OV_ODBC2, -6);
DO_SQLAllocHandle(SQL_HANDLE_STMT, c0, s0);

DO_SQLSetPos

Posit ions a cursor with in a retrieved block of data.

Syntax

DO_SQLSetPos(StatementIndex, nRow, nRefresh, nLock);

Parameters

Param eter Descript i on

StatementIndex Index in to the table of statement handles.

nRow Absolute posit ion of the cursor with in the retrieved block of data. nRow
must be a value from 1 to the number of rows in the rowset.

nRefresh Specifies whether or not to refresh the buffer value for the row specified by
nRow. If TRUE (1), the driver refreshes the buffer value. If FALSE (0), the
driver does not change the buffer value.

nLock Specifies whether or not to lock the row for subsequent update operat ion. If
TRUE (1), the driver requests a lock for the row. If FALSE (0), the driver
appl ies the form of concurrency control specified in a cal l to
DO_SQLSetScrol lOpt ions.

Example

int iRow = 1;
DO_SQLSetPos(S1, iRow, FALSE, FALSE);

DO_SQLSetScrollOpt ions

Allows the appl icat ion to specify the type of cursor behavior in three areas: concurrency control, sensit ivi ty
to changes made by other transact ions, and rowset size.

Syntax

DO_SQLSetScrollOptions(int StmtIndex, UWORD fConcurrency, SDWORD crowKeyset, UWORD
crowRowset);

Parameters

Param eter Descript i on

StmtIndex Index to the table of ODBC/DB2 statement handles.

QALoad 5.02

466

fConcurrency Specifies concurrency control for the cursor.

crowKeyset Number of rows for which to buffer keys.

crowRowset Number of rows in a rowset.

Example

DO_SQLAllocConnect(C0);
DO_SQLConnect(C0, "fhloaddb2", "sa", "");
DO_SQLAllocStmt(C0, S0);
DO_SQLSetScrollOptions(S0, SQL_CONCUR_LOCK, SQL_SCROLL_STATIC, 0);

DO_SQLSetStmtAt t r

Sets statement attributes and, as a result , sets descriptor fields.

When cal l ing DO_SQLSetStmtAttr to set fields, rather than DO_SQLSetDescField, i t is not necessary to
obtain a descriptor handle for the funct ion cal l .

When using DO_SQLSetStmtAttr, cal l ing i t for a statement can affect other statements i f the statement ’s
Appl icat ion Parameter Descriptor (APD) or Appl icat ion Row Descriptor (ARD) is expl ici t ly al located and
associated with other statements.

DO_SQLSetStmtAttr modifies the APD or ARD and those modificat ions apply to al l statements with which
the descriptor is associated. To avoid th is, disassociate the descriptor from the other statement using
DO_SQLSetStmtAttr to change the descriptor handle of SQL_ATTR_APP_ROW_DESC or
SQL_ATTR_APP_PARAM_DESC. Then cal l DO_SQLSetStmtAttr again.

When sett ing a statement attribute also sets a descriptor field, the field is set only for the descriptors
current ly associated with the statement ident i fied by the StatementHandle parameter. Subsequent attribute
sett ings are not affected. When DO_SQLSetDescField sets a descriptor field that is also a statement
attribute, i t also sets the corresponding statement attribute.

Syntax

DO_SQLSetStmtAttr(int nStmtIndex, long nAttribute, long nAttrValue, long nStrLength);

Parameters

Param eter Descript i on

nStmtIndex Points to a structure that ODBC uses to track different statement sett ings and
descriptor sett ings with in the same connect ion handle as the statement.

nAttribute Attribute. For example: SQL_ATTR_APP_ROW_DESC. Note that even at the
statement level, QALoad does not permit asynchronous transact ions.

nAttrValue The value set for the attribute.

nStrLength Attribute length

Example

DO_SQLAllocHandle(SQL_HANDLE_STMT, C0, S0);
DO_SQLAllocHandle(SQL_HANDLE_DESC, C0, D0);
DO_SQLSetStmtAttr(S0, SQL_ATTR_APP_PARAM_DESC, D0, SQL_IS_POINTER);
DO_SQLSetDescField(D0, 0, SQL_DESC_COUNT, 2, -6);

QALoad 5.02

467

DO_SQLSetStmtOpt ion

Sets the boundaries of a specific statement handle.

Fol lowing is a l ist of value opt ion constants and the meanings of their respect ive value parameters.

Param eter Descript i on

SQLBindType A 32-bit value that sets the binding orientat ion used when
DO_SQLExtendedFetch is cal led on the associated C.

Column-wise binding is selected by supplying the defined constant
SQL_BIND_BY_COLUMN for the argument vParam.

Row-wise binding is selected by supplying a value for vParam specifying the
length of a structure or an instance of a buffer in to which result columns wil l be
bound.
The length specified in vParam must include space for al l of the bound columns
and any padding of the structure or buffer. This ensures that when the address
of a bound column is incremented with the specified length, the result points to
the beginning of the same column in the next row. When using the size of
operator with structures or unions in ANSI C, th is behavior is guaranteed.
Column-wise binding is the default binding orientat ion for
DO_SQLExtendedFetch.

SQLMaxLength A value corresponding to the maximum amount of data that can be retrieved
from a single column with a LONG VARCHAR or LONG VARBINARY data type.

SQLMaxRows A value corresponding to the maximum number of rows to return to the
appl icat ion for a SELECT command. If vParam equals 0 (Default), the driver
returns al l rows.

SQLNoScan A value. If TRUE (1), the driver does not scan SQL strings for escape clauses.
Instead, the driver sends the command direct ly to the data source. If FALSE
(Default , value 0), the driver scans for escape clauses.

SQLQueryTimeout A value corresponding to the number of seconds to wait for an SQL statement to
execute before return ing to the appl icat ion. If vParam equals 0 (Default), there is
no t ime out.

Syntax

DO_SQLSetStmtOption(StatementIndex, nOption, nParam);

Parameters

Param eter Descript i on

StatementIndex Index in to the table of statement handles.

nOption One of the val id opt ion constants.

nParam One of the constants l isted below.

Example

DO_SQLAllocStmt(C0, S0);
DO_SQLSetStmtOption(S0, SQL_QUERY_TIMEOUT, 60);
DO_SQLSetStmtOption(S0, SQL_ASYNC_ENABLE, 1);

QALoad 5.02

468

DO_SQLSpecialColumns

Retrieves in formation about columns with in a specified table.

DO_SQLSpecialColumns retrieves the fol lowing in formation:

! The optimal set of columns that uniquely identifies a row in the table.

! Columns that are automatically updated when any value in the row is updated by a transaction.

! The data is returned as a result set.

Syntax

DO_SQLSpecialColumns(StatementIndex, fColType, szTableQualifier, szTableOwner, szTableName,
fScope, fNullable);

Parameters

Param eter Descript i on

StatementIndex Index in to the table of statement handles.

fColType Type of column to return. Must be one of the fol lowing values:
SQL_BEST_ROWID: Returns the opt imal column or set of columns that, by
retrieving values from the column or columns, al lows any row in the
specified table to be uniquely ident i fied. A column can be either a pseudo
column specifical ly designed for th is purpose (as in ODBC ROWID or Ingres
TID) or the column or columns of any unique index for the table.
SQL_ROWVER: Returns the column or columns in the specified table, i f any,
that are automatical ly updated by the data source when any value in the row
is updated by any transact ion (as in SQLBase ROWID or Sybase TIMESTAMP).

SzTableQualifier Quali fier name for the table.

SzTableOwner Owner name for the table.

SzTableName Table name.

fScope Minimum required scope of the ROWID. The returned ROWID may be of
greater scope. Must be one of the fol lowing:
SQL_SCOPE_CURROW: The ROWID is guaranteed to be val id only whi le
posit ioned on that row. A later reselect using ROWID may not return a row i f
the row was updated or deleted by another transact ion.
SQL_SCOPE_TRANSACTION: The ROWID is guaranteed to be val id for the
durat ion of the current transact ion.
SQL_SCOPE_SESSION: The ROWID is guaranteed to be val id for the durat ion
of the session (across transact ion boundaries).

fNullable Determines whether to return special columns that have NULL values. Must
be one of the fol lowing:
SQL_NO_NULLS: Exclude special columns that can have NULL values.
SQL_NULLABLE: Return special columns even i f they can have NULL values.

Example

DO_SQLSpecialColumns(S1, SQL_ROWVER, "", "", "qc_test", SQL_SCOPE_TRANSACTION, SQL_NULLABLE
);
int pcol = DO_SQLNumResultCols(S1);

QALoad 5.02

469

DO_SQLStat ist ics

Retrieves a l ist of stat ist ics about a single table and the indexes associated with the table. The driver returns
the in formation as a result set.

Syntax

DO_SQLStatistics(StatementIndex, szTableQualifier, szTableOwner, szTableName, fUnique,
fAccuracy);

Parameter

Param eter Descript i on

StatementIndex Index in to the table of statement handles.

SzTableQualifier Quali fier name.

SzTableOwner Owner name.

SzTableName Table name.

fUnique Type of index: SQL_INDEX_UNIQUE or SQL_INDEX_ALL.

fAccuracy Importance of the CARDINALITY and PAGES columns in result set:
SQL_ENSURE: Requests that the driver uncondit ional ly retrieves the
stat ist ics.
SQL_QUICK: Requests that the driver retrieves results only i f they are
readi ly avai lable from the server. In th is case, the driver does not ensure
the values are current.

Example

DO_SQLStatistics(S0, "", "", "qc_test", SQL_INDEX_ALL, SQL_QUICK);

DO_SQLTables

Returns the l ist of table names stored in a specific data source. The driver returns the in formation as a
result set.

The szTableQuali fier, szTableOwner, and szTableName parameters accept search patterns. Refer to ODBC
documentat ion regarding the use of search patterns.

Syntax

DO_SQLTables(StatementIndex, szTableQualifier, szTableOwner, szTableName, szTableType);

Parameters

Param eter Descript i on

StatementIndex Index in to the table of statement handles.

SzTableQualifier Quali fier name.

SzTableOwner Owner name.

SzTableName Table name.

SzTableType List of table types to match. If szTableType is not an empty string, i t must

QALoad 5.02

470

contain a l ist of comma-separated, single quoted values for the types of
in terest (for example: TABLE or VIEW). Val id table type ident i fiers may
include TABLE, VIEW SYSTEM TABLE, ALIAS, SYNONYM, or other data
source-specific ident i fiers.

Example

DO_SQLTables(S0, "", "", "", "'TABLE','VIEW','SYSTEM TABLE','ALIAS','SYNONYM'");

DO_SQLTransact

Requests a commit or rol lback operat ion for al l update, insert , and delete transact ions in progress on al l
command indexes associated with a connect ion.

Can also request that a commit or rol lback operat ion be performed for al l connect ions by specifying a
connect ion index of -1.

Syntax

DO_SQLTransact(ConnectionIndex, fType);

Parameters

Param eter Descript i on

ConnectionIndex Index in to a table of ODBC connect ion handles or -1 to indicate the
operat ion should be performed on al l connect ions.

fType One of the fol lowing two constants: SQL_COMMIT or SQL_ROLLBACK.

Example

DO_SQLFreeStmt(C1, SQL_DROP);
DO_SQLTransact(S0, SQL_COMMIT);

DO_subst r

Finds a value with in a string.

Syntax

DO_Substr(string, placeholder, value);

Parameters

Param eter Descript i on

String The string to be searched.

Placeholder Locat ion in the string.

Value The token to search for.

Example

DO_SQLAllocStmt(C0, S0);
DO_SQLSetStmtOption(S0, SQL_QUERY_TIMEOUT, 60);
strcpy(sql_statement, "SELECT {1}, {2}, {3} FROM Customers");
DO_substr(sql_statement, 1, "CustomerID");

QALoad 5.02

471

DO_substr(sql_statement, 2, "CompanyName");
DO_substr(sql_statement, 3, "ContactName");
DO_SQLExecDirect(S0, sql_statement);
DO_SQLFreeStmt(S0, SQL_CLOSE);

GetBindColumnData

Retrieves data from one of the rows that are returned by DO_SQLFetch cal ls, after a combinat ion of
DO_SQLSetStmtAttr and DO_SQLBindCol cal ls.

Syntax

GetBindColumnData (int nIndex, int nColumn, int nRow);

Parameters

Param eter Descript i on

nIndex The statement index.

nColumn The column of data to return.

nRow The row of data to return.

Returns

char* contain ing the data or an error

Example

DO_SQLFetch(S0);
RR__printf(GetBindColumnData(S0, 1, 1));
RR__printf(GetBindColumnData(S0, 2, 1));
RR__printf(GetBindColumnData(S0, 1, 2));
RR__printf(GetBindColumnData(S0, 2, 2));
RR__printf(GetBindColumnData(S0, 1, 3));
RR__printf(GetBindColumnData(S0, 2, 3));
RR__printf(GetBindColumnData(S0, 1, 4));
RR__printf(GetBindColumnData(S0, 2, 4));
RR__printf(GetBindColumnData(S0, 1, 5));
RR__printf(GetBindColumnData(S0, 2, 5));

Oracle 7

Oracle 7 Index

DO_autocommitoff
Disables the automatic commit of every SQL data manipulat ion command.

DO_autocommiton
Enables the automatic commit of every SQL data manipulat ion command.

DO_binddate
Binds a date variable to a bind variable in a SQL statement.

DO_BindForUpdateRowID
Binds a rowid in an UPDATE or DELETE statement where the rowid originates from a previous SELECT FOR

QALoad 5.02

472

UPDATE statement.

DO_bindnul l
Binds a NULL value to a bind variable in a SQL statement.

DO_bindstring
Binds a program variable to a bind variable in a SQL statement.

DO_BindV
Binds a program variable to a bind variable in a SQL statement.

DO_cleanup
Deal locates cursors, logon structures and al located memory when the script is aborted.

DO_commit
Commits the current transact ion.

DO_FetchIters
Ident i fies the number of fetch i terat ions that wi l l be appl ied to the succeeding fetch loop. The Fetch Loop
wil l execute (n) t imes according to the fetch i terat ion value.

DO_get_select_variable
Places the select-l ist i tem data recent ly fetched by DO_process_select_l ist in a program variable, which may
then be used in subsequent statements.

DO_GetSelectData
Copies the data retrieved from a SQL SELECT statement in to a program variable.

DO_in it_alen
A rout ine that in i t ial izes the pointer to the variable represent ing the length of data that is a parameter in
DO_ScalarBindA.

DO_in it_data
A rout ine that al locates and in i t ial izes al l of the logon data areas, cursor data areas, structures, and so on
which are used to run the script .

DO_in it_indp
A rout ine that in i t ial izes the pointer of the nul l indicator variable, which is a parameter of the DO_Bindv
and DO_ScalarBindA cal ls.

DO_oclose
Disconnects a previously opened cursor, return ing al l resources back to the Oracle server.

DO_oexec
Executes the SQL statement associated with a cursor.

DO_olog
Establ ishes a connect ion between QALoad and an Oracle database.

DO_ologof
Closes a connect ion to the Oracle server, freeing i ts resources.

DO_oopen
Opens a cursor to the database.

QALoad 5.02

473

DO_oopt
Sets rol lback opt ions for non-fatal errors on mult i-row INSERT and UPDATE SQL statements and
determines whether to wait for requested resources or return errors.

DO_oparse
Parses a SQL statement or a PL/SQL block and associates i t with a cursor index.

DO_process_select_l ist
Fetches select-l ist data from the Oracle database. It is general ly cal led repeatedly unt i l there are no more
rows sat isfying the SQL select request.

DO_rol lback
Rol ls back the current transact ion.

DO_ScalarBindA
Binds a program variable to a bind variable in a SQL statement.

DO_SoftClose
Closes a cursor without destroying i ts resources on the server.

Oracle 7 cursors

An Oracle cursor is a handle to a region in the System Global Area on the server where parsed SQL
statements and other in formation for processing are kept. In Oracle appl icat ions, such as a QALoad script ,
th is region is mapped to OCI commands through a data structure cal led the Cursor Data Area
(CDA).Cursor Data Areas are opened and closed by an appl icat ion and their addresses are passed to those
OCI commands which are used to manipulate SQL statements. In QALoad , Cursor Data Areas are managed
internal ly but are referenced by constants (for example, CDA(0), CDA(1), etc.) that represent indexes in to a
table of CDAs. Cursor indexes are used to open and close cursors and are then passed to the appropriate
Oracle QALoad script commands.

Oracle 7 command sequence

The fol lowing figure shows the standard sequence of commands for a QALoad Oracle 7-based script .

QALoad 5.02

474

Adding QALoad script commands to perform an SQL statement

1. Create the appropriate handles and increment the HANDLE_COUNT parameter in the QALoad script.

a. Find the number after HANDLE_COUNT in the QALoad script. Note the current number, and then add one (1)
to this number. One new handle will be allocated for this SQL statement example. For example, if the following line is
in the script:
HANDLE_COUNT 39
edit it to read:
HANDLE_COUNT 40

b. Then, allocate a statement handle (note that you can use a pre-allocated error handle; this error handle is
usually created and freed during the logon and logoff sequences).

c. Associate the number 39 with this new handle to be allocated, as shown below:
DO_OCIHandleAlloc(HNDL(39), OCI_HTYPE_STMT);

2. Prepare the SQL statement. Use the new allocated statement handle in a call to DO_OCIStmtPrepare, as shown
below. Note that the SQL statement is enclosed in double-quotes. The last parameter, OCI_NTV_SYNTAX, will
allow the Oracle database to parse the SQL statement based on its native parsing syntax. This is the recommended
parameter setting for this call.
DO_OCIStmtPrepare(HNDL(39), "SELECT * FROM emp", OCI_NTV_SYNTAX);

3. Bind all input, return, and PL/SQL stored procedure/function parameters. For each input parameter, return
parameter, or PL/SQL stored procedure/function parameter, a bind variable must be defined to specify the data type
of the bound value, the input value as a variable or constant, and a buffer area to receive any changes to the value
on output (as from a PL/SQL stored procedure/function INPUT/OUTPUT variable). See DO_OCIBind for more
information.
DO_OCIBind(HNDL(6), HNDL(1), ":VPKEY", _INTEGER, 4, NULL, NULL, (ub1 *) "65", (ub1 *)
&INTEGER_6_VPKEY_1);

QALoad 5.02

475

4. Execute the SQL statement. Once all the bind statements are added, the SQL statement execution statement is now
added. Below is a typical call to DO_OCIStmtExecute. Note that the iters parameter (the 2nd parameter) should be
set to 1 in most cases.
DO_OCIExecute(HNDL(6), 1, OCI_DEFAULT);

5. Fetch the data in a loop with DO_OCIProcessSelectList. If the SQL statement is a SELECT statement with one or
many returning values, you will need to add a DO_OCIProcessSelectList loop. This will iterate through the fetched
data until there is no returned data. This loop should be present even if no fetched values are retrieved into variables
(see Step 6). Note that the fetchcount parameter (the 2nd parameter) should be set to 1 to retrieve a single row at a
time.

while (DO_OCIProcessSelectList(HNDL(6), 1))
{
 /* Here is where the calls to retrieve individual fetched data
 items to variables using DO_OCI8GetSelectData
 is put (see Step 6) */
} /* end of DO_process_select_list */

6. Retrieve individual fetched data values to variables in the DO_OCIProcessSelectList loop with
DO_OCI8GetSelectData. If there are individual fetched items whose values are to be put into C-style variables for
later use, a DO_OCI8GetSelectData call should be placed within the brackets of the while statement for each value
to be retrieved. Note that the fetch number, column number, and row number of the desired fetch data must be
known, and a buffer variable for the data must be created. The sample code below shows a call to
DO_OCI8GetSelectData to retrieve the value returned from the first column and first row of the first fetch into the
address of the variable ENO.

while (DO_OCIProcessSelectList(HNDL(6), 1))
{
 DO_OCI8GetSelectData(HNDL(6), 1, 1, 1, &ENO, _NONE_ , NULL, 0);
}

7. Commit the SQL statement. Once the SQL statement is finished processing, it can be committed. This commit can
be done any time after the statement has executed until the service context handle is de-allocated (usually during
the Oracle logoff sequence).
DO_OCICommit(HNDL(3), HNDL(1), 0);

8. Once the statement has fetched all its data after execution, the statement handle should be freed with a call to
DO_OCIHandleFree for the statement handle.
DO_OCIHandleFree(HNDL(6), OCI_HTYPE_STMT);

DO_autocommitoff

Disables the automatic commit of every SQL data manipulat ion command.

Syntax

DO_autocommitoff(LDAIndex);

Parameters

Param eter Descript i on

LDAIndex Logon data area index.

Equivalent OCI

ocof

Example

DO_autocommitoff(LDA(0));

QALoad 5.02

476

DO_autocommiton

Enables the automatic commit of every SQL data manipulat ion command.

Syntax

DO_autocommiton(LDAIndex);

Parameters

Param eter Descript i on

LDAIndex Logon data area index.

Equivalent OCI

ocon

Example

DO_autocommiton(LDA(0));

DO_binddate

Binds a date variable to a bind variable in a SQL statement.

Bind variables are specified in SQL statements by preceding the variable name with a colon (:).
DO_binddate commands must be placed between the DO_oparse and the DO_oexec commands. To bind
by posit ion, as opposed to by name, preface the posi t ion with an @ symbol.

Syntax

DO_binddate(cursor, name, &oradate_structure);

Parameters

Param eter Descript i on

cursor Cursor table index.

name Pointer to the name of the bind variable
(nul l terminated string).

oradate_structure An ORADATE structure. This structure is defined in the header fi les provided
by Oracle. The ‘& ’ is the C address operator which specifies that the address
or pointer to an ORADATE structure is being passed.

year: Four-digit year.

month: Two-digit month.

day: Two-digit day of the month.

hour: Hour in the day (0 to 23).

min: M inute with in the hour (0-59).

second: Seconds with in the minute (0-59).

QALoad 5.02

477

Equivalent OCI

obndrv

Example

This example shows a Select command with one bind variable:

/* ORADATE declarations follow */

ORADATE DATE_0_6;
DO_oparse(CDA(0), "SELECT EMP_ID FROM EMP_TUTORIAL WHERE HIRE_DATE >:hiredate ");
DO_makedate(&DATE_0_6, 1980, 12, 17, 0, 0, 0);
DO_binddate(CDA(0), ":hiredate", &DATE_0_6);
DO_oexec(CDA(0));

DO_BindForUpdateRowID

Binds a rowid in an UPDATE or DELETE statement where the rowid originates from a previous SELECT FOR
UPDATE statement.

Syntax

DO_BindForUpdateRowID(cursor1, cursor0, bind_variable_name);

Parameters

Param eter Descript i on

cursor1 Cursor index.

cursor0 Cursor index of the FOR UPDATE statement.

bind_variable Name of a rowid bind variable.

Example

DO_oopen(LDA(0), CDA(0));
DO_oparse(CDA(0), "SELECT EMPNO, ENAME FROM EMP FOR UPDATE OF EMPNO, ENAME");
DO_oexec(CDA(0));

n = DO_process_select_list(CDA(0), 3);

DO_oopen(LDA(0), CDA(1));
DO_oparse(CDA(1), "UPDATE EMP SET EMPNO=:empno, ENAME=:ename WHERE ROWID = :row_id");
DO_BindForUpdateRowID(CDA(1), CDA(0), ":row_id");

DO_BindV(CDA(1), (text*)":empno",_VARCHAR2,
 4, NULL, (ub1 *) "7421",
 (ub1 *) VARCHAR2_0_empno_0);
DO_BindV(CDA(1), (text*)":ename",_VARCHAR2,
 4, NULL, (ub1 *) "WARD",
 (ub1 *) VARCHAR2_0_ename_1);
DO_oexec(CDA(1));

DO_bindnull

Binds a NULL value to a bind variable in a SQL statement.

Bind variables are specified in SQL statements by preceding the variable name with a colon (:). The input
value wil l be set nul l . Bind statements must be placed after the DO_oparse and before the DO_oexec.

QALoad 5.02

478

DO_bindnul l cannot be used with bind variables that return results, as in stored procedures OUTPUT
parameters.

Syntax

DO_bindnull(cursor, name);

Parameters

Param eter Descript i on

cursor Cursor table index.

name The name of the bind variable as a nul l-terminated character string.

Equivalent OCI

obndrv, obndrn

Example

This example shows a Select command with two bind variables, :empid and :id, which are being bound to
a NULL value.

DO_oparse(CDA(0), "SELECT EMP_ID FROM EMP_TUTORIAL WHERE EMP_ID =:empid AND EMP_DEPT_ID =
:id ");
DO_bindnull(CDA(0), ":empid");
DO_bindnull(CDA(0), ":id");
DO_oexec(CDA(0));

DO_bindst ring

Binds a program variable to a bind variable in a SQL statement.

Bind variables are specified in SQL statements by preceding the variable name with a colon (:).
DO_bindstring must be cal led after the DO_oparse and before the DO_oexec. Once you have bound a
variable, you can change the value and length and then cal l another DO_oexec.

DO_bindstring only supports the binding of strings, nul ls, and dates. If you need to bind a numeric value,
convert i t fi rst to a string before passing i t to DO_bindstring. If needed, Oracle automatical ly converts
character data types to numeric.

Note: DO_bindstring is a deprecated command. Use DO_BindV or DO_ScalarBindA. DO_bindstring binds
every data type as a fixed character and forces the Oracle server to make implicit database conversions. Also,
you must variabalize OUTPUT variables or they will overwrite the input data held by string constants.

Syntax

DO_bindstring(cursor, name, value);

Parameters

Param eter Descript i on

cursor Cursor table index.

name Pointer to the name of the bind variable (nul l terminated).

value Pointer to a string contain ing the value for the bind variable (nul l
terminated).

QALoad 5.02

479

Equivalent OCI

obndrv, obndrn

Example

This example shows a Select command with two bind variables, :empid and :id.

DO_oparse(CDA(0), "SELECT EMP_ID FROM EMP_TUTORIAL WHERE EMP_ID =:empid AND EMP_DEPT_ID =
:id ");
DO_bindstring(CDA(0), ":empid", "200");
DO_bindstring(CDA(0), ":id", "100");
DO_oexec(CDA(0));

DO_BindV

Binds a program variable to a bind variable in a SQL statement.

A DO_BindV is generated wherever an obndrv occurred in the capture fi le. DO_BindV accurately
reproduces the original bind cal l made by the appl icat ion. This el im inates extra data conversion steps and
improves handl ing of OUTPUT variables to Oracle stored procedures.

Bind variables are specified in SQL statements by preceding the variable names with a colon (:). DO_BindV
must be cal led after the DO_oparse and before a DO_oexec. Once you have bound a variable, you can
change i ts value and length and execute i t again without reparsing the SQL statement or rebinding the
variable.

Current ly, DO_BindV is not supported for cursor, m lslabel, packed-decimal, oslabel, PCC-descriptor, and
the new Oracle 8 datatypes.

Syntax

DO_BindV(index, name, type, progvl, indp, input, progv);

Parameters

Param eter Descript i on

index Cursor table index.

name Pointer to name of the bind variable (nul l terminated).

type External datatype of bind variable.

progvl Size of progv. This is the maximum size of the buffer. If binding an OUTPUT
variable, progvl must be at least as large as the expected output value.

indp Pointer to a nul l indicator variable: plndp[0] points to make_indp[0], and
make_indp holds the value of the nul l indicator. If
make_indp[0]=SET_NULL, the input wi l l be passed to Oracle as nul l .
Otherwise, data is passed as shown in the bind cal l .

input Pointer to buffer contain ing input data.

progv Output data buffer.

Equivalent OCI

obndrv, obndrn

QALoad 5.02

480

Example

This example shows a Select command with two bind variables, :empid and :id.

DO_oparse(CDA(0), "SELECT EMP_ID FROM EMP_TUTORIAL WHERE EMP_ID = :empid AND EMP_DEPT_ID =
:id");

make_indp[0]=0

DO_BindV(CDA(0), ":empid", _STRING, 48, pIndp[0], "200", STRING_0_empid_3);

make_indp[1]=0

DO_BindV (CDA(0), ":id", _STRING, 48, pIndp[1], "100", STRING_0_id_3);
DO_oexec (CDA(0));

DO_cleanup

Deallocates cursors, logon structures and al located memory when the script is aborted.

Note: Do not modify or move this command.

Syntax

sword DO_cleanup();

Parameters

None.

DO_commit

Commits the current transact ion.

Syntax

DO_commit(LDAIndex);

Parameters

Param eter Descript i on

LDAIndex Logon data area index.

Equivalent OCI

ocom

Example

DO_commit(LDA(0));

DO_FetchIters

Ident i fies the number of fetch i terat ions that wi l l be appl ied to the succeeding fetch loop. The Fetch Loop
wil l execute (n) t imes according to the fetch i terat ion value.

The fetch i terat ion value is derived from the script capture’s fetch i terat ion data for each Select statement.
However, the Fetch Iterat ion Override in Oracle Convert Options may be used to replace al l fetch i terat ion
values in the script . The override range is 1-1000000. The default value for each convert act ivi ty is 0 (no
override).

QALoad 5.02

481

Syntax

DO_FetchIters(cursorIndex, fetchIterationValue);

or

DO_FetchIters(statementHandleIndex, fetchIteration Value);

Parameters

Param eter Descript i on

cursorIndex An index to an al located OC17 cursor or Oracle 8 statement handle used in
the previous cal l to oparse, osql3, upipse, upiosq, or OCIStmtPrepare.

fetchIterationValue Number of i terat ions to be appl ied to the succeeding fetch-loop.

statementHandleIndex An index to an al located OC17 cursor or Oracle 8 statement handle used in
the previous cal l to oparse, osql3, upipse, upiosq, or OCIStmtPrepare.

Example

The fol lowing OC17 example shows how DO_FetchIters is used relat ive to the parse and fetch-loop:

DO_oparse(CDA(0),"select ename, empno, mgr from emp");
DO_FetchIters(CDA(0), ITERS(4));
DO_oexec(CDA(0));

while (DO_process_select_list(CDA(0), 1))
//1 = the number of rows per iteration
{
}

The fol lowing OCI18 example shows how DO_FetchIters is used relat ive to the prepare and fetch-loop.

DO_OCIStmtPrepare(HNDL(6), "select empno from emp", OCI_NTV_SYNTAX);
DO_FetchIters(HNDL(6), ITERS(13));
DO_OCIDefine(HNDL(6), HNDL(1), 1, 1,_VARCHAR2, 4, IS_ATTRIBUTE);
DO_OCIStmtExecute(HNDL(8), HNDL(6), HNDL(1), 1, OCI_DEFAULT);

while (DO_OCIProcessSelectList(HNDL(6), 1))
//1 = the number of rows per iteration
{
DO_OCI8GetSelectData(FETCH(1), COL(1), ROW(1), &FD_stmnt_1_col_1_row_1, _NONE_, "", 0);
}

DO_get_select_variable

Places the select-l ist i tem data recent ly fetched by DO_process_select_l ist in a program variable, which may
then be used in subsequent statements.

Note: DO_process_select_list is called repeatedly in a loop. Each call to DO_process_select_list fetches a
number of rows into the script’s internal buffer. The number of rows is specified in the second parameter of
DO_process_select_list. DO_get_select_variable, in turn, copies the fetched data from a specific row and the
select-list item into a program variable.

All select l ist i tems are converted by the server in to a nul l terminated string format prior to being processed
by your script . Therefore, dates and numbers appear as readable ASCII character strings.

The program does not check to veri fy that the length of the buffer is sufficient ly large to contain the
returned value.

Syntax

DO_get_select_variable(pos, row, value);

QALoad 5.02

482

Parameters

Param eter Descript i on

pos Variable to retrieve (starts at 1).

row Row in the buffer to retrieve (starts at 1).

value Pointer to a character array in to which the data is placed.

Example

This example shows how the first select-l ist i tem from the second fetched row is copied to the program
variable coname.

char coname[128];
:
:
DO_oexec(CDA(0)); /* Exec for statement 2 */

while (DO_process_select_list(CDA(0), 30))
{
DO_get_select_variable(1, 2, coname);
}

DO_GetSelectData

Copies the data retrieved from a SQL SELECT statement in to a program variable.

DO_GetSelectData processes the data retrieved by DO_process_select_l ist() by copying the value of the
fetched data to another program variable. Typical ly, the program variable is also a source variable. Source
variables are created by Act iveData for Oracle so that postbind and/or fetch data from one port ion of a
script can be used as input to subsequent bind statements.

Note: If you are working with Oracle 8 select output data, use DO_OCI8GetSelectData instead.

If the formatType is INT_FORMAT, then the data wi l l be converted to an in teger before formatt ing (using
atol()). This implies that the formatString wil l contain a %i, %d or equivalent.

Syntax

DO_GetSelectData(fetchCount, colnum, rowNum, srcName, formatType, formatString,
addConstant);

Parameters

Param eter Descript i on

fetchCount A number from 1-n indicat ing which fetch sequence to use to fetch the
data. The script code for a fetch statement is general ly output as a C-based
while-loop. This loop wil l retrieve data unt i l no more data is avai lable. This
parameter determines which i terat ion of that loop to use to retrieve the
data.

colnum Column number to use to fetch the data. The first column is 1.

rowNum Row number to use to fetch the data. The first row number is 1.

srcName Pointer to the address of a source variable. The funct ion wil l al locate
memory for the source value and copy i ts value in to th is variable. Note

QALoad 5.02

483

that th is parameter is a char **.

formatType Data type to be used in the special format string. Acceptable values are:
NONE, No special formatt ing.
INT_FORMAT, Convert bind data to an in teger before formating.
STRING_FORMAT, Assume that the bind data is numeric.

formatString A printf-style format. The data wi l l be formatted using th is string. Only
used i f the formatType is INT_FORMAT or STRING_FORMAT.

addConstant If the formatType is INT_FORMAT, th is value is added to the value of the
fetch data before conversion.

Example

The fol lowing example copies the fetched value of the first select-l ist i tem of the second row (in the first
fetch i terat ion which retrieves 409 rows) to program variable FD_stmnt_3_col_1_row_2.

It also copies the fetched value of the fi fth select-l ist i tem of the second row (in the first fetch i terat ion) to
program variable FD_stmnt_3_col_5_row_2.

DO_oexec(CDA(1)); /* Exec for statement 3 */

while (DO_process_select_list(CDA(1), 409))
{
DO_GetSelectData(FETCH(1), COL(1), ROW(2), &FD_stmnt_3_col_1_row_2, _NONE_, "", 0);
DO_GetSelectData(FETCH(1), COL(5), ROW(2), &FD_stmnt_3_col_5_row_2,_NONE_, "", 0);
} /* end of DO_process_select_list */

DO_init_alen

A rout ine that in i t ial izes the pointer to the variable represent ing the length of data that is a parameter in
DO_ScalarBindA.

This is a required in i t ial izat ion rout ine that is inserted in to a script when i t is generated and cal led before
synchronizat ion. This funct ion is not always cal led; for example, a script may not contain any
DO_ScalarBindA cal ls, or the bind cal ls that are contained in the script do not ut i l ize pAlen. This funct ion
should not be moved or modified.

Syntax

DO_init_alen(make_alen,pAlen,ALEN_COUNT);

Parameters

Param eter Descript i on

make_alen A pointer to an array that holds the values of the length of data.

pAlen A pointer to make_alen. Each element holds the pointer to the
corresponding make_alen. In the example pAlen[0] = & make_alen[0], the
contents of make_alen[0]are assigned before the cal l to DO_ScalarBindA.

ALEN_COUNT The number of pAlen ut i l ized in the script . If th is number is incorrect, the
script wi l l fai l . The number can be modified in the #define ALEN_COUNT
at the beginning of the script . Every bind does not necessari ly ut i l ize a
pAlen. For example, i f the alen was captured as NULL, NULL replaces the
use of pAlen.

QALoad 5.02

484

Example

#define ALEN_COUNT 20

:
sb2* pIndp[ALEN_COUNT]; /* sb2 is a signed integer */
sb2 make_alen[ALEN_COUNT];
:
DO_init_alen(make_alen, pAlen, ALEN_COUNT);
:
make_indp[1]=0;
make_alen[0]=90;
DO_ScalarBindA(CDA(3), ":id", _STRING, -1, pAlen[0], pIndp[1],"id", STRING_3_id_69);

DO_init_data

A rout ine that al locates and in i t ial izes al l of the logon data areas, cursor data areas, structures, and so on
which are used to run the script .

This is a required in i t ial izat ion rout ine that is inserted in to a script when i t is generated and cal led before
synchronizat ion. It should not be modified or removed.

Syntax

DO_init_data(s_info, LOGON_COUNT, CURSOR_COUNT,HANDLE_COUNT, DESCRIPTOR_COUNT);

Parameters

Param eter Descript i on

s_info Structure used by each virtual user.

LOGON_COUNT The number of logons in the script . If th is number is incorrect, the script
wi l l fai l . The number can be modified in the #define LOGON_COUNT at
the beginning of the script .

CURSOR_COUNT The number of cursors opened in the script . If th is number is incorrect, the
script wi l l fai l . The number can be modified in the #define
CURSOR_COUNT at the beginning of the script .

HANDLE_COUNT The number of handles opened in the script . If th is number is incorrect,
the script wi l l fai l . The number can be modified in the #define
HANDLE_COUNT at the beginning of the script .

DESCRIPTOR_COUNT The number of descriptors opened in the script . If th is number is incorrect,
the script wi l l fai l . The number can be modified in the #define
DESCRIPTOR_COUNT at the beginning of the script.

Example

#define LOGON_COUNT 5
#define CURSOR_COUNT 35
#define HANDLE_COUNT 9
#define DESCRIPTOR_COUNT 1
:
:
DO_init_data(s_info, LOGON_COUNT, CURSOR_COUNT, HANDLE_COUNT, DESCRIPTOR_COUNT);

QALoad 5.02

485

DO_init_indp

A rout ine that in i t ial izes the pointer of the nul l indicator variable, which is a parameter of the DO_Bindv
and DO_ScalarBindA cal ls.

This is a required in i t ial izat ion rout ine that is inserted in to a script when i t is generated and cal led before
synchronizat ion. This funct ion should not be moved or modified.

Syntax

DO_init_indp(make_indp,pIndp,INDP_COUNT);

Parameters

Param eter Descript i on

make_indp A pointer to an in teger array that holds the values of the nul l indicator
variable.

pIndp A pointer to make_indp. Each element holds the pointer to the
corresponding nul l indicator variable. In the example pIndp[0] =
& make_indp[0], the contents of make_indp[0] is assigned before the cal l to
DO_BindV or DO_ScalarBindA.

INDP_COUNT The number of indicator variables ut i l ized in the script . If th is number is
incorrect, the script wi l l fai l . The number can be modified in the #define
INDP_COUNT at the beginning of the script . Every bind does not
necessari ly ut i l ize a pIndp. If the nul l indicator was captured as NULL,
NULL replaces the use of pIndp.

Example

#define INDP_COUNT 20
sb2* pIndp[INDP_COUNT]; /* sb2 is a signed integer */
sb2 make_indp[INDP_COUNT];
DO_init_indp(make_indp,pIndp,INDP_COUNT);

DO_oclose

Disconnects a previously opened cursor, return ing al l resources back to the Oracle server.

Syntax

DO_oclose(cursor);

Parameters

Param eter Descript i on

cursor Cursor table index.

Equivalent OCI

oclose

Example

DO_oclose(CDA(0));

QALoad 5.02

486

DO_oexec

Executes the SQL statement associated with a cursor.

Before cal l ing DO_oexec, the SQL statement must be parsed by cal l ing DO_Oparse using the same cursor.

Syntax

DO_oexec(cursor);

Parameters

Param eter Descript i on

cursor Cursor table index.

Equivalent OCI

oexec

Example

This example shows parsing and execut ion of a SQL statement:

DO_oparse(CDA(1),"select id, coname from company");
DO_oexec(CDA(1));

DO_olog

Establ ishes a connect ion between QALoad and an Oracle database.

An appl icat ion must log in to Oracle before i t can perform any other operat ions. Mult iple connect ions to
one or more Oracle instances is supported.

A user ID string is made up of the user’s login ID, password, and an Oracle connect ion string.

A forward slash (/) separates the password from the user ID, and the connect ion string is preceded by the
@ symbol.

Syntax

DO_olog(LDAIndex, connect-string);

Parameters

Param eter Descript i on

LDAIndex Logon data area index.

connect-string

 A nul l terminated string contain ing the Oracle login ID, password, and
connect ion.

Equivalent OCI

orlon

Example

This example shows a typical Oracle login sequence:

DO_olog(LDA(0), "scott/tiger@domain");

QALoad 5.02

487

DO_ologof

Closes a connect ion to the Oracle server, freeing i ts resources.

Syntax

DO_ologof(LDAIndex);

Parameters

Param eter Descript i on

LDAIndex Logon data area index.

Equivalent OCI

ologof

Example

DO_ologof(LDA(0));

DO_oopen

Opens a cursor to the database.

Processing commands such as DO_oparse and DO_oexec require an open cursor. There may be mult iple
open cursors at one t ime, so operat ions may be repeated without re-parsing the SQL statement. QALoad
automatical ly manages cursor opens and closes.

Syntax

DO_oopen(IdaIndex, cursor);

Parameters

Param eter Descript i on

IdaIndex Logon data area index.

cursor Cursor table index (fi rst index is 0).

Equivalent OCI

oopen

Example

This example shows how a cursor is opened, a command is executed, and the cursor is subsequently closed:

DO_oopen(LDA(0), CDA(1));
DO_oparse(CDA(1),"select id, coname from company");
DO_oexec(CDA(1));
DO_process_select_list(CDA(1), 100); /* get 100 rows */
DO_oclose(CDA(1));

DO_oopt

Sets rol lback opt ions for non-fatal errors on mult i-row INSERT and UPDATE SQL statements and
determines whether to wait for requested resources or return errors.

QALoad 5.02

488

Syntax

DO_oopt(cursor, rbopt, waitopt);

Parameters

Param eter Descript i on

cursor Cursor table index.

rbopt 0 = Rollback on any error.
2 = Rollback only the fai l ing row.

waitopt 0 = Wait indefin i tely for resources to be avai lable.
4 = Return an error i f a resource is requested, but not avai lable.

Equivalent OCI

oopt

DO_oparse

Parses a SQL statement or a PL/SQL block and associates i t with a cursor index.

QALoad scripts use deferred mode l inking and DO_oparse wil l defer the parse. In th is mode, SQL
statements are not actual ly sent to the server unt i l the DO_oexec cal l . Therefore, SQL syntax errors are not
reported at DO_oparse, but rather at DO_oexec.

Syntax

DO_oparse(cursor, statement);

Parameters

Param eter Descript i on

cursor Cursor table index.

statement Pointer to nul l terminated string contain ing the SQL statement.

Equivalent OCI

oparse

Example

This example shows a complete parse, execute, and fetch cycle for a SQL Select statement:

DO_oopen(LDA(0), CDA(1));
DO_oparse(CDA(1),"select id, coname from company");
DO_oexec(CDA(1));
DO_process_select_list(CDA(1), 100); /* get 100 rows */
DO_oclose(CDA(1));

DO_process_select_list

Fetches select-l ist data from the Oracle database. It is general ly cal led repeatedly unt i l there are no more
rows sat isfying the SQL select request.

QALoad 5.02

489

The first t ime DO_process_select_l ist retrieves data for a SQL statement, i t loops through al l the returned
fields (using odescr) and bui lds up a set of in ternal buffers to store the returned data. Al l data is returned as
ASCII strings.

Syntax

DO_process_select_list(cursor, rowcount);

Parameters

Param eter Descript i on

cursor Cursor table index.

rowcount Number of rows to fetch in to the buffer.

Equivalent OCI

ofen, odescr, and odefin

Example

This example shows the DO_process_select_l ist being cal led repeatedly, so al l the rows are read:

DO_oexec(CDA(0)); /* Exec for statement 2 */

while (DO_process_select_list(CDA(0), 30)); /* Read all rows, 30 at a time. */

DO_rollback

Rolls back the current transact ion.

Syntax

DO_rollback(ldaIndex);

Parameters

Param eter Descript i on

ldaIndex Logon data area index.

Equivalent OCI

orol

Example

DO_rollback(LDA(0));

DO_ScalarBindA

Binds a program variable to a bind variable in a SQL statement.

A DO_ScalarBindA is generated wherever an obndra occurred in the capture fi le and the type of bind was a
single (scalar) value, not an array. DO_ScalarBindA accurately reproduces the original bind cal l made by the
appl icat ion.

This el im inates extra data conversion steps and improves handl ing of OUTPUT variables to Oracle stored
procedures.

Bind variables are specified in SQL statements by preceding the variable names with a colon (:).

QALoad 5.02

490

DO_ScalarBindA must be cal led after the DO_oparse and before a DO_oexec. Once you have bound a
variable, you can change i ts value and length and execute i t again without reparsing the SQL statement or
rebinding the variable.

Current ly, DO_ScalarBindA does not support packed decimal, PCC-descriptor, cursor, mslable, oslabel, and
any new Oracle 8 datatypes.

Syntax

DO_ScalarBindA (index, name, type, progvl, alen, indp, input, progv);

Parameters

Param eter Descript i on

index Cursor table index.

name Pointer to name of the bind variable (nul l terminated).

type External datatype of bind variable.

progvl Size of progv. This is the maximum size of the buffer. If binding an
OUTPUT variable, progvl must be at least as large as the expected output
value.

alen Pointer to variable represent ing length of data. palen[0] points to the value
of make_alen[0].

indp Pointer to a nul l indicator variable. plndp[0] points to the value of
make_indp[0]; If make_indp=SET_NULL, nul l wi l l be passed as the data for
the input. Otherwise, the data is passed as shown in the bind cal l .

input Pointer to buffer contain ing input data.

progv Output data buffer.

Equivalent OCI

obndra

Example

This example shows a Select command with two bind variables, :empid and :id.

DO_oparse(CDA(0), "SELECT EMP_ID FROM EMP_TUTORIAL WHERE EMP_ID = :empid AND EMP_DEPT_ID =
:id");
make_indp[0]=0
DO_ScalarBindA(CDA(3), ":empid", _STRING, -1, NULL, pIndp[0], "200", STRING_3_empid_69);
make_indp[1]=0
make_alen[0]=90;
DO_ScalarBindA(CDA(3), ":id", _STRING, -1, pAlen[0], pIndp[1],"id",STRING_3_id_69);
DO_oexec(CDA(0));

DO_SoftClose

Closes a cursor without destroying i ts resources on the server.

If the appl icat ion is in the deferred mode, the cursor is not actual ly closed but is placed on a cursor-free l ist
on the cl ient. During any subsequent open cursor cal ls, the free l ist is checked first to sat isfy the request. A

QALoad 5.02

491

soft close reduces communicat ion with the server because i t does not cancel the cursor. An SQL statement
associated with the cursor remains val id unt i l the cursor is reused to pause another SQL statement.

Syntax

DO_SoftClose(cursor);

Parameters

Param eter Descript i on

cursor Cursor date area index.

Example

This example shows how to use a soft close to execute a SQL statement again, then to parse and execute
another SQL statement.

DO_oopen(LDA(0), CDA(0));
DO_oparse(CDA(0), "select * from emp");
DO_oexec(CDA(0));
while(DO_process_select_list(CDA(0), 15));

/* Soft close cursor */
DO_SoftClose(CDA(0));

/* Reuse cursor to repeat statement */
DO_oexec(CDA(0));
while(DO_process_select_list(CDA(0), 15));

/* Reuse cursor to parse next statement */
DO_oparse(CDA(0), "select ename from emp where empno = 7788";);
DO_oexec(CDA(0));
while(DO_process_select_list(CDA(0), 15);
DO_oclose(CDA(0));

Oracle 7/ 8

Oracle 7/ 8 Index

DO_free_data
A required cleanup rout ine inserted in to a script when i t is generated and cal led before exit ing the script . It
should not be modified or moved.

DO_freeitem
Frees the memory associated with an Act iveData for Oracle variable. The Act iveData variable (source
variable) may have been assigned by DO_GetSelectData, DO_OCI8GetSelectData, DO_strdup or
DO_GetOutputData.

DO_GetOutputData
Copies the data from a bind variable in to a source variable. Use with both Oracle 7 and 8 binds.

DO_makedate
Binds dates in to a SQL statement in C-based scripts

DO_strdup
Places the data retrieved by Act iveData for Oracle from a QALoad central datapool or a local datapool.

QALoad 5.02

492

DO_free_data

A required cleanup rout ine inserted in to a script when i t is generated and cal led before exit ing the script . It
should not be modified or moved.

Syntax

DO_free_data();

Parameters

None.

DO_freeitem

Frees the memory associated with an Act iveData for Oracle variable.

The Act iveData variable (source variable) may have been assigned by DO_GetSelectData,
DO_OCI8GetSelectData, DO_strdup or DO_GetOutputData.
The memory assigned for variables by Act iveData for Oracle is al located from the program ’s free memory
area (malloc). This funct ion releases that memory. It is automatical ly placed in your script for al l variables
created by the Oracle conversion program.

If you add your own variables, you should include a DO_freeitem() to release al located memory at the end
of the transact ion loop.

Syntax

DO_freeitem(name);

Parameters

Param eter Descript i on

name Pointer to source variable.

DO_GetOutputData

Copies the data from a bind variable in to a source variable. Use with both Oracle 7 and 8 binds.

Source variables are created by Act iveData for Oracle so that postbind or fetch data from one port ion of a
script can be used as input to subsequent bind statements.

DO_GetOutputData() al locates memory for the contents of the source from the system ’s free memory pool
(malloc).

If the formatType is INT_FORMAT, then the data is converted to an in teger before formatt ing (using atol()
). This implies that the formatString contains a %i, %d or equivalent.

Syntax

DO_GetOutputData(srcName, type, bindName, length, formatType, formatString, addConstant);

Parameters

Param eter Descript i on

srcName Pointer to the address of a source variable. The funct ion al locates memory
for the source value, and copies i ts value in to th is variable. Note that th is

QALoad 5.02

493

parameter is a char **.

type External datatype of the bindName. Present ly, only character and numeric
data types are supported. Binary dates and rowids are not.

bindName Pointer to a variable that contains the bind data to be copied.

length Length of the bind data.

formatType Data type to be used in the special format string. Acceptable values are:
NONE , No special formatt ing.
INT_FORMAT, Convert bind data to an in teger before formating.
STRING_FORMAT, Assume that the bind data is numeric.

formatString A printf-style format. The data is formatted using th is string. Only used i f
the formatType is INT_FORMAT or STRING_FORMAT.

addConstant If the formatType is INT_FORMAT, th is value is added to the value of the
bindName before conversion.

Example

DO_OCIStmtExecute(HNDL(6)); /* Exec for statement 6 */
DO_GetOutputData(&PB_XHOME_TELE, _FIXED_CHAR,
 CHAR_2_XHOME_TELE_9, *pAlen[65],
 NONE, "", 0);
DO_GetOutputData(&PB_NEXT_ID, _FIXED_CHAR,
 CHAR_2_ID, *pAlen[65], INT_FORMAT,
 "%04i", ADD(1));

DO_makedate

Binds dates in to a SQL statement in C-based scripts

Since standard date formats differ between countries, QALoad implements a language/ country
independent method of binding dates in to a SQL statement. When DO_makedate is used in conjunct ion
with a DO_BindV, dates are properly processed regardless of the current ly selected date format. If QALoad
detects a bind variable represent ing a date, i t automatical ly declares a variable of type ORADATE and
generates the appropriate DO_makedate cal l .

Syntax

DO_makedate(date_var, year, month, day, hour, min, second);

Parameters

Param eter Descript i on

date_var Pointer to a variable of type ORADATE.

year Four-digit year.

month Two-digit month.

day Two-digit day of the month.

hour Hour in the day (0 to 23).

min Minute with in the hour (0-59).

QALoad 5.02

494

second Seconds with in the minute (0-59).

Example

This example shows how to get a date ready for use in a SQL statement:

ORADATE DATE_0_8;
...
DO_makedate(&DATE_0_8, 1995, 7, 12, 0, 0, 0);
DO_BindV (CDA(0); "(text*):8, _DATE,7,NULL, (ub1*) &DATE_0_8, (ub1*) &DATE_0_8);

DO_strdup

Places the data retrieved by Act iveData for Oracle from a QALoad central datapool or a local datapool.

Act iveData for Oracle enables you to read data from a central datapool using the GET_DATA() script
command, and data from a local datapool using the READ_DATA_RECORD() script command. The
DO_strdup script command places a specific datapool field value in a program variable. Typical ly, the
program variable is also a source variable. Source variables are created by Act iveData for Oracle so that
postbind and/or fetch data from one port ion of a script can be used as input to subsequent bind
statements.

Syntax

When using a local datapool:

DO_strdup(progVar, GET_DATA_FIELD(datapool_nbr, field_nbr));

When using a central datapool:

DO_strdup(progVar, VARDATA(field_nbr));

Parameters

Param eter Descript i on

progVar Pointer to the address of a source variable. The funct ion al locates memory
for the source value and places the value of the second parameter in to th is
variable. Note that th is variable is a char**.

Datapool_nbr Number assigned to the local datapool used by Act iveData for Oracle. The
number is preset to 1.

Field_nbr The field number in the datapool that serves as input. The number is
in ternal ly set to 1.

Example

When using a central datapool:

char* Data_pkey = NULL;
:
GET_DATA();
:
DO_strdup(&Data_pkey, VARDATA(1));
:
DO_olog(LDA(0), "scott/tiger@os816qal.world");

When using a local datapool:

char* Data_pkey = NULL;
:

QALoad 5.02

495

OPEN_DATA_POOL("E:\\Program Files\\Compuware\\QALOAD\\
Middlewares\\Oracle\\Scripts\\LocalDataPool.DAT", ORA_DATAPOOL, TRUE);
:
BEGIN_TRANSACTION();
:
READ_DATA_RECORD(ORA_DATAPOOL);
:
DO_strdup(&Data_pkey, GET_DATA_FIELD(ORA_DATAPOOL, 1));
:
DO_olog(LDA(0), "scott/tiger@os816qal.world");

Oracle 8

Oracle 8 Index

DO_OCI8BindDate
Binds a date variable (created by DO_makedate) to a bind variable in a SQL statement.

DO_OCI8BindNull
Binds a NULL value to a bind variable in a SQL statement.

DO_OCI8BindString
Binds a program variable to a bind variable in a SQL statement.

DO_OCI8GetSelectData
Copies the data retrieved from an Oracle8 SQL SELECT statement in to a program variable.

DO_OCI8In itAlen
An Oracle8-specific rout ine that in i t ial izes the pointer to the variable represent ing the length of data that is
a parameter in DO_OCIBind.

DO_OCI8In it Indp
An OCI8-specific rout ine that in i t ial izes the pointer of the nul l indicator variable, which is a parameter of
the DO_OCIBind.

DO_OCIAttrSet
Sets a part icular attribute for a previously al located Oracle 8 OCI handle.

DO_OCIBind
Binds a program variable to a bind variable in a SQL statement.

DO_OCICommit
Commits the current Oracle8 transact ion. A commit should be performed after al l relevant SQL statements
have been processed.

DO_OCIDefine
Associates an i tem in a select-l ist to an Oracle external datatype and an output data buffer.

DO_OCIDescriptorAl loc
Al locates and in i t ial izes an Oracle 8 OCI descriptor or LOB locator.

DO_OCIDescriptorFree
De-al locates an Oracle 8 OCI descriptor or LOB locator.

DO_OCIEnvFreeAll

QALoad 5.02

496

De-al locates al l environment handles before the end of an OCI8 script .

DO_OCIEnvIn it
Al locates and in i t ial izes an Oracle OCI8 environment handle.

DO_OCIExecute
Executes the SQL statement or a PL/SQL block previously associated with the Oracle 8 statement handle
with DO_OCIStmtPrepare. Note that SQL syntax errors are reported at execut ion t ime.

DO_OCIHandleAlloc
Al locates and in i t ial izes an Oracle 8 OCI handle.

DO_OCIHandleFree
De-al locates an Oracle 8 OCI handle.

DO_OCIIn it ial ize
In i t ial izes the Oracle OCI8 process environment. This command must be issued once in a QALoad script
prior to any other Oracle8 script commands, and should be outside any QALoad transact ions.

DO_OCILdaToSvcCtx
Toggles an Oracle 7 logon data area to an Oracle 8 service context handle. This should be done after using
DO_OCISvcCtxToLda to create Oracle 7 in a database session in Oracle 8.

DO_OCILobRead
Reads a LOB into a buffer.

DO_OCILobWrite
Writes the contents of a buffer in to an Oracle 8 LOB.

DO_OCILogoff
Terminates an Oracle OCI8 logon session and connect ion created with DO_OCILogon.

DO_OCILogoffEx
Terminates an Oracle OCI8 logon session and connect ion created with DO_OCILogon.

DO_OCILogon
Creates a simple Oracle OCI8 logon connect ion and session for QALoad . Any appl icat ion must log on to
Oracle before performing any other Oracle operat ions.

DO_OCIProcessSelectList
Fetches select-l ist data from an Oracle 8 database after an OCIStmtExecute cal l . It is cal led repeatedly in a
loop unt i l there are no more rows sat isfying the SQL select request.

DO_OCIProcessSelectList_EX
Fetches select-l ist data from an Oracle 8 database after an OCIStmtExecute cal l . It is cal led repeatedly in a
loop unt i l there are no more rows sat isfying the SQL select request.

DO_OCIRollback
Rol ls back the current Oracle8 transact ion.

DO_OCIServerAttach
Creates a standard Oracle OCI8 database connect ion for QALoad . Note that individual Oracle 8 user
logons are done with the DO_OCIServerAttach command.

DO_OCIServerDetach

QALoad 5.02

497

Detaches QALoad from the Oracle OCI8 data source connect ion previously attached to with the
DO_OCIServerAttach command. Note that al l users must be logged off with the DO_OCISessionEnd
command before th is cal l .

DO_OCISessionBegin
Creates an Oracle OCI8 logon session for QALoad to a server previously attached to with
DO_OCIServerAttach. Any appl icat ion must log on to Oracle before performing any other Oracle
operat ions.

DO_OCISessionEnd
Terminates an Oracle user session previously created with the DO_OCISessionBegin command.

DO_OCIStmtExecute
Executes the SQL statement or a PL/SQL block previously associated with the Oracle 8 statement handle
with DO_OCIStmtPrepare. Note that SQL syntax errors are reported at execut ion t ime.

DO_OCIStmtPrepare
Prepares a SQL statement or a PL/SQL block and associates i t with an Oracle 8 statement handle.

DO_OCIStmtPrepare_EX
Prepares a SQL statement or a PL/SQL block and associates i t with an Oracle 8 statement handle.

DO_OCISvcCtxToLda
Toggles an Oracle 8 service context handle to an Oracle 7 logon data area. This al lows Oracle 7 cursors to
be created in a database session created in Oracle 8.

DO_OCITransCommit
Commits the current Oracle 8 transact ion. A commit should be performed after al l relevant SQL statements
have been processed.

DO_OCITransRollback
Rol ls back the current Oracle 8 transact ion.

Logging on and off Oracle Net 8

Command sequence for logging in to Oracle 8

/* NOTE: HNDL(0) is the environment handle. It should be previously specified in a
DO_OCIEnvInit call */

/* An error handle is used for Oracle8 error handling. HNDL(1) is the index to the new
error(OCI_HTYPE_ERROR) handle. */
DO_OCIHandleAlloc(HNDL(0), HNDL(1), OCI_HTYPE_ERROR);

/* A server handle is allocated for DO_OCIServerAttach. HNDL(2) is the index to the new
server (OCI_HTYPE_SERVER) handle. */
DO_OCIHandleAlloc(HNDL(0), HNDL(2), OCI_HTYPE_SERVER);

/* The DO_OCIServerAttach handle uses the server (HNDL(2)) handle previously allocated in
DO_OCIHandleAlloc. Note that the TNS data source name is the third parameter in this call.
*/
DO_OCIServerAttach(HNDL(2), HNDL(1), "oracledb.world", 15, OCI_DEFAULT);

/* A service context handle is now allocated. HNDL(3) is the index to the new service
context (OCI_HTYPE_SVCCTX) handle. */
DO_OCIHandleAlloc(HNDL(0), HNDL(3), OCI_HTYPE_SVCCTX);

/* The allocated service context handle (HNDL(3)) is now set as an attribute of the server
handle(HNDL(2)) in this DO_OCIAttrSet call. Note that the error handle (HNDL(1)) is a

QALoad 5.02

498

parameter in a DO_OCIAttrSet call. */
DO_OCIAttrSet(HNDL(3), OCI_HTYPE_SVCCTX, 0, 0, OCI_ATTR_SERVER, HNDL(1), HNDL(2));

/* A session handle is allocated for DO_OCISessionBegin. HNDL(3) is the index to the new
session (OCI_HTYPE_SESSION) handle. */
DO_OCIHandleAlloc(HNDL(0), HNDL(4), OCI_HTYPE_SESSION);

/* The username is set as an attribute of the session handle (HNDL(4)). */
DO_OCIAttrSet(HNDL(4), OCI_HTYPE_SESSION, "scott", 5, OCI_ATTR_USERNAME, HNDL(1),
IS_ATTRIBUTE);

/* The password is set as an attribute of the session handle (HNDL(4)). */
DO_OCIAttrSet(HNDL(4), OCI_HTYPE_SESSION, "tiger", 5, OCI_ATTR_PASSWORD, HNDL(1),
IS_ATTRIBUTE);

/* The DO_OCISessionBegin call uses the service context handle (HNDL(3) and the session
handle (HNDL(4)). . Note that the error handle (HNDL(1)) is a parameter in a
DO_OCISessionBegin call. The Credentials parameter is OCI_CRED_RDBMS, which means that
username and password must have been explicitly set in previous calls to DO_OCIAttrSet. If
the user verification is integrated with external credentials, use OCI_CRED_EXT as this
value. When you use OCI_CRED_EXT, you wil not have to set the username and password in
DO_OCIAttrSet calls prior to DO_OCISessionBegin. */
DO_OCISessionBegin(HNDL(3), HNDL(1), HNDL(4), OCI_CRED_RDBMS, OCI_DEFAULT);

Command sequence for logging off Oracle 8

/* The DO_OCISessionEnd call uses the same service context handle (HNDL(3)) and session
handle (HNDL(4)) used in DO_OCISessionBegin. Note that the error handle (HNDL(1)) is a
parameter in a DO_OCISessionEnd call. */
DO_OCISessionEnd(HNDL(3), HNDL(1), HNDL(4), OCI_DEFAULT);

/* The session handle (HNDL(4)) is no longer needed, so it is de-allocated with the
DO_OCIHandleFree call. */
DO_OCIHandleFree(HNDL(4), OCI_HTYPE_SESSION);

/* The DO_OCIServerDetach call uses the same server handle (HNDL(2)) and service context
handle (HNDL(1)) used in the DO_OCIServerAttach call. Note that the error handle (HNDL(1))
is a parameter in a DO_OCIServerDetach call. */
DO_OCIServerDetach(HNDL(2), HNDL(1), OCI_DEFAULT);

/* The server handle (HNDL(2)) is no longer needed, so it is de-allocated with the
DO_OCIHandleFree call. */
DO_OCIHandleFree(HNDL(2), OCI_HTYPE_SERVER);

/* The service context handle (HNDL(3)) is no longer needed, so it is de-allocated with the
DO_OCIHandleFree call. */
DO_OCIHandleFree(HNDL(3), OCI_HTYPE_SVCCTX);

/* If the error handle (HNDL(1)) is no longer needed, it should be de-allocated with the
DO_OCIHandleFree call. */
DO_OCIHandleFree(HNDL(1), OCI_HTYPE_ERROR);

Using QALoad script commands to log on and off an Oracle8 database

1. Create the appropriate handles and increment the HANDLE_COUNT parameter in the QALoad script.

a. Find the number after HANDLE_COUNT in the QALoad script. Note the current number, and then add four
(4) to this number. Four is the count of the number of new handles we will be allocating for use by this logon and
logoff example.
For example if the following line is in the script:
HANDLE_COUNT 35
edit it to read:
HANDLE_COUNT 39

b. Then, allocate a server handle, a service context handle, a session handle and an error handle (or you may
use another pre-allocated error handle; this error handle must not be freed before all logoff commands are called).

c. Associate the numbers 35, 36, 37, and 38 (starting with the previous HANDLE_COUNT and adding 1 for each
new handle) with these new handles to be allocated, as shown in the following example:

QALoad 5.02

499

DO_OCIHandleAlloc(HNDL(36), OCI_HTYPE_SERVER);
DO_OCIHandleAlloc(HNDL(37), OCI_HTYPE_SVCCTX);
DO_OCIHandleAlloc(HNDL(38), OCI_HTYPE_SESSION);
DO_OCIHandleAlloc(HNDL(35), OCI_HTYPE_ERROR);

2. Add the call to attach to the Oracle database (DO_OCIServerAttach). The following examples shows the
code for the DO_OCIServerAttach call that uses the handles allocated in the previous step:
DO_OCIServerAttach(HNDL(36), HNDL(35),"oracledb.world", 15, OCI_DEFAULT);

3. Set the allocated service context handle as an attribute to the server handle with calls to DO_OCIAttrSet. Setting the
service context handle as an attribute of the server handle allows the service context handle to be used in the
DO_OCISessionBegin call. Ensure the handle indexes are correct, and keep the other parameters the same as shown below:
DO_OCIAttrSet(HNDL(37), OCI_HTYPE_SVCCTX, 0, 0, OCI_ATTR_SERVER, HNDL(35), HNDL(36));

4. If you are using Oracle security, set the session handle attributes. You will need to specify the username and
password. Using the DO_OCIAttrSet calls will tie the username and password as attributes to the session handle. Ensure that
the UserName and UserNameLength parameters are set correctly for this first DO_OCIAttrSet call, and the Password and
PasswordLength attributes are set correctly for the second DO_OCIAttrSet call, as shown below:
DO_OCIAttrSet(HNDL(38), OCI_HTYPE_SESSION, "scott", 5, OCI_ATTR_USERNAME, HNDL(35),
IS_ATTRIBUTE);
DO_OCIAttrSet(HNDL(38), OCI_HTYPE_SESSION, "tiger", 5, OCI_ATTR_PASSWORD, HNDL(35),
IS_ATTRIBUTE);

5. Start the Oracle session with a call to DO_OCISessionBegin, as shown below. Note that the
OCI_CRED_RDBMS parameter implies that the username and password are set with DO_OCIAttrSet calls, if using
integrated security, step 4 is not needed, and use OCI_CRED_EXT as the parameter:
DO_OCISessionBegin(HNDL(37), HNDL(35), HNDL(38), OCI_CRED_RDBMS, OCI_DEFAULT);

6. After all SQL statements for the session have completed, log off the database as follows:

a. End the session with the DO_OCISessionEnd call:
DO_OCISessionEnd(HNDL(37), HNDL(35), HNDL(38), OCI_DEFAULT);

b. Disconnect from the server with the DO_OCIServerDetach call:
DO_OCIServerDetach(HNDL(36), HNDL(35), OCI_DEFAULT);

c. Free the allocated handles using DO_OCIHandleFree, or a memory leak will develop in the application:
DO_OCIHandleFree(HNDL(38), OCI_HTYPE_SESSION);
DO_OCIHandleFree(HNDL(36), OCI_HTYPE_SERVER);
DO_OCIHandleFree(HNDL(37), OCI_HTYPE_SVCCTX);
DO_OCIHandleFree(HNDL(35), OCI_HTYPE_ERROR);

Oracle SQL statements in Oracle 8 with QALoad script commands

SQL Statement Types

QALoad scripts support the fol lowing standard SQL statements:

! SQL data manipulation language (DML) statements
Examples of DML statements include:

ഊ2-8 QSELECT * FROM USER_TAB;
INSERT INTO EMP (VALUES "John Doe", "Accounting", 20, 500.00);
DELETE FROM DEPT WHERE DEPTNO = 100;
UPDATE EMP SET DEPTNO = 40 WHERE DEPTNO = 50;

! Anonymous PL/SQL blocks
An example of anonymous PL/SQL blocks includes:
BEGIN UPDATE EMP SET PAY = 400.00; END;

! SQL data definition language (DDL) statements
An example of DDL statements includes:
CREATE TABLE emp (empno NUMBER(5) PRIMARY KEY);

! PL/SQL stored procedure or function calls
An example of a PL/SQL stored procedure call includes:
"BEGIN qaload_regtest.emptest(:pkey, :f1, " ":num2, :opkey, :of1, :onum2); END;

QALoad 5.02

500

Note that QALoad does not support Oracle 8 objects, Oracle 8 user-defined types (UDTs) or Oracle 8
reference pointers.

Command sequence to read a LOB into a memory buffer

Following is a sample code sequence to read a 1024-byte LOB from a memory buffer in to an Oracle 8 LOB
parameter as part of an INSERT statement. Note that QALoad wil l create a temporary memory buffer and
wil l populate i t with meaningless data. Comments are added to commands where appropriate.

DO_OCIHandleAlloc(HNDL(0), HNDL(5), OCI_HTYPE_STMT);

/* A special descriptor (often referred to as a lob locator) must be created for the lob
object. Note that the DESCRIPTOR_COUNT value in the script will need to be incremented by 1
and that the 2nd parameter in the call to DO_OCIDescriptorAlloc is DESC(n) where n is the
previous value in DESCRIPTOR_COUNT */
DO_OCIDescriptorAlloc(HNDL(0), DESC(0), OCI_DTYPE_LOB);

/* DO_OCIStmtPrepare(HNDL(5), "INSERT INTO CLBTAB VALUES ('Test', " "EMPTY_CLOB())",
OCI_NTV_SYNTAX);

/* Note that since the LOB is empty, there is no bind call before the execute call. */
DO_OCIExecute(HNDL(5), 1, OCI_DEFAULT);

/* Use the DO_OCILobWrite call to write the LOB data. Note that 1024 bytes are being written
to the LOB column of the inserted record. */
DO_OCILobWrite(HNDL(3), HNDL(1), DESC(0), 1024, 1, 1024, 0, 0, 1);

/* Once the LOB is written, the descriptor is freed with a call to DO_OCIDescriptorAlloc */
DO_OCIDescriptorFree(HNDL(0), OCI_DTYPE_LOB);
DO_OCIHandleFree(HNDL(5), OCI_HTYPE_STMT);

Command sequence to write a LOB from a memory buffer

Below is a sample code sequence to wri te a 1024-byte LOB from an Oracle 8 LOB to a memory buffer. Note
that QALoad wil l create a temporary memory buffer to store the data. Comments are added to commands
where appropriate.

DO_OCIHandleAlloc(HNDL(0), HNDL(6), OCI_HTYPE_STMT);

/* A special descriptor (often referred to as a lob locator) must be created for the lob
object. Note that the DESCRIPTOR_COUNT value in the script will need to be incremented by 1
and and that the 2nd parameter in the call to DO_OCIDescriptorAlloc is DESC(n) where n is
the previous value in DESCRIPTOR_COUNT */
DO_OCIDescriptorAlloc(HNDL(0), DESC(0), OCI_DTYPE_LOB);
DO_OCIStmtPrepare(HNDL(6), "SELECT essay FROM CLBTAB WHERE name = 'Test' " "for update",
OCI_NTV_SYNTAX);

/* Since the LOB is an output from the SELECT statement, a DO_OCIDefine call must associate
the select parameter with the allocated descriptor. See DO_OCIDefine for more information.
*/
DO_OCIDefine(HNDL(6), HNDL(1), 1, 1, SQLT_CLOB, 0, DESC(0));
DO_OCIExecute(HNDL(6), 1, OCI_DEFAULT);

/* Use the DO_OCILobRead call to read the LOB data from the database. Note that 1024 bytes
are being read from the LOB column of the fetched record. */
DO_OCILobRead(HNDL(3), HNDL(1), DESC(0), 1000, 1, 1024, 0, 1);

/* Once the LOB is read, the descriptor is freed with a call to DO_OCIDescriptorAlloc */
DO_OCIDescriptorFree(HNDL(0), OCI_DTYPE_LOB);
DO_OCIHandleFree(HNDL(6), OCI_HTYPE_STMT);

QALoad 5.02

501

DO_OCI8BindDate

Binds a date variable (created by DO_makedate) to a bind variable in an SQL statement.

Bind variables are specified in SQL statements by preceding the variable name with a colon (:).

DO_OCI8BindDate commands must be placed between the DO_OCIStmtPrepare command and the
DO_OCIStmtExecute command. To bind by posit ion, instead of bv name, precede the posit ion bind
variable with an "@" symbol.

DO_OCI8BindDate is a deprecated command. It is recommended that you use DO_OCIBind instead.

Syntax

DO_OCIBindDate(statementHandleIndex, BindVariableName, &ORADATEStructPtr);

Parameters

Param eter Descript i on

statementHandleIndex An index to an al located Oracle 8 statement handle used as the handle in
the previous cal l to OCIStmtPrepare.

BindVariableName The name of the bind variable as a character string.

&ORADATEStructPtr A pointer to an ORADATE structure, define in Oracle’s header fi les.

Equivalent OCI

OCIBindByName, OCIBindByPos

Example

The fol lowing example shows the fetch loop to retrieve data after a SQL statement is executed.

DO_OCI8BindDate(HNDL(5), ":CURDATE", &CURDATE1);

DO_OCI8BindNull

Binds a NULL value to a bind variable in an SQL statement.

Bind variables are specified in SQL statements by preceding the variable name with a colon (:).
DO_OCI8BindString commands must be placed between the DO_OCIStmtPrepare command and the
DO_OCIStmtExecute command. To bind by posit ion instead of by name, precede the posit ion bind
variable with an "@" symbol.

Syntax

DO_OCIBindString(statementHandleIndex, BindVariableName);

Parameters

Param eter Descript i on

statementHandleIndex An index to an al located Oracle 8 statement handle used as the handle in
the previous cal l to OCIStmtPrepare.

BindVariableName The name of the bind variable as a nul l-terminated character string.

Equivalent OCI

OCIBindByName, OCIBindByPos

QALoad 5.02

502

Example

The fol lowing example shows the :DUMMY bind variable being bound to a NULL value.

DO_OCI8BindNull(HNDL(5), ":DUMMY");

DO_OCI8BindString

Binds a program variable to a bind variable in an SQL statement.

Bind variables are specified in SQL statements by preceding the variable name with a colon (:).
DO_OCI8BindString commands must be placed between the DO_OCIStmtPrepare command and the
DO_OCIStmtExecute command. To bind by posit ion instead of by name, precede the posit ion bind
variable with an "@" symbol.

DO_OCI8BindString only supports the binding of strings, nul ls, or dates. If you need to bind a numeric
value, convert i t fi rst to a string before passing i t to DO_OCI8BindString. If needed, Oracle automatical ly
converts character data types to numeric.

DO_OCI8BindString is a deprecated command. It is recommended that you use DO_OCIBind instead.

DO_OCI8BindString binds every data type as a fixed character and forces the Oracle server to make implici t
database conversions. Also, you must variabl ize OUTPUT variables or they wil l overwrite the input data
held by string constants.

Syntax

DO_OCIBindString(statementHandleIndex, BindVariableName, ValueString);

Parameters

Param eter Descript i on

statementHandleIndex An index to an al located Oracle 8 statement handle used as the handle in
the previous cal l to OCIStmtPrepare.

BindVariableName The name of the bind variable as a nul l-terminated character string.

ValueString A pointer to a string contain ing the value for the bind variable (nul l
terminated).

Equivalent OCI

OCIBindByName, OCIBindByPos

Example

The fol lowing example shows the program variable CITYNAME being bound to the :CITY bind variable.

DO_OCI8BindString(HNDL(5), ":CITY", CITYNAME);

DO_OCI8GetSelectData

Copies the data retrieved from an Oracle8 SQL SELECT statement in to a program variable.

DO_OCI8GetSelectData processes the data retrieved by DO_OCIProcessSelectList() by copying the value of
the fetched data to another program variable. Typical ly, the program variable is also a source variable.
Source variables are created by Act iveData for Oracle so that postbind and/or fetch data from one port ion
of a script can be used as input to subsequent bind statements.

QALoad 5.02

503

Note: If you are working with Oracle 7 select output data, use DO_GetSelectData instead.

If the formatType is INT_FORMAT, then the data is converted to an in teger before formatt ing (using atol()
).
This implies that the formatString contains a %i, %d or equivalent.

Syntax

DO_OCI8GetSelectData(fetchCount, colnum, rowNum, srcName, formatType,formatString,
addConstant);

Parameters

Param eter Descript i on

fetchCount A number from 1-n indicat ing which fetch sequence to use to fetch the
data. The script code for a fetch statement is general ly output as a C-based
while-loop. This loop retrieves data unt i l no more data is avai lable. This
parameter tel ls which i terat ion of that loop to use to retrieve the data.

colnum Column number to use to fetch the data. The first column is 1.

rowNum Row number to use to fetch the data. The first row number is 1.

srcName Pointer to the address of a source variable. The funct ion al locates memory
for the source value and copy i ts value in to th is variable. Note that th is
parameter is a char**.

formatType Data type to be used in the special format string. Acceptable values are:
NONE: no special formatt ing
INT_FORMAT: convert bind data to an in teger before formatt ing
STRING_FORMAT: assume that the bind data is numeric.

formatString A printf-style format. The data is formatted using th is string. Only used i f
the formatType is INT_FORMAT or STRING_FORMAT.

addConstant If the formatType is INT_FORMAT, th is value is added to the value of the
fetch data before conversion.

Example

The fol lowing example copies the fetched value of the first select-l ist i tem of the second row (in the first
fetch i terat ion which retrieves 409 rows) to program variable FD_stmnt_3_col_1_row_2.
It also copies the fetched value of the fourth select-l ist i tem of the seventh row (in the first fetch i terat ion)
to program variable FD_stmnt_3_col_4_row_7.

DO_OCIStmtExecute(HNDL(6)); /* Exec for statement 3 */

while (DO_OCIProcessSelectList (HNDL(6), 409))
{
DO_OCI8GetSelectData (FETCH(1), COL(1), ROW(2),
 &FD_stmnt_3_col_1_row_2,
 NONE, "", 0);
DO_OCI8GetSelectData(FETCH(1), COL(4), ROW(7),
 &FD_stmnt_3_col_4_row_7,
 INT_FORMAT, "%04i", ADD(3));
DO_OCI8GetSelectData (FETCH(1), COL(5), ROW(2),
 &FD_stmnt_3_col_5_row_2,
 NONE, "", 0);
} /* end of DO_OCIProcessSelectList */

QALoad 5.02

504

DO_OCI8Init Indp

An OCI8-specific rout ine that in i t ial izes the pointer of the nul l indicator variable, which is a parameter of
the DO_OCIBind.

This is a required in i t ial izat ion rout ine that is inserted in to a script when i t is generated and cal led before
synchronizat ion. This funct ion should not be moved or modified.

Syntax

DO_OCI8InitIndp(makeOCI8Indp, pOCI8Indp, OCI8_INDP_COUNT);

Parameters

Param eter Descript i on

makeOCI8Indp A pointer to an in teger array that holds the values of the nul l indicator
variable.

pOCI8Indp A pointer to makeOCI8Indp. Each element holds the pointer to the
corresponding nul l indicator variable. In the example pOCI8Indp [0] = &
makeOCI8Indp[0], the contents of makeOCI8Indp[0] is assigned before the
cal l to DO_OCIBind.

OCI8_INDP_COUNT The number of indicator variables ut i l ized in the script . If th is number is
incorrect, the script wi l l fai l . The number can be modified in the #define
OCI8_INDP_COUNT at the beginning of the script . Every bind does not
necessari ly ut i l ize a pOCI8Indp. If the nul l indicator was recorded as NULL,
NULL replaces the use of pOCI8Indp.

Example

#define OCI8_INDP_COUNT 20
:
:
sb2* pOCI8Indp [OCI8_INDP_COUNT]; /* sb2 is a signed integer
:
sb2 makeOCI8Indp [OCI8_INDP_COUNT];
:
:
DO_OCI8InitIndp(makeOCI8Indp, pOCI8Indp, OCI8_INDP_COUNT);
:
:
makeOCI8Indp[0]=0;
makeOCI8Alen[0]=4;
DO_OCIBind(HNDL(9), HNDL(2), "@2", _INTEGER, 4,
 pOCI8Alen[0], pOCI8Indp[0], (ub1 *) "0",
 (ub1 *) &INTEGER_9_2_0);

DO_OCI8InitAlen

An Oracle 8-specific rout ine that in i t ial izes the pointer to the variable represent ing the length of data that
is a parameter in DO_OCIBind.

This is a required in i t ial izat ion rout ine that is inserted in to a script when i t is generated and cal led before
synchronizat ion. This funct ion is not always cal led. For example, a script may not contain any
DO_OCIBind cal ls, or the bind cal ls that are contained in the script do not ut i l ize pOCI8Alen. This
funct ion should not be moved or modified.

QALoad 5.02

505

Syntax

DO_OCI8InitAlen(makeOCI8Alen, pOCI8Alen, OCI8_ALEN_COUNT);

Parameters

Param eter Descript i on

makeOCI8Alen A pointer to an array that holds the values of the length of data.

pOCI8Alen A pointer to makeOCI8Alen. Each element holds the pointer to the
corresponding makeOCI8Alen. In the example, pOCI8Alen [0] = &
makeOCI8Alen [0], the contents of makeOCI8Alen [0] are assigned before
the cal l to DO_OCIBind.

OCI8_ALEN_COUNT The number of pOCI8Alen ut i l ized in the script . If th is number is
incorrect, the script wi l l fai l . The number can be modified in the #define
OCI8_ALEN_COUNT at the beginning of the script. Every bind does not
necessari ly ut i l ize a pOCI8Alen. For example, i f the alen was captured as
NULL, NULL replaces the use of pOCI8Alen.

Example

#define OCI8_ALEN_COUNT 20
:
:
sb2*pOCI8Alen [OCI8_ALEN_COUNT]; /* sb2 is a signed integer */
sb2 makeOCI8Alen [OCI8_ALEN_COUNT];
:
:
DO_OCI8InitAlen(makeOCI8Alen, pOCI8Alen, OCI8_ALEN_COUNT);
:
:
makeOCI8Indp[0]=0;
makeOCI8Alen[0]= 4;
DO_OCIBind(HNDL(9), HNDL(2), "@2", _INTEGER,
 4, pOCI8Alen[0], pOCI8Indp[0],
 (ub1 *) "0", (ub1 *) &INTEGER_9_2_0);

DO_OCIAt t rSet

Sets a part icular attribute for a previously al located Oracle 8 OCI handle.

Syntax

DO_OCIAttrSet(targetHandleIndex, targetHandleType, attributep, attributeSize, attributeType,
errorHandleIndex);

Parameters

Param eter Descript i on

targetHandleIndex An index to a previously al located Oracle handle whose attribute is to be
set.

targetHandleType The handle type.

attributep A pointer to the attribute value. This can be a character string or another
handle in select instances.

attributeSize The size of the attribute value.

QALoad 5.02

506

attributeType The type of attribute to set for the handle.

errorHandleIndex An index to a previously al located Oracle 8 error handle.

Equivalent OCI

OCIAttrSet

Example

This example sets OCI_ATTR_USERNAME and OCI_ATTR_PASSWORD attributes of the session handle
prior to cal l ing DO_OCISessionBegin to start an Oracle8 session on a previously attached database.

DO_OCIAttrSet(HNDL(5), OCI_HTYPE_SESSION, "scott", 5,
OCI_ATTR_USERNAME, HNDL(1), IS_ATTRIBUTE);
DO_OCIAttrSet(HNDL(5), OCI_HTYPE_SESSION, "tiger", 5,
OCI_ATTR_PASSWORD, HNDL(1), IS_ATTRIBUTE);

DO_OCIBind

Binds a program variable to a bind variable in an SQL statement.

A DO_OCIBind is generated wherever a bind occurrs in the capture fi le. Note that the binds only support
single (scalar) values, not array values. DO_OCIBind accurately reproduces the original bind cal l made by
the appl icat ion. This el im inates extra data conversion steps and improves handl ing of OUTPUT variables in
Oracle stored procedures.

Bind variables are specified in SQL statements by preceding the variable names with a colon (:).
DO_OCIBind must be cal led after the DO_OCIStmtPrepare and before a DO_OCIStmtExecute.

Once you have bound a variable, you can change i ts value and length and execute i t again without
reparsing the SQL statement or rebinding the variable. Current ly, DO_OCIBind only supports the datatypes
supported by DO_ScalarBindA.

Syntax

DO_OCIBind(statementHandleIndex, errorHandleIndex, BindVariable, DataType,
OutputBufferLength, OCI8Alen, OCI8Indp, InputBuffer, OutputBuffer);

Parameters

Param eter Descript i on

statementHandleIndex An index to the current al located Oracle 8 statement handle used in the
DO_OCIStmtPrepare cal l .

errorHandleIndex An index to an al located Oracle 8 error handle.

BindVariable A pointer to the name of the nul l-terminated bind variable string.

DataType External datatype of the bind variable. Val id Oracle external datatypes
(with program variable types) include:
SQLT_CHR (char[n])
SQLT_NUM (unsigned char[21])
SQLT_INT (signed char)
SQLT_FLT (float, double)
SQLT_STR (char[n+1])
SQLT_VNU (char[22])
SQLT_LNG (char[n])

QALoad 5.02

507

SQLT_VCS (char[n] + sizeof(short in t)])
SQLT_DAT (char[7])
SQLT_VBI (unsigned char[n + sizeof(short in t)]
SQLT_BIN (unsigned char[n])
SQLT_LBI (unsigned char[n])
SQLT_UIN (unsigned)
SQLT_LVC (char[n + sizeof(in t)])
SQLT_LVB (unsigned char[n + sizeof(in t)])
SQLT_AFC (char[n])
SQLT_AVC (char[n + 1)
SQLT_CLOB see LOB example
SQLT_BLOB see LOB example
SQLT_FILE see LOB example
SQLT_FILE see LOB example.

OutputBufferLength Size of the output buffer. This is the maximum size of the OutputBuffer
buffer. If binding a PL/ SQL OUTPUT variable, th is value must be at least as
large as the expected output variable.

OCI8Alen Pointer to a variable that contains the length of the bind data. This is an
alternat ive method of defin ing the length of the output data. Use the
makeOCI8Alen macro to create th is pointer. OCI8Alen should only be used
i f i t is necessary to determ ine the length of the bind value returned from a
statement execute. For character strings, using the strlen on the
OutputBuffer variable after the statement execute is an easier method of
obtain ing th is length.

OCI8Indp Pointer to an indicator that the bind variable is NULL. Use the
makeOCI8Indp macro to create th is pointer.Using the DO_OCIBindNull
cal l is a preferred way of binding a NULL value unless the bind variable is
aPL/SQL OUTPUT variable.

InputBuffer Pointer to a buffer contain ing the input data.

OutputBuffer Pointer to the output data buffer.

Equivalent OCI

OCIBindByName, OCIBindByPos

Example

DO_OCIBind(HNDL(5), HNDL(1), ":PKEY", _VARCHAR2, strlen(PB_PKEY), NULL, NULL, (ub1 *)
PB_PKEY, (ub1 *) VARCHAR2_6_PKEY_1);

DO_OCICommit

Commits the current Oracle8 transact ion. A commit should be performed after al l relevant SQL statements
have been processed.

DO_OCICommit is a deprecated command. It is recommended that you use DO_OCITransCommit instead.

Note: DO_OCICommit should only be used in a single-user environment. For multi-user environments, use
DO_OCITransCommit.

Syntax

DO_OCICommit(errorHandleIndex,CommitType);

QALoad 5.02

508

Parameters

Param eter Descript i on

errorHandleIndex An index to an al located Oracle 8 error handle.

CommitType The type of t ransact ion to commit. This value should be set to the Oracle 8
reserved word OCI_DEFAULT for QALoad scripts.

Equivalent OCI

OCITransCommit

Example

The fol lowing example shows a SQL statement being committed after the execute and fetch loop.

DO_OCIStmtExecute(HNDL(5)); /* Exec for statement 3 */
DO_OCICommit(HNDL(5), HNDL(1), OCI_DEFAULT);

DO_OCIDefine

Associates an i tem in a select-l ist to an Oracle external datatype and an output data buffer.

Syntax

DO_OCIDefine(statementHandleIndex, errorHandleIndex, FetchCount, SelectListPosition,
DataType, BufferLength, lobDescriptorIndex);

Parameters

Param eter Descript i on

statementHandleIndex An index to an al located Oracle 8 statement handle previously used in the
cal l to DO_OCIStmtPrepare.

errorHandleIndex An index to an al located Oracle 8 error handle.

FetchCount The fetch count as defined in DO_OCIProcessSelectList . This value should
be set to the value defined to DO_OCIProcessSelectList or to 1.

selectListPosition The posit ion of the i tem in the select l ist . The start ing point is 1.

DataType The Oracle external datatype.

BufferLength The maximum data length for the output buffer for the defined value.

lobDescriptorIndex An index to an previously al located Oracle 8 lob locator, i f the output is a
BLOB, CLOB, or BFILE. If a lob locator is not used, the value is
IS_ATTRIBUTE.

Equivalent OCI

OCIDefineByPos

Example

The fol lowing example shows the select-l ist i tem EMPNO being defined as having posit ion 1 and a string
type.

DO_OCIStmtPrepare(HNDL(5), "SELECT EMPNO FROM EMP", OCI_NTV_SYNTAX);
:

QALoad 5.02

509

:
DO_OCIDefine(HNDL(5), HNDL(1), 1, 1, _STRING, 33, IS_ATTRIBUTE);

DO_OCIDescriptorAlloc

Allocates and in i t ial izes an Oracle 8 OCI descriptor or LOB locator.

Syntax

DO_OCIDescriptorAlloc(parentHandleIndex, descriptorIndex, descriptorType);

Parameters

Param eter Descript i on

parentHandleIndex An index to an al located Oracle 8 environment handle used as the parent
handle in th is cal l .

descriptorIndex An index to an Oracle descriptor to be al located and in i t ial ized.

descriptorType The descriptor type. The Oracle 8 descriptor types used by QALoad
commands are:
OCI_DTYPE_LOB, OCI_DTYPE_BFILE, OCI_DTYPE_ROWID.

Equivalent OCI

OCIDescriptorAlloc

Example

DO_OCIDescriptorAlloc(HNDL(0), DESC(0), OCI_DTYPE_LOB);

DO_OCIDescriptorFree

De-al locates an Oracle 8 OCI descriptor or LOB locator.

Syntax

DO_OCIDescriptorFree(descriptorIndex, descriptorType);

Parameters

Param eter Descript i on

descriptorIndex An index to an Oracle descriptor to be de-al located.

descriptorType The descriptor type.

Equivalent OCI

OCIDescriptorFree

Example

DO_OCIDescriptorFree(DESC(0), OCI_DTYPE_LOB);

DO_OCIEnvFreeAll

De-al locates al l environment handles before the end of an OCI8 script .

QALoad 5.02

510

Syntax

DO_OCIEnvFreeAll();

Parameters

None

Equivalent OCI

None

Example

DO_OCIEnvFreeAll();
:
DO_free_data();
REPORT(SUCCESS);
EXIT();
return(0);

DO_OCIEnvInit

Allocates and in i t ial izes an Oracle OCI8 environment handle.

Syntax

DO_OCIEnvInit(envHandleIndex, mode);

Parameters

Param eter Descript i on

envHandleIndex An index to the environment handle. The mode value should be set to
OCI_DEFAULT.

mode Mode for OCI8 environment in i t ial izat ion.

Equivalent OCI

OCIEnvInit

Example

DO_OCIEnvInit(HNDL(0), OCI_DEFAULT);

DO_OCIExecute

Executes the SQL statement or a PL/SQL block previously associated with the Oracle 8 statement handle
with DO_OCIStmtPrepare. Note that SQL syntax errors are reported at execut ion t ime.

DO_OCIExecute is a deprecated command. It is recommended that you use DO_OCIStmtExecute instead.

Syntax

DO_OCIExecute(statementHandleIndex, Iterations, mode);

Parameters

Param eter Descript i on

statementHandleIndex An index to an al located Oracle 8 statement handle previously used in the
cal l to DO_OCIStmtPrepare.

QALoad 5.02

511

Iterations The number of t imes th is statement is executed for non-SELECT
statements. This value can be set to 1 for SELECT statements i f, and only i f,
al l output variables were previously defined with DO_OCIDefine. This
value should be set to 1.

mode The mode for execut ion. The mode value should be set to the reserved
word OCI_DEFAULT.

Equivalent OCI

OCIStmtExecute

Example

DO_OCIExecute(HNDL(5), 1, OCI_DEFAULT);

DO_OCIHandleAlloc

Allocates and in i t ial izes an Oracle 8 OCI handle.

Syntax

DO_OCIHandleAlloc(parentHandleIndex, handleIndex, handleType);

Parameters

Param eter Descript i on

parentHandleIndex An index to an al located Oracle 8 environment handle used as the parent
handle in th is cal l .

handleIndex An index to an Oracle handle to be al located and in i t ial ized.

handleType The handle type. The fol lowing handle types in Oracle 8 are used by
QALoad commands: OCI_HTYPE_ERROR, OCI_HTYPE_SVCCTX,
OCI_HTYPE_STMT, OCI_HTYPE_DESCRIBE, OCI_HTYPE_SERVER,
OCI_HTYPE_SESSION, OCI_HTYPE_TRANS

Equivalent OCI

OCIHandleAlloc

Example

DO_OCIHandleAlloc(HNDL(0), HNDL(1), OCI_HTYPE_ERROR);

DO_OCIHandleFree

De-al locates an Oracle 8 OCI handle.

Syntax

DO_OCIHandleFree(handleIndex, handleType);

Parameters

Param eter Descript i on

parentHandleIndex An index to an al located Oracle 8 environment handle used as the parent
handle in th is cal l .

QALoad 5.02

512

handleIndex An index to an Oracle handle to be de-al located.

handleType The handle type. Fol lowing are the handle types in Oracle 8 used by
QALoad commands:
OCI_HTYPE_ERROR
OCI_HTYPE_SVCCTX
OCI_HTYPE_STMT
OCI_HTYPE_DESCRIBE
OCI_HTYPE_SERVER
OCI_HTYPE_SESSION
OCI_HTYPE_TRANS

Equivalent OCI

OCIHandleAlloc

Example

DO_OCIHandleFree(HNDL(1), OCI_HTYPE_ERROR);

DO_OCIInit ialize

In i t ial izes the Oracle OCI8 process environment.

This command must be issued once in a QALoad script prior to any other Oracle8 script commands, and
should be outside any QALoad transact ions.

Syntax

DO_OCIInitialize(mode);

Parameters

Param eter Descript i on

mode OCI8 process environment mode. The mode value should be set to
OCI_DEFAULT.

Equivalent OCI

OCIInitialize

Example

DO_OCIInitialize(OCI_DEFAULT);

DO_OCILdaToSvcCtx

Toggles an Oracle 7 logon data area to an Oracle 8 service context handle.

This should be done after using DO_OCISvcCtxToLda to create Oracle 7 in a database session in Oracle 8.

Syntax

DO_OCILdaToSvcCtx(svcContextHandleIndex, errorHandleIndex, LdaIndex);

Parameters

Param eter Descript i on

QALoad 5.02

513

svcContextHandleIndex An index to the current al located Oracle 8 service context handle.

errorHandleIndex An index to an al located Oracle 8 error handle.

LdaIndex An index to a Logon Data area.

Equivalent OCI

OCILdaToSvcCtx

Example

The fol lowing example shows using the Oracle7 logon data area (LDA) to create an Oracle8 service context
handle using the DO_OCILdaToSvcCtx cal l .

DO_OCILdaToSvcCtx (HNDL(4), HNDL(2), LDA(0));

DO_OCILobRead

Reads a LOB into a buffer.

Syntax

DO_OCILobRead(svcContextHandleIndex, errorHandleIndex, lobDescriptorIndex, ReadCount,
LOBOffset, BufferLength, CharSetID, CharSetFrm);

Parameters

Param eter Descript i on

svcContextHandleIndex An index to the current al located Oracle 8 service context handle.

errorHandleIndex An index to an al located Oracle 8 error handle.

lobDescriptorIndex An index to an Oracle 8 LOB locator previously al located with a
DO_OCIDescriptorAl loc cal l .

ReadCount On input, the number of characters (for CLOB) or bytes (for BLOB) to be
read. This variable contains the actual number of bytes or characters read
after the cal l .

LOBOffset On input, the absolute offset from the beginning of the LOB fi le. For
CLOBs, th is is the number of characters from the beginning. For BLOBs, i t
is the numbers of bytes. The first posit ion is 1.

BufferLength The length of the buffer. This value is specified in bytes.

CharSetID The character set ID of the buffer data.

CharSetFrm The character set form of the buffer data.

Equivalent OCI

OCILobRead

Example

The fol lowing example wi l l perform a LOB read of 1024 bytes from the database.

DO_OCIDescriptorAlloc(HNDL(0), DESC(0), OCI_DTYPE_LOB);
DO_OCIStmtPrepare(HNDL(5), "SELECT essay FROM CLBTAB WHERE name = 'Test' " "for update",
OCI_NTV_SYNTAX);

QALoad 5.02

514

DO_OCIDefine(HNDL(5), HNDL(1), 1, 1, _CLOB, 0, DESC(0));
DO_OCIExecute(HNDL(5), 1, OCI_DEFAULT);
DO_OCILobRead(HNDL(3), HNDL(1), DESC(0), 1000, 1, 1024, 0, 1);
DO_OCIDescriptorFree(HNDL(0), OCI_DTYPE_LOB);

DO_OCILobWrite

Writes the contents of a buffer in to an Oracle 8 LOB.

Syntax

DO_OCILobWrite(svcContextHandleIndex, errorHandleIndex, lobDescriptorIndex, ReadCount,
LOBOffset, BufferLength, LOBPiece, CharSetID, CharSetFrm);

Parameters

Param eter Descript i on

svcContextHandleIndex An index to the current al located Oracle 8 service context handle.

errorHandleIndex An index to an al located Oracle 8 error handle.

lobDescriptorIndex An index to an Oracle 8 LOB locator previously al located with a
DO_OCIDescriptorAl loc cal l .

ReadCount On input, the number of characters (for CLOB) or bytes (for BLOB) to be
writ ten. This variable contains the actual number of bytes or characters
wri t ten after the cal l .

LOBOffset On input, the absolute offset from the beginning of the LOB fi le. For
CLOBs,th is is the number of characters from the beginning. For BLOBs, i t is
the numbers of bytes. The first posit ion is 1.

BufferLength The length of the buffer. This value is specified in bytes.

LOBPiece The piece of the LOB buffer being writ ten.

CharSetID The LOB character set ID of the buffer data.

CharSetFrm The LOB Character set form of the buffer data.

Equivalent OCI

OCILobWrite

Example

The fol lowing example wi l l perform a LOB write of 1024 bytes to the database.

DO_OCIDescriptorAlloc(HNDL(0), DESC(0), OCI_DTYPE_LOB);
DO_OCIStmtPrepare(HNDL(5), "INSERT INTO CLBTAB VALUES ('Jack', " "EMPTY_CLOB())",
OCI_NTV_SYNTAX);
DO_OCIDefine(HNDL(5), HNDL(1), 1, 1, _CLOB, 0, DESC(0));
DO_OCIExecute(HNDL(5), 1, OCI_DEFAULT);
DO_OCILobWrite(HNDL(3),HNDL(1),DESC(0), 1024, 1, 1024, 0, 0, 1);
DO_OCIDescriptorFree(HNDL(0), OCI_DTYPE_LOB);

QALoad 5.02

515

DO_OCILogoff

Terminates an Oracle OCI8 logon session and connect ion created with DO_OCILogon.

DO_OCILogoff is a deprecated command. It is recommended that you use DO_OCILogoffEx instead.

Note: DO_OCILogoff logs off the most recent Oracle logon in the QALoad script. When using
DO_OCILogon/DO_OCILogoff, make sure that there are no overlapping sessions.

Syntax

DO_OCILogoff(errorHandleIndex);

Note: svcContextHandleIndex is not a parameter to DO_OCILogoff. If more than one Oracle Logon is in the
script, subsequent logons should be logged off with DO_OCILogoffEx.

Parameters

Param eter Descript i on

errorHandleIndex An index to an al located Oracle 8 error handle.

Equivalent OCI

OCILogoff

Example

DO_OCILogoff(HNDL(1));

DO_OCILogoffEx

Terminates an Oracle OCI8 logon session and connect ion created with DO_OCILogon.

Note: DO_OCILogoffEx will log off the Oracle logon in the QALoad script. When the script is using
DO_OCILogon/DO_OCILogoffEx, QALoad playback uses OCIServerAttach, OCISessionBegin,
OCIServerDetach, and OCISessionEnd calls to prevent threading issues. OCILogon and OCILogofff calls are
not thread-safe.

Syntax

DO_OCILogoffEx(svcContextHandleIndex, errorHandleIndex);

Parameters

Param eter Descript i on

svcContextHandleIndex An index to a service context handle previously used in an Oracle 8 logon.

errorHandleIndex An index to an al located Oracle 8 error handle.

Equivalent OCI

OCILogoff

Example

DO_OCILogoffEx (HNDL(3), HNDL(1));

DO_OCILogon

Creates a simple Oracle OCI8 logon connect ion and session for QALoad . Any appl icat ion must log on to
Oracle before performing any other Oracle operat ions.

QALoad 5.02

516

For DO_OCILogon, three components must be provided:

! User’s login ID

! User’s password

! Database name as recognized by Oracle Net8 software.

Note: When the script is using DO_OCILogon/DO_OCILogoffEx, QALoad uses OCIServerAttach,
OCISessionBegin, OCIServerDetach, and OCISessionEnd calls to prevent threading issues. OCILogon and
OCILogoff calls are not thread-safe.

Syntax

DO_OCILogon(envHandleIndex, errHandleIndex, svcContextHandleIndex, username, uname_len,
password, passwd, dbname, dbname_len);

Parameters

Param eter Descript i on

envHandleIndex An index to the environment handle.

errHandleIndex An index to an al located Oracle 8 error handle.

svcContextHandleIndex An index to an Oracle service context handle index. This handle is
automatical ly al located by th is cal l , and is automat ical ly deal located by a
DO_OCILogoffEx cal l .

username Oracle 8 user login ID.

uname_len Character length of user login ID.

password Oracle 8 user password for login ID.

passwd Character length of user password.

dbname Name of the data source to connect to.

dbname_len Character length of data source name.

Equivalent OCI

OCILogon

Example

DO_OCILogon(HNDL(0), HNDL(1), "scott", 5, "tiger", 5, "oradb.world", 11);

DO_OCIProcessSelectList

Fetches select-l ist data from an Oracle 8 database after an OCIStmtExecute cal l . It is cal led repeatedly in a
loop unt i l there are no more rows sat isfying the SQL select request.

If there are no DO_OCIDefine cal ls before the DO_OCIStmtExecute cal l for the select statement, the cal l
bui lds up a set of in ternal buffers to store the returned data (otherwise done by DO_OCIDefine cal ls). Al l
data is returned as ASCII strings.

Syntax

DO_OCIProcessSelectList(statementHandleIndex, fetchcount);

QALoad 5.02

517

Parameters

Param eter Descript i on

statementHandleIndex An index to an al located Oracle 8 statement handle used as the handle in
the previous cal ls to OCIStmtPrepare and OCIStmtExecute.

fetchCount The count of rows to be returned per fetch loop i terat ion. The FetchCount
value should be set to 1 unless the exact count of fetched rows is known.
Note that the loop i terates unt i l there are no more rows sat isfying the SQL
select request, not when the fetchCount value is reached.

Equivalent OCI

OCIStmtFetch

Example

The fol lowing example shows the DO_OCIProcessSelectList () fetch loop retrieving data after a SQL
statement is executed. Note that only 1 row is fetched per loop i terat ion. In addit ion, the fetched value is
processed by DO_OCI8GetSelectData().

DO_OCIStmtExecute(HNDL(0), HNDL(5), HNDL(1), 1, OCI_DEFAULT);
while (DO_OCIProcessSelectList(HNDL(5), 1))
{
DO_OCI8GetSelectData(FETCH(1),COL(1), ROW(1), &FD_stmnt_4_col_1_row_1, _NONE_, "", 0);
}

DO_OCIProcessSelectList_EX

Fetches select-l ist data from an Oracle 8 database after an OCIStmtExecute cal l . It is cal led repeatedly in a
loop unt i l there are no more rows sat isfying the SQL select request.

If there are no DO_OCIDefine cal ls before the DO_OCIStmtExecute cal l for the select statement, the wil l
bui lds up a set of in ternal buffers to store the returned data (otherwise done by DO_OCIDefine cal ls). Al l
data is returned as ASCII strings.

DO_OCIProcessSelectList_EX extends the DO_OCIProcessSelectList macro by accommodating nested OCI8
logins. Beginning with QALoad 5.0, Compuware recommends that you use DO_OCIProcessSelectList_EX.

Syntax

DO_OCIProcessSelectList(statementHandleIndex, errorHandleIndex, fetchcount);

Parameters

Param eter Descript i on

statementHandleIndex An index to an al located Oracle 8 statement handle used as the handle in
the previous cal ls to OCIStmtPrepare and OCIStmtExecute.

errorHandleIndex An index to an al located Oracle 8 error handle.

fetchCount The count of rows to be returned per fetch loop i terat ion. The FetchCount
value should be set to 1 unless the exact count of fetched rows is known.
Note that the loop i terates unt i l there are no more rows sat isfying the SQL

QALoad 5.02

518

select request, not when the fetchCount value is reached.

Equivalent OCI

OCIStmtFetch

Example

The fol lowing example shows the fetch loop retrieving data after a SQL statement is executed.
whi le (DO_OCIProcessSelectList_EX(HNDL(5), HNDL(2), 1));

{
} /*end of DO_process_select_list */

DO_OCIRollback

Rolls back the current Oracle8 transact ion.

DO_OCIRollback is a deprecated command. It is recommended that you use DO_OCITransRollback
instead.

Note: DO_OCIRollback should only be used in a single-user environment. For multi-user environments, use
DO_OCITransRollback.

Syntax

DO_OCIRollback (errorHandleIndex, CommitType);

Parameters

Param eter Descript i on

errorHandleIndex An index to an al located Oracle 8 error handle.

CommitType The type of t ransact ion to rol l back. This value should be set to the Oracle
8 reserved word OCI_DEFAULT for QALoad scripts.

Equivalent OCI

OCITransRollback

Example

The fol lowing example shows a SQL statement being rol led back after the execute.

DO_OCIStmtPrepare(HNDL(5), "INSERT INTO MIKE.t_session (session_key, user_key"
",login_time_stamp, session_number, session_seq) VALUES (:1, :2, :3, :4" ", :5)",
OCI_NTV_SYNTAX);
:
:
:
DO_OCIStmtExecute (HNDL(3), HNDL(5), 1, OCI_DEFAULT);
DO_OCIRollback(HNDL(1), OCI_DEFAULT);

DO_OCIServerAt tach

Creates a standard Oracle OCI8 database connect ion for QALoad . Note that individual Oracle 8 user
logons are done with the DO_OCIServerAttach command.

Any appl icat ion must log on to Oracle before performing any other Oracle operat ions.
For DO_OCIServerAttach, the connect string for a database (dbl ink parameter) must be provided.

QALoad 5.02

519

Syntax

DO_OCIServerAttach(serverHandleIndex, errorHandleIndex, dblink, dblink_len, mode);

Parameters

Param eter Descript i on

serverHandleIndex An index to an al located Oracle 8 service handle.

errorHandleIndex An index to an al located Oracle 8 error handle.

dblink Name of the data source to connect to.

dblink_len Character length of database name.

mode The mode of operat ion.

Equivalent OCI

OCIServerAttach

Example

This example shows the commands necessary to attach to an Oracle8 database.

DO_OCIHandleAlloc(HNDL(0), HNDL(2), OCI_HTYPE_SERVER);
DO_OCIHandleAlloc(HNDL(0), HNDL(3), OCI_HTYPE_SVCCTX);
DO_OCIServerAttach(HNDL(2), HNDL(1), "oradb.world", 11, OCI_DEFAULT);

DO_OCIServerDetach

Detaches QALoad from the Oracle OCI8 data source connect ion previously attached to with the
DO_OCIServerAttach command.

Note that al l users must be logged off with the DO_OCISessionEnd command before th is cal l .

Syntax

DO_OCIServerDetach(svcContextHandleIndex, errorHandleIndex, mode);

Parameters

Param eter Descript i on

svcContextHandleIndex An index to an al located Oracle 8 service context handle previously used in
a cal l to DO_OCIServerAttach.

errorHandleIndex An index to an al located Oracle 8 error handle.

mode Mode of operat ion for Oracle 8 session. The mode value should be set to
OCI_DEFAULT.

Equivalent OCI

OCIServerDetach

Example

This command shows the process of detaching from an Oracle 8 server and freeing the respect ive handles.

QALoad 5.02

520

DO_OCIServerDetach(HNDL(2), HNDL(1), OCI_DEFAULT);
DO_OCIHandleFree(HNDL(2), OCI_HTYPE_SERVER);
DO_OCIHandleFree(HNDL(1), OCI_HTYPE_ERROR);

DO_OCISessionBegin

Creates an Oracle OCI8 logon session for QALoad to a server previously attached to with
DO_OCIServerAttach.

Any appl icat ion must log on to Oracle before performing any other Oracle operat ions.

Syntax

DO_OCISessionBegin(svcContextHandleIndex, errorHandleIndex, sessionHandleIndex, credt, mode
);

Parameters

Param eter Descript i on

svcContextHandleIndex An index to an al located Oracle 8 service context handle used previously in
DO_OCIServerAttach.

errorHandleIndex An index to an al located Oracle 8 error handle.

sessionHandleIndex An index to an al located Oracle 8 session handle.

credt Credentials for attachment to Oracle server. The Credent ials value should
be set to OCI_CRED_RDBMS if the username and password are required to
log in to the Oracle 8 database. If the database uses in tegrated securi ty, set
Credent ials to OCI_CRED_EXT.

mode Mode of operat ion for Oracle 8 session. The mode value should be set to
OCI_DEFAULT.

Equivalent OCI

OCISessionBegin

Example

This example shows the commands needed to begin a user session on an Oracle 8 database that has been
previously attached by DO_OCIServerAttach.

DO_OCIHandleAlloc(HNDL(0), HNDL(3), OCI_HTYPE_SVCCTX);
DO_OCIAttrSet(HNDL(3), OCI_HTYPE_SVCCTX, 0, 0, OCI_ATTR_SERVER, HNDL(1), HNDL(2));
DO_OCIHandleAlloc(HNDL(0), HNDL(4), OCI_HTYPE_SESSION);
DO_OCIAttrSet(HNDL(4), OCI_HTYPE_SESSION, "scott", 5, OCI_ATTR_USERNAME, HNDL(1),
IS_ATTRIBUTE);
DO_OCIAttrSet(HNDL(4), OCI_HTYPE_SESSION, "tiger", 5, OCI_ATTR_PASSWORD, HNDL(1),
IS_ATTRIBUTE);
DO_OCISessionBegin(HNDL(3), HNDL(1), HNDL(4), OCI_CRED_RDBMS, OCI_DEFAULT);

DO_OCISessionEnd

Terminates an Oracle user session previously created with the DO_OCISessionBegin command.

Syntax

DO_OCISessionEnd(svcContextHandleIndex, errorHandleIndex, sessionHandleIndex, mode);

QALoad 5.02

521

Parameters

Param eter Descript i on

svcContextHandleIndex An index to an al located Oracle 8 service context handle previously used in
the cal l to DO_OCISessionBegin.

errorHandleIndex An index to an al located Oracle 8 error handle.

sessionHandleIndex An index to an al located Oracle 8 session handle previously used in the cal l
to DO_OCISessionBegin.

mode The mode of operat ion. The mode value should be set to OCI_DEFAULT.

Equivalent OCI

OCISessionEnd

Example

In the following example, the session logged on with the user name Scott and password tiger
is terminated by DO_OCISessionEnd.

DO_OCIHandleAlloc(HNDL(0), HNDL(4), OCI_HTYPE_SESSION);
DO_OCIAttrSet(HNDL(4), OCI_HTYPE_SESSION, "scott", 5, OCI_ATTR_USERNAME, HNDL(1),
IS_ATTRIBUTE);
DO_OCIAttrSet(HNDL(4), OCI_HTYPE_SESSION, "tiger", 5, OCI_ATTR_PASSWORD, HNDL(1),
IS_ATTRIBUTE);
:
:
DO_OCISessionBegin(HNDL(3), HNDL(1), HNDL(4),
OCI_CRED_RDBMS, OCI_DEFAULT);
DO_OCISessionEnd(HNDL(3), HNDL(1), HNDL(4), OCI_DEFAULT);
DO_OCIHandleFree(HNDL(3), OCI_HTYPE_SVCCTX);
DO_OCIHandleFree(HNDL(4), OCI_HTYPE_SESSION);

DO_OCIStmtExecute

Executes the SQL statement or a PL/SQL block previously associated with the Oracle 8 statement handle
with DO_OCIStmtPrepare. Note that SQL syntax errors are reported at execut ion t ime.

Note: In multi-user environments, use this statement in place of DO_OCIExecute.

Syntax

DO_OCIStmtExecute (svcContextHandleIndex, statementHandleIndex, errorHandleIndex,
Iterations, mode);

Parameters

Param eter Descript i on

svcContextHandleIndex An index to a service context handle previously used in an Oracle 8 logon.

statementHandleIndex An index to an al located Oracle 8 statement handle previously used in the

QALoad 5.02

522

cal l to DO_OCIStmtPrepare.

errorHandleIndex An index to an al located Oracle 8 error handle.

Iterations The number of t imes th is statement is executed for non-SELECT
statements. This value can be set to 1 for SELECT statements i f, and only i f,
al l output variables were previously defined with DO_OCIDefine. This
value should be set to 1.

mode The mode for execut ion. The mode value should be set to the reserved
word OCI_DEFAULT.

Equivalent OCI

OCIStmtExecute

Example

DO_OCIStmtExecute(HNDL (3), HNDL (5),HNDL (1), OCI_DEFAULT);

DO_OCIStmtPrepare

Prepares a SQL statement or a PL/SQL block and associates i t with an Oracle 8 statement handle.

Oracle 8 SQL statements are not sent to the Oracle 8 server unt i l execut ion t ime (handled by QALoad
command DO_OCIStmtExecute). SQL syntax errors are reported at execut ion t ime.

Syntax

DO_OCIStmtPrepare(statementHandleIndex, SQLStatement, OracleSyntax);

Parameters

Param eter Descript i on

statementHandleIndex An index to an al located Oracle 8 statement handle.

SQLStatement A pointer to a nul l-terminated string contain ing the SQL statement.

OracleSyntax A variable flag for the parsing syntax. This value should be
OCI_NTV_SYNTAX. The value for OracleLanguage should be set to
OCI_NTV_SYNTAX (which defers the parsing syntax to the Oracle
database) unless you want to specify a parsing syntax expl ici t ly. Other
possible values are OCI_V7_SYNTAX and OCI_V8_SYNTAX for specifying a
parsing syntax based on Oracle 7 and Oracle 8, respect ively.

Equivalent OCI

OCIStmtPrepare

Example

The fol lowing example shows the preparat ion of a typical SQL statement.

DO_OCIStmtPrepare(HNDL(5), "SELECT * FROM EMP;", OCI_NTV_SYNTAX);

DO_OCIStmtPrepare_EX

Prepares a SQL statement or a PL/SQL block and associates i t with an Oracle 8 statement handle.

QALoad 5.02

523

Oracle 8 SQL statements are not sent to the Oracle 8 server unt i l execut ion t ime (handled by QALoad
command DO_OCIStmtExecute). SQL syntax errors are reported at execut ion t ime.

DO_OCIStmtPrepare_EX extends DO_OCIStmtPrepare macro by accommodating nested OCI8 logins.
Start ing with QALoad 5.0, Compuware recommends that you use DO_OCIStmtPrepare_EX.

Syntax

DO_OCIStmtPrepareEX(statementHandleIndex, SQLStatement, errorHandleIndex, OracleSyntax);

Parameters

Param eter Descript i on

statementHandleIndex An index to an al located Oracle 8 statement handle.

SQLStatement A pointer to a nul l-terminated string contain ing the SQL statement.

errorHandleIndex An index to an al located Oracle 8 error handle.

OracleSyntax A variable flag for the parsing syntax. This value should be
OCI_NTV_SYNTAX. The value for OracleLanguage should be set to
OCI_NTV_SYNTAX (which defers the parsing syntax to the Oracle
database) unless you want to specify a parsing syntax expl ici t ly. Other
possible values are OCI_V7_SYNTAX and OCI_V8_SYNTAX for specifying a
parsing syntax based on Oracle 7 and Oracle 8, respect ively.

Equivalent OCI

OCIStmtPrepare

Example

The fol lowing example shows the preparat ion of a typical SQL statement.

DO_OCIStmtPrepare_EX(HNDL(5), "SELECT * FROM EMP;", HNDL(2), OCI_NTV_SYNTAX);

DO_OCISvcCtxToLda

Toggles an Oracle 8 service context handle to an Oracle 7 logon data area. This al lows Oracle 7 cursors to
be created in a database session created in Oracle 8.

Syntax

DO_OCISvcCtxToLda(svcContextHandleIndex, errorHandleIndex, LdaIndex);

Parameters

Param eter Descript i on

svcContextHandleIndex An index to the current al located Oracle 8 service context handle.

errorHandleIndex An index to an al located Oracle 8 error handle.

LdaIndex An index to a Logon Data area.

Equivalent OCI

OCISvcCtxToLda

QALoad 5.02

524

Example

The fol lowing example shows toggl ing the Oracle8 service context handle to an Oracle7 logon data area
(LDA) using the DO_OCISvcCtxToLda cal l .

DO_OCISvcCtxToLda(HNDL(4), HNDL(2), LDA(0));

DO_OCITransCommit

Commits the current Oracle 8 transact ion. A commit should be performed after al l relevant SQL statements
have been processed.

Syntax

DO_OCITransCommit (svcContextHandleIndex, errorHandleIndex, CommitType);

Parameters

Param eter Descript i on

svcContextHandleIndex An index to a service context handle previously used in an Oracle 8 logon.

errorHandleIndex An index to an al located Oracle 8 error handle.

CommitType The type of t ransact ion to commit. This value should be set to the Oracle 8
reserved word OCI_DEFAULT for QALoad scripts.

Example

The fol lowing example shows an insert t ransact ion being committed after the execute.

DO_OCIStmtPrepare(HNDL(5), "INSERT INTO MIKE.t_session (session_key, user_key"
",login_time_stamp, session_number, session_seq) VALUES (:1, :2, :3, :4" ", :5)",
OCI_NTV_SYNTAX);
:
:
:
DO_OCIStmtExecute (HNDL(3), HNDL(5), 1, OCI_DEFAULT);
DO_OCITransCommit (HNDL(3), HNDL(1), OCI_DEFAULT);

DO_OCITransRollback

Rolls back the current Oracle 8 transact ion.

Syntax

DO_OCITransRollback (svcContextHandleIndex, errorHandleIndex, CommitType);

Parameters

Param eter Descript i on

svcContextHandleIndex An index to a service context handle previously used in an Oracle 8 logon.

errorHandleIndex An index to an al located Oracle 8 error handle.

CommitType The type of t ransact ion to rol l back. This value should be set to the Oracle
8 reserved word OCI_DEFAULT for QALoad scripts.

Equivalent OCI

OCITransRollback

QALoad 5.02

525

Example

DO_OCIStmtPrepare(HNDL(5), "INSERT INTO MIKE.t_session (session_key, user_key"
",login_time_stamp, session_number, session_seq) VALUES (:1, :2, :3, :4" ", :5)",
OCI_NTV_SYNTAX);
:
:
:
DO_OCIStmtExecute (HNDL(3), HNDL(5), 1, OCI_DEFAULT);
DO_OCITransRollback (HNDL(3), HNDL(1), OCI_DEFAULT);

Oracle Forms Server

Oracle Forms Server Index

Add
Adds a property to the current message.

AddListboxValue
Used with l ist box objects to send a specific l ist box value to the Oracle Forms Server.

AlertDialog
This method constructs a new OracleFormsMsg for th is type of control.

AppTimer
This method constructs a new OracleFormsMsg for th is type of control.

BlockScrol ler
This method constructs a new OracleFormsMsg for th is type of control.

Button
This method constructs a new OracleFormsMsg for th is type of control.

CancelQueryDialog
This method constructs a new OracleFormsMsg for th is type of control.

CfmOLE
This method constructs a new OracleFormsMsg for th is type of control.

CfmVBX
This method constructs a new OracleFormsMsg for th is type of control.

Checkbox
This method constructs a new OracleFormsMsg for th is type of control.

CheckForErrorMsgs
Indicates whether messages from the Oracle Forms Server are checked for error messages.

Connect
This method establ ishes a connect ion with the Oracle Forms Server.

Disconnect
Closes the connect ion to the Oracle Forms Server.

DisplayErrorDialog

QALoad 5.02

526

This method constructs a new OracleFormsMsg for th is type of control.

DisplayList
This method constructs a new OracleFormsMsg for th is type of control.

EditorDialog
This method constructs a new OracleFormsMsg for th is type of control.

FormCanvas
This method constructs a new OracleFormsMsg for th is type of control.

FormStatusBar
This method constructs a new OracleFormsMsg for th is type of control.

FormWindow
This method constructs a new OracleFormsMsg for th is type of control.

GetControlValue
This method returns the current contents of the control. Support is l im ited to text fields.

HelpDialog
This method constructs a new OracleFormsMsg for th is type of control.

HTTPConnectToFormsServlet
Al lows the cl ient to connect to the 9i Forms Servlet. Automatic checkpoint ing is performed here.

HTTPConnectToListenerServlet
Al lows the cl ient to connect to the 9i Listener Servlet. Automatic checkpoint ing is performed here.

HTTPInit ialFormsConnect
Al lows the cl ient to establ ish connect ion with the Forms Server via the Listener Server. Automatic
checkpoint ing is performed here.

HTTPReceiveM essage
Al lows the cl ient to send the HTTP request (contain ing Forms messages) and receive the HTTP reply.
Automatic checkpoint ing is done here. Forms messages from the HTTP reply are individual ly processed.

HTTPSDoSSLHandshake
Enables QALoad to do an SSL handshake prior to an SSL-enabled Forms connect ion.

HTTPSetHdrProperty
Defines the HTTP connect ion propert ies that the cl ient wi l l use to connect to the Forms Servlet and the
Listener Servlet. The propert ies given in the script are User-Agent, Host, Accept, Connect ion, and Content-
type.

HTTPSetListenerServletParms
Defines the HTTP connect ion parameters that the cl ient wi l l use to connect to the 9i Listener Servlet. The
parameters given in the script are: i fcmd, i fhost, and i fip.

HTTPSetURL
Al lows the cl ient to define the Listener Servlet for appl icat ions running Forms 6i patch 4+, prior to the
execut ion of HTTPInit ialFormsConnect.

HTTPXmitMsg
Al lows the cl ient to accumulate the Forms messages before sending the HTTP request.

QALoad 5.02

527

HTTPXmitTerminalMessage
Al lows QALoad to prepare the HTTP request that contains the current set of Forms messages. Preparat ion
includes establ ish ing a new HTTP connect ion, stream, and content size, as well as encrypt ing and writ ing
to the HTTP stream.

IconicButton
This method constructs a new OracleFormsMsg for th is type of control.

ImageItem
This method constructs a new OracleFormsMsg for th is type of control.

JavaContainer
This method constructs a new OracleFormsMsg for th is type of control.

ListValuesDialog
This method constructs a new OracleFormsMsg for th is type of control.

LogComment
If logging is enabled, th is method wil l record i ts string parameter as a comment in the log fi le. These
comments can be very useful when ut i l izing the log fi le for debugging.

Logging
This method enables logging of cl ient to server traffic during script playback.

LogonDialog
This method constructs a new OracleFormsMsg for th is type of control.

MenuInfo
This method constructs a new OracleFormsMsg for th is type of control.

MenuParametersDialog
This method constructs a new OracleFormsMsg for th is type of control.

ofsAct ivateList Item
Adds the TList_Act ivated property to the current message. Tl ist_Act ivated property indicates user select ion
of an i tem in a List control.

ofsAct ivateTreeItem
Adds the Event_Act ivated property of a Tree control to the current message. Event_Act ivated property
indicates user select ion of an i tem in a Tree control.

ofsAct ivateWindow
Adds the Window_Activate property (with Enabled attribute) to the current message.

ofsClickButton
Adds the Pressed property of a Button control to the current message.

ofsClickTextFieldItem
Adds the Pressed property associated with a Text Field control to the current message.

ofsClosePopList
Adds the List_Closed property of a PopList control to the current message.

ofsCloseWindow

QALoad 5.02

528

Adds the Window_Close property (with Enabled at tribute) to the current message.

ofsCollapseTreeItem
Adds the Event-Collapsed property of a Tree control to the current message.

ofsColorAdd
Adds the Color_Add property to the current message.

ofsConnectToSocket
Establ ishes a socket-mode connect ion to the Oracle Forms Server.

ofsDeActivateWindow
Adds the Window_Activate property (with Disabled attribute) to the current message.

ofsDefineTreeNode
Adds the Node_ID property of a Tree control to the current message. Node_ID property defines the relat ive
posit ion of the tree i tem, count ing nested tree i tems.

ofsDefineTreeNodeOffset
Adds the Node_Offset property of a Tree control to the current message. Node_Offset defines the relat ive
posit ion of the tree i tem, excluding nested tree i tems.

ofsDeIconifyWindow
Adds the Window_Iconified property (with Disabled attribute) to the current message.

ofsDeSelectItem
Adds the Value property (with Disabled attribute) to the current message.

ofsDeSelectTreeEvent
Adds the Event_DeSelect property of a Tree control to the current message. This statement indicates the
appl icat ion is moving from an internal processing event that is associated wi th a tree i tem.

ofsEdit
Adds the Value property to the current message. The property is associated with a Text Field control.

ofsExpandTreeItem
Adds the Event_Expanded property of a Tree control to the current message. The Event_Expanded property
indicates a Tree control i tem being expanded.

ofsFindLOVValue
Adds the LOV_Find_Value property of a List of Values control to the current message. The statement
indicates the user is searching for an i tem in a List of Values control.

ofsFocus
Adds the Focus property (with Enabled attribute) to the current message.

ofsGetServerData
Returns the Forms data from the server reply.

ofsHideWindow
Adds the Visible property (with Disabled attribute) to the current message.

ofsHTTPDisconnect
Closes the current HTTP connect ion to the Forms Listener servlet.

QALoad 5.02

529

ofsHTTPSDoSSLHandshake
Establ ishes an SSL socket connect ion and starts an SSL handshake.

ofsHTTPSetHdrProperty
Establ ishes the HTTP headers to use for connect ing to the Forms servlet and l istener servlet.

ofsHTTPSetListenerServletParms
Sets the Forms Listener Servlet parameters prior to connect ion.

ofsHTTPConnectToFormsServlet
Opens an HTTP connect ion to the Forms servlet responsible for in i t iat ing a Forms applet instance.

ofsHTTPConnectToListenerServlet
Opens an HTTP connect ion to the Forms Listener servlet responsible for start ing an instance of the Forms
run t ime process.

ofsHTTPInit ialFormsConnect
Opens an HTTP connect ion to the Forms Listener servlet and posts the in i t ial Forms handshake
information.

ofsIconifyWindow
Adds the Window_Iconified property (with Enabled attribute) to the current message.

ofsIndexKey
Adds the Index_Key property to the current message.

ofsIndexSKey
Adds the Index_SKey property to the current message.

ofsIn itSessionCmdLine
Adds the INITIAL CMDLINE property to the curren t message.

ofsIn itSessionTimeZone
Adds the Time_Zone property to the current message.

ofsList ItemValue
Adds the List_Item property of a PopList or a TList control to the current message.

ofsLoadValue
Loads the values of a byte array or a string array associated with a GUI control.

ofsLOVRequestRow
Adds the LOV_REQUEST_ROW property to the current message.

ofsLOVSelect ion
Adds the LOV_SELECTION property to the current message.

ofsMenuParamDlgOK
Adds the MENUPARAM_DLGOK property to the current message. This statement defines the text in the
menu param dialog control.

ofsOpenWindow
Adds the Window_Open property (with Disabled at tribute) to the current message.

ofsRemoveFocus

QALoad 5.02

530

Adds the Focus property (with Disabled attribute) to the current message.

ofsSetCursorPosit ion
Adds the Cursor_Posit ion property of a Text Field control to the current message.

ofsSetErrorDialogTit le
Adds the DISPLAYERRORDIALOG_TITLE property to the current message.

ofsSetFontName
Adds the Font_Name property to the current message.

ofsScrol l
Adds the Block_Scrol ler property to the current message.

ofsScrol lSize
Adds the Block_Scrol ler_Size property to the current message.

ofsSelectItem
Adds the Value property (with Enabled attribute) to the current Message.

ofsSelectMenuItem
Adds the Menu_Event property to the current message.

ofsSelectTreeEvent
Adds the Selected_Event property of a Tree Control to the current message.

ofsSendRecv
Sends the cl ient request as Forms messages to the Forms server, gets the server response, and reads the
responses as Forms messages.

ofsServerSideDisconnect
Disconnects QALoad’s socket connect ion to the server-side code. The server-side code intercepts the
messages between QALoad and the Forms Listener servlet.

ofsSetColorDepth
Adds the Color_Depth property to the current message.

ofsSetDisplaySize
Adds the Display_Size property to the current message.

ofsSetExpectedServerMsg
Enables the script to cont inue i f a known error or warning message is received from the server.

ofsSetFontName
Adds the Font_Name property to the current message.

ofsSetFontSize
Adds the Font_Size property to the current message.

ofsSetFontStyle
Adds the Font_Style property to the current message.

ofsSetFontWeight
Adds the Font_Weight property to the current message.

QALoad 5.02

531

ofsSetICXTicket
Sets the value of the ICX t icket for the current Oracle Appl icat ions login. The statement is used only in a
Universal OFS-WWW session, as a replacement for the OracleAppsLogin() statement.

ofsSetIn it ialVersion
Adds the In it ial_Version property to the current message.

ofsSetJavaContainerArgName
Adds the JAVACONTAINER_ARG_NAME property to the current message.

ofsSetJavaContainerArgValue
Adds the JAVACONTAINER_ARG_VALUE property to the current message.

ofsSetJavaContainerEvent
Adds the JAVACONTAINER_ARG_EVENT property to the current message.

ofsSetLogonDatabase
Adds the LOGON_DATABASE property to the current message.

ofsSetLogonPassWord
Adds the LOGON_PASSWORD property to the current message.

ofsSetLogonUserName
Adds the LOGON_USERNAME property to the current message.

ofsSetNoRequiredVAList
Adds the Required_VA_List property (with Disabled attribute) to the current message.

ofsSetPropertyBoolean
Adds the generic boolean property (with Enabled at tribute) to the current message.

ofsSetPropertyByte
Adds the generic byte property to the current message.

ofsSetPropertyByteArray
Adds the generic byte array property to the current message.

ofsSetPropertyCharacter
Adds the generic Character property to the current message.

ofsSetPropertyDate
Adds the generic Date property to the current message.

ofsSetPropertyFloat
Adds the generic Float property to the current message.

ofsSetPropertyInteger
Adds the generic Integer property to the current message.

ofsSetPropertyPoint
Adds the generic Point property to the current message.

ofsSetPropertyRectangle
Adds the generic Rectangle property to the current message.

QALoad 5.02

532

ofsSetPropertyString
Adds the generic String property to the current message.

ofsSetPropertyStringArray
Adds the generic String array property to the curren t message.

ofsSetPropertyVoid
Adds the generic Void property to the current message.

ofsSetRequiredVAList
Adds the Required_VA_List property (with Enabled attribute) to the current message.

ofsSetRunOptions
Sets the runt ime values for CONNECT TYPE, HEARTBEAT, LOGGING (to replay capture fi le) and CHECK
SERVER MESSAGES.

ofsSetScaleInfo
Adds the Scale property to the current message.

ofsSetScreenResolut ion
Adds the Screen Resolut ion property to the current message.

ofsSetSelect ion
Adds the Select ion property of a Text Field control to the current message.

ofsSetServletMode
Creates a socket connect ion to the server-side code which communicates with the Forms Listener Servlet.

ofsSetServerFai ledMsg
Enables QALoad to fai l playback based on the user-entered string and fi l ter parameters.

ofsSetValue
Adds a generic Value property to the current message.

ofsSetWindowLocat ion
Adds the Locat ion property of a Window control to the current message.

ofsSetWindowSize
Adds the Size property of a Window control to the current message.

ofsShowWindow
Adds the Visible property (with Enabled attribute) to the current message.

ofsSocketDisconnect
Closes the connect ion of a socket-mode playback.

ofsStartSubMessage
Adds a sub-message to the current message.

ofsTabControlTopPage
Adds the TabControl_Top_Page property to the current message.

ofsUnSetPropertyBoolean
Adds a generic Boolean property (with Disabled attribute) to the current message.

OracleAppsLogin
This method simulates an Oracle Appl icat ions 11i login and retrieves the icx_t icket associated with that
login. It should be performed once per virtual user.

QALoad 5.02

533

OracleForms
The constructor for the OracleForms class. This should be classed once per script .

OracleFormsMsg
This method constructs a new OracleFormsMsg.

PopList
This method constructs a new OracleFormsMsg for th is type of control.

PopupHelp
This method constructs a new OracleFormsMsg for th is type of control.

PromptList
This method constructs a new OracleFormsMsg for th is type of control.

RadioButton
This method constructs a new OracleFormsMsg for th is type of control.

Runform
This method constructs a new OracleFormsMsg for th is type of control.

SetExpectedServerMsg
This method al lows the script to cont inue processing i f a known error or warning message is received from
the server.

SetHeartbeat
Sets the in terval t ime for the transmission of in ternal heartbeat messages to the server. Without th is
statement, Playback takes the default 2 minutes. If the parameter is set to 0, t ransmission of heartbeat
messages is suppressed.

SetProxy
This method is only used i f the script is communicat ing with the Oracle Forms Server via HTTP. It enables
the HTTP traffic to be routed through a proxy server.

TabControl
This method constructs a new OracleFormsMsg for th is type of control.

TextArea
This method constructs a new OracleFormsMsg for th is type of control.

TextField
This method constructs a new OracleFormsMsg for th is type of control.

Tl ist
This method constructs a new OracleFormsMsg for th is type of control.

Tree
This method constructs a new OracleFormsMsg for th is type of control.

XmitMsg
Sends a message to the Oracle Forms Server.

XmitTerminalMessage

QALoad 5.02

534

Sends a terminal message to the Oracle Forms Server.

Add

Adds a property to the current message.

Syntax

Add(propertyId, data)

Return Value

Void

Parameters

Param eter Descript i on

PropertyId int The property code for th is data. There are hundreds of different
property codes. The QALoad Script Development Workbench creates a
l ist of readable property codes that are used in the script .

data Object This parameter is a Java object.

Except ions

None.

Example

oracleFormsMsg1.Add(PROPERTY_FOCUS, new Boolean(true));
oracleFormsMsg1.Add(PROPERTY_SELECTION, new
 java.awt.Point(13,13));

AddListboxValue

Used with l ist box objects to send a specific l ist box value to the Oracle Forms Server.

Each value in a l ist box carries with i t an index assigned by the forms server. When the end-user selects an
entry, that index is sent to the server.

When data is received from the Oracle Forms Server, the script code keeps a table of index/value pairs for
each l ist box object. This method searches that table and automatical ly inserts the appropriate index for
the value specified in the script .

Syntax

Add(propertyId, value)

Return Value

Void

Parameters

Param eter Descript i on

PropertyId int The property code for th is data. There are hundreds of different
property codes. The QALoad Script Development Workbench creates
a l ist of readable property codes that are used in the script .

QALoad 5.02

535

Value String

List box value.

Except ions

QALoad Exception("Listbox value not found. Value: " + <value>)

Example

oracleFormsMsg1.AddListboxValue(PROPERTY_VALUE, "Value 4");

AlertDialog

Constructs a new OracleFormsMsg for th is type of control.

Syntax

AlertDialog(handlerID);

AlertDialog(controlName);

Return Valule

An OracleFormsMsg.

Parameters

Param eter Descript i on

HandlerId int Control number. Each control on a form is given a unique number by the
server. The QALoad Script Development Workbench automatical ly creates
constants for th is value that refer to the specific control by name and/or
type.

ControlName string Control name assigned by the original developer of the Oracle Forms
appl icat ion. To use control names, the original script must be recorded
with the "record=names" opt ion.

Except ions

QALoad Exception ("No match for control name: <control_name>'");

Example

oracleFormsMsg1 = oracleForms.AlertDialog(CONTROL_001);
oracleFormsMsg1 = oracleForms.AlertDialog("CONTROLabc");

AppTimer

This method constructs a new OracleFormsMsg for th is type of control.

Syntax

AppTimer(handlerID);

AppTimer(controlName);

Return Value

An OracleFormsMsg.

QALoad 5.02

536

Parameters

Param eter Descript i on

HandlerId int Control number. Each control on a form is given a unique number by the
server. The QALoad Script Development Workbench automatical ly creates
constants for th is value that refer to the specific control by name and/or
type.

ControlName string Control name assigned by the original developer of the Oracle Forms
appl icat ion. To use control names, the original script must be recorded
with the "record=names" opt ion.

Except ions

QALoad Exception ("No match for control name: <control_name>'");

Example

oracleFormsMsg1 = oracleForms.AppTimer(CONTROL_001);
oracleFormsMsg1 = oracleForms.AppTimer("CONTROLabc");

BlockScroller

This method constructs a new OracleFormsMsg for th is type of control.

Syntax

BlockScroller(handlerID);

BlockScroller(controlName);

Return Value

An OracleFormsMsg.

Parameters

Param eter Descript i on

HandlerId int Control number. Each control on a form is given a unique number by the
server. The QALoad Script Development Workbench automatical ly creates
constants for th is value that refer to the specific control by name and/or
type.

ControlName string Control name assigned by the original developer of the Oracle Forms
appl icat ion. To use control names, the original script must be recorded
with the "record=names" opt ion.

Except ions

QALoad Exception ("No match for control name: <control_name>'");

Example

oracleFormsMsg1 = oracleForms.BlockScroller(CONTROL_001);
oracleFormsMsg1 = oracleForms.BlockScroller("CONTROLabc");

But ton

This method constructs a new OracleFormsMsg for th is type of control.

QALoad 5.02

537

Syntax

Button(handlerID);

Button(controlName);

Return Value

An OracleFormsMsg.

Parameters

Param eter Descript i on

HandlerId int Control number. Each control on a form is given a unique number by the
server. The QALoad Script Development Workbench automatical ly creates
constants for th is value that refer to the specific control by name and type.

ControlName string Control name assigned by the original developer of the Oracle Forms
appl icat ion. To use control names, the original script must be recorded
with the "record=names" opt ion.

Except ions

QALoad Exception ("No match for control name: <control_name>'");

Example

oracleFormsMsg1 = oracleForms.Button(CONTROL_001);
oracleFormsMsg1 = oracleForms.Button("CONTROLabc");

CancelQueryDialog

This method constructs a new OracleFormsMsg for th is type of control.

Syntax

CancelQueryDialog(handlerID);

CancelQueryDialog(controlName);

Return Value

An OracleFormsMsg.

Parameters

Param eter Descript i on

HandlerId int Control number. Each control on a form is given a unique number by the
server. The QALoad Script Development Workbench automatical ly creates
constants for th is value that refer to the specific control by name and type.

ControlName string Control name assigned by the original developer of the Oracle Forms
appl icat ion. To use control names, the original script must be recorded
with the "record=names" opt ion.

Except ions

QALoad Exception ("No match for control name: <control_name>'");

Example

oracleFormsMsg1 = oracleForms.CancelQueryDialog (CONTROL_001);
oracleFormsMsg1 = oracleForms.CancelQueryDialog ("CONTROLabc");

QALoad 5.02

538

CfmOLE

This method constructs a new OracleFormsMsg for th is type of control.

Syntax

CfmOLE(handlerID);
CfmOLE(controlName);

Return Value

An OracleFormsMsg.

Parameters

Param eter Descript i on

HandlerId int Control number. Each control on a form is given a unique number by the
server. The QALoad Script Development Workbench automatical ly creates
constants for th is value that refer to the specific control by name and type.

ControlName string Control name assigned by the original developer of the Oracle Forms
appl icat ion. To use control names, the original script must be recorded
with the "record=names" opt ion.

Except ions

QALoad Exception ("No match for control name: <control_name>'");

Example

oracleFormsMsg1 = oracleForms.CfmOLE(CONTROL_001);
oracleFormsMsg1 = oracleForms.CfmOLE("CONTROLabc");

CfmVBX

This method constructs a new OracleFormsMsg for th is type of control.

Syntax

CfmVBX(handlerID);

CfmVBX(controlName);

Return Value

An OracleFormsMsg.

Parameters

Param eter Descript i on

HandlerId int Control number. Each control on a form is given a unique number by the
server. The QALoad Script Development Workbench automatical ly creates
constants for th is value that refer to the specific control by name and/or
type.

ControlName string Control name assigned by the original developer of the Oracle Forms
appl icat ion. To use control names, the original script must be recorded
with the "record=names" opt ion.

Except ions

QALoad Exception ("No match for control name: <control_name>'");

QALoad 5.02

539

Example

oracleFormsMsg1 = oracleForms.CfmVBX(CONTROL_001);
oracleFormsMsg1 = oracleForms.CfmVBX("CONTROLabc");

Checkbox

This method constructs a new OracleFormsMsg for th is type of control.

Syntax

Checkbox(handlerID);

Checkbox(controlName);

Return Value

An OracleFormsMsg.

Parameters

Param eter Descript i on

HandlerId int Control number. Each control on a form is given a unique number by the
server. The QALoad Script Development Workbench automatical ly creates
constants for th is value that refer to the specific control by name and/or
type.

ControlName string Control name assigned by the original developer of the Oracle Forms
appl icat ion. To use control names, the original script must be recorded
with the "record=names" opt ion.

Except ions

QALoad Exception ("No match for control name: <control_name>'");

Example

oracleFormsMsg1 = oracleForms.Checkbox(CONTROL_001);
oracleFormsMsg1 = oracleForms.Checkbox("CONTROLabc");

CheckForErrorMsgs

Indicates whether messages from the Oracle Forms Server are checked for error messages.

Each incoming message from the server is checked for warnings or errors. If error checking is enabled and
such a message is received, then an except ion is thrown.

Syntax

CheckForErrorMsgs(bFlag)

Return Value

Void

Parameters

Param eter Descript i on

BFlag Boolean True to enable checking, false to disable i t .

QALoad 5.02

540

Except ions

None thrown.

Example

oracleForms.CheckForErrorMsgs(true);
// Checking for errors

Connect

This method establ ishes a connect ion with the Oracle Forms Server.

Syntax

Connect(statement, hostname, port, type);

Return Value

Void

Parameters

Param eter Descript i on

Statement int A number used for script debugging and error report ing.

Hostname String Host name or IP address of the Oracle Forms Server.

Port int Port number to connect to on the server.

Type int Type of connect ion. Must be one of the fol lowing two constants:
WF_SOCKET
WF_HTTP

Except ions

QALoad Exception("Connect called, with an already established connection.")
QALoad Exception("Unknown host: ")
QALoad Exception("IOException called when making a connection.")

Example

oracleForms.Connect(1, "192.168.0.96", 9000, OracleForms.WF_SOCKET);

Disconnect

Closes the connect ion to the Oracle Forms Server.

Syntax

Disconnect(statement)

Return Value

Void

Parameters

Param eter Descript i on

Statement int A number used for script debugging and error report ing.

QALoad 5.02

541

Except ions

QALoad Exception("IOException called when closing server socket.")

Example

oracleForms.Disconnect(48);

DisplayErrorDialog

This method constructs a new OracleFormsMsg for th is type of control.

Syntax

DisplayErrorDialog(handlerID);
DisplayErrorDialog(controlName);

Return Value

An OracleFormsMsg.

Parameters

Param eter Descript i on

HandlerId int Control number. Each control on a form is given a unique number by the
server. The QALoad Script Development Workbench automatical ly creates
constants for th is value that refer to the specific control by name and/or
type.

ControlName string Control name assigned by the original developer of the Oracle Forms
appl icat ion. To use control names, the original script must be recorded
with the "record=names" opt ion.

Except ions

QALoad Exception ("No match for control name: <control_name>'");

Example

oracleFormsMsg1 = oracleForms.DisplayErrorDialog (CONTROL_001);
oracleFormsMsg1 = oracleForms.DisplayErrorDialog ("CONTROLabc");

DisplayList

This method constructs a new OracleFormsMsg for th is type of control.

Syntax

DisplayList(handlerID);

DisplayList(controlName);

Return Value

An OracleFormsMsg.

Parameters

Param eter Descript i on

HandlerId int Control number. Each control on a form is given a unique number by the
server. The QALoad Script Development Workbench automatical ly creates
constants for th is value that refer to the specific control by name and/or

QALoad 5.02

542

type.

ControlName string Control name assigned by the original developer of the Oracle Forms
appl icat ion. To use control names, the original script must be recorded
with the "record=names" opt ion.

Except ions

QALoad Exception ("No match for control name: <control_name>'");

Example

oracleFormsMsg1 = oracleForms.DisplayList(CONTROL_001);
oracleFormsMsg1 = oracleForms.DisplayList("CONTROLabc");

EditorDialog

This method constructs a new OracleFormsMsg for th is type of control.

Syntax

EditorDialog(handlerID);

EditorDialog(controlName);

Return Value

An OracleFormsMsg.

Parameters

Param eter Descript i on

HandlerId int Control number. Each control on a form is given a unique number by the
server. The QALoad Script Development Workbench automatical ly creates
constants for th is value that refer to the specific control by name and/or
type.

ControlName string Control name assigned by the original developer of the Oracle Forms
appl icat ion. To use control names, the original script must be recorded
with the "record=names" opt ion.

Except ions

QALoad Exception ("No match for control name: <control_name>'");

Example

oracleFormsMsg1 = oracleForms.EditorDialog(CONTROL_001);
oracleFormsMsg1 = oracleForms.EditorDialog("CONTROLabc");

FormCanvas

This method constructs a new OracleFormsMsg for th is type of control.

Syntax

FormCanvas(handlerID);

FormCanvas(controlName);

Return Value

An OracleFormsMsg.

QALoad 5.02

543

Parameters

Param eter Descript i on

HandlerId int Control number. Each control on a form is given a unique number by the
server. The QALoad Script Development Workbench automatical ly creates
constants for th is value that refer to the specific control by name and/or
type.

ControlName string Control name assigned by the original developer of the Oracle Forms
appl icat ion. To use control names, the original script must be recorded
with the "record=names" opt ion.

Except ions

QALoad Exception ("No match for control name: <control_name>'");

Example

oracleFormsMsg1 = oracleForms.FormCanvas(CONTROL_001);
oracleFormsMsg1 = oracleForms.FormCanvas("CONTROLabc");

FormStatusBar

This method constructs a new OracleFormsMsg for th is type of control.

Syntax

FromStatusBar(handlerID);
FromStatusBar(controlName);

Return Value

An OracleFormsMsg.

Parameters

Param eter Descript i on

HandlerId int Control number. Each control on a form is given a unique number by the
server. The QALoad Script Development Workbench automatical ly creates
constants for th is value that refer to the specific control by name and/or
type.

ControlName string Control name assigned by the original developer of the Oracle Forms
appl icat ion. To use control names, the original script must be recorded
with the "record=names" opt ion.

Except ions

QALoad Exception ("No match for control name: <control_name>'");

Example

oracleFormsMsg1 = oracleForms.FromStatusBar(CONTROL_001);
oracleFormsMsg1 = oracleForms.FromStatusBar("CONTROLabc");

FormWindow

This method constructs a new OracleFormsMsg for th is type of control.

QALoad 5.02

544

Syntax

FormWindow(handlerID);
FormWindow(controlName);

Return Value

An OracleFormsMsg.

Parameters

Param eter Descript i on

HandlerId int Control number. Each control on a form is given a unique number by the
server. The QALoad Script Development Workbench automatical ly creates
constants for th is value that refer to the specific control by name and/or
type.

ControlName string Control name assigned by the original developer of the Oracle Forms
appl icat ion. To use control names, the original script must be recorded
with the "record=names" opt ion.

Except ions

QALoad Exception ("No match for control name: <control_name>'");

Example

oracleFormsMsg1 = oracleForms.FormWindow(CONTROL_001);
oracleFormsMsg1 = oracleForms.FormWindow("CONTROLabc");

GetControlValue

This method returns the current contents of the control. Support is l im ited to text fields.

Syntax

GetControlValue(handlerId)

GetControlValue(controlName)

Return Value

String

Parameters

Param eter Descript i on

HandlerId int Control number. Each control on a form is given a unique number by the
server. The QALoad Script Development Workbench automatical ly creates
constants for th is value that refer to the specific control by name and/or
type.

ControlName string Control name assigned by the original developer of the Oracle Forms
appl icat ion. To use control names, the original script must be recorded
with the "record=names" opt ion.

Except ions

QALoad Exception ("No match for control name: <control_name>'");

QALoad 5.02

545

Example

String orderNumber = oracleForms.GetControlValue ("OrderField");
String orderNumber = oracleForms.GetControlValue (TextField_001);

HelpDialog

This method constructs a new OracleFormsMsg for th is type of control.

Syntax

HelpDialog(handlerID);

HelpDialog(controlName);

Return Value

An OracleFormsMsg.

Parameters

Param eter Descript i on

HandlerId int Control number. Each control on a form is given a unique number by the
server. The QALoad Script Development Workbench automatical ly creates
constants for th is value that refer to the specific control by name and/or type.

ControlName string Control name assigned by the original developer of the Oracle Forms
appl icat ion. To use control names, the original script must be recorded with
the "record=names" opt ion.

Except ions

QALoad Exception ("No match for control name: <control_name>'");

Example

oracleFormsMsg1 = oracleForms.HelpDialog(CONTROL_001);
oracleFormsMsg1 = oracleForms.HelpDialog("CONTROLabc");

HTTPConnectToFormsServlet

Allows the cl ient to connect to the 9i Forms Servlet. Automatic checkpoint ing is performed here.

Syntax

HTTPConnectToFormsServlet(stmtNum, formsServletURL, connectType);

Return Value

Void

Parameters

Param eter Descript i on

stmtNum int Script statement number used for script debugging and error.

formsServletURL
string

Captured Forms Servlet name and connect ion parameters.

connectType int Type of connect ion; always the in teger WF_HTTP.

QALoad 5.02

546

Except ions

QALoad Exception("OFS error - HTTPConnectToFormsServlet: failed to connect to the Forms
Servlet")

Example

oracleForms.HTTPConnectToFormsServlet(5,
"http://ntsap45b:7779/forms90/f90servlet?ifcmd=startsession HTTP/1.1", OracleForms.WF_HTTP
);

HTTPConnectToListenerServlet

Allows the cl ient to connect to the 9i Listener Servlet. Automatic checkpoint ing is performed here.

Syntax

HTTPConnectToListnerServlet(stmtNum, ServletURL);

Return Value

Void

Parameters

Param eter Descript i on

stmtNum int Script statement number used for script debugging and error.

servletURL string Captured name of the Forms 9i Listener Servlet.

Except ions

QALoad Exception("OFS error - HTTPConnectToListenerServlet: failed to connect to the
Listener Servlet")

Example

oracleForms.HTTPConnectToListenerServlet(7, "http://ntsap45b:7779/forms90/l90servlet");

HTTPInit ialFormsConnect

Allows the cl ient to establ ish connect ion with the Forms Server via the Listener Server. Automatic
checkpoint ing is performed here.

Syntax

HTTPInitialFormsConnect(stmtNum, connectType);

Return Value

Void

Parameters

Param eter Descript i on

stmtNum int Script statement number used for script debugging and error report ing.

connectType int Type of connect ion; always the in teger WF_HTTP.

QALoad 5.02

547

Except ions

QALoad Exception("OFS error - HTTPInitialFormsConnect: failed to connect to the Forms
Server")

Example

oracleForms.HTTPInitialFormsConnect(9, OracleForms.WF_HTTP);

HTTPReceiveMessage

Allows the cl ient to send the HTTP request contain ing Forms messages and receive the HTTP reply.

Automatic checkpoint ing is done here. Forms messages from the HTTP reply are individual ly processed.

Syntax

HTTPReceiveMessage(stmtNum);

Return Value

Void

Parameters

Param eter Descript i on

stmtNum int Script statement number used for script debugging and error report ing.

Except ions

QALoad Exception("OFS error - HTTPReceiveMessage: failed to read HTTP reply message.")

Example

oracleForms.HTTPReceiveMessage(9); //Statement # = 9

HTTPSDoSSLHandshake

Enables QALoad to do an SSL handshake prior to an SSL-enabled Forms connect ion.

Syntax

HTTPSDoSSLHandshake(int stmtNum);

Return Value

Void

Parameters

Param eter Descript i on

stmtNum Script statement number that is used for script debugging and error report ing.

Except ions

QALoad Exception("OFS - HTTPSDoSSLHandShake")

Example

oracleForms.HTTPSDoSSLHandshake(5);

/* The number 5 is used to display that statement number in the ValidateDebug Trace window
*/

QALoad 5.02

548

HTTPSetHdrProperty

Defines the HTTP connect ion propert ies that the cl ient uses to connect to the Forms Servlet and the
Listener Servlet.

The propert ies given in the script are User-Agent, Host, Accept, Connect ion, and Content-type.

Syntax

HTTPSetHdrProperty(stmtNum, propertyName, propertyValue);

Return Value

Void

Parameters

Param eter Descript i on

stmtNum int Script statement number used for script debugging and error report ing.

propertyName string HTTP connect ion property name.

propertyValue string Captured value of the connect ion property.

Except ions

QALoad Exception("OFS error - HTTPSetHdrProperty: failed to set request header property")

Example

oracleForms.HTTPSetHdrProperty(1, "User-Agent", "Java1.3.1.9");

HTTPSetListenerServletParms

Defines the HTTP connect ion parameters that the cl ient uses to connect to the 9i Listener Servlet.

The parameters given in the script are: i fcmd, i fhost, and i fip.

Syntax

HTTPSetListnerServletParms(stmtNum, servletParams);

Return Value

Void

Parameters

Param eter Descript i on

stmtNum int: Script statement number used for script debugging and error report ing.

servletParams string Captured servlet parameters; during playback, the i fhost and i fip values
must be the host name and IP address of the Playback machine.

Except ions

None

Example

oracleForms.HTTPSetListenerServletParms(6,
"?ifcmd=getinfo&ifhost=sfa10453&ifip=172.22.24.91");

QALoad 5.02

549

HTTPSetURL

Allows the cl ient to define the Listener Servlet for appl icat ions running Forms 6i patch 4+, prior to the
execut ion of HTTPInit ialFormsConnect.

Syntax

HTTPSetURL(stmtNum, servletURL);

Return Value

Void

Parameters

Param eter Descript i on

stmtNum int Script statement number used for script debugging and error report ing.

servletURL string Captured name of the Forms Listener Servlet (Forms 6i patch 4+) plus the
HTTP version.

Except ions

None

Example

oracleForms.HTTPSetURL(5,
"http://ntsap45b:7782/servlet/oracle.forms.servlet.ListenerServlet HTTP/1.0");

HTTPXmitMsg

Allows the cl ient to accumulate the Forms messages before sending the HTTP request.

Syntax

HTTPXmitMsg(stmtNum, msgObject);

Return Value

Void

Parameters

Param eter Descript i on

stmtNum int Script statement number used for script debugging and error report ing.

msgObject string Script ’s current message object.

Except ions

QALoad Exception("OFS error - HTTPXmitMsg:Exception called when adding msg to msg array")

Example

oracleForms.HTTPXmitMsg(8, oracleForms.HTTPXmitMsg1);
// Statement # = 8

HTTPXmitTerminalMessage

Allows QALoad to prepare the HTTP request that contains the current set of Forms messages.

QALoad 5.02

550

Preparat ion includes establ ish ing a new HTTP connect ion, stream, and content size, as well as encrypt ing
and writ ing to the HTTP stream.

Syntax

HTTPXmitTerminalMessage(stmtNum, respCode);

Return Value

Void

Parameters

Param eter Descript i on

stmtNum int Script statement number used for script debugging and error report ing.

respCode int Captured terminal - message’s response code indicat ing the type of act ion
to take. A value of 1 indicates that the messages should be acted on. A
value of 3 indicates that the cl ient requests to disconnect from the server.

Except ions

QALoad Exceptions("OFS error - HTTPXmitTerminalMessage: failed to prep HTTP request")

Example

oracleForms.HTTPXmitTerminalMessage(9, 1); //Statement #=9);

IconicBut ton

This method constructs a new OracleFormsMsg for th is type of control.

Syntax

IconicButton(handlerID);

IconicButton(controlName);

Return Value

An OracleFormsMsg.

Parameters

Param eter Descript i on

HandlerId int Control number. Each control on a form is given a unique number by the
server. The QALoad Script Development Workbench automatical ly creates
constants for th is value that refer to the specific control by name and/or
type.

ControlName string Control name assigned by the original developer of the Oracle Forms
appl icat ion. To use control names, the original script must be recorded
with the "record=names" opt ion.

Except ions

QALoad Exception ("No match for control name: <control_name>'");

Example

oracleFormsMsg1 = oracleForms.IconicButton(CONTROL_001);
oracleFormsMsg1 = oracleForms.IconicButton("CONTROLabc");

QALoad 5.02

551

ImageItem

Constructs a new OracleFormsMsg for th is type of control.

Syntax

ImageItem(handlerID);

ImageItem(controlName);

Return Value

An OracleFormsMsg.

Parameters

Param eter Descript i on

HandlerId int Control number. Each control on a form is given a unique number by the
server. The QALoad Script Development Workbench automatical ly creates
constants for th is value that refer to the specific control by name and/or
type.

ControlName string Control name assigned by the original developer of the Oracle Forms
appl icat ion. To use control names, the original script must be recorded
with the "record=names" opt ion.

Except ions

QALoad Exception ("No match for control name: <control_name>'");

Example

oracleFormsMsg1 = oracleForms.ImageItem(CONTROL_001);
oracleFormsMsg1 = oracleForms.ImageItem("CONTROLabc");

JavaContainer

This method constructs a new OracleFormsMsg for th is type of control.

Syntax

JavaContainer(handlerID);

JavaContainer(controlName);

Return Value

An OracleFormsMsg.

Parameters

Param eter Descript i on

HandlerId int Control number. Each control on a form is given a unique number by the
server. The QALoad Script Development Workbench automatical ly creates
constants for th is value that refer to the specific control by name and/or
type.

ControlName string Control name assigned by the original developer of the Oracle Forms
appl icat ion. To use control names, the original script must be recorded
with the "record=names" opt ion.

QALoad 5.02

552

Except ions

QALoad Exception ("No match for control name: <control_name>'");

Example

oracleFormsMsg1 = oracleForms.JavaContainer(CONTROL_001);
oracleFormsMsg1 = oracleForms.JavaContainer("CONTROLabc");

ListValuesDialog

This method constructs a new OracleFormsMsg for th is type of control.

Syntax

ListValuesDialog(handlerID);

ListValuesDialog(controlName);

Return Value

An OracleFormsMsg.

Parameters

Param eter Descript i on

HandlerId int Control number. Each control on a form is given a unique number by the
server. The QALoad Script Development Workbench automatical ly creates
constants for th is value that refer to the specific control by name and/or
type.

ControlName string Control name assigned by the original developer of the Oracle Forms
appl icat ion. To use control names, the original script must be recorded
with the "record=names" opt ion.

Except ions

QALoad Exception ("No match for control name: <control_name>'");

Example

oracleFormsMsg1 = oracleForms.ListValuesDialog (CONTROL_001);
oracleFormsMsg1 = oracleForms.ListValuesDialog ("CONTROLabc");

LogComment

If logging is enabled, th is method records i ts string parameter as a comment in the log fi le.

These comments can be very useful when ut i l izing the log fi le for debugging.

Syntax

LogComment(strComment)

Return Value

Void

Parameters

Param eter Descript i on

StrComment String Comment to log.

QALoad 5.02

553

Except ions

None

Example

oracleForms.LogComment("Enter customer here.");

Logging

This method enables logging of cl ient-to-server traffic during script playback.

The log fi le is named: OFSLOG_<scriptName>_<vu #>.cap, and is stored in the \QALoad directory.

Syntax

Logging(flag)

Return Value

Void

Parameters

Param eter Descript i on

flag Boolean Valid values are:

true: Enable logging
false: Disable logging

Except ions

QALoad Exception("IOException called when enabling logging.");

Example

oracleForms.Logging(true);

LogonDialog

This method constructs a new OracleFormsMsg for th is type of control.

Syntax

LogonDialog(handlerID);

LogonDialog(controlName);

Return Value

An OracleFormsMsg.

Parameters

Param eter Descript i on

HandlerId int Control number. Each control on a form is given a unique number by the
server. The QALoad Script Development Workbench automatical ly creates
constants for th is value that refer to the specific control by name and/or
type.

ControlName string Control name assigned by the original developer of the Oracle Forms
appl icat ion. To use control names, the original script must be recorded

QALoad 5.02

554

with the "record=names" opt ion.

Except ions

QALoad Exception ("No match for control name: <control_name>'");

Example

oracleFormsMsg1 = oracleForms.LogonDialog(CONTROL_001);
oracleFormsMsg1 = oracleForms.LogonDialog("CONTROLabc");

MenuInfo

This method constructs a new OracleFormsMsg for th is type of control.

Syntax

MenuInfo(handlerID);

MenuInfo(controlName);

Return Value

An OracleFormsMsg

Parameters

Param eter Descript i on

HandlerId int Control number. Each control on a form is given a unique number by the
server. The QALoad Script Development Workbench automatical ly creates
constants for th is value that refer to the specific control by name and/or
type.

ControlName string Control name assigned by the original developer of the Oracle Forms
appl icat ion. To use control names, the original script must be recorded
with the "record=names" opt ion.

Except ions

QALoad Exception ("No match for control name: <control_name>'");

Example

oracleFormsMsg1 = oracleForms.MenuInfo(CONTROL_001);
oracleFormsMsg1 = oracleForms.MenuInfo("CONTROLabc");

MenuParametersDialog

This method constructs a new OracleFormsMsg for th is type of control.

Syntax

MenuParametersDialog(handlerID);

MenuParametersDialog(controlName);

Return Value

An OracleFormsMsg.

Parameters

Param eter Descript i on

QALoad 5.02

555

HandlerId int Control number. Each control on a form is given a unique number by the
server. The QALoad Script Development Workbench automatical ly creates
constants for th is value that refer to the specific control by name and/or
type.

ControlName string Control name assigned by the original developer of the Oracle Forms
appl icat ion. To use control names, the original script must be recorded
with the "record=names" opt ion.

Except ions

QALoad Exception ("No match for control name: <control_name>'");

Example

oracleFormsMsg1 = oracleForms.MenuParametersDialog (CONTROL_001);
oracleFormsMsg1 = oracleForms.MenuParametersDialog ("CONTROLabc");

ofsAct ivateList Item

Adds the TList_Act ivated property to the current message. Tl ist_Act ivated property indicates user select ion
of an i tem in a List control.

Syntax

void ofsActivateListItem(const char *sHandlerName, int ControlID, int ActionType, int
PropertyID, const char *sValue);

Parameters

Param eter Descript i on

sHandlerName Captured name of the control ID for the current message. When the
control name is not avai lable, the Class name of the Control ID is shown.

ControlID Captured ID of the GUI control for the current message.

ActionType This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.

PropertyID Oracle-designated ID for the property being added.

sValue The posit ional value of the act ivated List i tem.

Example

//In the example below, the List item is defined,
//and then selected using the statement
//ofsActivateListItem. The value 7 indicates
//that the item is the 7th List item.

ofsListItemValue("TLIST", 118, OFS_ENDMSG, 131, "7"); /*Item value = Material

 Transactions*/

ofsSendRecv(1);

QALoad 5.02

556

:

:

ofsActivateListItem("TLIST", 118, OFS_ENDMSG, 341, "7");

ofsSendRecv(1);

ofsAct ivateTreeItem

Adds the Event_Act ivated property of a Tree control to the current message. Event_Act ivated property
indicates user select ion of an i tem in a Tree control. The selected i tem is associated with in ternal
processing events.

Syntax

void ofsActivateTreeItem(const char *sHandlerName, int ControlID, int ActionType, int
PropertyID, const char *sValue);

Parameters

Param eter Descript i on

sHandlerName Captured name of the control ID for the current message. When the
control name is not avai lable, the Class name of the Control ID is shown.

ControlID Captured ID of the GUI control for the current message.

ActionType This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.

PropertyID Oracle-designated ID for the property being added.

Value The posit ional value of the act ivated Tree i tem.

Example

//The statement ofsActivateTreeItem is
//similar to ofsActivateListItem
//but internal processing events occur
//when it is executed. A Tree item is a
//List Item that is associated with an event.
//In this example, item 4 (named “Sample Event1”)
//in Tree Control ID 118 is selected.

ofsListItemValue("TLIST", 118, OFS_ENDMSG, 131, "4"); /*Item value = Sample Event1*/
ofsSendRecv(1);

.

.

.

ofsActivateTreeItem("Test Tree", 118, OFS_ENDMSG, 491, "4");

ofsAct ivateWindow

Adds the Window_Activate property (with Enabled attribute) to the current message. The
Window_Activate (with Enabled attribute) property indicates the opening of a new window.

QALoad 5.02

557

Syntax

void ofsActivateWindow(const char *sHandlerName, int ControlID, int ActionType, int
PropertyID);

Parameters

Param eter Descript i on

HandlerName Captured name of the control ID for the current message. When the
control name is not avai lable, the Class name of the Control ID is shown.

ControlID Captured ID of the GUI control for the current message.

ActionType This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.

PropertyID Oracle-designated ID for the property being added.

Example

//This example indicates the window “Oracle
//Applications” being displayed as the top window,
//then the window is activated for use.

ofsShowWindow("Oracle Applications", 32, OFS_ENDMSG, 173);
ofsActivateWindow("Oracle Applications", 32, OFS_ENDMSG, 247);
ofsFocus("TEXTFIELD", 75, OFS_ENDMSG, 174);
ofsSendRecv(2);

ofsClickBut ton

Adds the Pressed property of a Button control to the current message. This statement indicates a button
cl ick act ivi ty.

Syntax

void ofsClickButton(const char *sHandlerName, int ControlID, int ActionType, int
PropertyID);

Parameters

Param eter Descript i on

HandlerName Captured name of the control ID for the current message. When the
control name is not avai lable, the Class name of the Control ID is shown.

ControlID Captured ID of the GUI control for the current message.

ActionType This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.

QALoad 5.02

558

PropertyID Oracle-designated ID for the property being added.

Example

//In this example, control ID 52 represents the button that is clicked.

ofsClickButton("BUTTON", 52, OFS_ENDMSG, 325);
ofsSendRecv(1);

ofsClickTextFieldItem

Adds the Pressed property associated with a Text Field control to the current message. This statement
indicates an act ivi ty in which focusing on a Text Field i tem enables the user to cl ick a button that triggers
in ternal processing events.

Syntax

void ofsClickTextFieldItem(const char *sHandlerName, int ControlID, int ActionType, int
PropertyID);

Parameters

Param eter Descript i on

HandlerName Captured name of the control ID for the current message. When the
control name is not avai lable, the Class name of the Control ID is shown.

ControlID Captured ID of the GUI control for the current message.

ActionType This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.
OFS_STARTSUBMSG: Add the property of the succeeding nested message to
the current message.

PropertyID Oracle-designated ID for the property being added.

Example

//In this example, the location of Text Field
//control 274 is defined using ofsSetSelection.

//The Browse button embedded in Text Field control
//274 is clicked. The click, simulated by
//ofsClickTextFieldItem, deactivated the currently
//opened window “Find Material Transactions”
//(control 179) and also triggered Custom Control
//1367 to act as the top window.

ofsSetSelection("TEXTFIELD", 274, OFS_ENDMSG, 195, 0, 0);
ofsClickTextFieldItem("TEXTFIELD", 274, OFS_ENDMSG, 325);
ofsSendRecv(1);
ofsSendRecv(1);
ofsDeActivateWindow("Find Material Transactions ", 179, OFS_ENDMSG, 247);
ofsSendRecv(1);

ofsSetPropertyInteger("CUSTOMCONTROL", 1367, OFS_ADD, 2601, "91");
ofsSetPropertyInteger("CUSTOMCONTROL", 1367, OFS_ADD, 2600, "0");

QALoad 5.02

559

ofsSetPropertyInteger("CUSTOMCONTROL", 1367, OFS_ADD, 2600, "0");
ofsSetPropertyString("CUSTOMCONTROL", 1367, OFS_ENDMSG, 2600, "xxx");
ofsSendRecv(1);

ofsClosePopList

Adds the List_Closed property of a PopList control to the current message. The List_Closed property
indicates a PopList control is closed.

Syntax

void ofsClosePopList(const char *sHandlerName, int ControlID, int ActionType, int
PropertyID);

Parameters

Param eter Descript i on

HandlerName Captured name of the control ID for the current message. When the
control name is not avai lable, the Class name of the Control ID is shown.

ControlID Captured ID of the GUI control for the current message.

ActionType This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.

PropertyID Oracle-designated ID for the property being added.

Example

//In this example, control ID 52 represents
//the Poplist control that is closed.

ofsClosePopList ("POPLIST", 52, OFS_ENDMSG, 332);

ofsCloseWindow

Adds the Window_Close property (with Enabled at tribute) to the current message. The Window_Close
property indicates the act of closing a window.

Syntax

void ofsCloseWindow(const char *sHandlerName, int ControlID, int ActionType, int
PropertyID);

Parameters

Param eter Descript i on

HandlerName Captured name of the control ID for the current message. When the
control name is not avai lable, the Class name of the Control ID is shown.

ControlID Captured ID of the GUI control for the current message.

ActionType This flag indicates i f the property is only to be added to the current

QALoad 5.02

560

message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.

PropertyID Oracle-designated ID for the property being added.

Example

//In this example, control ID 179 (named
//“Find Material Transactions”) represents
//the window that is closed.

ofsCloseWindow("Find Material Transactions ", 179, OFS_ENDMSG, 216);

ofsCollapseTreeItem

Adds the Event-Collapsed property of a Tree control to the current message. The Event_Collapsed property
indicates a Tree control i tem being col lapsed.

Syntax

void ofsCollapseTreeItem(const char *sHandlerName, int ControlID, int ActionType, int
PropertyID, const char *Value);

Parameters

Param eter Descript i on

HandlerName Captured name of the control ID for the current message. When the
control name is not avai lable, the Class name of the Control ID is shown.

ControlID Captured ID of the GUI control for the current message.

ActionType This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.

PropertyID Oracle-designated ID for the property being added.

Value The relat ive posit ion of the Tree control i tem.

Example

//In this example, item 4 (named “FORD”) in Tree control ID 73 is collapsed.
ofsStartSubMessage("TREE", 73, OFS_STARTSUBMSG, 180, "0");
ofsSetPropertyPoint("TREE", 73, OFS_ADD, 185, 19, 50);
ofsSetPropertyByte("TREE", 73, OFS_ENDMSG, 186, "16");
ofsRemoveFocus("TEXTFIELD", 69, OFS_ENDMSG, 174);
ofsFocus("TREE", 73, OFS_ENDMSG, 174);
ofsCollapseTreeItem("TREE", 73, OFS_ENDMSG, 490, "4"); /*Item value = FORD*/
ofsSendRecv(1);

QALoad 5.02

561

ofsColorAdd

Adds the Color_Add property to the current message. The Color_Add property is appl ied to the in i t ial
Forms environment.

Syntax

void ofsColorAdd(const char *sHandlerName, int ControlID, int ActionType, int PropertyID,
const char *Value);

Parameters

Param eter Descript i on

HandlerName Captured name of the control ID for the current message. When the
control name is not avai lable, the Class name of the Control ID is shown.

ControlID Captured ID of the GUI control for the current message.

ActionType This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.

PropertyID Oracle-designated ID for the property being added.

Value The color being appl ied to the Forms appl icat ion environment.

Example

//The initial set of Forms statements describes the
//initial Forms environment. The description is matched
//on the server side. In this example, a color is
//defined as part of the Forms environment.

ofsSetInitialVersion("RUNFORM", 1, OFS_ADD, 268, "90290");
ofsSetScreenResolution("RUNFORM", 1, OFS_ADD, 263, 96, 96);

:

ofsColorAdd("RUNFORM", 1, OFS_ADD, 284, "16776960");

:

ofsSetRequiredVAList("RUNFORM", 1, OFS_ADD, 291);

:

ofsFocus("BUTTON", 58, OFS_ENDMSG, 174);
ofsSendRecv(1);

ofsConnectToSocket

Establ ishes a socket-mode connect ion to the Oracle Forms Server.

Syntax

void ofsConnectToSocket(const char *Hostname, int Port);

Parameters

Param eter Descript i on

QALoad 5.02

562

Hostname Host name or IP address of the Oracle Forms Server.

Port Port number used to connect to the Forms server.

Example

//In socket-mode, QALoad uses the IP address
//or host name of the server machine and the
//Form Server Port to execute a socket connection
//with the server.

ofsConnectToSocket("10.10.0.167", 9002);

ofsDeAct ivateWindow

Adds the Window_Activate property (with Disabled attribute) to the current message. The
Window_Activate (with Disabled attribute) property indicates the ending of a current ly opened window.

Syntax

void ofsDeActivateWindow(const char *sHandlerName, int ControlID, int ActionType, int
PropertyID);

Parameters

Param eter Descript i on

HandlerName Captured name of the control ID for the current message. When the
control name is not avai lable, the Class name of the Control ID is shown.

ControlID Captured ID of the GUI control for the current message.

ActionType This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.

PropertyID Oracle-designated ID for the property being added.

Example

//This example shows the window “WINDOW_DATABASETEST”
//being terminated prior to the ending of the HTTP session.

ofsDeActivateWindow("WINDOW_DATABASETEST", 24, OFS_ENDMSG, 247);
ofsFocus("BUTTON", 52, OFS_ENDMSG, 174);
ofsSendRecv(1);
ofsHTTPDisconnect();

ofsDefineTreeNode

Adds the Node_ID property of a Tree control to the current message. Node_ID property defines the relat ive
posit ion of the tree i tem, count ing nested tree i tems.

Syntax

void ofsDefineTreeNode(const char *sHandlerName, int ControlID, int ActionType, int
PropertyID, const char *Value);

QALoad 5.02

563

Parameters

Param eter Descript i on

HandlerName Captured name of the control ID for the current message. When the
control name is not avai lable, the Class name of the Control ID is shown.

ControlID Captured ID of the GUI control for the current message.

ActionType This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.

PropertyID Oracle-designated ID for the property being added.

Value The relat ive posit ion of the tree i tem, count ing nested tree i tems .

Example

//In this example, the relative positions of items
//6 and 12 in Tree control ID 73 are defined.

ofsStartSubMessage("TREE", 73, OFS_STARTSUBMSG, 505, "0");
ofsDefineTreeNode("TREE", 73, OFS_ADD, 500, "6"); /*Item value = BLAKE*/
ofsDefineTreeNodeOffset("TREE", 73, OFS_ENDMSG, 503, "2");
ofsStartSubMessage("TREE", 73, OFS_STARTSUBMSG, 505, "0");
ofsDefineTreeNode("TREE", 73, OFS_ADD, 500, "6"); /*Item value = BLAKE*/
ofsDefineTreeNodeOffset("TREE", 73, OFS_ENDMSG, 503, "3");
ofsStartSubMessage("TREE", 73, OFS_STARTSUBMSG, 505, "0");
ofsDefineTreeNode("TREE", 73, OFS_ADD, 500, "12"); /*Item value = CLARK*/
ofsDefineTreeNodeOffset("TREE", 73, OFS_ENDMSG, 503, "0");
ofsSendRecv(1);

ofsDefineTreeNodeOffset

Adds the Node_Offset property of a Tree control to the current message. Node_Offset defines the relat ive
posit ion of the tree i tem, excluding nested tree i tems.

Syntax

void ofsDefineTreeNodeOffset(const char *sHandlerName, int ControlID, int ActionType, int
PropertyID, const char *Value);

Parameters

Param eter Descript i on

HandlerName Captured name of the control ID for the current message. When the
control name is not avai lable, the Class name of the Control ID is shown.

ControlID Captured ID of the GUI control for the current message.

ActionType This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.

QALoad 5.02

564

OFS_ENDMSG: Add property to the current message and end the current
message.

PropertyID Oracle-designated ID for the property being added.

Value The relat ive posit ion of the tree i tem, count ing nested tree i tems .

Example

//In this example, the relative positions of
//items 6 and 12 in Tree control ID 73 are defined.

ofsStartSubMessage("TREE", 73, OFS_STARTSUBMSG, 505, "0");
ofsDefineTreeNode("TREE", 73, OFS_ADD, 500, "6"); /*Item value = BLAKE*/
ofsDefineTreeNodeOffset("TREE", 73, OFS_ENDMSG, 503, "2");
ofsStartSubMessage("TREE", 73, OFS_STARTSUBMSG, 505, "0");
ofsDefineTreeNode("TREE", 73, OFS_ADD, 500, "6"); /*Item value = BLAKE*/
ofsDefineTreeNodeOffset("TREE", 73, OFS_ENDMSG, 503, "3");
ofsStartSubMessage("TREE", 73, OFS_STARTSUBMSG, 505, "0");
ofsDefineTreeNode("TREE", 73, OFS_ADD, 500, "12"); /*Item value = CLARK*/
ofsDefineTreeNodeOffset("TREE", 73, OFS_ENDMSG, 503, "0");
ofsSendRecv(1);

ofsDeIconifyWindow

Adds the Window_Iconified property (with Disabled attribute) to the current message. This statement
indicates a window being sized up from its icon representat ion.

Syntax

void ofsDeIconifyWindow(const char *sHandlerName, int ControlID, int ActionType, int
PropertyID);

Parameters

Param eter Descript i on

HandlerName Captured name of the control ID for the current message. When the
control name is not avai lable, the Class name of the Control ID is shown.

ControlID Captured ID of the GUI control for the current message.

ActionType This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.

PropertyID Oracle-designated ID for the property being added.

Example

//In this example, window control ID 118 is
//being sized up from its icon representation.

 ofsDeIconifyWindow ("FORMWINDOW", 118, OFS_ENDMSG, 243);

QALoad 5.02

565

ofsDeSelect Item

Adds the Value property (with Disabled attribute) to the current Message. The Value property is appl ied to
a Radio button, Checkbox, List Box or Combo Box control. This statement indicates the mouse moving
away from a previously selected i tem that is associated with a Radio button, Checkbox, List Box or a
Combo Box.

Syntax

void ofsDeSelectItem(const char *sHandlerName, int ControlID, int ActionType, int
PropertyID);

Parameters

Param eter Descript i on

HandlerName Captured name of the control ID for the current message. When the
control name is not avai lable, the Class name of the Control ID is shown.

ControlID Captured ID of the GUI control for the current message.

ActionType This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.

PropertyID Oracle-designated ID for the property being added.

Example

//In this example, the mouse is deselecting Checkbox
//control ID 60 and selecting Radiobutton control ID 63.

ofsDeSelectItem("CHECKBOX", 60, OFS_ENDMSG, 131);
ofsSendRecv(1);

ofsRemoveFocus("CHECKBOX", 60, OFS_ENDMSG, 174);
ofsFocus("RADIOBUTTON", 63, OFS_ENDMSG, 174);
ofsSendRecv(1);

ofsSelectItem("RADIOBUTTON", 63, OFS_ENDMSG, 131);
ofsSendRecv(1);

ofsDeselectTreeEvent

Adds the Event_DeSelect property of a Tree control to the current message. This statement indicates the
appl icat ion is moving from an internal processing event that is associated wi th a tree i tem.

Syntax

void ofsDeselectTreeEvent(const char *sHandlerName, int ControlID, int ActionType, int
PropertyID, const char *Value);

Parameters

Param eter Descript i on

HandlerName Captured name of the control ID for the current message. When the
control name is not avai lable, the Class name of the Control ID is shown.

QALoad 5.02

566

ControlID Captured ID of the GUI control for the current message.

ActionType This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.

PropertyID Oracle-designated ID for the property being added.

Value The relat ive posit ion of the tree control i tem.

Example

//In this example, user activity is moving
//away from Tree control ID 73.

ofsDeselectTreeEvent ("TREE", 73, OFS_ENDMSG, 492, "1");

ofsEdit

Adds the Value property to the current message. The property is associated with a Text Field control. This
statement indicates the act of entering values in to a text field.

Syntax

void ofsEdit(const char *sHandlerName, int ControlID, int ActionType, int PropertyID, const
char *Value);

Parameters

Param eter Descript i on

HandlerName Captured name of the control ID for the current message. When the
control name is not avai lable, the Class name of the Control ID is shown.

ControlID Captured ID of the GUI control for the current message.

ActionType This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.

PropertyID Oracle-designated ID for the property being added.

Value The value entered in the text field.

Example

//In this example, the user enters “MFG”
//into Text Field control 75. The other
//statements are describing the location
//of the TextField control, the position
//of the cursor within the Text Field control,
//and recognizing the entry as a keyed entry.

QALoad 5.02

567

ofsEdit("TEXTFIELD", 75, OFS_ADD, 131, "MFG");
ofsSetSelection("TEXTFIELD", 75, OFS_ADD, 195, 3, 3);
ofsSetCursorPosition("TEXTFIELD", 75, OFS_ENDMSG, 193, "3");
ofsIndexSKey("TEXTFIELD", 75, OFS_ENDMSG, 176, 9, 0);
ofsSendRecv(1);

ofsExpandTreeItem

Adds the Event_Expanded property of a Tree control to the current message. The Event_Expanded property
indicates a Tree control i tem being expanded.

Syntax

void ofsExpandTreeItem(const char *sHandlerName, int ControlID, int ActionType, int
PropertyID, const char *Value);

Parameters

Param eter Descript i on

HandlerName Captured name of the control ID for the current message. When the
control name is not avai lable, the Class name of the Control ID is shown.

ControlID Captured ID of the GUI control for the current message.

ActionType This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.

PropertyID Oracle-designated ID for the property being added.

Value The relat ive posit ion of the tree i tem, count ing nested tree i tems.

Example

//In this example, the item in Tree control
//ID 73 (named “CLARK”) is expanded.
ofsStartSubMessage("TREE", 73, OFS_STARTSUBMSG, 180, "0");
ofsSetPropertyPoint("TREE", 73, OFS_ADD, 185, 12, 220);
ofsSetPropertyByte("TREE", 73, OFS_ENDMSG, 186, "16");
ofsExpandTreeItem("TREE", 73, OFS_ENDMSG, 489, "12"); /*Item value = CLARK*/
ofsSendRecv(1);

ofsFindLOVValue

Adds the LOV_Find_Value property of a List of Values control to the current message. The statement
indicates the user is searching for an i tem in a List of Values control. The search typical ly returns an i tem
ID when a val id i tem is found for the given search string.

Syntax

void ofsFindLOVValue(const char *sHandlerName, int ControlID, int ActionType, int
PropertyID, const char *Value);

QALoad 5.02

568

Parameters

Param eter Descript i on

HandlerName Captured name of the control ID for the current message. When the
control name is not avai lable, the Class name of the Control ID is shown.

ControlID Captured ID of the GUI control for the current message.

ActionType This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.

PropertyID Oracle-designated ID for the property being added.

Value The name used to search the List of Values.

Example

//In this example, the user is using
//“CGI” string to search inside LOV
//control 85 (named “LISTVALUESDIALOG").
ofsFindLOVValue ("LISTVALUESDIALOG", 85, OFS_ENDMSG, 454, "CGI");

ofsFocus

Adds the Focus property (with Enabled attribute) to the current message. The Focus property typical ly
indicates the mouse hovering on a GUI control.

Syntax

void ofsFocus(const char *sHandlerName, int ControlID, int ActionType, int PropertyID);

Parameters

Param eter Descript i on

HandlerName Captured name of the control ID for the current message. When the
control name is not avai lable, the Class name of the Control ID is shown.

ControlID Captured ID of the GUI control for the current message.

ActionType This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.

PropertyID Oracle-designated ID for the property being added.

QALoad 5.02

569

Example

//In this example, control ID 78 (a button)
//is the object of Focus. The button is
//subsequently clicked.

ofsFocus("BUTTON", 78, OFS_ENDMSG, 174);
ofsSendRecv(1);
ofsClickButton("BUTTON", 78, OFS_ENDMSG, 325);
ofsSendRecv(1);

ofsHideWindow

Adds the Visible property (with Disabled attribute) to the current message. The property is associated wi th
a Window control. The statement indicates a window being h idden from view.

Syntax

void ofsHideWindow(const char *sHandlerName, int ControlID, int ActionType, int PropertyID);

Parameters

Param eter Descript i on

HandlerName Captured name of the control ID for the current message. When the
control name is not avai lable, the Class name of the Control ID is shown.

ControlID Captured ID of the GUI control for the current message.

ActionType This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.

PropertyID Oracle-designated ID for the property being added.

Example

//In this example, window control ID 118
//is being hidden from view.

ofsHideWindow("FORMWINDOW", 118, OFS_ENDMSG, 173);

ofsHTTPConnectToFormsServlet

Opens an HTTP connect ion to the Forms servlet responsible for in i t iat ing a Forms applet instance.

Syntax

void ofsHTTPConnectToFormsServlet(const char *sformsServletURL);

Parameters

Param eter Descript i on

sformsServletURL The URL locat ion of the Forms Servlet.

QALoad 5.02

570

Example

ofsHTTPConnectToFormsServlet("http://ntsap45b:7779/forms90/f90servlet?ifcmd=startsession"
);

ofsHTTPConnectToListenerServlet

Opens an HTTP connect ion to the Forms Listener servlet responsible for start ing an instance of the Forms
run t ime process.

Syntax

void ofsHTTPConnectToListenerServlet(const char *sformsServletURL);

Parameters

Param eter Descript i on

sformsServletURL The URL locat ion of the Forms Listener servlet.

Example

ofsHTTPConnectToListenerServlet("http://ntsap45b:7779/forms90/l90servlet");

ofsHTTPDisconnect

Closes the current HTTP connect ion to the Forms Listener Servlet.

Syntax

void ofsHTTPDisconnect();

Parameters

none

Example

ofsHTTPDisconnect();

ofsHTTPSDoSSLHandshake

Establ ishes an SSL socket connect ion and starts an SSL handshake.

Syntax

void ofsHTTPSDoSSLHandshake();

Parameters

none

Example

ofsHTTPSDoSSLHandshake();

ofsHTTPSetHdrProperty

Establ ishes the HTTP headers to use for connect ing to the Forms servlet and l istener servlet.

Syntax

void ofsHTTPSetHdrProperty(const char *sName, const char *sValue);

QALoad 5.02

571

Parameters

Param eter Descript i on

sName The HTTP header name.

sValue The HTTP header value.

Example

ofsHTTPSetHdrProperty("User-Agent", "Java1.3.1.9");

ofsHTTPSetHdrProperty("Host", "ntsap45b.prodti.compuware.com:4445");

ofsHTTPSetHdrProperty("Accept", "text/html, image/gif, image/jpeg, *; q=.2, "
 "*/*; q=.2");

ofsHTTPSetHdrProperty("Connection", "Keep-alive");

ofsHTTPSetListenerServletParms

Sets the Forms Listener Servlet parameters prior to connect ion.

Syntax

void ofsHTTPSetListenerServletParms(const char *sListenerServlet);

Parameters

Param eter Descript i on

sListenerServlet Servlet parameters to use for th is session.

Example

ofsHTTPSetListenerServletParms("?ifcmd=getinfo&ifhost=C104444D01&ifip="
 "192.168.234.1");

ofsHTTPInit ialFormsConnect

Opens an HTTP connect ion to the Forms Listener servlet and posts the in i t ial Forms handshake
information.

Syntax

void ofsHTTPInitialFormsConnect();

Parameters

none

Example

ofsHTTPInitialFormsConnect();

ofsIconifyWindow

Adds the Window_Iconified property (with Enabled attribute) to the current message. This statement
indicates a window being sized down to i ts icon representat ion.

QALoad 5.02

572

Syntax

void ofsIconifyWindow(const char *sHandlerName, int ControlID, int ActionType, int
PropertyID);

Parameters

Param eter Descript i on

HandlerName Captured name of the control ID for the current message. When the
control name is not avai lable, the Class name of the Control ID is shown.

ControlID Captured ID of the GUI control for the current message.

ActionType This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.

PropertyID Oracle-designated ID for the property being added.

Example

//In this example, window control ID 118 is
//being sized down to an icon.

 ofsIconifyWindow ("FORMWINDOW", 118, OFS_ENDMSG, 243);

ofsIndexKey

Adds the Index_Key property to the current message. The Index_Key property typical ly indicates a keyed
entry in a TextField control, such as a user ID entry.

Syntax

void ofsIndexKey(const char *sHandlerName, int iControlId, int iAction, int iPropertyID, int
iCoordinateX, int iCoordinateY);

Parameters

Param eter Descript i on

HandlerName Captured name of the control ID for the current message. When the
control name is not avai lable, the class name of the control ID is shown.

ControlID Captured ID of the GUI control for the current message.

iAction This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.

iPropertyID Oracle-designated ID for the property being added.

iCoordianteX X coordinate of the keyed entry.

QALoad 5.02

573

iCoordinateY Y coordinate of the keyed entry.

Example

//In this example, the user enters "M" into Text Field control 75.
//The other statements are describing the location of the TextField control,
//the position of the cursor within the Text Field control,
//and recognizing the entry as a keyed entry.

ofsEdit("TEXTFIELD", 75, OFS_ADD, 131, "M");
ofsSetSelection("TEXTFIELD", 75, OFS_ADD, 195, 1, 1);
ofsSetCursorPosition("TEXTFIELD", 75, OFS_ENDMSG, 193, "1");
ofsIndexKey("TEXTFIELD", 75, OFS_ENDMSG, 175, 97, 0);
ofsSendRecv(1);

ofsIndexSKey

Adds the Index_SKey property to the current message. The Index_SKey property is typical ly associated wi th
a keyed entry in a TextField control, such as a user ID entry.

Syntax

void ofsIndexSKey(const char *sHandlerName, int iControlID, int iAction, int iPropertyID,
int iCoordinateX, int iCoordinateY);

Parameters

Param eter Descript i on

sHandlerName Captured name of the control ID for the current message. When the
control name is not avai lable, the class name of the control ID is shown.

iControlID Captured ID of the GUI control for the current message.

iAction This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.

iPropertyID Oracle-designated ID for the property being added.

iCoordinateX X coordinate of the keyed entry.

iCoordinateY Y coordinate of the keyed entry.

Example

//In this example, the user enters "MFG" into Text Field control 75.
//The other statements are describing the location of the TextField control,
//the position of the cursor within the Text Field control,
//and recognizing the entry as a keyed entry.

ofsEdit("TEXTFIELD", 75, OFS_ADD, 131, "MFG");
ofsSetSelection("TEXTFIELD", 75, OFS_ADD, 195, 3, 3);
ofsSetCursorPosition("TEXTFIELD", 75, OFS_ENDMSG, 193, "3");
ofsIndexSKey("TEXTFIELD", 75, OFS_ENDMSG, 176, 9, 0);
ofsSendRecv(1);

QALoad 5.02

574

ofsInitSessionCmdLine

Adds the INITIAL CMDLINE property to the curren t message. The INITIAL CMDLINE property is appl ied to
the in i t ial Forms environment.

Syntax

void ofsInitSessionCmdLine(const char *sClassName, int iHandlerID, int iAction, int
iPropertyID, const char *sCmdLineInfo);

Parameters

Param eter Descript i on

sClassName Captured name of the control ID for the current message. When the
control name is not avai lable, the Class name of the Control ID is shown.

iHandlerID Captured ID of the GUI control for the current message.

iAction This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.

iPropertyID Oracle-designated ID for the property being added.

sCmdLineInfo Value of the In it ial CmdLine property.

Example

ofsInitSessionCmdLine("RUNFORM", 1, OFS_ADD, 265,
 "server module=/oracle/appl/vis11iappl/fnd/11.5.0/forms/US/FNDSCSGN userid=APPLS"
 "YSPUB/PUB@vis11i fndnam=APPS");

ofsInitSessionTimeZone

Adds the Time_Zone property to the current message. The Time_Zone property is appl ied to the in i t ial
Forms environment.

Syntax

void ofsInitSessionTimeZone(const char *sClassName, int iHandlerID, int iAction, int
iPropertyID, const char *sTimeZone);

Parameters

Param eter Descript i on

sClassName Captured name of the control ID for the current message. When the
control name is not avai lable, the Class name of the Control ID is shown.

iHandlerID Captured ID of the GUI control for the current message.

iAction This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.

QALoad 5.02

575

OFS_ENDMSG: Add property to the current message and end the current
message.

iPropertyID Oracle-designated ID for the property being added.

sTimeZone The t ime zone to use for th is session. The t ime zone is specified by the
appl icat ion.

Example

ofsInitSessionTimeZone ("RUNFORM", 1, OFS_ENDMSG, 530, "America/New_York");

ofsList ItemValue

Adds the List_Item property of a PopList or a TList control to the current message. This statement defines
an i tem in a PopList or a TList control.

Syntax

void ofsListItemValue(const char *sHandlerName, int iControlID, int iAction, int
iPropertyID, const char *sValue);

Parameters

Param eter Descript i on

sHandlerName Captured name of the control ID for the current message. When the
control name is not avai lable, the class name of the control ID is shown.

iControlID Captured ID of the GUI control for the current message.

iAction This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.

iPropertyID Oracle-designated ID for the property being added.

sValue Relat ive posit ion of the i tem in the PopList or TList control.

Example

//In this example, item 6 is defined in Poplist control ID 66.
//Item 6 is labeled "Cindy Wang."

ofsListItemValue("POPLIST", 66, OFS_ENDMSG, 131, "6"); /* Item value = Cindy Wang*/

ofsLoadValue

Loads the values of a byte array or a string array associated with a GUI control. This statement only appl ies
when the size of the byte array or string array > 0.

Syntax

void ofsLoadValue(const char *sHandlerName, int iControlID, int iAction, int iPropertyID,
const char *sValue);

QALoad 5.02

576

Parameters

Param eter Descript i on

sHandlerName Captured name of the control ID for the current message. When the
control name is not avai lable, the class name of the control ID is shown.

iControlID Captured ID of the GUI control for the current message.

iAction This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.

iPropertyID Oracle-designated ID for the property being added.

sValue Value of the i tem in the byte array or string array associated with a GUI
control.

Example

//In this example, value 7 is being added to the list of values in the array.

ofsLoadValue("RUNFORM", 1, OFS_ENDMSG, 1, "7");

ofsLOVRequestRow

Adds the LOV_REQUEST_ROW property to the current message. This statement defines an i tem in a List of
Values control.

Syntax

void ofsLOVRequestRow(const char *sHandlerName, int iControlID, int iAction, int
iPropertyID, int iPosX, int iPosY);

Parameters

Param eter Descript i on

sHandlerName Captured name of the control ID for the current message. When the
control name is not avai lable, the class name of the control ID is shown.

iControlID Captured ID of the GUI control for the current message.

iAction This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.

iPropertyID Oracle-designated ID for the property being added.

iPosX X coordinate of the i tem in the LOV control.

QALoad 5.02

577

iPosY Y coordinate of the i tem in the LOV control.

Example

//In this example, the position of an item in LOV control 85 is defined.

ofsLOVRequestRow("LISTVALUESDIALOG", 85, OFS_ENDMSG, 451, 5, 1);

ofsLOVSelect ion

Adds the LOV_SELECTION property to the current message. This statement indicates an i tem being
selected from a List of Values.

Syntax

void ofsLOVSelection(const char *sHandlerName, int iControlID, int iAction, int iPropertyID,
const char *sValue);

Parameters

Param eter Descript i on

sHandlerName Captured name of the control ID for the current message. When the
control name is not avai lable, the class name of the control ID is shown.

iControlID Captured ID of the GUI control for the current message.

iAction This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.

iPropertyID Oracle-designated ID for the property being added.

sValue Relat ive posit ion of the selected i tem in the List of Values control.

Example

//In this example, item 1 from LOV control ID 264 is selected

ofsActivateWindow("NAVIGATOR", 28, OFS_ENDMSG, 247);
ofsLOVSelection("LISTVALUESDIALOG", 264, OFS_ENDMSG, 450, "1");
ofsSendRecv(1);

ofsMenuParamDlgOK

Adds the MENUPARAM_DLGOK property to the current message. This statement defines the text in the
menu param dialog control.

Syntax

void ofsMenuParamDlgOK(const char *sHandlerName, int iControlID, int iAction, int
iPropertyID, const char *sValue);

Parameters

Param eter Descript i on

QALoad 5.02

578

sHandlerName Captured name of the control ID for the current message. When the
control name is not avai lable, the class name of the control ID is shown.

iControlID Captured ID of the GUI control for the current message.

iAction This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.

iPropertyID Oracle-designated ID for the property being added.

sValue The text value of the menu param dialog.

Example

//In this example, dialog control ID 12 has a text title of "testButton".

OfsMenuParamDlgOK("menu1", 12, OFS_ENDMSG, 16, "testbutton");

ofsOpenWindow

Adds the Window_Close property (with Disabled at tribute) to the current message. The statement indicates
the act of opening a window.

Syntax

void ofsOpenWindow(const char *sHandlerName, int ControlID, int ActionType, int PropertyID);

Parameters

Param eter Descript i on

HandlerName Captured name of the control ID for the current message. When the
control name is not avai lable, the Class name of the Control ID is shown.

ControlID Captured ID of the GUI control for the current message.

ActionType This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.

PropertyID Oracle-designated ID for the property being added.

Example

//In this example, control ID 52 (named
//“Sample Window”) represents the window
//that is opened.

ofsOpenWindow ("Sample Window", 52, OFS_ENDMSG, 216);

QALoad 5.02

579

ofsRemoveFocus

Adds the Focus property (with Disabled attribute) to the current message. The RemoveFocus property
typical ly indicates the mouse moving away from a GUI control.

Syntax

void ofsRemoveFocus(const char *sHandlerName, int ControlID, int ActionType, int
PropertyID);

Parameters

Param eter Descript i on

HandlerName Captured name of the control ID for the current message. When the
control name is not avai lable, the Class name of the Control ID is shown.

ControlID Captured ID of the GUI control for the current message.

ActionType This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.

PropertyID Oracle-designated ID for the property being added.

Example

//In this example, Focus is moved from control
//ID 77 (a Text Field) to control ID 78 (a button).

ofsRemoveFocus("TEXTFIELD", 77, OFS_ENDMSG, 174);
ofsFocus("BUTTON", 78, OFS_ENDMSG, 174);
ofsSendRecv(1);

ofsScroll

Adds the Block_Scrol ler property to the current message. This statement indicates a scrol l ing act ivi ty.

Syntax

void ofsScroll(const char *sHandlerName, int iControlID, int iAction, int iPropertyID, const
char *sValue);

Parameters

Param eter Descript i on

sHandlerName Captured name of the control ID for the current message. When the
control name is not avai lable, the class name of the control ID is shown.

iControlID Captured ID of the GUI control for the current message.

iAction This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current

QALoad 5.02

580

message.

iPropertyID Oracle-designated ID for the property being added.

sValue The value associated with the scrol l bar

Example

ofsScroll("RUNFORM", 1, OFS_ADD, 250, "2");

ofsScrollSize

Adds the Block_Scrol ler_Size property to the current message. This statement indicates the block scrol ler
size.

Syntax

ofsScrollSize(const char *sHandlerName, int iControlID, int iAction, int iPropertyID, const
char *sValue);

Parameters

Param eter Descript i on

sHandlerName Captured name of the control ID for the current message. When the
control name is not avai lable, the class name of the control ID is shown.

iControlID Captured ID of the GUI control for the current message.

iAction This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.

iPropertyID Oracle-designated ID for the property being added.

sValue The value associated with the scrol l bar

Example

ofsScrollSize("RUNFORM", 1, OFS_ADD, 256, "12");

ofsSelect Item

Adds the Value property (with Enabled attribute) to the current Message. The Value property is appl ied to a
Radio button, Checkbox, List Box or Combo Box control. This statement indicates an i tem associated with
a Radio button, Checkbox, List Box or a Combo Box is being selected.

Syntax

void ofsSelectItem(const char *sHandlerName, int ControlID, int ActionType, int PropertyID);

Parameters

Param eter Descript i on

QALoad 5.02

581

sHandlerName Captured name of the control ID for the current message. When the
control name is not avai lable, the Class name of the Control ID is shown.

ControlID Captured ID of the GUI control for the current message.

ActionType This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.

PropertyID Oracle-designated ID for the property being added.

Example

//In this example, the mouse is deselecting Checkbox
//control ID 60 and selecting Radiobutton control ID 63.

ofsDeSelectItem("CHECKBOX", 60, OFS_ENDMSG, 131);
ofsSendRecv(1);

ofsRemoveFocus("CHECKBOX", 60, OFS_ENDMSG, 174);
ofsFocus("RADIOBUTTON", 63, OFS_ENDMSG, 174);
ofsSendRecv(1);

ofsSelectItem("RADIOBUTTON", 63, OFS_ENDMSG, 131);
ofsSendRecv(1);

ofsSelectMenuItem

Adds the Menu_Event property to the current message. This statement indicates an i tem being selected
from the Forms Event Menu.

Syntax

void ofsSelectMenuItem(const char *sHandlerName, int iControlID, int iAction, int
iPropertyID, const char *sValue);

Parameters

Param eter Descript i on

sHandlerName Captured name of the control ID for the current message. When the
control name is not avai lable, the class name of the control ID is shown.

ControlID Captured ID of the GUI control for the current message.

iAction This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.

PropertyID Oracle-designated ID for the property being added.

sValue Value associated with the menu i tem.

QALoad 5.02

582

Example

//In this example, a menu item valued 3 is selected. The menu item
//is associated with control ID 1 (Runform).

ofsSelectMenuItem("RUNFORM", 1 , OFS_ADD, 477, "3");

ofsSelectTreeEvent

Adds the Selected_Event property of a Tree Control to the current message. This statement indicates a Tree
i tem being selected. The selected i tem is associated with an in ternal processing event.

Syntax

void ofsSelectTreeEvent(const char *sHandlerName, int iControlID, int iAction, int
iPropertyID, const char *sValue);

Parameters

Param eter Descript i on

sHandlerName Captured name of the control ID for the current message. When the
control name is not avai lable, the class name of the control ID is shown.

ControlID Captured ID of the GUI control for the current message.

iAction This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.

PropertyID Oracle-designated ID for the property being added.

sValue Relat ive posit ion of the selected Tree i tem.

Example

//In this example, the user selects item 2 of Tree control ID 15.
//Item 2 has an internal processing event.

ofsSelectTreeEvent("TREE", 15, OFS_ADD, 488, 2);

ofsSendRecv

Sends the cl ient request as Forms messages to the Forms server, gets the server response, and reads the
responses as Forms messages.

Syntax

 void ofsSendRecv(int iResponseCode);

Parameters

Param eter Descript i on

iResponseCode The response code associated with the cl ient request ’s terminal message.
(1= add, 2=update, 3=close).

QALoad 5.02

583

Example

//In this example, the messages sent to the server include a Text Field
//location attribute and a Window size attribute.

ofsSetSelection("TEXTFIELD", 75, OFS_ENDMSG, 195, 0, 0);
ofsSetWindowSize("FORMWINDOW", 6, OFS_ENDMSG, 137, 1024, 768);
ofsSendRecv(1);

ofsServerSideDisconnect

Disconnects QALoad’s socket connect ion to the server-side code. The server-side code intercepts the
messages between QALoad and the Forms Listener servlet.

Syntax

void ofsServerSideDisconnect();

Parameters

none

Example

ofsServerSideDisconnect();

ofsSetColorDepth

Adds the Color_Depth property to the current message. The Color_Depth property is appl ied to the in i t ial
Forms environment.

Syntax

void ofsSetColorDepth(const char *sClassName, int iHandlerID, int iAction, int iPropertyID,
const char *sColorDepth);

Parameters

Param eter Descript i on

sClassName Captured name of the control ID for the current message. When the
control name is not avai lable, the class name of the control ID is shown.

iHandlerID Captured ID of the GUI control for the current message.

iAction This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.

iPropertyID Oracle-designated ID for the property being added.

sColorDepth Value associated with the color depth.

Example

ofsSetColorDepth("RUNFORM", 1, OFS_ADD, 266, "256");

QALoad 5.02

584

ofsSetCursorPosit ion

Adds the Cursor_Posit ion property of a Text Field control to the current message. The Cursor_Posit ion
property indicates the relat ive posit ion of the cursor in the Text Field control at the t ime of user entry.

Syntax

void ofsSetCursorPosition(const char *sHandlerName, int iControlId, int iAction, int
iPropertyID, const char *sValue);

Parameters

Param eter Descript i on

sHandlerName Captured name of the control ID for the current message. When the
control name is not avai lable, the class name of the control ID is shown.

iControlID Captured ID of the GUI control for the current message.

iAction This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.

iPropertyID Oracle-designated ID for the property being added.

sValue Relat ive posit ion of the cursor in the Text Field control at the t ime of user
entry.

Example

//In this example, the cursor is positioned on the 7th character.

ofsSetCursorPosition("TEXTFIELD", 77, OFS_ENDMSG, 193, "7");

ofsSetDisplaySize

Adds the Display_Size property to the current message. The Display_Size property is appl ied to the in i t ial
Forms environment.

Syntax

void ofsSetDisplaySize(const char *sClassName, int iHandlerID, int iAction, int iPropertyID,
int iCoordinateX, int iCoordinateY);

Parameters

Param eter Descript i on

sClassName Captured name of the control ID for the current message. When the
control name is not avai lable, the class name of the control ID is shown.

iHandlerID Captured ID of the GUI control for the current message.

iAction This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

QALoad 5.02

585

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.

iPropertyID Oracle-designated ID for the property being added.

iCoordinateX X coordinate of the canvas display.

iCoordinateY Y coordinate of the canvas display.

Example

ofsSetDisplaySize("RUNFORM", 1, OFS_ADD, 264, 1024, 768);

ofsSetErrorDialogTit le

Adds the DISPLAYERRORDIALOG_TITLE property to the current message. This statement defines the text
t i t le associated with the Display Error Dialog control.

Syntax

void ofsSetErrorDialogTitle(const char *sHandlerName, int iControlID, int iAction, int
iPropertyID, const char *sValue);

Parameters

Param eter Descript i on

sHandlerName Captured name of the control ID for the current message. When the
control name is not avai lable, the class name of the control ID is shown.

iControlID Captured ID of the GUI control for the current message.

iAction This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.

iPropertyID Oracle-designated ID for the property being added.

sValue Text t i t le associated with the Error Dialog control.

Example

//In this example, the text title of error dialog control ID 12 is defined as “TestErr1”.
ofsSetErrorDialogTitle(“ERRDLG1”, 12, OFS_ADD, 129, “TestErr1”);

ofsSetExpectedServerMsg

Enables the script to cont inue i f a known error or warning message is received from the server. It is
posit ioned before the ofsSendRecv statement, which checks the server reply messages. If error message
checking is enabled, and the server message contains "FRM-", "ORA-" or "APP-", ofsSendRecv throws an
except ion unless i t is preceded by ofsSetExpectedServerMsg.

QALoad 5.02

586

Syntax

void ofsSetExpectedServerMsg(const char *ExpectedServerMessage);

Parameters

Param eter Descript i on

ExpectedServerMessage The expected server message.

Example

//Before sending the request to the server with the statement ofsSendRecv,
//QALoad stores the expected message from the server reply,
//so that Playback would ignore the server message and continue execution.

.

.

.

ofsSelectMenuItem("WINDOW_START_APP", 11, OFS_ENDMSG, 477, "MENU_77");
ofsSetExpectedServerMsg("FRM-41003: This function cannot be performed here.");
ofsSendRecv(1);

ofsSetFontName

Adds the Font_Name property to the current message. The Font_Name property is appl ied to the in i t ial
Forms environment.

Syntax

void ofsSetFontName(const char *sClassName, int iHandlerID, int iAction, int iPropertyID,
const char *sFontName);

Parameters

Param eter Descript i on

sClassName Captured name of the control ID for the current message. When the
control name is not avai lable, the class name of the control ID is shown.

iHandlerID Captured ID of the GUI control for the current message.

iAction This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.

iPropertyID Oracle-designated ID for the property being added.

sFontName Name of the font to use.

Example

ofsSetFontName("RUNFORM", 1, OFS_ADD, 383, "Dialog");

QALoad 5.02

587

ofsSetFontSize

Adds the Font_Name property to the current message. The Font_Name property is appl ied to the in i t ial
Forms environment.

Syntax

void ofsSetFontName(const char *sClassName, int iHandlerID, int iAction, int iPropertyID,
const char *sFontName);

Parameters

Param eter Descript i on

sClassName Captured name of the control ID for the current message. When the
control name is not avai lable, the class name of the control ID is shown.

iHandlerID Captured ID of the GUI control for the current message.

iAction This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.

iPropertyID Oracle-designated ID for the property being added.

sFontName The size of the font to use.

Example

ofsSetFontSize("RUNFORM", 1, OFS_ADD, 377, "900");

ofsSetFontStyle

Adds the Font_Style property to the current message. The Font_Style property is appl ied to the in i t ial
Forms environment.

Syntax

void ofsSetFontStyle(const char *sHandlerName, int iControlId, int iAction, int iPropertyID,
const char *sValue);

Parameters

Param eter Descript i on

sClassName Captured name of the control ID for the current message. When the
control name is not avai lable, the class name of the control ID is shown.

iHandlerID Captured ID of the GUI control for the current message.

iAction This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current

QALoad 5.02

588

message.

iPropertyID Oracle-designated ID for the property being added.

sFontName The style of the font to use.

Example

ofsSetFontStyle("RUNFORM", 1, OFS_ADD, 378, "0");

ofsSetFontWeight

Adds the Font_Weight property to the current message. The Font_Weight property is appl ied to the in i t ial
Forms environment.

Syntax

void ofsSetFontWeight(const char *sHandlerName, int iControlId, int iAction, int
iPropertyID, const char *sValue);

Parameters

Param eter Descript i on

sClassName Captured name of the control ID for the current message. When the
control name is not avai lable, the class name of the control ID is shown.

iHandlerID Captured ID of the GUI control for the current message.

iAction This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.

iPropertyID Oracle-designated ID for the property being added.

sFontName The font weight to use.

Example

ofsSetFontWeight("RUNFORM", 1, OFS_ADD, 379, "0");

ofsSetICXTicket

Sets the value of the ICX t icket for the current Oracle Appl icat ions login. The statement is used only in a
Universal OFS-WWW session, as a replacement for the OracleAppsLogin statement. The statement is
manually added to the script , along with the WWW statement DO_GetUniqueString. For more
in formation, see OFS Advanced Script ing Techniques.

Syntax

ofsSetICXTicket(char **cookieValue);

Parameters

Param eter Descript i on

QALoad 5.02

589

cookieValue Address to a string where the cookie value is stored.

Example

...

/* Declare Variables */

...

 char *p;
 char ICX_Ticket[100];
 char *pTicket;

...

...

BEGIN_TRANSACTION();

...

...

 // This statement should be added after the rquest line that returns the ICX ticket
 p = DO_GetUniqueString("icx_ticket='", "'");
 strcpy(ICX_Ticket, p);
 pTicket=ICX_Ticket;

 // Verify the ICX ticket value
 RR__printf("ICX_Ticket=\"%s\"\n", ICX_Ticket);

 // The ofsSetICXTicket statement passes the ICX ticket value to the
ofsInitiSessionCmdLine statement
 ofsSetICXTicket(&pTicket);

ofsSetInit ialVersion

Adds the In it ial_Version property to the current message. The In it ial_Version property is appl ied to the
in i t ial Forms environment.

Syntax

void ofsSetInitialVersion(const char *sClassName, int iHandlerID, int iAction, int
iPropertyID, const char *sFormsVersion);

Parameters

Param eter Descript i on

sClassName Captured name of the control ID for the current message. When the
control name is not avai lable, the class name of the control ID is shown.

iHandlerID Captured ID of the GUI control for the current message.

iAction This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.

iPropertyID Oracle-designated ID for the property being added.

sFormsVersion The Forms Version of the captured appl icat ion.

QALoad 5.02

590

Example

ofsSetInitialVersion("RUNFORM", 1, OFS_ADD, 268, "60818");

ofsSetJavaContainerArgName

Adds the JAVACONTAINER_ARG_NAME property to the current message. This statement defines the name
assigned to an i tem in a JavaContainer control.

Syntax

void ofsSetJavaContainerArgName(const char *sHandlerName, int iControlId, int iAction, int
iPropertyID, const char *sValue);

Parameters

Param eter Descript i on

sClassName Captured name of the control ID for the current message. When the
control name is not avai lable, the class name of the control ID is shown.

iHandlerID Captured ID of the GUI control for the current message.

iAction This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.

iPropertyID Oracle-designated ID for the property being added.

sValue Name assigned to a JavaContainer control i tem.

Example

ofsSetJavaContainerArgName(“Test_App”, 15, OFS_ADD, 400, “TestBeanItem”);

ofsSetJavaContainerArgValue

Adds the JAVACONTAINER_ARG_VALUE property to the current message. This statement defines the value
entered by the user in a JavaContainer control i tem.

Syntax

void ofsSetJavaContainerArgValue(const char *sHandlerName, int iControlID, int iAction, int
iPropertyID, const char *sValue);

Parameters

Param eter Descript i on

sHandlerName Captured name of the control ID for the current message. When the
control name is not avai lable, the class name of the control ID is shown.

iControlID Captured ID of the GUI control for the current message.

iAction This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message

QALoad 5.02

591

requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.

iPropertyID Oracle-designated ID for the property being added.

sValue The value entered by the user in a JavaContainer control i tem.

Example

ofsSetJavaContainerArgValue((“Test_App”, 15, OFS_ADD, 401, “BeanEntry1”);

ofsSetJavaContainerEvent

Adds the JAVACONTAINER_ARG_EVENT property to the current message. This statement defines the name
assigned to a JavaContainer control.

Syntax

void ofsSetJavaContainerEvent(const char *sHandlerName, int iControlID, int iAction, int
iPropertyID, const char *sValue);

Parameters

Param eter Descript i on

sHandlerName Captured name of the control ID for the current message. When the
control name is not avai lable, the class name of the control ID is shown.

iControlID Captured ID of the GUI control for the current message.

iAction This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.

iPropertyID Oracle-designated ID for the property being added.

sValue Name assigned to the JavaContainer control.

Example

ofsSetJavaContainerEvent(“Test_App”, 15, OFS_ADD, 399, “TestEvent1”);

ofsSetLogonDatabase

Adds the LOGON_DATABASE property to the current message. This statement defines the connect string
entry in the Forms Logon dialog.

Syntax

void ofsSetLogonDatabase(const char *sHandlerName, int iControlID, int iAction, int
iPropertyID, const char *sValue);

QALoad 5.02

592

Parameters

Param eter Descript i on

sHandlerName Captured name of the control ID for the current message. When the
control name is not avai lable, the class name of the control ID is shown.

iControlID Captured ID of the GUI control for the current message.

iAction This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.

iPropertyID Oracle-designated ID for the property being added.

sValue The logon database for th is session.

Example

ofsSetLogonDatabase("Logon", 34, OFS_ENDMSG, 435, "iasdb");

ofsSetLogonPassWord

Adds the LOGON_PASSWORD property to the current message. This statement defines the password entry
in the Forms Logon dialog.

Syntax

void ofsSetLogonPassWord(const char *sHandlerName, int iControlID, int iAction, int
iPropertyID, const char *sValue);

Parameters

Param eter Descript i on

sHandlerName Captured name of the control ID for the current message. When the
control name is not avai lable, the class name of the control ID is shown.

iControlID Captured ID of the GUI control for the current message.

iAction This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.

iPropertyID Oracle-designated ID for the property being added.

sValue The password for th is session.

Example

ofsSetLogonPassWord("Logon", 34, OFS_ADD, 434, "tiger");

QALoad 5.02

593

ofsSetLogonUserName

Adds the LOGON_USERNAME property to the current message. This statement defines the user name entry
in the Forms Logon dialog.

Syntax

void ofsSetLogonUserName(const char *sHandlerName, int iControlId, int iAction, int
iPropertyID, const char *sValue);

Parameters

Param eter Descript i on

sHandlerName Captured name of the control ID for the current message. When the
control name is not avai lable, the class name of the control ID is shown.

iControlID Captured ID of the GUI control for the current message.

iAction This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.

iPropertyID Oracle-designated ID for the property being added.

sValue The user name to use for th is session.

Example

ofsSetLogonUserName("Logon", 34, OFS_ADD, 433, "scott");

ofsSetNoRequiredVAList

Adds the Required_VA_List property (with Disabled attribute) to the current message. The
Required_VA_List property is appl ied to the in i t ial Forms environment.

Syntax

void ofsSetNoRequiredVAList(const char *sHandlerName, int ControlID, int ActionType, int
PropertyID);

Parameters

Param eter Descript i on

HandlerName Captured name of the control ID for the current message. When the
control name is not avai lable, the Class name of the Control ID is shown.

ControlID Captured ID of the GUI control for the current message.

ActionType This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current

QALoad 5.02

594

message.

PropertyID Oracle-designated ID for the property being added.

Example

//The initial set of Forms statements describes
//the initial Forms environment. The description
//is matched on the server side.

ofsSetInitialVersion("RUNFORM", 1, OFS_ADD, 268, "60818");
ofsSetScreenResolution("RUNFORM", 1, OFS_ADD, 263, 96, 96);

.

.

.

ofsSetNoRequiredVAList("RUNFORM", 1, OFS_ADD, 291);

.

.

.

ofsInitSessionTimeZone("RUNFORM", 1, OFS_ENDMSG, 527, "EST");
ofsSendRecv(1);

ofsSetPropertyBoolean

Adds the generic boolean property (with Enabled at tribute) to the current message. Use th is statement
when the boolean property is not known to QALoad.

Syntax

void ofsSetPropertyBoolean(const char *sHandlerName, int iControlID, int iAction, int
iPropertyID);

Parameters

Param eter Descript i on

sHandlerName Captured name of the control ID for the current message. When the
control name is not avai lable, the class name of the control ID is shown.

iControlID Captured ID of the GUI control for the current message.

iAction This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.

iPropertyID Oracle-designated ID for the property being added.

Example

//In this example, property 381 is of Boolean type, and is associated with Tree control ID
73.

ofsSetPropertyBoolean("TREE", 73, OFS_ENDMSG, 381);

QALoad 5.02

595

ofsSetPropertyByte

Adds the generic byte property to the current message. This statement is used when the byte property is
not known to QALoad.

Syntax

void ofsSetPropertyByte(const char *sHandlerName, int iControlID, int iAction, int
iPropertyID, const char *sValue);

Parameters

Param eter Descript i on

sHandlerName Captured name of the control ID for the current message. When the
control name is not avai lable, the class name of the control ID is shown.

iControlID Captured ID of the GUI control for the current message.

iAction This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.

iPropertyID Oracle-designated ID for the property being added.

sValue Value associated with the byte property.

Example

//In this example, property 186 is of type Byte, and is associated with Tree control ID 73.

ofsSetPropertyByte("TREE", 73, OFS_ENDMSG, 186, "16");

ofsSetPropertyByteArray

Adds the generic byte array property to the current message. This statement is used when the byte array
property is not known to QALoad.

Syntax

void ofsSetPropertyByteArray(const char *sHandlerName, int iControlID, int iAction, int
iPropertyID, const char *sValue);

Parameters

Param eter Descript i on

sHandlerName Captured name of the control ID for the current message. When the
control name is not avai lable, the class name of the control ID is shown.

iControlID Captured ID of the GUI control for the current message.

iAction This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.

QALoad 5.02

596

OFS_ENDMSG: Add property to the current message and end the current
message.

iPropertyID Oracle-designated ID for the property being added.

sValue Size of the byte array.

Example

//In this example, property 382 is of Byte Array type, and is associated with Tree control
ID 73.

ofsSetPropertyByteArray("TREE", 73, OFS_ENDMSG, 382, "0");

ofsSetPropertyCharacter

Adds the generic Character property to the current message. This statement is used when the Character
property is not known to QALoad.

Syntax

void ofsSetPropertyCharacter(const char *sHandlerName, int iControlID, int iAction, int
iPropertyID, const char *sValue);

Parameters

Param eter Descript i on

sHandlerName Captured name of the control ID for the current message. When the
control name is not avai lable, the class name of the control ID is shown.

iControlID Captured ID of the GUI control for the current message.

iAction This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.

iPropertyID Oracle-designated ID for the property being added.

sValue Value associated with the Character property.

Example

//In this example, property 383 is of Character type, and is associated with Tree control ID
73.

 ofsSetPropertyCharacter("TREE", 73, OFS_ADD, 383, “20”);

ofsSetPropertyDate

Adds the generic Date property to the current message. This statement is used when the Date property is
not known to QALoad.

Syntax

void ofsSetPropertyDate(const char *sHandlerName, int iControlID, int iAction, int
iPropertyID, const char *sValue);

QALoad 5.02

597

Parameters

Param eter Descript i on

sHandlerName Captured name of the control ID for the current message. When the
control name is not avai lable, the class name of the control ID is shown.

iControlID Captured ID of the GUI control for the current message.

iAction This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.

iPropertyID Oracle-designated ID for the property being added.

sValue Value associated with the Date property.

Example

//In this example, property 383 is of Date type, and is associated with Tree control ID 73.

ofsSetPropertyDate("TREE", 73, OFS_ADD, 383, “2000-02-22”);

ofsSetPropertyFloat

Adds the generic Float property to the current message. This statement is used when the Float property is
not known to QALoad.

Syntax

void ofsSetPropertyFloat(const char *sHandlerName, int iControlID, int iAction, int
iPropertyID, const char *sValue);

Parameters

Param eter Descript i on

sHandlerName Captured name of the control ID for the current message. When the
control name is not avai lable, the class name of the control ID is shown.

iControlID Captured ID of the GUI control for the current message.

iAction This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.

iPropertyID Oracle-designated ID for the property being added.

sValue Value associated with the Float property.

QALoad 5.02

598

Example

//In this example, property 383 is of Float type, and is associated with Tree Control ID 73.

ofsSetPropertyFloat("TREE", 73, OFS_ADD, 383, “2000.0222”);

ofsSetPropertyInteger

Adds the generic Integer property to the current message. This statement is used when the Integer property
is not known to QALoad.

Syntax

void ofsSetPropertyInteger(const char *sHandlerName, int iControlID, int iAction, int
iPropertyID, const char *sValue);

Parameters

Param eter Descript i on

sHandlerName Captured name of the control ID for the current message. When the
control name is not avai lable, the class name of the control ID is shown.

iControlID Captured ID of the GUI control for the current message.

iAction This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.

iPropertyID Oracle-designated ID for the property being added.

sValue Value associated with the Integer property.

Example

//In this example, property 383 is of Integer type, and is associated with Tree control ID
73.

ofsSetPropertyInteger("TREE", 73, OFS_ADD, 383, “20”);

ofsSetPropertyPoint

Adds the generic Point property to the current message. This statement is used when the Point property is
not known to QALoad.

Syntax

void ofsSetPropertyPoint(const char *sHandlerName, int iControlID, int iAction, int
iPropertyID, int iCoordinateX, int iCoordinateY);

Parameters

Param eter Descript i on

sHandlerName Captured name of the control ID for the current message. When the
control name is not avai lable, the class name of the control ID is shown.

QALoad 5.02

599

iControlID Captured ID of the GUI control for the current message.

iAction This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.

iPropertyID Oracle-designated ID for the property being added.

iCoordinateX X coordinate value of the Point property.

iCoordinateY Y coordinate value of the Point property.

Example

//In this example, property 185 is of Point type, and is associated with Tree control ID 73.

ofsSetPropertyPoint("TREE", 73, OFS_ADD, 185, 30, 50);

ofsSetPropertyRectangle

Adds the generic Rectangle property to the current message. This statement is used when the Rectangle
property is not known to QALoad.

Syntax

void ofsSetPropertyRectangle(const char *sHandlerName, int iControlID, int iAction, int
iPropertyID, int iXval, int iYval, int iWval, int iHval);

Parameters

Param eter Descript i on

sHandlerName Captured name of the control ID for the current message. When the
control name is not avai lable, the class name of the control ID is shown.

iControlID Captured ID of the GUI control for the current message.

iAction This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.

iPropertyID Oracle-designated ID for the property being added.

iXval X value of the rectangle.

iYval Y value of the rectangle.

iWval Width of the rectangle.

iHval Height value of the rectangle.

QALoad 5.02

600

Example

//In this example, property 155 is of type Rectangle, and is associated with Control ID 73
//(named “Button”).
ofsSetPropertyRectangle("BUTTON", 73, OFS_ADD, 155, 0, 0, 106, 29);

ofsSetPropertySt ring

Adds the generic String property to the current message. This statement is used when the String property is
not known to QALoad.

Syntax

void ofsSetPropertyString(const char *sHandlerName, int iControlID, int iAction, int
iPropertyID, const char *sValue);

Parameters

Param eter Descript i on

sHandlerName Captured name of the control ID for the current message. When the
control name is not avai lable, the class name of the control ID is shown.

iControlID Captured ID of the GUI control for the current message.

iAction This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.

iPropertyID Oracle-designated ID for the property being added.

sValue Value associated with the String property.

Example

//In this example, property 520 is of String type, and is associated with control ID 1
(RunForm).

ofsSetPropertyString("RUNFORM", 1, OFS_ENDMSG, 530, "America/New_York");

ofsSetPropertySt ringArray

Adds the generic String array property to the curren t message. This statement is used when the String array
property is not known to QALoad.

Syntax

void ofsSetPropertyStringArray(const char *sHandlerName, int iControlID, int iAction, int
iPropertyID, const char *sValue);

Parameters

Param eter Descript i on

sHandlerName Captured name of the control ID for the current message. When the
control name is not avai lable, the class name of the control ID is shown.

QALoad 5.02

601

iControlID Captured ID of the GUI control for the current message.

iAction This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.

iPropertyID Oracle-designated ID for the property being added.

sValue Size of the String array.

Example

//In this example, property 382 with size 0 is of type String Array.
//The property is associated with Tree control ID 73.

ofsSetPropertyStringArray("TREE", 73, OFS_ENDMSG, 382, "0");

ofsSetPropertyVoid

Adds the generic Void property to the current message. This statement is used when the Void property is
not known to QALoad.

Syntax

void ofsSetPropertyVoid(const char *sHandlerName, int iControlID, int iAction, int
iPropertyID);

Parameters

Param eter Descript i on

sHandlerName Captured name of the control ID for the current message. When the
control name is not avai lable, the class name of the control ID is shown.

iControlID Captured ID of the GUI control for the current message.

iAction This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.

iPropertyID Oracle-designated ID for the property being added.

Example

//In this example, property 382 is of Void type and is associated with Tree control ID 73.

ofsSetPropertyVoid("TREE", 73, OFS_ENDMSG, 382);

QALoad 5.02

602

ofsSetRequiredVAList

Adds the Required_VA_List property (with Enabled attribute) to the current message. The
Required_VA_List property is appl ied to the in i t ial Forms environment.

Syntax

void ofsSetRequiredVAList(const char *HandlerName, int ControlID, int ActionType, int
PropertyID);

Parameters

Param eter Descript i on

HandlerName Captured name of the control ID for the current message. When the
control name is not avai lable, the Class name of the Control ID is shown.

ControlID Captured ID of the GUI control for the current message.

ActionType This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.

PropertyID Oracle-designated ID for the property being added.

Example

//The initial set of Forms statements describes
//the initial Forms environment. The description
//is matched on the server side.

ofsSetInitialVersion("RUNFORM", 1, OFS_ADD, 268, "90290");
ofsSetScreenResolution("RUNFORM", 1, OFS_ADD, 263, 96, 96);

.

.

.

ofsSetRequiredVAList("RUNFORM", 1, OFS_ADD, 291);

.

.

.

ofsFocus("BUTTON", 58, OFS_ENDMSG, 174);
ofsSendRecv(1);

ofsSetRunOpt ions

Sets the runt ime values for CONNECT TYPE, HEARTBEAT, and CHECK SERVER MESSAGES.

Syntax

void ofsSetRunOptions(const char *sFormsVersion, int iConnectType, int iHeartbeatInterval,
int iCheckServerMsgs);

Parameters

Param eter Descript i on

QALoad 5.02

603

sFormsVersion Version of Oracle Forms in use.

iConnectType This flag indicates the type of connect ion to establ ish with the server.

OFS_SOCKET: Socket connect ion
OFS_HTTP: HTTP connect ion
OFS_HTTPS: Secure (SSL) connect ion

iHearbeatInterval Heartbeat in terval (seconds).

iCheckServerMsgs This flag indicates whether QALoad checks server messages. If server
message checking is enabled, the script fai ls i f the server sends a message
("FRM-", "ORA-", "APP-") unless the message is set as an expected message
(see ofsSetExpectedServerMsg()). In addit ion, ofsSetServerFai ledMsg()
overrides the expected message i f the message matches the fai led message.

OFS_DONTCHECKMSGS: Do not fai l when the server sends messages back
OFS_CHECKMSGS: Fai l on receipt of messages from server

Example

ofsSetRunOptions("6i", OFS_SOCKET, 4, OFS_CHECKMSGS);

ofsSetScaleInfo

Adds the Scale property to the current message. The Scale property is appl ied to the in i t ial Forms
environment.

Syntax

void ofsSetScaleInfo(const char *sClassName, int iHandlerID, int iAction, int iPropertyID,
int iCoordinateX, int iCoordinateY);

Parameters

Param eter Descript i on

sClassName Captured name of the control ID for the current message. When the
control name is not avai lable, the Class name of the Control ID is shown.

iHandlerID Captured ID of the GUI control for the current message.

iAction This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.

iPropertyID Oracle-designated ID for the property being added.

iCoordinateX X coordinate associated with scale property.

iCoordinateY Y coordinate associated with scale property.

Example

ofsSetScaleInfo("RUNFORM", 1, OFS_ADD, 267, 11, 18);

QALoad 5.02

604

ofsSetScreenResolut ion

Adds the Screen Resolut ion property to the current message. The Screen Resolut ion property is appl ied to
the in i t ial Forms environment.

Syntax

void ofsSetScreenResolution(const char *sClassName, int iHandlerID, int iAction, int
iPropertyID, int iCoordinateX, int iCoordinateY);

Parameters

Param eter Descript i on

sClassName Captured name of the control ID for the current message. When the
control name is not avai lable, the Class name of the Control ID is shown.

iHandlerID Captured ID of the GUI control for the current message.

iAction This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.

iPropertyID Oracle-designated ID for the property being added.

iCoordinateX X coordinate associated with the property.

iCoordinateY Y coordinate associated with the property.

Example

ofsSetScreenResolution("RUNFORM", 1, OFS_ADD, 263, 96, 96);

ofsSetSelect ion

Adds the Select ion property of a Text Field control to the current message. This statement indicates the
selected Text Field locat ion during user entry.

Syntax

void ofsSetSelection(const char *sHandlerName, int iControlID, int iAction, int iPropertyID,
int iCoordinateX, int iCoordinateY);

Parameters

Param eter Descript i on

sHandlerName Captured name of the control ID for the current message. When the
control name is not avai lable, the Class name of the Control ID is shown.

iControlID Captured ID of the GUI control for the current message.

iAction This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.

QALoad 5.02

605

OFS_ENDMSG: Add property to the current message and end the current
message.

iPropertyID Oracle-designated ID for the property being added.

iCoordinateX X coordinate of the text field entry.

iCoordinateY Y coordinate of the text field entry.

Example

ofsSetSelection("TEXTFIELD", 75, OFS_ADD, 195, 0, 0);
ofsSetCursorPosition("TEXTFIELD", 75, OFS_ENDMSG, 193, "0");
ofsSetWindowLocation("Oracle Applications", 32, OFS_ENDMSG, 135, 231, 218);
ofsShowWindow("Oracle Applications", 32, OFS_ENDMSG, 173);
ofsActivateWindow("Oracle Applications", 32, OFS_ENDMSG, 247);
ofsFocus("TEXTFIELD", 75, OFS_ENDMSG, 174);
ofsSendRecv(2);

ofsSetServerFailedMsg

Enables QALoad to fai l playback based on the user-entered string and fi l ter parameters. This statement
overrides the effects of the ofsSetExpectedMsg statement, which enables QALoad to cont inue playback i f
FRM-, ORA- or APP- server messages are encountered.

Syntax

void ofsSetServerFailedMsg(const char *sMsgString, int iMsgOption);

Parameters

Param eter Descript i on

sMsgString String to compare against server message

iMsgOption This flag indicates the string comparison method to use for comparing a
string against a server message. Al l of these methods are case sensit ive.

OFS_KEYWORD: Search for string anywhere in server message.
OFS_PREFIX: Compare st ring against beginning of the message.
OFS_SUFFIX: Compare st ring against end of the message.
OFS_ENTIRE_MSG: Compare string against ent ire message.

Example

ofsSetServerFailedMsg(“FRM-4041”, OFS_KEYWORD);
:

ofsSetExpectedMsg(“FRM-4041”).;
ofsSendRecv(1);

ofsSetServletMode

Creates a socket connect ion to the server-side code which communicates with the Forms Listener Servlet.
The server-side code intercepts messages between QALoad and the servlet during a server-side connect ion.

Syntax

void ofsSetServletMode(int iConnectMode, const char *sServletName);

QALoad 5.02

606

Parameters

Param eter Descript i on

iConnectMode Connect ion mode.

sServletName The l istener servlet name.

Example

ofsSetServletMode(OFS_HTTP, "http://ntsap45b:7779/forms90/l90servlet");

ofsSetValue

Adds a generic Value property to the current message.

Syntax

void ofsSetValue(const char *sHandlerName, int iControlID, int iAction, int iPropertyID,
const char *sValue);

Parameters

Param eter Descript i on

sHandlerName Captured name of the control ID for the current message. When the
control name is not avai lable, the class name of the control ID is shown.

iControlID Captured ID of the GUI control for the current message.

iAction This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.

iPropertyID Oracle-designated ID for the property being added.

sValue Value associated with the property.

Example

//In this example, a value of “30” is being associated with control ID 1 “RUNFORM”
ofsSetValue(“RUNFORM”, 1, OFS_ADD, 131, “30”);

ofsSetWindowLocat ion

Adds the Locat ion property of a Window control to the current message. This statement defines the
window locat ion in the canvas.

Syntax

void ofsSetWindowLocation(const char *sHandlerName, int iControlID, int iAction, int
iPropertyID, int iPosX, int iPosY);

QALoad 5.02

607

Parameters

Param eter Descript i on

sHandlerName Captured name of the control ID for the current message. When the
control name is not avai lable, the Class name of the Control ID is shown.

iControlID Captured ID of the GUI control for the current message.

iAction This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.

iPropertyID Oracle-designated ID for the property being added.

iPosX X coordinate of the window control.

iPosY Y coordinate of the window control.

Example

ofsSetWindowLocation("FORMWINDOW", 6, OFS_ENDMSG, 135, 0, 0);
ofsSetWindowSize("FORMWINDOW", 6, OFS_ENDMSG, 137, 650, 500);
ofsSetWindowSize("FORMWINDOW", 6, OFS_ENDMSG, 137, 650, 500);
ofsSendRecv(1);

ofsSetWindowSize

Adds the Size property of a Window control to the current message. This statement indicates a window
being resized.

Syntax

void ofsSetWindowSize(const char *sHandlerName, int iControlID, int iAction, int
iPropertyID, int iPosX, int iPosY);

Parameters

Param eter Descript i on

sHandlerName Captured name of the control ID for the current message. When the
control name is not avai lable, the Class name of the Control ID is shown.

iControlID Captured ID of the GUI control for the current message.

iAction This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.

iPropertyID Oracle-designated ID for the property being added.

QALoad 5.02

608

iPosX Width of the window control.

iPosY Length of the window control.

Example

ofsSetWindowSize("FORMWINDOW", 6, OFS_ENDMSG, 137, 650, 500);
ofsSendRecv(1);

ofsShowWindow

Adds the Visible property (with Enabled attribute) to the current message. The property is associated wi th a
Window control. The statement indicates a window being displayed in front of al l other windows.

Syntax

void ofsShowWindow(const char *sHandlerName, int ControlID, int ActionType, int PropertyID);

Parameters

Param eter Descript i on

HandlerName Captured name of the control ID for the current message. When the
control name is not avai lable, the Class name of the Control ID is shown.

ControlID Captured ID of the GUI control for the current message.

ActionType This flag indicates i f the property is only to be added to the current
message or i f i t also ends the current message. The end of a message
requires special processing.

OFS_ADD: Add the property to the current message.
OFS_ENDMSG: Add property to the current message and end the current
message.

PropertyID Oracle-designated ID for the property being added.

Example

//In this example, window control ID 118 is
//being displayed in front of all other windows.

 ofsShowWindow("FORMWINDOW", 118, OFS_ENDMSG, 173);

ofsSocketDisconnect

Closes the connect ion of a socket-mode playback.

Syntax

void ofsSocketDisconnect();

Parameters

none

Example

ofsSocketDisconnect();

QALoad 5.02

609

ofsStartSubMessage

Adds a sub-message to the current message. A sub-message is a message nested inside another message.

Syntax

void ofsStartSubMessage(const char *sHandlerName, int iHandlerID, int iAction, int
iPropertyID, const char *sValue);

Parameters

Param eter Descript i on

sHandlerName Captured name of the control ID for the current message. When the
control name is not avai lable, the Class name of the Control ID is shown.

iHandlerID Captured ID of the GUI control for the current message.

iAction Action type. Adds the property of the succeeding nested message to the
current message.

iPropertyID Oracle-designated ID for the property being added.

sValue Value associated with the parent message.

Example

ofsStartSubMessage("TREE", 73, OFS_STARTSUBMSG, 505, "0");
ofsDefineTreeNode("TREE", 73, OFS_ADD, 500, "6"); /*Item value = BLAKE*/
ofsDefineTreeNodeOffset("TREE", 73, OFS_ENDMSG, 503, "2");
ofsStartSubMessage("TREE", 73, OFS_STARTSUBMSG, 505, "0");
ofsDefineTreeNode("TREE", 73, OFS_ADD, 500, "6"); /*Item value = BLAKE*/
ofsDefineTreeNodeOffset("TREE", 73, OFS_ENDMSG, 503, "3");
ofsStartSubMessage("TREE", 73, OFS_STARTSUBMSG, 505, "0");
ofsDefineTreeNode("TREE", 73, OFS_ADD, 500, "12"); /*Item value = CLARK*/
ofsDefineTreeNodeOffset("TREE", 73, OFS_ENDMSG, 503, "0");

ofsSendRecv(1);

ofsTabControlTopPage

Adds the TabControl_Top_Page property to the current message.

Syntax

void ofsTabControlTopPage(const char *sHandlerName, int iControlID, int iAction, int
iPropertyID, const char *sValue);

Parameters

Param eter Descript i on

sHandlerName Captured name of the control ID for the current message. When the
control name is not avai lable, the Class name of the Control ID is shown.

iControlID Captured ID of the GUI control for the current message.

iAction Action type. Adds the property of the succeeding nested message to the
current message.

iPropertyID Oracle-designated ID for the property being added.

QALoad 5.02

610

sValue Value associated with the Tab Control.

Example

ofsTabControlTopPage(“RUNFORM”, 1, OFS_ENDMSG, 411, “30”);

ofsUnSetPropertyBoolean

Adds a generic Boolean property (with Disabled attribute) to the current message. This statement is used
when the property is not known to QALoad.

Syntax

void ofsUnSetPropertyBoolean(const char *sHandlerName, int iControlID, int iAction, int
iPropertyID);

Parameters

Param eter Descript i on

sHandlerName Captured name of the control ID for the current message. When the
control name is not avai lable, the Class name of the Control ID is shown.

iControlID Captured ID of the GUI control for the current message.

iAction Action type. Adds the property of the succeeding nested message to the
current message.

iPropertyID Oracle-designated ID for the property being added.

Example

//In this example, property 382 is of Boolean type,
//and is associated with control ID 1 (Runform).

ofsUnSetPropertyBoolean(“RUNFORM”, 1, OFS_ADD, 382);

OracleAppsLogin

This method simulates an Oracle Appl icat ions 11i login (Personal Home Page) and retrieves the icx_t icket
associated with that login. This statement appears on the script when the Convert opt ion for
OracleAppsLogin is enabled. The URL parameter should be the actual Oracle Personal Home Page address.
Except ions are thrown i f the page cannot be found or i f the icx_t icket isn 't returned by the server.

Syntax

OracleAppsLogin(const char *ServerURL, const char *UserID, const char *Password)

Parameters

Param eter Descript i on

ServerURL URL of the Oracle Apps Login page (the Personal Home Page address).

UserID User ID that was entered on the login page during the recording.

Password Password that was entered on the login page during the recording.

QALoad 5.02

611

Example

//QALoad posts the login information to the homepage URL, retrieves the
//ICX ticket from the reply and uses the ICX ticket in a subsequent Forms message.

OracleAppsLogin(http://app11i..com:8000/oraclemypage.home, “myuserid”, “mypassword”);

OracleForms

The constructor for the OracleForms class. This should be classed once per script .

Syntax

OracleForms(QALoad BaseScript)

Parameters

Param eter Descript i on

QALoad BaseScript Reference to the current script .

Except ions

None thrown.

Example

OracleForms oracleForms = new OracleForms(this);

OracleFormsMsg

This method constructs a new OracleFormsMsg.

It should be used rather than cal l ing the publ ic constructor of the OracleFormsMsg class direct ly.

Syntax

OracleFormsMsg(actionCode, handlerClassId, handlerId)

OracleFormsMsg(actionCode, handlerClassId, controlName)

Return Value

An OracleFormsMsg.

Parameters

Param eter Descript i on

ActionCode int Type of act ion th is message refers to. This value should not be changed
from that specified in the generated script .

HandlerClassId int Type of control. General ly th is value is 0 and should not be changed from
that specified in the generated script .

HandlerId int Control number. Each control on a form is given a unique number by the
server. The QALoad Script Development Workbench automatical ly creates
constants for th is value that refer to the specific control by name and/or
type.

ControlName string Control name assigned by the original developer of the Oracle Forms

QALoad 5.02

612

applicat ion. To use control names, the original script must be recorded
with the "record=names" opt ion.

Except ions

QALoad Exception ("No match for control name: <control_name>'");

Example

oracleFormsMsg1 = oracleForms.OracleFormsMsg(2, 0, TEST_BUTTON);
oracleFormsMsg1 = oracleForms.OracleFormsMsg(2, 0, "BLOCK3.TEST_BUTTON_0");

PopList

This method constructs a new OracleFormsMsg for th is type of control.

Syntax

PopList(handlerID);

PopList(controlName);

Parameters

Param eter Descript i on

HandlerId int Control number. Each control on a form is given a unique number by the
server. The QALoad Script Development Workbench automatical ly creates
constants for th is value that refer to the specific control by name and/or
type.

ControlName string Control name assigned by the original developer of the Oracle Forms
appl icat ion. To use control names, the original script must be recorded
with the "record=names" opt ion.

Except ions

QALoad Exception ("No match for control name: <control_name>'");

Example

oracleFormsMsg1 = oracleForms.PopList(CONTROL_001);
oracleFormsMsg1 = oracleForms.PopList("CONTROLabc");

PopupHelp

This method constructs a new OracleFormsMsg for th is type of control.

Syntax

PopupHelp(handlerID);

PopupHelp(controlName);

Parameters

Param eter Descript i on

HandlerId int Control number. Each control on a form is given a unique number by the
server. The QALoad Script Development Workbench automatical ly creates
constants for th is value that refer to the specific control by name and/or
type.

QALoad 5.02

613

ControlName string Control name assigned by the original developer of the Oracle Forms
appl icat ion. To use control names, the original script must be recorded
with the "record=names" opt ion.

Except ions

QALoad Exception ("No match for control name: <control_name>'");

Example

oracleFormsMsg1 = oracleForms.PopupHelp(CONTROL_001);
oracleFormsMsg1 = oracleForms.PopupHelp("CONTROLabc");

PromptList

This method constructs a new OracleFormsMsg for th is type of control.

Syntax

PromptList(handlerID);

PromptList(controlName);

Parameters

Param eter Descript i on

HandlerId int Control number. Each control on a form is given a unique number by the
server. The QALoad Script Development Workbench automatical ly creates
constants for th is value that refer to the specific control by name and/or
type.

ControlName string Control name assigned by the original developer of the Oracle Forms
appl icat ion. To use control names, the original script must be recorded
with the "record=names" opt ion.

Except ions

QALoad Exception ("No match for control name: <control_name>'");

Example

oracleFormsMsg1 = oracleForms.PromptList(CONTROL_001);
oracleFormsMsg1 = oracleForms.PromptList("CONTROLabc");

RadioBut ton

This method constructs a new OracleFormsMsg for th is type of control.

Syntax

RadioButton(handlerID);

RadioButton(controlName);

Parameters

Param eter Descript i on

HandlerId int Control number. Each control on a form is given a unique number by the
server. The QALoad Script Development Workbench automatical ly creates
constants for th is value that refer to the specific control by name and/or

QALoad 5.02

614

type.

ControlName string Control name assigned by the original developer of the Oracle Forms
appl icat ion. To use control names, the original script must be recorded
with the "record=names" opt ion.

Except ions

QALoad Exception ("No match for control name: <control_name>'");

Example

oracleFormsMsg1 = oracleForms.RadioButton(CONTROL_001);
oracleFormsMsg1 = oracleForms.RadioButton("CONTROLabc");

Runform

This method constructs a new OracleFormsMsg for th is type of control.

Syntax

Runform(handlerID);

Runform(controlName);

Parameters

Param eter Descript i on

HandlerId int Control number. Each control on a form is given a unique number by the
server. The QALoad Script Development Workbench automatical ly creates
constants for th is value that refer to the specific control by name and/or
type.

ControlName string Control name assigned by the original developer of the Oracle Forms
appl icat ion. To use control names, the original script must be recorded
with the "record=names" opt ion.

Except ions

QALoad Exception ("No match for control name: <control_name>'");

Example

oracleFormsMsg1 = oracleForms.Runform(CONTROL_001);
oracleFormsMsg1 = oracleForms.Runform("CONTROLabc");

SetExpectedServerMsg

This method al lows the script to cont inue processing i f a known error or warning message is received from
the server.

The XmitTerminalMessage method, after i t t ransmits the terminal message, checks the Oracle Forms Server
for incoming data messages. If error message checking is enabled, and i f any of these messages contain a
warning or error message, XmitTerminalMessage wil l throw an except ion.

However, i f a message is received that contains the message text specified in th is method, the error or
warning message wil l be ignored.

Syntax

SetExpectedServerMsg(msgText)

QALoad 5.02

615

Parameters

Param eter Descript i on

msgText String The error message expected from the server.

Except ions

None

Example

oracleForms.SetExpectedServerMsg("FRM-4041");

SetHeartbeat

Sets the in terval t ime for the transmission of in ternal heartbeat messages to the server.

 Without th is statement, Playback takes the default —2 minutes. If the parameter is set to 0, t ransmission
of heartbeat messages is suppressed.

Syntax

SetHeartbeat(minutes);

Parameters

Param eter Descript i on

minutes int Minute-intervals for in ternal heartbeat messages.

Except ions

None

Example

oracleForms.SetHeartbeat(4); //sets the heartbeat intervals to 4 minutes.

SetProxy

This method is used only i f the script is communicat ing with the Oracle Forms Server by HTTP. It enables
the HTTP traffic to be routed through a proxy server.

Syntax

SetProxy(host, port)

Parameters

Param eter Descript i on

Host String Host name or IP address of the proxy server.

Port int Port number the proxy server is l istening on.

Except ions

QALoad Exception("Cannot set HTTP proxy after connection has been established.")

Example

oracleForms.SetProxy("OurProxyServer", 80);

QALoad 5.02

616

TabControl

This method constructs a new OracleFormsMsg for th is type of control.

Syntax

TabControl(handlerID);

TabControl(controlName);

Parameters

Param eter Descript i on

HandlerId int Control number. Each control on a form is given a unique number by the
server. The QALoad Script Development Workbench automatical ly creates
constants for th is value that refer to the specific control by name and/or
type.

ControlName string Control name assigned by the original developer of the Oracle Forms
appl icat ion. To use control names, the original script must be recorded
with the "record=names" opt ion.

Except ions

QALoad Exception ("No match for control name: <control_name>'");

Example

oracleFormsMsg1 = oracleForms.TabControl(CONTROL_001);
oracleFormsMsg1 = oracleForms.TabControl("CONTROLabc");

TextArea

This method constructs a new OracleFormsMsg for th is type of control.

Syntax

TextArea(handlerID);

TextArea(controlName);

Parameters

Param eter Descript i on

HandlerId int Control number. Each control on a form is given a unique number by the
server. The QALoad Script Development Workbench automatical ly creates
constants for th is value that refer to the specific control by name and/or
type.

ControlName string Control name assigned by the original developer of the Oracle Forms
appl icat ion. To use control names, the original script must be recorded
with the "record=names" opt ion.

Except ions

QALoad Exception ("No match for control name: <control_name>'");

Example

oracleFormsMsg1 = oracleForms.TextArea(CONTROL_001);
oracleFormsMsg1 = oracleForms.TextArea("CONTROLabc");

QALoad 5.02

617

TextField

This method constructs a new OracleFormsMsg for th is type of control.

Syntax

TextField(handlerID);
TextField(controlName);

Parameters

Param eter Descript i on

HandlerId int Control number. Each control on a form is given a unique number by the
server. The QALoad Script Development Workbench automatical ly creates
constants for th is value that refer to the specific control by name and/or
type.

ControlName string Control name assigned by the original developer of the Oracle Forms
appl icat ion. To use control names, the original script must be recorded
with the "record=names" opt ion.

Except ions

QALoad Exception ("No match for control name: <control_name>'");

Example

oracleFormsMsg1 = oracleForms.TextField(CONTROL_001);
oracleFormsMsg1 = oracleForms.TextField("CONTROLabc");

Tlist

This method constructs a new OracleFormsMsg for th is type of control.

Syntax

Tlist(handlerID);
Tlist(controlName);

Parameters

Param eter Descript i on

HandlerId int Control number. Each control on a form is given a unique number by the
server. The QALoad Script Development Workbench automatical ly creates
constants for th is value that refer to the specific control by name and/or
type.

ControlName string Control name assigned by the original developer of the Oracle Forms
appl icat ion. To use control names, the original script must be recorded
with the "record=names" opt ion.

Except ions

QALoad Exception ("No match for control name: <control_name>'");

Example

oracleFormsMsg1 = oracleForms.Tlist(CONTROL_001);
oracleFormsMsg1 = oracleForms.Tlist("CONTROLabc");

QALoad 5.02

618

Tree

This method constructs a new OracleFormsMsg for th is type of control.

Syntax

Tree(handlerID);
Tree(controlName);

Parameters

Param eter Descript i on

HandlerId int Control number. Each control on a form is given a unique number by the
server. The QALoad Script Development Workbench automatical ly creates
constants for th is value that refer to the specific control by name/type.

ControlName string Control name assigned by the original developer of the Oracle Forms
appl icat ion. To use control names, the original script must be recorded
with the "record=names" opt ion.

Except ions

QALoad Exception ("No match for control name: <control_name>'");

Example

oracleFormsMsg1 = oracleForms.Tree(CONTROL_001);
oracleFormsMsg1 = oracleForms.Tree("CONTROLabc");

XmitMsg

Sends a message to the Oracle Forms Server.

Syntax

XmitMsg(statement, message)

Parameters

Param eter Descript i on

Statement int A number used for script debugging and error report ing.

Message OracleFormsMsg The message object to be sent.

Except ions

QALoad Exception("IOException called when transmitting message.")

Example

oracleForms.XmitMsg(2, oracleFormsMsg1);

XmitTerminalMessage

Sends a terminal message to the Oracle Forms Server.

A terminal message informs the server that the cl ient has fin ished with data entry and that the server
should process the previous set of data messages.

XmitTerminalMessage also waits for server responses. Automatic checkpoint ing takes place inside th is
method.

QALoad 5.02

619

Syntax

XmitMsg(statement, responseCode)

Parameters

Param eter Descript i on

Statement int A number used for script debugging and error report ing.

ResponseCode int A number indicat ing the type of act ion to take. A value of 1 indicates
that the previous messages should be acted on. A value of 3 indicates
that the cl ient wishes to disconnect from the server.

Except ions

QALoad Exception("IOException called when transmitting a terminal message.");
QALoad Exception("IOException called when reading terminal message.");
QALoad Exception(" ** Server error: " + <message text>)
QALoad Exception("Unknown control handle. ")
QALoad Exception("Error expanding control array.")

Example

oracleForms.XmitTerminalMessage(45, 1);

QALoad

QALoad Index

BEGIN_TRANSACTION
Defines the beginning of the script 's transact ion loop.

BeginCheckpoint
Marks the beginning of a checkpoint.

CLOSE_ALL_DATA_POOLS
Closes al l open local datapool fi les.

CLOSE_DATA_POOL
Closes the specified local datapool fi le.

COUNTER_VALUE
This command is used to update or increment the values of custom counters defined using the
DEFINE_COUNTER command. As counter values are writ ten to the t im ing fi le, they are t ime stamped with
the elapsed t ime.

DATE_TIME
Gets the current t ime and/or date from the local machine.

DefaultCheckpointsOn
QALoad automatical ly adds th is command when the Include Default Checkpoint statements convert
opt ion is selected in Workbench. When th is command is found in a QALoad script , QALoad wil l not
automatical ly generate checkpoints inside the middleware when Auto Timings is enabled in the QALoad
Conductor. Instead, QALoad uses checkpoint statements found with in the QALoad script .

QALoad 5.02

620

DEFINE_COUNTER
Use the DEFINE_COUNTER command to define custom counters. Custom counters are writ ten and
managed on a per user basis. They wil l be saved to the t im ing fi le and can be graphed in Analyze. Counter
data types can be either signed longs or floats. The counter type can be either cumulat ive or instance
(which tel ls Analyze how to graph the counter.) Works in conjuct ion with the COUNTER_VALUE
command.

DEFINE_TRANS_TYPE
Associates a descript ion for the transact ion loop displayed in QALoad Analyze.

DO_AbortOnError
Enables or disables error handl ing in the script .

DO_ExtractString
Finds a sub-string in a null-terminated buffer.

DO_SetTransact ionCleanup
Defines a point at the end of the transact ion for anyth ing that needs to be deal located or unin it ial ized.
When transact ion restart ing occurs for a fai led transact ion, QALoad wil l fi rst execute any code start ing after
the cal l to DO_SetTransact ionCleanup al lowing you to clean up important in formation and prevent
memory leaks before retrying the transact ion.

DO_SetTransact ionStart
Defines a point at the beginning of the transact ion loop that QALoad uses to rewind the transact ion i f the
transact ion fai ls and Restart Transact ion error handl ing is selected in the QALoad Conductor.

DO_SetValue
Associates a value to a variable name. Variable names are embedded into parameter strings of QALoad
funct ions and the value is in terpolated at replay. Current ly, DO_Http and DO_Https are the only funct ions
that in terpolate the variables.

DO_SLEEP
Inserts a sleep for the number of seconds defined in the parameter.

END_TRANSACTION
This command marks the end of the transact ion loop.

EndCheckpoint
Indicates the end of a checkpoint, corresponding to a BeginCheckpoint command.

EXIT
Stops script processing and returns control back to the Conductor.

GET_ABSOLUTE_VUNUM
Gets the absolute virtual user number.

GET_DATA
Requests that QALoad Conductor send the next datapool record to the script .

GET_DATA_FIELD
Accesses the fields from the data record that was just read using the READ_DATA_RECORD statement. Field
numbering starts at 1.

GET_DATAPOOLS_DIR
Retrieves the name of the QALoad Datapools directory.

QALoad 5.02

621

GET_HOME_DIR
Retrieves the name of the QALoad instal lat ion directory.

GET_LOGFILES_DIR
Retrieves the name of the QALoad LogFiles directory.

GET_RELATIVE_VUNUM
Gets the relat ive virtual user number.

GET_SCRIPTS_DIR
Retrieves the name of the QALoad Scripts directory.

GET_TIMINGFILES_DIR
Retrieves the name of the QALoad Timing Fi les directory.

LOG_ERROR
Sends the corresponding message to the Conductor, so that i t can be displayed with in the Player Messages
window in the Conductor.

OctalToChar
Converts any octal escape sequences to binary. Octal sequences consist of a backslash fol lowed by two
digits. This can be useful for adding binary data to a datapool fi le in the form of octal escape sequences
since datapool fi les must contain only ASCII strings. For example:

OPEN_DATA_POOL
Opens the datapool fi le.

RANDOM_NUMBER
Returns a string representat ion of a pseudo-random random number.

RANDOM_STRING
Returns a string with a pseudo-random random set of alpha or alphanumeric characters of the specified
width.

READ_DATA_RECORD
Reads a data record from a local datapool fi le.

RND_DELAY
Delays the script for a random interval before proceeding.

RND_DELAY_RANGE
Delays the script for a random interval, with in a specified range, before proceeding.

RR__FailedMsg
Outputs a fatal error message to the Conductor.

RR__GetDebugFlag
Gets the debug flag for the script .

RR__printf
Prints formatted output to the standard output stream.

SET_ABORT_FUNCTION
Registers a cal lback funct ion with in the virtual user to cal l whenever the test operator manually aborts a

QALoad 5.02

622

test from the QALoad Conductor.

SLEEP
Pauses a script for the specified number of seconds. This command is not affected by the sleep factor
percentage specified in QALoad Conductor.

SYNCHRONIZE
Pauses script execut ion on the virtual user unt i l the Conductor tel ls i t to cont inue.

VARDATA
Replaces a string with a datapool variable.

BEGIN_TRANSACTION

Defines the beginning of the script ’s transact ion loop.

QALoad automatical ly inserts BEGIN_TRANSACTION and END_TRANSACTION statements inside the
script during the convert process. QALoad repeatedly executes the code between the
BEGIN_TRANSACTION and END_TRANSACTION statements unt i l you reach a maximum number of
t ransact ions or unt i l the session durat ion t ime (specified in QALoad Conductor) is reached.

For each script , specify a frequency of execut ion with the pacing parameter in the QALoad Conductor.
QALoad pauses the script after each transact ion is complete, thereby ensuring that i t does not send
transact ions to the system under test more rapidly than the pacing value specifies. This pause occurs at the
BEGIN_TRANSACTION command.

Syntax

BEGIN_TRANSACTION();

Parameters

None.

Example

BEGIN_TRANSACTION();
...
...
END_TRANSACTION();

BeginCheckpoint

Marks the beginning of a checkpoint.

You can turn enhanced checkpoints on or off from the QALoad Script Development Workbench ’s Convert
Options dialog box. BeginCheckpoint is always used in conjunct ion with an EndCheckpoint command.

Syntax

BeginCheckpoint (text);

Parameters

Param eter Descript i on

text String contain ing a descript ion of the checkpoint. This value cannot be

QALoad 5.02

623

longer than 128 characters.

Example

BeginCheckpoint("Testing User-defined");
DO_Http("GET http://compuweb.compuware.com/ HTTP/ 1.0\r\n\r\n");
EndCheckpoint("Testing User-defined");

CLOSE_ALL_DATA_POOLS

Closes al l open local datapool fi les.

Al l local datapool fi les should be closed at the end of the script using th is statement.

Syntax

CLOSE_ALL_DATA_POOLS ();

Parameters

None.

Example

BeginCheckpoint();
RR__printf("Datapool Entry #1: %s", GET_DATA_FIELD 1);
DO_SLEEP(500);
EndCheckpoint(1);
CLOSE_ALL_DATA_POOLS ();
END_TRANSACTION();

CLOSE_DATA_POOL

Closes the specified local datapool fi le.

Al l local datapool fi les should be closed at the end of the script using these statements or the
CLOSE_ALL_DATA_POOLS command.

Syntax

CLOSE_DATA_POOL (int datapool ID);

Parameters

Param eter Descript i on

Datapool ID The local datapool fi le to close.

Example

END_TRANSACTION();
CLOSE_DATA_POOL(SS_1); /* Default placement after */
/* END_TRANSACTION */

COUNTER_VALUE

Updates or increments the values of custom counters defined using the DEFINE_COUNTER command.

As counter values are writ ten to the t im ing fi le, they are t ime stamped with the elapsed t ime.

QALoad 5.02

624

Syntax

COUNTER_VALUE (int Counter_ID, long Counter_Value, float Counter_Value);

Parameters

Param eter Descript i on

Counter ID A unique counter ID returned by a previous cal l to DEFINE_COUNTER.

Counter Value The value for the counter.

Example

BEGIN_TRANSACTION();

//add value to cumulative counter 1
COUNTER_VALUE(id1, 1);
DO_SLEEP(2);

//add value to cumulative counter 2
COUNTER_VALUE(id2, 1.5);
RND_DELAY(6);

// add value to instance counter 1
COUNTER_VALUE(id3, s_info-> nRndDelay);

// add custom message for this user
wsprintf(buf1, "User %d slept for %d milliseconds during transaction %d", s_info->nAbsVUNum,
s_info->nRndDelay, s_info->s_trans_count);
SCRIPT_MESSAGE("User Messages", buf1);
DO_SLEEP(2);

//add value to instance counter 2
//relative user number plus pi times the current transaction number
COUNTER_VALUE(id4, s_info->nRelVUNum + (3.14159 * s_info->s_trans_count));
END_TRANSACTION();

DATE_TIME

Gets the current t ime and/or date from the local machine.

Syntax

char * DATE_TIME(const char *pformat);

Parameters

Param eter Descript i on

pformat A formatted control string that determines how to format the date/ t ime
string. The fol lowing formats can be used:

! %a: Abbreviated weekday name

! %A: Full weekday name

! %b: Abbreviated month name

! %B: Full month name

! %c: Date and time representation appropriate for locale

! %d: Day of month as a decimal number (01-31)

! %H: Hour in a 24-hour format (00-23)

QALoad 5.02

625

! %I: Hour in a 12-hour format (01-12)

! %j: Day of the year as a decimal number (001-366)

! %m: Month as a decimal number (01-12)

! %M: Minute as a decimal number (00-59)

! %p: Current locale's AM/PM indicator for a 12-hour clock format

! %S: Second as a decimal number (00-59)

! %U: Week of the year as a decimal number, with Sunday as the first day of the
week (00-53)

! %w: Weekday as a decimal number (0-6, Sunday is 0)

! %W: Week of the year as a decimal number, with Monday as the first day of the
week (00-53)

! %x: Date representation for the current locale

! %X: Time representation for the current locale

! %y: Year without a century, as a decimal number (00-99)

! %Y: Year with a century, as a decimal number

! %Z: Time zone name or abbreviation; no characters if the time zone is unknown

! %%: Percent sign

Example

char *temp = NULL;

temp = DATE_TIME(Today is %A, day %d of %B in the year %Y.");

free(temp);

//might produce the following:
//Today is Wednesday, day 21 of January in the year 2004.

DefaultCheckpointsOn

Automatical ly added when the Include Default Checkpoint statement 's convert opt ion is selected in
Workbench.

When th is command is found in a QALoad script , QALoad does not automatical ly generate checkpoints
inside the middleware when Auto Timings is enabled in the QALoad Conductor. Instead, QALoad uses
checkpoint statements found with in the QALoad script .

Syntax

void DefaultCheckpointsOn (void);

Parameters

None

Example

...
// Checkpoints have been included by the convert process
DefaultCheckpointsOn ();
...

QALoad 5.02

626

DEFINE_COUNTER

Defines custom counters.

Custom counters are writ ten and managed on a per user basis. They are saved to the t im ing fi le and can be
graphed in Analyze. Counter data types can be either signed longs or floats. The counter type can be either
cumulat ive or instance, which tel ls Analyze how to graph the counter. Works in conjunct ion with the
COUNTER_VALUE command.

Note: If you call DEFINE_COUNTER more than once, with all of the same parameters, it returns the same
counter ID.

Syntax

int DEFINE_COUNTER (char* Group_Name, char* Counter_Name, char* Units, int Data_Type, int
Counter_Type);

Parameters

Param eter Descript i on

Group Name The name of the group th is counter belongs to.

Counter Name The name of the counter.

Units The counter units. Can be NULL i f no units are needed for th is counter.

Data Type Can be either DATA_LONG, or DATA_FLOAT.

Counter Type Can be either COUNTER_CUMULATIVE, or COUNTER_INSTANCE.

Example

// "CounterGroup", "Counter Name",
// "Counter Units (Optional)" , Data Type, Counter Type.

id1 = DEFINE_COUNTER("Cumulative Group", "Cumulative long",
 0, DATA_LONG, COUNTER_CUMULATIVE);
id2 = DEFINE_COUNTER("Cumulative Group", "Cumulative float",
 0, DATA_FLOAT, COUNTER_CUMULATIVE);
id3 = DEFINE_COUNTER("Instance Group", "Instance long",
 0, DATA_LONG, COUNTER_INSTANCE);
id4 = DEFINE_COUNTER("Instance Group", "Instance float",
 0, DATA_FLOAT, COUNTER_INSTANCE);
SYNCHRONIZE();
BEGIN_TRANSACTION();

The fol lowing is an example of a command to cal l each t ime an error occurs:

void ErrorOneOccurred()
{
int errorCounterID;
errorCounterID = DEFINE_COUNTER("Some Error Group", "Error One", 0, DATA_LONG,
COUNTER_CUMULATIVE);
COUNTER_VALUE(errorCounterID, 1);
}

DEFINE_TRANS_TYPE

Associates a descript ion for the transact ion loop displayed in QALoad Analyze .

QALoad 5.02

627

Syntax

DEFINE_TRANS_TYPE ("text");

Parameters

Param eter Descript i on

text A string of one to 60 characters enclosed in quotes.

Example

DEFINE_TRANS_TYPE ("Receiving in Acquisition");

DO_AbortOnError

Used to enable or disable error handl ing in a script .

The parameter that is passed to DO_AbortOnError sets how funct ions respond when an error is
encountered. When an error is encountered, funct ions can cont inue or abort the script .

Under normal condit ions, error handl ing is set in the Script Development Workbench (for val idat ion), or
in the Conductor. DO_AbortOnError overrides these product sett ings.

Syntax

DO_AbortOnError(flag);

Parameters

Param eter Descript i on

flag TRUE or FALSE. A flag indicat ing whether the script should abort upon receiving
an error.

Tip: If you choose FALSE, you must implement error checking for all
functions that return a value to ensure that NULL or incorrect values are not
subsequently used in the script.

Example

char *p;
char temp[1000];
...
...
strcpy(temp, "Here is the search string.");

DO_AbortOnError(FALSE);
p = DO_GetUniqueStringEx(temp, "the", "string");

DO_AbortOnError(TRUE);
if (p != NULL)
{
RR__printf("String value = %s", p);
free(p);
}
else
{
//error handling if a NULL value is returned.
RR__printf("String not found");
}

QALoad 5.02

628

DO_ExtractSt ring

Finds a sub-string in a null-terminated data buffer.

Retrieves a unique value in the data buffer szBuffer. The parameters szLeft and szRight represent data
just to the left and just to the right of a string in szBuffer. The nCount parameter specifies which left
string to use i f there is more than one matching string. The pszResult parameter is the address of a string
(char*) that holds the result ing extracted string.

Syntax

BOOL DO_ExtractString(const char* szBuffer, int nCount, const char* szLeft, const char*
szRight, char** pszResult);

Parameters

Param eter Descript i on

szBuffer The buffer to search.

nCount The number of occurrences in the left string before a match is made.

szLeft The left side of the string to match.

szRight The right side of the string to match.

pszResult The address of the return string.

Example

char* szResult = 0;

...

DO_Http("GET http://www.host.com/ HTTP/1.1\r\n\r\n");
/*
 * The page returns a page containing "<title>Enter Login</title>"
 */

DO_ExtractString(DO_GetReplyBuffer(), 1, "<title>", "</title>", &szResult);

RR__printf("The extracted title: %s", szResult);

/*
 * prints "The extracted title: Enter Login"
 */

DO_SetTransact ionCleanup

Defines a point at the end of the transact ion for anyth ing that needs to be deal located or unin it ial ized.

When transact ion restart ing occurs for a fai led transact ion, QALoad first executes any code start ing after
the cal l to DO_SetTransact ionCleanup, al lowing you to clean up important in formation and prevent
memory leaks before retrying the transact ion. This funct ion is used in conjunct ion with
DO_SetTransact ionStart .

Syntax

DO_SetTransact ionCleanup() ;

Parameters

None.

QALoad 5.02

629

Example

BEGIN_TRANSACTION();
DO_SetTransactionStart();
TRANSACTION CODE...
DO_SetTransactionCleanup();
DO_HttpCleanup();
DO_SomeOtherMiddlewareCleanup();
END_TRANSACTION();

DO_MSLEEP

Pauses a script for the specified number of mil l iseconds.

The parameter passed to DO_MSLEEP is fi rst scaled by the sleep factor percentage, which can be set from
both the Workbench during val idat ion and the Conductor at runt ime.

During unit test ing of the script , sett ing the sleep factor percentage to 0 (zero percent) causes DO_MSLEEP
to not sleep at al l . This command is ideal for unit test ing where delays may not be wanted. Once the script
is unit tested, the sleep factor percentage may be reset back to a suitable value, general ly somewhere
between 80% and 100%.

In addit ion, the sleep factor percentage can be set to Random in the QALoad Conductor. In th is case, when
a DO_MSLEEP command is encountered, i t wi l l sleep for a random t ime frame ranging from 0 to the value
specified.

Syntax

DO_MSLEEP(time);

Parameters

Param eter Descript i on

time Number of mil l iseconds to sleep before execut ion proceeds.

Example

This example shows how to pause a script for 50 mi l l iseconds. This example sleeps 50 mil l iseconds i f the
sleep factor percentage is set to 100 in the QALoad Conductor .

DO_MSLEEP(50); / * Sleep 50 mil l iseconds */

DO_SetTransact ionStart

Defines a point at the beginning of the transact ion loop that QALoad uses to rewind the transact ion i f the
transact ion fai ls and Restart Transact ion error handl ing is selected in the QALoad Conductor. This funct ion
is used in conjunct ion with DO_SetTransact ionCleanup.

Syntax

DO_SetTransactionStart() ;

Parameters

None.

Example

BEGIN_TRANSACTION();
DO_SetTransactionStart();

TRANSACTION CODE...

QALoad 5.02

630

DO_SetTransactionCleanup();
DO_HttpCleanup();
DO_SomeOtherMiddlewareCleanup();
END_TRANSACTION();

DO_SetValue

Associates a value to a variable name.

Variable names are embedded into parameter strings of QALoad funct ions and the value is in terpolated at
replay. Current ly, DO_Http and DO_Https are the only funct ions that in terpolate the variables.

To embed a variable name, the name is wrapped by { and }. The default in terpolat ion is to use the variable
name as a part of the subst i tuted value. For example, a name of "{th is-name}" with a value of "th is-value" is
in terpolated in the string "{th is-name}" as "th is-name=this-value". To suppress the variable name in the
in terpolated value, put an asterisk (*) right after the opening {. For example, a name of "th is-name", with a
value of "th is-value" is in terpolated in the string "{*th is-name}" as "th is-value".

After a variable is in terpolated, i t is removed from the variable table. For example, a name of "th is-name"
with a value of "th is-value" is in terpolated in the string "{*th is-name} {*th is-name}" as "th is-value {th is-
name}".

If a variable is needed twice, i t must be set twice. To suppress the removal of the variable from the variable
table, put an exclamation (!) before the closing }. For example, a name of "th is-name", with a value of "th is-
value" is in terpolated in the string "{*th is-name!} {*th is-name!}" as "this-value th is-value".

Note: When using DO_SetValue to store CGI parameters, the parameters must be CGI encoded. This is
done automatically by DO_GetFormValueByName, by the string constants inserted during conversion.

Syntax

BOOL DO_SetValue(const char *name, const char *value)

Parameters

Param eter Descript i on

name String contain ing the name of the field in which to set a value.

value String contain ing the value to set th is field.

Example

...

...

DO_SetValue("name", "Joe+Smith");

DO_SetValue("name", "Joe+Smith");

DO_Http("GET http://company.com/forms.pl?{name} HTTP/1.0\r"
"\n Referer: http://company.com/forms.html\r\n Unused:"
"{*name}\r\n\r\n");

...

...

QALoad will expand the statement internally as follows:

"GET http://company.com/forms.pl?name=Joe+Smith HTTP/1.0\r"
"\n Referer: http://company.com/forms.html\r\n"
"Unused: Joe+Smith\r\n\r\n"

QALoad 5.02

631

DO_SLEEP

Inserts a sleep for the number of seconds defined in the parameter.

The parameter passed to DO_SLEEP is fi rst scaled by the sleep factor percentage specified in QALoad
Conductor. During unit test ing of the script , sett ing the sleep factor percentage to 0 (zero percent) causes
DO_SLEEP not to sleep at al l .

This command is ideal for unit test ing where delays may not be wanted. Once the script is unit tested, the
sleep factor percentage may be reset back to a suitable value, general ly somewhere between 80% and 100%.

In addit ion, the sleep factor percentage can be set to Random in the QALoad Conductor. In th is case, when
a DO_SLEEP command is encountered, i t sleeps for a random t ime frame ranging from 0 to the value
specified.

Syntax

DO_SLEEP(seconds);

Parameters

Param eter Descript i on

seconds Number of seconds to sleep.

Example

This example shows how to pause a script for 5 seconds using the sleep funct ion cal l . This example sleeps 5
seconds i f the sleep factor percentage is set to 100 in the QALoad Conductor .

DO_SLEEP(5); /* Sleep 5 seconds */

END_TRANSACTION

Marks the end of the transact ion loop.

At the end of the transact ion loop, the virtual user performs the fol lowing act ions:

1. Records the transaction's elapsed time, from BEGIN_TRANSACTION to END_TRANSACTION. This is reported on
the Analyze report as the Duration.

2. Determines if another transaction should be processed on this virtual user:
! If the test is over, script processing continues with the command following the END_TRANSACTION.

! If the test is not over, QALoad jumps to the BEGIN_TRANSACTION command, where the script is paused
for pacing, if specified.

A test is over i f one or more of the fol lowing condit ions are met:

! The amount of time the test has been running exceeds the maximum session duration as set up in the session ID
file.

! The operator has manually ended the test.

! This virtual user has executed the maximum number of transactions for the virtual users running this script as set on
the Conductor’s Script Assignment tab.

Syntax

END_TRANSACTION ();

Parameters

None.

QALoad 5.02

632

Example

...
BEGIN_TRANSACTION ();
...
...
END_TRANSACTION ();

EndCheckpoint

Indicates the end of a checkpoint, corresponding to a BeginCheckpoint command.

BeginCheckpoint and EndCheckpoint correspond to QALoad’s enhanced checkpoints. You can turn
enhanced checkpoints on or off from the QALoad Script Development Workbench ’s Convert Options
dialog box. EndCheckpoint is always used in conjunct ion with a BeginCheckpoint command.

Syntax

EndCheckpoint (text) ;

Parameters

Param eter Descript i on

text String contain ing a descript ion of the checkpoint. This value cannot be
longer than 128 characters.

Example

BeginCheckpoint("Testing User-defined");
DO_Http("GET http://compuweb.compuware.com/ HTTP/ 1.0\r\n\r\n");
EndCheckpoint("Testing User-defined");

EXIT

Stops script processing and returns control back to the Conductor.

Syntax

EXIT ();

Parameters

None.

Example

...

...
EXIT();

GET_ABSOLUTE_VUNUM

Gets the absolute virtual user number. This value is used to ident i fy a virtual user uniquely with in an ent ire
test.

Syntax

int GET_ABSOLUTE_VUNUM ();

Parameters

None.

QALoad 5.02

633

Example

int vunum;
nuvum = GET_ABSOLUTE_VUNUM();
RR__printf("I am vu %d", vunum);

GET_DATA

Requests that QALoad Conductor send the next datapool record to the script .

If you reach the end of the datapool fi le when th is command is cal led, the script ei ther exits with an END
OF DATA status in QALoad Conductor, or rewinds to the beginning of the datapool fi le, depending on the
status of the rewind opt ion in QALoad Conductor.

Syntax

GET_DATA ();

Parameters

None.

Example

BEGIN_TRANSACTION();/*Beginning of transaction loop*/
GET_DATA ();
...
RR__printf(VARDATA(1));

GET_DATA_FIELD

Accesses the fields from the data record that were just read using the READ_DATA_RECORD statement.
Field numbering starts at 1.

Syntax

GET_DATA_FIELD (datapool ID, FieldNum);

Parameters

Param eter Descript i on

Datapool ID The datapool whose record should be used. This is necessary because you
can have up to 32 local datapool fi les open at once.

FieldNum Which field of the record to read. Field numbering starts at 1.

Example

BeginCheckpoint();
RR__printf("Datapool Entry #1: %s", GET_DATA_FIELD (1, 1));
DO_SLEEP(500);
EndCheckpoint(1);

GET_DATAPOOLS_DIR

Retrieves the name of the QALoad Datapools directory.

For example, th is funct ion cal l returns the directory \Program Files\Compuware\QALoad\Datapools.

QALoad 5.02

634

Syntax

const char *GET_DATAPOOLS_DIR()

Parameters

None.

Example

const char *pDatapoolsDir;
pDatapoolsDir = GET_DATAPOOLS_DIR();

// As an example, the default install directory for pDatapoolsDir would =
c:\ProgramFiles\Compuware\QALoad\ Datapools ;

// To print out the datapools directory, type
RR__printf("datapools directory = %s\n", GET_DATAPOOLS_DIR()) ;

GET_HOME_DIR

Retrieves the name of the QALoad instal lat ion directory.

For example, th is funct ion cal l returns the directory \Program Files\Compuware\ QALoad .

Syntax

const char *GET_HOME_DIR()

Parameters

None.

Example

const char *pHomeDir;
pHomeDir = GET_HOME_DIR();

// As an example, the default installation directory for
// pHomeDir would = c:\Program Files\Compuware\ QALoad ;

GET_LOGFILES_DIR

Retrieves the name of the QALoad LogFiles directory.

For example, th is funct ion cal l wi l l return the directory \Program
Files\Compuware\QALoad\LogFiles.

Syntax

const char *GET_LOGFILES_DIR()

Parameters

None.

Example

const char *pLogFilesDir;
pLogFilesDir = GET_LOGFILES_DIR();

// As an example, the default installation directory for
// pLogFilesDir would = c:\Program Files\Compuware\QALoad\LogFiles;

QALoad 5.02

635

GET_RELATIVE_VUNUM

Gets the relat ive virtual user number. This value is used to ident i fy a virtual user uniquely with in a player
instance.

Syntax

int GET_RELATIVE_VUNUM ();

Parameters

None.

Example

int vunum;
nuvum = GET_RELATIVE_VUNUM();
RR__printf("I am vu %d", vunum);

GET_SCRIPTS_DIR

Retrieves the name of the QALoad Scripts directory.

For example, th is funct ion cal l wi l l return the directory \ Program Fi les\ Compuware\ QALoad\ scripts.

Syntax

const char *GET_SCRIPTS_DIR()

Parameters

None.

Example

const char *pScriptsDir;
pScriptsDir = GET_SCRIPTS_DIR();

// As an example, the default installation directory for
// pScriptsDir would = c:\Program Files\Compuware\QALoad\Scripts;

GET_TIMINGFILES_DIR

Retrieves the name of the QALoad Timing Fi les directory.

For example, th is funct ion cal l wi l l return directory \Program
Files\Compuware\QALoad\TimingFiles.

Syntax

const char *GET_TIMINGFILES_DIR()

Parameters

None.

Example

const char *pTimingFilesDir;
pTimingFilesDir = GET_TIMINGFILES_DIR();

// As an example, the default installation directory for
// pTiming FilesDir would = c:\Program Files\Compuware\QALoad\TimingFiles ;

QALoad 5.02

636

LOG_ERROR

Sends the corresponding message to the Conductor, so that i t can be displayed with in the Player Messages
window in the Conductor.

Syntax

LOG_ERROR(int nSendMsg, char* msg);

Parameters

Param eter Descript i on

nSendMsg Specifies whether msg should be sent to the Conductor.

msg String that corresponds to the message to send to the Conductor.

Example

int rhobot_script(PLAYER_INFO *s_info)

{

SET_ABORT_FUNCTION(abort_function);
DEFINE_TRANS_TYPE("CP01");
SYNCHRONIZE();
BEGIN_TRANSACTION();
LOG_ERROR(TRUE, "Message text here");
END_TRANSACTION();
REPORT(SUCCESS);
EXIT();
return(0);

}

OctalToChar

Converts any octal escape sequences to binary.

Octal sequences consist of a backslash fol lowed by two digits. This can be useful for adding binary data to a
datapool fi le in the form of octal escape sequences, since datapool fi les must contain only ASCII strings.
For example:

\ 77 is equivalent to an ASCII 63 which is a quest ion mark character.

\ 12 is equivalent to an ASCII 10 which is a l inefeed character.

Syntax

int OctalToChar (char* str);

Parameters

Param eter Descript i on

str A nul l-terminated string.

Example

char str[80];
...
strcpy(input, GET_DATA_FIELD(1, 1)); //copy data from datapool field into string variable
OctalToChar(input);
DO_WSK_Send(S1, input);

QALoad 5.02

637

OPEN_DATA_POOL

Opens the datapool fi le.

This command l ine is typical ly placed before the BEGIN_TRANSACTION() statement.

Syntax

OPEN_DATA_POOL (frame, pNumber, rewindflag);

Parameters

Param eter Descript i on

frame The name of the datapool fi le, including a drive and path.

pNumber The ID that was given to the datapool when i t was inserted in to the script .
This is used anyt ime the script reads a record or field from the datapool.

rewindFlag TRUE i f the datapool fi le should be rewound to the beginning after i t
reaches the end.

FALSE i f i t should not rewind.

Example

OPEN_DATA_POOL("C:\\Program Files\\Compuware\\ QALoad \\Middlewares\\
 SQLServer\\Scripts\\junk.dat", SS_1, TRUE);

/* Default placement before BEGIN_TRANSACTION */
SYNCHRONIZE();
BEGIN_TRANSACTION();

RANDOM_NUMBER

Returns a string representat ion of a pseudo-random random number between Low and High using Leading
and Decimals to format the number.

The seed value that is used to generate the pseudo-random random number is set with in the Conductor.

Syntax

char* RANDOM_NUMBER(int Low, int High, int Leading, int Decimals);

Parameters

Param eter Descript i on

Low Lowest number that is generated.

High Highest number that is generated.

Leading If greater than zero, th is value specifies how many digits must be present to
the left of the decimal point. Values are padded with zeroes to reach the
specified value.

Decimals If greater than zero, th is value specifies how many digits must be present to
the right of the decimal point. If zero is specified, no decimal point is
generated.

QALoad 5.02

638

Example

char *temp = NULL;

temp = RANDOM_NUMBER(1, 100, 3, 2);

free(temp);

//might produce the following strings:
// "004.38"
// "319.03"
// "077.12"

RANDOM_STRING

Returns a string with a pseudo-random random set of alpha or alphanumeric characters of the specified
width.

The seed value that is used to generate the pseudo-random random number is set with in the Conductor.

Syntax

char* RANDOM_STRING(int AlphaNum, int WidthMin, int WidthMax);

Parameters

Param eter Descript i on

AlphaNum One of the fol lowing values:

0: Return ing string should contain only numeric values
1: Return ing string should contain only alpha values
2: Return ing string should contain alpha and numeric values

WidthMin Minimum width of the variable width format of the cal l .

WidthMax Maximum width of the variable width format of the cal l .

Example

char *temp = NULL;

temp = RANDOM_STRING(1, 4, 10);

free(temp);

//might produce the following strings:
// "fj32"
// "mfigkec973"
// "fik34kf"

READ_DATA_RECORD

Reads a data record from a local datapool fi le.

This statement is typical ly placed after the BEGIN_TRANSACTION statement, al though i t is possible to read
more than one record from the fi le during a single transact ion.

Syntax

READ_DATA_RECORD(datapool ID);

Parameters

Param eter Descript i on

QALoad 5.02

639

Datapool ID Tells from which local datapool fi le to read the record.

Example

BEGIN_TRANSACTION();
READ_DATA_RECORD(SS_1); /* Default placement - Start of */

/* Transaction loop */

RND_DELAY

Delays the script for a random interval before proceeding.

Each t ime the script executes the RND_DELAY command, the Player generates a random number. It uses a
uniform distribut ion, between 0 and n seconds where n is the parameter to the RND_DELAY command.
The average delay t ime for mult iple occurrences of th is command is n/2 seconds.

Syntax

RND_DELAY (n);

Parameters

Param eter Descript i on

n Maximum number of seconds to delay before script execut ion proceeds.

RND_DELAY_RANGE

Delays the script for a random interval, with in a specified range, before proceeding.

Each t ime the script executes the RND_DELAY_RANGE command, the Player generates a random number.
It uses a uniform distribution between minTime and maxTime seconds.

Syntax

int RND_DELAY_RANGE (int minTime, int maxTime);

Parameters

Param eter Descript i on

minTime Minimum number of seconds to delay before script execut ion cont inues.

maxTime Maximum number of seconds to delay before script execut ion cont inues.

Example

In th is example, the script pauses for a pseudo-random range between 2 and 10 seconds using the random
delay range funct ion.

RND_DELAY_RANGE(2, 10); /* Sleep between 2 and 10 seconds. */

RR__FailedMsg

Outputs a fatal error message to the Conductor. Use th is funct ion to describe an error condit ion
encountered that caused the script to fai l .

QALoad 5.02

640

Do not cal l RR__FailedMsg in an SAP or Citrix script i f the script includes a restart t ransact ion operat ion.
SAPGui_error_handler or CTX_error_handler can be cal led with the same parameters as RR__FailedMsg to
output a fatal error message while st i l l al lowing a proper clean up of the current transact ion before
restart ing the transact ion.

Syntax

int RR__FailedMsg (PLAYERINFO *, char *msg);

Parameters

Param eter Descript i on

PLAYERINFO Pointer to the PLAYERINFO struct, sinfo.

msg Message to be passed to the Conductor.

Example

int ret = 0;
ret = myFunc();
if(ret == ERROR)
RR__FailedMsg(s_info, "Virtual User Failed on myFunc!");

RR__GetDebugFlag

Gets the debug flag for the script .

Syntax

int RR__GetDebugFlag ();

Parameters

none

Example

RR__GetDebugFlag ();

RR__print f

Prints formatted output to the standard output stream.

RR__printf formats and prints a series of characters and values to the standard output stream, stdout. If
arguments fol low the format string, the format string must contain specificat ions that determine the
output format for the arguments.

The format argument consists of ordinary characters, escape sequences, and, i f arguments fol low format,
format specificat ions. The ordinary characters and escape sequences are copied to stdout in order of their
appearance.

For example, the l ine:

RR__printf("Line one\n\t\tLine two\n");

produces the output:

Line one
Line two

Format specificat ions always begin with a percent sign (%) and are read left to right. When RR__printf
encounters the first format specificat ion, i f any, i t converts the value of the first argument after format and
outputs i t accordingly. The second format specificat ion causes the second argument to be converted and

QALoad 5.02

641

output, and so on. If there are more arguments than there are format specificat ions, the extra arguments
are ignored. The results are undefined i f there are not enough arguments for al l the format specificat ions.

Syntax

int RR__printf(const char * format [, argument]...);

Parameters

Param eter Descript i on

format Format control.

argument Optional arguments.

Example

/* PRINTF.C: This program uses the printf and wprintf functions to produce formatted output.
 */

#include <stdio.h> void main(void)

{
char ch='h', *string="computer";
int count=-9234;
double fp=251.7366;
wchar_t wch=L'w', *wstring=L"Unicode";

/*Display integers. */
printf("Integer formats:\n" "\tDecimal: %d Justified: %.6d Unsigned: %u\n", count, count,
count, count);

printf("Decimal %d as:\n\tHex: %Xh C hex: 0x%x Octal: %o\n", count, count, count, count);

/* Display in different radixes. */
printf("Digits 10 equal:\n\tHex: %i Octal: %i Decimal: %i\n",0x10, 010, 10);

/* Display characters. */
printf("Characters in field (1):\n%10c%5hc%5C%5lc\n", ch, ch, wch, wch);
wprintf(L"Characters in field (2):\n%10C%5hc%5c%5lc\n", ch, ch, wch, wch);

/* Display strings. */
printf("Strings in field (1):\n%25s\n%25. 4hs\n\t%S%25.3ls\n", string, string, wstring,
wstring);

wprintf(L"Strings in field (2):\n%25S\n%25.4hs\n\t%s%25.3ls\n", string, string, wstring,
wstring);

/* Display real numbers. */
printf("Real numbers:\n\t%f%.2f%e%E\n", fp, fp, fp, fp);

/* Display pointer. */
printf("\nAddress as:\t%p\n", &count);

/* Count characters printed. */
printf("\nDisplay to here:\n");
printf("1234567890123456%n78901234567890\n", &count);
printf("\tNumber displayed: %d\n\n", count);
}

Output

In teger formats:

Decimal: -9234
Just i fied: -009234
Unsigned: 4294958062

Decimal -9234 as:

QALoad 5.02

642

Hex: FFFFDBEEh
C hex: 0xffffdbee
Octal: 37777755756

Digits 10 equal:

Hex: 16
Octal: 8
Decimal: 10

Characters in field (1):

h h w w

Characters in field (2):

h h w w

Strings in field (1):

computer
comp
Unicode Uni

Strings in field (2):

computer
comp
Unicode Uni

Real numbers:

251.736600
251.74 2.517366e+002
2.517366E+002

Address as:

0012FFAC

Display to here:

123456789012345678901234567890

Number displayed:

16

SET_ABORT_FUNCTION

Registers a cal lback funct ion with in the virtual user to cal l whenever the test operator manually aborts a
test from the QALoad Conductor.

When the abort cal lback funct ion returns, the script automatical ly exits.

Note: Checkpoints executed during an abort are not recorded in the timing file.

Syntax

SET_ABORT_FUNCTION (functionName);

Parameters

Param eter Descript i on

functionName Name of a funct ion to cal l when the test is aborted.

QALoad 5.02

643

Example

{
/* Script Initialization */
:
SET_ABORT_FUNCTION(abort_function) ;
/* Script */
}

void abort_function(PLAYER_INFO * s-info) ;

{
/* Abort functionality goes here */
EXIT() ;
}

SCRIPT_MESSAGE

The SCRIPT_MESSAGE command inserts custom script messages into a t im ing fi le during test execut ion.
The command takes a group name and a message as parameters; the messages appear on the Error report in
Analyze when they are used.

Syntax

SCRIPT_MESSAGE (char* group, char* msg);

Parameters

Param eter Descript i on

group Message group name.

msg Message.

Example

int rhobot_script(PLAYER_INFO *s_info)

{

 SET_ABORT_FUNCTION(abort_function);
DEFINE_TRANS_TYPE("CP01");
SYNCHRONIZE();

 BEGIN_TRANSACTION();
 SCRIPT_MESSAGE("My Group", "Message text here");
END_TRANSACTION();
REPORT(SUCCESS);
EXIT();
return(0);

}

SLEEP

Pauses a script for the specified number of seconds.

This command is not affected by the sleep factor percentage specified in QALoad Conductor.

Syntax

SLEEP (n);

QALoad 5.02

644

Parameters

Param eter Descript i on

n The number of seconds to sleep before execut ion proceeds.

SYNCHRONIZE

Pauses script execut ion on the virtual user unt i l the Conductor tel ls i t to cont inue.

Normal usage is to have al l scripts synchronize when they have reached the point at which transact ion
processing is to begin.

There can be only one SYNCHRONIZE command per script .

Syntax

SYNCHRONIZE();

Parameters

None.

Example

...

...
SYNCHRONIZE();
BEGIN_TRANSACTION();
...
...

SYNCH

This command is used to synchronize al l virtual users for a part icular script . When th is statement is
reached, QALoad halts execut ion of the virtual user. The virtual user remains halted unt i l al l other virtual
users for th is script have also halted at th is statement. Then, the Conductor instructs al l virtual users to
cont inue.

Unl ike the SYNCHRONIZE command, which is automatical ly added to the script above the
BEGIN_TRANSACTION statement by the convert process, you can insert any number of SYNCH commands
into a script .

Syntax

SYNCH();

Parameters

None.

Example

...

...
SYNCHRONIZE();
...
BEGIN_TRANSACTION();
...
SYNCH();
...
...
END_TRANSACTION();

QALoad 5.02

645

VARDATA

Replaces a string with a datapool variable.

To insert data from the fields in a datapool, subst i tute VARDATA(n) expressions wherever you want to
replace a string with variable data. Note that datapool field numbering starts at 1.

Syntax

VARDATA(n)

Parameters

Param eter Descript i on

n The datapool field number. Field numbering starts at 1.

Example

Do_TuxFMLData (8302, 0, VARDATA(1));

QARun integrat ion

QARun Integrat ion Index

DO_InitAWL
In it ial izes in ternal variables needed to support QARun integrat ion.

DO_StartAWL
Starts the 32-bit QARun script indicated in the parameters with the specified username, password, and
environment from the QARun database.

DO_InitAWL

In i t ial izes in ternal variables needed to support QARun integrat ion.

Insert th is command at the beginning of a QALoad script that cal ls a QARun test script .

Syntax

DO_InitAWL(s_info);

Parameters

Param eter Descript i on

s_info Structure used by each virtual user.

Example

DO_InitAWL(s_info);

DO_StartAWL

Starts the 32-bit QARun script indicated in the parameters with the specified username, password, and
environment from the QARun database.

QALoad 5.02

646

If the funct ion is successful, i t returns a zero (0). If the funct ion is not successful, i t returns a one (1).

Syntax

DO_StartAWL(AWLUsername, AWLEnv, AWLScriptName);

Parameters

Param eter Descript i on

AWLUsername A string value contain ing the QARun database username and password,
separated by a comma.

AWLEnv A string value contain ing a val id QARun script environment from the
QARun database.

AWLScriptName A string value contain ing the name of an exist ing QARun script in the
QARun database.

Example

nFail = DO_StartAWL ("admin,admin", "default", "script1");

SAP 4.x

SAP 4.x Index

Do_SAPCheckScreen
Used as a synchronizat ion point in your QALoad script .

Do_SAPCheckStatus
Do_SAPCheckStatus compares the status message at the bottom of the SAP window with an expected
message fragment.

Do_SAPCheckTit le
The Do_SAPCheckTit le funct ion compares the SAP screen t i t le with some expected text.

Do_SAPClearMessages
Do_ SAPClearMessages checks the t i t le of the SAP window and the SAP status message at the bottom.

Do_SAPDumpEvent
Prints the current values of the IT_EVENT structure to the Player window.

Do_SAPExtractString
Al lows you to specify a string to search (src), a fi l ter string, and a left and right fi l ter marker, and wil l return
the number of characters copied in to the dest inat ion variable (dest).

Do_SAPFrontEnd
Enables graphical display for replay of scripts.

Do_SAPFullMenu
Enables ful l or dynamic menus during SAP logins.

Do_SAPGetControlValue
Used to retrieve the value for the specified control.

QALoad 5.02

647

Do_SAPGetIt_Event
Retrieves a pointer to the IT_EVENT structure (used in GUILIB.H).

Do_SAPGetScreenTit le
Retrieves a pointer to the current screen t i t le from the current IT_EVENT structure.

Do_SAPGetStatusMsg
Retrieves a pointer to the status message from the current IT_EVENT structure.

Do_SAPInit
This funct ion is required, and in i t ial izes the thread local storage for each SAP thread.

Do_SAPLogging
Turns the detai l logging capabi l i ty on and off.

Do_SAPLogin
Connects and logs in to the SAP appl icat ion server. If the script is unable to connect to the server, an error
message is displayed and the script is aborted.

Do_SAPLogoff
Logs the script off of the appl icat ion server.

Do_SAPSendDblClick
Whenever the user double-cl icks when using the SAP GUI during capture, a Do_SAPSendDblClick event is
recorded to the capture fi le.

Do_SAPSendEvent
Causes the script to send the current event to server.

Do_SAPSendMenu
Locates the Menu name provided in the Menu string and sets the menu opt ion in the current event
structure. The menu string for mult i-level menus is formed by appending a -> string to each menu level,
such as Edit->Copy, or Fi le->open. It then sends the event to the server.

Do_SAPSendOKCode
Sets the OK code field in the IT_EVENT structure. The event is then automatical ly sent to the server.

Do_SAPSendPFKey
Dupl icates the sending of a PFKey by the appl icat ion by sett ing the PFKey value in the IT_EVENT structure
and then sending the transact ion to the server.

Do_SAPSendReturn
Sets the VK_RETURN PFKey in the event structure and sends the event to the server. This is the same as
pressing Return or as the Green Check mark on the toolbar.

Do_SAPSetCheckScreenWildcard
Specifies the wildcard character to use for wi ldcard matching with Do_SAPCheckScreen.

Do_SAPSetCtrlValue
Sets the value for a control.

Do_SAPSetCursor
Sets the cursor fields in the IT_EVENT structure to the specified control.

QALoad 5.02

648

Do_SAPCheckScreen

Used as a synchronizat ion point in your QALoad script . Should be cal led after each Do_SAPSendEvent() to
insure that the screen returned by the server is the one expected by the script .

 Each event sent from the SAP appl icat ion server to the cl ient includes the name of the ABAP program and
the current screen t i t le. This command ensures that the script and the appl icat ion do not get out of sync.

Use Do_SAPCheckScreen with Do_SAPSetCheckScreenWildcard to perform a wildcard search for a screen
t i t le. This is especial ly useful i f the screen t i t le is l ikely to change with each new entry/ lookup in the
database during replay. If you insert the wildcard (set in Do_SAPSetCheckScreenWildcard) as the first
character of the t i t le, then al l t i t les with the same right-most characters wi l l match. If the wildcard is
located in any character posit ion other than the first , QALoad does not treat i t as a wi ldcard. For example,
"*est" wi l l match "test," "tempest," and "est," but wi l l not match "tester." This prevents possible confl icts
when a wildcard character is present in a captured st ring, but is not in tended to be a wi ldcard. This also
prevents confl icts with in pre-exist ing scripts that were converted before the wildcard matching opt ion was
added in Release 4.4.

If the end of a t i t le is problematic during replay, i t isn ’t necessary to use a wi ldcard match. Instead, reduce
the number of characters that are compared in the t i t le. For example, i f the order number in the t i t le
"ORDER# PROCESSED: 12345" is l ikely to change during replay, shorten the t i t le to remove the characters
that are changing. For example, shorten the t i t le to "ORDER# PROCESSED:". This wi l l result in a match
with any t i t le during replay that contains the first characters "ORDER# PROCESSED:".

Syntax

Do_SAPCheckScreen (OKCode, ScreenName, title);

Parameters

Param eter Descript i on

OKCode A string contain ing the current transact ion code.

ScreenName A string contain ing the current screen name.

title A string contain ing the current string t i t le.

Example

Do_SAPCheckScreen("MMR1", "SAPLMGMM", "Create Raw Material: Initial Screen");

Do_SAPCheckStatus

Compares the status message at the bottom of the SAP window with an expected message fragment.

The second parameter of the funct ion is the display flag; TRUE prints out the status message when i t is
unexpected.

Syntax

Do_SAPCheckStatus(szExpected);

Parameters

Param eter Descript i on

szExpected Char * A string contain ing the current string status.

QALoad 5.02

649

Example

Do_SAPSendPFKey("Save"); // Click the Save button
CHECK_POINT(TIMER9, 33); // Record response time for saving document
if (!Do_SAPCheckStatus("has been saved")) abort_function();
// Abort due to an
//unexpected status
//message

Do_SAPCheckTit le

Compares the SAP screen t i t le with some expected text.

Syntax

Do_SAPCheckTitle(szExpected);

Parameters

Param eter Descript i on

szExpected Char * A string contain ing the current string t i t le.

Example

Do_SAPSendReturn();
if (Do_SAPCheckTitle("PO Extension")) Do_SAPSendReturn();
// This screen may sometimes appear. Press Return if it does.

Do_SAPClearMessages

Checks the t i t le of the SAP window and the SAP status message at the bottom.

If the window t i t le is "Information", then an in formation popup box has appeared; a return is sent to clear
i t . If the status message includes "W:", then a warning has appeared. Press Return to clear the warning. Do_
SAPClearMessages loops unt i l no more in formation boxes or warnings appear.

Syntax

Do_SAPClearMessages();

Parameters

None.

Example

Do_SAPSetCtrlValue ("VBAK-AUART", 0, "yta ");
// Enter data into SAP field.

Do_SAPSendReturn();
// Press Return to validate input.

Do_SAPClearMessages();
// Clear any warnings and information boxes
// and display the messages.

Do_SAPSendPFKey("Save");
// Click the Save button.

CHECK_POINT(TIMER9, 1);
// Record response time for saving document.

QALoad 5.02

650

Do_SAPDumpEvent

Prints the current values of the IT_EVENT structure to the Player window.

This command is used for debugging purposes, primari ly to view control and funct ion key names and
values.

Syntax

Do_SAPDumpEvent();

Parameters

None.

Example

Do_SAPDumpEvent();

Do_SAPExtractSt ring

Allows you to specify a string to search (src), a fi l ter string, and a left and right fi l ter marker, and returns
the number of characters copied in to the dest inat ion variable (dest).

Syntax

int Do_SAPExtractString (dest, src, filter, leftmarker, rightmarker);

Parameters

Param eter Descript i on

dest Char * Pointer to dest inat ion string.

src Char * Pointer to string to search.

filter Char * Pointer to fi l ter string.

leftmarker Unsigned
short

Left fi l ter marker.

rightmarker Unsigned
short

Right fi l ter marker.

Example

char src[64];
char dest[64];
char filter[64];
strcpy (src, "Inventory number = 123456");
strcpy (filter, "Inventory number = <>");
Do_SAPExtractString (dest, src, filter, ‘<’, ‘>’);
printf ("dest = [%s]\n", dest);

Output

"dest = [123456]"

Do_SAPFrontEnd

Enables graphical display for replay of scripts.

QALoad 5.02

651

Syntax

Do_SAPFrontEnd(long flag);

Parameters

Param eter Descript i on

flag Full menu flag. Val id values are:

TRUE: Enables SAP graphical display
FALSE: Disables SAP graphical display

Example

Do_SAPFrontEnd(TRUE);

Do_SAPFullMenu

Enables ful l or dynamic menus during SAP logins.

Syntax

Do_SAPFullMenu(flag);

Parameters

Param eter Descript i on

flag TRUE causes SAP logins with ful l menus (al l the menu structure is
downloaded from the appl icat ion server at once).

FALSE causes SAP logins with dynamic menus (menus are downloaded as
the menus are used.)

Example

Do_SAPFullMenu(FALSE);

Do_SAPGetControlValue

Used to retrieve the value for the specified control.

The control is specified by name, with the occurrence parameter dist inguishing between mult iple controls
of the same name. The Do_SAPDumpEvent() command can be used to display a l ist of controls on the
current form. If the control is a radio button or a check button, the l i terals TRUE or FALSE are placed in the
buffer indicat ing i f the control is current ly selected.

Syntax

int Do_SAPGetControlValue(CtrlName, CtrlOcc, Buffer);

Parameters

Param eter Descript i on

CtrlName string Contains the name of the control.

CtrlOcc integer Shows the occurrence of the control (0=first occurrence).

QALoad 5.02

652

Buffer Char * A pointer to a buffer to receive the current contents of the control. Note
that no length checking is performed, so ensure that the buffer is large
enough to contain the returned value.

Example

char buff[1024];
Do_SAPGetControlValue ("RMMG1-MATNR", 1, buff);

Do_SAPGet It_Event

Retrieves a pointer to the IT_EVENT structure (used in GUILIB.H).

Syntax

PIT_EVENT Do_SAPGetIt_Event();

Parameters

None.

Example

PIT_EVENT temp;
temp = Do_SAPGetIt_Event ();
printf ("\nScreen Title = %s\n", temp->szNormTitle);

Do_SAPGetScreenTit le

Retrieves a pointer to the current screen t i t le from the current IT_EVENT structure.

Syntax

char *Do_SAPGetScreenTitle ();

Parameters

None.

Example

char *Msg;
Msg = Do_SAPGetScreenTitle ();

Do_SAPGetStatusMsg

Retrieves a pointer to the status message from the current IT_EVENT structure.

This command is typical ly used after a Do_SAPSendEvent() statement to check for possible returned error
messages.

Syntax

char *Do_SAPGetStatusMsg();

Parameters

None.

Example

char *Msg;
Msg = Do_SAPGetStatusMsg();

QALoad 5.02

653

Do_SAPInit

This funct ion is required, and in i t ial izes the thread local storage for each SAP thread.

Syntax

Do_SAPInit(s_info);

Parameters

Param eter Descript i on

s_info Structure used by each virtual user.

Example

Do_SAPInit(s_info);

Do_SAPLogging

Turns the detai l logging capabi l i ty on and off.

Logging is a debugging tool that logs al l SAP events received from the server to a log fi le named
saplg###.l og, where ### is the virtual user number on the player. The log fi le is a binary fi le that can only
be viewed using the QALSAP program. The flag parameter is used to turn logging off and on or to clear
simultaneously any previous log entries. Once logging is turned on, a log record is wri t ten before each
event is sent to the SAP server and after each event is received from the server.

Syntax

Do_SAPLogging(flag);

Parameters

Param eter Descript i on

flag integer One of the fol lowing constants defined in Do_SAP.H:
SAPLOG_ON
SAPLOG_OFF
SAPLOG_CLEAR

Example

Do_SAPLogging(SAPLOG_ON);

Do_SAPLogin

Connects and logs in to the SAP appl icat ion server. If the script is unable to connect to the server, an error
message is displayed and the script is aborted.

Syntax

Do_SAPLogin(hostname, systemNo, clientNo, Name, Pwd, Lang);

Parameters

Param eter Descript i on

hostname string The Host name of the SAP appl icat ion server.

systemNo string The system number to login to.

QALoad 5.02

654

clientNo string The cl ient number to use (may be defaulted to "").

Name string The user ID.

Pwd string The password.

Lang string The language (may be defaulted to "").

Example

Do_SAPLogin("/H/204.79.199.5/H/207.213.200.19", "01", "850", "compuware", "qaload", "");

Do_SAPLogoff

Logs the script off of the appl icat ion server.

Syntax

Do_SAPLogoff();

Parameters

None.

Example

Do_SAPLogoff();

Do_SAPSendDblClick

Whenever the user double-cl icks when using the SAP GUI during capture, a Do_SAPSendDblClick event is
recorded to the capture fi le.

Syntax

Do_SAPSendDblClick ();

Parameters

None.

Example

Do_SAPSetCursor("RMMG1-MBRSH", 0); /* Value: Industry s */
Do_SAPSendDblClick();

Do_SAPSendEvent

Causes the script to send the current event to the server.

Typical ly, the script sets the value of one or more controls and indicates the act ion to be taken by sett ing a
funct ion key using Do_SAPPfKey(). The Do_SAPSendEvent funct ion completes the screen by transmitt ing
the updated information and act ion code to the server. Upon complet ion of the Do_SAPSendEvent()
funct ion, the script automatical ly retrieves the server’s reply.

Syntax

Do_SAPSendEvent();

QALoad 5.02

655

Parameters

None.

Example

Do_SAPSendEvent();

Do_SAPSendMenu

Locates the Menu name provided in the Menu string and sets the menu opt ion in the current event
structure.

The menu string for multi-level menus is formed by appending a "->" string to each menu level, such as
Edit->Copy, or Fi le->open. It then sends the event to the server.

Syntax

Do_SAPSendMenu(MenuString);

Parameters

Param eter Descript i on

MenuString string The (case insensit ive) name of the menu opt ion to set.

Example

Do_SAPSendMenu("Log off");

Do_SAPSendOKCode

Sets the OK code field in the IT_EVENT structure. The event is then automatical ly sent to the server.

Syntax

Do_SAPSendOKCode (OKcode);

Parameters

Param eter Descript i on

OKCode string A string contain ing the new OK code to send.

Example

Do_SAPSendOKCode("/nmmr1");

Do_SAPSendPFKey

Duplicates the appl icat ion sending a PFKey by sett ing the PFKey value in the IT_EVENT structure and then
sending the transact ion to the server.

The key name suppl ied as a parameter to Do_SAPSendPFKey() must be present in the current screen ’s
IT_EVENT structure. If i t isn ’t , an error message is given and the script is aborted.

To send a value that isn ’t one of the current ly avai lable key names, cal l th is funct ion with the decimal
virtual key value (iVKValue) preceded by a #. For example, to send an F1 whether or not i t was defined in
the IT_EVENT structure, cal l Do_SAPSendPFKEY("#112").

QALoad 5.02

656

Syntax

Do_SAPSendPfKey (KeyName);

Parameters

Param eter Descript i on

KeyName string The name of the key to set (case insensit ive).

Example

Do_SAPSendPFKey ("Possible entries");

Do_SAPSendReturn

Sets the VK_RETURN PFKey in the event structure and sends the event to the server. This is the same as
pressing Return or as the Green Check mark on the toolbar.

Syntax

Do_SAPSendReturn();

Parameters

None.

Example

Do_SAPSendReturn();

Do_SAPSetCheckScreenWildcard

Specifies the wildcard character to use for wi ldcard matching with Do_SAPCheckScreen.

Although al l converted scripts include Do_SAPSetCheckScreenWildcard (' * ') as one of the first funct ions,
you can specify a differen t wi ldcard character to use later in the script .

Syntax

Do_SAPSetCheckScreenWildcard (wildcard);

Parameters

Param eter Descript i on

wildcard unsigned
short

A character to match in Do_SAPCheckScreen.

Example

Do_SAPSetCheckScreenWildcard ('*') ;

Do_SAPSetCtrlValue

Sets the value for a control.

If the control is a radio-button, then al l other radio-buttons in that control ’s group are cleared.

Syntax

Do_SAPSetCtrlValue (CtrlName, CtrlOcc, Buffer);

QALoad 5.02

657

Parameters

Param eter Descript i on

CtrlName string The name of the control.

CtrlOcc integer Occurrence of the control (0=first occurrence).

Buffer Char * Pointer to a buffer contain ing the value to load into the control. If the
control is a radio button or a check button, then the buffer must contain
the string TRUE to set the button, or FALSE to clear the button.

Example

Do_SAPSetCtrlValue ("RMMG1-MATNR", 1, "B123458");

Do_SAPSetCursor

Sets the cursor fields in the IT_EVENT structure to the specified control.

If the control appears mult iple t imes on the screen, then the ctrlOcc field can be used to specify which
control the cursor is to be set to. CtrlOcc is zero-based, that is, the first occurrence is 0, then the second is
1, and so forth. To set the cursor to an arbitrary point on the screen, the ctrlName parameter may be
entered in a numeric format "#row,col (i .e. "#2,1").

Syntax

Do_SAPSetCursor(ctrlName, ctrlOcc);

Parameters

Param eter Descript i on

ctrlName string The name of the control to set the cursor to.

ctrlOcc integer The occurrence of the control name.

Example

Do_SAPSetCursor("MSICHTAUSW-KZSEL ", 0); /* Value: Variant */

SAP 6.x

SAP 6.x Index

SAPGui_error_handler
Outputs a fatal error message to the Conductor, which causes the virtual user to either fai l or report a
warning.

SAPGuiApplicat ion
Al lows scripts to cal l SAP GUI low-level administrat ive objects of the SAP GUI.

SAPGuiCheckScreen
Acts as a synchronizat ion point in the script .

SAPGuiCheckStatusbar
Specifies the method (or property) that is cal led (or set), al lowing the script access to the SAP GuiStatusbar
object.

QALoad 5.02

658

SAPGuiCmd0
Specifies the method (or property) that is cal led (or set) in the object specified in the previous
SAPGuiPropIdStr cal l . No parameters are sent.

SAPGuiCmd1
Specifies the method (or property) that is cal led (or set) in the object specified in the previous
SAPGuiPropIdStr cal l . One parameter is sent.

SAPGuiCmd1Coll
Specifies the method (or property) that is cal led (or set) in the object specified in the previous
SAPGuiPropIdStr cal l . One parameter is sent. Use th is variat ion to deal with Col lect ion object in formation
only.

SAPGuiCmd1Elmnt
Specifies the method (or property) that is cal led (or set) in the object specified in the previous
SAPGuiPropIdStr cal l . One parameter is sent. This variat ion is to be used for entering COM array element
in fo only (VB Collect ions).

SAPGuiCmd1Sub
Specifies the method (or property) that is cal led (or set) in the object specified in the previous
SAPGuiPropIdStr cal l . One parameter is sent. This variat ion is to be used for deal ing with subtype
information only.

SAPGuiCmd1Sub1
Specifies the method (or property) that is cal led (or set) in the object specified in the previous
SAPGuiPropIdStr cal l . One parameter is sent. This variat ion is to be used for deal ing with subtype and
SubParameter in formation only.

SAPGuiCmd2
Specifies the method (or property) that is cal led (or set) in the object specified in the previous
SAPGuiPropIdStr cal l . Two parameters are sent.

SAPGuiCmd3
Specifies the method (or property) that is cal led (or set) in the object specified in the previous
SAPGuiPropIdStr cal l . Three parameters are sent.

SAPGuiConnect
Specifies to which server a connect ion should be made.

SAPGuiCreateColl
Specifies the method (or property) that is cal led (or set) in the object specified in the previous
SAPGuiPropIdStr cal l . This cal l creates a col lect ion.

SAPGuiDestroyColl
Specifies the method (or property) that is cal led (or set) in the object specified in the previous
SAPGuiPropIdStr cal l . This cal l destroys a col lect ion and decrements the reference count.

SAPGuiPropIdStr
Specifies the object ID string to use with subsequent SAPGui cal ls.

SAPGuiPropIdStrExists
Specifies the object ID string to use with subsequent SAPGui cal ls.

SAPGuiPropIdStrExistsEnd
Marks the end of the block of code that is executed i f the condit ion in a prior SAPGuiPropIdStrExists
command is true.

SAPGuiSessionInfo
Specifies the method (or property) that wi l l be cal led, al lowing the script access to the SAP GuiSessionInfo
objects.

SAPGuiSetCheckScreenWildcard
Specifies the wildcard character to use for wi ldcard matching with SAPGuiCheckScreen.

QALoad 5.02

659

SAPGuiVerCheckStr
Specifies the SAP GUI frontend version number at the t ime the capture fi le was made.

SAPGui_error_handler

Outputs a fatal error message to the Conductor, which causes the virtual user to either fai l or report a
warning.

Syntax

SAPGui_error_handler(PLAYERINFO *, char *msg);

Parameters

Param eter Descript i on

PLAYERINFO Pointer to the PLAYERINFO struct, sinfo

msg Message to pass to the Conductor.

Example

{

 char buffer[1024];
 sprintf(buffer, "SAP: error occurred for VU(%i)\n", S_task_id);
 SAPGui_error_handler(s_info, buffer);

}

SAPGuiApplicat ion

Allows scripts to cal l low-level administrat ive objects of the SAP GUI.

Syntax

SAPGuiApplication(FuncName);

Parameters

Param eter Descript i on

FuncName Funct ion name.

Example

.

.

.

BEGIN_TRANSACTION();

DO_SetTransactionStart();

try{

 SAPGuiConnect(s_info,"qacsapdb");

 SAPGuiApplication(RegisterROT);

 SAPGuiVerCheckStr("6402.160.1");

.

.

.

QALoad 5.02

660

SAPGuiCheckScreen

Used as a synchronizat ion point in your QALoad script .

Cal l th is command after each request block to ensure that the screen being returned by the server is the
one expected by the script . Each event sent from the SAP appl icat ion server to the cl ient includes the name
of the ABAP program and the current screen t i t le. This command ensures that the script and the
appl icat ion remain in synch.

Use SAPGuiCheckScreen with SAPGuiSetCheckScreenWildcard to perform a wildcard search for a
screen t i t le. This is especial ly useful i f the screen t i t le is l ikely to change with each new entry/ lookup in the
database during replay.

If you insert the wildcard (set in SAPGuiSetCheckScreenWildcard) as the first character of the t i t le, then
al l t i t les with the same right-most characters wi l l match. If the wildcard is located in any character posi t ion
other than the first , QALoad does not treat i t as a wi ldcard. For example, "*est" wi l l match "test," "tempest,"
and "est," but wi l l not match "tester." This prevents possible confl icts when a wildcard character is present
in a captured string, but is not in tended to be a wi ldcard. This also prevents confl icts with in pre-exist ing
scripts that were converted before the wildcard matching opt ion was added in Release 4.4.

If the end of a t i t le is problematic during replay, i t is not necessary to use a wi ldcard match. Instead, reduce
the number of characters that are compared in the t i t le. For example, i f the order number in the t i t le
"ORDER# PROCESSED: 12345" is l ikely to change during replay, shorten the t i t le to remove the characters
that are changing. In th is case, shorten the t i t le to "ORDER# PROCESSED:". This results in a match with
any t i t le during replay that contains the first characters "ORDER# PROCESSED:".

Syntax

SAPGuiCheckScreen (OKCode, ScreenName, title);

Parameters

Param eter Descript i on

OKCode A string contain ing the current transact ion code.

ScreenName A string contain ing the current screen name.

title A string contain ing the current string t i t le.

Example

SAPGuiCheckScreen("SESSION_MANAGER", "SAPLSMTR_NAVIGATION", "SAP Easy Access");

//Check the OKcode, ScreenName, and screen title after each command

SAPGuiPropIdStr("wnd[0]");
SAPGuiCmd1(GuiMainWindow,SendVKey,0);
SAPGuiCheckScreen("S000", "SAPMSYST", "SAP");

SAPGuiCmd3(GuiMainWindow,ResizeWorkingPane,94,24,false);
SAPGuiPropIdStr("wnd[0]/tbar[0]/okcd");
SAPGuiCmd1(GuiOkCodeField,PutText,"bibs");
SAPGuiPropIdStr("wnd[0]");
SAPGuiCmd1(GuiMainWindow,SendVKey,0);
SAPGuiCheckScreen("SESSION_MANAGER", "SAPLSMTR_NAVIGATION", "SAP Easy Access");

SAPGuiPropIdStr("wnd[0]/usr/subSA_0100_1:SAPLEXAMPLE_ENTRY_SCREEN:0200/subSA_200_1:SAPLEXAMP
LE_ENTRY_SCREEN:0800/cntlCC_HTML_INDEX/shellcont/shell");
SAPGuiCmd3(GuiCtrlHTMLViewer,SapEvent,"","","sapevent:ALV_SHORT?ALV");
SAPGuiCheckScreen("BIBS", "SAPLEXAMPLE_ENTRY_SCREEN", "Style Guide: Check boxes");

QALoad 5.02

661

SAPGuiCheckStatusbar

Specifies the method or property that is cal led or set , al lowing the script access to the SAP GuiStatusbar
object.

Syntax

SAPGuiCheckStatusbar (ID, statusBarValue);

Parameters

Param eter Descript i on

ID ID to specify access to the status bar object.

statusBarValue Status bar string to check against.

Example

SAPGuiCheckScreen("S000", "SAPMSYST", "SAP");

SAPGuiCmd3(GuiMainWindow, ResizeWorkingPane, 94, 24, false);

//SAPGuiCheckStatusbar returns TRUE if the message is found
//and FALSE if not found
BOOL bRetSts = SAPGuiCheckStatusbar("wnd[0]/sbar", "E: Make an entry in all required
fields");

if (bRetSts)
RR__printf(" True\n");

else
RR__printf(" False\n");

SAPGuiCmd0

Specifies the method or property that is cal led or set in the object specified in the previous
SAPGuiPropIdStr cal l . The 0 in the name indicates that zero parameters are sent.

Note: For more information about SAP parameters, refer to SAP's publication titled "SAP GUI Scripting API
for the Windows and Java Platforms".

Syntax

SAPGuiCmd0(Type, FuncName);

Parameters

Param eter Descript i on

Type Type of object.

FuncName Funct ion or method/property related to the object.

Example

SAPGuiPropIdStr("wnd[0]/usr/subSA_0100_1:SAPLEXAMPLE_ENTRY_SCREEN:
 0200/subSA_200_2:SAPLEXAMPLE_ENTRY_SCREEN:
 2000/cntlCCCONTAINER/shellcont/shell");
SAPGuiCmd2(GuiCtrlGridView, SetCurrentCell, -1, "SEATSOCC");
//Call GuiCtrlGridView class method ClearSelection
SAPGuiCmd0(GuiCtrlGridView, ClearSelection);
SAPGuiCreateColl(GuiCollection, CreateGuiCollection, coll1);
SAPGuiCmd1Coll(GuiCollection, Add, coll1, "PRICE");
SAPGuiCmd1Coll(GuiCollection, Add, coll1, "SEATSMAX");

QALoad 5.02

662

SAPGuiCmd1Coll(GuiCollection, Add, coll1, "SEATSOCC");
SAPGuiCmd1(GuiCtrlGridView, PutSelectedColumns, coll1);
SAPGuiDestroyColl(GuiCollection, coll1);

SAPGuiPropIdStr("wnd[0]/tbar[0]/btn[3]");
SAPGuiCmd0(GuiButton, Press);
SAPGuiCheckScreen("BIBS", "SAPLEXAMPLE_ENTRY_SCREEN", "Style Guide: Alv grid");

SAPGuiCmd1

Specifies the method or property that is cal led or set in the object specified in the previous
SAPGuiPropIdStr cal l . The 1 in the name indicates that one parameter is sent.

Note: For more information about SAP parameters, refer to SAP's publication titled "SAP GUI Scripting API
for the Windows and Java Platforms".

Syntax

SAPGuiCmd1(Type, FuncName, Param);

Parameters

Param eter Descript i on

Type Type of object.

FuncName Funct ion or method/property related to the object.

Param The first parameter to send.

Example

SAPGuiCmd1(GuiPasswordField, PutCaretPosition, 3);
SAPGuiCmd1Pwd(GuiPasswordField, PutText, "~encr~1111111111");

//This variation is to be used for entering passwords only.
SAPGuiCmd1Pwd(GuiPasswordField, PutText, "~encr~1111111111");

//Call the GuiMainWindow class method SendVKey with one parameter that has a value of 0
SAPGuiPropIdStr("wnd[0]");
SAPGuiCmd1(GuiMainWindow, SendVKey, 0);
SAPGuiCheckScreen("SESSION_MANAGER", "SAPLSMTR_NAVIGATION", "SAP Easy Access");

SAPGuiCmd1Coll

Specifies the method or property that is cal led or set in the object specified in the previous
SAPGuiPropIdStr cal l . The 1 in the name indicates that one parameter is sent.

Use th is variat ion to deal with Col lect ion object in formation only.

Note: For more information about SAP parameters, refer to SAP's publication titled "SAP GUI Scripting API
for the Windows and Java Platforms".

Syntax

SAPGuiCmd1Coll(Type, FuncName, Coll, Param);

Parameters

Param eter Descript i on

Type Type of object.

QALoad 5.02

663

FuncName Funct ion or method/property related to the object.

Coll Collect ion name of col lect ion.

Param The first parameter to send.

Example

//multiple selections of columns
SAPGuiPropIdStr("wnd[0]/usr/subSA_0100_1:SAPLEXAMPLE_ENTRY_SCREEN:
 0200/subSA_200_2:SAPLEXAMPLE_ENTRY_SCREEN:
 2000/cntlCCCONTAINER/shellcont/shell");
SAPGuiCmd2(GuiCtrlGridView,SetCurrentCell,-1,"SEATSOCC");
SAPGuiCmd0(GuiCtrlGridView,ClearSelection);
SAPGuiCreateColl(GuiCollection,CreateGuiCollection,coll1);

//adds columns to a collection that was created by the selection of columns
SAPGuiCmd1Coll(GuiCollection,Add,coll1, "PRICE");
SAPGuiCmd1Coll(GuiCollection,Add,coll1, "SEATSMAX");
SAPGuiCmd1Coll(GuiCollection,Add,coll1, "SEATSOCC");
SAPGuiCmd1(GuiCtrlGridView,PutSelectedColumns,coll1);
SAPGuiDestroyColl(GuiCollection,coll1);

SAPGuiPropIdStr("wnd[0]/tbar[0]/btn[3]");
SAPGuiCmd0(GuiButton,Press);
SAPGuiCheckScreen("BIBS", "SAPLEXAMPLE_ENTRY_SCREEN", "Style Guide: Alv grid");

SAPGuiCmd1Elmnt

Specifies the method or property that is cal led or set in the object specified in the previous
SAPGuiPropIdStr cal l . The 1 in the name indicates that one parameter is sent.

Use th is variat ion for entering COM array element in formation only (VB col lect ions).

Note: For more information about SAP parameters, refer to SAP's publication titled "SAP GUI Scripting API
for the Windows and Java Platforms".

Syntax

SAPGuiCmd1Elmnt(Type, SubPropType, FuncName, ElmntAry, ElmntIndx, SubFuncName, Param);

Parameters

Param eter Descript i on

Type Type of object.

SubPropType The type of the sub-property.

FuncName Funct ion or method/property related to the object.

ElmntAry Name of the COM element array.

ElmntIndx Index of locat ion in array.

SubFuncName Funct ion name in col lect ion array.

Param The first parameter to send.

QALoad 5.02

664

Example

SAPGuiPropIdStr("wnd[0]/usr/subSA_0100_1:SAPLEXAMPLE_ENTRY_SCREEN:
 0200/subSA_200_2:SAPLEXAMPLE_ENTRY_SCREEN:
 2100/tblSAPLEXAMPLE_ENTRY_SCREENTC535");
SAPGuiCmd1(GuiTableControl, ReorderTable, "0 2 5 3 1 4 6 7");

//Call GuiTableControl class of type
//GuiCollection with the GetColumns method.
//At elements 0, 4, and 2, set
//the width to 8, 8, and 7, respectively.
SAPGuiCmd1Elmnt(GuiTableControl, GuiCollection, GetColumns, ElementAt, 0, PutWidth, 8);
SAPGuiCmd1Elmnt(GuiTableControl, GuiCollection, GetColumns, ElementAt, 4, PutWidth, 8);
SAPGuiCmd1Elmnt(GuiTableControl, GuiCollection, GetColumns, ElementAt, 2, PutWidth, 7);

SAPGuiCmd1Sub

Specifies the method or property that is cal led or set in the object specified in the previous
SAPGuiPropIdStr cal l . The 1 in the name indicates that one parameter is sent.

Use th is variat ion of the SAPGuiCmd command for deal ing with subtype information only.

Note: For more information about SAP parameters, refer to SAP's publication titled "SAP GUI Scripting API
for the Windows and Java Platforms".

Syntax

SAPGuiCmd1Sub(Type, SubPropType, FuncName, SubFuncName, Param);

Parameters

Param eter Descript i on

Type Type of object.

SubPropType The type of the sub-property.

FuncName Funct ion or method/property related to the object.

SubFuncName Funct ion name in the col lect ion array.

Param The first parameter to be sent.

Example

// Call GuiTableControl class of type
// GuiCollection. Get all columns and
// set the width to a value of 2.

SAPGuiPropIdStr("wnd[0]/usr/tblMP400100TC3000");
SAPGuiCmd1Sub1(GuiTableControl, GuiTableRow, GetAbsoluteRow, PutSelected, true, 0);
SAPGuiCmd1Sub(GuiTableControl, GuiCollection, GetColumns, ElementAt, -1, PutWidth, 2);

SAPGuiCmd1Sub1

Specifies the method or property that is cal led or set in the object specified in the previous
SAPGuiPropIdStr cal l . The 1 in the name indicates that one parameter is sent.

Use th is variat ion of the SAPGuiCmd command to deal with subtype and SubParameter in formation only.

Note: For more information about SAP parameters, refer to SAP's publication titled "SAP GUI Scripting API
for the Windows and Java Platforms".

QALoad 5.02

665

Syntax

SAPGuiCmd1Sub1(Type, SubPropType, FuncName, SubFuncName, Param, SubParam);

Parameters

Param eter Descript i on

Type Type of object.

SubPropType The type of the sub-property.

FuncName Funct ion or method/property related to the object.

SubFuncName Funct ion name in the col lect ion array.

Param The first parameter to send.

SubParam The parameter to be sent to the SubFunct ion.

Example

//Call GuiTableControl class of type
//GuiTableRow. Call GetAbsoluteRow with
//a value of 0 and put a value of True.

SAPGuiPropIdStr("wnd[0]/usr/tblMP400100TC3000");
SAPGuiCmd1Sub1(GuiTableControl, GuiTableRow, GetAbsoluteRow, PutSelected, true, 0);
SAPGuiCmd1Sub(GuiTableControl, GuiCollection, GetColumns, ElementAt, -1, PutWidth, 2);

SAPGuiCmd2

Specifies the method or property that is cal led or set in the object specified in the previous
SAPGuiPropIdStr cal l . The 2 in the name indicates that two parameters are sent.

Note: For more information about SAP parameters, refer to SAP's publication titled "SAP GUI Scripting API
for the Windows and Java Platforms".

Syntax

SAPGuiCmd2(Type, FuncName, Param1, Param2);

Parameters

Param eter Descript i on

Type Type of object.

FuncName Funct ion or method/property related to the object.

Param1 The first parameter to send.

Param2 The second parameter to send.

Example

//Call SetCurrentCell with two parameters

SAPGuiPropIdStr("wnd[0]/usr/subSA_0100_1:SAPLEXAMPLE_ENTRY_SCREEN:
 0200/subSA_200_2:SAPLEXAMPLE_ENTRY_SCREEN:
 2000/cntlCCCONTAINER/shellcont/shell");
SAPGuiCmd2(GuiCtrlGridView, SetCurrentCell, -1, "SEATSOCC");
SAPGuiCmd0(GuiCtrlGridView, ClearSelection);

QALoad 5.02

666

SAPGuiCreateColl(GuiCollection, CreateGuiCollection, coll1);
SAPGuiCmd1Coll(GuiCollection, Add, coll1, "PRICE");
SAPGuiCmd1Coll(GuiCollection, Add, coll1, "SEATSMAX");
SAPGuiCmd1Coll(GuiCollection, Add, coll1, "SEATSOCC");
SAPGuiCmd1(GuiCtrlGridView, PutSelectedColumns, coll1);
SAPGuiDestroyColl(GuiCollection, coll1);

SAPGuiPropIdStr("wnd[0]/tbar[0]/btn[3]");
SAPGuiCmd0(GuiButton, Press);
SAPGuiCheckScreen("BIBS", "SAPLEXAMPLE_ENTRY_SCREEN", "Style Guide: Alv grid");

SAPGuiCmd3

Specifies the method or property that is cal led or set in the object specified in the previous SAGuiPropIDStr
cal l . The 3 in the name indicates that three parameters are sent.

Note: For more information about SAP parameters, refer to SAP's publication titled "SAP GUI Scripting API
for the Windows and Java Platforms".

Syntax

SAPGuiCmd3(Type, FuncName, Param1, Param2, Param3);

Parameters

Param eter Descript i on

Type Type of object.

FuncName Funct ion or method/property that is related to the object.

Param1 The first parameter to send.

Param2 The second parameter to send.

Param3 The th ird parameter to send.

Example

//Resize the main window
SAPGuiPropIdStr("wnd[0]");
SAPGuiCmd3(GuiMainWindow, ResizeWorkingPane, 94, 24, false);

SAPGuiConnect

Specifies to which server descript ion a connect ion should be made.

Syntax

SAPGuiConnect(s_info, server description);

Parameters

Param eter Descript i on

s_info Structure used by each virtual user.

server description String that matches a server in the SAPLogon specificat ions.

QALoad 5.02

667

Example

//Connect to the SAP server named testsap620
SAPGuiConnect(s_info, "testsap620");
SAPGuiVerCheckStr("6205.132.36");

SAPGuiCreateColl

Specifies the method or property that is cal led or set in the object specified in the previous
SAPGuiPropIdStr cal l . This cal l creates a col lect ion with the name specified by Coll .

Note: For more information about SAP parameters, refer to SAP's publication titled "SAP GUI Scripting API
for the Windows and Java Platforms".

Syntax

SAPGuiCreateColl(Type, FuncName, Coll)

Parameters

Param eter Descript i on

Type Type of object.

FuncName Funct ion or method/property related to the object.

Coll Collect ion name of col lect ion.

Example

SAPGuiCreateColl(GuiCollection, CreateGuiCollection, coll1);

SAPGuiPropIdStr("wnd[0]/usr/subSA_0100_1:
 SAPLEXAMPLE_ENTRY_SCREEN:0200/subSA_200_2:
 SAPLEXAMPLE_ENTRY_SCREEN:2000/cntlCCCONTAINER/shellcont/shell");

SAPGuiCmd2(GuiCtrlGridView, SetCurrentCell, -1, "SEATSOCC");
SAPGuiCmd0(GuiCtrlGridView, ClearSelection);

//Multiple selections of columns creates a collection for the selection of columns
SAPGuiCreateColl(GuiCollection, CreateGuiCollection, coll1);
SAPGuiCmd1Coll(GuiCollection, Add, coll1, "PRICE");
SAPGuiCmd1Coll(GuiCollection, Add, coll1, "SEATSMAX");
SAPGuiCmd1Coll(GuiCollection, Add, coll1, "SEATSOCC");
SAPGuiCmd1(GuiCtrlGridView, PutSelectedColumns, coll1);
SAPGuiDestroyColl(GuiCollection, coll1);

SAPGuiPropIdStr("wnd[0]/tbar[0]/btn[3]");
SAPGuiCmd0(GuiButton, Press);
SAPGuiCheckScreen("BIBS", "SAPLEXAMPLE_ENTRY_SCREEN", "Style Guide: Alv grid");

SAPGuiDest royColl

Specifies the method or property that is cal led or set in the object specified in the previous
SAPGuiPropIdStr cal l . This cal l destroys a col lect ion and decrements reference count.

Note: For more information about SAP parameters, refer to SAP's publication titled "SAP GUI Scripting API
for the Windows and Java Platforms".

Syntax

SAPGuiDestroyColl(Type, Coll);

QALoad 5.02

668

Parameters

Param eter Descript i on

Type Type of object.

Coll Collect ion name of col lect ion

Example

SAPGuiDestroyColl(GuiCollection,coll1);

SAPGuiPropIdStr("wnd[0]/usr/subSA_0100_1:SAPLEXAMPLE_ENTRY_SCREEN:
 0200/subSA_200_2:SAPLEXAMPLE_ENTRY_SCREEN:
 2000/cntlCCCONTAINER/shellcont/shell");
SAPGuiCmd2(GuiCtrlGridView, SetCurrentCell, -1, "SEATSOCC");
SAPGuiCmd0(GuiCtrlGridView, ClearSelection);
SAPGuiCreateColl(GuiCollection, CreateGuiCollection, coll1);
SAPGuiCmd1Coll(GuiCollection, Add, coll1, "PRICE");
SAPGuiCmd1Coll(GuiCollection, Add, coll1, "SEATSMAX");
SAPGuiCmd1Coll(GuiCollection, Add, coll1, "SEATSOCC");
SAPGuiCmd1(GuiCtrlGridView, PutSelectedColumns, coll1);
//Multiple selections of columns
//destroys a collection that was
//created by a selection of columns
SAPGuiDestroyColl(GuiCollection, coll1);

SAPGuiPropIdStr("wnd[0]/tbar[0]/btn[3]");
SAPGuiCmd0(GuiButton, Press);
SAPGuiCheckScreen("BIBS", "SAPLEXAMPLE_ENTRY_SCREEN", "Style Guide: Alv grid");

SAPGuiPropIdStr

Specifies the object ID string to use with subsequent SAPGui cal ls. This object ID remains in effect unt i l
another cal l to SAPGuiPropIdStr is made.

Syntax

SAPGuiPropIdStr(Object Id);

Parameters

Param eter Descript i on

Object ID String used for subsequent SAPGui command cal ls.

Example

//Set the object ID to “wnd[0]”
SAPGuiPropIdStr("wnd[0]");
SAPGuiCmd1(GuiMainWindow,SendVKey,0);
SAPGuiCheckScreen("SESSION_MANAGER", "SAPLSMTR_NAVIGATION", "SAP Easy Access");

SAPGuiPropIdStrExists

Specifies the object ID string to use with subsequent SAPGui cal ls. This object ID remains in effect unt i l
another cal l to SAPGuiPropIdStr or SAPGuiPropIDStrExists is made.

Syntax

SAPGuiPropIdStrExists (char* Object_Id);

QALoad 5.02

669

Parameters

Param eter Descript i on

Object_Id String used for subsequent SAPGui command cal ls.

Example

SAPGuiCheckScreen("S000", "SAPMSYST", "SAP");

DO_SLEEP(3);

SAPGuiPropIdStrExists("wnd[1]/usr/radMULTI_LOGON_OPT2");

 SAPGuiCmd0(GuiRadioButton, Select);
 SAPGuiCmd0(GuiRadioButton, SetFocus);

 SAPGuiPropIdStr("wnd[1]/tbar[0]/btn[0]");
 SAPGuiCmd0(GuiButton, Press);
 SAPGuiCheckScreen("S000", "SAPMSYST", "License Information for Multiple Logon");

SAPGuiPropIdStrExistsEnd("wnd[1]/usr/radMULTI_LOGON_OPT2");

SAPGuiPropIdStrExistsEnd

Marks the end of the block of code that is executed i f the condit ion in a prior SAPGuiPropIdStrExists
command is true.

Syntax

SAPGuiPropIdStrExistsEnd (char* Object_Id);

Parameters

Param eter Descript i on

Object_Id String used for matching SAPGuiPropIdStrExists command cal ls.

Example

SAPGuiCheckScreen("S000", "SAPMSYST", "SAP");

DO_SLEEP(3);

SAPGuiPropIdStrExists("wnd[1]/usr/radMULTI_LOGON_OPT2");

 SAPGuiCmd0(GuiRadioButton, Select);
 SAPGuiCmd0(GuiRadioButton, SetFocus);

 SAPGuiPropIdStr("wnd[1]/tbar[0]/btn[0]");
 SAPGuiCmd0(GuiButton, Press);
 SAPGuiCheckScreen("S000", "SAPMSYST", "License Information for Multiple Logon");

SAPGuiPropIdStrExistsEnd("wnd[1]/usr/radMULTI_LOGON_OPT2");

SAPGuiSessionInfo

Specifies the method or property that is cal led al lowing the script access to the SAP GuiSessionInfo objects.

Note: For more information about SAP parameters, refer to SAP's publication titled "SAP GUI Scripting API
for the Windows and Java Platforms".

Syntax

SAPGuiSessionInfo(FuncName, Param1)

QALoad 5.02

670

Parameters

Param eter Descript i on

FuncName Funct ion or method/property related to the object.

Param1 The first parameter to send.

Example

In th is example, RoundTrip data and Flush data are stored in custom counters

int id1, id2, id3, id4;
long lRoundTrips, lFlushes;

id1 = DEFINE_COUNTER("Cumulative Group", "Cumulative RoundTrips", 0, DATA_LONG,
COUNTER_CUMULATIVE);
id2 = DEFINE_COUNTER("Cumulative Group", "Cumulative Flushes", 0, DATA_LONG,
COUNTER_CUMULATIVE);
id3 = DEFINE_COUNTER("Instance Group", "Instance RoundTrips", 0, DATA_LONG,
COUNTER_INSTANCE);
id4 = DEFINE_COUNTER("Instance Group", "Instance Flushes", 0, DATA_LONG, COUNTER_INSTANCE);

.

.

.

//Retrieve the number of round trips
SAPGuiSessionInfo(GetRoundTrips, lRoundTrips);
//Retrieve the number of times the buffer is flushed
SAPGuiSessionInfo(GetFlushes, lFlushes);
SAPGuiPropIdStr("wnd[1]/usr/btnSPOP-OPTION1");
SAPGuiCmd0(GuiButton, Press);
SAPGuiCheckScreen("SESSION_MANAGER", "SAPLSPO1", "Log Off");

COUNTER_VALUE(id1, lRoundTrips);
COUNTER_VALUE(id2, lFlushes);
COUNTER_VALUE(id3, lRoundTrips);
COUNTER_VALUE(id4, lFlushes);

SAPGuiSetCheckScreenWildcard

Specifies the wildcard character that SAPGuiCheckScreen uses for wi ldcard matching.

Although al l converted scripts include SAPGuiSetCheckScreenWildcard ('*') as one of the first
funct ions, you can specify a different wi ldcard character to use later in the script .

Syntax

SAPGuiSetCheckScreenWildcard (unsigned short wildcard);

Parameters

Param eter Descript i on

wildcard A character to match in SAPGuiCheckScreen.

Example

//Set the wildcard character to *
SAPGuiSetCheckScreenWildcard('*');
SYNCHRONIZE();
BEGIN_TRANSACTION();

QALoad 5.02

671

try{
SAPGuiConnect(s_info, "testsap620");
SAPGuiVerCheckStr("6205.132.36");

.

.

.

}

catch(_com_error e){

.

.

.

}

SAPGuiVerCheckStr

Specifies the SAP GUI front end version number at the t ime the capture fi le was made.

This in formation includes the major version, the minor version, and the patch level that was instal led at
the t ime of capture. If the in formation does not match, i t may not be possible to do a playback from th is
capture.

Syntax

SAPGuiVerCheckStr("Major version.Minor version.Patchlevel");

Parameters

Param eter Descript i on

Major version.Minor version.Patchlevel String that includes the major version number,
minor version number, and patch level number of
the instal led SAP cl ient.

Example

SAPGuiConnect(s_info, "testsap620");
SAPGuiVerCheckStr("6204.119.32");

SSL

SSL Index

DO_Https
Appl ies to SSL requests. M akes a secured request to the server specified by the http_statement.

DO_SetSSLConnectString
Appl ies to SSL requests. Sets the proxy authorizat ion when accessing SSL pages passed through a proxy
server (also known as "SSL tunnel ing").

DO_SSLReuseSession
Appl ies to SSL requests. Re-uses the current session 's communicat ion in formation (session ID) for al l page
requests with in the transact ion.

DO_SSLUseCipher
Appl ies to SSL requests. Sets the encrypt ion algori thm for playback.

QALoad 5.02

672

DO_SSLUseClientCert
Appl ies to SSL requests. Specifies a cl ient cert i ficate to pass upon request whi le recording SSL requests.

DO_SSLUseClientCertPass
Appl ies to SSL requests. Specifies a password (plain text or encrypted) that is needed to read a cl ient
cert i ficate.

DO_SSLUseProxy
Appl ies to SSL requests. Specifies a proxy server for al l SSL requests to be sent through.

DO_Https

Applies to SSL requests. M akes a secured request to the server specified by the http_statement.

This command returns a string contain ing the HTML response from the secured server.

Syntax

DO_Https (const char *http_statement);

Parameters

Param eter Descript i on

http_statement A string contain ing the URL of the secured server and any headers to be
sent.

Example

...

...
DO_Https("GET HTTPS://www.yahoo.com HTTP/1.0\r\n"
 "Referer: HTTP://company/index.htm\r\n"
 "Proxy-Connection: Keep-Alive\r\n"
 "User-Agent: Mozilla/3.01 WinNT;I)\r\n"
 "Host: www.yahoo.com\r\n"
 "Accept:*/*\r\n");
...
...

DO_SetSSLConnectString

Applies to SSL requests. Sets the proxy authorizat ion when accessing SSL pages passed through a proxy
server (also known as "SSL tunnel ing").

This command wil l be cal led for each SSL request connect ing to a different server.

Note: DO_SetSSLConnectString is a deprecated command. It is used internally by QALoad . Connection
strings are created internally by QALoad . In addition, the DO_SetSSLConnectString command will be
commented out in converted scripts to help create a custom connect string if needed.

Syntax

int DO_SetSSLConnectString (const char *connectstring) ;

Parameters

Param eter Descript i on

QALoad 5.02

673

connectstring A character string specifying the command to be sent to the SSL proxy server
to al low SSL requests to be sent. This is in the format "CONNECT
servername:port". The connect string must be terminated by a double CR-LF
pair.

Example

...

...

DO_SetSSLConnectString("CONNECT www.yahoo.com:443 HTTP/ 1.0\n"
"Proxy-authorization: Basic cGZobGFwMDpicm9uaWNh\r\n"
"User-Agent: Mozilla/4.04 [en] (WinNT; U)\r\n\r\n");
DO_Https("GET HTTPS://www.yahoo.com HTTP/1.0\r\n"
 "Referer: HTTP://company/index.htm\r\n"
 "Proxy-Connection: Keep-Alive\r\n"
 "User-Agent: Mozilla/3.01 WinNT;I)\r\n"
 "Host: www.yahoo.com\r\n"
 "Accept:*/*\r\n");
...
...

DO_SSLReuseSession

Applies to SSL requests. Re-uses the current session ’s communicat ion in formation (session ID) for al l page
requests with in the transact ion.

DO_SSL_ReuseSession is related to the opt ion Reuse SSL Session ID check box on the WWW Advanced
dialog box. The WWW Advanced dialog box is accessed from the Convert Opt ions wizard by cl icking the
Advanced button.

Place DO_SSLReuseSession before the BEGIN_TRANSACTION statement to use the session ID for al l
t ransact ions, or place i t after the BEGIN_TRANSACTION statement to reuse the session ID only for
statements with in that transact ion.

Syntax

DO_SSLReuseSession(BOOL bEnable);

Parameters

Param eter Descript i on

bEnable Starts (TRUE) or stops (FALSE) the reuse of a session ID.

Examples

In the fol lowing example, the very fi rst SSL connect ion wil l establ ish a Session ID, which wil l be reused
again for al l SSL requests and transact ions accessing the same Web server:

...

...
DO_SSLReuseSession(1);
BEGIN_TRANSACTION();
...
...
END_TRANSACTION();
...
...

QALoad 5.02

674

In the fol lowing example, the first SSL connect ion with in a transact ion wil l establ ish a Session ID, which
wil l be reused again for al l SSL requests accessing the same Web Server with in the same transact ion:

...

...
BEGIN_TRANSACTION();
DO_SSLReuseSession(1);
...
...
END_TRANSACTION();
...
...

DO_SSLUseCipher

Applies to SSL requests. Sets the encrypt ion algori thm for playback.

By default , QALoad scripts negot iate the strongest common SSL cipher for each SSL session. The Convert
faci l i ty automatical ly inserts a commented out DO_SSLUseCipher whenever i t encounters an encrypt ion
algori thm that changed while recording. You can uncomment th is cal l to force playback to use a specif ic
cipher.

It is possible to change the algori thms, and even choose to have several encrypt ion algori thms in one
script .

Note: DO_SSLUseCipher is a deprecated command. Cipher selection is done internally by QALoad . If you
do not have an encryption license, the listed encryption codes will not work. If you have an export grade license,
only 40-bit codes will work with your scripts; however, if you have a 128-bit license, all of the listed codes will
work with your scripts.

Encrypt ion Algorithms

The codes for avai lable algori thms are as fol lows:
Export grade (40 bit):

EXP-EDH-RSA-DES-CBC
EXP-EDH-DSS-DES-CBC-SHA
EXP-DES-CBC-SHA
EXP-RC4-MD5
EXP-RC2-CBC-MD5

128-bit encrypt ion:

RC4-SHA
RC4-MD5
EDH-RSA-DES-CBC3-SHA
EDH-DSS-DES-CBC3-SHA
DES-CBC3-SHA
EDH-RSA-DES-CBC-SHA
EDH-DSS-DES-CBC-SHA
DES-CBC-SHA
DES-CBC3-MD5
DES-CBC-MD5
RC2-CBC-MD5

Syntax

int DO_SSLUseCipher(const char *cipher)

QALoad 5.02

675

Parameters

Param eter Descript i on

cipher A character string represent ing the encrypt ion algori thm to be used during
playback.

Example

...

...
BEGIN_TRANSACTION();
...
...
DO_SSLUseCipher("EXP-RC4-MD5");
...
...
END_TRANSACTION();
...
...

DO_SSLUseClientCert

Applies to SSL requests. Specifies a cl ient cert i ficate to pass upon request whi le recording SSL requests.

QALoad ’s convert faci l i ty wi l l use the name of the cert i ficate used while recording. The cert i ficate can be
selected from the QALoad Script Development Workbench Record Options wizard.

Syntax

int DO_SSLUseClientCert(const char *name);

Parameters

Param eter Descript i on

name A string contain ing the name of the cl ient cert i ficate to use.

Example

In the fol lowing example, the cl ient cert i ficate "qaload_cl" wi l l be used whenever the server requests one.

DO_SSLUseClientCert("qaload_cl");

DO_SSLUseClientCert

Applies to SSL requests. Specifies a password (plain text or encrypted) that is needed to read a cl ient
cert i ficate.

Syntax

BOOL DO_SSLUseClientCertPass(const char *szPassword);

Parameters

Param eter Descript i on

szPassword A string contain ing the password to use.

QALoad 5.02

676

Example

DO_SSLUseClientCert("my_passwd");

DO_SSLUseProxy

Applies to SSL requests. Specifies a proxy server for al l SSL requests to be sent through.

Syntax

int DO_SSLUseProxy (const char *proxyURL) ;

Parameters

Param eter Descript i on

proxyURL A character string indicat ing the servername and port of the proxy server,
specified in "servername:port" format.

Example

...

...
BEGIN_TRANSACTION();
...
...
DO_UseProxy ("internet.company.com:80");
DO_SSLUseProxy ("internet.company.com:90");
DO_ProxyExceptions("company.sample.com, "company2.company.com");
...
...

Tuxedo

Tuxedo Index

Do_TuxAppendBuffer
Used in conjunct ion with Do_TuxBuildBuffer() to bui ld large Tuxedo buffers and overcome internal
compiler l im itat ions.

Do_TuxBufMemset
Provides a way to direct ly replace the offset of a Tuxedo buffer with the contents of the parameter Data.

Do_TuxBuildBuffer
If the appl icat ion is sending very large amounts of data to the server with in a single buffer variable, i t is
possible that string constants used with in the script can cause compiler errors just by their shared size. This
command, along with Do_TuxAppendBuffer() al lows the Convert faci l i ty to break up large strings in to
smaller ones. These strings are then appended at runt ime to bui ld the contents of a large Tuxedo buffer.

Do_Tuxcarray
Loads the specified data in to a tpal located buffer of type Carray.

Do_Tuxcertsubstr
Subst i tutes the recorded cert i ficate with a val id cert i ficate at replay t ime.

Do_Tuxencode
Converts a character array in to an encoded string.

QALoad 5.02

677

Do_TuxFin it
Determines the FML type being used and in i t ial izes an FML or FML32 buffer, based on how the buffer was
al located.

Do_TuxFMLData
Adds data to an exist ing 16- or 32-bit FML buffer. The buffer_idx value from the most recent Do_TuxFin it
command determines the buffer.

Do_TuxgetFMLData
Retrieves data from an FM L or FML32 buffer for subsequent use with in the script .

Do_TuxGetPart ialBuffer
Gets a pointer to part ial buffer bui l t with Do_TuxBuildBuffer.

Do_Tuxgetrevent
The revent parameter is used in tpsend and tprecv to indicate whether the send/receive was successful.
Revent is set after each tpsend and tprecv command.

Do_TuxgetTuxBuffer
Use th is command to direct ly access an FML buffer or any other Tuxedo buffer type.

DO_TuxIn itData
In i t ial izes QALoad 's in ternal data arrays and buffers prior to cal l ing al l other DO_Tux commands.

Do_TuxOutputBuffer
Provides a way of outputt ing a CARRAY, X_OCTET, or STRING buffer type to the player window.

Do_TuxSetViewData
DO_TuxSetViewData converts an encoded string from data in to raw bytes, and copies i t in to a view buffer
variable, then returns the number of actual bytes stored. This command is used to set view data of type
string and carray.

Do_TuxSetViewEnv
Sets the in ternal Tuxedo environment variables, VIEWFILES, VIEWDIR, VIEWFILES32, and VIEWDIR32.

Do_Tuxsetwsnaddr
Sets the WSNADDR parameter for the session and overrides any WSNADDR parameter that might be in the
current environment.

Do_Tuxstring
Loads the specified data in to a tpal located buffer of type char *. If the buffer is too small to hold the data,
Do_Tuxstring returns an error message at replay.

Do_TuxStrlenEncodeString
Encodes a string such that the result ing string is the concatenat ion of the string length (encoded) of the
input string fol lowed by the string i tself.

Do_Tuxsubstr
Provides a way to replace al l strings with another string with in a specified buffer index.

Do_Tuxtpabort
Aborts an act ive Tuxedo t ransact ion.

Do_Tuxtpal loc

QALoad 5.02

678

Calls a Tuxedo tpal loc command and stores the resultant address in a buffer table.

Do_Tuxtpbegin
Cal ls a Tuxedo tpbegin command.

Do_Tuxtpbroadcast
Cal ls a Tuxedo tpbroadcast command.

Do_Tuxtpcal l
Cal ls a Tuxedo tpcal l command. Prior to making the tpcal l , i t clears QALoad 's t imer.

Do_Tuxtpcommit
Cal ls a Tuxedo tpcommit command.

Do_Tuxtpconnect
Connects the cl ient appl icat ion to a conversat ional server.

Do_Tuxtpdiscon
Disconnects the cl ient appl icat ion from a conversat ional server.

Do_Tuxtpenqueue
Enqueues a message to a Tuxedo queue. Prior to cal l ing the Tuxedo command tpenqueue,
Do_Tuxtpenqueue clears QALoad 's t imer.

Do_Tuxtpin it
Cal ls a Tuxedo tpin it command.

Do_Tuxtppost
Posts a Tuxedo event.

Do_Tuxtpreal loc
Cal ls a Tuxedo tpreal loc command to resize a previously al located Tuxedo buffer.

Do_Tuxtprecv
Cal ls a Tuxedo tprecv command to receive data from a conversat ional server.

Do_Tuxtpscmt
Cal ls the Tuxedo command tpscmt. In turn, tpscmt sets the TP_COMMIT_CONTROL characterist ic to the
value specified in flags.

Do_Tuxtpsend
Cal ls a Tuxedo tpsend command which sends data to a conversat ional server.

Do_Tuxtpsprio
Cal ls the Tuxedo tpsprio command which sets the priori ty for the next request sent.

Do_Tuxtpterm
Terminates QALoad 's connect ion to the Tuxedo server.

Do_TuxUseCert i ficates
Used by the system to set the cert i ficates flag when using Peoplesoft cert i ficates. See Do_Tuxcertsubstr for
more in formation.

Do_Tuxxoctet

QALoad 5.02

679

Loads the specified data in to a tpal located buffer of type X_OCTET.

Do_TuxAppendBuffer

Used in conjunct ion with Do_TuxBuildBuffer() to bui ld large Tuxedo buffers and overcome internal
compiler l im itat ions.

Please refer to the documentat ion for Do_TuxBuildBuffer() for addit ional explanat ion.

Syntax

void Do_TuxAppendBuffer(char * data);

Parameters

Param eter Descript i on

data char * Encoded string to be appended to the in ternal buffer.

Example

Do_TuxBuildBuffer(64000, "&01&02&03&04&05");
Do_TuxAppendBuffer("&89&8a&8b&8c");
Do_Tuxcarray(Buf2, Do_TuxGetPartialBuffer());

Do_TuxBufMemset

Provides a way to direct ly replace the offset of a Tuxedo buffer with the contents of the parameter Data.
This funct ion wil l not write to an area outside the Tuxedo buffer passed in the parameter Index.

Syntax

void Do_TuxBufMemset(int Index, int Offset, char * Data);

Parameters

Param eter Descript i on

Index integer Index in to the buffer table.

Offset integer Offset in to the buffer.

Data char * Source string to overwrite with.

Example

Do_Tuxtpalloc(Buf1, "CARRAY", 1024);
Do_Tuxcarray(Buf1, "This is test data.");
Do_TuxBufMemset(Buf1, 8, "real");
Do_TuxOutputBuffer(Buf1, 0, 20, 80);

Output :

"[0]"This is real data.~~"

Note: [xxxxx] precedes each output line to assist you in determining the current offset position in the buffer.

QALoad 5.02

680

Do_TuxBuildBuffer

If the appl icat ion is sending very large amounts of data to the server with in a single buffer variable, i t is
possible that string constants used with in the script can cause compiler errors just by their shared size. This
command, along with Do_TuxAppendBuffer() al lows the Convert faci l i ty to break up large strings in to
smaller ones. These strings are then appended at runt ime to bui ld the contents of a large Tuxedo buffer.

Cal l Do_TuxBuildBuffer() to in i t ial ize the large buffer. Previous contents of the buffer are erased.

Syntax

void Do_TuxBuildBuffer(int length, char * data);

Parameters

Param eter Descript i on

length integer Maximum length of the buffer.

data char * Encoded string to be copied to the buffer. The data is copied to the buffer
in the encoded format.

Example

Do_TuxBuildBuffer(64000, "&01&02&03&04&05");
Do_TuxAppendBuffer("&89&8a&8b&8c");
Do_Tuxcarray(Buf2, Do_TuxGetPartialBuffer());

Do_Tuxcarray

Loads the specified data in to a tpal located buffer of type Carray.

If the buffer is not large enough to hold the data, you wil l receive an error message.

Syntax

void Do_Tuxcarray(int buffer_idx, char * data);

Parameters

Param eter Descript i on

buffer_idx integer Index in to the buffer table.

data char * Pointer to an encoded string contain ing the data to place in to the buffer.

Example

Do_Tuxtpalloc(3, "CARRAY", 3200);
Do_Tuxcarray(3,"~&01&02&03";)

Do_Tuxcertsubst r

Subst i tutes the recorded cert i ficate with a val id cert i ficate at replay t ime.

This funct ion is rendered at convert t ime, and normally does not have to be modified/ added to the
result ing script . The recorded and replay strings are required to be encoded, and of length 16 characters
(binary).

QALoad 5.02

681

Syntax

int Do_Tuxcertsubstr (int Index, char * Src, char * Dest);

Parameters

Param eter Descript i on

Index int Index in to the buffer table.

Src char * Pointer of string to search for (capture cert i ficate).

Dest char * Pointer of value to replace (replay cert i ficate).

Returns

In t : 1 i f substi tut ion is made, 0 i f subst i tut ion is not made.

Example

...
char captured_certificate[48];
char replay_certificate[48];
...
...
Do_Tuxtpcall ("GetCertificate", Buf1, Buf2, TPSIGRSTRT);
if (USE_CERTIFICATES)
{
memcpy(replay_certificate, tuxBuffer[Buf2].address + 35, 16);
Do_Tuxcarray(Buf2, "x&ce&c4&b8&fd&b3&e7&a0&ee&a 9&fc&b1&f4&ba&ee&a9");
memcpy(captured_certificate, tuxBuffer [Buf2].address, 16);
}
...
Do_Tuxcarray (Buf1, "&ae~~~&04&03&02&01&01~~~&bc&02~~~~~~"
"m~~~&04~SCTX&08NGUYENT2&08NGUYENTG&08NGUYENTG"
"x&ce&c4&b8&fd&b3&e7&a0&ee&a9&fc&b1&f4&ba&ee&a9~~~~"
"~~~~~~~~~~~~~~~&03ENG~~~~~~~~&01$&01/&01:&06M/d/yy"
"&01.&01,&02AM&02PM~-~~~ &09~SClearReq~~~~~~~~~~~~~~~~~~~~~~~~~"
"&ff&fd&01~~");
Do_Tuxcertsubstr (Buf1, captured_certificate, replay_certificate);
Do_Tuxtpcall ("MgrClear", Buf1, Buf2, TPSIGRSTRT);

Do_Tuxencode

Converts a character array in to an encoded string.

Syntax

void Do_Tuxencode(char * dest, char * Src, long SrcLen);

Parameters

Param eter Descript i on

dest char * Pointer to a buffer which receives the encoded string. Make sure that the
dest inat ion buffer is large enough to contain the encoded string.

Src char * Pointer to a buffer contain ing the source data. This data may contain
NULLs and other non-printable characters.

SrcLen long Number of bytes in the source buffer. If SrcLen is -1, then Src is treated as a
NULL terminated string. The final NULL character is not included in the

QALoad 5.02

682

encoded string.

Example

char dest[30];
char src[]="\0\xff\xfe\xfd"
Do_Tuxencode(dest, src, 10);

Do_TuxFinit

Determines the FML type being used and in i t ial izes an FML or FML32 buffer, based on how the buffer was
al located.

Do_TuxFin it stores the buffer_idx value in a global variable, so i t does not have to be specified in the
Do_TuxFMLData command.

Syntax

void Do_TuxFinit(int buffer_idx);

Parameters

Param eter Descript i on

buffer_idx integer Index in to the buffer table.

Example

Do_TuxFinit(1); /* For: tpcall */
Do_TuxFMLData(test_short, 0, "-12345");
Do_TuxFMLData(test_short, 1, "0");
Do_TuxFMLData(test_short, 2, "32767");
Do_Tuxtpcall("OPEN_TEST1", 1, 1, 0);

Do_TuxFMLData

Adds data to an exist ing 16- or 32-bit FML buffer. The buffer_idx value from the most recent Do_TuxFin it
command determines the buffer.

The data parameter — al l non-printable characters as well as some special characters — is encoded as a
three-byte hex sequence. Do_TuxFMLData first converts the encoded string in to an in ternal ASCII form
and then moves i t in to the Tuxedo FML buffer.

Syntax

void Do_TuxFMLData(int field, int occ, char * data);

Parameters

Param eter Descript i on

field integer FML field value or symbol ic constant.

occ integer FML field occurrence.

data char * Pointer to an encoded string contain ing the data to place in to the buffer.

QALoad 5.02

683

Example

Do_TuxFinit(1); /* For: tpcall */
Do_TuxFMLData(test_short, 0, "-12345");
Do_TuxFMLData(test_short, 1, "0");

/* encoded string*/
Do_TuxFMLData(test_string, 0, "abc&01&fe");
Do_Tuxtpcall("OPEN_TEST1", 1, 1, 0);

Do_TuxgetFMLData

Retrieves data from an FM L or FML32 buffer for subsequent use with in the script .

The system automatical ly determines which type of FML commands to use (FML or FML32) based upon
the type of the buffer.

Before cal l ing Do_TuxgetFMLData, you must al locate enough storage for returned data.

The char * that Do_TuxgetFMLData returns to the data area helps faci l i tate Do_TuxgetFMLData’s use in
commands such as strcpy and print f.

This command does not perform any conversion on the original data type; therefore, you must know how
the data is stored before using the returned value.

Syntax

char * Do_TuxgetFMLData(int buffer_idx, long fieldID, long occ, char * data);

Parameters

Param eter Descript i on

buffer_idx integer Index in to the buffer table.

fieldID long Symbolic constant for numeric value for the desired field.

occ long Field occurrence.

data char * Pointer to the buffer that receives the data.

Returns

char *: String data

Example

char data[128];
printf("Account: %s\n", Do_TuxgetFMLData(1, ACCT_ID, 0, data));

Do_TuxGetPart ialBuffer

Gets a pointer to part ial buffer bui l t with Do_TuxBuildBuffer.

Syntax

char * Do_TuxGetPartialBuffer();

Parameters

None.

QALoad 5.02

684

Returns

char *: Encoded string data

Example

Do_TuxBuildBuffer(64000, "&01&02&03&04&05");
Do_TuxAppendBuffer("&89&8a&8b&8c");
Do_Tuxcarray(Buf2, Do_TuxGetPartialBuffer());

Do_Tuxgetrevent

The revent parameter is used in tpsend and tprecv to indicate whether the send/receive was successful.
Revent is set after each tpsend and tprecv command.

Syntax

int Do_Tuxgetrevent(int conn_index);

Parameters

Param eter Descript i on

conn_index int Index in to a table of connect ion descriptors. The first descriptor is 1.

Returns

int: Current value of revent.

Example

if (Do_Tuxgetrevent(1) == TPEV_DISCONIMM)
printf(" Improper conversation disconnection.");

Do_TuxgetTuxBuffer

Use th is command to direct ly access an FML buffer or any other Tuxedo buffer type.

Note: Since the returned value points to a tpallocated Tuxedo buffer, any subsequent Tuxedo calls can cause
the buffer to be moved and/or reallocated.

Syntax

char * Do_TuxgetTuxBuffer(int buffer_idx, char * data);

Parameters

Param eter Descript i on

buffer_idx integer Index in to the buffer table.

data char * Pointer to the buffer area.

Returns

char *: Pointer to the buffer area specified by buffer_idx.

Example

char *data; stringData[128], carrayData[2048];

/* Copy string data */
strcpy(stringData, Do_TuxgetTuxBuffer(1, data));

QALoad 5.02

685

/* Copy Carray data */
memcpy(carrayData, Do_TuxgetTuxBuffer(2, data));

DO_TuxInitData

In i t ial izes QALoad ’s in ternal data arrays and buffers prior to cal l ing al l other "DO_Tux" commands.

The QALoad convert faci l i ty usual ly determines the values for each of the parameters; however, the
parameters may be overridden i f you want to al locate addit ional Tuxedo buffers or connect ions.

Your script should only execute the Do_TuxIn itData command once; therefore, place i t before the
BEGIN_TRANSACTION command.

Syntax

void DO_TuxInitData (int bufCount, int conCount);

Parameters

Param eter Descript i on

bufCount int Number of Tuxedo buffers to al locate. M aximum of 255.

conCount int Number of connect ions to al locate. Maximum of 255.

Example

Do_TuxInitData (6, 0);
SYNCHRONIZE();
BEGIN_TRANSACTION();
Do_Tuxsetwsnaddr("//LUCKY:3107");
Do_Tuxtpinit("Smith", "bnkapp", "passwd", "", TPU_DIP, "");

Do_TuxOutputBuffer

Provides a way of outputt ing a CARRAY, X_OCTET, or STRING buffer type to the player window.

Buffers of type FML or FM L32 should use Do_TuxgetFMLData () to retrieve FML values. If the inCount
value exceeds the size of the buffer, only the buffer contents wi l l be printed. The offset of the encoded
character precedes the output l ine to assist you in determin ing the current offset posit ion in the buffer.

Syntax

int Do_TuxOutputBuffer (int index, int offset, int inCount,
int printWidth);

Parameters

Param eter Descript i on

index int Index in to the buffer table.

offset int Offset in to buffer to start prin t ing.

inCount int Number of encoded characters to prin t .

printWidth int Printed column width.

QALoad 5.02

686

Returns

int: Printed column width.

Example

Do_Tuxtpalloc (Buf1, "CARRAY", 8192);
Do_Tuxcarray(Buf1, "This is ASCII text in a Tuxedo buffer."
"This is not ASCII text - &01&02&03&04&05~~~");
Do_TuxOutputBuffer (Buf1, 0, 100, 80);
Do_TuxOutputBuffer (Buf1, 44, 100, 80);
Do_TuxOutputBuffer (Buf1, 0, 44, 80);

Output

[0]"This is ASCII text within a Tuxedo buffer. This is"
"not ASCII text - &01&02&03&0"
[80]"4&05~~~~~~~~~~~~~~~~~~~~~~~~~~"
[44]"This is not ASCII test - &01&02&03&04&05"
"~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~"
[124]"~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~"
[0]"This is ASCII text within a Tuxedo buffer. "

Note: "[xxxxx]" precedes each output line to assist you in determining the current offset position in the buffer.

Do_TuxSetViewData

DO_TuxSetViewData converts an encoded string from data in to raw bytes, and copies i t in to a view buffer
variable, then returns the number of actual bytes stored. This command is used to set view data of type
string and carray.

Syntax

int DO_TuxSetViewData(char * field, char * data);

Parameters

Param eter Descript i on

field char * Pointer to a view carray or string variable.

data char * Encoded string to be converted and copied.

Returns

int: Number of bytes actually copied.

Example

Do_TuxSetViewData(VW_testVw16(Buf2)->tv16stringdata, "test data&13&10");

/* Set length along with string data */
VW_testVw16Complex(Buf2)->L_tv16string2[0] = Do_TuxSetViewData(VW_testVw16Complex(Buf2) -
>tv16stringdata, "Hello world.");

Do_TuxSetViewEnv

Sets the in ternal Tuxedo environment variables, VIEWFILES, VIEWDIR, VIEWFILES32, and VIEWDIR32.

If th is command is not present, then these environment variables, i f needed, are expected to be passed by
the operat ing system to the appl icat ion. The values set in th is command wil l override the system
environment values only for th is process.

QALoad 5.02

687

Note: Windows-based directories with "\ " characters in them should be entered as "\\ ", as shown in the
example.

Syntax

void Do_TuxSetViewEnv(char * viewFiles, char * viewDir, char * viewFiles32, char *
viewDir32);

Parameters

Param eter Descript i on

viewFiles char * Value for the VIEWFILES environment.

viewDir char * Value for the VIEWDIR environment.

viewFiles32 char * Value for the VIEWFILES32 environment.

viewDir32 char * Value for the VIEWDIR32 environment.

Example

Do_TuxSetViewEnv("testvw16.vv", "d:\\Tuxedo\\apps\\bankapp\\nt\\client", "testvw32.vv",
"d:\\Tuxedo\\apps\\bankapp\\nt\\client");

Do_Tuxsetwsnaddr

Sets the WSNADDR parameter for the session and overrides any WSNADDR parameter that might be in the
current environment.

Syntax

void Do_Tuxsetwsnaddr(char * wsnaddr);

Parameters

Param eter Descript i on

wsnaddr char * A val id WSNADDR string.

Example

Do_Tuxsetwsnaddr("//LUCKY:3107");
Do_Tuxtpinit("Smith", "bnkapp", "mypass", "", TPU_DIP, "");

Do_Tuxst ring

Loads the specified data in to a tpal located buffer of type char *. If the buffer is too small to hold the data,
Do_Tuxstring returns an error message at replay.

Syntax

void Do_Tuxstring (int buffer_idx, char * data);

Parameters

Param eter Descript i on

buffer_idx int Index in to the buffer table.

data char * Pointer to an encoded string contain ing the data to place in to the buffer.

QALoad 5.02

688

Example

Do_Tuxtpalloc(4, "STRING", 64);
Do_Tuxstring(4, "&01&02&03&04$%&26' () *+, -. /01234567889:;<=");

Do_TuxStrlenEncodeString

Encodes a string such that the result ing string is the concatenat ion of the string length (encoded) of the
input string fol lowed by the string i tself.

For example, i f the input string is John Smith, the result ing output of the Dest string would be &0aJohn
Smith, where the length of John Smith equals 10, and 10 in hexadecimal equals 0a (encoded as & 0a).

Syntax

int Do_TuxStrlenEncodeString(char * Src, char * Dest);

Parameters

Param eter Descript i on

Src char * Pointer to string to encode.

Dest char * Pointer to dest inat ion string.

Returns

int: String length of Dest.

Example

char temp[256];
char dest[256];
strcpy(temp, "Hello, world.") ;
printf("Input String = %s\n", temp);
Do_TuxStrlenEncodeString(temp, dest);
printf("Encoded String = %s\n", dest);

Output

"Input String = Hello, world."
"Encoded String = &0dHello, world."

Do_Tuxsubst r

Provides a way to replace al l strings with another string with in a specified buffer index.

This funct ion is only val id for buffers of type CARRAY, CSTRING, and XOCTET. Buffers of type FML and
FML32 should use Do_TuxFMLData() to modify the contents of the buffer.

Syntax

int Do_Tuxsubstr (int Index, char * Src, char * Dest);

Parameters

Param eter Descript i on

Index integer Index in to the buffer table.

Src char * Pointer to string to search with in indexed buffer.

QALoad 5.02

689

Dest char * Pointer to string to replace Src string i f found.

Returns

int: Number of strings replaced in buffer index. 0 if string is not found in buffer index.

Example

Do_Tuxtpalloc(Buf1, "CARRAY", 1024);
Do_Tuxcarray(Buf1, "This is test data.");
printf("%d, substitution made.\n", Do_Tuxsubstr (Buf1, "test", "real"));
Do_TuxOutputBuffer(Buf1, 0, 20, 80);

Output

"1 substitution made."
"[0]"This is real data.~~"

Note: [xxxxx] precedes each output line to assist you in determining the current offset position in the buffer.

Do_Tuxtpabort

Aborts an act ive Tuxedo t ransact ion.

Syntax

void Do_Tuxtpabort();

Parameters

None.

Example

...
Do_Tuxtpabort();
...

Do_Tuxtpalloc

Calls a Tuxedo tpal loc command and stores the resultant address in a buffer table.

The buffer_type parameter is normally the standard Tuxedo type such as FML, FML32, etc. You can include
a sub-type, i f desired, by separat ing the type and the sub-type with a colon (:). The fol lowing is an
example:

"MYTYPE:MYSUBTYPE".

Syntax

void Do_Tuxtpalloc(int buffer_index, char * buffer_type, int size);

Parameters

Param eter Descript i on

buffer_index int Index in to the buffer table.

buffer_type char * Type of buffer: FML, FML32, CARRAY, etc.

size int Number of bytes to al locate.

QALoad 5.02

690

Example

Do_Tuxsetwsnaddr("//LUCKY:3107");
Do_Tuxtpinit("Smith", "bapp", "passwd", "", TPU_DIP, "");
Do_Tuxtpalloc(1, "FML", 1024);
Do_TuxFinit(1); /* For: tpcall */

Do_Tuxtpbegin

Calls a Tuxedo tpbegin command.

Syntax

void Do_Tuxtpbegin(unsigned long timeout);

Parameters

Param eter Descript i on

timeout unsigned long Number of seconds before the transact ion t imes out.

Example

Do_Tuxtpbegin(100);

Do_Tuxtpbroadcast

Calls a Tuxedo tpbroadcast command.

Note: The atmi.h header file, usually found in the Tuxedo \include directory, defines symbolic constants for
the standard Tuxedo flags.

Syntax

void Do_Tuxtpbroadcast(char * lmid, char * username, char cltname, int buffer_index, long
flags);

Parameters

Param eter Descript i on

lmid char * Logical machine ID, may be NULL to send the message to al l users.

username char * User name, may be NULL to send the message to al l users.

cltname char * Control group name, may be NULL to send the message to al l control
groups.

buffer_index integer Index in to the buffer table for the data to broadcast . Use buffer index 0
to indicate that no data should be sent with the broadcast.

flags long Tuxedo flags. (Please see Tuxedo documentat ion for val id flags.)

Example

Do_TuxFinit(2); /* For: tpbroadcast */
Do_TuxFMLData(test_string, 0, "Test string");
Do_Tuxtpbroadcast("MYLMID","MYUSER", "MYCLT", 2, TPNOTIME);

QALoad 5.02

691

Do_Tuxtpcall

Calls a Tuxedo tpcal l command. Prior to making the tpcal l , i t clears QALoad ’s t imer.

Note: The atmi.h header file, usually found in the Tuxedo \include directory, defines symbolic constants for
the standard Tuxedo flags.

Syntax

void Do_Tuxtpcall(char * service, int in_buffer_idx, int out_buffer_idx, long flags);

Parameters

Param eter Descript i on

service char * Tuxedo service name.

in_buffer_idx integer Index in to the buffer table for the input buffer.

out_buffer_idx
integer

Index in to the buffer table for the output buffer (may be the same as the
input buffer).

flags integer Tuxedo flags. (Please see Tuxedo documentat ion for val id flags.)

Example

Do_TuxFinit(2); /* For: tpcall */
Do_TuxFMLData(test32_carray, 1, "~~~~~~~~~~~~~~~~~~~~");
Do_Tuxtpcall("OPEN_TEST1", 2, 2, 0);

Do_Tuxtpcommit

Calls a Tuxedo tpcommit command.

Syntax

void Do_Tuxtpcommit();

Parameters

None.

Example

Do_Tuxtpbegin(100);
Do_Tuxtpcall("OPEN_TEST1", 2, 2, 0);
Do_Tuxtpcommit();

Do_Tuxtpconnect

Connects the cl ient appl icat ion to a conversat ional server.

The conn_index parameter is an index in to a table of connect ion descriptors where the conversat ional
descriptor is stored. This index is then used in subsequent conversat ional commands, such as
Do_Tuxtpsend.

If you want to pass data to the server along with the connect, use a buffer al located with DO_tpal loc. If you
do not want to pass data to the server along with the connect, the buffer_index parameters should be
specified as 0.

Note: The atmi.h header file, usually found in the Tuxedo \include directory, defines symbolic constants for
the standard Tuxedo flags.

QALoad 5.02

692

Syntax

void Do_Tuxtpconnect(int conn_index, char * service, int buffer_index, long flags);

Parameters

Param eter Descript i on

conn_index integer Index in to a table of connect ion descriptors. The first descriptor is 1.

service char * Tuxedo service to connect to.

buffer_index integer Index in to the buffer table for data to be passed along with the connect. An
index of zero means that no data passes.

flags integer Tuxedo flags. (Please see Tuxedo documentat ion for val id flags.)

Example

Do_Tuxtpconnect(1, "CON_TEST1", 0, TPSENDONLY);
Do_Tuxtpalloc(2, "FML", 4096);
Do_TuxFinit(2); /* For: tpsend */
Do_TuxFMLData(test_string, 0, "Test string");
Do_Tuxtpsend(1, 2, TPRECVONLY);

Com m and M anagem en t

If you use conversat ional servers, you must include a connect ion descriptor in each tpsend and tprecv
command. The descriptor returns when the connect ion is establ ished by the tp_connect command. To
assist you in maintain ing these connect ion descriptors, the QALoad Tuxedo l ibraries store these descriptors
in an in ternal connect ion table. Therefore, rather than specify a connect ion descriptor with each
command, you simply specify the index in to the table that contains the desired descriptor. The connect ion
table, l ike the buffer table, has a lower bound of 1 and an upper bound that is dynamical ly al located at
runt ime in the Do_TuxIn itData command.
The fol lowing example i l lustrates how to use the connect ion table. Note that the example uses connect ion
index 1 and Tuxedo buffer index 6.

/* Start a connection */
Do_Tuxtpconnect(1, "CON_TEST1", 0, TPSENDONLY);
Do_Tuxtpalloc(6, "FML", 4096);

/*
* Load FML data here.
*/

Do_Tuxtpsend(1, 6, TPRECVONLY);

Each tpsend and tprecv command returns the in teger value revent. This value indicates the status of the
connect ion after the complet ion of the command. Use the Do_Tuxgetrevent command to retrieve th is
value.

Do_Tuxtpdiscon

Disconnects the cl ient appl icat ion from a conversat ional server.

The conn_index parameter points to an entry in the table of connect ion descriptors. The Do_Tuxtpconnect
command loads the actual connect ion descriptor.

Syntax

void Do_Tuxtpdiscon(int conn_index);

QALoad 5.02

693

Parameters

Param eter Descript i on

conn_index integer Index in to a table of connect ion descriptors. The first descriptor is 1.

Example

Do_Tuxtpconnect(1, "CON_TEST1", 0, TPSENDONLY);
Do_Tuxtpalloc(2, "FML", 4096);
Do_TuxFinit(2); /* For: tpsend */
Do_TuxFMLData(test_string, 0, "Test string");
Do_Tuxtpsend(1, 2, TPRECVONLY);
Do_Tuxtpdiscon(1);

Do_Tuxtpenqueue

Enqueues a message to a Tuxedo queue. Prior to cal l ing the Tuxedo command tpenqueue,
Do_Tuxtpenqueue clears QALoad ’s t imer.

Note: The atmi.h header file, usually found in the Tuxedo \include directory, defines symbolic constants for
the ctl_flags and standard Tuxedo flags.

Syntax

void Do_Tuxtpenqueue(char * queuespace, char * queuename, long ctl_flags, long
ctl_priority, long ctl_urcode, char * ctl_replyqueue, char * ctl_failurequeue, int
buffer_index, long flags);

Parameters

Param eter Descript i on

queuespace char * Queue space col lect ion name.

queuename char * Queue name.

ctl_flags long Flags for the TPQCTL structure.

ctl_priority long Enqueue priori ty in the TPQCTL structure.

ctl_urcode long User return code in the TPQCTL structure.

ctl_replyqueue char * Reply queue name in the TPQCTL structure.

ctl_failurequeue char * Failure queue name in the TPQCTL structure.

buffer_index integer Index in to the buffer table. An index of zero means that no data
passes.

flags long Tuxedo flags. (Please see Tuxedo documentat ion for val id flags.)

Example

Do_TuxFinit(2); /* For: tpenqueue */
Do_TuxFMLData(test_string, 0, "Test string");
Do_Tuxtpenqueue("QSPACE", "test1_queue", TPNOFLAGS, 2, 3, "replyq", "failq", 2, TPNOBLOCK
);

QALoad 5.02

694

Do_Tuxtpinit

Calls a Tuxedo tpin it command.

The TPINFO buffer is al located and released with in the bounds of the Do_Tuxtpin it command, so there is
no need to tpfree the buffer later in the script .

Note: The atmi.h header file, usually located in the Tuxedo \include directory, defines symbolic constants for
the standard Tuxedo flags.

Syntax

void Do_Tuxtpinit (char * username, char * ctlname, char password, char * grpname, int
flags, char * data);

Parameters

Param eter Descript i on

username char * Tuxedo user name.

ctlname char * Tuxedo cl ient name.

password char * Tuxedo password.

grpname char * Tuxedo group name.

flags integer Tuxedo flags. (Please see Tuxedo documentat ion for val id flags.)

data char An encoded char * that passes during the command. This is actual data,
not a tpal located buffer or buffer index.

Example

Do_Tuxsetwsnaddr("//LUCKY:3107");
Do_Tuxtpinit("Smith", "bapp", "passwd", "", TPU_DIP, "");

Do_Tuxtppost

Posts a Tuxedo event.

Note: The atmi.h header file, usually found in the Tuxedo \include directory, defines symbolic constants for
the standard Tuxedo flags.

Syntax

void Do_Tuxtppost(char * event_name, int buffer_index, long flags);

Parameters

Param eter Descript i on

event_name char * Tuxedo event name.

buffer_index integer Index in to the buffer table. An index of zero means that no data passes.

flags long Tuxedo flags. (Please see Tuxedo documentat ion for val id flags.)

QALoad 5.02

695

Example

Do_TuxFinit(2); /* For: tppost */
Do_TuxFMLData(test_string, 0, "Test string");
Do_Tuxtppost("ANYEVENTWITHDATA", 2, TPNOTRAN);

Do_Tuxtprealloc

Calls a Tuxedo tpreal loc command to resize a previously al located Tuxedo buffer.

Syntax

void Do_Tuxtprealloc(int buffer_index, int size);

Parameters

Param eter Descript i on

buffer_index integer Index in to the buffer table.

size integer New buffer al locat ion size.

Example

Do_Tuxtprealloc(1, 8192);

Do_Tuxtprecv

Calls a Tuxedo tprecv command to receive data from a conversat ional server.

The connect ion descriptor table retrieves the connect ion descriptor and stores the returned data in a
Tuxedo tpal located buffer pointed to by the buffer table.

Note that the Do_Tuxgetrevent command retrieves the global parameter revent.

Note: The atmi.h header file, usually found in the Tuxedo \include directory, defines symbolic constants for
the standard Tuxedo flags.

Syntax

void Do_Tuxtprecv(int conIndex, int index, long flags);

Parameters

Param eter Descript i on

conIndex integer Index in to a table of connect ion descriptors. The first descriptor is 1.

index integer Index in to the buffer table.

flags long Tuxedo flags. (Please see Tuxedo documentat ion for val id flags.)

Example

Do_Tuxtpconnect(1, "CON_TEST1", 0, TPSENDONLY);
Do_Tuxtpsend(1, 2, TPRECVONLY);/* Connection 1, buffer 2 */
Do_Tuxtprecv(1, 2, 0); /* Connection 1, buffer 2 */

QALoad 5.02

696

Do_Tuxtpscmt

Calls the Tuxedo command tpscmt. In turn, tpscmt sets the TP_COMMIT_CONTROL characterist ic to the
value specified in flags.

Note: The atmi.h header file, usually found in the Tuxedo \include directory, defines symbolic constants for
the standard Tuxedo flags.

Syntax

void Do_Tuxtpcsmt(long flags);

Parameters

Param eter Descript i on

flags long Tuxedo flags. (Please see Tuxedo documentat ion for val id flags.)

Example

Do_Tuxtpscmt(TP_CMT_LOGGED);

Do_Tuxtpsend

Calls a Tuxedo tpsend command which sends data to a conversat ional server.

The connect ion descriptors table retrieves the connect ion descriptor and stores the returned data in a
Tuxedo tpal located buffer pointed to by the buffer table.

Note that the DO_getrevent command retrieves the global parameter revent.

Note: The atmi.h header file, usually found in the Tuxedo \include directory, defines symbolic contants for the
standard Tuxedo flags.

Syntax

void Do_Tuxtpsend (int conn_index, int buffer_idx, long flags);

Parameters

Param eter Descript i on

conn_index integer Index in to a table of connect ion descriptors. The first descriptor is 1.

buffer_idx integer Index in to the buffer table.

flags long Tuxedo flags. (Please see Tuxedo documentat ion for val id flags.)

Example

Do_Tuxtpconnect(1, "CON_TEST1", 0, TPSENDONLY);
Do_Tuxtpalloc(2, "FML", 4096);
Do_TuxFinit(2); /* For: tpsend */
Do_TuxFMLData(test_string, 0, "Test string");
Do_Tuxtpsend(1, 2, TPRECVONLY);

Do_Tuxtpsprio

Calls the Tuxedo tpsprio command which sets the priori ty for the next request sent.

QALoad 5.02

697

Note: The atmi.h header file, usually found in the Tuxedo \include directory, defines symbolic contants for the
standard Tuxedo flags.

Syntax

Do_Tuxtpsprio(int priority, long flags);

Parameters

Param eter Descript i on

priority integer Priori ty for next request.

flags long Tuxedo flags. (Please see Tuxedo documentat ion for val id flags.)

Example

Do_Tuxtpsprio(100, TPABSOLUTE);

Do_Tuxtpterm

Terminates QALoad ’s connect ion to the Tuxedo server.

Syntax

void Do_Tuxtpterm();

Parameters

None.

Example

Do_Tuxtpterm();

Do_TuxUseCert ificates

Used by the system to set the cert i ficates flag when using Peoplesoft cert i ficates. See Do_Tuxcertsubstr for
more in formation.

Note: This command is generally used as internal to QALoad .

Syntax

void Do_TuxUseCertificates(int flag);

Parameters

flag int: 1 to use certificates, 0 to not use certificates.

Example

Do_TuxUseCertificates(1)

Do_Tuxxoctet

Loads the specified data in to a tpal located buffer of type X_OCTET.

If the buffer is too small to hold the data, Do_Tuxxoctet generates an error message.

Note: Tuxedo buffer types X_OCTET and Carray are interchangeable when you create a script, the
Do_Tuxcarray command will store data into buffers of type X_OCTET.

QALoad 5.02

698

Syntax

void Do_Tuxxoctet(int buffer_idx, char * data);

Parameters

Param eter Descript i on

buffer_idx integer Index in to the buffer table.

data char * Pointer to an encoded string contain ing the data to place in to the buffer.

Example

Do_Tuxtpalloc(3, "X_OCTET", 30);
Do_Tuxxoctet(3,"~&01&02&03";)

Uniface

Uniface Index

BEGIN_UENTITY
Begins the declarat ion of the UNIFACE ent i ty.

DO_Logfi le_URB
Controls whether or not to generate a log fi le showing load test in formation, such as requests and
responses.

DO_URB_Asci iToHex
Converts the ASCII hexadecimal represented buffer in to i ts binary representat ion.

DO_URB_Init
Sets al l necessary in ternal variables needed to load test a UNFACE script .

DO_URB_setoprretry
Sets the number of t imes to retry an operat ion act ivat ion.

DO_URB_ubin2uf
Converts binary data to a UNIFACE format.

DO_URB_udbl2uf
Converts a double float to a UNIFACE format.

DO_URB_uecreate
Creates a UNIFACE environment.

DO_URB_uedelete
Closes a UNIFACE environment.

DO_URB_uentcreo
Creates an occurrence and makes i t current. Note that th is funct ion can only be used with ent i ty
parameters and not with occurrence parameters.

DO_URB_uentoccs
Returns the number of occurrences that exist in an ent i ty.

QALoad 5.02

699

DO_URB_uentseto
Makes an occurrence current. Note that th is funct ion can only be used with ent i ty parameters and not
with occurrence parameters.

DO_URB_ufreeh
Deletes a handle.

DO_URB_uinstdel
Deletes a component instance.

DO_URB_uinstnew
Creates an instance of a component.

DO_URB_uinstopr
Returns a handle to an operat ion.

DO_URB_ulist2uf
Converts an i tem l ist to a UNIFACE format.

DO_URB_ulistdel
Deletes an i tem.

DO_URB_ulist free
Frees a UNIFACE l ist .

DO_URB_ulistget
Gets an i tem.

DO_URB_ulistnew
Creates an i tem l ist .

DO_URB_ulistput
Puts an i tem.

DO_URB_ulistput l ist
Copies an i tem from a specified source to the i tems of a l ist .

DO_URB_ulistputx
Puts an i tem.

DO_URB_ulong2uf
Converts a long to a UNIFACE format.

DO_URB_unifree
Frees memory.

DO_URB_uniname
Returns the name. Cal ler suppl ies al located memory for name. Field names are not supported.

DO_URB_uopract
Act ivates an operat ion.

DO_URB_uoprprms
Returns the number of parameters.

QALoad 5.02

700

DO_URB_uprmdir
Returns the direct ion of a parameter.

DO_URB_uprmgeth
Gets a reference to a parameter of an operat ion or a field of an ent i ty. Or detaches a parameter from an
operat ion.

DO_URB_uprmtype
Returns the data type of a parameter or ent i ty field.

DO_URB_ustr2uf
Converts a string to a UNIFACE format.

DO_URB_uuf2bin
Converts a UNIFACE format to binary data.

DO_URB_uuf2dbl
Converts a UNIFACE format to a double float.

DO_URB_uuf2l ist
Converts a UNIFACE format to i tem l ist .

DO_URB_uuf2long
Converts a UNIFACE format to a long.

DO_URB_uuf2str
Converts a UNIFACE format to string.

END_UENTITY
Ends the declarat ion of a UNIFACE ent i ty.

UFIELD
Declares or defines a UNIFACE field.

Uniface

BEGIN_UENTITY
Begins the declarat ion of the UNIFACE ent i ty.

DO_Logfi le_URB
Controls whether or not to generate a log fi le showing load test in formation, such as requests and
responses.

DO_URB_Asci iToHex
Converts the ASCII hexadecimal represented buffer in to i ts binary representat ion.

DO_URB_Init
Sets al l necessary in ternal variables needed to load test a UNFACE script .

DO_URB_setoprretry
Sets the number of t imes to retry an operat ion act ivat ion.

DO_URB_ubin2uf
Converts binary data to a UNIFACE format.

QALoad 5.02

701

DO_URB_udbl2uf
Converts a double float to a UNIFACE format.

DO_URB_uecreate
Creates a UNIFACE environment.

DO_URB_uedelete
Closes a UNIFACE environment.

DO_URB_uentcreo
Creates an occurrence and makes i t current. Note that th is funct ion can only be used with ent i ty
parameters and not with occurrence parameters.

DO_URB_uentoccs
Returns the number of occurrences that exist in an ent i ty.

DO_URB_uentseto
Makes an occurrence current. Note that th is funct ion can only be used with ent i ty parameters and not
with occurrence parameters.

DO_URB_ufreeh
Deletes a handle.

DO_URB_uinstdel
Deletes a component instance.

DO_URB_uinstnew
Creates an instance of a component.

DO_URB_uinstopr
Returns a handle to an operat ion.

DO_URB_ulist2uf
Converts an i tem l ist to a UNIFACE format.

DO_URB_ulistdel
Deletes an i tem.

DO_URB_ulist free
Frees a UNIFACE l ist .

DO_URB_ulistget
Gets an i tem.

DO_URB_ulistnew
Creates an i tem l ist .

DO_URB_ulistput
Puts an i tem.

DO_URB_ulistput l ist
Copies an i tem from a specified source to the i tems of a l ist .

DO_URB_ulistputx

QALoad 5.02

702

Puts an i tem.

DO_URB_ulong2uf
Converts a long to a UNIFACE format.

DO_URB_unifree
Frees memory.

DO_URB_uniname
Returns the name. Cal ler suppl ies al located memory for name. Field names are not supported.

DO_URB_uopract
Act ivates an operat ion.

DO_URB_uoprprms
Returns the number of parameters.

DO_URB_uprmdir
Returns the direct ion of a parameter.

DO_URB_uprmgeth
Gets a reference to a parameter of an operat ion or a field of an ent i ty. Or detaches a parameter from an
operat ion.

DO_URB_uprmtype
Returns the data type of a parameter or ent i ty field.

DO_URB_ustr2uf
Converts a string to a UNIFACE format.

DO_URB_uuf2bin
Converts a UNIFACE format to binary data.

DO_URB_uuf2dbl
Converts a UNIFACE format to a double float.

DO_URB_uuf2l ist
Converts a UNIFACE format to i tem l ist .

DO_URB_uuf2long
Converts a UNIFACE format to a long.

DO_URB_uuf2str
Converts a UNIFACE format to string.

END_UENTITY
Ends the declarat ion of a UNIFACE ent i ty.

UFIELD
Declares or defines a UNIFACE field.

BEGIN_UENTITY

Begins the declarat ion of a Uniface ent i ty.

QALoad 5.02

703

Syntax

BEGIN_UENTITY(UNIFACE_ENTITY* entname, char* name, char* model, char* type, char* trxdef);

Parameters

Param eter Descript i on

entname The pointer to the UNIFACE_ENTITY structure.

name The name of the Uniface ent i ty.

model The name of the Uniface model.

type The type of the Uniface ent i ty.

trxdef The defin i t ions of the transact ions that are defined for the ent i ty.

Example

BEGIN_UENTITY(race_formula1, "RACE", "FORMULA1", "SZ1",
"RACE,FORMULA1,SZ1,RACE_ID,N2,M,10,100,4,1.101,U_VERSION,S2,0,100,1,TRACK_CD,S2,0"
",100,3,RACE_DATE,D2,0,102,8,RACE_NAME,S2,0,100,40,RACE_DISTANCE,N2,10,100,2,RACE"
"_CONDITIONS,S2,0,100,80,RACE_NOTES,S2,128,100,0,0,0,0,0,,0,0,0,,0,0,0,,")

DO_Logfile_URB

Controls whether or not to generate a log fi le showing load test in formation, such as requests and
responses.

If th is command is specified, i t generates one log fi le for every virtual user running the script . Log fi les
appear in the script directory in the form URBnnnn.cap, where nnnn indicates the zero-based number of the
virtual user execut ing th is script . By default , th is opt ion is disabled. This command is automatical ly
included in the script by QALoad ’s Convert faci l i ty.

Syntax

int DO_Logfile_URB(int flag);

Parameters

Param eter Descript i on

flag Turns logging on or off (TRUE/FALSE).

Example

DO_Logfile_URB(TRUE);

DO_URB_AsciiToHex

Converts the ASCII hexadecimal represented buffer in to i ts binary representat ion.

Syntax

char * DO_URB_AsciiToHex(char * data);

Parameters

Param eter Descript i on

QALoad 5.02

704

data Pointer to a nul l terminated string contain ing the hexadecimal values of
the bytes to be converted to binary.

Example

strcpy(urb_buffer,"0212035903107248");
DO_URB_AsciiToHex(urb_buffer);
DO_URB_ubin2uf(4, 8, urb_buffer, 8);

DO_URB_Init

Sets al l necessary in ternal variables needed to load test a Uniface script .

Syntax

long DO_URB_Init(PLAYERINFO *s_info);

Parameters

Param eter Descript i on

s_info Pointer to a PLAYERINFO structure

Example

DO_URB_Init(s_info);

DO_URB_setoprret ry

Sets the number of t imes to retry an operat ion act ivat ion.

Syntax

long DO_URB_setoprretry(int Retries, int Sleep);

Parameters

Param eter Descript i on

Retries Number of t imes to retry operat ion.

Sleep Time to sleep between ret ries.

DO_URB_ubin2uf

Converts binary data to a Uniface format.

Syntax

long DO_URB_ubin2uf(int nHandle,innt seqNr,char extData,long nLen);

Parameters

Param eter Descript i on

nHandle In teger handle to an operat ion or ent i ty.

seqNr In teger sequence number.

QALoad 5.02

705

extData Char external binary data.

nLen Long external data length.

Example

strcpy(urb_buffer,"0212035903107248");
DO_URB_AsciiToHex(urb_buffer);
DO_URB_ubin2uf(4, 8, urb_buffer, 8);

DO_URB_udbl2uf

Converts a double float to a Uniface format.

Syntax

DO_URB_udbl2uf(nHandle,seqNr,dData);

Parameters

Param eter Descript i on

nHandle In teger handle to an operat ion or ent i ty.

seqNr In teger sequence number.

dData External double float data.

Example

DO_URB_udbl2uf(3,1,12345);

DO_URB_uecreate

Creates a Uniface environment.

This funct ion sets up a Uniface environment based on the configurat ion parameters: command l ine,
assignment fi le, and working directory. Only one Uniface environment is al lowed per process. The
appl icat ion start-up shel l parameter apsName is ignored.

Syntax

DO_URB_uecreate(runmode,hInstance,cmdLine,asnName,apsName, workDir,envHandle)

Parameters

Param eter Descript i on

runMode How Uniface is executed (batch or in teract ive). Always set th is to 1.

hInstance Instance handle. hInstance can be set to 0.

cmdLine Command l ine.

asnName .asn fi le name.

apsName .aps fi le name.

workDir Working directory.

QALoad 5.02

706

envHandle Uniface environment handle.

Example

DO_URB_uecreate(1, 0, "/ini=c:\\usys72\\bin\\usys.ini /pri=48",
"c:\\u@training\\formula1\\formula1.asn", "", "c:\\u@training\formula1\formula1", 0);

DO_URB_uedelete

Closes a Uniface environment.

Syntax

long DO_URB_uedelete(int envHandle,int level);

Parameters

Param eter Descript i on

envHandle Uniface environment handle

level Shutdown level.

Example

...

...
DO_URB_uecreate(1, 0, "/ini=c:\\usys72\\bin\\usys.ini /pri=48",
"c:\\u@training\\formula1\\formula1.asn", "", "c:\\u@training\formula1\formula1", 0);
...
...
...
DO_URB_uedelete(0, -1);
...
...

DO_URB_uentcreo

Creates an occurrence and makes i t current. Note that th is funct ion can only be used with ent i ty
parameters and not with occurrence parameters.

Syntax

long DO_URB_uentcreo(int nHandle,long occNr);

Parameters

Param eter Descript i on

nHandle Handle to the ent i ty.

occNr Sequence number of the occurrence.

Example

DO_URB_uinstnew(0, "S_ANY", "", "","", 1, "", 1);
DO_URB_uinstopr(1, "STORE ", 0, 2); |
DO_URB_uprmgeth(2, 1, FALSE, 3); /* get an entity handle */
DO_URB_uentcreo(3, 1); / * creates first occurrence */
DO_URB_ustr2uf(3, 1, "Field 1 data");

QALoad 5.02

707

DO_URB_ustr2uf(3, 2, "Field 2 data");
...
...
DO_URB_ufreeh(3);
DO_URB_ufreeh(2);
...
...

DO_URB_uentoccs

Gets the number of occurrences that exist in an ent i ty.

Syntax

long DO_URB_uentoccs(int nHandle, long *occNr);

<>0 = not successful

Parameters

Param eter Descript i on

nHandle Handle to a Uniface ent i ty.

occNr (output) Number of occurrences that exist in the ent i ty.

DO_URB_uentseto

Makes an occurrence current. Note that th is funct ion can only be used with ent i ty parameters and not
with occurrence parameters.

Syntax

long DO_URB_uentseto(int nHandle,long occNr);

Parameters

Param eter Descript i on

nHandle Handle to an ent i ty.

occNr Sequence number of the occurrence.

Example

char *pString;
DO_URB_uinstnew(0, "S_ANY", "", "","", 1, "", 1);
DO_URB_uinstopr(1, "RETRIEVE ", 0, 2);
DO_URB_uopract(2);
DO_URB_uprmgeth(2, 1, FALSE, 3); /* get an entity handle */
DO_URB_entseto(3, 1); /* make occurrence 1 current*/
DO_URB_uuf2str(3, 1, pString);
...
... /* do some manipulation with the returned string */
...
DO_URB_unifree(3, pString); /* free the memory */
DO_URB_ufreeh(3);
DO_URB_ufreeh(2);

QALoad 5.02

708

DO_URB_ufreeh

Deletes a handle.

Syntax

long DO_URB_ufreeh(int nHandle);

Parameters

Param eter Descript i on

nHandle Any handle. Parameter hAny is always set to 0.

Example

DO_URB_uinstnew(0, "S_RACE", "", "", 1, "", 1);
DO_URB_uinstopr(1, "LIST", 0, 2);
...
...
DO_URB_ufreeh(2);

DO_URB_uinstdel

Deletes a component instance.

Syntax

long DO_URB_uinstdel(int nHandle);

Parameters

Param eter Descript i on

nHandle Handle to a component instance.

Example

...

...
DO_URB_uinstnew(0, "S_RACE", "", "", 1, "", 1);
...
...
DO_URB_uinstdel(1);
DO_URB_ufreeh(1)

DO_URB_uinstnew

Creates an instance of a component.

The parameter opt ions is UDEFAULT_COMM_MODE, USYNC_COMM_MODE, and so on. The parameter
propList is a NULL-character separated i tem l ist . The i tem l ist ends in two NULL characters. The parameters
compID, and propList are opt ional.

Syntax

DO_URB_uinstnew(envHandle,compName,compID,instName,options, propList,newHandle);

Parameters

Param eter Descript i on

QALoad 5.02

709

envHandle Uniface environment handle.

compName Component name.

compID Component ID.

instName Instance name.

options Options.

propList Property l ist .

newHandle Instance handle.

Example

...

...
DO_URB_uecreate(1, 0, "/ini=c:\\usys72\\bin\\usys.ini /pri=48",
"c:\\u@training\\formula1\\formula1.asn", "", "c:\\u@training\formula1\formula1", 0);
...
...
DO_URB_uinstnew(0, "S_RACE", "", "", 1, "", 1);
DO_URB_uinstopr(1, "LIST", 0, 2);

DO_URB_uinstopr

Returns a handle to an operat ion.

Syntax

long DO_URB_uinstopr(int nHandle,long oprName,int newHandle);

Parameters

Param eter Descript i on

nHandle Handle to a component instance.

oprName Operat ion name.

newHandle Handle to the instance.

Example

...

...
DO_URB_uinstnew(0, "S_RACE", "", "", 1, "", 1);
DO_URB_uinstopr(1, "LIST", 0, 2);
...
...
DO_URB_ufreeh(2);

DO_URB_ulist2uf

Converts an i tem l ist to a Uniface format.

Syntax

long DO_URB_ulist2uf(int nHandle,int SeqNr,int hList);

QALoad 5.02

710

Parameters

Param eter Descript i on

nHandle Handle to an operat ion or ent i ty.

SeqNr Sequence number.

hList Handle to i tem l ist .

Example

DO_URB_uinstnew(0,"S_SERVICE","","",1,"",1);
DO_URB_uinstopr(1, "DO_SOMETHING", 0, 2);
...
...
DO_URB_ulistnew(2, 3); /* FIELDS */
DO_URB_ulistput(3, UITEM_OPTION_NONE, 1, "", "TRACK_NAME");
DO_URB_ulistput(3, UITEM_OPTION_NONE, 2, "", "TRACK_MAP");
...
DO_URB_ulist2uf(2, 3, 3); /* Field Name "FIELDS" */
DO_URB_ufreeh(3);

DO_URB_ulistdel

Deletes an i tem.

This funct ion corresponds with the Proc statement del i tem. If UITEM_OPTION_NONE is specified, a value
for index is expected and ID is ignored. If UITEM_OPTION_ID or UITEM_OPTION_ID_CASE is specified,
index is ignored and a value for ID is expected.

Syntax

long DO_URB_ulistdel(int nHandle, int option, int index,char id);

Parameters

Param eter Descript i on

nHandle Handle to an i tem l ist .

option Option (UITEM_OPTION_NONE, UITEM_OPTION_ID or
UITEM_OPTION_ID_CASE).

index Item index.

id pointer to an i tem ID.

Example

DO_URB_uinstnew(0,"S_SERVICE","","",1,"",1);
DO_URB_uinstopr(1, "DO_SOMETHING", 0, 2);
...
...
DO_URB_uopract(2);
...
...
DO_URB_ulistnew(2, 3); /* FIELDS */
...
...
DO_URB_uuf2list(2, 3, 3); /* Field Name "FIELDS" */
DO_URB_ulistdel(3, UITEM_OPTION_NONE, 1, "");

QALoad 5.02

711

DO_URB_ufreeh(3);
...
...

DO_URB_ulist free

Frees a Uniface l ist .

Syntax

long DO_URB_ulistfree(int Handle);

Parameters

Param eter Descript i on

Handle Handle to a l ist to be freed.

DO_URB_ulistget

Gets an i tem.

This funct ion corresponds with the Proc statement get i tem. The parameter opt ion is
UITEM_OPTION_NONE, UITEM_OPTION_ID or UITEM_OPTION_ID_CASE. If UITEM_OPTION_NONE is
specified, a value for index is expected and ID is ignored. If UITEM_OPTION_ID or
UITEM_OPTION_ID_CASE is specified, index is ignored and a value for ID is expected.

Syntax

DO_URB_ulistget(nHandle,option,index,id,pItem)

Parameters

Param eter Descript i on

nHandle Handle to an i tem l ist .

option Option (UITEM_OPTION_NONE, UITEM_OPTION_ID or
UITEM_OPTION_ID_CASE).

index Item index.

id Pointer to an i tem ID.

pItem Item

Example

char *pItem;
...
...
DO_URB_uinstnew(0,"S_SERVICE","","",1,"",1);
DO_URB_uinstopr(1, "DO_SOMETHING", 0, 2);
...
...
DO_URB_uopract(2);
...
DO_URB_ulistnew(2, 3); /* FIELDS */
...
DO_URB_uuf2list(2, 3, 3); /* Field Name "FIELDS" */
DO_URB_ulistget(3, UITEM_OPTION_NONE, 1, "", &pItem);

QALoad 5.02

712

...
/* use pItem */
DO_URB_unifree(3, pItem);
DO_URB_ufreeh(3);
...
...

DO_URB_ulistnew

Creates an i tem l ist .

Syntax

long DO_URB_ulistnew(int nHandle, int newHandle);

Parameters

Param eter Descript i on

nHandle Any handle.

newHandle A handle to an i tem l ist .

Example

DO_URB_uinstnew(0,"S_SERVICE","","",1,"",1);
DO_URB_uinstopr(1, "DO_SOMETHING", 0, 2);
...
...
DO_URB_ulistnew(2, 3); /* FIELDS */
DO_URB_ulistput(3, UITEM_OPTION_NONE, 1, "", "TRACK_NAME");
DO_URB_ulistput(3, UITEM_OPTION_NONE, 2, "", "TRACK_MAP");
...
DO_URB_ulist2uf(2, 3, 3); /* Field Name "FIELDS" */
DO_URB_ufreeh(3);
...
...

DO_URB_ulistput

Puts an i tem.

This funct ion corresponds with the Proc statement put i tem. The parameter opt ion is
UITEM_OPTION_NONE, UITEM_OPTION_ID or UITEM_OPTION_ID_CASE. If UITEM_OPTION_NONE is
specified, a value for index is expected and ID is ignored. If UITEM_OPTION_ID or
UITEM_OPTION_ID_CASE is specified, index is ignored and a value for ID is expected.

Syntax

long DO_URB_ulistput(int nHandle,int option,int index, char *id,char *item);

Parameters

Param eter Descript i on

nHandle Handle to an i tem l ist .

option Option (UITEM_OPTION_NONE, UITEM_OPTION_ID or
UITEM_OPTION_ID_CASE).

index Item index.

QALoad 5.02

713

id Pointer to an i tem ID.

item Pointer to an i tem.

Example

DO_URB_uinstnew(0,"S_SERVICE","","",1,"",1);
DO_URB_uinstopr(1, "DO_SOMETHING", 0, 2);
...
...
DO_URB_ulistnew(2, 3); /* FIELDS */
DO_URB_ulistput(3, UITEM_OPTION_NONE, 1, "", "TRACK_NAME");
DO_URB_ulistput(3, UITEM_OPTION_NONE, 2, "", "TRACK_MAP");
...
DO_URB_ulist2uf(2, 3, 3); /* Field Name "FIELDS" */
DO_URB_ufreeh(3);
...
...

DO_URB_ulistput list

Copies an i tem from a specified source to the i tems of a l ist .

Syntax

long DO_URB_ulistputlist(int nHandleDst, int index, char *id, int nHandleSrc);

Parameters

Param eter Descript i on

nHandleDst Handle to the dest inat ion ent i ty.

index Item index.

id Pointer to an i tem ID.

nHandleSrc Handle to the source ent i ty.

DO_URB_ulistputx

Puts an i tem.

Syntax

long DO_URB_ulistput(int nHandle, char *id, char *item, int sepcntr);

Parameters

Param eter Descript i on

nHandle Handle to an i tem l ist .

id Pointer to an i tem ID.

item Pointer to an i tem.

sepcntr Number of separators for l ist and subl ists.

QALoad 5.02

714

Example

DO_URB_ulistnew(2, 3); /* FIELDS */
DO_URB_ulistputx(3, "ORDER", "52", 2);

DO_URB_ulong2uf

Converts a long to a Uniface format.

Syntax

long DO_URB_ulong2uf(int nHandle, int seqNr, long lData);

Parameters

Param eter Descript i on

nHandle Handle to an operat ion or ent i ty.

seqNr Sequence number.

lData External long data.

Example

DO_URB_ulong2uf(3,1,1234);

DO_URB_unifree

Frees memory.

Syntax

long DO_URB_unifree(int nHandle, void *pvoid);

Parameters

Param eter Descript i on

nHandle Any handle.

pvoid Pointer to start address of al located memory.

Example

char *pString;
DO_URB_uinstnew(0, "S_ANY", "", "","", 1, "", 1);
DO_URB_uinstopr(1, "RETRIEVE ", 0, 2);
DO_URB_uopract(2);
DO_URB_uprmgeth(2, 1, FALSE, 3); /* get an entity handle */
DO_URB_entseto(3, 1); /* make occurrence 1 current*/
DO_URB_uuf2str(3, 1, pString);
...
...
/* do some manipulation with the returned string */
...
DO_URB_unifree(3, pString); /* free the memory */
DO_URB_ufreeh(3);
DO_URB_ufreeh(2);

QALoad 5.02

715

DO_URB_uniname

Returns the name. Cal ler suppl ies al located memory for name. Field names are not supported.

When working with an operat ion handle, i f seqNr is 0, the name of the operat ion i tself is returned. If
seqNr is a legal parameter sequence number, the name of the parameter is returned.

Syntax

long DO_URB_uniname(int nHandle, int seqNr, int maxLen, char name);

Parameters

Param eter Descript i on

nHandle Handle to a component instance, operat ion, or parameter.

seqNr Sequence number.

maxLen Size of name.

name Name of the instance.

Example

char sName[128];
...
...
DO_URB_uinstnew(0, "S_RACE", "", "", 1, "", 1);
DO_URB_uinstopr(1, "LIST", 0, 2);
DO_URB _uniname(2, 1, 128, sName);
...
...
DO_URB_ufreeh(2);

DO_URB_uopract

Activates an operat ion.

Syntax

long DO_URB_uopract(int nHandle);

Parameters

Param eter Descript i on

nHandle Handle to an operat ion.

Example

DO_URB_uinstnew(0, "S_RACE", "", "", 1, "", 1);
DO_URB_uinstopr(1, "LIST", 0, 2);
DO_URB_ustr2uf(2, 1, "19990101");
DO_URB_ustr2uf(2, 2, "19991231");
DO_URB_uopract(2);
...
...
DO_URB_ufreeh(2);

QALoad 5.02

716

DO_URB_uoprprms

Returns the number of parameters.

Syntax

long DO_URB_uoprprms(int nHandle,long *pPrmCount);

Parameters

Param eter Descript i on

nHandle Handle to an operat ion

pPrmCount Pointer to number of parameters

Example

int nParameterCount;
...
...
DO_URB_uinstnew(0, "S_RACE", "", "", 1, "", 1);
DO_URB_uinstopr(1, "LIST", 0, 2);
DO_URB_uoprprms(2, &nParameterCount);
...
...
DO_URB_ufreeh(2);

DO_URB_uprmdir

Returns the direct ion of a parameter.

Syntax

long DO_URB_uprmdir(int nHandle, int seqNr,int *pDirection);

Parameters

Param eter Descript i on

nHandle Handle to an operat ion.

seqNr Sequence number.

pDirection Pointer to parameter direct ion. The parameter pDirect ion is UPARM_INPUT
for IN direct ion, UPARM_OUTPUT for OUT direct ion, and (UPARM_INPUT
| UPARM_OUTPUT) for INOUT direct ion. It is not relevant whether or not
parameter data is attached to the operat ion parameter l ist .

Example

int nDirection;
DO_URB_uinstnew(0, "S_RACE", "", "", 1, "", 1);
DO_URB_uinstopr(1, "LIST", 0, 2);
DO_URB_uprmgeth(2, 1, FALSE, 3);
DO_URB_uprmdir(3, &nDirection);
...
...
DO_URB_ufreeh(3);
DO_URB_ufreeh(2);

QALoad 5.02

717

DO_URB_uprmgeth

Gets a reference to a parameter of an operat ion or a field of an ent i ty. Or detaches a parameter from an
operat ion.

Syntax

long DO_URB_uprmgeth(int nHandle, int seqNr, int bDetach, int newHandle);

Parameters

Param eter Descript i on

nHandle Handle to an operat ion or ent i ty parameter.

seqNr Sequence number.

bDetach Detach data opt ion (TRUE/FALSE).

newHandle Handle to a basic parameter, ent i ty parameter or ent i ty field. If parameter
bDetach is TRUE, the data of handle nHandle is detached from the
constructed handle nHandle. It is not al lowed to detach a field from an
ent i ty.

Example

int nType;
DO_URB_uinstnew(0, "S_RACE", "", "", 1, "", 1);
DO_URB_uinstopr(1, "LIST", 0, 2);
DO_URB_uprmgeth(2, 1, FALSE, 3);
DO_URB_uprmtype(3, &nType);
...
...
DO_URB_ufreeh(3);
DO_URB_ufreeh(2);

DO_URB_uprmtype

Returns the data type of a parameter or ent i ty field.

Syntax

long DO_URB_uprmtype(int nHandle, int *pType);

Parameters

Param eter Descript i on

nHandle Handle to a parameter or ent i ty field.

pType Pointer to data type. The parameter pType is UTYPE_STRING,
UTYPE_BOOLEAN, and so on.

Example

int nType;
DO_URB_uinstnew(0, "S_RACE", "", "", 1, "", 1);
DO_URB_uinstopr(1, "LIST", 0, 2);
DO_URB_uprmgeth(2, 1, FALSE, 3);
DO_URB_uprmtype(3, &nType);
...

QALoad 5.02

718

DO_URB_ufreeh(3);
...

DO_URB_ust r2uf

Converts a string to a Uniface format.

Syntax

long DO_URB_ustr2uf(int nHandle,int seqNr,char *string)

Parameters

Param eter Descript i on

nHandle Handle to an operat ion or ent i ty.

seqNr Sequence number.

string Pointer to an external string data.

Example

DO_URB_uinstnew(0, "S_RACE", "", "", 1, "", 1);
DO_URB_uinstopr(1, "LIST", 0, 2);
DO_URB_ustr2uf(2, 1, "19990101");

DO_URB_uuf2bin

Converts a Uniface format to binary data.

Syntax

long DO_URB_uuf2bin(int nHandle, int seqNr, char pExData, long *pnLen);

Parameters

Param eter Descript i on

nHandle Handle to an operat ion or ent i ty.

seqNr Sequence number.

pExData External (output) binary data. The parameter pExtData is al located on the
heap. It has to be freed wi th DO_URB_unifree.

pnLen Pointer to external data length.

Example

char *pBinaryData;
long nLen;
...
...
DO_URB_uinstnew(0, "S_ANY", "", "", "", 1, "", 1);
DO_URB_uinstopr(1, "RETRIEVE", 0, 2);
DO_URB_uopract(2);
DO_URB_uuf2bin (2, 4, &pBinaryData, &nLen);
...
...

QALoad 5.02

719

DO_URB_unifree(2 , pBinaryData);
DO_URB_ufreeh(2);

DO_URB_uuf2dbl

Converts a Uniface format to a double float.

Syntax

long DO_URB_uuf2dbl(int nHandle,int seqNr,double *pdData);

Parameters

Param eter Descript i on

nHandle Handle to an operat ion or ent i ty.

seqNr Sequence number.

pdData Pointer to an external double float data.

Example

double dNumber;
...
...
DO_URB_uinstnew(0, "S_ANY", "", "","", 1, "", 1);
DO_URB_uinstopr(1, "RETRIEVE ", 0, 2);
DO_URB_uopract(2);
DO_URB_uuf2dbl (2, 2, &dNumber);
...
...
DO_URB_ufreeh(2);

DO_URB_uuf2list

Converts a Uniface format to i tem l ist .

Syntax

long DO_URB_uuf2list(int nHandle, int seqNr, int hList);

Parameters

Param eter Descript i on

nHandle Handle to an operat ion or ent i ty

seqNr Sequence number

hList Create the parameter hList with DO_URB_ulistnew before cal l ing th is
funct ion. After using the item l ist , free i t using DO_URB_ulistdel

Example

char *pItem;
...
...
DO_URB_uinstnew(0,"S_SERVICE","","",1,"",1);
DO_URB_uinstopr(1, "DO_SOMETHING", 0, 2);
...
...

QALoad 5.02

720

DO_URB_uopract(2);
...
...
DO_URB_ulistnew(2, 3); /* FIELDS */
...
DO_URB_uuf2list(2, 3, 3); /* Field Name "FIELDS" */
DO_URB_ulistget(3, UITEM_OPTION_NONE, 1, "", &pItem);
...
/* use pItem */
DO_URB_unifree(3, pItem);
DO_URB_ufreeh(3);

DO_URB_uuf2long

Converts a Uniface format to a long.

Syntax

long DO_URB_uuf2long(int nHandle, int seqNr, long *plData);

Parameters

Param eter Descript i on

nHandle Handle to an operat ion or ent i ty.

seqNr Sequence number.

plData Pointer to external long data.

Example

long lNumber;
...
...
DO_URB_uinstnew(0, "S_ANY", "", "","", 1, "", 1);
DO_URB_uinstopr(1, "RETRIEVE ", 0, 2);
DO_URB_uopract(2);
DO_URB_uuf2long (2, 1, &lNumber);
...
...
DO_URB_ufreeh(2);
...
...

DO_URB_uuf2st r

Converts a Uniface format to string.

Syntax

long DO_URB_uuf2str(int nHandle,int SeqNr,char **pExString);

Parameters

Param eter Descript i on

nHandle Handle to an operat ion or ent i ty

SeqNr Sequence number

QALoad 5.02

721

pExString External string data. The parameter pExString is al located on the heap. It
has to be freed with DO_URB_unifree.

Example

char *pString;
...
...
DO_URB_uinstnew(0, "S_ANY", "", "","", 1, "", 1);
DO_URB_uinstopr(1, "RETRIEVE ", 0, 2);
DO_URB_uopract(2);
DO_URB_uuf2str (2, 3, &pString);
..
..
DO_URB_unifree(2 , pString);
DO_URB_ufreeh(2);

END_UENTITY

Ends the declarat ion of a Uniface ent i ty.

Syntax

END_UENTITY(UNIFACE_ENTITY* pointer, UNIFACE_ENTITY* pointee);

Parameters

Param eter Descript i on

pointer New pointer for the ent i ty.

pointee The original pointer used in BEGIN_UENTITY as entname.

Example

END_UENTITY(RACE_FORMULA1, race_formula1);

UFIELD

Declares or defines a Uniface field.

Syntax

UFIELD (char* name, char* type, int size, char* index);

Parameters

Param eter Descript i on

name Field name.

type Data and interface type.

size Length of the field.

index If the field is a key for the ent i ty, th is field holds the index.

Example

UFIELD("RACE_ID", "N2", 4, "1.101");

QALoad 5.02

722

Uniface Polyserver (Versions 7.2.04 - 7.2.06)

Uniface Polyserver Index

Note: These commands apply only to Uniface Versions 7.2.04 through 7.2.06.

DO_Logfi le_PSV
Starts or stops the cal l logging.

DO_PSV_bin2uf
Converts binary data to a Uniface field.

DO_PSV_clean
Cleans the Polyserver middleware in terface.

DO_PSV_close
Close at least one database table.

DO_PSV_commit
Commits a transact ion.

DO_PSV_creocc
Creates an empty occurrence in the h it l ist .

DO_PSV_delete
Deletes a record.

DO_PSV_fclose
Closes a fi le on a server.

DO_PSV_fetch
Fetches a record from a table or locks a record.

DO_PSV_fki l l
Deletes a fi le from the server.

DO_PSV_fopen
Opens a fi le on the server.

DO_PSV_fread
Reads a fi le.

DO_PSV_free
Frees al l al located memory for a specified ent i ty.

DO_PSV_fwrite
Writes a stream of bytes to a polyserver fi le.

DO_PSV_in it
In i t ial izes the Polyserver middleware in terface.

DO_PSV_logoff
Closes a polyserver path previously opened with a cal l to DO_PSV_logon.

QALoad 5.02

723

DO_PSV_logon
Opens a path to a polyserver.

DO_PSV_long2uf
Converts a long number to a Uniface field.

DO_PSV_modify
Modifies the mode of act ion of a database table.

DO_PSV_ndelete
Deletes or nul l i fies a set of records.

DO_PSV_open
Opens or creates a table, or generates the Data Defin i t ion Language (DDL) to create a table or creates SL
scripts to handle referent ial constraints.

DO_PSV_remotepath
Provides and prepares an encrypted path for a remote assignment.

DO_PSV_rol lback
Rol ls back the transact ion .

DO_PSV_select
Selects records from a table that match a specified profi le.

DO_PSV_selectdb
Select using aggregate funct ions.

DO_PSV_setocc
Makes the specified occurrence current.

DO_PSV_sql
Submits a DML statement to the DBMS.

DO_PSV_sselect
Performs a single select on the specified ent i ty.

DO_PSV_str2uf
Converts a C string in to a Uniface field.

DO_PSV_uf2bin
Converts a Uniface field in to i ts binary representat ion.

DO_PSV_uf2dbl
Converts a Uniface field in to a double.

DO_PSV_uf2long
Converts a Uniface field in to a long.

DO_PSV_uf2str
Converts a Uniface field in to a C nul l terminated string.

DO_PSV_update
Updates the current record.

QALoad 5.02

724

DO_PSV_write
Inserts a new record.

DO_PSV_xtrans
Sends an X transact ion to a polyserver.

DO_PSV_zero
Sends a 0 transact ion to a polyserver.

DO_Logfile_PSV

Starts or stops the cal l logging.

DO_Logfi lePSV starts or stops the logging of the Polyserver middleware in terface cal ls. The cal ls are logged
in a fi le named psvnnnn.cap, where n is the virtual user number.

Syntax

int DO_Logfile_PSV(int flag);

Parameters

Param eter Descript i on

flag TRUE or FALSE

Example

DO_Logfile_PSV(TRUE);

DO_PSV_bin2uf

Converts binary data to a Uniface field.

DO_PSV_bin2uf converts binary data in to a Uniface field. If the name of the field is not a field of the
ent i ty, i t is automatical ly associated as a local variable for the ent i ty and replaced inside where clauses
when the name appears between "%%" and "%%%".

Syntax

int DO_PSV_bin2uf(UNIFACE_ENTITY *pentity, char *fieldname, char *value, int size);

Return Value

0 = successful
< 0 = error. See the error descript ions that fol low:

! 201 Unknown protocol specified.

! 202 An error was detected in the returned transact ion. This error is sent to the Player as a
warning, since i t may be normal.

! 203 Inval id length of a parameter.

! 204 A unexpected NULL parameter was passed to a cal l .

! 205 Inval id ent i ty. The ent i ty passed as a parameter to a cal l is inval id. It may not have been
opened using the DO_PSV_open cal l .

! 206 Inval id field name.

QALoad 5.02

725

! 207 Inval id h it . The h it used in an update or in a fetch cal l is not the result of a
DO_PSV_select cal l . The h it header is inval id.

! 401 Inval id token found while parsing where clause or aggregate statements.

! 501 No h it .

Parameters

Param eter Descript i on

pentity A pointer to a UNIFACE_ENTITY structure.

fieldname The name of the field or local variable that wi l l get the data.

value The value to be converted to a Uniface field.

size The size of the data buffer to convert .

Example

char *pBinl
pBin = "1234567890";
DO_PSV_bin2uf(ONE_ENTITY_PKTEST_SZ1,"F1",pBin,10);

DO_PSV_clean

Cleans the Polyserver middleware in terface.

DO_PSV_clean clears and unloads the network layer from the in terface.

Syntax

int DO_PSV_clean(POLY_PROTOCOL *pproto);

Return Value

0 = successful
< 0 = error. See the error descript ions that fol low:

! 201 Unknown protocol specified.

! 202 An error was detected in the returned transact ion. This error is sent to the Player as a
warning, since i t may be normal.

! 203 Inval id length of a parameter.

! 204 A unexpected NULL parameter was passed to a cal l .

! 205 Inval id ent i ty. The ent i ty passed as a parameter to a cal l is inval id. It may not have been
opened using the DO_PSV_open cal l .

! 206 Inval id field name.

! 207 Inval id h it . The h it used in an update or in a fetch cal l is not the result of a
DO_PSV_select cal l . The h it header is inval id.

! 401 Inval id token found while parsing where clause or aggregate statements.

! 501 No h it .

Parameters

Param eter Descript i on

QALoad 5.02

726

pproto A pointer to a protocol structure. pproto has to be in i t ial ized with the
DO_PSV_in it cal l .

Example

int rhobot_script(s_info);
PLAYER_INFO *s_info;

{
...
POLY_PROTOCOL PROTO;
...
DO_PSV_init(&PROTO, POLY_NET_TCP, s_info, 0);

{script body ...}

DO_PSV_clean(&PROTO);
REPORT(SUCCESS);
EXIT();
return(0);
}

DO_PSV_close

Close at least one database table.

DO_PSV_close requests the polyserver process to close al l the opened tables passed as parameters to the
cal l . The "..." as a parameter means that the number of parameters for th is cal l is not fixed.

The parameter l ist has to be terminated by the NULL parameter. If the NULL parameter does not terminate
the l ist , the API keeps reading the stack for extra parameters, causing unexpected results.

Syntax

int DO_PSV_close(UNIFACE_ENTITY *pentity, char *mode, UNIFACE_ENTITY *pexentity, ...);

Return Value

0 = successful
< 0 = error. See the error descript ions that fol low:

! 201 Unknown protocol specified.

! 202 An error was detected in the returned transact ion. This error is sent to the Player as a
warning, since i t may be normal.

! 203 Inval id length of a parameter.

! 204 A unexpected NULL parameter was passed to a cal l .

! 205 Inval id ent i ty. The ent i ty passed as a parameter to a cal l is inval id. It may not have been
opened using the DO_PSV_open cal l .

! 206 Inval id field name.

! 207 Inval id h it . The h it used in an update or in a fetch cal l is not the result of a
DO_PSV_select cal l . The h it header is inval id.

! 401 Inval id token found while parsing where clause or aggregate statements.

! 501 No h it .

QALoad 5.02

727

Parameters

Param eter Descript i on

pentity Pointer to a base UNIFACE_ENTITY structure to be closed.

mode The mode to be used to close the table(s). For more explanat ion on the
mode parameter, refer to the Uniface Database Driver Cookbook.

pexentity A pointer to a UNIFACE_ENTITY to be closed.

(...) pexent i ty pointer(s) to ext ra UNIFACE_ENTITY to be closed.

Example

int rhobot_script(s_info)
PLAYER_INFO *s_info;
{
...
POLY_PROTOCOL PROTO;
LOGON_PATH PATH_1;

BEGIN_UENTITY($def_uniface_si1, "$DEF", "UNIFACE", "SI1", "$DEF,UNIFACE,SI1")
END_UENTITY($DEF_UNIFACE_SI1, $def_uniface_si1);

BEGIN_UENTITY(one_ent_pktest_sz1, "ONE_ENT", "PKTEST",
"SZ1","ONE_ENT,PKTEST,SZ1,PK,N2,M,10,100,2,1.1 01,F1,S2, 0,100,20,")
UFIELD("PK", "N2", 2, "1.101")
UFIELD("F1", "S2", 20, "")
END_UENTITY(ONE_ENT_PKTEST_SZ1, one_ent_pktest_sz1);

BEGIN_UENTITY(many_ent_pktest_sz1, "MANY_ENT", "PKTEST",
"SZ1","MANY_ENT,PKTEST,SZ1,PK,N2,M,10,100,2, 1.101,FK,N2,M,10,100,2,1.102,F1,S2,0,100,20,")
UFIELD("PK", "N2", 2, "1.101")
UFIELD("FK", "N2", 2, "1.102")
UFIELD("F1", "S2", 20, "")
END_UENTITY(MANY_ENT_PKTEST_SZ1, many_ent_pktest_sz1);

DO_PSV_init(&PROTO, POLY_NET_TCP, s_info, 0);
BEGIN_TRANSACTION();
DO_PSV_logon(&PROTO, &PATH_1, "myhost+12000", "user", "password", "PSV1");
DO_PSV_open(&PATH_1, $DEF_UNIFACE_SI1, "00FE");
...
DO_PSV_open(&PATH_1, ONE_ENT_PKTEST_SZ1, "00C8");
...
DO_PSV_open(&PATH_1, MANY_ENT_PKTEST_SZ1, "00C8");
{script body ...}
...
DO_PSV_close($DEF_UNIFACE_SI1, "0000", $DEF_UNIFACE_SI1,
ONE_ENT_PKTEST_SZ1, MANY_ENT_PKTEST_SZ1, NULL);
DO_PSV_logoff(&PATH_1);
END_TRANSACTION();
DO_PSV_clean(&PROTO);
REPORT(SUCCESS);
EXIT();
return(0);
}

DO_PSV_commit

Commits a transact ion.

QALoad 5.02

728

Commits the transact ion on the logon path specified by the pent i ty and pexent i ty. Note that the last
ent i ty specified in the parameter l ist has to be the NULL value. Not insert ing the NULL value as the last
parameter produces unexpected results.

Syntax

int DO_PSV_commit(UNIFACE_ENTITY *pentity, char *mode, UNIFACE_ENTITY *pexentity, ...,
NULL);

Return Value

0 = successful
< 0 = error. See the error descript ions that fol low:

! 201 Unknown protocol specified.

! 202 An error was detected in the returned transact ion. This error is sent to the Player as a
warning, since i t may be normal.

! 203 Inval id length of a parameter.

! 204 A unexpected NULL parameter was passed to a cal l .

! 205 Inval id ent i ty. The ent i ty passed as a parameter to a cal l is inval id. It may not have been
opened using the DO_PSV_open cal l .

! 206 Inval id field name.

! 207 Inval id h it . The h it used in an update or in a fetch cal l is not the result of a
DO_PSV_select cal l . The h it header is inval id.

! 401 Inval id token found while parsing where clause or aggregate statements.

! 501 No h it .

Parameters

Param eter Descript i on

pentity A base pointer to a UNIFACE_ENTITY structure.

mode The mode of execut ion.
0000: perform a normal commit.
0001: perform the first phase of a two phase commit.
0002: perform the second phase of a two phase commit.

pexentity Pointer(s) to UNIFACE_ENTITY structure(s) describing extra tables
part icipat ing in the commit.

Example

int rhobot_script(s_info)
PLAYER_INFO *s_info;

{

...

POLY_PROTOCOL PROTO;
LOGON_PATH PATH_1;

BEGIN_UENTITY($def_uniface_si1, "$DEF", "UNIFACE", "SI1", "$DEF,UNIFACE,SI1")
END_UENTITY($DEF_UNIFACE_SI1, $def_uniface_si1);

BEGIN_UENTITY(one_ent_pktest_sz1, "ONE_ENT", "PKTEST",
"SZ1","ONE_ENT,PKTEST,SZ1,PK,N2,M,10,100,2,1.101,F1,S 2,0,100,20,")

QALoad 5.02

729

UFIELD("PK", "N2", 2, "1.101")
UFIELD("F1", "S2", 20, "")
END_UENTITY(ONE_ENT_PKTEST_SZ1, one_ent_pktest_sz1);

DO_PSV_init(&PROTO, POLY_NET_TCP, s_info, 0);

BEGIN_TRANSACTION();
DO_PSV_logon(&PROTO, &PATH_1, "myhost+12000", "user", "password", "PSV1");
DO_PSV_open(&PATH_1, $DEF_UNIFACE_SI1, "00FE");

...

DO_PSV_open(&PATH_1, ONE_ENT_PKTEST_SZ1, "00C8");
DO_PSV_setocc(ONE_ENT_PKTEST, -1);
DO_PSV_fetch(ONE_ENT_PKTEST, "0004", "0022");
DO_PSV_setocc(ONE_ENT_PKTEST, -1);
DO_PSV_fetch(ONE_ENT_PKTEST, "0004", "0022");
DO_PSV_str2uf(MANY_ENT_PKTEST, "FK","9");
DO_PSV_ndelete(MANY_ENT_PKTEST, "0000", "");
DO_PSV_delete(ONE_ENT_PKTEST, "0000", "0422");

{script body ...}

...

DO_PSV_close($DEF_UNIFACE_SI1, "0000", $DEF_UNIFACE_SI1,
ONE_ENT_PKTEST_SZ1, NULL);
DO_PSV_logoff(&PATH_1);
END_TRANSACTION();
DO_PSV_clean(&PROTO);
REPORT(SUCCESS);
EXIT();
return(0);
}

DO_PSV_creocc

Creates an empty occurrence in the h it l ist .

DO_PSV_creocc creates an empty occurrence in the h it l ist of the ent ity ident i fied by pent i ty.

Syntax

int DO_PSV_creocc(UNIFACE_ENTITY *pentity);

Return Value

0 = successful
< 0 = error. See the error descript ions that fol low:

! 201 Unknown protocol specified.

! 202 An error was detected in the returned transact ion. This error is sent to the Player as a
warning, since i t may be normal.

! 203 Inval id length of a parameter.

! 204 A unexpected NULL parameter was passed to a cal l .

! 205 Inval id ent i ty. The ent i ty passed as a parameter to a cal l is inval id. It may not have been
opened using the DO_PSV_open cal l .

! 206 Inval id field name.

! 207 Inval id h it . The h it used in an update or in a fetch cal l is not the result of a
DO_PSV_select cal l . The h it header is inval id.

QALoad 5.02

730

! 401 Inval id token found while parsing where clause or aggregate statements.

! 501 No h it .

Parameters

Param eter Descript i on

pentity A pointer to a UNIFACE_ENTITY structure.

Example

DO_PSV_creocc(MANY_ENT_PKTEST_SZ1);

DO_PSV_delete

Deletes a record.

DO_PSV_delete deletes the current record in the table specified by pent i ty.

Syntax

int DO_PSV_delete(UNIFACE_ENTITY *pentity,char *mode);

Return Value

0 = successful
< 0 = error. See the error descript ions that fol low:

! 201 Unknown protocol specified.

! 202 An error was detected in the returned transact ion. This error is sent to the Player as a
warning, since i t may be normal.

! 203 Inval id length of a parameter.

! 204 A unexpected NULL parameter was passed to a cal l .

! 205 Inval id ent i ty. The ent i ty passed as a parameter to a cal l is inval id. It may not have been
opened using the DO_PSV_open cal l .

! 206 Inval id field name.

! 207 Inval id h it . The h it used in an update or in a fetch cal l is not the result of a
DO_PSV_select cal l . The h it header is inval id.

! 401 Inval id token found while parsing where clause or aggregate statements.

! 501 No h it .

Parameters

Param eter Descript i on

pentity A pointer to a UNIFACE_ENTITY structure.

mode The mode of execut ion (0000 always zero).

Example

int rhobot_script(s_info)
PLAYER_INFO *s_info;

{

...

QALoad 5.02

731

POLY_PROTOCOL PROTO;
LOGON_PATH PATH_1;

BEGIN_UENTITY($def_uniface_si1, "$DEF", "UNIFACE", "SI1", "$DEF,UNIFACE,SI1")
END_UENTITY($DEF_UNIFACE_SI1, $def_uniface_si1);

BEGIN_UENTITY(one_ent_pktest_sz1, "ONE_ENT", "PKTEST",
"SZ1","ONE_ENT,PKTEST,SZ1,PK,N2,M,10,100,2,1.101,F1,S 2,0,100,20,")
UFIELD("PK", "N2", 2, "1.101")
UFIELD("F1", "S2", 20, "")
END_UENTITY(ONE_ENT_PKTEST_SZ1, one_ent_pktest_sz1);

DO_PSV_init(&PROTO, POLY_NET_TCP, s_info, 0);

BEGIN_TRANSACTION();
DO_PSV_logon(&PROTO, &PATH_1, "myhost+12000", "user", "password", "PSV1");
DO_PSV_open(&PATH_1, $DEF_UNIFACE_SI1, "00FE");

...

DO_PSV_open(&PATH_1, ONE_ENT_PKTEST_SZ1, "00C8");
DO_PSV_setocc(ONE_ENT_PKTEST, -1);
DO_PSV_fetch(ONE_ENT_PKTEST, "0004", "0022");
DO_PSV_delete(ONE_ENT_PKTEST, "0000", "0422");

{script body ...}

...

DO_PSV_close($DEF_UNIFACE_SI1, "0000", $DEF_UNIFACE_SI1,
ONE_ENT_PKTEST_SZ1, NULL);
DO_PSV_logoff(&PATH_1);
END_TRANSACTION();

DO_PSV_clean(&PROTO);
REPORT(SUCCESS);
EXIT();
return(0);
}

DO_PSV_fclose

Closes a fi le on a server.

Syntax

int DO_PSV_fclose(PLOGON_PATH pnet,int fp);

Return Value

0 = successful
< 0 = error. See the error descript ions that fol low:

! 201 Unknown protocol specified.

! 202 An error was detected in the returned transact ion. This error is sent to the Player as a
warning, since i t may be normal.

! 203 Inval id length of a parameter.

! 204 A unexpected NULL parameter was passed to a cal l .

! 205 Inval id ent i ty. The ent i ty passed as a parameter to a cal l is inval id. It may not have been
opened using the DO_PSV_open cal l .

! 206 Inval id field name.

QALoad 5.02

732

! 207 Inval id h it . The h it used in an update or in a fetch cal l is not the result of a
DO_PSV_select cal l . The h it header is inval id.

! 401 Inval id token found while parsing where clause or aggregate statements.

! 501 No h it .

Parameters

Param eter Descript i on

pnet A pointer to a LOGON_PATH structure represent ing an opened path to the
server.

fp A handle to a fi le previously opened using the DO_PSV_fopen cal l .

Example

fp = DO_PSV_fopen(&PATH_1 , "w_start.frm", "0000F");
DO_PSV_fread(&PATH_1, fp, "0000", "1000", NULL, 0);
DO_PSV_fread(&PATH_1, fp, "0000", "0200", NULL, 0);
DO_PSV_fclose(&PATH_1, fp);

DO_PSV_fetch

Fetches a record from a table or locks a record.

The current record in the h it l ist ident i fies exact ly one record. This is the record to be fetched.

Syntax

int DO_PSV_fetch(UNIFACE_ENTITY *pentity, char *mode, char *hitstatus);

Return Value

0 = successful
< 0 = error. See the error descript ions that fol low:

! 201 Unknown protocol specified.

! 202 An error was detected in the returned transact ion. This error is sent to the Player as a
warning, since i t may be normal.

! 203 Inval id length of a parameter.

! 204 A unexpected NULL parameter was passed to a cal l .

! 205 Inval id ent i ty. The ent i ty passed as a parameter to a cal l is inval id. It may not have been
opened using the DO_PSV_open cal l .

! 206 Inval id field name.

! 207 Inval id h it . The h it used in an update or in a fetch cal l is not the result of a
DO_PSV_select cal l . The h it header is inval id.

! 401 Inval id token found while parsing where clause or aggregate statements.

! 501 No h it .

Parameters

Param eter Descript i on

pentity A pointer to a UNIFACE_ENTITY structure that has been previously

QALoad 5.02

733

in i t ial ized by a cal l to DO_PSV_open.

mode The mode of execut ion.
0000: fetches the current record in the h it l ist . Update the entry in the
h it l ist .
0001: fetches the current record and locks i t exclusively.
0002: locks the current record without fetching the data.

DO_PSV_fkill

Deletes a fi le from the server.

Syntax

int DO_PSV_fkill(PLOGON_PATH pnet,char *name, char *mode);

Return Value

0 = successful
< 0 = error. See the error descript ions that fol low:

! 201 Unknown protocol specified.

! 202 An error was detected in the returned transact ion. This error is sent to the Player as a
warning, since i t may be normal.

! 203 Inval id length of a parameter.

! 204 A unexpected NULL parameter was passed to a cal l .

! 205 Inval id ent i ty. The ent i ty passed as a parameter to a cal l is inval id. It may not have been
opened using the DO_PSV_open cal l .

! 206 Inval id field name.

! 207 Inval id h it . The h it used in an update or in a fetch cal l is not the result of a
DO_PSV_select cal l . The h it header is inval id.

! 401 Inval id token found while parsing where clause or aggregate statements.

! 501 No h it .

Parameters

Param eter Descript i on

pnet A pointer to a LOGON_PATH structure represent ing an opened path to the
server.

name The name of the fi le on the server.

mode The Uniface mode used to delete the fi le. For more descript ion on the
mode, refer to the Uniface Database Driver Cookbook.

Example

DO_PSV_fkill(&PATH_1, "w_start.frm", "00000");

DO_PSV_fopen

Opens a fi le on the server.

QALoad 5.02

734

DO_PSV_open wil l open a fi le on the server. The cal l returns a fi le handle to be used in the subsequent fi le
related cal ls.

Syntax

int DO_PSV_fopen(PLOGON_PATH pnet, char *name,char *mode);

Return Value

0 = fai lure
> 0 = handle to the fi le

Parameters

Param eter Descript i on

pnet A pointer to a LOGON_PATH structure represent ing an opened path to the
server.

name The name of the fi le on the server.

mode The Uniface mode used to delete the fi le. For more descript ion on the
mode, refer to the Uniface Database Driver Cookbook.

Example

fp = DO_PSV_fopen(&PATH_1 , "w_start.frm", "0000F");
DO_PSV_fread(&PATH_1, fp, "0000", "1000", NULL, 0);
DO_PSV_fread(&PATH_1, fp, "0000", "0200", NULL, 0);
DO_PSV_fclose(&PATH_1, fp);

DO_PSV_fread

See also Uniface Polyserver

Reads a fi le.

DO_PSV_fread reads a specified number of bytes from a fi le on the server.

Syntax

int DO_PSV_fread(PLOGON_PATH pnet, int fp,char *type, char *mode,char *buffer,int size);

Return Value

0 = number of bytes read
< 0 = error. See the error descript ions that fol low:

! 201 Unknown protocol specified.

! 202 An error was detected in the returned transact ion. This error is sent to the Player as a
warning, since i t may be normal.

! 203 Inval id length of a parameter.

! 204 A unexpected NULL parameter was passed to a cal l .

! 205 Inval id ent i ty. The ent i ty passed as a parameter to a cal l is inval id. It may not have been
opened using the DO_PSV_open cal l .

! 206 Inval id field name.

! 207 Inval id h it . The h it used in an update or in a fetch cal l is not the result of a
DO_PSV_select cal l . The h it header is inval id.

QALoad 5.02

735

! 401 Inval id token found while parsing where clause or aggregate statements.

! 501 No h it .

Parameters

Param eter Descript i on

pnet A pointer to a LOGON_PATH structure represent ing an opened path to the
server.

fp A handle to a fi le previously opened using the DO_PSV_fopen cal l .

type Type read.

mode Mode read.

buffer A pointer to a buffer that wi l l receive the content of the fi le.

size The size of the buffer

Example

fp = DO_PSV_fopen(&PATH_1 , "w_start.frm", "0000F");
DO_PSV_fread(&PATH_1, fp, "0000", "1000", NULL, 0);
DO_PSV_fread(&PATH_1, fp, "0000", "0200", NULL, 0);
DO_PSV_fclose(&PATH_1, fp);

DO_PSV_free

Frees al l al located memory for a specified ent i ty.

Syntax

int DO_PSV_free(UNIFACE_ENTITY *pentity);

Return Value

0 = successful
< 0 = error. See the error descript ions that fol low:

! 201 Unknown protocol specified.

! 202 An error was detected in the returned transact ion. This error is sent to the Player as a
warning, since i t may be normal.

! 203 Inval id length of a parameter.

! 204 A unexpected NULL parameter was passed to a cal l .

! 205 Inval id ent i ty. The ent i ty passed as a parameter to a cal l is inval id. It may not have been
opened using the DO_PSV_open cal l .

! 206 Inval id field name.

! 207 Inval id h it . The h it used in an update or in a fetch cal l is not the result of a
DO_PSV_select cal l . The h it header is inval id.

! 401 Inval id token found while parsing where clause or aggregate statements.

! 501 No h it .

QALoad 5.02

736

Parameters

Param eter Descript i on

pentity A pointer to a UNIFACE_ENTITY structure.

Example

DO_PSV_free($DEF_UNIFACE_SI1);

DO_PSV_fwrite

Writes a stream of bytes to a polyserver fi le.

Syntax

DO_PSV_fwrite(PLOGON_PATH pnte, int fp, char *type, char mode, char *buffer, int size);

Return Value

0 = number of bytes read
< 0 = error. See the error descript ions that fol low:

! 201 Unknown protocol specified.

! 202 An error was detected in the returned transact ion. This error is sent to the Player as a
warning, since i t may be normal.

! 203 Inval id length of a parameter.

! 204 A unexpected NULL parameter was passed to a cal l .

! 205 Inval id ent i ty. The ent i ty passed as a parameter to a cal l is inval id. It may not have been
opened using the DO_PSV_open cal l .

! 206 Inval id field name.

! 207 Inval id h it . The h it used in an update or in a fetch cal l is not the result of a
DO_PSV_select cal l . The h it header is inval id.

! 401 Inval id token found while parsing where clause or aggregate statements.

! 501 No h it .

Parameters

Param eter Descript i on

pnet A pointer to a LOGON_PATH structure represent ing an opened path to
the server.

fp A handle to a fi le previously opened using the DO_PSV_fopen cal l .

type Type read.

mode Mode read.

buffer A pointer to a buffer that wi l l receive the content of the fi le.

size The size of the buffer.

QALoad 5.02

737

DO_PSV_init

In i t ial izes the Polyserver middleware in terface.

DO_PSV_in it in i t ial izes the middleware in terface. Only POLY_NET_TCP network in terface is current ly
supported.

The IOLevel is used to ask the Polyserver to return the IO debugging messages back to the cl ient in terface.
The messages are displayed on the Player window when the Debug Trace opt ion is selected on the
Conductor’s Test In formation Window, Script Assignment tab. Use the IOLevel sett ing for debugging
purposes only. Having an IOLevel greater than zero may affect the t im ing result during a load test.

Syntax

int DO_PSV_init(POLY_PROTOCOL *pproto, int type, PPLAYER_INFO s_info, int Iolevel);

Return Value

0 = successful
< = error. See the error descript ions that fol low:

! 201 Unknown protocol specified.

! 202 An error was detected in the returned transact ion. This error is sent to the Player as a
warning, since i t may be normal.

! 203 Inval id length of a parameter.

! 204 A unexpected NULL parameter was passed to a cal l .

! 205 Inval id ent i ty. The ent i ty passed as a parameter to a cal l is inval id. It may not have been
opened using the DO_PSV_open cal l .

! 206 Inval id field name.

! 207 Inval id h it . The h it used in an update or in a fetch cal l is not the result of a
DO_PSV_select cal l . The h it header is inval id.

! 401 Inval id token found while parsing where clause or aggregate statements.

! 501 No h it .

Parameters

Param eter Descript i on

pproto Pointer to a POLY_PROTOCOL stucture.

int type In terface type, only POLY_NET_TCP is current ly supported.

s_info Player in fo structure.

int Iolevel Polyserver debugging IO Level (0-512).

Example

int rhobot_script(s_info)
PLAYER_INFO *s_info;

{

...

POLY_PROTOCOL PROTO;

...

DO_PSV_init(&PROTO, POLY_NET_TCP, s_info, 0);

QALoad 5.02

738

{script body ...}

DO_PSV_clean(&PROTO);
REPORT(SUCCESS);
EXIT();
return(0);
}

DO_PSV_logoff

Closes a polyserver path previously opened with a cal l to DO_PSV_logon.

Syntax

int DO_PSV_logoff(PLOGON_PATH pnet);

Return Value

0 = successful
< 0 = error. See the error descript ions that fol low:

! 201 Unknown protocol specified.

! 202 An error was detected in the returned transact ion. This error is sent to the Player as a
warning, since i t may be normal.

! 203 Inval id length of a parameter.

! 204 A unexpected NULL parameter was passed to a cal l .

! 205 Inval id ent i ty. The ent i ty passed as a parameter to a cal l is inval id. It may not have been
opened using the DO_PSV_open cal l .

! 206 Inval id field name.

! 207 Inval id h it . The h it used in an update or in a fetch cal l is not the result of a
DO_PSV_select cal l . The h it header is inval id.

! 401 Inval id token found while parsing where clause or aggregate statements.

! 501 No h it .

Parameters

Param eter Descript i on

pnet A pointer to a LOGON_PATH structure previously in i t ial ized with a cal l to
DO_PSV_logon.

Example

int rhobot_script(s_info)
PLAYER_INFO *s_info;

{

...

POLY_PROTOCOL PROTO;
LOGON_PATH PATH_1;

...

DO_PSV_init(&PROTO, POLY_NET_TCP, s_info, 0);

BEGIN_TRANSACTION();
DO_PSV_logon(&PROTO, &PATH_1, "myhost+12000", "user", "password", "PSV1");

QALoad 5.02

739

{script body ...}

DO_PSV_logoff(&PATH_1);
END_TRANSACTION();

DO_PSV_clean(&PROTO);
REPORT(SUCCESS);
EXIT();
return(0);
}

DO_PSV_logon

Creates and opens a new path to a polyserver process.

A Uniface appl icat ion may open mult iple paths to the same host. If a Uniface ent i ty is defined on a path
that has not yet been opened, a DO_PSV_logon cal l is needed. If the Uniface appl icat ion requires mult iple
paths to be opened for mult iple transact ion handl ing, a DO_PSV_logon cal l is needed as well .

Syntax

int DO_PSV_logon(POLY_PROTOCOL *pproto,PLOGON_PATH pnet, char *host, char *user, char
*passwd, char *path);

Return Value

0 = successful
< 0 = error. See the error descript ions that fol low:

! 201 Unknown protocol specified.

! 202 An error was detected in the returned transact ion. This error is sent to the Player as a
warning, since i t may be normal.

! 203 Inval id length of a parameter.

! 204 A unexpected NULL parameter was passed to a cal l .

! 205 Inval id ent i ty. The ent i ty passed as a parameter to a cal l is inval id. It may not have been
opened using the DO_PSV_open cal l .

! 206 Inval id field name.

! 207 Inval id h it . The h it used in an update or in a fetch cal l is not the result of a
DO_PSV_select cal l . The h it header is inval id.

! 401 Inval id token found while parsing where clause or aggregate statements.

! 501 No h it .

Parameters

Param eter Descript i on

pproto A pointer to a POLY_PROTOCOL structure previously in i t ial ized with a cal l
to DO_PSV_in it .

pnet A pointer to a LOGON_PATH structure that l contains al l the in formation
related to the opened path.

host The name of the host server running the polyserver process. The form
hostname+port is accepted. If the port is not specified, the in terface searches
the current cl ient services f i le for the polyserver entry.

QALoad 5.02

740

user User ID.

passwd Password.

path The name of the path the server logon process uses to create the polyserver
process on the host.

Example

int rhobot_script(s_info)
PLAYER_INFO *s_info;

{
...

POLY_PROTOCOL PROTO;
LOGON_PATH PATH_1;

...

DO_PSV_init(&PROTO, POLY_NET_TCP, s_info, 0);

BEGIN_TRANSACTION();

DO_PSV_logon(&PROTO, &PATH_1, "myhost+12000", "user", "password", "PSV1");

{script body ...}

DO_PSV_logoff(&PATH_1);

END_TRANSACTION();

DO_PSV_clean(&PROTO);
REPORT(SUCCESS);
EXIT();
return(0);
}

DO_PSV_long2uf

Converts a long number to a Uniface field.

DO_PSV_long2uf converts a number with a long representat ion to a Uniface field belonging to the ent i ty
pent i ty. If the name of the field is not a field of the ent i ty, i t is automatical ly associated as a local variable
for the ent i ty and replaced inside where clauses when the name appears between "%%" and "%%%".

Syntax

int DO_PSV_long2uf(UNIFACE_ENTITY *pentity, char *fieldname,long lValue);

Return Value

0 = successful
< 0 = error. See the error descript ions that fol low:

! 201 Unknown protocol specified.

! 202 An error was detected in the returned transact ion. This error is sent to the Player as a
warning, since i t may be normal.

! 203 Inval id length of a parameter.

! 204 A unexpected NULL parameter was passed to a cal l .

! 205 Inval id ent i ty. The ent i ty passed as a parameter to a cal l is inval id. It may not have been
opened using the DO_PSV_open cal l .

QALoad 5.02

741

! 206 Inval id field name.

! 207 Inval id h it . The h it used in an update or in a fetch cal l is not the result of a
DO_PSV_select cal l . The h it header is inval id.

! 401 Inval id token found while parsing where clause or aggregate statements.

! 501 No h it .

Parameters

Param eter Descript i on

pentity A pointer to a UNIFACE_ENTITY structure.

fieldname The name of the field or local variable that gets the value.

lValue The value.

Example

long lvalue;
DO_PSV_long2uf(ONE_ENTITY_PKTEST_SZ1, "PK", lvalue);

DO_PSV_modify

Modifies the mode of act ion of a database table.

DO_PSV_modify modifies the way Uniface manipulates the data of a database ent i ty. It is strongly
recommended not to change th is cal l , since i t may change the behavior of the polyserver, thus not
reproducing accurate performance results.

Note that the DO_PSV_modify cal l does not expect any return values from the host, making t im ing values
for th is cal l i rrelevant.

The modify cal ls are generated when a component has different ent i ty propert ies.

Syntax

int DO_PSV_modify(UNIFACE_ENTITY *pentity, char *extrainfo);

Return Value

None

Parameters

Param eter Descript i on

pentity A pointer to a UNIFACE_ENTITY structure that has previously been
in i t ial ized with a cal l to DO_PSV_open.

extrainfo Binary in formation to be sent to the polyserver process:

Stat ic 4 total IDs

 total IDs *4 IDs

 1 noupdate

 1 readbykey

QALoad 5.02

742

 1 udynopt

 1 release

 4 l ist fld

 l ist fld *1 fieldsubsett ing (1/0)

Example

int rhobot_script(s_info)
PLAYER_INFO *s_info;

{
...

POLY_PROTOCOL PROTO;
LOGON_PATH PATH_1;

BEGIN_UENTITY($def_uniface_si1, "$DEF", "UNIFACE", "SI1", "$DEF,UNIFACE,SI1")
END_UENTITY($DEF_UNIFACE_SI1, $def_uniface_si1);

BEGIN_UENTITY(one_ent_pktest_sz1, "ONE_ENT", "PKTEST",
"SZ1","ONE_ENT,PKTEST,SZ1,PK,N2,M,10,100,2,1.101,F1,S 2,0,100,20,")
UFIELD("PK", "N2", 2, "1.101")
UFIELD("F1", "S2", 20, "")
END_UENTITY(ONE_ENT_PKTEST_SZ1, one_ent_pktest_sz1);

BEGIN_UENTITY(many_ent_pktest_sz1, "MANY_ENT", "PKTEST",
"SZ1","MANY_ENT,PKTEST,SZ1,PK,N2,M,10,100,2,1.101,FK, N2,M,10,100,2,1.102,F1,S2,0,100,20,")
UFIELD("PK", "N2", 2, "1.101")
UFIELD("FK", "N2", 2, "1.102")
UFIELD("F1", "S2", 20, "")
END_UENTITY(MANY_ENT_PKTEST_SZ1, many_ent_pktest_sz1);

DO_PSV_init(&PROTO, POLY_NET_TCP, s_info, 0);

BEGIN_TRANSACTION();

DO_PSV_logon(&PROTO, &PATH_1, "myhost+12000", "user", "password", "PSV1");
DO_PSV_open(&PATH_1, $DEF_UNIFACE_SI1, "00FE");

...

DO_PSV_open(&PATH_1, ONE_ENT_PKTEST_SZ1, "00C8");
DO_PSV_modify(ONE_ENT_PKTEST_SZ1, "0000 ! 0002000");
DO_PSV_open(&PATH_1, MANY_ENT_PKTEST_SZ1, "00C8");

{script body ...}

...

DO_PSV_close($DEF_UNIFACE_SI1, "0000", $DEF_UNIFACE_SI1, ONE_ENT_PKTEST_SZ1,
MANY_ENT_PKTEST_SZ1, NULL);
DO_PSV_logoff(&PATH_1);
END_TRANSACTION();

DO_PSV_clean(&PROTO);
REPORT(SUCCESS);
EXIT();
return(0);

DO_PSV_ndelete

Deletes or nul l i fies a set of records.

QALoad 5.02

743

DO_PSV_ndelete deletes or nul l i fies a set of records defined by the sect ion profi le. A profi le is bui l t using
the current occurrence of the table represented by pent i ty and the where clause.

Syntax

int DO_PSV_ndelete(UNIFACE_ENTITY *pentity, char *mode, char *where);

Return Value

0 = successful
< 0 = error. See the error descript ions that fol low:

! 201 Unknown protocol specified.

! 202 An error was detected in the returned transact ion. This error is sent to the Player as a
warning, since i t may be normal.

! 203 Inval id length of a parameter.

! 204 A unexpected NULL parameter was passed to a cal l .

! 205 Inval id ent i ty. The ent i ty passed as a parameter to a cal l is inval id. It may not have been
opened using the DO_PSV_open cal l .

! 206 Inval id field name.

! 207 Inval id h it . The h it used in an update or in a fetch cal l is not the result of a
DO_PSV_select cal l . The h it header is inval id.

! 401 Inval id token found while parsing where clause or aggregate statements.

! 501 No h it .

Parameters

Param eter Descript i on

pentity A pointer to a UNIFACE_ENTITY structure.

mode The mode of execut ion (0000 always zero).

where The where clause associated with the select. If i t starts with WHERE, then
the dml statement is sent to the database. If i t starts with 'U_WHERE
Uniface takes care of generat ing the appropriate select request for the
database.

DO_PSV_open

Opens or creates a table, or generates the Data Defin i t ion Language (DDL) to create a table or creates SL
scripts to handle referent ial constraints.

DO_PSV_open creates and in i t ial izes a UNIFACE_ENTITY structure that holds the in formation that relates
to a part icular ent i ty in the Uniface appl icat ion. The ent i ty structure holds name, model, and a h it l ist for
the ent i ty.

Syntax

int DO_PSV_open(PLOGON_PATH pnet, UNIFACE_ENTITY *pentity, char *mode);

Return Value

0 = successful
< 0 = error. See the error descript ions that fol low:

QALoad 5.02

744

! 201 Unknown protocol specified.

! 202 An error was detected in the returned transact ion. This error is sent to the Player as a
warning, since i t may be normal.

! 203 Inval id length of a parameter.

! 204 A unexpected NULL parameter was passed to a cal l .

! 205 Inval id ent i ty. The ent i ty passed as a parameter to a cal l is inval id. It may not have been
opened using the DO_PSV_open cal l .

! 206 Inval id field name.

! 207 Inval id h it . The h it used in an update or in a fetch cal l is not the result of a
DO_PSV_select cal l . The h it header is inval id.

! 401 Inval id token found while parsing where clause or aggregate statements.

! 501 No h it .

Parameters

Param eter Descript i on

pnet A pointer to a LOGON_PATH previously opened with a cal l to
DO_PSV_logon.

pentity A pointer to a UNIFACE_ENTITY. pent i ty has to be created and defined
using the macros BEGIN_UENTITY, UFIELD, and END_UENTITY. Fai l ing to
use the macros to create the structure generates unexpected results.

mode The Uniface mode used to open the database table. For more descript ion
on the mode, refer to the Uniface Database Driver Cookbook.

Example

int rhobot_script(s_info)
PLAYER_INFO *s_info;

{
...

POLY_PROTOCOL PROTO;
LOGON_PATH PATH_1;

BEGIN_UENTITY($def_uniface_si1, "$DEF", "UNIFACE", "SI1", "$DEF,UNIFACE,SI1")
END_UENTITY($DEF_UNIFACE_SI1, $def_uniface_si1);

BEGIN_UENTITY(one_ent_pktest_sz1, "ONE_ENT", "PKTEST",
"SZ1","ONE_ENT,PKTEST,SZ1,PK,N2,M,10,100,2,1.1 01,F1,S2,0,100,20,")
UFIELD("PK", "N2", 2, "1.101")
UFIELD("F1", "S2", 20, "")
END_UENTITY(ONE_ENT_PKTEST_SZ1, one_ent_pktest_sz1);

BEGIN_UENTITY(many_ent_pktest_sz1, "MANY_ENT", "PKTEST",
"SZ1","MANY_ENT,PKTEST,SZ1,PK,N2,M,10,100,2,1. 101,FK,N2,M,10,100,2,1.102,F1,S2,0,100,20,")
UFIELD("PK", "N2", 2, "1.101")
UFIELD("FK", "N2", 2, "1.102")
UFIELD("F1", "S2", 20, "")
END_UENTITY(MANY_ENT_PKTEST_SZ1, many_ent_pktest_sz1);

DO_PSV_init(&PROTO, POLY_NET_TCP, s_info, 0);

BEGIN_TRANSACTION();
DO_PSV_logon(&PROTO, &PATH_1, "myhost+12000", "user", "password", "PSV1");

QALoad 5.02

745

DO_PSV_open(&PATH_1, $DEF_UNIFACE_SI1, "00FE");

...

DO_PSV_open(&PATH_1, ONE_ENT_PKTEST_SZ1, "00C8");

...

DO_PSV_open(&PATH_1, MANY_ENT_PKTEST_SZ1, "00C8");

{script body ...}

...

DO_PSV_close($DEF_UNIFACE_SI1, "0000", $DEF_UNIFACE_SI1,
ONE_ENT_PKTEST_SZ1, MANY_ENT_PKTEST_SZ1, NULL);
DO_PSV_logoff(&PATH_1);
END_TRANSACTION();

DO_PSV_clean(&PROTO);
REPORT(SUCCESS);
EXIT();
return(0);
}

DO_PSV_remotepath

Provides and prepares an encrypted path for a remote assignment.

Syntax

int DO_URB_remotepath(PLOGON_PATH pnet, char *encrpath);

Return Value

0 = successful
< 0 = error. See the error descript ions that fol low:

! 201 Unknown protocol specified.

! 202 An error was detected in the returned transact ion. This error is sent to the Player as a
warning, since i t may be normal.

! 203 Inval id length of a parameter.

! 204 A unexpected NULL parameter was passed to a cal l .

! 205 Inval id ent i ty. The ent i ty passed as a parameter to a cal l is inval id. It may not have been
opened using the DO_PSV_open cal l .

! 206 Inval id field name.

! 207 Inval id h it . The h it used in an update or in a fetch cal l is not the result of a
DO_PSV_select cal l . The h it header is inval id.

! 401 Inval id token found while parsing where clause or aggregate statements.

! 501 No h it .

Parameters

Param eter Descript i on

pnet A pointer to a LOGON_PATH structure represent ing an opened path to the
server.

encrpath The encrypted path.

QALoad 5.02

746

DO_PSV_rollback

Rolls back the transact ion .

Rol ls back the transact ion on the logon path specified by pent i ty and pexent i ty. Note that the last ent i ty
specified in the parameter l ist has to be the NULL value. Not insert ing the NULL value as the last parameter
produces unexpected results.

Syntax

int DO_PSV_rollback(UNIFACE_ENTITY *pentity, char *mode, UNIFACE_ENTITY *pexentity,
...,NULL);

Return Value

0 = successful
< 0 = error. See the error descript ions that fol low:

! 201 Unknown protocol specified.

! 202 An error was detected in the returned transact ion. This error is sent to the Player as a
warning, since i t may be normal.

! 203 Inval id length of a parameter.

! 204 A unexpected NULL parameter was passed to a cal l .

! 205 Inval id ent i ty. The ent i ty passed as a parameter to a cal l is inval id. It may not have been
opened using the DO_PSV_open cal l .

! 206 Inval id field name.

! 207 Inval id h it . The h it used in an update or in a fetch cal l is not the result of a
DO_PSV_select cal l . The h it header is inval id.

! 401 Inval id token found while parsing where clause or aggregate statements.

! 501 No h it .

Parameters

Param eter Descript i on

pentity A base pointer to a UNIFACE_ENTITY structure.

mode The mode of execut ion (0000 always zero).

pexentity Pointer(s) to UNIFACE_ENTITY structure(s) describing extra tables
part icipat ing in the rol lback.

Example

DO_PSV_rollback(ONE_ENT_PKTEST, "0000", ONE_ENT_PKTEST, MANY_ENT_PKTEST, SYSPK_PKTEST,
NULL);

DO_PSV_select

Selects records from a table that match a specified profi le.

DO_PSV_select sends a select request for the specified database table. The select request bui lds a search
profi le based on the values stored in the current occurrence of the specified ent i ty. Depending on the
mode of act ion, the select request adds new hits to the h it l ist for the ent ity, or discards the h it l ist prior to
making the cal l .

QALoad 5.02

747

The not ion of local variable is also avai lable. This al lows the programmer to move values in to variables
associated with the ent i ty and have the DO_PSV_select cal l to replace them in the where clause. The
replacement is defined as a Uniface string insert ion del im ited by "%%" and "%%%".

Any name but actual field names of the current ent i ty or val id tokens can be used to define local variables.
The convert process automatical ly generates a local variable when i t recognizes a stat ic value in a where
clause. The variables name starts with the "$" sign fol lowed by a number.

Syntax

int DO_PSV_select(UNIFACE_ENTITY *pentity, char *mode, char *maxhits, char *cachesize, char
*where, char *orderby, char *option);

Return Value

0 = successful
< 0 = error. See the error descript ions that fol low:

! 201 Unknown protocol specified.

! 202 An error was detected in the returned transact ion. This error is sent to the Player as a
warning, since i t may be normal.

! 203 Inval id length of a parameter.

! 204 A unexpected NULL parameter was passed to a cal l .

! 205 Inval id ent i ty. The ent i ty passed as a parameter to a cal l is inval id. It may not have been
opened using the DO_PSV_open cal l .

! 206 Inval id field name.

! 207 Inval id h it . The h it used in an update or in a fetch cal l is not the result of a
DO_PSV_select cal l . The h it header is inval id.

! 401 Inval id token found while parsing where clause or aggregate statements.

! 501 No h it .

Parameters

Param eter Descript i on

pentity A pointer to a UNIFACE_ENTITY that has been previously in i t ial ized by a
cal l to DO_PSV_open.

mode The mode of execut ion:

0000: select the first step of the h it l ist .
0001: ident ical to mode 0000, but do not add records to the h it l ist .
0002: profi le match
0003: select the next step in the h it l ist .

maxhits The number of record to select in th is step i f 0, select al l matching records.

cachesize The size of the cache to hold a h it .

where The where clause associated with the select. If i t starts with WHERE, then
the dml statement is sent to the database. If i t starts with U_WHERE,
Uniface taks care of generat ing the appropriate select request for the
database.

orderby The order by clause of the select statement.

QALoad 5.02

748

option The opt ion clause associated with the select statement.

Example

int rhobot_script(s_info)
PLAYER_INFO *s_info;

{
...

POLY_PROTOCOL PROTO;
LOGON_PATH PATH_1;

BEGIN_UENTITY($def_uniface_si1, "$DEF", "UNIFACE", "SI1",
"$DEF,UNIFACE,SI1")
END_UENTITY($DEF_UNIFACE_SI1, $def_uniface_si1);

BEGIN_UENTITY(one_ent_pktest_sz1, "ONE_ENT", "PKTEST",
"SZ1","ONE_ENT,PKTEST,SZ1,PK,N2,M,10,100,2,1.101,F1,S 2,0,100,20,")
UFIELD("PK", "N2", 2, "1.101")
UFIELD("F1", "S2", 20, "")
END_UENTITY(ONE_ENT_PKTEST_SZ1, one_ent_pktest_sz1);

BEGIN_UENTITY(many_ent_pktest_sz1, "MANY_ENT", "PKTEST",
"SZ1","MANY_ENT,PKTEST,SZ1,PK,N2,M,10,100,2,1.101,FK, N2,M,10,100,2,1.102,F1,S2,0,100,20,")
UFIELD("PK", "N2", 2, "1.101")
UFIELD("FK", "N2", 2, "1.102")
UFIELD("F1", "S2", 20, "")
END_UENTITY(MANY_ENT_PKTEST_SZ1, many_ent_pktest_sz1);

DO_PSV_init(&PROTO, POLY_NET_TCP, s_info, 0);

BEGIN_TRANSACTION();
DO_PSV_logon(&PROTO, &PATH_1, "myhost+12000", "user", "password", "PSV1");
DO_PSV_open(&PATH_1, $DEF_UNIFACE_SI1, "00FE");

...

DO_PSV_open(&PATH_1, ONE_ENT_PKTEST_SZ1, "00C8");
DO_PSV_modify(ONE_ENT_PKTEST_SZ1, "0000 ! 0002000");
DO_PSV_open(&PATH_1, MANY_ENT_PKTEST_SZ1, "00C8");

/* This select sample code creates an empty occurrence of an
entity called MANY_ENT_PKTEST, a retrieve profile is
created by setting the value of a field using
DO_PSV_str2uf. As well, a U_WHERE and ORDER BY clauses are
added to the select. When using an SQL compliant database,
the generated SQL statement for this example may look
like:

SELECT PK, FK, F1
FROM MANY_ENT_PKTEST
WHERE (FK = 1 AND F1 != 'HELLO')
ORDER BY F1 DESC

DO_PSV_creocc(MANY_ENT_PKTEST_SZ1);
DO_PSV_str2uf(MANY_ENT_PKTEST_SZ1, "FK","1");

/* read U_WHERE(F1 != "HELLO")
*
* options
*/

DO_PSV_select(MANY_ENT_PKTEST_SZ1, "0000", "000A", "0200", "U_WHERE(F1 != \"HELLO\")",
"ORDER BY PK DESC", "");

{script body ...}

...

QALoad 5.02

749

DO_PSV_close($DEF_UNIFACE_SI1, "0000", $DEF_UNIFACE_SI1, ONE_ENT_PKTEST_SZ1,
MANY_ENT_PKTEST_SZ1, NULL);
DO_PSV_logoff(&PATH_1);
END_TRANSACTION();

DO_PSV_clean(&PROTO);
REPORT(SUCCESS);
EXIT();
return(0);
}

DO_PSV_selectdb

Select using aggregate funct ions.

DO_PSV_selectdb sends aggregate requests to the server. Supported funct ions are:

! TRANSPORT — Passes the value of the specified field of the last selected record.

! SUM — Computes the sum of the specified field in the selected records.

! MAX — Computes the maximum value of the specified field in the selected records.

! MIN — Computes the min imum value of the specif ied field in the selected records.

! COUNT — Computes the number of selected records that contain a value in the specified field.

! AVG — Computes the average value of the specified field in the selected records.

Syntax

int DO_PSV_selectdb(UNIFACE_ENTITY *pentity, char *mode, char *aggregate, char *where, char
*option);

Return Value

0 = successful
< 0 = error. See the error descript ions that fol low:

! 201 Unknown protocol specified.

! 202 An error was detected in the returned transact ion. This error is sent to the Player as a
warning, since i t may be normal.

! 203 Inval id length of a parameter.

! 204 A unexpected NULL parameter was passed to a cal l .

! 205 Inval id ent i ty. The ent i ty passed as a parameter to a cal l is inval id. It may not have been
opened using the DO_PSV_open cal l .

! 206 Inval id field name.

! 207 Inval id h it . The h it used in an update or in a fetch cal l is not the result of a
DO_PSV_select cal l . The h it header is inval id.

! 401 Inval id token found while parsing where clause or aggregate statements.

! 501 No h it .

Parameters

Param eter Descript i on

pentity A pointer to a UNIFACE_ENTITY previously in i t ial ized with a cal l to
DO_PSV_open and associated with the selectdb cal l .

QALoad 5.02

750

aggregate A string represent ing the aggregate select ion.

where A where clause associated with the select ion of records. See DO_PSV_select
for more in formation on the where clause. Local variables are accepted.

Example

int rhobot_script(s_info)
PLAYER_INFO *s_info;

{
...

POLY_PROTOCOL PROTO;
LOGON_PATH PATH_1;

BEGIN_UENTITY($def_uniface_si1, "$DEF", "UNIFACE", "SI1", "$DEF,UNIFACE,SI1")
END_UENTITY($DEF_UNIFACE_SI1, $def_uniface_si1);

BEGIN_UENTITY(one_ent_pktest_sz1, "ONE_ENT", "PKTEST",
"SZ1","ONE_ENT,PKTEST,SZ1,PK,N2,M,10,100,2,1.101,F1, S2,0,100,20,")
UFIELD("PK", "N2", 2, "1.101")
UFIELD("F1", "S2", 20, "")
END_UENTITY(ONE_ENT_PKTEST_SZ1, one_ent_pktest_sz1);

DO_PSV_init(&PROTO, POLY_NET_TCP, s_info, 0);

BEGIN_TRANSACTION();
DO_PSV_logon(&PROTO, &PATH_1, "myhost+12000", "user", "password", "PSV1");
DO_PSV_open(&PATH_1, $DEF_UNIFACE_SI1, "00FE");

...

DO_PSV_open(&PATH_1, ONE_ENT_PKTEST_SZ1, "00C8");
DO_PSV_modify(ONE_ENT_PKTEST_SZ1, "0000 ! 0002000");
DO_PSV_selectdb(ONE_ENT_PKTEST_SZ1,"0000", "MAX(PK)", "", "");

{script body ...}

...

DO_PSV_close($DEF_UNIFACE_SI1, "0000", $DEF_UNIFACE_SI1,
ONE_ENT_PKTEST_SZ1, NULL);
DO_PSV_logoff(&PATH_1);
END_TRANSACTION();

DO_PSV_clean(&PROTO);
REPORT(SUCCESS);
EXIT();
return(0);
}

DO_PSV_setocc

Makes the specified occurrence current.

DO_PSV_setocc makes the occurrence specified by occ current in the pent i ty ent i ty. If the occ is greater
than the last possible occurrence, the last occurrence is made current.

Syntax

int DO_PSV_setocc(UNIFACE_ENTITY *pentity, int occ);

Return Value

0 = success occurrence number
< 0 = error. See the error descript ions that fol low:

QALoad 5.02

751

! 201 Unknown protocol specified.

! 202 An error was detected in the returned transact ion. This error is sent to the Player as a
warning, since i t may be normal.

! 203 Inval id length of a parameter.

! 204 A unexpected NULL parameter was passed to a cal l .

! 205 Inval id ent i ty. The ent i ty passed as a parameter to a cal l is inval id. It may not have been
opened using the DO_PSV_open cal l .

! 206 Inval id field name.

! 207 Inval id h it . The h it used in an update or in a fetch cal l is not the result of a
DO_PSV_select cal l . The h it header is inval id.

! 401 Inval id token found while parsing where clause or aggregate statements.

! 501 No h it .

Parameters

Param eter Descript i on

pentity A pointer to a UNIFACE_ENTITY structure,

occ An occurrence number. -1 means the last occurrence.

Example

DO_PSV_setocc(SYSPK_PKTEST, 1);

DO_PSV_sql

Submits a DML statement to the DBMS.

DO_PSV_sql sends a DML statement to the DBMS on the opened path. The replacement of local variables is
al lowed with th is cal l .

Syntax

int DO_PSV_sql(UNIFACE_ENTITY *pentity, char *mode, char *statement, char *path);

Return Value

0 = successful
< 0 = error. See the error descript ions that fol low:

! 201 Unknown protocol specified.

! 202 An error was detected in the returned transact ion. This error is sent to the Player as a
warning, since i t may be normal.

! 203 Inval id length of a parameter.

! 204 A unexpected NULL parameter was passed to a cal l .

! 205 Inval id ent i ty. The ent i ty passed as a parameter to a cal l is inval id. It may not have been
opened using the DO_PSV_open cal l .

! 206 Inval id field name.

! 207 Inval id h it . The h it used in an update or in a fetch cal l is not the result of a
DO_PSV_select cal l . The h it header is inval id.

QALoad 5.02

752

! 401 Inval id token found while parsing where clause or aggregate statements.

! 501 No h it .

Parameters

Param eter Descript i on

pentity A pointer to a UNIFACE_ENTITY structure.

mode The mode of execut ion:

0000: sends a statement in the nat ive Data M anipulat ion Language
(DML) to the DBMS.
0001: reserved.

0002: sends a statement in the nat ive DML to the DBMS. If the
statement selects data from the database, the column name wil l
appear in the returned rows.
0003: gets subsequent set of rows.

statement A val id SQL statement.

path A val id Uniface path.

Example

LOGON_PATH PATH_1;
BEGIN_UENTITY($def_uniface_si1, "$DEF", "UNIFACE", "SI1", "$DEF,UNIFACE,SI1")
END_UENTITY($DEF_UNIFACE_SI1, $def_uniface_si1);
DO_PSV_open(&PATH_1, $DEF_UNIFACE_SI1, "00FE");

/* sql "select count(*) from one_ent","DEF" */
DO_PSV_sql($DEF_UNIFACE_SI1, "0000", "select count(*) from one_ent", "DEF");

DO_PSV_sselect

Performs a single select on the specified ent i ty.

See the descript ion of DO_PSV_select for a defin i t ion of the single select cal l .

Syntax

int DO_PSV_sselect(UNIFACE_ENTITY *pentity, char *mode, char *where, char *orderby, char
*option);

Return Value

0 = successful
< 0 = error. See the error descript ions that fol low:

! 201 Unknown protocol specified.

! 202 An error was detected in the returned transact ion. This error is sent to the Player as a
warning, since i t may be normal.

! 203 Inval id length of a parameter.

! 204 A unexpected NULL parameter was passed to a cal l .

! 205 Inval id ent i ty. The ent i ty passed as a parameter to a cal l is inval id. It may not have been
opened using the DO_PSV_open cal l .

! 206 Inval id field name.

QALoad 5.02

753

! 207 Inval id h it . The h it used in an update or in a fetch cal l is not the result of a
DO_PSV_select cal l . The h it header is inval id.

! 401 Inval id token found while parsing where clause or aggregate statements.

! 501 No h it .

Parameters

Param eter Descript i on

penity A pointer to a UNIFACE_ENTITY that has been previously in i t ial ized by a
cal l to DO_PSV_open.

mode The mode of execut ion:

0000 select the first step of the h it l ist
0001 ident ical to mode 0000 but do not add records to the h it l ist
0002 profi le match
0003 select the next step in the h it l ist.

where The where clause associated with the select. If i t starts by 'WHERE' that the
dml statement is sent to the database, i f i t starts by 'U_WHERE' Uniface
takse care of generat ing the appropriate select request for the database.

orderby The order by clause of the select statement.

option The opt ion clause associated with the select statement.

Example

int rhobot_script(s_info)
PLAYER_INFO *s_info;

{
...

POLY_PROTOCOL PROTO;
LOGON_PATH PATH_1;

BEGIN_UENTITY($def_uniface_si1, "$DEF", "UNIFACE", "SI1", "$DEF,UNIFACE,SI1")
END_UENTITY($DEF_UNIFACE_SI1, $def_uniface_si1);

BEGIN_UENTITY(one_ent_pktest_sz1, "ONE_ENT", "PKTEST",
"SZ1","ONE_ENT,PKTEST,SZ1,PK,N2,M,10,100,2,1.101,F1,S 2,0,100,20,")
UFIELD("PK", "N2", 2, "1.101")
UFIELD("F1", "S2", 20, "")
END_UENTITY(ONE_ENT_PKTEST_SZ1, one_ent_pktest_sz1);

BEGIN_UENTITY(many_ent_pktest_sz1, "MANY_ENT", "PKTEST",
"SZ1","MANY_ENT,PKTEST,SZ1,PK,N2,M,10,100,2,1.101,FK, N2,M,10,100,2,1.102,F1,S2,0,100,20,")
UFIELD("PK", "N2", 2, "1.101")
UFIELD("FK", "N2", 2, "1.102")
UFIELD("F1", "S2", 20, "")
END_UENTITY(MANY_ENT_PKTEST_SZ1, many_ent_pktest_sz1);

DO_PSV_init(&PROTO, POLY_NET_TCP, s_info, 0);

BEGIN_TRANSACTION();
DO_PSV_logon(&PROTO, &PATH_1, "myhost+12000", "user", "password", "PSV1");
DO_PSV_open(&PATH_1, $DEF_UNIFACE_SI1, "00FE");

...

DO_PSV_open(&PATH_1, ONE_ENT_PKTEST_SZ1, "00C8");
DO_PSV_modify(ONE_ENT_PKTEST_SZ1, "0000 ! 0002000");
DO_PSV_open(&PATH_1, MANY_ENT_PKTEST_SZ1, "00C8");

QALoad 5.02

754

/* This select sample code creates an empty occurrence of an
entity called MANY_ENT_PKTEST, a retrieve profile is
created by setting the value of a field using
DO_PSV_str2uf. As well, U_WHERE and ORDER BY clauses are
added to the select. When using an SQL compliant database,
the generated SQL statement for this example may look
like:

SELECT PK, FK, F1
FROM MANY_ENT_PKTEST
WHERE (FK = 1 AND F1 != 'HELLO')
ORDER BY F1 DESC

DO_PSV_creocc(MANY_ENT_PKTEST_SZ1);
DO_PSV_str2uf(MANY_ENT_PKTEST_SZ1, "FK","1");

/* read U_WHERE(F1 != "HELLO")
*
* options
*/

DO_PSV_select(MANY_ENT_PKTEST_SZ1, "0000", "000A", "0200", "U_WHERE(F1 != \"HELLO\")",
"ORDER BY PK DESC", "");

{script body ...}

...

DO_PSV_close($DEF_UNIFACE_SI1, "0000", $DEF_UNIFACE_SI1, ONE_ENT_PKTEST_SZ1,
MANY_ENT_PKTEST_SZ1, NULL);
DO_PSV_logoff(&PATH_1);
END_TRANSACTION();

DO_PSV_clean(&PROTO);
REPORT(SUCCESS);
EXIT();
return(0);
}

DO_PSV_str2uf

Converts a C string in to a Uniface field.

DO_PSV_str2uf converts a nul l terminated string into a Uniface field. If the dest inat ion field in the ent i ty
pent i ty is a date, datet ime, or t ime field, i t is converted to the proper in ternal Uniface date/ t ime format. If
the name of the field is not a field of the ent i ty, i t is automatical ly associated as a local variable for the
ent i ty and replaced inside where clauses when the name appears between "%%" and "%%%".

Syntax

int DO_PSV_str2uf(UNIFACE_ENTITY *pentity, char *fieldname, char *string);

Return Value

0 = successful
< 0 = error. See the error descript ions that fol low:

! 201 Unknown protocol specified.

! 202 An error was detected in the returned transact ion. This error is sent to the Player as a
warning, since i t may be normal.

! 203 Inval id length of a parameter.

! 204 A unexpected NULL parameter was passed to a cal l .

QALoad 5.02

755

! 205 Inval id ent i ty. The ent i ty passed as a parameter to a cal l is inval id. It may not have been
opened using the DO_PSV_open cal l .

! 206 Inval id field name.

! 207 Inval id h it . The h it used in an update or in a fetch cal l is not the result of a
DO_PSV_select cal l . The h it header is inval id.

! 401 Inval id token found while parsing where clause or aggregate statements.

! 501 No h it .

Parameters

Param eter Descript i on

pentity A pointer to a UNIFACE_ENTITY structure.

fieldname The name of the field or local variable that gets the string.

string The string to be converted to a Uniface field.

Example

DO_PSV_str2uf(MANY_ENT_PKTEST_SZ1, "FK","1");

DO_PSV_uf2bin

Converts a Uniface field in to i ts binary representat ion.

Syntax

int DO_PSV_uf2bin(UNIFACE_ENTITY *pentity, char *fieldname, char *dst, int dsize);

Return Value

0 = successful
< 0 = error. See the error descript ions that fol low:

! 201 Unknown protocol specified.

! 202 An error was detected in the returned transact ion. This error is sent to the Player as a
warning, since i t may be normal.

! 203 Inval id length of a parameter.

! 204 A unexpected NULL parameter was passed to a cal l .

! 205 Inval id ent i ty. The ent i ty passed as a parameter to a cal l is inval id. It may not have been
opened using the DO_PSV_open cal l .

! 206 Inval id field name.

! 207 Inval id h it . The h it used in an update or in a fetch cal l is not the result of a
DO_PSV_select cal l . The h it header is inval id.

! 401 Inval id token found while parsing where clause or aggregate statements.

! 501 No h it .

Parameters

Param eter Descript i on

QALoad 5.02

756

pentity A pointer to a UNIFACE_ENTITY structure.

fieldname The name of the field.

dst A pointer to a buffer that receives the data.

dsize The size of the buffer that receives the data.

Example

#define BIN_AREA_SIZE 2048
char bin_data[BIN_AREA_SIZE];
DO_PSV_uf2bin(TRACK_FORMULA1_SZ1,"TRACK_MAP", bin_data, BIN_AREA_SIZE);

DO_PSV_uf2dbl

Converts a Uniface field in to a double.

Syntax

int DO_PSV_uf2dbl(UNIFACE_ENTITY *pentity, char *fieldname, double *pdbl);

Return Value

0 = successful
< 0 = error. See the error descript ions that fol low:

! 201 Unknown protocol specified.

! 202 An error was detected in the returned transact ion. This error is sent to the Player as a
warning, since i t may be normal.

! 203 Inval id length of a parameter.

! 204 A unexpected NULL parameter was passed to a cal l .

! 205 Inval id ent i ty. The ent i ty passed as a parameter to a cal l is inval id. It may not have been
opened using the DO_PSV_open cal l .

! 206 Inval id field name.

! 207 Inval id h it . The h it used in an update or in a fetch cal l is not the result of a
DO_PSV_select cal l . The h it header is inval id.

! 401 Inval id token found while parsing where clause or aggregate statements.

! 501 No h it .

Parameters

Param eter Descript i on

pentity A pointer to a UNIFACE_ENTITY structure.

fieldname The name of the field.

pdbl A pointer to a double variable that wi l l receive the value.

DO_PSV_uf2long

Converts a Uniface field in to a long.

QALoad 5.02

757

Syntax

int DO_PSV_uf2long(UNIFACE_ENTITY *pentity, char *fieldname, long *plong);

Return Value

0 = successful
< 0 = error. See the error descript ions that fol low:

! 201 Unknown protocol specified.

! 202 An error was detected in the returned transact ion. This error is sent to the Player as a
warning, since i t may be normal.

! 203 Inval id length of a parameter.

! 204 A unexpected NULL parameter was passed to a cal l .

! 205 Inval id ent i ty. The ent i ty passed as a parameter to a cal l is inval id. It may not have been
opened using the DO_PSV_open cal l .

! 206 Inval id field name.

! 207 Inval id h it . The h it used in an update or in a fetch cal l is not the result of a
DO_PSV_select cal l . The h it header is inval id.

! 401 Inval id token found while parsing where clause or aggregate statements.

! 501 No h it .

Parameters

Param eter Descript i on

pentity A pointer to a UNIFACE_ENTITY structure.

fieldname The name of the field.

plong A pointer to a long that wi l l receive the value.

Example

long lValue;

...

DO_PSV_uf2long(ONE_ENTITY_PKTEST_SZ1, "PK", &lValue);
RR__printf("PK :%d\n", lValue);

DO_PSV_uf2st r

Converts a Uniface field in to a C nul l terminated string.

Syntax

int DO_PSV_uf2str(UNIFACE_ENTITY *pentity, char *fieldname, char *dst, int dsize);

Return Value

0 = successful
< 0 = error. See the error descript ions that fol low:

! 201 Unknown protocol specified.

! 202 An error was detected in the returned transact ion. This error is sent to the Player as a
warning, since i t may be normal.

QALoad 5.02

758

! 203 Inval id length of a parameter.

! 204 A unexpected NULL parameter was passed to a cal l .

! 205 Inval id ent i ty. The ent i ty passed as a parameter to a cal l is inval id. It may not have been
opened using the DO_PSV_open cal l .

! 206 Inval id field name.

! 207 Inval id h it . The h it used in an update or in a fetch cal l is not the result of a
DO_PSV_select cal l . The h it header is inval id.

! 401 Inval id token found while parsing where clause or aggregate statements.

! 501 No h it .

Parameters

Param eter Descript i on

pentity A pointer to a UNIFACE_ENTITY structure.

fieldname The name of the field.

dst A pointer to a buffer that receivs the string.

dsize The size of the buffer that receives the string.

Example

#define STR_VALUE_LEN 30
char szValue[STR_VALUE_LEN+1];

...

DO_PSV_uf2str(ONE_ENTITY_PKTEST_SZ1, "F1", szValue, STR_VALUE_LEN);
RR__printf("F1 : %s\n",szValue);

DO_PSV_update

Updates the current record.

Syntax

int DO_PSV_update(UNIFACE_ENTITY *pentity, char *mode, char *hitstatus);

Return Value

0 = successful

< 0 = error. See the error descript ions that fol low:

! 201 Unknown protocol specified.

! 202 An error was detected in the returned transact ion. This error is sent to the Player as a
warning, since i t may be normal.

! 203 Inval id length of a parameter.

! 204 A unexpected NULL parameter was passed to a cal l .

! 205 Inval id ent i ty. The ent i ty passed as a parameter to a cal l is inval id. It may not have been
opened using the DO_PSV_open cal l .

! 206 Inval id field name.

QALoad 5.02

759

! 207 Inval id h it . The h it used in an update or in a fetch cal l is not the result of a
DO_PSV_select cal l . The h it header is inval id.

! 401 Inval id token found while parsing where clause or aggregate statements.

! 501 No h it .

Parameters

Param eter Descript i on

pentity A pointer to a UNIFACE_ENTITY structure represent ing the table of the
record to be updated.

mode The mode of execut ion (0000 always zero).

Example

int rhobot_script(s_info)
PLAYER_INFO *s_info;

{
...

POLY_PROTOCOL PROTO;
LOGON_PATH PATH_1;

BEGIN_UENTITY($def_uniface_si1, "$DEF", "UNIFACE", "SI1", "$DEF,UNIFACE,SI1")
END_UENTITY($DEF_UNIFACE_SI1, $def_uniface_si1);

BEGIN_UENTITY(one_ent_pktest_sz1, "ONE_ENT", "PKTEST",
"SZ1","ONE_ENT,PKTEST,SZ1,PK,N2,M,10,100,2,1.101,F1,S 2,0,100,20,")
UFIELD("PK", "N2", 2, "1.101")
UFIELD("F1", "S2", 20, "")
END_UENTITY(ONE_ENT_PKTEST_SZ1, one_ent_pktest_sz1);

DO_PSV_init(&PROTO, POLY_NET_TCP, s_info, 0);

BEGIN_TRANSACTION();
DO_PSV_logon(&PROTO, &PATH_1, "myhost+12000", "user", "password", "PSV1");
DO_PSV_open(&PATH_1, $DEF_UNIFACE_SI1, "00FE");

...

DO_PSV_open(&PATH_1, ONE_ENT_PKTEST_SZ1, "00C8");
DO_PSV_modify(ONE_ENT_PKTEST_SZ1, "0000 ! 0002000");
DO_PSV_creocc(ONE_ENT_PKTEST);
DO_PSV_str2uf(ONE_ENT_PKTEST, "PK","9");

/* read
*
* options
*/

DO_PSV_select(ONE_ENT_PKTEST, "0001", "000A", "0200", "", "", "");
DO_PSV_setocc(ONE_ENT_PKPKTEST, 1);
DO_PSV_fetch(ONE_ENT_PKTEST, "0001", "0046");
DO_PSV_close($DEF_UNIFACE_SI1, "0000", $DEF_UNIFACE_SI1,
ONE_ENT_PKTEST_SZ1, NULL);
DO_PSV_logoff(&PATH_1);
END_TRANSACTION();

DO_PSV_clean(&PROTO);
REPORT(SUCCESS);
EXIT();
return(0);
}

QALoad 5.02

760

DO_PSV_write

Inserts a new record.

DO_PSV_write inserts a new record in the table specified pent i ty. The new record is the current occurrence
of the table described by pent i ty.

Syntax

int DO_PSV_write(UNIFACE_ENTITY *pentity, char *mode);

Return Value

0 = successful
< 0 = error. See the error descript ions that fol low:

! 201 Unknown protocol specified.

! 202 An error was detected in the returned transact ion. This error is sent to the Player as a
warning, since i t may be normal.

! 203 Inval id length of a parameter.

! 204 A unexpected NULL parameter was passed to a cal l .

! 205 Inval id ent i ty. The ent i ty passed as a parameter to a cal l is inval id. It may not have been
opened using the DO_PSV_open cal l .

! 206 Inval id field name.

! 207 Inval id h it . The h it used in an update or in a fetch cal l is not the result of a
DO_PSV_select cal l . The h it header is inval id.

! 401 Inval id token found while parsing where clause or aggregate statements.

! 501 No h it .

Parameters

Param eter Descript i on

pentity A pointer to a UNIFACE_ENTITY structure.

mode The mode of execut ion (0000 always zero).

Example

int rhobot_script(s_info)
PLAYER_INFO *s_info;

{
...

POLY_PROTOCOL PROTO;
LOGON_PATH PATH_1;

BEGIN_UENTITY($def_uniface_si1, "$DEF", "UNIFACE", "SI1", "$DEF,UNIFACE,SI1")
END_UENTITY($DEF_UNIFACE_SI1, $def_uniface_si1);

BEGIN_UENTITY(one_ent_pktest_sz1, "ONE_ENT", "PKTEST",
"SZ1","ONE_ENT,PKTEST,SZ1,PK,N2,M,10,100,2,1.101,F1,S 2,0,100,20,")
UFIELD("PK", "N2", 2, "1.101")
UFIELD("F1", "S2", 20, "")
END_UENTITY(ONE_ENT_PKTEST_SZ1, one_ent_pktest_sz1);

DO_PSV_init(&PROTO, POLY_NET_TCP, s_info, 0);

QALoad 5.02

761

BEGIN_TRANSACTION();
DO_PSV_logon(&PROTO, &PATH_1, "myhost+12000", "user", "password", "PSV1");
DO_PSV_open(&PATH_1, $DEF_UNIFACE_SI1, "00FE");

...

DO_PSV_open(&PATH_1, ONE_ENT_PKTEST_SZ1, "00C8");
DO_PSV_modify(ONE_ENT_PKTEST_SZ1, "0000 ! 0002000");
DO_PSV_creocc(ONE_ENT_PKTEST);
DO_PSV_str2uf(ONE_ENT_PKTEST, "PK","9");
DO_PSV_str2uf(ONE_ENT_PKTEST, "F1","REC");
DO_PSV_write(ONE_ENT_PKTEST, "0000");

{script body ...}

...

DO_PSV_close($DEF_UNIFACE_SI1, "0000", $DEF_UNIFACE_SI1,
ONE_ENT_PKTEST_SZ1, NULL);
DO_PSV_logoff(&PATH_1);
END_TRANSACTION();

DO_PSV_clean(&PROTO);
REPORT(SUCCESS);
EXIT();
return(0);
}

DO_PSV_xtrans

Sends an X transact ion to a polyserver.

Syntax

int DO_PSV_xtrans(UNIFACE_ENTITY *pentity, char *mode, UNIFACE_ENTITY *pexentity, ...);

Return Value

0 = success
< 0 = error. See the error descript ions that fol low:

! 201 Unknown protocol specified.

! 202 An error was detected in the returned transact ion. This error is sent to the Player as a
warning, since i t may be normal.

! 203 Inval id length of a parameter.

! 204 A unexpected NULL parameter was passed to a cal l .

! 205 Inval id ent i ty. The ent i ty passed as a parameter to a cal l is inval id. It may not have been
opened using the DO_PSV_open cal l .

! 206 Inval id field name.

! 207 Inval id h it . The h it used in an update or in a fetch cal l is not the result of a
DO_PSV_select cal l . The h it header is inval id.

! 401 Inval id token found while parsing where clause or aggregate statements.

! 501 No h it .

Parameters

Param eter Descript i on

pentity A pointer to a UNIFACE_ENTITY structure.

QALoad 5.02

762

mode Mode to send.

pexentity A pointer to a UNIFACE_ENTITY to transact ion is sent to.

DO_PSV_zero

Sends a 0 transact ion to a polyserver.

Syntax

int DO_PSV_zero(UNIFACE_ENTITY *pentity, char *extrainfo);

Return Value

0 = successful
< 0 = error. See the error descript ions that fol low:

! 201 Unknown protocol specified.

! 202 An error was detected in the returned transact ion. This error is sent to the Player as a
warning, since i t may be normal.

! 203 Inval id length of a parameter.

! 204 A unexpected NULL parameter was passed to a cal l .

! 205 Inval id ent i ty. The ent i ty passed as a parameter to a cal l is inval id. It may not have been
opened using the DO_PSV_open cal l .

! 206 Inval id field name.

! 207 Inval id h it . The h it used in an update or in a fetch cal l is not the result of a
DO_PSV_select cal l . The h it header is inval id.

! 401 Inval id token found while parsing where clause or aggregate statements.

! 501 No h it .

Parameters

Param eter Descript i on

pentity A pointer to a UNIFACE_ENTITY structure

extrainfo Binary in formation to be sent to the polyserver process.

Winsock

Winsock index

AddrByte
Returns a byte of an in ternet address.

DO_WSK_Accept
Accepts an incoming connect ion on the specified socket.

DO_WSK_Bind
Associates a local name wi th a connect ion/socket that is not yet named.

QALoad 5.02

763

DO_WSK_Closesocket
Closes the specified connect ion.

DO_WSK_Connect
Establ ishes a connect ion with a server.

DO_WSK_Expect
Waits for a unique pattern to occur that should signify the end of the response.

DO_WSK_ExpectAny
Waits for any of the specif ied patterns to be matched.

DO_WSK_ExpectAnyExpr
DO_WSK_ExpectAnyExpr() waits for any of the unique patterns specified by the passed UNIX-style regular
expressions to occur. The patterns should signify any of the possible ends of the response.

DO_WSK_ExpectExpr
DO_WSK_ExpectExpr() waits for a unique pattern specified by a UNIX-style regular expression to occur.
The pattern should signify the end of the response.

DO_WSK_GetSocket
Returns the socket handle for the specified connect ion.

DO_WSK_Getsockname
Gets the local address for a connect ion.

DO_WSK_HexDecode
Converts hexadecimal characters to binary data suitable for sending to a connect ion using
DO_WSK_Write().

DO_WSK_Init
In i t ial izes in ternal structures and variables in preparat ion for a virtual user run.

DO_WSK_Ioct lsocket
Controls the mode of a socket.

DO_WSK_IsReadable
Specifies whether or not the connect ion has data avai lable to be read.

DO_WSK_IsWriteable
Indicates i f the connect ion is avai lable for wri t ing.

DO_WSK_Listen
Puts the specified socket in l istening mode for incoming connect ions.

DO_WSK_Quiet
Waits for a period of si lence, ident i fied by seconds_of_quiet, on the named socket.

DO_WSK_Read
Reads the number of bytes ident i fied by bytes_to_read from the socket.

DO_WSK_Recv
Receives data from a connected socket.

QALoad 5.02

764

DO_WSK_Recvfrom
Receives data from a connected or unconnected socket.

DO_WSK_Reorder
DO_WSK_Reorder() swaps the byte order of the given integer variable.

DO_WSK_Select
Al lows you to determine i f a set of sockets are read or wri table.

DO_WSK_Send
Sends data to a socket.

DO_WSK_SendAll
Sends a number of strings to a connect ion.

DO_WSK_Sendto
Sends data on either a connected or unconnected socket to a remote host.

DO_WSK_SetsockOpt
Sets opt ions associated wi th the specified socket.

DO_WSK_Shutdown
Disables the sending or receiving of data on a socket.

DO_WSK_Socket
Creates a socket and associates i t with a connect ion handle.

DO_WSK_Write
Writes the number of bytes ident i fied by bytes_to_write to the socket from data_to_send.

EscapeStr
Converts ^ and nul l characters in to ^^ and ^@, respect ively, so that data with those characters can be
passed to DO_WSK_Send(), DO_WSK_Expect(), or DO_WSK_ExpectAny().

GetLocalAddr
Returns the local address used by a connect ion in host-byte order.

GetLocalPort
Returns the port bound to for the named socket on the local side of the connect ion.

GetRemoteAddr
Returns the port connected to on the remote side of a connect ion.

GetRemotePort
Returns the port connected to on the remote side of a connect ion.

Getsockname
Is cal led to get the local address and port for the connect ion.

HiByte
Returns the h igh-order byte of the passed short in teger.

LoByte
Returns the low-order byte of the passed short in teger.

QALoad 5.02

765

Log
Records the character string passed into the log fi le.

MyByteOrder
MyByteOrder() returns the byte order of the machine running the script ei ther of the constants MSBF
(Most Significant Byte First) or LSBF (Least Significant Byte First).

Response
Returns a pointer to the first character in the reponse buffer.

ResponseLength
Returns the number of characters in the reponse buffer.

ScanExpr
Scans the scan buffer for a string specified by the UNIX-style regular expression, in to the given buffer.

ScanFloat
Scans a float ing point value of the given byteorder and length in to the argument which should be the
address of an appropriate program variable of the same size and type, casted to a char *. Val id lengths are 4
or 8. The byteorder should be either specified as either of the constants MSBF or LSBF.

ScanInt
ScanInt() scans an in teger of the given byteorder and length in to the argument which should be the
address of an appropriate program variable of the same size and type, casted to a char *. Val id lengths are 1,
2, or 4. The byteorder should be either specified as one of the constants MSBF or LSBF.

ScanLenString
ScanLenString() expects input of the format [count][string] where length is an in teger of the given
byteorder and length and string is a string of count bytes. The string wil l be placed in the given pointer
and count, which should be the address of an appropriate in tegral program variable, casted to a char *, and
to be updated with the count.

ScanRewind
Resets the scan pointer and length to the beginning and length of the response buffer respect ively.

ScanSkip
Skips the specified number of bytes in the scan buffer.

ScanString
Scans a string of the given length from the current locat ion in the scan buffer in to the given buffer. The
scan pointer and length are incremented by the argument length.

SetTimeout
Sets the number of seconds to wait for subsequent synchronizat ion commands (DO_WSK_Expect,
DO_WSK_ExpectAny, or DO_WSK_Read) to be sat isfied.

SetTyperate
Sets the type rate, in characters per second, for data sent on a Telnet connect ion.

SkipExpr
Scans the scan buffer for a string specified by the UNIX-style regular expression, and skips ahead over the
matched pattern.

UnEscapeStr

QALoad 5.02

766

Converts a string with escaped ^ control character sequences to raw text so that i t can be manipulated.

QALoad character encoding

QALoad encodes non-prin table ASCII characters (characters below ASCII 32 or above ASCII 128) for al l
QALoad Winsock script commands, and the fol lowing QALoad WWW commands:

! DO_Http

! DO_Https

! DO_VerifyDocTitle

Encoding prevents string handl ing and manipulat ion problems. The fol lowing table presents the character
encoding for al l encoded 7-bit ASCII characters (less than ASCII 128/Octal 200).

Code Octal Char

^@ 000 NUL

^A 001 SOH

^B 002 STX

^C 003 ETX

^D 004 EOT

^E 005 ENQ

^F 006 ACK

^G 007 BEL

^H (\b for
WWW)

010 BS

\t 011 HT

\n 012 LF

^K 013 VT

\f 014 FF

\r 015 CR

^N 016 SO

^O 017 SI

^P 020 DLE

^Q 021 DC1

^R 022 DC2

^S 023 DC3

QALoad 5.02

767

^T 024 DC4

^U 025 NAK

^V 026 SYN

^W 027 ETB

^X 030 CAN

^Y 031 EM

^Z 032 SUB

^[033 ESC

\034 034 FS

^] 035 GS

\036 036 RS

^_ 037 US

\" 042 "

\\ 134 \

^^ 136 ^

^? 177 DEL

ASCII characters 128 and h igher are encoded by using “\OOO” , where OOO is the octal value of the ASCII
character.

Encoded data appears in the QALoad Winsock capture fi le in hexadecimal format:
0951414c6f616420697320224772656174220d0a00

This same data appears in a user’s script as:
\t QALoad is \"Great\"\r\n^@

AddrByte

Returns a byte of an in ternet address.

It ’s only useful in very specific instances — most part icularly when script ing an FTP cl ient which requires
sending the address of the cl ient-side data port as separate bytes.

AddrByte returns the byte of the passed address indicated by which_byte.

Syntax

unsigned char
AddrByte(unsigned long address, int which_byte)

Parameters

Param eter Descript i on

unsigned long address The address of the cl ient-side data port .

QALoad 5.02

768

int which byte The byte to send.

See Also

GetRemotePort, GetLocalAddr, GetLocalPort, AddrByte, HiByte, LoByte

Example

unsigned char byte0, byte1, byte2, byte3;
...
byte0 = AddrByte(GetLocalAddr(S2), 0);
byte1 = AddrByte(GetLocalAddr(S2), 1);
byte2 = AddrByte(GetLocalAddr(S2), 2);
byte3 = AddrByte(GetLocalAddr(S2), 3);

DO_WSK_Accept

Accepts an incoming connect ion on the specified socket.

Returns a new socket handler i f successful or -1 i f an error occurs.

Syntax

SOCKET DO_WSK_Accept(int nSocketHandle, int newSocketHandle)

Parameters

Param eter Descript i on

nSocketHandle Socket handle from a previous cal l to DO_WSK_Socket.

newSocketHandle New Socket handle for accept ing connect ions.

Example

DO_WSK_Accept(S1, S2);

DO_WSK_Bind

Associates a local name wi th a connect ion/socket that is not yet named.

Syntax

DO_WSK_Bind (int nConnectHandle, char * szLocalInetAddr, unsigned short usPort);

Parameters

Param eter Descript i on

nConnectHandle A connect ion handle returned from a previous cal l to DO_WSK_Socket.

szLocalInetAddr Points to a string contain ing the Internet address the socket is to bind to.
For example, to bind to INADDR_ANY, szLocalInetAddr would point to
"0.0.0.0".

usPort The port to bind to in host byte order. To bind to any (non-specific) port ,
pass 0.

Example

DO_WSK_Bind (0, "0.0.0.0", 0);

QALoad 5.02

769

DO_WSK_Closesocket

Closes the specified connect ion.

Syntax

DO_WSK_Closesocket (int nConnectHandle);

Parameters

Param eter Descript i on

nConnectHandle A connect ion handle returned from a previous cal l to DO_WSK_Socket.

Example

DO_WSK_Closesocket (0);

DO_WSK_Connect

Establ ishes a connect ion with a server.

Syntax

int DO_WSK_Connect (int nConnectHandle, char * szServerInetAddr,unsigned short usPort, int
nAddressfamily);

Return Value

Returns 0 i f the funct ion cal l was successful or -1 i f an error occured.

Parameters

Param eter Descript i on

nConnectHandle Connect ion handle returned from a previous cal l to DO_WSK_Socket.

szServerInetAddr Points to a string contain ing the Internet address of the server with which
to connect.

usPort The port (in host-byte order) on the server with which to connect.

nAddressfamily Address family, usual ly AF_INET.

Example

DO_WSK_Connect (0, "172.22.1.130", 53, 2);

DO_WSK_Expect

Waits for a unique pattern to occur that should signify the end of the response.

When the capture fi le is converted, th is pattern is ident i fied automatical ly. If the response changes, the
pattern may need to be adjusted or another synchronizat ion command subst i tuted in the place of
DO_WSK_Expect().
DO_WSK_Expect returns 0 i f the pattern was found or -1 i f the t imeout in terval expired.

Syntax

int DO_WSK_Expect(int nConnectHandle, char *pattern)

QALoad 5.02

770

Parameters

Param eter Descript i on

nConnectHandle A connect ion handle returned from a previous cal l to DO_WSK_Socket.

pattern A string pattern to wait for

Example

DO_WSK_Expect(S1, "\r\n");

DO_WSK_ExpectAny

Waits for any of the specif ied patterns to be matched.

DO_WSK_ExpectAny returns the 0-based index of the pattern that was matched first , or -1 i f not found.

Syntax

int DO_WSK_ExpectAny(int nConnectHandle, int number_of_patterns, char *pattern1, ...)

Parameters

Param eter Descript i on

nConnectHandle The connect ion number.

number_of_patterns The number of patterns to fol low.

pattern1 The first pattern.

Example

int i;

...

i = DO_WSK_ExpectAny(S1, 3, "this", "that", "the other");

switch(i)
{
case 0: /* do stuff because "this" was matched */ break;
case 1: /* do stuff because "that" was matched */ break;
case 2: /* do stuff because "the other" was matched */ break;
default: /* must have timed out */
}

DO_WSK_ExpectAnyExpr

DO_WSK_ExpectAnyExpr() waits for any of the unique patterns specified by the passed UNIX-style regular
expressions to occur. The patterns should signify any of the possible ends of the response.

DO_WSK_ExpectAnyExpr() returns the index of the pattern that was matched (0-based) or -1 i f the
t imeout in terval expired.

Syntax

int DO_WSK_ExpectAnyExpr(int nConnectHandle, int num_expressions, char *expression1, char
*expression2, ...)

QALoad 5.02

771

Parameters

Param eter Descript i on

nConnectHandle A connect ion handle returned from a previous cal l to DO_WSK_Socket.

Expression1 String patterns to wait for.

Example

DO_WSK_ExpectAnyExpr(S1, 2, "query failed [0-9]* times", "query succeeded [0-9]* times");

DO_WSK_ExpectExpr

DO_WSK_ExpectExpr() waits for a unique pattern specified by a UNIX-style regular expression to occur.
The pattern should signify the end of the response.

DO_WSK_ExpectExpr() returns 0 i f the pattern was found or -1 i f the t imeout in terval expired.

Syntax

int DO_WSK_ExpectExpr(int nConnectHandle, char *expression)

Parameters

Param eter Descript i on

nConnectHandle A connect ion handle returned from a previous cal l to DO_WSK_Socket.

expression A string pattern to wait for.

Example

DO_WSK_ExpectExpr(S1, "the date is [0-9][0-9]/[0-9][0-9]/[0-9][0-9]");

DO_WSK_GetSocket

Returns the socket handle for the specified connect ion.

This al lows more complicated examples of determin ing i f mult iple sockets are avai lable for wri t ing or i f
data is avai lable for reading using the select() system cal l .

Syntax

SOCKET DO_WSK_GetSocket(int ConnectHandle)

Parameters

Param eter Descript i on

ConnectHandle int The connect ion number.

Example

SOCKET x = DO_WSK_GetSocket(S1);
SOCKET y = DO_WSK_GetSocket(S2);
fd_set readfds;
struct timeval timeout;
int maxfds;
timeout.tv_sec = 1;

QALoad 5.02

772

timeout.tv_usec = 0;
FD_SET(x, &readfds);
FD_SET(y, &readfds);
if(x > y) maxfds = x; else maxfds = y;
select(maxfds+1, &readfds, 0, 0, timeout);
Waits for 1 second for data to be available for reading on connection S1 or S2.

DO_WSK_Getsockname

Gets the local address for a connect ion.

Use th is cal l or DO_WSK_Bind prior to a cal l to GetLocalAddr or GetLocalPort .

Syntax

unsigned short DO_WSK_Getsockname(int nConnectHandle)

Parameters

Param eter Descript i on

nConnectionHandle A connect ion handle from a previous cal l to DO_WSK_Socket.

Example

DO_WSK_Socket(S1, AF_INET, SOCK_DGRAM, IPPROTO_UDP);
DO_WSK_Bind(S1, "127.0.0.1", ANY_PORT);
fd_set readfds;
DO_WSK_Getsockname(S1);

DO_WSK_HexDecode

Converts hexadecimal characters to binary data suitable for sending to a connect ion using
DO_WSK_Write().

DO_WSK_HexDecode returns the number of bytes in the converted data (one half the number of input
bytes).

Syntax

int HexDecode(char *string)

Parameters

Param eter Descript i on

string A pointer to a buffer to be converted.

Example

char buf[80];
int count;

...

strcpy(buf, "FEEBDAED");
count = DO_WSK_HexDecode(buf);
DO_WSK_Write(S1, buf, count);

QALoad 5.02

773

DO_WSK_Init

In i t ial izes in ternal structures and variables in preparat ion for a virtual user run.
DO_WSK_Init returns 1.

Syntax

int DO_WSK_Init(s_info)

Parameters

Param eter Descript i on

s_info A pointer to the PLAYER_INFO structure for th is virtual user.

Example

DO_WSK_Init (s_info);

DO_WSK_Ioct lsocket

Controls the mode of a socket.

Syntax

DO_WSK_Ioctlsocket(int nConnectHandle, unsigned long * argument, long command);

Parameters

Param eter Descript i on

nConnectHandle A connect ion handle returned from a previous cal l to DO_WSK_Socket.

argument The parameter for command. If command is FIONBIO, and argument
points to a non-zero value, non-blocking mode is enabled. If command is
FIONREAD, argument is used to hold the number of bytes that can be read
on a socket. If command is SIOCATMARK, argument is used as a return
value to determine i f al l out-of-band data has been read from a socket.
TRUE is returned i f no out-of-band data is to be read.

command The command to perform on the sockets. Val id values are FIONBIO,
FIONREAD, and SIOCATMARK.

Example

// enable non-blocking mode
u_long argument = TRUE;
DO_WSK_ioctlsocket(0, &argument, FIONBIO);

DO_WSK_IsReadable

Specifies whether or not the connect ion has data avai lable to be read.

Returns 1 i f the connect ion has data avai lable to be read. Returns 0 i f there is no data avai lable. Returns -1
i f there was an error.

Syntax

int DO_WSK_IsReadable(int ConnectHandle);

QALoad 5.02

774

Parameters

Param eter Descript i on

ConnectHandle int The connect ion number.

Example

do
{
DO_WSK_Read(S1, 4);
}
while (DO_WSK_IsReadable(S1)) ;
//Reads 4 bytes of data at a time until there is no more data to be read.

DO_WSK_IsWriteable

Indicates i f the connect ion is avai lable for wri t ing.

Returns 1 i f the connect ion is avai lable for wri t ing. Returns 0 i f the output queue is ful l . Returns -1 i f there
was an error.

Syntax

int DO_WSK_IsWriteable(int ConnectHandle);

Parameters

Param eter Descript i on

ConnectHandle int The connect ion number.

Example

do
{
DO_SLEEP(1);
}
while (DO_WSK_IsWriteable(S1) == 0) ;
DO_WSK_Send(S1, "stuff");
//Waits until connection S1 is writable before sending "stuff".

DO_WSK_Listen

Puts the specified socket in l istening mode for incoming connect ions.

DO_WSK_Listen always returns 0.

Syntax

int DO_WSK_Listen(int nSocket);

Parameters

Param eter Descript i on

nSocket Socket handle from a previous cal l to DO_WSK_Socket.

Example

DO_WSK_Listen(S1);

QALoad 5.02

775

DO_WSK_Quiet

Waits for a period of si lence, ident i fied by seconds_of_quiet, on the named socket.

This can be useful i f the response is random or you simply don ’t know what the response wil l be.

DO_WSK_Quiet() wi l l read whatever characters are avai lable. After characters are read, the
seconds_of_quiet counter is reset. If a socket is not idle, DO_WSK_Quiet cannot complete.

DO_WSK_Quiet returns the number of bytes read, or -1 i f an error was encountered.

Syntax

int DO_WSK_Quiet(int nConnectHandle, double seconds_of_quiet)

Parameters

Param eter Descript i on

nConnectHandle The connect ion number.

seconds_of_quiet The number of seconds of si lence to wait for on th is connect ion.

Example

DO_WSK_Quiet(S2, 10);

DO_WSK_Read

Reads the number of bytes ident i fied by bytes_to_read from the socket.

This can be useful i f the response varies in content, but the number of bytes is consistent. It can also be
useful to bui ld scripts that handle more complicated protocols.

DO_WSK_Read returns the number of bytes read, or -1 i f an error was encountered.

Syntax

int DO_WSK_Read(int nConnectHandle, int bytes_to_read)

Parameters

Param eter Descript i on

nConnectHandle The connect ion number.

bytes_to_read The number of bytes to wait for.

Example

DO_WSK_Read(S2, 1024);

DO_WSK_Recv

Receives data from a connected socket.

Syntax

DO_WSK_Recv (int nConnectHandle, char * buffer, int * buffer_length, int flags, int *
pnBytesRecv)

QALoad 5.02

776

Parameters

Param eter Descript i on

nConnectHandle A connect ion handle returned from a previous cal l to DO_WSK_Socket.

buffer Buffer to store received data.

buffer_length Length of buffer.

flags Used to control the way in which the cal l is made. Val id values are
MSG_PEEK, MSG_OOB, or 0.

pnBytesRecv Used to return the number of bytes received.

Example

char buffer[1024];
int nBytesReceived;
DO_WSK_Recv (0, buffer, 1024, 0, &nBytesReceived);

DO_WSK_Recvfrom

Receives data from a connected or unconnected socket.

Syntax

DO_WSK_Recvfrom (int nConnectHandle, char * buffer, int buffer_length, int flags, struct
sockaddr *from_address, int * pnBytesRecv);

Parameters

Param eter Descript i on

nConnectHandle A connect ion handle returned from a previous cal l to DO_WSK_Socket.

buffer Buffer to store received data.

buffer_length Length of buffer.

flags

Used to control the way in which the cal l is made. Val id values are
MSG_PEEK, MSG_OOB, or 0.

from_address

Optional. If not NULL, i t is used to hold the address of the sender upon
funct ion return.

pnBytesRecv Used to return the number of bytes received.

Example

char buffer[1024];
int nBytesReceived;
DO_WSK_Recvfrom(0, buffer, 1024, 0, NULL, &nBytesReceived);

DO_WSK_Reorder

DO_WSK_Reorder() swaps the byte order of the given integer variable.

DO_WSK_Reorder() returns noth ing.

QALoad 5.02

777

Syntax

void DO_WSK_Reorder(int size, void *value)

Parameters

Param eter Descript i on

size Size of the in teger variable (1, 2, or 4 bytes).

value The address of the variable.

Example

int var;
var = 2;
DO_WSK_Reorder(sizeof(int), (char *)&var);
DO_WSK_Send(S2, EscapeStr((char *)&var, sizeof(int)));

DO_WSK_Select

Allows you to determine i f a set of sockets are read or wri table

Syntax

Int DO_WSK_Select(fd_set *readfds, fd_set *writefds, fd_set *selectfds, struct timeval
*timeout);

Parameters

Param eter Descript i on

readfds Set of sockets (struct fd_set) to check for read.

writefds Set of sockets (struct fd_set) to check for wri te.

selectfds Set of sockets (struct fd_set) to check for errors.

timeout Maximum t ime for select to wait using t imeval struct.

Example

fd_set *Set1 = malloc(sizeof(fd_set));
fd_set *Set2 = malloc(sizeof(fd_set));
fd_set *Set3 = malloc(sizeof(fd_set));
struct timeval *Time = malloc(sizeof(fd_set));

....

....

DO_WSKk_Socket(S3, AF_INET, SOCK_STREAM, IPPROTO TCP);
DO_WSK_Bind(S3, ANY ADDR, ANY_PORT);
DO_WSK_Getsockname(S3);
DO_WSK_Connect(S3, "172.22.11.25", 80, AF_INET);

Set1->fd_count = 1;
Set2->fd_count = 1;
Set3->fd_count = 1;
Set1->fd_array[0] = S3;
Set2->fd_array[0] = S3;
Set3->fd_array[0] = S3;
Time->tv_sec = 1;
DO_WSK_Select(Set1, Set2, Set3, Time);

QALoad 5.02

778

free(Set1);
free(Set2);
free(Set3);
free(Time);

DO_WSK_Send

Sends data to a socket.

DO_WSK_Send returns 0 i f successful.

Syntax

DO_WSK_Send(int nConnectHandle, char *data)

Parameters

Param eter Descript i on

nConnectHandle A connect ion handle returned from a previous cal l to DO_WSK_Socket.

data Data to be sent.

Example

DO_WSK_Send(S1, "This is sent to connection S1");

DO_WSK_SendAll

Sends a number of strings to a connect ion.

Syntax

DO_WSK_SendAll(int nConnectHandle, int numstrings, char string1, char *string2, ...);

Parameters

Param eter Descript i on

nConnectHandle A connect ion handle returned from a previous cal l to DO_WSK_Socket.

numstrings The number of strings to be sent.

string1 The strings to be sent, separated by commas.

Example

DO_WSK_Socket(S3, AF_INET, SOCK_STREAM, IPPROTO_TCP);

DO_WSK_Bind(S3, ANY_ADDR, ANY_PORT);

DO_WSK_Getsockname(S3);

DO_WSK_Connect(S3, "172.22.11.25, 80, AF_INET);

DO_WSK_Setsockopt(S3, IPPROTO_TCP, TCP_NODELAY, 1);

DO_WSK_Setsockopt(S3, SOL_SOCKET, SO_LINGER, 0x100);

DO_WSK_SendAll(S3, 2, "GET/HTTP/1.1\r\nAccept: image/gif,"
"image/x-xbitmap, image/jp eg, image/pjpeg, application/"
"vnd.ms-excel, application/msword, application/x-shock"
"wave-flash, */*\r\nAccept-Language:en-us\r\nAccept-En"
"coding: gzip, deflate\r\nIf-Modified-Since: Mon, 03 Feb"

QALoad 5.02

779

"2003 15:03:15 GMT\r\nIf-None-Match:\"82f2e16095cbc21:"
"973\"", "\r\nUser-Agent: Mozilla/4.0 (compatible; MSIE"
"6.0; Windows NT 5.0; .NET CLR 1.0.3705)\r\nHost:"
"qaappserv\r\nConnection: Keep-Alive\r\n\r\n");

DO_WSK_Sendto

Sends data on either a connected or unconnected socket to a remote host.

Syntax

Int DO_WSK_Sendto (int nConnectHandle, char * wsk_statement, char szServerInetAddr, unsigned
short port);

Parameters

Param eter Descript i on

nConnectHandle A connect ion handle returned from a previous cal l to DO_WSK_Socket.

wsk_statement Buffer of data to be sent.

szServerInetAddr Character string contain ing the Internet address of the dest inat ion socket.

unsigned short port The port (in host-byte order) of the dest inat ion socket.

Example

DO_WSK_Socket(S1, AF_INET,SOCK_DGRAM, IPPROTO_IP);
DO_WSK_SetsockOpt(S1, SOL_SOCKET, SO_BROADCAST, 1);
DO_WSK_Bind(S1, ANY_ADDR, ANY_PORT);
DO_WSK_Sendto(S1, "0$^B^A^@^D^Fpublic\241^W^B^A^A^B^A^@^B^A^@0\f0\n^F^F+^F^"
"A^B^A^A^E^@","172.22.6.71", 161);

DO_WSK_SetsockOpt

Sets opt ions associated wi th the specified socket.

Syntax

DO_WSK_SetsockOpt(int nConnectHandle, int level, int option_name, int wsk_sockopt_optval);

Parameters

Param eter Descript i on

nConnectHandle A connect ion handle returned from a previous cal l to DO_WSK_Socket.

level The level at which the socket opt ion is defined. This can be either
SOL_SOCKET or IPPROTO_TCP.

option_name Option name. Refer to your Winsock documentat ion for a complete l ist of
values.

wsk_sockopt_optval In teger variable wi l l receive the values of opt ion_name upon funct ion
return.

QALoad 5.02

780

Example

DO_WSK_Connect(S3, "172.22.11.25", 80, AF_INET);
DO_WSK_SetsockOpt(S3, IPPROTO_TCP, TCP_NODELAY, 1);
DO_WSK_SetsockOpt(S3, SOL_SOCKET, SO_LINGER, 0x100);

DO_WSK_Shutdown

Disables the sending or receiving of data on a socket.

Syntax

DO_WSK_Shutdown (int nConnectHandle, int shutdown_type);

Parameters

Param eter Descript i on

nConnectHandle A connect ion handle returned from a previous cal l to DO_WSK_Socket.

shutdown_type If equal to 0, al l receives are disabled.
If equal to 1, al l sends are disabled.
If equal to 2, al l sends and receives are disabled.

Example

// disable sends
DO_WSK_Shutdown (0, 1);

DO_WSK_Socket

Creates a socket and associates i t with a connect ion handle.

Syntax

DO_WSK_Socket (int nConnectHandle , int address_family, int type, int protocol);

Parameters

Param eter Descript i on

nConnectHandle A connect ion handle to associate with a new socket.

address_family The address family the socket wi l l use. Refer to your Winsock
documentat ion for a complete l ist .

type Either SOCK_DGRAM for UDP or SOCK_STREAM for TCP.

protocol Specifies which protocol wi l l be used with the socket. Refer to your
Winsock documentat ion for a complete l ist of protocols.

Example

// create a stream socket
DO_WSK_Socket (0, AF_INET, SOCK_STREAM, 0);

DO_WSK_Write

Writes the number of bytes ident i fied by bytes_to_write to the socket from data_to_send.

QALoad 5.02

781

This can be used in place of DO_WSK_Send() when coding scripts by hand. DO_WSK_Send() expects a
string that has certain control and nul l characters encoded. DO_WSK_Write does not expect any encoding,
and so can be used to send data without having to use EscapeStr to encode any possible control characters.
DO_WSK_Write returns the number of bytes writ ten, or -1 i f an error was encountered.

Syntax

int DO_WSK_Write(int nConnectHandle, char *data_to_send, int bytes_to_write)

Parameters

Param eter Descript i on

nConnectHandle The connect ion number.

data_to_send The data to wri te to the connect ion.

bytes_to_write The number of bytes to wri te.

See Also

DO_WSK_Send, EscapeStr, UnEscapeStr

Example

DO_WSK_Write(S2, buffer, 1024);

EscapeStr

Converts ^ and nul l characters in to ^^ and ^@, respect ively, so that data with those characters can be
passed to DO_WSK_Send(), DO_WSK_Expect(), or DO_WSK_ExpectAny().

EscapeStr returns a pointer to the converted characters.

Syntax

char * EscapeStr(char *string, int count)

Parameters

Param eter Descript i on

string A pointer to a buffer to be converted.

count The number of characters to convert .

Example

char buf[80];

...

DO_WSK_Send(S1, EscapeStr("\0\0\0x^hello", 10));

GetLocalAddr

Returns the local address used by a connect ion in host-byte order.

This can be useful in any case where the cl ient appl icat ion (and hence, the script) uses DO_WSK_Bind() to
bind a socket to an unspecified address and/or port and then does a DO_WSK_Listen() on that socket. This

QALoad 5.02

782

sequence indicates that the appl icat ion tel ls the remote side what the local address and port are so that i t
can connect back to the appl icat ion (ident i fied by a DO_WSK_Accept()). In th is case, i t is necessary to
ident i fy how the cl ient appl icat ion is in forming the remote appl icat ion of what address and port i t is
l istening on.
For example: The ftp cl ien t appl icat ion binds to the first avai lable port and does a l isten() on that port . The
cl ient tel ls the remote side, which is actual ly the ftp server, what port i t is l istening on by sending a
command that looks l ike "PORT 172,23,70,242,4,212\ r\ n" where 172,23,70,242 is the IP address of the
local machine and 4,212 are the h igh-order byte and low-order byte of the port number being l istened on.
To make th is sl ight ly easier, we’ve included the HiByte(), LoByte(), and AddrByte() funct ions also
documented in th is chapter.
GetLocalAddr returns the address of the local side of the connect ion.

Syntax

unsigned long GetLocalAddr(int nConnectHandle)

Parameters

Param eter Descript i on

nConnectHandle The connect ion number.

Example

unsigned long addr;
unsigned short port;

...

/*
the following lines have to be AFTER socket S3 is bound in a DO_WSK_Bind() call
port = GetLocalPort(S3);
addr = GetLocalAddr(S3); /* now we know both the local address and port */

...

{
char buf[80];
sprintf(buf, "PORT %d,%d,%d,%d,%d,%d\r\n",
AddrByte(addr,0),
AddrByte(addr,1),
AddrByte(addr,2),
AddrByte(addr,3),
HiByte(port),
LoByte(port));
DO_WSK_Send(S4, buf);
}

GetLocalPort

Returns the port bound to for the named socket on the local side of the connect ion.

Syntax

unsigned short GetLocalPort(int nConnectHandle)

Parameters

Param eter Descript i on

nConnectHandle The connect ion number.

QALoad 5.02

783

Example

unsigned short port;

...

port = GetLocalPort(S3);

GetRemoteAddr

Returns the port connected to on the remote side of a connect ion.

GetRemoteAddr returns the address of the remote side of the connect ion as a long integer.

Syntax

unsigned long GetRemoteAddr(int nConnectHandle)

Parameters

Param eter Descript i on

nConnectHandle The connect ion number.

Example

unsigned long addr;

...

addr = GetRemoteAddr(S3);

GetRemotePort

Returns the port connected to on the remote side of a connect ion.

Syntax

unsigned short GetRemotePort(int nConnectHandle)

Parameters

Param eter Descript i on

nConnectHandle The connect ion number.

Example

unsigned short port;

...

port = GetRemotePort(S3);

Getsockname

Is cal led to get the local address and port for the connect ion.

Either i t , or DO_WSK_Bind must be cal led prior to a cal l to GetLocalAddr or GetLocalPort .
Getsockname returns 0 for success.

QALoad 5.02

784

Syntax

unsigned short Getsockname(int nConnectHandle)

Parameters

Param eter Descript i on

nConnectHandle The connect ion number.

Example

Getsockname(S3);

HiByte

Returns the h igh-order byte of the passed short in teger.

It ’s only useful in very specific instances — most part icularly when script ing an FTP cl ient that requires
sending the h igh and low order bytes of the cl ient-side data port as separate bytes.

HiByte returns the h igh-order byte of the passed short .

Syntax

unsigned char HiByte(short port)

Parameters

Param eter Descript i on

port The short value whose h igh-order byte is being returned.

Example

unsigned char hbyte;

...

hbyte = HiByte(GetLocalPort(S3));

LoByte

Returns the low-order byte of the passed short in teger.

It ’s only useful in very specific instances — most part icularly when script ing an FTP cl ient that requires
sending the h igh and low order bytes of the cl ient-side data port as separate bytes.

LoByte returns the low-order byte of the passed short .

Syntax

unsigned char LoByte(short port)

Parameters

Param eter Descript i on

port The short value to return the low byte of.

QALoad 5.02

785

Example

unsigned char lbyte;
...
byte = LoByte(GetLocalPort(S3));

Log

Records the character string passed into the log fi le.

Syntax

void Log(char *line_to_be_logged)

Parameters

Param eter Descript i on

line_to_be_logged A string to be writ ten to the log fi le

Example

Log("Got here!");

MyByteOrder

MyByteOrder() returns the byte order of the machine running the script – ei ther of the constants MSBF
(Most Significant Byte First) or LSBF (Least Significant Byte First).

MyByteOrder() returns the byteorder of the machine running the script .

Syntax

int MyByteOrder()

Parameters

None.

Example

short value;

int myorder = MyByteOrder();

...

ScanInt(myorder, 2, (char *)&value);

Response

Returns a pointer to the first character in the reponse buffer.

It should be cal led immediately after a DO_WSK_Expect(), DO_WSK_ExpectAny(), DO_WSK_Read(), or
DO_WSK_Quiet().

Response returns a pointer to the matched response.

Syntax

char * Response()

QALoad 5.02

786

Parameters

None.

Example

char buf[80];

...

sprintf(buf, "The first 10 characters of the response

were %10.10s",Response());

Log(buf);

ResponseLength

Returns the number of characters in the response buffer.

Syntax

int ResponseLength()

Parameters

None.

Example

char buf[80];

...

sprintf(buf, "The length of the response was %d bytes",

ResponseLength());

Log(buf);

ScanExpr

Scans the scan buffer for a string specified by the UNIX-style regular expression, in to the given buffer.
ScanExpr() returns the number of bytes matched by the expression.

Syntax

int ScanExpr(char *exprstr, char *buffer)

Parameters

Param eter Descript i on

exprstr The UNIX-style regular expression to look for.

buffer Where to copy the string to.

Example

char buffer[80];

...

SkipExpr("the name is ");

ScanExpr(".*!", buffer);

Log("the name was %s", buffer);

QALoad 5.02

787

ScanFloat

Scans a float ing point value of the given byteorder and length in to the argument which should be the
address of an appropriate program variable of the same size and type, casted to a char *. Val id lengths are 4
or 8. The byteorder should be either specified as either of the constants MSBF or LSBF.

ScanFloat returns noth ing.

Syntax

void ScanFloat(int byteorder, int length, char *buffer)

Parameters

Param eter Descript i on

byteorder The byteorder of the float ing point value.

length The size of the float ing point value (4 (float) or 8 (double)).

buffer Where to copy the bytes to.

Example

float v1;

double v2;

...

ScanFloat(MyByteOrder(), sizeof(float), (char *)&v1);

ScanFloat(MyByteOrder(), sizeof(double), (char *)&v2);

Log("the v1 was %d and v2 was %d", v1, v2);

ScanInt

ScanInt() scans an in teger of the given byteorder and length in to the argument which should be the
address of an appropriate program variable of the same size and type, casted to a char *. Val id lengths are 1,
2, or 4. The byteorder should be either specified as one of the constants MSBF or LSBF.

ScanInt returns noth ing.

Syntax

void ScanInt(int byteorder, int length, char *buffer)

Parameters

Param eter Descript i on

byteorder The byteorder of the in teger value.

length The size of the in teger (1, 2, or 4).

buffer Where to copy the bytes to.

Example

short port;

int length;

ScanInt(MyByteOrder(), sizeof(short), (char *)&port);

QALoad 5.02

788

ScanInt(MyByteOrder(), sizeof(int), (char *)&length);

Log("the port was %d and the length was %d", port, length);

ScanLenString

ScanLenString() expects input of the format [count][string] where length is an in teger of the given
byteorder and length and string is a string of count bytes. The string wil l be placed in the given pointer
and count, which should be the address of an appropriate in tegral program variable, type-cast to a char *,
and to be updated with the count.
ScanLenString() returns noth ing.

Syntax

void ScanLenString(int byteorder, int length, char *count, char *buffer)

Parameters

Param eter Descript i on

byteorder The byteorder of the count value.

length The size of the count value (1, 2, or 4).

Count The address of a in tegral program value of the appropriate size to copy the
count value to.

buffer Where to copy the string to.

Example

int len;

char buffer[80];

...

ScanLenString(MyByteOrder(), 4, (char *)&len, buffer);

buffer[len] = ‘\0’;
Log("the name was %s, length was %d", buffer, len);

ScanRewind

Resets the scan pointer and length to the beginning and length of the response buffer respect ively.

ScanRewind() returns noth ing.

Syntax

void ScanRewind()

Parameters

None.

See Also

ScanSkip, ScanString, ScanInt, ScanFloat, ScanLenString

Example

ScanRewind();

QALoad 5.02

789

ScanSkip

Skips the specified number of bytes in the scan buffer.

ScanSkip() returns noth ing.

Syntax

void ScanSkip(int count)

Parameters

Param eter Descript i on

Count The number of bytes to skip ahead in the scan buffer.

Example

ScanSkip(5);

ScanString

Scans a string of the given length from the current locat ion in the scan buffer in to the given buffer. The
scan pointer and length are incremented by the argument length.

ScanString()returns noth ing.

Syntax

void ScanString(int length, char *buffer)

Parameters

Param eter Descript i on

length The number of bytes to copy.

buffer Where to copy the bytes to.

Example

char mybuf[6];

...

ScanString(5, mybuf);
mybuf[5] = ‘\0’;
Log("the name was %s", mybuf);

SetTimeout

Sets the number of seconds to wait for subsequent synchronizat ion commands (DO_WSK_Expect,
DO_WSK_ExpectAny, or DO_WSK_Read) to be sat isfied.

The default t imeout value is 20 seconds. Increase th is value for large user tests.

SetTimeout returns the previous t imeout value.

Syntax

int SetTimeout(int seconds)

QALoad 5.02

790

Parameters

Param eter Descript i on

seconds The number of seconds to wait for a pattern in an DO_WSK_Expect or
DO_WSK_ExpectAny, a connect ion in a DO_WSK_Accept, or a number of
bytes to be received in a DO_WSK_Read.

Example

SetTimeout(20);

SetTyperate

Sets the type rate, in characters per second, for data sent on a Telnet connect ion.

Syntax

int SetTyperate(int count);

Parameters

Param eter Descript i on

count The number of characters per second that are sent on the Telnet
connect ion.

Example

SetTyperate(50);

SkipExpr

Scans the scan buffer for a string specified by the UNIX-style regular expression, and skips ahead over the
matched pattern.

SkipExpr() returns the number of bytes matched by the expression.

Syntax

void SkipExpr(char *exprstr)

Parameters

Param eter Descript i on

exprstr The UNIX-style regular expression to look for.

UnEscapeStr

Converts a string with escaped ^ control character sequences to raw text so that i t can be manipulated.

UnEscapeStr returns the length of the converted string.

Syntax

int UnEscapeStr(char *string)

QALoad 5.02

791

Parameters

Param eter Descript i on

string A string with ^ control character sequences.

Example

char buf[80], str[6];
int len, x, y;

...

strcpy(buf, "^A^B^B^@hello\n");
len = UnEscapeStr(buf);
memcpy(&x, &buf[0], 2);
memcpy(&y, &buf[2], 2);
memcpy(str, &buf[4], 6);

WWW

WWW Index

Attach
Appl ies to Visual Script ing. Changes the current page to the page or frame specified. This new page
becomes the act ive page that al l Web funct ions act on.

Clear
Appl ies to Visual Script ing. Used to clear out certain i tems such as the cache or cookies. Types can be
ordered together to clear both.

Cl ick_On
Appl ies to Visual Script ing. M imics the user cl icking on text l inks, cl ickable images, and submit buttons.

DisableStat ist icsRP
Appl ies to Real Networks Streaming Media. Disables capture of stat ist ics during a load test.

DO_AddHeader
Appl ies to HTTP and SSL requests. Indicates headers that are common to every request (DO_Http or
DO_Https funct ion cal ls) in a script .

DO_Addit ionalSubRequest
Appl ies to HTTP and SSL requests. DO_Addit ionalSubRequest manually adds a sub-request for the next
DO_Http or DO_Https request. The request is specified as a URL.

DO_AllowTrafficFrom
Appl ies to HTTP and SSL requests. If DO_AllowTrafficFrom is present in a script , then sub-requested URLs
wil l on ly occur i f the sub-request 's URL contains one of the sub-strings in the substrings' l ist .

DO_AttachFile
Appl ies to HTTP and SSL requests. Specifies fi les that should be loaded into memory at the beginning of a
script run. This is used in Post transact ions that include binary fi les.

DO_AutomaticSubRequests
Appl ies to HTTP requests. Indicates whether subrequests wi l l be downloaded during replay.

QALoad 5.02

792

DO_BasicAuthorizat ion
Specifies the username and password to gain access to a password protected WWW host, directory, or fi le.

DO_BlankOutOfRangeData
Appl ies to HTTP and SSL requests. If DO_BlankOutOfRangeData is enabled, then characters in the HTTP
response body which in terface with text searching or the HTML parser are changed to spaces.

DO_BlockTrafficFrom
Appl ies to HTTP and SSL requests. If DO_BlockTrafficFrom is present in a script , then sub-requested URLs
wil l on ly occur i f the sub-request 's URL does not contain one of the sub-strings in the substrings' l ist .

DO_Cache
Appl ies to HTTP and SSL requests. Turns on cache emulat ion which caches anyth ing with a content type
beginning with "image/".

DO_Clear
Appl ies to HTTP and SSL requests. Used to clear out certain i tems such as the cache or cookies. Types can
be ordered together to clear both.

DO_ClearCache
Appl ies to HTTP and SSL requests. Clears any cached images. Performed automatical ly by
DO_HttpCleanup.

DO_ClearDNSCache
Appl ies to HTTP and SSL requests. When DO_Http or DO_Https make an HTTP request,
DO_ClearDNSCache caches any DNS lookups that are performed. If that cache needs to be cleared to
simulate browser, use DO_ClearDNSCache.

DO_ClearJavascript
Appl ies to HTTP and SSL requests. Clears any memory al located by the JavaScript engine. Performed
automatical ly by DO_HttpCleanup. DO_ClearJavascript is the same as DO_Clear (JAVASCRIPT_ENGINE).

DO_DynamicCookieHandling
Appl ies to HTTP and SSL requests. Turns dynamic cookie handl ing on or off.

DO_DynamicRedirectHandling
Appl ies to HTTP requests. Retrieves a redirected URL for use in the next request.

DO_EnableJavascript
Appl ies to HTTP requests. Enables or disables the in terpretat ion of Javascript .

DO_EncodeString
Appl ies to HTTP and SSL requests. DO_EncodeString takes in a string and URL-encodes the string to be
suitable to use as a CGI parameter or in the body of a POST.

DO_FreeHttp
Appl ies to HTTP and SSL requests. Also appl ies to Visual Script ing. Clears memory used by the script .

DO_GetAnchorByNumber
Appl ies to HTTP and SSL requests. Stores the value of an anchor from an HTM L reply in to a string that can
be subst i tuted in to subsequent requests.

DO_GetAnchorCount
Appl ies to HTTP and SSL requests. Returns the total number of the anchors on the page.

QALoad 5.02

793

DO_GetAnchorHREF
Appl ies to HTTP and SSL requests. Stores the value of a named anchor off of an HTML reply in to a string
that can be subst i tuted in to subsequent requests.

DO_GetAnchorHREFEx
Appl ies to HTTP and SSL requests. Stores the value of a specific occurrence of a named anchor off an HTML
reply in to a string that can be subst i tuted in to subsequent requests.

DO_GetAnchorHREFn
Appl ies to HTTP and SSL requests. Stores the value of a specific occurrence of a named anchor off of an
HTML reply in to a string that can be subst i tuted in to subsequent requests.

DO_GetClientMapHREF
Appl ies to HTTP and SSL requests. DO_GetClientMapHREF is used to extract the href URL from a part icular
region of a cl ient-side image map. Cl ient-side image maps are specified with in an HTML document by the
map' tag. Inside the map' tag, a' and area' tags are used to specify regions of the image map. The href
attribute of the a' or area' tags specify the locat ion of the URL to go to.

DO_GetCookie
Appl ies to HTTP and SSL requests. Extracts a cookie from the QALoad internal cookie l ist . The cookie is
retrieved based on the name of the cookie. Wildcard patterns can be used to specify the cookie name in
case the cookie name is dynamic. A count is also specified in case mult iple cookies match the specified
name.

DO_GetCookieFromReplyEx
Appl ies to HTTP and SSL requests. Retrieves and stores the value of a cookie when a Set-Cookie: statement
is encountered in a reply header.

DO_GetFormActionStatement
Appl ies to HTTP and SSL requests. Gets the ACTION tag from a requested form. This feature is useful when
a form dynamical ly changes what is stored in the ACTION tag.

DO_GetFormValueByName
Appl ies to HTTP and SSL requests. Retrieves the value embedded in a form for the specified field.

DO_GetHeaderFromReply
Appl ies to HTTP and SSL requests. Retrieves the value of a header in the reply result ing from a DO_HTTP
command.

DO_GetLastHttpError
Appl ies to HTTP and SSL requests. Retrieves the in teger indicat ing the error code of the last HTTP request
sent with DO_Http. Errors greater than 399 include the Page not found 404 error.

DO_GetRedirectedURL
Appl ies to HTTP requests. Modifies the parameter passed in for use in the next request.

DO_GetReplyBuffer
Appl ies to HTTP and SSL requests. DO_GetReplyBuffer returns the HTTP response from the last DO_Http
request.

DO_GetUniqueString
Appl ies to HTTP and SSL requests. Used to parse the most recent HTTP server reply to get the contents of a
string that occurs between the left and right input strings.

DO_GetUniqueStringEx

QALoad 5.02

794

Applies to HTTP and SSL requests. Used to parse a nul l-terminated input string (search) to get the contents
of a string that occurs between the left and right input strings.

DO_Http
Appl ies to HTTP requests. Executes an HTTP request in the script .

DO_HttpCleanup
Appl ies to HTTP and SSL requests. Performs al l necessary cleanup operat ions when a script exits or the user
terminates the script .

DO_HttpVersion
Appl ies to HTTP and SSL requests. Specifies the version to use in the requests sent during playback.

DO_InitHttp
Appl ies to HTTP and SSL requests. Also appl ies to Visual Script ing. Sets al l necessary in ternal variables
needed to load test an HTTP script .

DO_IPSpoofEnable
Appl ies to HTTP and SSL requests. Enables each virtual user to appear to the web server as being sourced
from a different network in terface card.

DO_NTLMAuthorizat ion
Appl ies to HTTP requests. Provides user ID and password (plain text or encrypted) in formation for NTLM
authent icat ion.

DO_ProxyAuthorizat ion
Provides the username and password to access a password protected proxy server.

DO_ProxyExcept ions
Appl ies to HTTP and SSL requests. Tel ls QALoad not to use the proxy server for hosts in the proxy
except ions l ist , so you can replay requests both inside and outside of the firewall in the same script .

DO_SaveReplyType
Appl ies to HTTP and SSL requests. Specifies types of repl ies to save.

DO_SetAssumedContentType
Appl ies to HTTP and SSL requests. Sets the default content type i f the web server doesn't send a content
type header.

DO_SetBaudRate
Returns the baud rate the virtual user wi l l use.

DO_SetBaudRateEx
Returns the transmission rate the virtual user wi l l use.

DO_SetCheckpointName
Sets the name of the next automatic checkpoint for the next DO_Http or DO_Https statement in the script .

DO_SetCookie
Appl ies to HTTP and SSL requests. DO_SetCookie adds a cookie to the current transact ion.

DO_SetCookieEx
Appl ies to HTTP and SSL requests. DO_SetCookie adds a cookie to the current transact ion.

DO_SetJavascriptCleanupThreshold

QALoad 5.02

795

Applies to HTTP and SSL requests. Periodical ly QALoad wil l destroy i ts in ternal JavaScript model and
recreate i t . DO_SetJavascriptCleanupThreshold sets a count of the number of t imes JavaScript parsing is
done before destroying and recreat ing the model.

DO_SetMaxBrowserThreads
Appl ies to HTTP and SSL requests. Specifies the number of concurrent connect ions to make for playback.

DO_SetMaximumRetries
Similar to the behavior of Netscape and Internet Explorer.

DO_SetRefreshTimeout
Specifies how long to wait for a meta refresh.

DO_SetRetryWait
Appl ies to SSL requests. Sets the proxy authorizat ion when accessing SSL pages passed through a proxy
server (also known as SSL tunnel ing).

DO_SetTimeout
Appl ies to HTTP and SSL requests. Specifies how long to wait for a reply from the server. If a reply is not
received with in the specified t ime, the virtual user wi l l fai l with a fatal error.

DO_UseEnti tyList
Appl ies to HTTP and SSL requests. Decodes non-ASCII character ent i t ies.

DO_UseNumericReferenceList
Appl ies to HTTP and SSL requests. Decodes non-ASCII numeric references.

DO_UsePersistentConnect ions
Appl ies to HTTP and SSL requests. Turns the use of persistent connect ions on or off.

DO_UseProxy
Appl ies to HTTP and SSL requests. Specifies a proxy server to use during test ing.

DO_UseProxyAutomaticConfigurat ion
Appl ies to HTTP and SSL requests. Downloads the proxy automatic configurat ion (PAC) script at the
specified URL. The rest of the transact ion wil l use the PAC script to determine which proxy, i f any, to
connect to hosts.

DO_VerifyDocTit le
Appl ies to HTTP and SSL requests. Compares the parameters and match type passed in the parameters
against the HTML page t i t le specified in the response received from the HTTP request.

DownloadMediaFromASX
Appl ies to Windows Media Player Streaming Media. Dynamical ly parses an ASX fi le from the previous
response and in i t iates and waits for complet ion of the specified Windows Media resources download.

DownloadMediaRP
Appl ies to Real Networks Streaming Media. In i t iates and waits for complet ion of the specified mult i-media
resource download.

DownloadWindowsMedia
Appl ies to Windows Media Player Streaming Media. In i t iates and waits for complet ion of the specified
Windows Media resource download.

EnableStat ist icsRP

QALoad 5.02

796

Applies to Real Networks Streaming Media. Enables capture of media player performance stat ist ics during a
load test. Compuware recommends that th is funct ion is cal led in the in i t ial sect ion of a Web script , before
the SYNCHRONIZE() cal l . Although i t can be cal led at any point in the script , th is command must appear
in the script prior to any DownloadMediaRP cal l .

Fi l l_In
Appl ies to Visual Script ing. Used to represent how the user fi l led in fields on a form before cl icking on a
submit button. The values that are passed to Fi l l_In are expected to be plain text with no encoding other
than using + to join mult iple selects for LIST_BOX.

Get
Appl ies to Visual Script ing. Retrieves data from the virtual browser. Whole pages, specific frames, and text
strings from with in the document can be retrieved.

Navigate_To
Appl ies to Visual Script ing. Reads a URL typed in the Web browser's address field and constructs a request
to navigate to the URL, or reads another request typed in the browser's address field, fin ishes the request
and navigates to the request. Navigate_To is a direct replacement for DO_Http.

PlayMedia
Appl ies to Real Networks and Windows streaming media. In i t iates and plays back the streaming media fi le
that was stored in a previous cal l to the Click_On funct ion.

Post_To
Appl ies to Visual Script ing. Reads a URL typed in the Web browser's address field as well as the encoding
type. It then constructs a request to send a post to the URL.

RandNumString
Appl ies to Visual Script ing. Generates a random number from minimum to maximum.

Region
Appl ies to Visual Script ing. Marks the region_number parameter as an image map region.

RESTART_TRANSACTION_BOTTOM
Appl ies to Visual Script ing. Used to define a point at the end of the transact ion for anyth ing that needs to
be deal located or unin it ial ized. When transact ion restart ing occurs for a fai led transact ion, QALoad wil l
fi rst execute any code start ing after the cal l to RESTART_TRANSACTION_BOTTOM al lowing you to clean
up important in formation and prevent memory leaks before retrying the transact ion.

RESTART_TRANSACTION_TOP
Used to define a point at the beginning of the transact ion loop that QALoad can use to rewind the
transact ion i f the transact ion fai ls and Restart Transact ion error handl ing has been selected in the QALoad
Conductor as fol lows:

Set
Appl ies to Visual Script ing. Assigns values to the Virtual Browser, Proxy, and other parts of the QALoad
replay. This command sets the propert ies and attributes of the script .

ShowMediaRP
Appl ies to Real Networks Streaming Media. Displays the media during a load test. Audio and video can be
control led separately. If video is enabled, a dialog box displays the video. For audio, the sound from the
media wi l l play through the sound device.

Veri fy
Appl ies to Visual Script ing. Used to veri fy expected text against an element of the page just requested.

QALoad 5.02

797

WWW_FATAL_ERROR
Appl ies to HTTP and SSL requests. Also appl ies to Visual Script ing. WWW_FATAL_ERROR aborts or restarts
a virtual user in the event of an error during replay.

X_Coord
Appl ies to Visual Script ing. Marks the x_value parameter as an x-coordinate value.

XmlRequest
Appl ies to Visual Script ing. The XMLRequest funct ion takes in the HTTP act ion and a URL and constructs a
request to navigate to the URL. XMLRequest is a direct replacement for Navigate_To when the main HTTP
request is for an XML document.

Y_Coord
Appl ies to Visual Script ing. Marks the y_value parameter as a y-coordinate value.

HTML character ent it ies and numeric references

Applies to HTTP and SSL requests. In HTML programming, reserved characters (<, >, & , and ") and non-
ASCII characters, such as the copyright and trademark symbol, are expressed in character ent i t ies or
numeric references. A character ent i ty contains an ampersand (&), fol lowed by the ent i ty name, fol lowed
by a semi-colon (;). For example, the character ent i ty for less-than (<) is "& lt ;". A numeric reference
contains an ampersand and pound sign, fol lowed by the Unicode character code and a semi-colon. For
example, the numeric reference for less-than (<) is "& #60;".

For addit ional in formation on character encoding of low ASCII data (characters below ASCII 32) in
QALoad, see QALoad character encoding.

HTML Entities

QALoad automatical ly decodes the standard ASCII character ent i t ies (<, >, & , and "), but does not decode
non-ASCII character ent i t ies. If you have a script contain ing non-ASCII character ent i t ies, define an
ENTITY_LIST block which wil l al low QALoad to successful ly decode the non-ASCII character ent i t ies. An
ent i ty l ist contains the following syntax:

ENTITY_LIST ([Entity List Name])
{
 ENTITY ([Entity Name], [Character])
 ENTITY ([Entity Name], [Character])
 ...
}

"Ent i ty List Name" is the name given to the ent i ty l ist . "Ent i ty Name" is a string contain ing an HTML ent i ty
name. "Character" is a string contain ing the character to subst i tute in place of the ent i ty.

Note: An ENTITY_LIST must be defined outside of rhobot_script.

An ent i ty l ist fol lows:

ENTITY_LIST (myEntities)
{
 ENTITY ("reg", "®")
 ENTITY ("copy", "©")
 ENTITY ("deg", "°")
}

ENTITY_LIST creates a table that QALoad uses. For ENTITY_LIST to work with in a script , place the
command DO_UseEnti tyList() inside of rhobot_script . To use an ent i ty l ist :

int rhobot_script (PLAYERINFO* s_info)
{

QALoad 5.02

798

 ...
 DO_UseEntityList(myEntities);
 ...
}

HTML Numeric References

QALoad automatical ly decodes al l ASCII numeric references ("& #0;" - "& #127;"), but does not decode non-
ASCII numeric references. If you have a script contain ing non-ASCII numeric references, define a
NUMERIC_REFERENCE_LIST block which wil l al low QALoad to successful l ly decode the non-ASCII
numeric references. An ent i ty l ist contains the fol lowing syntax:

NUMERIC_REFERENCE_LIST ([Numeric Reference List Name])
{
 NUMERIC_REFERENCE ([Unicode Number], [Character])
 NUMERIC_REFERENCE ([Unicode Number], [Character])
 ...
}

"Numeric Reference List Name" is the name given to the ent i ty l ist . "Unicode Number" is the Unicode
number of the character. "Character" is a string contain ing the character to subst i tute in place of the
reference.

Note: Define a NUMERIC_REFERENCE_LIST outside of rhobot_script as follows:

NUMERIC_REFERENCE_LIST (myReferences)
{
 NUMERIC_REFERENCE (174, " ")
 NUMERIC_REFERENCE (169, " ")
 NUMERIC_REFERENCE (176, " ")
}

NUMERIC_REFERENCE_LIST creates a table that QALoad uses. To use NUMERIC_REFERENCE_LIST in a
script , place DO_UseNumericReferenceList() inside of rhobot_script as fol lows:

int rhobot_script (PLAYERINFO* s_info)
{
 ...
 DO_UseNumericReferenceList(myReferences);
 ...
}

Attach

Applies to Visual Script ing. Changes the current page to the page or frame specified.

This new page becomes the act ive page that al l script commands act on.

Syntax

boolean Attach (page_id);

Return Value

True i f the page was attached to.
False i f not.

Parameters

Param eter Descript i on

page_id The page to attach to.

QALoad 5.02

799

Example

page = Get (PAGE);
Attach (page);
Attach (Get (FRAME, "index"));

Clear

Applies to Visual Script ing. Used to clear out certain i tems such as the cache or cookies. Types can be
ordered together to clear both.

Prototypes

boolean Clear (enumeration type);

Return Value

True i f cleared successful ly.
False i f not cleared successful ly .

Parameters

Param eter Descript i on

type The type of clear to do. Val id types are l isted in the fol lowing table.

Type Descript i on

ALL Clear al l in ternal sett ings.

ALL_CGI_PARAMETERS Clear al l Set CGI_PARAM ETER
parameters.

ALL_COOKIES Clear al l stored cookies.
(Transact ion type)

ALL_HEADERS Clear al l Set HEADER header
attributes.

ALL_VALUES Clear al l DO_SetValue variables.
(Transact ion type)

ATTACHED_FILES Clear al l fi les in the binary fi le l ist .

BASIC_AUTH_FLAG Do not send the basic
authorizat ion unt i l next chal lenge.
(Transact ion type)

BASIC_AUTHORIZATION Clear the basic authorizat ion user
name and password.

BAUD_RATE_CALCULATIONS Clear the accumulated modern
emulat ion data. (Transact ion type)

BLOCK_TRAFFIC_FROM Clear the blocked traffic from l ist .

CACHE Clear out any virtual browser
cache. (Transact ion type)

QALoad 5.02

800

CERTIFICATE Clear the cl ient cert i ficate.

CERTIFICATE_PASSWORD Clear the cl ient cert i ficate
password.

CONNECTION Reset network connect ion .
(Transact ion type)

CONNECT_REQUEST_FOR_SSL_TUNNELING Clear the set SSL connect string.

DEFAULT_CONTENT_TYPE Clear the default content type.

DNS_CACHE Clear any cached DNS lookups.
(Transact ion type)

JAVASCRIPT_ENGINE Clear the Javascript state.

NTLM_AUTHORIZATION Clear the NTLM user name and
password.

ONLY_ALLOW_TRAFFIC_FROM Clear the al lowed traffic from l ist .

ONLY_USE_SSL_CIPHER Clear the only use SSL cipher
string.

PROXY_AUTHORIZATION Clear the proxy authorizat ion user
name and password.

PROXY_AUTH_FLAG Do not send the basic
authorizat ion unt i l next chal lenge.
(Transact ion type)

PROXY_SETTINGS Clear al l proxy sett ings.

RECEPTION_BAUD_RATE Turn off recept ion baud rate
emulat ion.

REFERER Clear the referer so i t is not sent
with the next request. (Transact ion
type)

SIGNIFICANT_CONTENT_TYPES Clear the significant content type
l ist .

SPOOFED_IP_ADDRESS Clear any spoofed IP addresses.

TRANSACTION Clear al l temporary variables used
in the transact ion.

TRANSMISSION_BAUD_RATE Turn off t ransmission baud rate
emulat ion.

Examples

Clear (JAVASCRIPT_ENGINE);
Clear (CACHE);
Clear (CONNECTION);
Clear (ALL_COOKIES);

QALoad 5.02

801

Clear (TRANSACTION);
Clear (ALL);

Click_On

Applies to Visual Script ing. M imics the user cl icking on text l inks, cl ickable images, and submit buttons.

Prototypes

boolean Click_On (enumeration link, string description);
boolean Click_On (enumeration link, integer count);
boolean Click_On (enumeration link, enumeration specifier, string description);
boolean Click_On (enumeration link, integer count, enumeration specifier, string
description);
boolean Click_On (enumeration link, integer count, enumeration specifier, string
description, string x_coord, string y_coord);
boolean Click_On (enumeration link, integer count, enumeration specifier, string
description, enumeration click_option);
boolean Click_On (enumeration link, integer count, enumeration specifier, string
description, string region);

Return Value

Returns true i f the requested l ink is found and the page is successful ly retrieved. Otherwise, returns false.

Parameters

Param eter Descript i on

link The type of l ink to try to cl ick on. Val id types include:

Type Descript i on

BUTTON A button.

IMAGE A hyperl inked image.

LINK A hyperl inked text anchor.

description The text of the l ink, or the appropriate text expected by a specifier. Can be
used to specify URLs to use in conjunct ion with streaming media cal ls.

QALoad 5.02

802

specifier The way the text is used to find the l ink. Types of specifiers are l isted in the
fol lowing table:

Type Descript i on

NAME_ATTRIBUTE Name attribute of the HTML tag.

SRC_ATTRIBUTE Src attribute of the HTML tag.

ALT_ATTRIBUTE Alt at tribute of the HTML tag.

DESCRIPTION Descript ion as seen by the user in the browser
(default).

CONTAINING Click_On l ink that contains unique HTML code
in the page.

BEFORE Click_On l ink before unique HTML code in the
page.

AFTER Click_On l ink after unique HTML code in the
page.

count The nth match. For example, i f a Web page has three buttons with the same
descript ion, such as Submit, use a count of 3 to match the th ird button.

x_coord The X coordinate of the server-side image map.

y_coord The Y coordinate of the server-side image map.

region The region of a cl ient-side image map to cl ick on.

click_option The encoding format for any CGI parameters of the URL. Val id values are
l isted in the fol lowing table:

Value Descript i on

CLICK_BUTTON Click on a button to submit a form. (Default)

PRESS_ENTER_KEY Press the Enter key on a control to submit a
form.

Examples

Click_On (LINK, "Click Here");
Click_On (IMAGE, SRC_ATTRIBUTE, "image.gif");
Click_On (BUTTON, 2, CONTAINING, "<button name=' ");
Click_On (LINK, 4);
Click_On (BUTTON, 1, DESCRIPTION, "Submit Query", PRESS_ENTER_KEY);

QALoad 5.02

803

Addit ional Notes on How Click_On Handles Image Maps

There are two types of image maps: client side and server side. Cl ient side image maps expect special
handl ing by the cl ient so that when a user cl icks an area (region) of the image map, a URL is requested that
is part icular to that region . Server side image maps add on the X and Y coordinates of where the user
cl icked in the image map. Cl ient side image maps pass one parameter to Cl ick_On which represents the
region. Server side image maps wil l pass two parameters to Cl ick_On which represent the X and Y
coordinates where the image was cl icked.

The region parameter of a cl ient side image map wil l be a count of which region (area or a tag) to be used
for the Click_On. The count wi l l be in order of how they are l isted in the HTM L. A Region macro is defined
to give the addit ional parameter a better label, so i t is easi ly recognized as the region parameter. If a cl ient
side image map is detected and no region parameter is passed, Cl ick_On wil l automatical ly select the first
region.

Server side image maps coordinate parameters which are a representat ion of where on the image map the
user wants to cl ick. X_Coord and Y_Coord macros are defined so they are easi ly recognized as coordinate
parameters. If a server side image map is detected and no coordinates are passed, Cl ick_On wil l
automatical ly supply an X coordinate of 0 and a Y coordinate of 0.

Examples

Click_On (IMAGE, "Click Here", Region (1));
Click_On (IMAGE, 2, AFTER, "Fun Fun", Region (1));
Click_On (IMAGE, 4, Region (2));
Click_On (IMAGE, "Click Here", X_Coord (10), Y_Coord (11));
Click_On (IMAGE, 2, AFTER, "Fun Fun", X_Coord (20), Y_Coord (30));
Click_On (IMAGE, 4, X_Coord (20), Y_Coord (60));

DisableStat ist icsRP

Applies to Real Networks Streaming Media. Disables capture of stat ist ics during a load test.

Notes:

! Real Player streaming media is only supported in process mode. On the QALoad Player main window, in the Run
As: group, select the Process option.

! For streaming media playback, QALoad requires specific media player versions. For a list of supported versions,
refer to "System Requirements" in the "Installing QALoad " chapter of the QACenter Performance Edition Installation
and Configuration Guide.

Syntax

DisableStatisticsRP();

Parameters

None.

Example

DisableStatisticsRP();

DO_AddHeader

Applies to HTTP and SSL requests. Indicates headers that are common to every request (DO_Http or
DO_Https funct ion cal ls) in a script .

QALoad takes al l of the headers that are in every request in the script and places them at the beginning of
the script (between BEGIN_TRANSACTION and the first request) using the DO_AddHeader command.

QALoad 5.02

804

During replay, DO_AddHeader tel ls QALoad to add the header with a given name and value to al l requests
in the script .

Note: Cookie and Host headers are not included in the DO_AddHeader function even if they are common to
all of the requests.

Syntax

DO_AddHeader (const char *name, const char *value);

Parameters

Param eter Descript i on

Name The name of the header.

Value The value of the header.

Example

If the fol lowing two requests occurred in the same script , the User-Agent header would be considered
common:

DO_Http("GET http://yourserver.net/ HTTP/1.0\r\n"
"User-Agent: Mozilla/4.7 [en] (WinNT; I)\r\n"
"Host: yourserver.net\r\n"
"Accept: */*\r\n"
"Accept-Language: ja_JP\r\n"
"Accept-Charset: *\r\n\r\n");
DO_Http("GET http://anotherserver.net/ HTTP/1.0\r\n"
"User-Agent: Mozilla/4.7 [en] (WinNT; I)\r\n"
"Host: anotherserver.net\r\n"
"Accept: image/jpeg, */*\r\n"
"Accept-Language: en\r\n"
"Accept-Charset: iso-8859-1,*,utf-8\r\n\r\n");

Note that both User-Agent and Mozilla/4.7 [en] (WinNT; I) must be the same in order for them to be
considered common. Using the above example, the result ing script wi l l look l ike th is:

DO_AddHeader("User-Agent", "Mozilla/4.7 [en] (WinNT; I)");
DO_Http("GET http://yourserver.net/ HTTP/1.0\r\n"
"Host: yourserver.net\r\n"
"Accept: */*\r\n"
"Accept-Language: ja_JP\r\n"
"Accept-Charset: *\r\n\r\n");
DO_Http("GET http://anotherserver.net/ HTTP/1.0\r\n"
"Host: anotherserver.net\r\n"
"Accept: image/jpeg, */*\r\n"
"Accept-Language: en\r\n"
"Accept-Charset: iso-8859-1,*,utf-8\r\n\r\n");

Note that the User-Agent header was removed from the DO_Http() cal ls. The DO_AddHeader() cal l tel ls
QALoad to add the header with a given name and value to al l requests in the script .

DO_AllowTrafficFrom

Applies to HTTP and SSL requests. If DO_AllowTrafficFrom is present in a script , then sub-requested URLs
only occur i f the sub-request ’s URL contains one of the sub-strings in the ‘substrings’ l ist .

For example, i f substrings is "www.host.com, images; .js", then the fol lowing URLs could be sub-requested.

http://www.host.com/top-frame.html : URL has a substring "www.host.com"
http://img.host.com/images/fist.png : URL has a sub-string "images"
http://scripts.host.com/scripts/menu.js : URL has a sub-string ".js"

QALoad 5.02

805

And the fol lowing URL could not be sub-requested:
http://x.host.com/no-reason-to-request/page.html : No substring found

Syntax

DO_AllowTrafficFrom (const char * substrings)

Parameters

Param eter Descript i on

substrings Semicolon separated l ist of sub-strings.

Example

DO_AllowTrafficFrom ("www.host.com; images; .js");

DO_AttachFile

Applies to HTTP and SSL requests. Specifies fi les that should be loaded into memory at the beginning of a
script run. This is used in Post transact ions that include binary fi les.

Syntax

DO_AttachFile(const char *label, const char *filename);

Return Value

Parameters

Param eter Descript i on

label The variable that is replaced by the fi le contents in the request at run-t ime.

filename The relat ive fi lename for the fi le to attach.

Example

...

...
DO_AttachFile("FILE_1", "mee-1.jpg");
...
...
BEGIN_TRANSACTION();
...
...
DO_Http("POST {*action_statement0} HTTP/1.0\r\n"
"Content-Disposition: frm-data; name=\"phylename\"; filename="
"\"F:\\temp\\mee-1.jpg\"\r\n"
"Content-Type: image/pjpeg\r\n\r\n{*FILE_1}\r\n"
"-----------------------------7d02d1b240910--");
...
...

DO_Automat icSubRequests

Applies to HTTP requests. Indicates whether subrequests wi l l be downloaded during replay.

This command relates to the Automatical ly Process HTTP SubRequests check box on the QALoad Script
Development Workbench Convert Options wizard. When th is opt ion is selected,

QALoad 5.02

806

DO_AutomaticSubRequests (TRUE); is wri t ten to the script when i t is converted from a capture fi le and
subrequests are not included in the script . During replay, QALoad handles subrequests l ike a browser.

When i t is not selected, DO_AutomaticSubRequests(FALSE); is wri t ten to the script when i t is converted
from a capture fi le. Each DO_Http request evaluates the Web page, determines i f i t contains any
subrequests (requests that cal l for images, style sheets, or XML DTD’s), and downloads these i tems. Al l
subrequests in the capture fi le are converted in to the result ing script and executed during replay.

By default , the Automatical ly Process HTTP SubRequests check box is selected. DO_AutomaticSubRequests
is placed at the beginning of a script , between the BEGIN_TRANSACTION command and the first request.

Syntax

int DO_AutomaticSubRequests (BOOL bFlag);

Return Value

0 i f bFlag is set to FALSE.
1 i f bFlag is set to TRUE.

Parameters

Param eter Descript i on

bflag A flag indicat ing i f the Automatical ly Process HTTP SubRequests opt ion is
enabled (TRUE or FALSE).

Examples

Exam ple 1:

The fol lowing example is val id when bflag is TRUE:

Note: Request 3 (logo.gif) is not present when SubRequest is TRUE.

...

...
BEGIN_TRANSACTION();
...
...
DO_AutomaticSubRequests(TRUE);
...
...

/* Request: 1 */

DO_Http("GET http://company.com/ HTTP/1.0\r\n"
"Accept: image/gif, image/x-xbitmap, */*\r\n"
"Host: company.com\r\n"
"Cookie: HTMLA=FONTSIZE=LARGE; SITESERVER=ID=" "4b5b75c9dda4ab9751bce9a95f74ec62\r\n\r\n");
...
...

/* Request: 2 */

DO_Http("GET http://company.com/index.htm HTTP/1.0\r\n"
"Accept: image/gif, image/x-xbitmap, */*\r\n"
"Referer: http://company.com/\r\n"
"Host: company.com\r\n"
"Cookie: HTMLA=FONTSIZE=LARGE; SITESERVER=ID=" "4b5b75c9dda4ab9751bce9a95f74ec62\r\n\r\n");
...
...
END_TRANSACTION();
...
...

QALoad 5.02

807

Exam ple 2:

The fol lowing example is val id when bflag is FALSE:

...

...
BEGIN_TRANSACTION();
...
...
DO_AutomaticSubRequests(FALSE);
...
...

/* Request: 1 */

DO_Http("GET http://company.com/ HTTP/1.0\r\n"
"Accept: image/gif, image/x-xbitmap, */*\r\n"
"Host: company.com\r\n"
"Cookie: HTMLA=FONTSIZE=LARGE; SITESERVER=ID=" "4b5b75c9dda4ab9751bce9a95f74ec62\r\n\r\n");
...
...

/* Request: 2 */

DO_Http("GET http://company.com/index.htm HTTP/1.0\r\n"
"Accept: image/gif, image/x-xbitmap, */*\r\n"
"Referer: http://company.com/\r\n"
"Host: company.com\r\n"
"Cookie: HTMLA=FONTSIZE=LARGE; SITESERVER=ID=" "4b5b75c9dda4ab9751bce9a95f74ec62\r\n\r\n");
...
...

/* Request: 3 */

DO_Http("GET http://company.com/logo.gif HTTP/1.0\r\n"
"Accept: */*\r\n"
"Referer:http://company.com/index.htm\r\n"
"Host: company.com\r\n"
"Cookie: HTMLA=FONTSIZE=LARGE; SITESERVER=ID=" "4b5b75c9dda4ab9751bce9a95f74ec62\r\n\r\n");
...
...
END_TRANSACTION();
...
...
/

DO_BasicAuthorizat ion

Specifies the username and password to gain access to a password protected WWW host, directory, or fi le.

The password may be encrypted using QALoad ’s "~encr~" encrypt ion. Username and password are inserted
automatical ly as necessary during conversion. Note that you can variabl ize the username and password to
emulate different users accessing the resources.

Syntax

DO_BasicAuthorization(const char *username, const char *password);

Parameters

Param eter Descript i on

username A val id username for the resource you’re attempting to access.

password The associated password.

QALoad 5.02

808

Example

DO_HttpVersion("Auto");
DO_SLEEP(2);

/* Request: 1 */

DO_BasicAuthorization("smith", "~encr~0E636502080E");
BeginCheckpoint(" http://iris/redline - chkpt: 1");
DO_Http("GET http://iris/redline HTTP/1.1\r\n"
"Accept: image/gif, image/x-xbitmap, image/jpeg, image/ pjpeg, "
"application/vnd.ms-excel, application/msword, "
"application/vnd.ms-powerpoint, */*\r\n"
"Accept-Language: en-us\r\n"
"Accept-Encoding: gzip, deflate\r\n"
"User-Agent: Mozilla/4.0 (compatible; MSIE 5.01; Windows NT; CPWR)\r\n"
"Host: iris\r\n\r\n"
);

DO_BlankOutOfRangeData

Applies to HTTP and SSL requests. If DO_BlankOutOfRangeData is enabled, then characters in the HTTP
response body that in terface with text searching or the HTML parser are changed to spaces.

Note: Currently, the only character blanked by DO_BlankOutOfRangeData is the NUL character (ASCII value
0).

Syntax

DO_BlankOutOfRangeData (BOOL flag);

Parameters

Param eter Descript i on

flag Flag indicat ing i f out of range blanking is to be done or not.

Example

DO_BlankOutOfRangeData (TRUE);

DO_BlockTrafficFrom

Applies to HTTP and SSL requests. If DO_BlockTrafficFrom is present in a script , then sub-requested URLs
only occur i f the sub-request ’s URL does not contain one of the sub-strings in the ‘substrings’ l ist .

For example, i f sub-strings l ist is "pop-up; imgsrv", then the fol lowing URLs would not be sub-requested:

http://www.host.com/pop-up/ad.html : URL has a substring "pop-up"
http://imgsrv.host.com/images/fist.png : URL has a sub-string "imgsrv"
And the fol lowing URL could be sub-requested:
http://www.host.com/no-reason-to-block/page.html : No substring found

Syntax

DO_BlockTrafficFrom(const char * substrings)

Parameters

Param eter Descript i on

substrings Semicolon separated l ist of sub-strings.

QALoad 5.02

809

Example

DO_BlockTrafficFrom ("pop-up; imgsrv");

DO_Cache

Applies to HTTP and SSL requests. Turns on cache emulat ion, which caches anyth ing with a content type
beginning with "image/".

DO_Cache is related to the Cache opt ion on the WWW Advanced opt ions dialog box. If that opt ion is
selected, DO_Cache (TRUE); is wri t ten in to the script during the convert process, and requested images are
cached.

Syntax

DO_Cache(BOOL flag);

Parameters

Param eter Descript i on

flag TRUE (on) or FALSE (off).

Example

DO_InitHttp(s_info);
DO_Cache(); /* Enable cache */

DO_Clear

Applies to HTTP and SSL requests. Used to clear out certain i tems, such as the cache or cookies. Types can
be ordered together to clear both.

Prototypes

DO_Clear (enumeration type);

Parameters

Param eter Descript i on

type The type of clear to do. Val id types are l isted in the fol lowing tables:

Values for M eta t ype

Value Descript i on

TRANSACTION Clear al l temporary variables used in transact ion.

ALL Clear everyth ing.

Values for Tran sact ion t ype

Value Descript i on

ALL_COOKIES Clear al l stored cookies.

BASIC_AUTH_FLAG Do not send the basic authorizat ion unt i l next

QALoad 5.02

810

chal lenge.

BAUD_RATE_CALCULATIONS Clear the accumulated modem emulat ion data.

CACHE Clear out any virtual browser cache.

CONNECTION Reset network connect ion .

DNS_CACHE Clear any cached DNS lookups.

PROXY_AUTH_FLAG Do not send the basic authorizat ion unt i l next
chal lenge.

REFERER Clear the referer so i t is not sent with the next
request.

Values for ALL t ype

Value Descript i on

ALL_CGI_PARAMETERS Clear al l Set CGI_PARAM ETER
parameters.

ALL_HEADERS Clear al l Set HEADER header
attributes.

ATTACHED_FILES Clear al l fi les in the binary fi le
l ist .

BASIC_AUTHORIZATION Clear the basic authorizat ion
username and password.

BLOCK_TRAFFIC_FROM Clear the block traffic from l ist .

CERTIFICATE Clear the cl ient cert i ficate.

CONNECT_REQUEST_FOR_SSL_TUNNELING Clear the set SSL connect string.

DEFAULT_CONTENT_TYPE Clear the default content type.

JAVASCRIPT_ENGINE Clear the JavaScript state.

NTLM_AUTHORIZATION Clear the NTLM username,
password, and domain.

ONLY_ALLOW_TRAFFIC_FROM Clear the al low traffic from l ist .

ONLY_USE_SSL_CIPHER Clear the only use SSL cipher
string.

PROXY_AUTHORIZATION Clear the proxy authorizat ion
username and password.

PROXY_SETTINGS Clear al l proxy sett ings.

QALoad 5.02

811

RECEPTION_BAUD_RATE Turn off recept ion baud rate
emulat ion.

SIGNIFICANT_CONTENT_TYPES Clear the significant content type
l ist .

SPOOFED_IP_ADDRESS Clear any spoofed IP address.

TRANSMISSION_BAUD_RATE Turn off t ransmission baud rate
emulat ion.

Examples

DO_Clear (JAVASCRIPT_ENGINE);
DO_Clear (CACHE);
DO_Clear (CONNECTION);
DO_Clear (ALL_COOKIES);
DO_Clear (TRANSACTION);
DO_Clear (ALL);

DO_ClearCache

Applies to HTTP and SSL requests. Clears any cached images. Performed automatical ly by
DO_HttpCleanup.

Note: This command is the same as DO_Clear (CACHE).

Syntax

DO_ClearCache();

Parameters

None.

DO_ClearDNSCache

Applies to HTTP and SSL requests. When DO_Http or DO_Https make an HTTP request,
DO_ClearDNSCache caches any DNS lookups that are performed. If that cache needs to be cleared to
simulate browser, use DO_ClearDNSCache.

Note: This command is the same as DO_Clear (DNS_CACHE).

Syntax

DO_ClearDNSCache()

Parameters

None.

Example

...

...

/* Request: 1 */

DO_Http ("GET http://company.com/ HTTP/1.0\r\\n\r\n");
DO_ClearDNSCache();

/* Request: 2 */

QALoad 5.02

812

/*
* Do a brand new DNS lookup of company.com
*/
DO_Http ("GET http://company.com/ HTTP/1.0\r\n\r\n");
...
...

DO_ClearJavascript

Applies to HTTP and SSL requests. Clears any memory al located by the JavaScript engine.

Performed automatical ly by DO_HttpCleanup. DO_ClearJavascript is the same as DO_Clear
(JAVASCRIPT_ENGINE).

Note: DO_ClearJavascript is a deprecated command. Compuware recommends that you use
DO_SetJavascriptCleanupThreshold instead.

Syntax

DO_ClearJavascript();

Parameters

None.

Example

...
DO_ClearJavascript();
END_TRANSACTION();
...

DO_DynamicCookieHandling

Applies to HTTP and SSL requests. Turns dynamic cookie handl ing on or off.

This command relates to the Enable Dynamic Cookie Handling opt ion on the QALoad Script Development
Workbench Convert Options wizard. When th is opt ion is selected, DO_DynamicCookieHandling (TRUE);
is wri t ten to the script and the script does not include cookie-related statements
(DO_GetCookieFromReplyEx, DO_SetValue, etc.).

When the Enable Dynamic Cookie Handling opt ion is not selected, the converted script includes the
statement DO_DynamicCookieHandling (FALSE); and includes al l cookie-related in formation. By default ,
the Enable Dynamic Cookie Handling check box is selected.

Syntax

int DO_DynamicCookieHandling(BOOL bFlag)

Return Value

0 i f bFlag is set to FALSE.
1 i f bFlag is set to TRUE.

Parameters

Param eter Descript i on

bFlag Indicates whether dynamic cookie handl ing is turned on (TRUE) or off
FALSE.

QALoad 5.02

813

Examples

Exam ple 1:

When the Enable Dynamic Cookie Handling opt ion is not selected:

...

...

/* Declare Variables */

char *Cookie[1];
...
...
for(i=0;i<1;i++)
Cookie[i]=NULL;
...
...
BEGIN_TRANSACTION();
...
...
DO_DynamicCookieHandling(FALSE);
...
...
DO_GetCookieFromReplyEx("NUM", &Cookie[0], '*');

/* Request: 4 */

DO_SetValue("cookie000", Cookie[0]);
DO_Http("GET http://company.com/cgi-bin/cookiespipes.pl "
 "HTTP/1.0\r\n"
 "Accept: */*\r\n"
 "Host: company.com\r\n"
 "Cookie: HTMLA=FONTSIZE=LARGE; {*cookie000}; "
 "SITESERVER=ID=4b4ab9751bce9a95f74ec62\r\n\r\n");
...
...
for(i=0; i<1; i++)
{
free(Cookie[i]);
Cookie[i]=NULL;
}
END_TRANSACTION();
...
...

Exam ple 2:

When the Enable Dynamic Cookie Handling opt ion is selected:

...

...
BEGIN_TRANSACTION();
...
...
DO_DynamicCookieHandling(TRUE);
...
...
DO_Http("GET http://company.com/cgi-bin/cookiespipes.pl "
 "HTTP/1.0\r\n"
 "Accept: */*\r\n"
 "Host: company.com\r\n"
 "Cookie: HTMLA=FONTSIZE=LARGE; SITESERVER=ID=" "4b4ab9751bce9a95f74ec62\r\n\r\n");

...

...
END_TRANSACTION();

QALoad 5.02

814

...

...

DO_DynamicRedirectHandling

Applies to HTTP requests. Retrieves a redirected URL for use in the next request.

DO_DynamicRedirectHandling is related to the Enable Dynamic Redirect Handling opt ion on the QALoad
Script Development Workbench Convert Options wizard. If that opt ion is selected,
DO_DynamicRedirectHandling(TRUE) is wri t ten in to the script during the convert process. The script then
checks every response from a DO_HTTP for a 301, 302, 303, or 307 message and performs the redirected
request.

This l ine should appear only once in the script and at the beginning of the script .

Syntax

int DO_DynamicRedirectHandling (BOOL bFlag)

Return Value

0 i f bFlag is set to FALSE.
1 i f bFlag is set to TRUE.

Parameters

Param eter Descript i on

bFlag Flag that indicatese whether redirect ion should be handled.

Examples

Exam ple 1:

When Enable Dynamic Redirect Handling opt ion is TRUE:

...

...
DO_DynamicRedirectHandling(TRUE);
...
...
/* Request: 4 To: Redirected Webpage */

DO_Http("GET http://examples.com/cgi-bin/dynredir.exe "
 "HTTP/1.0\r\n"
 "Accept: image/gif, application/pdf, */*\r\n"
 "Referer: http://examples.com/index.htm\r\n"
 "Host: examples.com\r\n\r\n");

DO_Http("GET http://examples.com/nextrequest.htm"
 "HTTP/1.0\r\n"
 "Accept: image/gif, application/pdf, */*\r\n"
 "Referer: http://examples.com/redirect.htm\r\n"
 "Host: examples.com\r\n\r\n");
...

Exam ple 2:

When Enable Dynamic Redirect Handling opt ion is FALSE:

...

...
DO_DynamicRedirectHandling(FALSE);
...

QALoad 5.02

815

...
/* Request: 4 To: Redirected Webpage */

DO_Http("GET http://examples.com/cgi-bin/dynredir.exe "
 "HTTP/1.0\r\n"
 "Accept: image/gif, application/pdf, */*\r\n"
 "Referer: http://examples.com/index.htm\r\n"
 "Host: examples.com\r\n\r\n");

DO_Http("GET http://examples.com/redirect.htm"
 "HTTP/1.0\r\n"
 "Accept: image/gif, application/pdf, */*\r\n"
 "Referer: http://examples.com/cgi-bin/ dynredir.exe\r\n"
 "Host: examples.com\r\n\r\n");

DO_Http("GET http://examples.com/nextrequest.htm"
 "HTTP/1.0\r\n"
 "Accept: image/gif, application/pdf, */*\r\n"
 "Referer: http://examples.com/redirect.htm\r\n"
 "Host: examples.com\r\n\r\n");
...

DO_EnableJavascript

Applies to HTTP requests. Enables or disables the in terpretat ion of Javascript .

By default , QALoad attempts to in terpret Javascript detected during replay. If you disable th is feature, you
may be able to reduce the amount of CPU overhead during WWW replay. However, th is may cause WWW
replay to miss some sub-requests and cookies contained in Javascript on HTML pages. To disable Javascript
in terpretat ion, insert DO_EnableJavascript (FALSE); in to your script .

Syntax

DO_EnableJavascript (BOOL flag);

Return Value

True = on
False = off

Parameters

Param eter Descript i on

flag Used to enable or disable the in terpretat ion of Javascript .

Example

...

...
DO_EnableJavascript(FALSE);
BEGIN_TRANSACTION();
...
...

DO_EncodeString

Applies to HTTP and SSL requests. DO_EncodeString takes in a string and URL-encodes the string to be
suitable to use as a CGI parameter or in the body of a POST.

Syntax

int DO_EncodeString(const char *szSource, char **pszDestination)

QALoad 5.02

816

Return Value

The difference between the string length of the dest inat ion and the string length of the source.

Parameters

Param eter Descript i on

szSource String to URL encode.

pszDestination Address of a string (char*) to hold the URL encoded string.

Example

char* szEncoded= 0;
...
/* The value of szEncoded will be "a+string%21" */
DO_EncodeString("a string!", &szEncoded);

DO_FreeHt tp

Applies to HTTP and SSL requests. Also appl ies to Visual Script ing. Clears memory used by the script .

This command is used at the end of every HTTP script . DO_FreeHttp is automatical ly inserted during the
convert process and should never need to be adjusted.

Syntax

DO_FreeHttp();

Parameters

None.

Example

...

...
END_TRANSACTION();
DO_FreeHttp();
REPORT(SUCCESS);

DO_GetAnchorByNumber

Applies to HTTP and SSL requests. Stores the value of an anchor from an HTM L reply in to a string that can
be subst i tuted in to subsequent requests.

This command is used when an anchor is embedded in an HTML reply at a known locat ion, but the
anchor text may change. Fox example, a search engine returns a page with 10 anchors in response to a
query, and the business logic for the transact ion requires cl icking on the th ird anchor regardless of the text
for that anchor.

Syntax

int DO_GetAnchorByNumber(int anchorNumber, char **anchorValue);

Returns

1 i f successful
0 i f unsuccessful

QALoad 5.02

817

Parameters

Param eter Descript i on

anchorNumber A number which is the count of the anchor to be retrieved.

anchorValue Address to a string where the anchor value is stored.

Example

...
char *AnchorByNumber= NULL;
...
BEGIN_TRANSACTION();
...
DO_GetAnchorByNumber(3, &AnchorByNumber);
...
DO_SetValue("AnchorByNumber", AnchorByNumber);
...
DO_Http("GET {*AnchorByNumber} HTTP/1.0\r\n"
 "Accept: */*\r\n"
 "Referer: http://company/cgi-bin/perl_9.pl\r\n"
 "Host: company\r\n"
 "Cookie: username=anu; c2_LastVisit=6\r\n\r\n");
...
if (AnchorByNumber)
{
free(AnchorByNumber);
AnchorByNumber= NULL;
}
...
END_TRANSACTION();

DO_GetAnchorCount

Applies to HTTP and SSL requests. Returns the total number of the anchors on the page.

Syntax

int DO_GetAnchorCount()

Return Type

In teger

Parameters

none

Example

int n;
char *Anchor[1]= { NULL };
...
n= DO_GetAnchorCount();
DO_GetAnchorByNumber (n/2, &Anchor[0]);

DO_GetAnchorHREF

Applies to HTTP and SSL requests. Stores the value of a named anchor off of an HTML reply in to a string
that can be subst i tuted in to subsequent requests.

QALoad 5.02

818

This command is used when an anchor to a CGI request is embedded in a dynamic HTML reply (for
instance, the results from a search engine query). The DO_GetAnchorHREF funct ion is automatical ly
inserted by QALoad during conversion whenever th is si tuat ion is encountered.

Note: If you are adding commands, QALoad uses the following rules for matching the anchorName
parameter to the tag and anchor text. To modify this command in a script, take the syntax in the attribute
(the value for the alt= or src= tags) and append it to either the "alt=" or "src=" (case sensitive) attribute.

If there is an tag in the source HTML, use the alt= attribute.

Example:
FOR: click
USE: DO_GetAnchorHREF ("alt=look", Anchor [0]) ;

If the tag has no alt= attribute, use the src= attribute.

Example:
FOR: click
USE: DO_GetAnchorHREF ("src=look.gif", Anchor [0]) ;

If there is no tag, use the anchor text between <a> and .

Example:
FOR: click here
USE: DO_GetAnchorHREF ("click here", Anchor [0]) ;

The anchor text is made by removing all HTML tags and spaces. Words are extracted and put together
separated by a single space.

Syntax

int DO_GetAnchorHREF(const char *anchorName, char **anchorValue);

Return Value

1 i f successful.
0 i f unsuccessful.

Parameters

Param eter Descript i on

anchorName String constant specifying the name of the anchor to retrieve from the reply.

anchorValue Address to a string where the anchor value is stored.

Example

...

...
char *Anchor[1];
...
...
for(i=0;i<1;i++)
Anchor[i]=NULL;
...
...
BEGIN_TRANSACTION();
...
...
DO_GetAnchorHREF("Resubmit", &Anchor[0]);
DO_SetValue("Anchor000", Anchor[0]);
DO_Http("GET {*Anchor000} HTTP/1.0\r\n"
 "Accept: */*\r\n"
 "Referer: http://company/cgi-bin/perl_9.pl\r\n"
 "Host: company\r\n"

QALoad 5.02

819

 "Cookie: username=anu; c2_LastVisit=6\r\n\r\n");
...
...
for(i=0; i<1; i++)
{
free(Anchor[i]);
}
...
...
END_TRANSACTION();
...
...

DO_GetAnchorHREFEx

Applies to HTTP and SSL requests. Stores the value of a specific occurrence of a named anchor off an HTML
reply in to a string that can be subst i tuted in to subsequent requests.

This command is used when an anchor to a CGI request is embedded in a dynamic HTML reply, for
example, the results from a search engine query, more than once. The which parameter specifies the
occurrence of the anchor to retrieve. The DO_GetAnchorHREFEx funct ion is automatical ly inserted by
QALoad during conversion whenever th is si tuat ion is encountered.

If you are adding commands to match the anchorName parameter to the tag and anchor text, see
the note and examples for DO_GetAnchorHREF.

Syntax

int DO_GetAnchorHREFEx(const char *anchorName, int count, char **anchorValue);

Return Value

1 i f successful
0 i f unsuccessful

Parameters

Param eter Descript i on

anchorName String constant specifying the name of the anchor to retrieve from the reply.

count Which occurrence of the anchor to retrieve.

anchorValue Address to a string where the anchor value is stored.

Example

...

...
char *Anchor[1];
...
...
for(i=0;i<1;i++)
Anchor[i]=NULL;
...
...
BEGIN_TRANSACTION();
...
...
DO_GetAnchorHREFEx("Resubmit", &Anchor[0], 1);
DO_SetValue("Anchor000", Anchor[0]);
DO_Http("GET {*Anchor000} HTTP/1.0\r\n"
 "Accept: */*\r\n"

QALoad 5.02

820

 "Referer: http://company/cgi-bin/perl_9.pl\r\n"
 "Host: company\r\n"
 "Cookie: username=anu; c2_LastVisit=6\r\n\r\n");
...
...
for(i=0; i<1; i++)
{
free(Anchor[i]);
}
...
...
END_TRANSACTION();
...
...

DO_GetAnchorHREFn

Applies to HTTP and SSL requests. Stores the value of a specific occurrence of a named anchor off of an
HTML reply in to a string that can be subst i tuted in to subsequent requests.

This command is used when an anchor to a CGI request is embedded in a dynamic HTML reply, for
instance, the results from a search engine query, more than once. The which parameter specifies the
occurrence of the anchor to retrieve. The DO_GetAnchorHREFn funct ion is automatical ly inserted by
QALoad during conversion whenever th is si tuat ion is encountered.

If you are adding commands, to match the anchorName parameter to the tag and anchor text, see
the note and examples under DO_GetAnchorHREF.

Syntax

int DO_GetAnchorHREFn(const char *anchorName, char **anchorValue, int count);

Return Value

1 i f successful
0 i f unsuccessful

Parameters

Param eter Descript i on

anchorName String constant specifying the name of the anchor to retrieve from the reply.

anchorValue Address to a string where the anchor value is stored.

count The occurrence of the anchor to retrieve.

Example

...

...
char *Anchor[1];
...
...
for(i=0;i<1;i++)
Anchor[i]=NULL;
...
...
BEGIN_TRANSACTION();
...
...
DO_GetAnchorHREFn("Resubmit", &Anchor[0], 3);
DO_SetValue("Anchor000", Anchor[0]);

QALoad 5.02

821

DO_Http("GET {*Anchor000} HTTP/1.0\r\n"
 "Accept: */*\r\n"
 "Referer: http://company/cgi-bin/perl_9.pl\r\n"
 "Host: company\r\n"
 "Cookie: username=anu; c2_LastVisit=6\r\n\r\n");
...
...
for(i=0; i<1; i++)
{
free(Anchor[i]);
}
...
...
END_TRANSACTION();
...
...

DO_GetClientMapHREF

Applies to HTTP and SSL requests. DO_GetClientMapHREF is used to extract the href URL from a part icular
region of a cl ient-side image map.

Cl ient-side image maps are specified with in an HTML document by the ‘map’ tag. Inside the ‘map’ tag, ‘a’
and ‘area’ tags are used to specify regions of the image map. The href attribute of the ‘a’ or ‘area’ tags
specify the locat ion of the URL to go to.

Syntax

BOOL DO_GetClientMapHREF (int nMapCount, int nRegionCount, char ** pszURL);

Return Value

TRUE for successful
FALSE for unsuccessful.

Parameters

Param eter Descript i on

sMapCount Count of ‘map’ tags inside the HTML. The map count can be wrapped in the
MAP macro to make the script more readable.

nRegionCount Count of ‘a’ and ‘area’ tags inside of the ‘map’ tag. The region count can be
wrapped in the REGION macro to make the script more readable.

pszURL Address of a string pointer to hold the href URL for the map and region.

Example

char * ClientMapURL [1];
...
...
BEGIN_TRANSACTION();
...
...

/* Request: 1 */

DO_Http ("GET http://company.com/ HTTP/1.0\r\n\r\n");
DO_GetClientMapHREF(MAP(1), REGION (1), &ClientMapURL [0]);

/* Request: 2 */

DO_SetValue ("ClientMap000", ClientMapURL [0]);
DO_Http ("GET {*ClientMap000} HTTP/1.1\r\n\r\n");

QALoad 5.02

822

...

...

DO_GetCookie

Applies to HTTP and SSL requests. Extracts a cookie from the QALoad internal cookie l ist .

The cookie is retrieved based on the name of the cookie. Wildcard patterns can be used to specify the
cookie name in case the cookie name is dynamic. A count is also specified in case mult iple cookies match
the specified name.

Note: DO_GetCookie requires DO_DynanmicCookieHandling be set to TRUE.

Syntax

BOOL DO_GetCookie (const char * szName, in t nCount, char **
pszCookie);

Return Value

TRUE for successful
FALSE for unsuccessful

Parameters

Param eter Descript i on

szName Name of the cookie to get . Wildcard patterns, l ike '*' to match anyth ing can be
used.

nCount Count of which occurrence to get.

pszCookie Address of a string pointer to hold the cookie.

Example

char * userid;
char * aspsessionid;
...
...
BEGIN_TRANSACTION();
...
...

/* Request: 1 */

DO_Http ("GET http://company.com/HTTP/1.0\r\n\r\n");

/*
* Get a cookie named USER_ID
*/
DO_GetCookie ("USER_ID", 1, &userid);

/*
* Get the second ASPSESSIONID cookie cookie. ASPSESSIONID
* cookies always have extra characters on the end to make
* them unique.
*
* An example ASPSESSIONID: ASPSESSIONIDQQQGGQDO=EBOOONBBFH
* BBELAJIMEFAKAP
*/
DO_GetCookie ("ASPSESSIONID*", 2, &aspsessionid);

QALoad 5.02

823

DO_GetCookieFromReplyEx

Applies to HTTP and SSL requests. Retrieves and stores the value of a cookie when a Set-Cookie: statement
is encountered in a reply header.

A stored cookie can be used later in the script in a DO_SetValue command to pass the cookie value on to
subsequent requests. QALoad ’s Convert faci l i ty automatical ly inserts a DO_GetCookieFromReplyEx into
the script i f i t detects a Set-Cookie: header field.

Although th is funct ion is st i l l val id, QALoad now includes an improved opt ion to automatical ly provide
the same funct ional i ty. See DO_DynamicCookieHandling for detai ls.

Syntax

DO_GetCookieFromReplyEx(const char *cookieName, char **cookieValue, char match);

Return Value

None.

Parameters

Param eter Descript i on

cookieName String constant that specifies the name of the cookie to retrieve from the reply.

cookieValue Address to a string where the cookie value is stored.

match A wildcard character to use for regular expression matching before or after the
cookie name. The default used by QALoad is the asterisk character (*).

Example

...

...
/* Declare Variables */
char *Cookie[1];
...
...
for(i=0;i<1;i++)
Cookie[i]=NULL;
...
...
BEGIN_TRANSACTION();
...
...
DO_DynamicCookieHandling(FALSE);
...
...
DO_GetCookieFromReplyEx("NUM", &Cookie[0], '*');
DO_SetValue("cookie000", Cookie[0]);
DO_Http("GET http://company.com/cgi-bin/cookiespipes.pl "
 "HTTP/1.0\r\n"
 "Accept: */*\r\n"
 "Host: company.com\r\n"
 "Cookie: HTMLA=FONTSIZE=LARGE; {*cookie000}; "
 "SITESERVER=ID=4b4ab9751bce9a95f74ec62\r\n\r\n");
...
...
for(i=0; i<1; i++)
{
free(Cookie[i]);
Cookie[i]=NULL;
END_TRANSACTION();

QALoad 5.02

824

...

...

DO_GetFormAct ionStatement

Applies to HTTP and SSL requests. Gets the ACTION tag from a requested form.

This feature is useful when a form dynamical ly changes what is stored in the ACTION tag.

Syntax

int DO_GetFormActionStatement(int nFormnum, char **ActionURL);

Return Value

1 for successful
0 for unsuccessful

Parameters

Param eter Descript i on

nFormnum Specifies which form on a response to retrieve the ACTION tag from.

ActionURL Address of the string where the ACTION tag wil l be stored.

Example

...

...
char *ActionURL[1];
...
...
for(i=0;i<1;i++)
ActionURL[i]=NULL;
...
...
BEGIN_TRANSACTION();
...
...
DO_GetFormActionStatement(Form (1), &ActionURL[0]);
DO_SetValue("action_statement0", ActionURL[0]);
DO_Http("POST {*action_statement0} HTTP/1.0\r\n"
 "Content-Type: multipart/form-data; boundary="
 "---------------------------7d04c2740364\r\n"
 "Host: company\r\n"
 "Content-Length: {*content-length}\r\n"
 "Cookie: username=anu; c2_LastVisit="
 "Mon%20Mar%2013%0; c2_NumVisits=\r\n"
 "Content-Disposition: form-data; name=\"entry \"\r\n\r\n\r\n"
 "-----------------------------7d04c2740364\r\n\r\n");
...
...
for(i=0; i<1; i++)
{
free(ActionURL[i]);
}
END_TRANSACTION();
...
...

QALoad 5.02

825

DO_GetFormValueByName

Applies to HTTP and SSL requests. Retrieves the value embedded in a form for the specified field.

This value can then be used subsequently in a cal l to the DO_SetValue command to pass i t along to the
CGI script associated with th is form. DO_GetFormValueByName is general ly seen when h idden fields are
encountered in a form. QALoad ’s Convert faci l i ty automatical ly generates these commands for h idden
fields.

Syntax

GetFormValueByName(int form_number, const char *field_type, const char *field_name, int
count, char **value);

Parameters

Param eter Descript i on

form_number In teger specifying which form to search in an HTM L document.

field_type Type of field to search.

field_name Name of the field to search.

count If more than one field has the same name, a number specifying each field.

value Address to a string where the result value wil l be stored.

Example

...

...
char *Field[2];
...
...
for(i=0;i<2;i++)
Field[i]=NULL;
...
...
BEGIN_TRANSACTION();
...
...
DO_GetFormValueByName(FORM (1), "hidden", "hidden", 1, &Field[0]);
DO_GetFormValueByName(FORM (1), "hidden", "hidden1", 1, &Field[1]);
...
...
DO_SetValue("hidden", Field[0]);
DO_SetValue("hidden1", Field[1]);
...
...
BeginCheckpoint(); /* *FORM* */
DO_Http("POST {*action_statement0} HTTP/1.0\r\n"
 "Content-Type: application/x-www-form-urlencoded\r\n"
 "Host: company\r\n"
 "Content-Length: {*content-length}\r\n\r\n"
 "{name }&{hidden}&{hidden1}&{submit}");
...
...
DO_HttpCleanup();
for(i=0; i<2; i++)
{
free(Field[i]);
}
...

QALoad 5.02

826

...
END_TRANSACTION();
...
...

DO_GetHeaderFromReply

Applies to HTTP and SSL requests. Retrieves the value of a header in the reply result ing from a DO_HTTP
command.

Syntax

int DO_GetHeaderFromReply (char *header, const char

*output_buffer, int nLength)

Return Value

1 for success
0 for unsuccessful

Parameters

Param eter Descript i on

header A header to look for in the reply.

output_buffer A string to store the result. Memory should already be al located for i t .

nLength The length of space avai lable in the output buffer.

Example

char OutputBuf[256];
...
...
BEGIN_TRANSACTION();
...
...
DO_Http("GET http://company.com/ HTTP/1.0\r\n"
 "Accept: image/gif, image/x-xbitmap, */*\r\n"
 "Host: company.com\r\n"
 "Cookie: HTMLA=FONTSIZE=LARGE; SITESERVER=ID="
 "4b5b75c9dda4ab9751bce9a95f74ec62\r\n\r\n");
DO_GetHeaderFromReply("Content-Length:", OutputBuf, 255);
...
...

DO_GetLastHt tpError

Applies to HTTP and SSL requests. Retrieves the in teger indicat ing the error code of the last HTTP request
sent with DO_Http.

Errors greater than 399 include the "Page not found" 404 error.

Syntax

int DO_GetLastHttpError();

Return Value

Returns the error code, or 0 i f unsuccessful.

QALoad 5.02

827

Parameters

None.

Example

int error;
char errorString[50];
...
...
BEGIN_TRANSACTION();
...
...
/* Request: 1 */
DO_Http("GET http://company.com/ HTTP/1.0\r\n"
 "Accept: */*\r\n"
 "Host: company.com\r\n\r\n");
if ((error = DO_GetLastHttpError()) > 399)
{
sprintf (errorString, "Error in response: %d\n", error);
WWW_FATAL_ERROR ("DO_Http", errorString);
}
...
...

DO_GetRedirectedURL

Applies to HTTP requests. Modifies the parameter passed in for use in the next request.

This funct ion is st i l l supported, however, DO_DynamicRedirectHandling is preferred.

Syntax

int DO_GetRedirectedURL (char **URL)

Return Value

1 for successful
0 for unsuccessful

Parameters

Param eter Descript i on

URL An address to a string.

Example

DO_Http(http_statement);

/* RedirectedURL[0]="http://company/cgi-bin/pm3D.htm"*/
DO_GetRedirectedURL(&RedirectURL[0]);

/* Request: 10 * From: QALoad WWW Capture Examples */
DO_SetValue("redirect_statement0", RedirectURL[0]);
DO_Http("GET {*redirect_statement0} HTTP/1.0\r\n"
 "Accept: */*\r\n"
 "Referer: http://company/index.htm\r\n"
 "Accept-Language: en-us\r\n"
 "Accept-Encoding: gzip, deflate\r\n"
 "Host: company\r\n\r\n");

QALoad 5.02

828

DO_GetReplyBuffer

Applies to HTTP and SSL requests. DO_GetReplyBuffer returns the HTTP response from the last DO_Http
request.

Syntax

Const char * DO_GetReplyBuffer()

Return Value

The last HTTP reply or NULL i f unsuccessful.

Parameters

None.

Example

const char * data;
...
...
BEGIN_TRANSACTION();
...
...

/* Request: 1 */

DO_Http("GET http://company.com/ HTTP/1.0\r\n\r\n");
data = strstr(DO_GetReplyBuffer(), "data_key");
if (data == NULL)
{
WWW_FATAL_ERROR ("DO_Http", "Data_key was missing in reply");
}
...
...

DO_GetUniqueString

Applies to HTTP and SSL requests. Used to parse the most recent HTTP server reply to get the contents of a
string that occurs between the left and right input strings.

Syntax

char *DO_GetUniqueString(const char *left, const char *right);

Return Value

The string (nul l-terminated) of characters between the left and right search strings provided as input.
NULL If ei ther the left or right search strings are not found.

Note: DO_GetUniqueString allocates enough space to hold the string (including the NULL). Any memory
created with the use of malloc results in a memory leak. Please remember to free any memory after using the
returned string.

Parameters

Param eter Descript i on

left A string contain ing the left search string.

right A string contain ing the right search string.

QALoad 5.02

829

Example

char *p;
char temp[1000];
...
...
DO_Http("GET HTTP://www.yahoo.com HTTP/1.0\r\n"
 "Referer: HTTP://company/index.htm\r\n"
 "Proxy-Connection: Keep-Alive\r\n"
 "User-Agent: Mozilla/3.01 WinNT;I)\r\n"
 "Host: www.yahoo.com\r\n"
 "Accept:*/*\r\n");
p = DO_GetUniqueString("text to the left side of the string",
 "text to the right side of the string");
if (p != NULL)
{
strcpy(temp, p);
free(p);
}
RR__printf("String value = %s", temp);

DO_GetUniqueStringEx

Applies to HTTP and SSL requests. Used to parse a nul l-terminated input string (search) to get the contents
of a string that occurs between the left and right input strings.

Syntax

char *DO_GetUniqueStringEx(const char *search, const char *left, const char *right);

Return Value

The string (nul l-terminated) of characters between the left and right search strings provided as input.
NULL i f ei ther the left or right search strings are not found.

Note: DO_GetUniqueStringEx allocates enough space to hold the string (including the NULL). Any memory
created with the use of malloc results in a memory leak. Please remember to free any memory after the usage
of the returned string.

Parameters

Param eter Descript i on

search A string to be searched.

left A string contain ing the left search string.

right A string contain ing the right search string.

Example

char *p;
char temp[1000];
...
...
strcpy(temp, "Here is the search string.");
p = DO_GetUniqueStringEx(temp, "the", "string");

if (p != NULL)
{
 RR__printf("String value = %s", p);
 free(p);
}
else

QALoad 5.02

830

{
 RR__printf("String not found");
}

DO_Http

Applies to HTTP requests. Executes an HTTP request in the script .

DO_Http sends the request to the server. Any responses to the request are then processed by DO_Http and
returned to the script . DO_Http returns text repl ies to the script .

Syntax

char *DO_Http(const char *http_statement);

Return Value

Character string contain ing the response from the server.

Parameters

Param eter Descript i on

http_statement String contain ing a val id HTTP request to be sent to a server.

Example

...

...
DO_Http("GET HTTP://www.yahoo.com HTTP/1.0\r\n"
 "Referer: HTTP://company/index.htm\r\n"
 "Proxy-Connection: Keep-Alive\r\n"
 "User-Agent: Mozilla/3.01 WinNT;I)\r\n"
 "Host: www.yahoo.com\r\n"
 "Accept:*/*\r\n");
...
...

DO_HttpCleanup

Applies to HTTP and SSL requests. Performs al l necessary cleanup operat ions when a script exits or the user
terminates the script .

Note: This command is the same as DO_Clear (TRANSACTION).

Syntax

DO_HttpCleanup();

Parameters

None.

Example

...

...
DO_Http("GET HTTP://www.yahoo.com HTTP/1.0\r\n"
 "Referer: HTTP://company/index.htm\r\n"
 "Proxy-Connection: Keep-Alive\r\n"
 "User-Agent: Mozilla/3.01 WinNT;I)\r\n"
 "Host: www.yahoo.com\r\n"
 "Accept:*/*\r\n");
...

QALoad 5.02

831

...
DO_HttpCleanup();
...
...
END_TRANSACTION();
...
...

DO_HttpVersion

Applies to HTTP and SSL requests. Specifies the version to use in the requests sent during playback.

This affects whether or not the repl ies may come back chunked. Only HTTP 1.1 requests receive chunked
repl ies.

DO_HttpVersion is related to the HTTP Version Detect ion opt ion on the WWW Advanced dialog box.
From the Convert Options wizard, access the WWW Advanced dialog box by cl icking the Advanced
button. The default sett ing is Auto.

Syntax

DO_HttpVersion(const char *version);

Parameters

Param eter Descript i on

version The HTTP version ("1.0", "1.1", or "Auto"). If specified as Auto, the version used
for each request is determ ined from the request.

Example

DO_HttpVersion("Auto");

DO_InitHt tp

Applies to HTTP and SSL requests. Also appl ies to Visual Script ing. Sets al l necessary in ternal variables
needed to load test an HTTP script .

Use th is command at the beginning of every HTTP script , but never more than once in a script .

Note: This function should be written exactly as shown below.

Syntax

DO_InitHttp(PLAYER_INFO *sInfo);

Parameters

Param eter Descript i on

sInfo A pointer to a PLAYER_INFO memory structure.

Example

...

...
int rhobot_script(s_info)
PLAYER_INFO *s_info;
{
...
...
DO_InitHttp(s_info);

QALoad 5.02

832

...

...
BEGIN_TRANSACTION();
...
...
}

DO_IPSpoofEnable

Applies to HTTP and SSL requests. Enables each virtual user to appear to the web server as being sourced
from a different network in terface card.

This command is placed after the DO_InitHttp command. It is useful for those appl icat ions where the
server keys off the originat ing IP address. To ut i l ize th is feature, the Player system must be configured with
mult iple stat ic IP addresses. In addit ion, a local datapool fi le contain ing a l ist of val id IP addresses must be
avai lable to the Player. The Player tab on the QALoad Conductor Options dialog box provides an opt ion
for creat ing th is local datapool fi le for NT-based Players.

The datapool fi le name defaults to using the datapool fi le pointed to by the qaload_ipspoof environment
variable. This variable is automatical ly set when QALoad is instal led on an NT-based system. Users of the
UNIX-based Players must add th is variable manually. The parameter to th is command can be used to
override the contents of the environment variable.

Syntax

Const char *DO_IPSpoofEnable(const char *filename);

Return Value

A string contain ing the IP address.

Parameters

Param eter Descript i on

Filename String contain ing a ful ly qual i fied path name. This fi le contains a l ist of IP
addresses to use. Set to "" to use the fi lename specified in the qaload_ipspoof
environment variable.

Example

...

...
DO_IPSpoofEnable("c:\\qaload\\ myipspoof.dat");
BEGIN_TRANSACTION();
...
...

DO_NTLMAuthorizat ion

Applies to HTTP requests. Provides user ID and password (plain text or encrypted) in formation for NTLM
authent icat ion.

DO_NTLMAuthorizat ion is related to the NTLM opt ion on the QALoad Script Development Workbench
Record Options wizard. When you select that opt ion and enter user ID and password in formation,
DO_NTLMAuthorizat ion(string, string) is wri t ten to your script . QALoad attempts to use the user ID and
password you entered to access the site. If the in formation is not accepted, QALoad reports the error and
aborts.

At test t ime, when QALoad encounters a NTLM control led site, i t uses the NTLM user ID and password that
are provided to access that si te.

QALoad 5.02

833

Note: NTLM user names and passwords can be variablized by machine, but not by user.

Syntax

DO_NTLMAuthorization(const char *name, const char *password);

Parameters

Param eter Descript i on

name A val id user ID for the NTLM-enabled site.

password A val id password corresponding to the user ID.

Examples

Exam ple 1:

...

...
BEGIN_TRANSACTION();
...
...
DO_NTLMAuthorization("user-id", "~encr~2038520348AKJAS");
...
...
END_TRANSACTION();
...
...

Note: String must be enclosed in quotation marks (""), unless NULL is used.

Exam ple 2:

When the user ID, password, and domain are provided:
DO_NTLMAuthorization("domain\\user_id","~encr~506C205A545D");

Exam ple 3:

When the domain is not provided:
DO_NTLMAuthorization("user_id","~encr~506C205A545D");

Exam ple 4:

When NULL is used and access is provided:
DO_NTLMAuthorization(NULL, NULL);

Note: NULL is not enclosed in quotes.

DO_Addit ionalSubRequest

Applies to HTTP and SSL requests. DO_Addit ionalSubRequest manually adds a sub-request for the next
DO_Http or DO_Https request. The request is specified as a URL.

Syntax

int DO_AdditionalSubRequest (const char * szSubRequest);

Return Value

Returns the number of i tems in the pre-loaded sub-request l ist .

QALoad 5.02

834

Parameters

Param eter Descript i on

szSubRequest URL to add as a sub-request of the next DO_Http or DO_Https request.

Example

...

...
DO_AdditionalSubRequest ("http://company.com/images/bar.gif");
...
...

DO_ProxyAuthorizat ion

Provides the username and password to access a password protected proxy server.

The password may be encrypted using QALoad ’s "~encr~" encrypt ion. The username and password are
inserted automatical ly as necessary during conversion. Note that you can variabl ize the username and
password to emulate different users accessing the resources.

Syntax

DO_ProxyAuthorization(const char *username, const char *password);

Parameters

Param eter Descript i on

username A val id user name for the resource you’re attempting to access.

password The associated password.

Example

DO_HttpVersion("Auto");
DO_SLEEP(2);

/* Request: 1 */

DO_ProxyAuthorization("smith", "~encr~0E636502080E");

BeginCheckpoint(" http://iris/redline - chkpt: 1");

DO_Http("GET http://iris/redline HTTP/1.1\r\n"
"Accept: image/gif, image/x-xbitmap, image/jpeg, image/ pjpeg, "
"application/vnd.ms-excel, application/msword, "
"application/vnd.ms-powerpoint, */*\r\n"
"Accept-Language: en-us\r\n"
"Accept-Encoding: gzip, deflate\r\n"
"User-Agent: Mozilla/4.0 (compatible; MSIE 5.01; Windows NT; CPWR)\r\n"
"Host: iris\r\n\r\n"
);

DO_ProxyExcept ions

Applies to HTTP and SSL requests. Tel ls QALoad not to use the proxy server for hosts in the proxy
except ions l ist , so you can replay requests both inside and outside of the firewall in the same script .

This command is wri t ten to the script when the opt ion Automatical ly configure proxy opt ions and launch
browser is selected on the QALoad Script Development Workbench Record Options wizard.
DO_ProxyExcept ions is wri t ten to the script between BEGIN_TRANSACTION and the first request.

QALoad 5.02

835

Syntax

int DO_ProxyExceptions(const char *list);

Return Value

-1 i f the l ist is NULL.
0 i f successful.

Parameters

Param eter Descript i on

list List of proxy addresses in except ions l ist . Note that addresses are separated by
commas in the script .

Example

...

...
BEGIN_TRANSACTION();
...
...
DO_UseProxy ("internet.company.com:80");
DO_SSLUseProxy ("internet.company.com:90");
DO_ProxyExceptions("company.sample.com, "company2.company.com");
...
...

DO_SaveReplyType

Applies to HTTP and SSL requests. Specifies types of repl ies to save.

Normally, only repl ies returned from the server whose type begin with "text/" are saved. Use
DO_SaveReplyType to specify which type(s) to save. You can specify mult iple types i f you separate them
with a semi-colon (;).

In a reply, the type is specified in the "Content-Type:" tag. You access the reply by saving a pointer
returned from the DO_Http command:

char *p;
...
p = DO_Http("GET http://www.nosuch.com/...");

Syntax

DO_SaveReplyType(const char *types);

Parameters

Param eter Descript i on

types Reply types to save (for example, "text/ ;image/ gif" saves repl ies specified as text
or image/gif in the repl ies’ "Content-Type" tag).

Example

...

...
DO_SaveReplyType("text/;image/gif");
BEGIN_TRANSACTION();
...
...

QALoad 5.02

836

DO_SetAssumedContentType

Applies to HTTP and SSL requests. Sets the default content type i f the web server doesn ’t send a content-
type header.

If any reply from a web server doesn ’t contain a content-type header, then QALoad assumes the content-
type is application/octet-stream. appl icat ion/octet-stream is not processed by QALoad and the body of such a
reply is not avai lable. To override the default assumed content-type, use th is funct ion to set a new content
type.

Note: According to the HTTP specification, returning a response without a content-type is undefined behavior
and may indicate a problem on the server.

Sett ing the assumed content type to text/html al lows the reply to be treated as an HTML document.

Once you have set the assumed content type, i t does not change unt i l the next cal l to
DO_SetAssumedContentType.

This command corresponds to the Assumed Content-Type field on the QALoad Script Development
Workbench Record Options wizard.

Syntax

DO_SetAssumedContentType(const char *ContentType);

Parameters

Param eter Descript i on

ContentType The mime type that is used as the new default content type i f the web server
doesn ’t send a content type header.

Example

DO_SetAssumedContentType("text/html");

DO_SetBaudRate

See also WWW

Applies to HTTP and SSL requests. Causes a virtual user to delay transmission and recept ion of network
traffic to emulate a given modem speed. Returns the baud rate the virtual user wi l l use.

Syntax

int DO_SetBaudRate(int nBaud)

Return Value

Returns the baud rate the virtual user wi l l use.

Parameters

Param eter Descript i on

nBaud The rate the virtual user wi l l use. If nBaud is set to 0, modem emulat ion is shut
off.

Example

...

...
BEGIN_TRANSACTION();
DO_SetBaudRate(28800);

QALoad 5.02

837

...

...

DO_SetBaudRateEx

Applies to HTTP and SSL requests. Causes a virtual user to delay transmission and recept ion of network
traffic to emulate a given modem speed. The transmission rate and the recept ion rate are set as separate
values.

Syntax

int DO_SetBaudRateEx (int nTransmissionRate, int nReceptionRate)

Return Value

Returns the transmission rate the virtual user wi l l use.

Parameters

Param eter Descript i on

nTransmissionRate The transmission rate the virtual user wi l l use. If nTransmissionRate is set to
0, modem transmission emulat ion is shut off.

nReceptionRate The recept ion rate the virtual user wi l l use. If nRecept ionRate is set to 0,
modem recept ion emulat ion is shut off.

Example

...

...
BEGIN_TRANSACTION();
DO_SetBaudRateEx(28800, 36600);
...
...

DO_SetCheckpointName

Sets the name of the next automatic checkpoint for the next DO_Http or DO_Https statement in the script .

Syntax

void DO_SetCheckpointName (const char *szCheckpointName);

Parameters

Param eter Descript i on

szCheckpointName The name for the next automatic checkpoint.

Example

DO_SetCheckpointName("Login to Website");
DO_Https("POST https://dbhost.company.com/login.asp HTTP/1.1\r\n"
 "\r\n"
 "{domain}&{username}&{password}");

DO_SetCookie

Applies to HTTP and SSL requests. DO_SetCookie adds a cookie to the current transact ion.

QALoad 5.02

838

The path of the cookie is "/ ". The domain of the cookie is the same as the next DO_Http or DO_Https
request. If you wish to set a part icular domain or path, use DO_SetCookieEx.

Once a cookie is set, i t remains for the rest of the transact ion. To remove the cookie, use DO_SetCookieEx
with the name of the cookie to remove and an expirat ion value of -1.

DO_SetCookie requires DO_DynamicCookieHandling to be set to TRUE.

Syntax

BOOL DO_SetCookie (const char * szName, const char * szValue);

Return Value

TRUE for successful
FALSE for unsuccessful

Parameters

Param eter Descript i on

szName Name of the cookie to set.

szValue Value of the cookie to set.

Example

...

...
BEGIN_TRANSACTION();
...
...
DO_SetCookie ("cookie1", "desired value");

/* Request: 1 */

/*
* This request will have "cookie1" sent with this request
*/
DO_Http ("GET http://company.com/ HTTP/1.0\r\n\r\n");
...
...

DO_SetCookieEx

Applies to HTTP and SSL requests. DO_SetCookie adds a cookie to the current transact ion.

Once a cookie is set, i t remains for the rest of the transact ion. To remove the cookie, use DO_SetCookieEx
with the name of the cookie to remove and a max age of -1.

DO_SetCookie requires DO_DynamicCookieHandling to be set to TRUE.

Syntax

BOOL DO_SetCookieEx (const char * szName, const char * szValue,
 const char * szDomain, const char * szPath,
 int nMaxAge, BOOL bSecure);

Return Value

TRUE for successful
FALSE for unsuccessful

QALoad 5.02

839

Parameters

Param eter Descript i on

szName Name of the cookie to set.

szValue Value of the cookie to set.

szDomain Domain of the cookie. The domain of the cookie controls what hosts the
cookie is sent to.

szPath The path of the cookie. The path of the cookie controls when a cookie is sent
to a host based on the path of the URL.

nMaxAge Time to l ive of the cookie. Use a value of 0 for a session cookie and -1 for an
expired cookie.

bSecure Boolean flag (TRUE or FALSE). If the value is TRUE, then the cookie only is
sent with SSL request. If the value is FALSE, then the cookie is sent with HTTP
and SSL requests.

 Example

...

...
BEGIN_TRANSACTION();
...
...
DO_SetCookieEx ("cookie1", "desired value", ".company.com", "/", 1000, FALSE);

/* Request: 1 */
/*
* This request will have "cookie1" sent with this request
*/
DO_Http ("GET http://company.com/ HTTP/1.0\r\n\r\n");
...
...

DO_SetJavascriptCleanupThreshold

Applies to HTTP and SSL requests. Periodical ly QALoad destroys i ts in ternal JavaScript model and recreates
i t .

DO_SetJavascriptCleanupThreshold sets a count of the number of t imes JavaScript parsing is done before
destroying and recreat ing the model. By default , the count is 300.

Cleaning up JavaScript takes CPU t ime, and the Javascript model takes up more memory the longer the
same model is used. To reduce CPU usage, set the count h igher. To reduce the memory footprint , set the
count lower.

Syntax

DO_SetJavascriptCleanupThreshold(int nThreshold)

Parameters

Param eter Descript i on

nThreshold Number of JavaScript evaluat ions to make before cleaning up the JavaScript
engine.

QALoad 5.02

840

Example

...

...
DO_SetJavascriptCleanupThreshold(200);
...
...

DO_SetMaxBrowserThreads

Applies to HTTP and SSL requests. Specifies the number of concurrent connect ions to make for playback.

This command relates to the Max Concurrent Connect ions opt ion on the WWW Advanced opt ions dialog
box. The value you enter in that field is inserted in the script .

Syntax

DO_SetMaxBrowserThreads(int count);

Parameters

Param eter Descript i on

count The number of connect ions to make. QALoad accepts 1-8. The default is 2.

Example

BEGIN_TRANSACTION();
DO_SetMaxBrowserThreads(2);

DO_SetMaximumRetries

Applies to HTTP and SSL requests. Sets the maximum number of t imes a virtual user should attempt to
retrieve a graphic or page that fai led.

Similar to the behavior of Netscape and Internet Explorer.

Syntax

DO_SetMaximumRetries(int nValue)

Parameters

Param eter Descript i on

nValue The default is 4.

Example

...

...
BEGIN_TRANSACTION();
DO_SetMaximumRetries(5);
...
...

DO_SetRefreshTimeout

Specifies how long to wait for a meta refresh or an HTTP refresh header.

QALoad 5.02

841

The HTML meta tag can set a number of seconds before a refresh. When that number of seconds has
expired, then the browser loads the URL specified in the meta refresh.

QALoad's WWW replay only refreshes the page i f the number of seconds specified in the refresh is less than
or equal to the t imeout value set by DO_SetRefreshTimeout. If the refresh is set too large, then QALoad's
WWW replay can get stuck in an in fin i te loop.

Syntax

int DO_SetRefreshTimeout(int nTimeout);

Parameters

Param eter Descript i on

nTimeout How many seconds to wai t for a refresh, the default is 0.

DO_SetRetryWait

Applies to HTTP and SSL requests. Sets the delay between retries in seconds.

Syntax

DO_SetRetryWait(int nValue)

Parameters

Param eter Descript i on

nValue Delay between retries, in seconds. Default is 1.

Example

DO_SetRetryWait(6);

DO_SetTimeout

Applies to HTTP and SSL requests. Specifies how long to wait for a reply from the server. If a reply is not
received with in the specified t ime, the virtual user wi l l fai l with a fatal error.

DO_SetTimeout al lows you to more closely emulate browser behavior when requests go unanswered due to
server or network problems. Normally a browser would wait unt i l i t receives a reply or the user cancels the
request by cl icking the Stop button.

This command relates to the Server Response Timeout opt ion on the WWW Advanced opt ions dialog box.
The default is 120 seconds.

Syntax

DO_SetTimeout(int timeout);

Parameters

Param eter Descript i on

timeout The number of seconds to wait . The default is 120.

Example

DO_SetTimeout(120); /* Maximum time to wait for an HTTP Reply */

QALoad 5.02

842

DO_UseEnt ityList

Applies to HTTP and SSL requests. Decodes non-ASCII character ent i t ies.

Syntax

void DO_UseEntityList (ENTITY_LIST);

Parameters

Param eter Descript i on

ENTITY_LIST User-defined Ent i ty l ist .

Example

For examples and more in formation about th is command, see HTML character ent i t ies and numeric
references.

DO_UseNumericReferenceList

Applies to HTTP and SSL requests. Decodes non-ASCII numeric references.

Syntax

void DO_UseNumericReferenceList (NUMERIC_REFERENCE_LIST) ;

Parameters

Param eter Descript i on

NUMERIC_REFERENCE_LIST User-defined Numeric Reference l ist .

Example

For examples and more in formation about th is command, see HTML character ent i t ies and numeric
references.

DO_UsePersistentConnect ions

Applies to HTTP and SSL requests. Turns the use of persistent connect ions on or off.
It wi l l always terminate the current persistent connect ion i f one is present. This wi l l al low persistent
connect ions to be reset in transact ion loops to better simulate a real user test.

Syntax

void DO_UsePersistentConnections (BOOL bEnable)

Return Value

None.

Parameters

Param eter Descript i on

bEnable A flag indicat ing i f the Use Persistent Connect ions opt ion should be
enabled (1=TRUE, 0=FALSE).

QALoad 5.02

843

Example

...

...
BEGIN_TRANSACTION();
DO_UsePersistentConnections(1);
...
...

DO_UseProxy

Applies to HTTP and SSL requests. Specifies a proxy server to use during test ing.

If you select the Use a proxy server opt ion on the QALoad Script Development Workbench ’s Record
Options wizard before you record, a DO_UseProxy command is inserted at the beginning of your script . If
you change your proxy server whi le recording, QALoad ’s Record faci l i ty detects the modificat ion and
inserts another DO_UseProxy() in to the script .

Syntax

int DO_UseProxy(const char *proxy);

Return Value

Always returns 0.

Parameters

Param eter Descript i on

proxy String contain ing the proxy server and port separated by a colon.

Example

...

...
BEGIN_TRANSACTION();
...
...
DO_UseProxy ("internet:80");
DO_SSLUseProxy ("internet.company.com:90");
DO_ProxyExceptions("company.sample.com, "company2.company.com");
...
...

DO_UseProxyAutomat icConfigurat ion

Applies to HTTP and SSL requests. Downloads the proxy automatic configurat ion (PAC) script at the
specified URL. The rest of the transact ion wil l use the PAC script to determine which proxy, i f any, to
connect to hosts.

Syntax

BOOL DO_UseProxyAutomaticConfiguration (const char * szUrl);

Return Value

TRUE if successful, else FALSE.

Parameters

Param eter Descript i on

QALoad 5.02

844

szUrl URL where the proxy automatic configurat ion script is located.

Example

...

...

BEGIN_TRANSACTION();
DO_UseProxyAutomaticConfiguration("http://proxy config.host.com/");

...

...

/*Request: 1*/

/*
*The PAC script downloaded from http://proxyconfig.host.com/
*determine what proxy, if any, to use to connect to
*company.com
*/
DO_Http ("GET http://company.com/ HTTP/1.0\r\n\r\n");
...
...

DO_VerifyDocTit le

Applies to HTTP and SSL requests. Compares the parameters and match type passed in the parameters
against the HTML page t i t le specified in the response received from the HTTP request.

Syntax

int DO_VerifyDocTitle (const char *szTitle, int nType) ;

Return Value

The funct ion wil l return an in teger value of either 0 or 1. If a match is found (1), the Player debug window
wil l indicate so. If not (0), the funct ion wil l cal l WWW_FATAL_ERROR which wil l ei ther abort the test or
cont inue, based upon the ABORT_ON_ERROR flag.

Parameters

Param eter Descript i on

szTitle A character string specifying a t i t le to search for in the HTTP response. This is
generated by Convert using the ent ire document t i t le, the t i t le prefix, or the
t i t le suffix, as specified on the QALoad Script Development Workbench
Convert Options wizard.

nType This parameter should be one of three values: TITLE, PREFIX, or SUFFIX,
corresponding to the comparison opt ions avai lable on the QALoad Script
Development Workbench Convert Options wizard.

Example

DO_Http (http_statement) ;
DO_VerifyDocTitle ("Welcome to Compuware" , TITLE) ;

DownloadMediaFromASX

Applies to Windows Media Player streaming media. Dynamical ly parses an ASX fi le from the previous
response and in i t iates and waits for complet ion of the specified Windows Media resources download.

QALoad 5.02

845

DownloadMediaFromASX is a deprecated funct ion. Use a combinat ion of the Click_On funct ion with the
PlayMedia funct ion instead.

Note: For streaming media playback, QALoad requires specific media player versions. For a list of supported
versions, refer to "System Requirements" in the "Installing QALoad" chapter of the QACenter Performance
Edition Installation and Configuration Guide.

Syntax

DownloadMediaFromASX(int secDuration);

Parameters

Param eter Descript i on

secDuration Specifies the number of seconds of media to download. Specifying 0 means
read the ent ire media.

Example

Do_Http("GET http://host/test.asx HTTP/1.0\r\n"
 "Accept: image/gif, image/x-xbitmap, image/jpeg, image/"
 "pjpeg,application/vnd.ms-excel, application/
 "vnd.ms-powerpoint, msword, */*\r\n"
 "Accept-Language: en-us\r\n"
 "User-Agent:"Mozilla/4.0 (compatible; MSIE 6.0; Windows"
 "NT 5.0)\r\n\r\n");

// Play the media file(s) specified in the ASX file for 50 seconds.
DownloadMediaFromASX(50);

DownloadMediaRP

Applies to Real Networks Streaming Media. In i t iates and waits for complet ion of the specified mult i-media
resource download.

DownloadMediaRP is a deprecated funct ion. Use a combinat ion of the Click_On funct ion with the
PlayMedia funct ion instead.

Notes:

! Enable streaming media download by selecting the Streaming Media check box on the WWW Advanced Universal
Convert Options dialog box in the QALoad Script Development Workbench.

! Real Networks streaming media is only supported in process mode. On the QALoad Player main window, in the Run
As: group, select the Process option.

! For streaming media playback, QALoad requires specific media player versions. For a list of supported versions,
refer to "System Requirements" in the "Installing QALoad" chapter of the QACenter Performance Edition Installation
and Configuration Guide.

Syntax

DownloadMediaRP(char *URL, int timeout);

Parameters

Param eter Descript i on

URL Specifies the locat ion (in URL format) of the streaming media fi le.

timeout Specifies the number of seconds of media to play. Specify 0 (the default in

QALoad 5.02

846

the script) to play the ent i re media transact ion. Specify another number,
such as a value of 10, to have the t imeout buffer the media and play the
cl ip for 10 seconds.

Note: This timeout refers to clip time. The elapsed time of a Real
Networks media transaction will likely be longer than the timeout.

Example

DownloadMediaRP("http://host:8099/ramgen/realvideo.rm", 0);

DownloadMediaRP("http://host2:8080/realmp3.mp3", 10);

DownloadMediaWMP

Applies to Windows Media Player streaming media. In i t iates and waits for complet ion of the specified
Windows Media resource download.

DownloadMediaWMP is a deprecated funct ion. Use a combinat ion of the Click_On funct ion with the
PlayMedia funct ion instead.

Note: For streaming media playback, QALoad requires specific media player versions. For a list of supported
versions, refer to "System Requirements" in the "Installing QALoad " chapter of the QACenter Performance
Edition Installation and Configuration Guide.

Syntax

DownloadMediaWMP(char *reqURL, int secDuration);

Parameters

Param eter Descript i on

reqURL Specifies the locat ion (in URL format) of the streaming media fi le.

secDuration Specifies the number of seconds of media to download. Specify 0 to read the
ent ire media fi le.

Example

// Requests welcome2.asf from qacmedia over TCP ("mmst://")
// Play the file for 10 seconds

DownloadMediaWMP("mmst://qacmedia/welcome2.asf", 10);

EnableStat ist icsRP

Applies to Real Networks Streaming Media. Enables capture of media player performance stat ist ics during a
load test. Compuware recommends that th is funct ion is cal led in the in i t ial sect ion of a Web script , before
the SYNCHRONIZE() cal l . Although i t can be cal led at any point in the script , th is command must appear
in the script prior to any DownloadRPMedia cal l .

Notes:

! Exercise caution when using this feature. Real Networks streaming media uses extra system resources and may
degrade performance or skew test results.

! By default, capturing statistics is not enabled.

QALoad 5.02

847

! Real Networks streaming media is only supported in process mode. On the QALoad Player main window, in the Run
As: group, select the Process option.

! For streaming media playback, QALoad requires specific media player versions. For a list of supported versions,
refer to "System Requirements" in the "Installing QALoad " chapter of the QACenter Performance Edition Installation
and Configuration Guide.

Syntax

EnableStatisticsRP(int flags, int interval, BOOL traceOutput);

Parameters

Param eter Descript i on

flags Determines which stat ist ics to show. The flag values in the fol lowing table can
be combined using a logical OR. Flag values include:

QAL_WWW_RN_STAT_ALL_LEVELS: Al l stat istic levels
QAL_WWW_RN_STAT_PLAYER: Media Player level stat ist ics
QAL_WWW_RN_STAT_SOURCE: Source level stat ist ics
QAL_WWW_RN_STAT_STREAM: <not implemented>
QAL_WWW_RN_STAT_ALL: Enable al l levels, al l counters
QAL_WWW_RN_STAT_PLAYER_ALL: Al l Media Player level stat ist ics
QAL_WWW_RN_STAT_SOURCE_ALL: Al l source level stat ist ics
QAL_WWW_RN_STAT_STREAM_ALL: Al l stream level stat ist ics
QAL_WWW_RN_STAT_ALL_COUNTERS: Al l counters
QAL_WWW_RN_STAT_NORMAL_PKTS: Packets not lost, late, etc.
QAL_WWW_RN_STAT_RECOVER D_PKTS: Packets recovered
QAL_WWW_RN_STAT_RECEIVED_PKTS: Packets received
QAL_WWW_RN_STAT_LOST_PKTS: Packets current ly lost
QAL_WWW_RN_STAT_LATE_PKTS: Late packets
QAL_WWW_RN_STAT_CLIP_BAND WIDTH: Bandwidth at which the cl ip was
encoded
QAL_WWW_RN_STAT_AVE_BAND WIDTH: Average bandwidth so far
QAL_WWW_RN_STAT_CUR_BAND WIDTH: Current bandwidth

interval Report every nth stat received.

traceOutput TRUE means send enabled stats to QALoad Player window (i f QALoad Player
window output is enabled).

Example

// Records, current bandwidth, average bandwidth, and the clip
// bandwidth at the Player (media player) level as often as
// the statistics are updated.

EnableStatisticsRP(QAL_WWW_RN_STAT_PLAYER
 QAL_WWW_RN_STAT_AVE_BANDWIDTH
 QAL_WWW_RN_STAT_CLIP_BANDWIDTH
 QAL_WWW_RN_STAT_CUR_BANDWIDTH,
 0, TRUE);

Fill_In

Applies to Visual Script ing. Used to represent how the user fi l led in fields on a form before cl icking on a
submit button. The values that are passed to Fi l l_In are expected to be plain text with no encoding other
than using + to join mult iple selects for LIST_BOX.

QALoad 5.02

848

Prototypes

boolean Fill_In (enumeration control_type, string description, string value);
boolean Fill_In (enumeration control_type, enumeration specifier,
 string description, string value);
boolean Fill_In (enumeration control_type, integer count, enumeration specifier,
 string description, string value);
boolean Fill_In (enumeration control_type, integer count, string value);

Return Value

Returns true i f the value was stored properly. Otherwise, returns false.

Parameters

Param eter Descript i on

control_type The type of l ink to try to cl ick on. The control types include:

Type Descript i on

ATTACH_FILE Attach a fi le with the standard attach fi le control.

CHECK_BOX Select or clear a check box.

HIDDEN Set the value of a h idden control (no browser
equivalent).

LIST_BOX Select an element from a drop-down or mult i-select
l ist .

RADIO_BUTTON Push a radio button.

TEXT_BOX Type text in to a text box.

description The text of the l ink, or the appropriate text expected by a specifier.

specifier The way the text is used to find the l ink. The specifier types include:

Type Descript i on

AFTER Fil l_In l ink after unique HTML code in the page.

ALT_ATTRIBUTE The alt at tribute of the HTML tag.

BEFORE Fil l_In l ink before unique HTML code in the page.

CONTAINING Fil l_In l ink that contains unique HTML code in the
page.

DESCRIPTION The descript ion as seen in the browser (default).

NAME_ATTRIBUTE The name attribute of the HTML tag.

SRC_ATTRIBUTE The src attribute of the HTML tag.

count The nth match. For example, i f a Web page has three text boxes with the same
descript ion, such as Submit, use a count of 3 to match the th ird button.

value The value to insert in to the control.

QALoad 5.02

849

Examples

Fill_In (TEXT_BOX, "Name:" "Jeff");
Fill_In (CHECK_BOX, NAME_ATTRIBUTE, "timed", "check");
Fill_In (ATTACH_FILE, 1, "c:\\MyFiles\\Datafile.dat");

Get

Applies to Visual Script ing. Retrieves data from the virtual browser. Whole pages, specific frames, and text
strings from with in the document can be retrieved.

Prototypes

page_id Get (enumeration type);
page_id Get (enumeration type, string description);
page_id Get (enumeration type, string description, integer count);
page_id Get (enumeration type, enumeration specifier, string description);
page_id Get (enumeration type, enumeration specifier, string description, integer count);
page_id Get (enumeration type, integer count);
integer Get (enumeration type, enumeration specifier);
string Get (enumeration type, enumeration specifier);
string Get (enumeration type, enumeration specifier, string left, string right);
string Get (enumeration type, enumeration specifier, string xpath-string);

Return Value

Returns a value specified by the return type of the type parameter upon success. If Get fai ls, i t returns
NULL or zero.

Parameters

Param eter Descript i on

type The i tem to get. Item types are l isted in the fol lowing table:

Type Descript i on Return
Type

Param eters

REPLY Returns the ent ire reply buffer string or
in teger

specifier

PAGE Return the current page page_id None

FRAME Return the specified frame page_id Same as Click_On: link,
description, specifier,
count

XML Return value for the XML node
specified in XPath-type syntax.

string specifier, xpath-string

description The text to find as expected by the specifier.

specifier The way to do the specified get. The specifiers are l isted in the fol lowing tables:

Fram e Speci f i ers

Speci f i er Descript i on

NAME_ATTRIBUTE Name attribute of the frame (default .)

QALoad 5.02

850

SRC_ATTRIBUTE Src attribute of the frame.

CONTAINING Return the frame that contains the given HTML source in the page.

BEFORE Return the frame before the given HTML source in the page.

AFTER Return the frame after the given HTML source in the page.

Reply Speci f i ers

Speci f i er Descript i on Return
Type

Param eters

ENTIRE_BUFFER Return the ent ire reply buffer (default) string None

HTTP_STATUS Return the HTTP status code in teger None

HTTP_HEADER Return a HTTP header string string

STRING Return the text between the left and
right parameters

string string, string

TAG Return an ent ire tag (Note: Causes
extra processing)

string string or string,
in teger

XM L Speci f i ers

Speci f i er Descript i on Return
Type

Param eters

TEXT The value between tags of last element in XPath
(default)

string string

ATTRIBUTE The value of specified attribute of last element in
XPath.

string string

count The nth i tem to match.

left The text to the left side of desired text.

right The text to the right side of desired text.

xpath-string The XPath string to match.

Example

page = Get (PAGE);
page = Get (FRAME, "table of contents");
page = Get (FRAME, "sidebar", 2);
page = Get (FRAME, CONTAINING, "<frame longdesc='the way down the road'");
page = Get (FRAME, SRC_ATTRIBUTE, "fun.html", 2);
page = Get (FRAME, 2);
str = Get (REPLY, ENTIRE_BUFFER);
i = Get (REPLY, HTTP_STATUS);
str = Get (REPLY, STRING, "<body special=' ", " ' ");
str = Get (REPLY, TAG, "soap-envelope");
str = Get (REPLY, TAG, "img", 5);

QALoad 5.02

851

str = Get (XML, TEXT,
"/SOAP-ENV:Envelope/SOAP-ENV:Body/SOAPSDK1:EchoIntResponse/Result");

Navigate_To

Applies to Visual Script ing. Reads a URL typed in the Web browser’s address field and constructs a request
to navigate to the URL, or reads another request typed in the browser’s address field, fin ishes the request
and navigates to the request. Navigate_To is a direct replacement for DO_Http.

Prototypes

boolean Navigate_To (string URL);
boolean Navigate_To (string URL, enumeration encoding);

Return Value

Returns true i f the requested page is successful ly retrieved. Otherwise, returns false.

Parameters

Param eter Descript i on

URL A URL contain ing the locat ion of the page to be requested.

encoding The encoding format for any CGI parameters of the URL. Val id values are:

Value Descript i on

USE_FORM_ENCODING Encode parameters l ike form
controls.

USE_LINK_ENCODING Encode parameters l ike anchor
CGI parameters.

Examples

Navigate_To ("http://server.com/");
Navigate_To ("GET http://server.com/HTTP/1.1\r\nBizzare-Header: just for kicks\r\n\r\n");

// Encode CGI parameters as if the url is an anchor
Set(NEXT_REQUEST_ONLY, CGI_PARAMETER, "name", "John Doe");
Navigate_To("http://host.com/anchor.pl", USE_LINK_ENCODING);
// request: http://host.com/anchor.pl?name=John%20Doe

// Encode CGI parameters as if the url is a form request
Set(NEXT_REQUEST_ONLY, CGI_PARAMETER, "name", "John Doe");
Navigate_To("http://host.com/form.pl", USE_FORM_ENCODING);
// request: http://host.com/form.pl?name=John+Doe

PlayMedia

Applies to Real Networks and Windows streaming media. In i t iates and plays back the streaming media fi le
that was stored in a previous cal l to the Click_On funct ion.

Notes: Real Networks streaming media is only supported in process mode. On the QALoad Player main
window, in the Run As: group, select the Process option. For streaming media playback, QALoad requires
specific media player versions. For a list of supported versions, refer to "System Requirements" in the "Installing
QALoad" chapter of the QACenter Performance Edition Installation and Configuration Guide.

Syntax

PlayMedia(int timeout);

QALoad 5.02

852

Parameters

Param eter Descript i on

timeout The maximum amount of t ime to play back the requested streaming media
fi le. A value of 0 indicates that the ent ire fi le should be played.

Note: This timeout refers to clip time. The elapsed time of a Real
Networks media transaction will likely be longer than the timeout.

Example

//Play the file for 10 seconds

PlayMedia(10);

Post_To

Applies to Visual Script ing. Reads a URL typed in the Web browser’s address field as well as the encoding
type. It then constructs a request to send a post to the URL.

Prototypes

boolean Post_To (string URL);
boolean Post_To (string URL, string content-type);
boolean Post_To (string URL, enumeration encoding);

Return Value

Returns true i f the requested page is successful ly retrieved. Otherwise, returns false.

Parameters

Param eter Descript i on

URL A URL contain ing the locat ion of the page to be requested.

content_type The content type of the data being posted. (DEFAULT,
MULTIPART_FORM_DATA, or TEXT_PLAIN).

encoding The method attribute of the HTML form tag. Val id values:

Value Descript i on

MULTIPART_FORM_DATA MIME style post ing used for attaching
fi les.

TEXT_PLAIN "name=plain" (rarely used format)

WWW_FORM_URLENCODED "name=value& ", name and value
encoded

MISSING_CONTENT_TYPE Use to handle the rare condit ion of a
POST without a content type. POST
data must be pre-encoded.

Note: The HTTP 1.1
specification requires a content
type header with every POST.

QALoad 5.02

853

Examples

Post_To ("http://server.com/form.pl");
Post_To ("http://server.com/file-upload.pl", MULTIPART_FORM_DATA);

// When posting content that is not application/x-www-form-urlencoded,
// multipart/form-data, or text/plain.
Set(NEXT_REQUEST_ONLY, POST_DATA, "RAW DATA\r\nPOSTED AS IS");
Post_To("http://host.com/custom.pl", "application/octet-stream");

RandNumString

Applies to Visual Script ing. Generates a random number from minimum to maximum.

Prototypes

string RandNumString (int minimum, int maximum);

Return Value

Returns the generated random number as a string.

Parameters

Param eter Descript i on

minimum The lower bound of the random number.

maximum The upper bound of the random number.

Examples

RandNumString (20, 500);

Region

Applies to Visual Script ing. Marks the region_number parameter as an image map region.

Prototypes

string Region (int region_number);

Return Value

Returns the region number as a string.

Parameters

Param eter Descript i on

region_number The region number.

Examples

// Region returns the string passed into it. It is a label to make
// clicking on a client side image map eaiser to read.
Click_On(IMAGE, 1, SRC_ATTRIBUTE, "http://host.com/client-map.jpg", Region("2"));

// does the same as
Click_On(IMAGE, 1, SRC_ATTRIBUTE, "http://host.com/client-map.jpg", "2");

QALoad 5.02

854

RESTART_TRANSACTION_BOTTOM

Applies to Visual Script ing. Used to define a point at the end of the transact ion for anyth ing that needs to
be deal located or unin it ial ized. When transact ion restart ing occurs for a fai led transact ion, QALoad wil l
fi rst execute any code start ing after the cal l to RESTART_TRANSACTION_BOTTOM al lowing you to clean
up important in formation and prevent memory leaks before retrying the transact ion.

Syntax

RESTART_TRANSACTION_BOTTOM() ;

Parameters

None.

Example

BEGIN_TRANSACTION();
RESTART_TRANSACTION_TOP();
TRANSACTION CODE...
RESTART_TRANSACTION_BOTTOM();
DO_HttpCleanup();
DO_SomeOtherMiddlewareCleanup();
END_TRANSACTION();

RESTART_TRANSACTION_TOP

Used to define a point at the beginning of the transact ion loop that QALoad can use to rewind the
transact ion i f the transact ion fai ls and Restart Transact ion error handl ing has been selected in the QALoad
Conductor.

To enable Rest ar t Transact ion er ror handl ing :

1. In the QALoad Conductor main window, select the Script Assignment tab.

2. In the Error Handling column, click the Browse Button and select Restart Transaction in the drop-down list.

Syntax

RESTART_TRANSACTION_TOP() ;

Parameters

None.

Example

BEGIN_TRANSACTION();
RESTART_TRANSACTION_TOP();
TRANSACTION CODE...
RESTART_TRANSACTION_BOTTOM();
DO_HttpCleanup();
DO_SomeOtherMiddlewareCleanup();
END_TRANSACTION();

Set

Applies to Visual Script ing. Assigns values to the Virtual Browser, Proxy, and other parts of the QALoad
replay. This command sets the propert ies and attributes of the script .

Note: For Visual Scripting, this command replaces the following EasyScript for WWW commands:

DO_AddHeader
DO_AttachFile

QALoad 5.02

855

DO_BasicAuthorization
DO_Cache
DO_HttpVersion
DO_IPSpoofEnable
DO_NTLMAuthorization
DO_ProxyAuthorization
DO_ProxyEceptions
DO_SaveReplyType
DO_SetAssumedContentType
DO_SetBaudRate
DO_SetBaudRateEX
DO_SetJavascriptCleanupThreshold
DO_SetMaxBrowserThreads
DO_SetMaximumRetries
DO_SetRetryWait
DO_SetSSLConnectString
DO_SSLReuseSession
DO_SSLUseCipher
DO_SSLUseClientCert
DO_SSLUseProxy
DO_SetTimeout
DO_UsePersistentConnections
DO_UseProxy

Prototypes

boolean Set (enumeration duration, enumeration bool_option, boolean boolean);
boolean Set (enumeration duration, enumeration cache_option, enumeration cache_value);
boolean Set (enumeration duration, enumeration int_option, integer integer);
boolean Set (enumeration duration, enumeration proxy_option, enumeration proxy_mode_value
);
boolean Set (enumeration duration, enumeration string1_option, string string);
boolean Set (enumeration duration, enumeration string2_option, string string1, string
string2);
boolean Set (enumeration duration, enumeration string3_option, string string1, string
string2, string string3);

Return Value

Set returns true, i f sett ing the opt ion to the given value succeeded. Otherwise, Set returns false.

Parameters

Param eters Descript i on

duration How long the new value lasts. Val id values include:

Value Descript i on

EVERY_REQUEST Use th is value for al l fol lowing HTTP requests.

NEXT_REQUEST Use th is value for just the next HTTP request,
then revert to the previous value.

bool_option Set boolean opt ions. Val id values include:

Value Descript i on

APPEND_CRLF_AFTER_POST_BODY Add " " after body (default is FALSE)

IP_SPOOFING Turn on or off IP spoofing with the
ipspoof.dat datapool (default is FALSE)

QALoad 5.02

856

JAVASCRIPT Turn Javascript handl ing on or off (default
is TRUE)

MANUALLY_SELECTED_SUBREQUESTS Skip al l automatic sub-requests (default is
FALSE)

MINIMIZED_MEMORY_MODE Thin replay mode which prohibits Veri fy
and Click_On (default is FALSE)

REUSE_CONNECTION Try to keep connect ions al ive between
requests (default is TRUE)

REUSE_SECURE_SESSION Save handshake information when
possible (default is TRUE)

boolean TRUE to enable the opt ion; FALSE to disable the opt ion

cache_option Set enumerated typed opt ions. Val id value is: 1

cache_value Set the virtual browser's caching system. Val id values include:

Value Descript i on

ALL Cache as much as possible (wi l l degrade replay
performance).

AUTO Use the virtual browsers default sett ings.

IMAGES Only images wil l be cached by the virtual
browser.

NO_CACHING No caching wil l be done by the virtual browser.

int_option Set in teger opt ions. Val id values include:

Value Descript i on

BROWSER_THREADS Maximum concurrent connect ions (default is 2).

CONNECTION_RETRIES Maximum connect ion attempts (default is 4).

RECEPTION_BAUD_RATE Network recept ion rate in bits per second.

REFRESH_TIMEOUT Maximum meta refresh delay to wait for (default
is 0).

TRANSMISSION_BAUD_RATE Network transmission rate in bits per second.

USER_PATIENCE Maximum seconds virtual user wi l l wait (default
is 120).

integer A number that is the new value for the opt ion.

proxy_options Set enumerated typed opt ions. Val id value is: 1

proxy_mode_value Specify which technique wil l be used t set proxies. Val id values include:

QALoad 5.02

857

Value Descript i on

NO_PROXY Direct connect ion to al l servers.

PROXY_AUTOMATIC_CONFIGURATION PAC script determines proxying.

MANUAL Manually set proxies and proxy except ions.

string1_option Set string opt ions (1 parameter). Val id values include:

Value Descript i on

ADDITIONAL_SUBREQUEST URL of a sub-request to add to the next
request.

BLOCK_TRAFFIC_FROM Never make requests to matches in the
l ist .

BROWSER_IDENTITY The ident i ty string for User-Agent
header field.

CERTIFICATE Set the browser's cl ient cert i ficate.

CERTIFICATE_PASSWORD Set a password for a cl ient cert i ficate.

CGI_PARAMETER CGI parameter to append to the URL of
the request.

CHECKPOINT_NAME Name used for the next automatic
checkpoint.

CONNECT_REQUEST_FOR_SSL_TUNNELING Set the connect message for an SSL
proxy tunnel.

DEFAULT_CONTENT_TYPE The content type used i f none is sent
(default is "appl icat ion /octet-stream").

HTTP_VERSION The version of HTTP to use (default is
"1.1").

ONLY_ALLOW_TRAFFIC_FROM Only make requests to matches in the
l ist .

ONLY_USE_SSL_CIPHER Set the SSL cipher to use for SSL
requests.

POST_DATA Data to add to the post body in a name-
value pair.

PROHIBITED_CONTENT Check the request for the provided
cri teria and report an error i f the cri teria
are not found.

PROXY_EXCEPTIONS A l ist of host names that bypass the
proxy.

PROXY_HTTP_VERSION The version of HTTP to use with the

QALoad 5.02

858

proxy.

PROXY_SCRIPT The URL of a Proxy Automatic
Configurat ion script .

REFERER Set the Referer header field for the next
HTTP request.

REQUIRED_CONTENT Check request for the provided cri teria
and report an error i f the cri teria are
found.

SIGNIFICANT_CONTENT_TYPE Content types to save repl ies for (default
is "text/ ,appl icat ion/x-javascript").

SPOOFED_IP_ADDRESS Turn IP Spoofing on and set the
browser's IP address.

XML_DATA XML request document as a string.

string A string that contains the new value for the opt ion.

string2_option Set string opt ions (2 parameters). Val id values include:

Value Descript i on

BASIC_AUTHORIZATION Basic authent icat ion user name and password.

CERTIFICATE Set the browser's cl ient cert i ficate and password.

CGI_PARAMETER CGI Parameter's name and value for next
Navigate_To or Post_To.

COOKIE HTTP cookie name and value.

HEADER Name and value for new header in requests.

HTTP_PROXY Host and Port of HTTP proxy.

PROXY_AUTHORIZATION Proxy authent icat ion user name and password.

POST_DATA POST data name and value for next Post_To.

POST_FILE File to attach to next Post_To, local fi le name and
ful l path.

SECURE_PROXY Host and Port of a secure proxy.

string1 A string that contains the new value for the opt ion.

string2 A string that contains the new value for the opt ion.

string3_option Set string opt ions (3 parameters). Val id value is:
NTLM_AUTHORIZATION: NTLM authent icat ion domain, user name, and
password.

Note: NTLM user names and passwords can be variabl ized by machine, but
not by user.

QALoad 5.02

859

string3 A string that contains the new value for the opt ion.

Examples with virtual browser values

Set (EVERY_REQUEST, BROWSER_IDENTITY, "Mozilla/4.0 (compatible; MSIE 5.0; Windows NT)");
Set (EVERY_REQUEST, HTTP_VERSION, "1.1");
Set (EVERY_REQUEST, REUSE_CONNECTION, TRUE);
Set (EVERY_REQUEST, JAVASCRIPT, TRUE);
Set (EVERY_REQUEST, CERTIFICATE, GET_DATA_FIELD(CERTIFICATES, 1));
Set (EVERY_REQUEST, NTLM_AUTHORIZATION, "domain", "username","password");
Set (EVERY_REQUEST, BASIC_AUTHORIZATION, "username", "password");
Set (EVERY_REQUEST, TRANSMISSION_BAUD_RATE, 9600);
Set (EVERY_REQUEST, RECEPTION_BAUD_RATE, 28800);
Set (EVERY_REQUEST, BROWSER_THREADS, 4);
Set (NEXT_REQUEST_ONLY, CGI_PARAMETER, "x", "1000");
Set (NEXT_REQUEST_ONLY, POST_DATA, "name", "jeff");
Set (NEXT_REQUEST_ONLY, POST_FILE, "file", "c:\\Data\\datafile.dat");

Examples with miscellaneous values

Set (EVERY_REQUEST, USER_PATIENCE, 120);
Set (EVERY_REQUEST, CONNECTION_RETRIES, 3);
Set (EVERY_REQUEST, SIGNIFICANT_CONTENT_TYPES, "text/*; application/x-javascript");
Set (EVERY_REQUEST, DEFAULT_CONTENT_TYPE, "text/html");
Set (NEXT_REQUEST_ONLY, COOKIE, "name=value; domain=.host.com; path=/;");
Set (NEXT_REQUEST_ONLY, XMLREQUEST, "<?xml version="1.0"?>
 <element attribute="value">text</element>");
Set (EVERY_REQUEST, HEADER, "name", "value");
Set (EVERY_REQUEST, CACHING, NONE);
Set (EVERY_REQUEST, REUSE_SECURE_SESSION, TRUE);
Set (EVERY_REQUEST, SPOOFED_IP_ADDRESS, GET_DATA_FIELD (IP_ADDRESSES, 1));
Set (EVERY_REQUEST, ALLOW_ONLY_TRAFFIC_FROM, "compuware.com, index.html");
Set (EVERY_REQUEST, BLOCK_TRAFFIC_FROM, "doubleclick.net, fastclick.net");

Examples with proxy values

Set (PROXY_MODE, PROXY_SCRIPT);
Set (PROXY_SCRIPT, "http://172.22.222.23/");
Set (PROXY_MODE, MANUAL);
Set (HTTP_PROXY, "proxy1.server.com", "80");
Set (SECURE_PROXY, "proxy1.server.com", "80");
Set (PROXY_EXCEPTIONS, "machine1.host.com, machine2, <local>");
Set (PROXY_HTTP_VERSION, "1.0");
Set (PROXY_AUTHORIZATION, "username", "password");

Examples with advanced values

Set (EVERY_REQUEST, ONLY_USE_SSL_CIPHER, "RC4-MD5");
Set (EVERY_REQUEST, CONNECT_REQUEST_FOR_SSL_TUNNELING,
 "CONNECT host:443 HTTP/1.1\r\n...");
Set (NEXT_REQUEST_ONLY, APPEND_CRLF_AFTER_POST_BODY, TRUE);

ShowMediaRP

Applies to Real Networks Streaming Media. Displays the media during a load test. Audio and video can be
control led separately. If video is enabled, a dialog box displays the video. For audio, the sound from the
media wi l l play through the sound device.

Notes:

! Exercise caution when using this feature. Use the audio display for one virtual user only. If enabling audio on two
virtual users, audio from the two streams contends for the audio device. By default, audio and video do not display.

QALoad 5.02

860

Displaying the media for audio or video uses extra system resources and may degrade performance and skew test
results.

! Real Networks streaming media is only supported in process mode. On the QALoad Player main window, in the Run
As: group, select the Process option.

! Real Networks streaming media is only supported on a stand-alone QALoad Player or if the QALoad Player and
QALoad Conductor are on the same machine.

! For streaming media playback, QALoad requires specific media player versions. For a list of supported versions,
refer to "System Requirements" in the "Installing QALoad" chapter of the QACenter Performance Edition Installation
and Configuration Guide.

Syntax

ShowMediaRP(BOOL showAudio, BOOL showVideo);

Parameters

Param eter Descript i on

showAudio Display and play audio.

showVideo Display video.

Example

ShowMediaRP(FALSE, TRUE);
// Display video, but leave audio muted

Verify

Applies to Visual Script ing. Used to veri fy expected text against an element of the page just requested.

Prototypes

boolean Verify (enumeration type, string expected);
boolean Verify (enumeration type, enumeration specifier, string expected);

Return Value

Returns true i f the text matches the text in the page. Otherwise, returns false.

Parameters

Param eter Descript i on

type The type of veri ficat ion to do. The types include:

PAGE_TITLE: The HTML t i t le of the page.

specifier Options on how the matching is to be done. The specifier types include:

ENTIRE: Match the ent ire t i t le (default .)
BEGINNING: Only match the beginning of the t i t le.
ENDING: Only match the end of the t i t le.

expected The text to veri fy against.

Examples

Verify (PAGE_TITLE, "This is the page title");
Verify (PAGE_TITLE, BEGINNING, "This is");

QALoad 5.02

861

WWW_FATAL_ERROR

Applies to HTTP and SSL requests. Also appl ies to Visual Script ing. WWW_FATAL_ERROR aborts or restarts
a virtual user in the event of an error during replay.

This command handles error condit ions in a script that inval idates the transact ion. WWW_FATAL_ERROR
is cal led in ternal ly by al l script commands to report error condit ions.

If Abort Transact ion is selected in the Error Handling column of the QALoad Conductor Script Assignment
tab, then WWW_FATAL_ERROR wil l abort the virtual user after generat ing a debug log and not i fying the
QALoad Conductor that i t is abort ing.

If Restart Transact ion is selected in the Error Handling column, then WWW_FATAL_ERROR wil l restart the
transact ion from the restart point (DO_SetTransact ionStart or RESTART_TRANSACTION_TOP) after
generat ing a debug log and not i fying the QALoad Conductor about the restart .

If Cont inue Transact ion is selected in the Abort on Error Handling column, then the virtual user wi l l
cont inue as i f no error had occurred. This may cause a virtual user middleware except ion i f
WWW_FATAL_ERROR was cal led because the transact ion is in an unstable state.

Syntax

WWW_FATAL_ERROR (const char *short_desc, const char *long_desc) ;

Parameters

Param eter Descript i on

short_desc A string contain ing a one-word descript ion of the error. This is often the name
of the funct ion where an error was encountered.

long_desc A longer descript ion of the error.

Example

WWW_FATAL_ERROR ("My Func", "An error has occurred") ;

X_Coord

Applies to Visual Script ing. Marks the x_value parameter as an x-coordinate value.

Prototypes

X_Coord(string x_value);

Return Value

Returns the x-coordinate value.

Parameters

Param eter Descript i on

x_value The x-coordinate value.

Example

// X_Coord and Y_Coord return the string passed into them. They are a
// label to make clicking on a server side imagemap easier to read.

QALoad 5.02

862

Click_On(IMAGE, 1, SRC_ATTRIBUTE, "http://host.com/server-map.jpg", X_Coord("25"),
Y_Coord("60"));

// does the same as
Click_On(IMAGE, 1, SRC_ATTRIBUTE, "http://host.com/server-map.jpg", "25", "60");

XmlRequest

Applies to Visual Script ing. The XmlRequest funct ion takes in the HTTP act ion and a URL and constructs a
request to navigate to the URL.

If the method is "GET", XmlRequest makes a request for the URL expect ing to get an XML reply. If the
method is "POST", XmlRequest fin ishes an XML message and posts the message to the URL, expect ing to
get an XML reply.

XmlRequest is a direct replacement for Navigate_To and Post_To when the HTTP reply wi l l contain XM L.

Prototypes

boolean XMLRequest (string method, string URL);

Return Value

Returns true, i f the requested page is successful ly ret rieved. Otherwise, returns false.

Parameters

Param eter Descript i on

method HTTP request method ("GET" or "POST")

URL A URL contain ing the locat ion of the page to be requested.

Examples

XmlRequest ("GET", "http://mssoapsampleserver/

MSSoapSamples/Echo/Service/Rpc/IsapiCpp/Echo.wsdl");

XmlRequest ("POST",
"http://MSSoapSampleServer:80/MSSoapSamples/Echo/Service/Rpc/IsapiCpp/Echo.wsdl");

Y_Coord

Applies to Visual Script ing. Marks the y_value parameter as a y-coordinate value.

Prototypes

Y_Coord(string y_value);

Return Value

Returns the y-coordinate value.

Parameters

Param eter Descript i on

y_value The y-coordinate value.

QALoad 5.02

863

Example

// X_Coord and Y_Coord return the string passed into them. They are a
// label to make clicking on a server side imagemap easier to read.

Click_On(IMAGE, 1, SRC_ATTRIBUTE, "http://host.com/server-map.jpg", X_Coord("25"),
Y_Coord("60"));

// does the same as
Click_On(IMAGE, 1, SRC_ATTRIBUTE, "http://host.com/server-map.jpg", "25", "60");

QALoad 5.02

864

Com puw ar e cust om er suppor t
At Compuware, we strive to make our products and documentat ion the best in the industry. Feedback from
our customers helps us maintain our qual i ty standards. If you need support services, please obtain the
fol lowing in formation before cal l ing Compuware’s 24-hour product support hot l ine:

! The release (version), and bui ld number of your QALoad instal lat ion. This in formation is displayed
when you select the About command from any QALoad component ’s Help menu.

! Instal lat ion in formation, including instal led components, whether i t is instal led in the default
directories, and so on.

! Environment in formation, such as the operat ing system and release on which the product is
instal led, memory, hardware/network specificat ions, and the names and releases of other
appl icat ions that were running.

! The locat ion of the problem in the QALoad software, and the act ions taken before the problem
occurred.

! The exact QALoad error message, i f any.

! The exact appl icat ion, l icensing, or operat ing system error messages, i f any.

! Your Compuware cl ient, office, or si te number, i f avai lable.

Contact informat ion
Compuware Corporat ion
One Campus Mart ius
Detroit , M I 48226-5099

(800) 538-7822

World Wide Web Informat ion
To access Compuware Corporat ion ’s site on the World Wide Web, point your browser at
http:/ /www.compuware.com. The Compuware site provides a variety of product and support in formation.

FrontLine Support Web Site

You can access onl ine technical support for Compuware products via our FrontLine support Web site.
FrontLine provides fast access to cri t ical in formation about your QACenter product. You can read or
download documentat ion , frequent ly asked quest ions, and product fixes, or email your quest ions or
comments. To access FrontLine, you must fi rst register and obtain a password. To register, point your
browser at http:/ / front l ine.compuware.com.

QALoad 5.02

865

QALoad g lossar y

Non-alphabet ic
2-t ier
3-t ier

A
ActiveData
Analyze

B
batch test

C
capture: see recording
.CAP fi le: see capture fi le
capture fi le
checkpoints
checkpoint durat ion
concurrent users
Conductor
conversion
convert : see conversion
counters

D
datapool

E
EasyScript session
error handl ing

F
Funct ion Wizard

QALoad 5.02

 866

G

H

I
ICA fi les
IP spoofing

J

K

L
load test ing

M
metrics
middleware
middleware session: see session (middleware)

N
n-t ier

O

P
pacing
parameterizat ion: see variabl izat ion
performance test ing
Player
Player agent
process mode
.PTF fi le

Q

R
ramp-up script
.REC fi le
recording
Remote M onitoring
replay

QALoad 5.02

 867

response t ime
.RIP fi le

S
Script Development Workbench
service level threshold
session (middleware)
session ID fi le
sleep factor
sleep
source variable
stress test ing
synchronizat ion

T
thread mode
thresholds
.TIM fi le
t im ing fi les
traffic
transact ion
transact ion cleanup
transact ion durat ion
transact ion loop
transact ion pacing: see pacing
transact ion throughput

U
Universal session

V
val idat ion
variabl izat ion
virtual user
Visual Navigator
visual script ing

W
Web User Monitor

X

Y

Z

QALoad 5.02

 868

Test Execut ion

Hits (as in , h i ts per second)

Hits per Second

.CSV Fi le

Rectangular Datapool

QARun

Compiler

Compiler Options

Analyze

Analysis

Conductor

Player

Player Agent

Windows

Unix

Linux

'C'

'C++'

Programming Language

Methodology

Service Level Threshold

Session Durat ion

Load Test Recording

Debugging

Debug Options

DO_SLEEP

Timing Options

External Data

Binary Fi les

ASCII Fi les

Server Analysis Agent

SNMP

Applicat ion Expert

Appl icat ionVantage

Server Vantage

VU

Virtual User Increment

QALoad 5.02

 869

Time Interval

analyze (QALoad)

appl icat ion under test (AUT)

asynchronous

automated (v. manual)

capture

checkpoint

cl ient

compile

conductor (QALoad)

convert

error

funct ion

KPI-key performance indicator

manual (v. automated)

metrics

reponse t ime

request

response

script

server

session (.id fi le)

stateless

synchronous

test plan

test ing methodology

workbench (QALoad)

QALoad 5.02

 870

Accessib i l i t y f eat ur es
Compuware is committed to compliance with Sect ion 508 standards for accessibi l i ty in software products.
Sect ion 508 standards were enacted by Congress in 1998 as an amendment to the Rehabil i tat ion Act. The
standards require federal agencies to increase the accessibi l i ty of their electronic in formation to people
with disabi l i t ies. Software that is ful ly compliant with Sect ion 508 standards provides in formation access to
people with disabi l i t ies that is comparable to the in formation access avai lable to people without
disabi l i t ies. Software that is compliant with except ions, such as QALoad, provides support for most, but not
al l , cri teria of compliance.

This topic describes the level of accessibi l i ty current ly avai lable in QALoad, including the product
documentat ion.

Accessibility of QALoad components
All components of QALoad — Script Development Workbench, Conductor, Player, and Analyze — support
the basic cri teria of accessibi l i ty for software appl icat ions. For most categories of compliance, there are
except ions in which assist ive technologies do not work in al l si tuat ions or the alternate methods of
in formation retrieval or product funct ion are not always avai lable. However, the fol lowing basic
accessibi l i ty features are avai lable in QALoad:

! Product functions are executable from the keyboard

! The application does not disrupt or disable activated features of other products that are identified as accessibility
features

! The product provides an on-screen indication of the current focus and the focus can be tracked by assistive
technologies

! The identity, operation, and state of elements of the user interface are available to assistive technologies

! Textual information is provided through the operating system functions for displaying text

! The application does not override user-selected contrast and color selections

! Color-coding is not used as the only means of conveying information

! Electronic forms allow people using assistive technology to access the information, field elements, and functionality
required for completion and submission of the form

Accessibility of QALoad documentat ion
General ly, the QALoad documentat ion is accessible and can be read by screen readers. Alternate formats of
the documentat ion are not current ly avai lable.

Online help

QALoad's onl ine help system is HTML-based and can be read by screen readers. Al l graphics in the onl ine
help have text descript ions. Topics in the onl ine help can be printed.

Release Notes

The QALoad Release Notes is an HTML document that can be read by screen readers and printed.

Installat ion Guide

The QACenter Performance Edition Installation and Configuration Guide is an accessible PDF-based book that
provides text descript ions for images in addit ion to the abi l i ty to be read by some screen readers and the

QALoad 5.02

 871

Read Aloud feature of Adobe Acrobat. To take advantage of the accessibi l i ty features in the Instal lat ion
Guide, you must have Adobe Acrobat Reader 6.0 or later. This book can be printed.

Assist ive technology tools that enhance the accessibility of
QALoad
There are many th ird-party assist ive technology tools that you can use to access the QALoad user in terface
and product documentat ion by alternate means. These products perform a variety of funct ions, such as
enlarging the user in terface and reading text on the in terface or in the documentat ion. Many features are
avai lable in Windows, such as:

! Windows Narrator

! Windows accessibility wizard (includes features such as SoundSentry, ShowSounds, StickyKeys, and MouseKeys)

! Windows On-Screen Keyboard

! Microsoft Magnifier

Refer to the Windows documentat ion to learn more about using these features. Most other tools fal l in to
one of the fol lowing two categories:

! Screen readers: Software programs that present graphics and text as speech. A screen reader is used to verbalize,
or "speak," everything on the screen including names and descriptions of control buttons, menus, text, and
punctuation. (Example: JAWS for Windows by Freedom Scientific, Inc.)

! Screen enlargers (or screen magnifiers): Software that works like a magnifying glass on other applications. They
enlarge a portion of the screen as the user moves the focus — increasing legibility for some users. Some screen
enlargers allow you to zoom in and out on a particular area of the screen. (Example: ZoomText Magnifier by AI
Squared)

Product shortcut keys
The fol lowing tables l ist the defined shortcut keys for each component of QALoad. You can use these key
combinat ions to open dialog boxes, start or stop processes, or in teract in other ways with QALoad without
using a mouse.

Script Development Workbench

Shortcut Key
Com binat ion

Act ion

CTRL+N Open the New dialog box, from which you can create new
scripts or datapools.

CTRL+O Open the Open dialog box, from which you can open
various product fi les.

CTRL+S Save the act ive document.

CTRL+P Print the act ive document

CTRL+Z Undo the last act ion.

CTRL+Y Redo the last act ion.

CTRL+X Cut.

CTRL+C Copy.

QALoad 5.02

 872

CTRL+V Paste.

CTRL+F Find.

CTRL+H Replace.

CTRL+G Open the Go to Line dialog box, from which you can go to
a specific l ine number in the act ive script .

CTRL+F2 Toggle bookmark on/off.

F2 Move to next bookmark.

SHIFT+F2 Move to previous bookmark.

CTRL+SHIFT+F2 Clear al l bookmarks.

CTRL+ALT+C Start a recording.

CTRL+ALT+T Stop a recording.

CTRL+ALT+R Restart a recording.

CTRL+ALT+U Resume a recording.

CTRL+ALT+A Animate a recording.

CTRL+ALT+S Step to the next response in an animation.

CTRL+ALT+B Step back to the previous response in an animation.

F7 Compile the act ive script .

CTRL+F5 Validate the act ive script .

CTRL+T Open the FTP Tran sfer dialog box, from which you can
send a fi le via FTP.

F1 Open the QALoad onl ine help.

ALT+F4 Close the Script Development Workbench.

Conductor

Shortcut Key
Com binat ion

Descript i on

F1 Open the QALoad onl ine help.

CTRL+X Cut.

CTRL+C Copy.

CTRL+P Paste.

QALoad 5.02

 873

ALT+F4 Close the Conductor.

Analyze

Shortcut Key
Com binat ion

Descript i on

CTRL+O Open a t im ing fi le.

CTRL+P Print the act ive document .

CTRL+C Copy Summary and Data select ions.

CTRL+A Select al l i tems.

CTRL+U Unselect al l i tems.

F1 Open QALoad onl ine help.

ALT+F6 Move to the next tab in the Data window.

ALT+F4 Close Analyze.

Player

Shortcut Key
Com binat ion

Descript i on

CTRL+N Clear any current messages from the Player's main window.

CTRL+S Save a text fi le of the messages reported by a QALoad Player
during a test.

CTRL+P Print Player output.

CTRL+Z Undo the last act ion.

CTRL+X Cut.

CTRL+C Copy.

CTRL+V Paste.

F1 Open QALoad onl ine help.

ALT+F4 Close the Player.

To request a Voluntary Product Accessibi l i ty Template (VPAT) or for more in formation regarding
accessibi l i ty of QALoad or any other Compuware product, see http:/ /www.compuware.com/accessibi l i ty/

QALoad 5.02

 874

Com puw ar e cust om er suppor t
At Compuware, we strive to make our products and documentat ion the best in the industry. Feedback from
our customers helps us maintain our qual i ty standards. If you need support services, please obtain the
fol lowing in formation before cal l ing Compuware’s 24-hour product support hot l ine:

! The release (version), and bui ld number of your QALoad instal lat ion. This in formation is displayed
when you select the About command from any QALoad component ’s Help menu.

! Instal lat ion in formation, including instal led components, whether i t is instal led in the default
directories, and so on.

! Environment in formation, such as the operat ing system and release on which the product is
instal led, memory, hardware/network specificat ions, and the names and releases of other
appl icat ions that were running.

! The locat ion of the problem in the QALoad software, and the act ions taken before the problem
occurred.

! The exact QALoad error message, i f any.

! The exact appl icat ion, l icensing, or operat ing system error messages, i f any.

! Your Compuware cl ient, office, or si te number, i f avai lable.

Contact informat ion
Compuware Corporat ion
One Campus Mart ius
Detroit , M I 48226-5099

(800) 538-7822

World Wide Web Informat ion
To access Compuware Corporat ion ’s site on the World Wide Web, point your browser at
http:/ /www.compuware.com. The Compuware site provides a variety of product and support in formation.

FrontLine Support Web Site

You can access onl ine technical support for Compuware products via our FrontLine support Web site.
FrontLine provides fast access to cri t ical in formation about your QACenter product. You can read or
download documentat ion , frequent ly asked quest ions, and product fixes, or email your quest ions or
comments. To access FrontLine, you must fi rst register and obtain a password. To register, point your
browser at http:/ / front l ine.compuware.com.

QALoad 5.02

875

Index
.

.cap fi le... 64, 155

.cfg fi le.. 207

.cpp... 155

.log fi le ... 64

.REC fi le

Conductor recording overview 219

.rfd .. 155

.rip fi le

Logfi le Generat ion 211

.rip fi le.. 64

.VisHtml ... 155

.VisTree... 155

.VisXml .. 155

.zip fi le, creat ing in Analyze

Creat ing a zip fi le of test results 268

_

_xClone.. 351

_xResync... 351

_xSave... 352

A

accessing test data.. 250

Act ion i tem

Page sub-i tem ... 143

Act ion i tem .. 149

Act iveData for Oracle

using the Compare Tool 83

Add ... 534

adding a variable.. 162

adding Players to a test 208

adding virtual users at run t ime........................ 202

Addit ional SubRequests 143

AddListboxValue.. 534

AddNew ... 352

AddrByte .. 767

ADO

recording opt ions .. 66

ADO ... 66

ADO ... 271

ADO method reference...................................... 66

ADO_Command 285, 286, 287, 288, 289, 290,
291, 292, 293, 294, 295, 296

ADO_Command(n)->Cancel 285

ADO_Command(n)->CreateParameter 286

ADO_Command(n)->Execute.......................... 287

ADO_Command(n)->GetCommandStream 287

ADO_Command(n)->GetCommandText 288

ADO_Command(n)->GetCommandTimeout .. 288

ADO_Command(n)->GetCommandType 289

ADO_Command(n)->GetDialect 289

ADO_Command(n)->GetName....................... 290

ADO_Command(n)->GetNamedParameters ... 290

ADO_Command(n)->GetParameters............... 290

ADO_Command(n)->GetPrepared 291

ADO_Command(n)->GetPropert ies................. 291

ADO_Command(n)->PutAct iveConnect ion 292

ADO_Command(n)->PutCommandText 292

ADO_Command(n)->PutCommandTimeout .. 293

ADO_Command(n)->PutCommandType........ 293

ADO_Command(n)->PutDialect 294

ADO_Command(n)->PutName 294

ADO_Command(n)->PutNamedParameters.... 295

ADO_Command(n)->PutPrepared 295

ADO_Command(n)->PutRefAct iveConnect ion
... 296

ADO_Connect . 296, 297, 298, 299, 300, 301, 302,
303, 304, 305, 306, 307, 308

QALoad 5.02

 876

ADO_Connect(n)-> GetIsolat ionLevel 301

ADO_Connect(n)->BeginTrans........................ 296

ADO_Connect(n)->Close 297

ADO_Connect(n)->CommitTrans.................... 297

ADO_Connect(n)->Execute.............................. 298

ADO_Connect(n)->GetAtt ributes 298

ADO_Connect(n)->GetCommandTimeout 299

ADO_Connect(n)->GetConnect ionString 299

ADO_Connect(n)->GetConnect ionTimeout ... 300

ADO_Connect(n)->GetCursorLocat ion 300

ADO_Connect(n)->GetDefaultDatabase.......... 300

ADO_Connect(n)->GetMode........................... 301

ADO_Connect(n)->GetProvider 302

ADO_Connect(n)->GetState 302

ADO_Connect(n)->GetVersion 303

ADO_Connect(n)->Open 303

ADO_Connect(n)->OpenSchema..................... 304

ADO_Connect(n)->PutAttributes..................... 304

ADO_Connect(n)->PutCommandTimeout 305

ADO_Connect(n)->PutConnect ionString........ 305

ADO_Connect(n)->PutConnect ionTimeout 306

ADO_Connect(n)->PutCursorLocat ion 306

ADO_Connect(n)->PutDefaultDatabase 306

ADO_Connect(n)->PutIsolat ionLevel 307

ADO_Connect(n)->PutMode 307

ADO_Connect(n)->PutProvider 308

ADO_Connect(n)->RollbackTrans 308

ADO_Field309, 310, 311, 312, 313, 314, 315, 316,
317, 318, 319

ADO_Field(n)->AppendChunk 309

ADO_Field(n)->GetActualSize.......................... 310

ADO_Field(n)->GetAttributes 310

ADO_Field(n)->GetChunk 311

ADO_Field(n)->GetDataFormat 312

ADO_Field(n)->GetDefinedSize 312

ADO_Field(n)->GetName................................. 312

ADO_Field(n)->GetNumericScale 313

ADO_Field(n)->GetOriginalValue.................... 313

ADO_Field(n)->GetPrecision............................ 314

ADO_Field(n)->GetPropert ies.......................... 314

ADO_Field(n)->GetStatus................................. 315

ADO_Field(n)->GetType 315

ADO_Field(n)->GetUnderlyingValue............... 316

ADO_Field(n)->GetValue................................. 316

ADO_Field(n)->PutAttributes........................... 316

ADO_Field(n)->PutDataFormat 317

ADO_Field(n)->PutDefinedSize........................ 317

ADO_Field(n)->PutNumericScale..................... 318

ADO_Field(n)->PutPrecision 318

ADO_Field(n)->PutType................................... 319

ADO_Field(n)->PutValue 319

ADO_FieldSet 320, 321, 322, 323, 324

ADO_FieldSet(0)->GetNewEnum 320

ADO_FieldSet(n)->Append 320

ADO_FieldSet(n)->Append15 321

ADO_FieldSet(n)->CancelUpdate 321

ADO_FieldSet(n)->Delete................................. 322

ADO_FieldSet(n)->GetCount 322

ADO_FieldSet(n)->GetItem 323

ADO_FieldSet(n)->Refresh 323

ADO_FieldSet(n)->Resync................................ 324

ADO_FieldSet(n)->Update 324

ADO_IEnum ... 324

ADO_IEnum(n)->NextProperty 324

ADO_IEnumField ... 325

ADO_IEnumField(n)->NextField 325

ADO_IEnumParameter 326

ADO_IEnumParameter(n)->NextParameter..... 326

ADO_LoadVariant .. 326

ADO_LoadVariant(n) 326

ADO_Parameter327, 328, 329, 330, 331, 332, 333,
334

ADO_Parameter(n)->AppendChunk................ 327

ADO_Parameter(n)->GetAttributes.................. 327

QALoad 5.02

 877

ADO_Parameter(n)->GetDirect ion 328

ADO_Parameter(n)->GetName 328

ADO_Parameter(n)->GetNumericScale............ 329

ADO_Parameter(n)->GetPrecision 329

ADO_Parameter(n)->GetSize............................ 330

ADO_Parameter(n)->GetValue......................... 330

ADO_Parameter(n)->PutAttributes 331

ADO_Parameter(n)->PutDirect ion 331

ADO_Parameter(n)->PutName......................... 332

ADO_Parameter(n)->PutNumericScale 332

ADO_Parameter(n)->PutPrecision 333

ADO_Parameter(n)->PutSize 333

ADO_Parameter(n)->PutType 334

ADO_Parameter(n)->PutValue......................... 334

ADO_ParameterSet 335, 336, 337

ADO_ParameterSet(n)->Append 335

ADO_ParameterSet(n)->Delete......................... 335

ADO_ParameterSet(n)->GetCount 336

ADO_ParameterSet(n)->GetItem 336

ADO_ParameterSet(n)->GetNewEnum 337

ADO_ParameterSet(n)->Refresh 337

ADO_Property 337, 338, 339, 340

ADO_Property(n)->GetAtt ributes 337

ADO_Property(n)->GetName........................... 338

ADO_Property(n)->GetType............................. 338

ADO_Property(n)->GetValue 339

ADO_Property(n)->PutValue............................ 340

ADO_PropertySet 340, 341, 342

ADO_PropertySet(n)->GetCount 340

ADO_PropertySet(n)->Get Item 341

ADO_PropertySet(n)->GetNewEnum 341

ADO_PropertySet(n)->Refresh.......................... 342

ADO_Record 342, 343, 344, 345, 346, 347, 348,
349, 350

ADO_Record(n)->Cancel 342

ADO_Record(n)->Close.................................... 342

ADO_Record(n)->CopyRecord 343

ADO_Record(n)->DeleteRecord 343

ADO_Record(n)->GetAct iveConnect ion 344

ADO_Record(n)->GetChildren 344

ADO_Record(n)->GetFields.............................. 345

ADO_Record(n)->GetMode.............................. 345

ADO_Record(n)->GetParentURL...................... 346

ADO_Record(n)->GetRecordType.................... 346

ADO_Record(n)->GetSource 347

ADO_Record(n)->GetState............................... 347

ADO_Record(n)->MoveRecord 347

ADO_Record(n)->Open 348

ADO_Record(n)->PutAct iveConnect ion 349

ADO_Record(n)->PutMode.............................. 350

ADO_Record(n)->PutRefAct iveConnect ion 350

ADO_Record(n)->PutSource............................. 350

ADO_Recordset 351, 352, 353, 354, 355, 356, 357,
358, 359, 360, 361, 362, 363, 364, 365, 366,
367, 368, 369, 370, 371, 372, 373, 374, 375,
376, 377, 378, 379, 380, 381, 382, 383, 384,
385, 386, 387

ADO_Recordset(n)->_xClone........................... 351

ADO_Recordset(n)->_xResync 351

ADO_Recordset(n)->_xSave 352

ADO_Recordset(n)->AddNew 352

ADO_Recordset(n)->Cancel 353

ADO_Recordset(n)->CancelBatch 353

ADO_Recordset(n)->CancelUpdate 353

ADO_Recordset(n)->Clone 354

ADO_Recordset(n)->Close 354

ADO_Recordset(n)->CompareBookmarks 355

ADO_Recordset(n)->Delete.............................. 356

ADO_Recordset(n)->Find 356

ADO_Recordset(n)->GetAbsolutePage............. 357

ADO_Recordset(n)->GetAbsolutePosit ion 357

ADO_Recordset(n)->GetAct iveCommand 358

ADO_Recordset(n)->GetAct iveConnect ion 358

ADO_Recordset(n)->GetBOF............................ 359

ADO_Recordset(n)->GetBookmark 359

QALoad 5.02

 878

ADO_Recordset(n)->GetCacheSize 359

ADO_Recordset(n)->GetCollect 360

ADO_Recordset(n)->GetCursorLocat ion 360

ADO_Recordset(n)->GetCursorType................ 361

ADO_Recordset(n)->GetDataMember 361

ADO_Recordset(n)->GetDataSource 362

ADO_Recordset(n)->GetEditMode................... 362

ADO_Recordset(n)->GetEOF............................ 363

ADO_Recordset(n)->GetFields 363

ADO_Recordset(n)->GetFi l ter 364

ADO_Recordset(n)->GetIndex 364

ADO_Recordset(n)->GetLockType 364

ADO_Recordset(n)->GetM arshalOptions......... 365

ADO_Recordset(n)->GetM axRecords............... 365

ADO_Recordset(n)->GetPageCount 366

ADO_Recordset(n)->GetPageSize 366

ADO_Recordset(n)->GetPropert ies................... 366

ADO_Recordset(n)->GetRecordCount 367

ADO_Recordset(n)->GetRows.......................... 367

ADO_Recordset(n)->GetSort 368

ADO_Recordset(n)->GetSource........................ 368

ADO_Recordset(n)->GetState........................... 369

ADO_Recordset(n)->GetStatus......................... 369

ADO_Recordset(n)->GetStayInSync................. 370

ADO_Recordset(n)->GetString 370

ADO_Recordset(n)->Move 371

ADO_Recordset(n)->MoveFirst 371

ADO_Recordset(n)->MoveLast 372

ADO_Recordset(n)->MoveNext 372

ADO_Recordset(n)->MovePrevious.................. 373

ADO_Recordset(n)->NextRecordset 373

ADO_Recordset(n)->Open 374

ADO_Recordset(n)->PutAbsolutePage.............. 374

ADO_Recordset(n)->PutAbsolutePosit ion 375

ADO_Recordset(n)->PutAct iveConnect ion 375

ADO_Recordset(n)->PutBookmark................... 376

ADO_Recordset(n)->PutCacheSize................... 376

ADO_Recordset(n)->PutCollect 377

ADO_Recordset(n)->PutCursorLocat ion 377

ADO_Recordset(n)->PutCursorType................ 378

ADO_Recordset(n)->PutDataMember 378

ADO_Recordset(n)->PutFi l ter 379

ADO_Recordset(n)->PutIndex 379

ADO_Recordset(n)->PutLockType 379

ADO_Recordset(n)->PutMarshalOptions......... 380

ADO_Recordset(n)->PutMaxRecords............... 380

ADO_Recordset(n)->PutPageSize 381

ADO_Recordset(n)->PutRefAct iveConnect ion 381

ADO_Recordset(n)->PutRefDataSource 382

ADO_Recordset(n)->PutRefSource................... 382

ADO_Recordset(n)->PutSort 383

ADO_Recordset(n)->PutSource........................ 383

ADO_Recordset(n)->PutStayInSync................. 383

ADO_Recordset(n)->ReQuery 384

ADO_Recordset(n)->Resync............................. 384

ADO_Recordset(n)->Save................................. 385

ADO_Recordset(n)->Seek 386

ADO_Recordset(n)->Supports.......................... 386

ADO_Recordset(n)->Update............................. 386

ADO_Recordset(n)->UpdateBatch 387

ADO_Stream ... 388, 389, 390, 391, 392, 393, 395,
396, 397, 398, 399, 400

ADO_Stream(n)->Cancel 388

ADO_Stream(n)->Close.................................... 388

ADO_Stream(n)->CopyTo................................ 388

ADO_Stream(n)->Flush 389

ADO_Stream(n)->GetCharset 390

ADO_Stream(n)->GetEOS................................ 390

ADO_Stream(n)->GetLineSeparator................. 391

ADO_Stream(n)->GetMode.............................. 391

ADO_Stream(n)->GetPosit ion.......................... 391

ADO_Stream(n)->GetSize................................. 392

ADO_Stream(n)->GetState............................... 392

ADO_Stream(n)->GetType............................... 393

QALoad 5.02

 879

ADO_Stream(n)->LoadFromFile....................... 393

ADO_Stream(n)->PutCharset 395

ADO_Stream(n)->PutLineSeparator 395

ADO_Stream(n)->PutMode 396

ADO_Stream(n)->PutPosit ion 396

ADO_Stream(n)->PutType................................ 396

ADO_Stream(n)->Read 397

ADO_Stream(n)->ReadText 397

ADO_Stream(n)->SaveToFile............................ 398

ADO_Stream(n)->SetEOS................................. 398

ADO_Stream(n)->SkipLine............................... 399

ADO_Stream(n)->Write.................................... 399

ADO_Stream(n)->WriteText 400

ADOStream .. 394

ADOStream(n)->Open 394

AlertDialog ... 535

Analyze

buttons... 246

menus .. 246

opening.. 250

overview ... 245

test stat ist ics... 221

toolbars .. 246

Analyze... 245

Analyze... 245

Analyze... 246

Analyzing Load Test Data 220

Append ... 320, 335

Append15... 321

AppendChunk.. 309, 327

Applicat ion Expert 201, 228, 229, 230, 266

Applicat ion Vantage 201, 228, 229, 230, 266

AppTimer ... 535

assigning machines to a test 197

assigning scripts to Players............................... 193

Attach ... 798

authent icat ion

basic, in Visual Navigator scripts................. 149

NTLM, in Visual Navigator scripts 149

B

batch test

adding sessions.. 208

running.. 6

terminat ing.. 216

BEGIN_TRANSACTION.................................... 622

BEGIN_UENTITY ... 702

BeginBlock ... 403

BeginCheckpoint ... 622

BeginTrans... 296

BlockScrol ler .. 536

bulk l icense checkout 213

Button .. 536

C

Cancel 285, 342, 353, 388

CancelBatch ... 353

CancelQueryDialog.. 537

CancelUpdate .. 321, 353

capture fi le

insert commands... 16

capture fi le ... 16

Cert i ficate Authori ty .. 181

CfmOLE ... 538

CfmVBX ... 538

CGI parameters

in Visual Navigator scripts........................... 149

CGI parameters.. 149

character encoding .. 797

check out/ in l icenses 213

Checkbox ... 539

CheckForErrorMsgs.. 539

checkpoint durat ion

Top Ten Longest Checkpoint Durat ions report
... 263

understanding durat ions............................. 245

checkpoint pair, Visual Navigator script i tem . 141

QALoad 5.02

 880

checkpoints

detai l .. 251

durat ion ... 245

graphing... 217, 255

veri fying... 65

Citrix

conversion opt ions.. 69

dynamic windows........................ 22, 23, 70, 71

ICA fi les.. 69

overview ... 66

recording opt ions... 68

server farms.. 24, 66, 73

troubleshoot ing ... 190

Citrix .. 66

Citrix command index..................................... 401

CitrixIn it .. 404

CitrixUninit ... 404

Clear ... 799

Click On Button (submit) 143, 148

Click On Link ... 143, 147

Click, Citrix command 405

Click_On .. 801

cl ient cert i ficate

in a datapool .. 4

passwords... 140

cl ient cert i ficate.. 140

cl ient cert i ficate.. 181

cl ient cert i ficate.. 231

Client Throughput report 262

Clone.. 354

Close... 297, 342, 354, 388

CLOSE_ALL_DATA_POOLS.............................. 623

CLOSE_DATA_POOL.. 623

command

DO_WSK_Send... 117

insert in to capture fi le 16

command ... 16

command l ine

start ing Conductor 214

command l ine.. 214

command l ine.. 243

comment, Visual Navigator script i tem 142

CommitTrans... 297

Compare Tool

Act iveData for Oracle 83

CompareBookmarks... 355

concurrent l icense ... 213

concurrent users

Concurrent Users report 260

Conductor

in terface... 191

menus and toolbar buttons......................... 200

start ing the Conductor 248

Conductor .. 200

configuring

Appl icat ion Expert test 230

Appl icat ionVantage test 230

browser .. 167

Conductor.. 203

test machines... 194

Connect, Citrix command............................... 406

Connect, Oracle Forms Server command 540

Content Check... 143

conversion opt ions

Citrix .. 69

Oracle... 80

Oracle Forms Server 87

SAP... 102, 106

TUXEDO .. 112

UNIFACE.. 116

Winsock ... 121

WWW .. 169

conversion opt ions.. 80

conversion opt ions.. 87

QALoad 5.02

 881

conversion opt ions .. 112

conversion opt ions .. 116

conversion opt ions .. 169

cookies

in Visual Navigator scripts................... 145, 149

cookies.. 60

cookies.. 177

Cookies Set by Server 143

CopyRecord .. 343

CopyTo... 388

COUNTER_VALUE... 623

counters

custom ... 17

Detai l data.. 252

graphing... 256

Remote M onitoring 222

counters.. 252

CPU usage .. 201

CreateParameter ... 286

CSV reports .. 268

CTX_error_handler .. 404

CtxClick ... 405

CtxConnect .. 406

CtxDisconnect ... 406

CtxDoubleClick.. 406

CtxKeyDown .. 407

CtxKeyUp ... 407

CtxMouseDown ... 408

CtxMouseMove.. 408

CtxMouseUp .. 409

CtxPing .. 409

CtxPoint ... 410

CtxScreenEventExists........................... 25, 73, 410

CtxSetApplicat ion .. 410

CtxSetCitrixPort ... 411

CtxSetConnectTimeout 411

CtxSetDisconnectTimeout 411

CtxSetEnableCounters..................................... 412

CtxSetEnableWildcardMatching 413

CtxSetICAFile... 413

CtxSetLoginInfo... 413

CtxSetPingTimeout .. 414

CtxSetWaitPointTimeout 414

CtxSetWindowMatchTit le............................... 414

CtxSetWindowRetries...................................... 415

CtxSetWindowTimeout 415

CtxSetWindowVerificat ion 415

CtxType.. 416

CtxTypeChar.. 416

CtxTypeVK... 417

CtxWaitForCaptionChange............................. 417

CtxWaitForScreenUpdate 417

CtxWaitForWindowActivate 418

CtxWaitForWindowCreate.............................. 418

CtxWait forWindowDestroy............................. 419

CtxWaitForWindowLgIconChange................. 419

CtxWaitForWindowMinimize......................... 419

CtxWaitForWindowMove 420

CtxWaitForWindowResize............................... 420

CtxWaitForWindowSmIconChange................ 421

CtxWait forWindowStyleChange..................... 421

CtxWindowEventExists....................... 25, 73, 422

custom counters .. 17, 252

custom error handl ing............................. 193, 203

custom script messages...................................... 17

customer support 864, 874

D

data th inning... 203, 251

datapoints

graphing .. 255

th inning... 255

datapoints.. 255

datapool variable

renaming ... 162

QALoad 5.02

 882

datapools

cl ient cert i ficate ... 4

creat ing .. 19, 160

import ing... 160

incorporat ing ... 19

insert ing in a script 157, 161

modifying .. 19, 160

NetLoad.. 184, 185

removing used data 210, 216

retrieving.. 19

subst i tut ing a string 50, 126, 158, 645

Visual Navigator... 160

datapools.. 184

datapools.. 210

datapools.. 216

Datapools and Variables dialog box 160

DATE_TIME.. 624

DB2

DB2/UNIX playback 186, 243

DB2... 423

DBCS

Visual Navigator... 133

visual script ing..................................... 133, 168

DBCS.. 133

DBCS.. 168

debug print , Visual Navigator script i tem 142

debug trace... 211

debugging

logfi les.. 64

debugging... 211

decrement variable, Visual Navigator script i tem
... 142

DefaultCheckpointsOn 625

define transact ion loop 18

DEFINE_COUNTER.. 626

DEFINE_TRANS_TYPE...................................... 626

Delete ... 322, 335, 356

DeleteRecord .. 343

Detai l data

checkpoints.. 251

counters... 252

Top Processes... 254

Detai l data.. 251

Detai l data.. 254

Detai ls view, Conductor 198

dial-up virtual users ... 202

directory opt ions ... 12

DisableStat ist icsRP... 803

Disconnect ... 540

Disconnect, Citrix command 406

DisplayErrorDialog .. 541

DisplayList ... 541

DO_AbortOnError.. 627

DO_AddHeader .. 803

DO_Addit ionalSubRequest 833

DO_AllowTrafficFrom 804

DO_AttachFile.. 805

DO_autocommitoff .. 475

DO_autocommiton .. 476

DO_AutomaticSubRequests............................. 805

DO_BasicAuthorizat ion 807

DO_binddate.. 476

DO_BindForUpdateRowID 477

DO_bindnul l .. 477

DO_bindstring ... 478

DO_BindV .. 479

DO_BlankOutOfRangeData 808

DO_BlockTrafficFrom 808

DO_Cache.. 809

DO_cleanup ... 480

DO_Clear ... 809

DO_ClearCache ... 811

DO_ClearDNSCache .. 811

DO_ClearJavascript .. 812

QALoad 5.02

 883

DO_commit.. 480

DO_DynamicCookieHandling......................... 812

DO_DynamicRedirectHandling 814

DO_EnableJavascript .. 815

DO_EncodeString... 815

Do_ExtractString .. 628

DO_FetchIters .. 480

DO_free_data.. 492

DO_FreeDB2... 424

DO_FreeHttp .. 816

DO_freeitem ... 492

DO_FreeODBC ... 435

DO_get_select_variable 481

DO_GetAnchorByNumber 816

DO_GetAnchorCount 817

DO_GetAnchorHREF.. 817

DO_GetAnchorHREFEx.................................... 819

DO_GetAnchorHREFn 820

DO_GetClientMapHREF 821

DO_GetCookie... 822

DO_GetCookieFromReplyEx............................ 823

DO_GetFormActionStatement 824

DO_GetFormValueByName............................. 825

DO_GetHeaderFromReply................................ 826

DO_GetLastHttpError 826

DO_GetOutputData ... 492

DO_GetRedirectedURL..................................... 827

DO_GetReplyBuffer .. 828

DO_GetSelectData.. 482

DO_GetUniqueString....................................... 828

DO_GetUniqueStringEx 829

DO_Http ... 830

DO_HttpCleanup ... 830

DO_Https ... 672

DO_HttpVersion .. 831

DO_in it_alen .. 483

DO_in it_data.. 484

DO_in it_indp ... 485

DO_InitAWL .. 645

DO_in itDB2 ... 425

DO_InitHttp... 831

DO_in itODBC .. 436

DO_IPSpoofEnable... 832

DO_LoadM em .. 442

DO_Logfi le_PSV ... 724

DO_Logfi le_URB .. 703

DO_makedate .. 493

DO_MSLEEP... 629

DO_NTLMAuthorizat ion 832

DO_OCI8BindDate .. 501

DO_OCI8BindNull ... 501

DO_OCI8BindString .. 502

DO_OCI8GetSelectData................................... 502

DO_OCI8In itAlen .. 504

DO_OCI8In it Indp.. 504

DO_OCIAttrSet .. 505

DO_OCIBind.. 506

DO_OCICommit .. 507

DO_OCIDefine... 508

DO_OCIDescriptorAl loc 509

DO_OCIDescriptorFree.................................... 509

DO_OCIEnvFreeAll .. 509

DO_OCIEnvIn it ... 510

DO_OCIExecute... 510

DO_OCIHandleAlloc 511

DO_OCIHandleFree... 511

DO_OCIIn it ial ize... 512

DO_OCILdaToSvcCtx 512

DO_OCILobRead ... 513

DO_OCILobWrite .. 514

DO_OCILogoff ... 515

DO_OCILogoffEx ... 515

DO_OCILogon ... 515

DO_OCIProcessSelectList 516

QALoad 5.02

 884

DO_OCIProcessSelectList_EX........................... 517

DO_OCIRollback .. 518

DO_OCIServerAttach 518

DO_OCIServerDetach 519

DO_OCISessionBegin 520

DO_OCISessionEnd ... 520

DO_OCIStmtExecute 521

DO_OCIStmtPrepare.. 522

DO_OCIStmtPrepare_EX.................................. 522

DO_OCISvcCtxToLda 523

DO_OCITransCommit 524

DO_OCITransRollback 524

DO_oclose .. 485

DO_oexec ... 486

DO_olog ... 486

DO_ologof .. 487

DO_oopen .. 487

DO_oopt ... 487

DO_oparse.. 488

DO_process_select_l ist 488

DO_ProxyAuthorizat ion 834

DO_ProxyExcept ions 834

DO_PSV_bin2uf ... 724

DO_PSV_clean .. 725

DO_PSV_close .. 726

DO_PSV_commit.. 727

DO_PSV_creocc .. 729

DO_PSV_delete... 730

DO_PSV_fclose... 731

DO_PSV_fetch .. 732

DO_PSV_fki l l .. 733

DO_PSV_fopen ... 733

DO_PSV_fread .. 734

DO_PSV_free .. 735

DO_PSV_fwrite... 736

DO_PSV_in it .. 737

DO_PSV_logoff ... 738

DO_PSV_logon ... 739

DO_PSV_long2uf ... 740

DO_PSV_modify .. 741

DO_PSV_ndelete.. 742

DO_PSV_open .. 743

DO_PSV_remotepath 745

DO_PSV_rol lback ... 746

DO_PSV_select ... 746

DO_PSV_selectdb ... 749

DO_PSV_setocc .. 750

DO_PSV_sql ... 751

DO_PSV_sselect .. 752

DO_PSV_str2uf... 754

DO_PSV_uf2bin ... 755

DO_PSV_uf2dbl ... 756

DO_PSV_uf2long ... 756

DO_PSV_uf2str... 757

DO_PSV_update... 758

DO_PSV_write.. 760

DO_PSV_xtrans.. 761

DO_PSV_zero ... 762

DO_rol lback ... 489

Do_SAPCheckScreen .. 648

Do_SAPCheckStatus... 648

Do_SAPCheckTit le ... 649

Do_SAPClearMessages 649

Do_SAPDumpEvent ... 650

Do_SAPExtractString.. 650

Do_SAPFrontEnd ... 650

Do_SAPFullMenu ... 651

Do_SAPGetControlValue................................. 651

Do_SAPGetIt_Event ... 652

Do_SAPGetScreenTit le 652

Do_SAPGetStatusMsg....................................... 652

Do_SAPInit ... 653

Do_SAPLogging.. 653

Do_SAPLogin ... 653

QALoad 5.02

 885

Do_SAPLogoff .. 654

Do_SAPSendDblClick 654

Do_SAPSendEvent .. 654

Do_SAPSendMenu.. 655

Do_SAPSendOKCode 655

Do_SAPSendPFKey ... 655

Do_SAPSendReturn .. 656

Do_SAPSetCheckScreenWildcard..................... 656

Do_SAPSetCtrlValue... 656

Do_SAPSetCursor ... 657

DO_SaveReplyType.. 835

DO_ScalarBindA... 489

DO_SetAssumedContentType.......................... 836

DO_SetBaudRate .. 836

DO_SetBaudRateEx .. 837

DO_SetCheckpointName................................. 837

DO_SetCookie.. 837

DO_SetCookieEx .. 838

DO_SetJavascriptCleanupThreshold 839

DO_SetMaxBrowserThreads............................. 840

DO_SetMaximumRetries.................................. 840

DO_SetRefreshTimeout 840

DO_SetRetryWait ... 841

DO_SetSSLConnectString................................. 672

DO_SetTimeout .. 841

DO_SetTransact ionCleanup............................. 628

DO_SetTransact ionStart 629

DO_SetValue .. 630

DO_SLEEP .. 631

DO_SoftClose... 490

DO_SQLAllocConnect 442

DO_SQLAllocHandle.. 443

DO_SQLAllocStmt .. 443

DO_SQLBindCol .. 444

DO_SQLBindFileToCol 425

DO_SQLBindFileToParam 426

DO_SQLBindParameter 436

DO_SQLBuildDataLink 429

DO_SQLCancel .. 445

DO_SQLCloseCursor.. 445

DO_SQLColAttribute....................................... 446

DO_SQLColumns... 446

DO_SQLConnect ... 448

DO_SQLCopyDesc ... 448

DO_SQLDescribeCol .. 449

DO_SQLDisconnect ... 450

DO_SQLDriverConnect 450

DO_SQLEndTran ... 450

DO_SQLExecDirect .. 451

DO_SQLExecute... 451

DO_SQLFetch ... 452

DO_SQLFreeConnect 452

DO_SQLFreeHandle... 453

DO_SQLFreeStmt ... 453

DO_SQLGetConnectAttr 430

DO_SQLGetCursorName 454

DO_SQLGetData .. 454

DO_SQLGetDataLinkAttr................................. 430

DO_SQLGetDescField 455

DO_SQLGetDescRec .. 456

DO_SQLGetEnvAttr ... 456

DO_SQLGetLength .. 431

DO_SQLGetPosit ion .. 432

DO_SQLGetStmtAttr .. 432

DO_SQLGetSubString 433

DO_SQLGetTypeInfo 457

DO_SQLNumResultCols 458

DO_SQLParamData.. 434

DO_SQLPrepare ... 459

DO_SQLPutData .. 458

DO_SQLRetrieveParamValue........................... 459

DO_SQLRowCount .. 460

DO_SQLSetConnectAttr 460

DO_SQLSetConnect ion 434

QALoad 5.02

 886

DO_SQLSetConnectOption 461

DO_SQLSetCursorName................................... 462

DO_SQLSetDescField.. 463

DO_SQLSetDescRec.. 463

DO_SQLSetEnvAttr .. 464

DO_SQLSetPos ... 465

DO_SQLSetScrol lOpt ions................................. 465

DO_SQLSetStmtAttr ... 466

DO_SQLSetStmtOption 467

DO_SQLSpecialColumns.................................. 468

DO_SQLStat ist ics.. 469

DO_SQLTables ... 469

DO_SQLTransact .. 470

DO_SSLReuseSession .. 673

DO_SSLUseCipher .. 674

DO_SSLUseClientCert 675

DO_SSLUseClientCertPass 675

DO_SSLUseProxy.. 676

DO_StartAWL... 645

DO_strdup .. 494

DO_substr... 470

Do_TuxAppendBuffer 679

Do_TuxBufMemset .. 679

Do_TuxBuildBuffer .. 680

Do_Tuxcarray ... 680

Do_Tuxcertsubstr ... 680

Do_Tuxencode ... 681

Do_TuxFin it ... 682

Do_TuxFMLData.. 682

Do_TuxgetFMLData ... 683

Do_TuxGetPart ialBuffer 683

Do_Tuxgetrevent .. 684

Do_TuxgetTuxBuffer .. 684

DO_TuxIn itData... 685

Do_TuxOutputBuffer 685

Do_TuxSetViewData .. 686

Do_TuxSetViewEnv.. 686

Do_Tuxsetwsnaddr .. 687

Do_Tuxstring ... 687

Do_TuxStrlenEncodeString.............................. 688

Do_Tuxsubstr ... 688

Do_Tuxtpabort ... 689

Do_Tuxtpal loc ... 689

Do_Tuxtpbegin .. 690

Do_Tuxtpbroadcast .. 690

Do_Tuxtpcal l ... 691

Do_Tuxtpcommit .. 691

Do_Tuxtpconnect .. 691

Do_Tuxtpdiscon .. 692

Do_Tuxtpenqueue ... 693

Do_Tuxtpin it ... 694

Do_Tuxtppost .. 694

Do_Tuxtpreal loc .. 695

Do_Tuxtprecv .. 695

Do_Tuxtpscmt ... 696

Do_Tuxtpsend.. 696

Do_Tuxtpsprio ... 696

Do_Tuxtpterm ... 697

Do_TuxUseCert i ficates 697

Do_Tuxxoctet .. 697

DO_URB_Asci iToHex 703

DO_URB_Init ... 704

DO_URB_setoprretry.. 704

DO_URB_ubin2uf .. 704

DO_URB_udbl2uf... 705

DO_URB_uecreate.. 705

DO_URB_uedelete.. 706

DO_URB_uentcreo ... 706

DO_URB_uentoccs... 707

DO_URB_uentseto ... 707

DO_URB_ufreeh ... 708

DO_URB_uinstdel .. 708

DO_URB_uinstnew .. 708

DO_URB_uinstopr ... 709

QALoad 5.02

 887

DO_URB_ulist2uf ... 709

DO_URB_ulistdel .. 710

DO_URB_ulist free .. 711

DO_URB_ulistget .. 711

DO_URB_ulistnew.. 712

DO_URB_ulistput ... 712

DO_URB_ulistput l ist .. 713

DO_URB_ulistputx ... 713

DO_URB_ulong2uf ... 714

DO_URB_unifree.. 714

DO_URB_uniname... 715

DO_URB_uopract ... 715

DO_URB_uoprprms.. 716

DO_URB_uprmdir .. 716

DO_URB_uprmgeth ... 717

DO_URB_uprmtype.. 717

DO_URB_ustr2uf .. 718

DO_URB_uuf2bin ... 718

DO_URB_uuf2dbl ... 719

DO_URB_uuf2l ist ... 719

DO_URB_uuf2long... 720

DO_URB_uuf2str .. 720

DO_UseEnti tyList ... 842

DO_UseNumericReferenceList 842

DO_UsePersistentConnect ions........................ 842

DO_UseProxy ... 843

DO_UseProxyAutomaticConfigurat ion 843

DO_VerifyDocTit le... 844

DO_WSK_Accept .. 768

DO_WSK_Bind ... 768

DO_WSK_Closesocket 769

DO_WSK_Connect ... 769

DO_WSK_Expect .. 769

DO_WSK_ExpectAny 770

DO_WSK_ExpectAnyExpr 770

DO_WSK_ExpectExpr....................................... 771

DO_WSK_GetSocket ... 771

DO_WSK_Getsockname................................... 772

DO_WSK_HexDecode...................................... 772

DO_WSK_Init ... 773

DO_WSK_Ioct lsocket 773

DO_WSK_IsReadable 773

DO_WSK_IsWriteable 774

DO_WSK_Listen ... 774

DO_WSK_Quiet ... 775

DO_WSK_Read... 775

DO_WSK_Recv ... 775

DO_WSK_Recvfrom ... 776

DO_WSK_Reorder .. 776

DO_WSK_Select ... 777

DO_WSK_Send... 778

DO_WSK_SendAll .. 778

DO_WSK_Sendto ... 779

DO_WSK_SetsockOpt 779

DO_WSK_Shutdown .. 780

DO_WSK_Socket .. 780

DO_WSK_Write ... 780

DoubleClick, Citrix command 406

DownloadMediaFromASX 844

DownloadMediaRP.. 845

DownloadMediaWMP 846

DownloadWindowsMedia 846

dupl icated frameset page................................. 146

dynamic windows, Citrix 22, 23, 70, 71

E

EasyScript for Oracle Forms Server 85

EcoTOOLS6 .. 250

Edit menu .. 200

EditorDialog... 542

Email ing test data from QALoad Analyze 268

EnableStat ist icsRP.. 846

encoding DBCS.. 168

End_Transact ion .. 631

END_UENTITY... 721

QALoad 5.02

 888

EndBlock .. 423

EndCheckpoint .. 632

ENTITY_LIST .. 797

error handl ing .. 193, 203

EscapeStr .. 781

Execute... 287, 298

EXIT.. 632

export ing data to html 267

export ing rip fi les... 268

export ing test data ... 267

extract string, Visual Navigator script i tem 145

ExtractVariantValue... 400

F

File menu ... 200, 246

fi les

Visual Script ing.. 155

Fi l l In Form

Page sub-i tem ... 143

Fi l l In Form .. 150

Fi l l_In ... 847

Find and Replace dialog box, visual script ing . 166

Find, ADO command 356

float ing toolbar .. 15

Flush ... 389

FormCanvas ... 542

forms, in Visual Navigator 150

FormStatusBar .. 543

FormWindow ... 543

Frames

in Visual Navigator scripts........................... 146

frameset .. 146

G

Get .. 849

GET_ABSOLUTE_VUNUM 632

Get_Data .. 633

GET_DATA_FIELD .. 633

GET_DATAPOOLS_DIR.................................... 633

GET_HOME_DIR.. 634

GET_LOGFILES_DIR .. 634

GET_RELATIVE_VUNUM 635

GET_SCRIPTS_DIR... 635

GET_TIMINGFILES_DIR................................... 635

GetAbsolutePage.. 357

GetAbsolutePosit ion .. 357

GetAct iveCommand .. 358

GetAct iveConnect ion 344, 358

GetActualSize... 310

GetAttributes............................ 298, 310, 327, 337

GetBindColumnData....................................... 471

GetBOF... 359

GetBookmark ... 359

GetCacheSize ... 359

GetCharset ... 390

GetChildren ... 344

GetChunk .. 311

GetCollect .. 360

GetCommandStream 287

GetCommandText ... 288

GetCommandTimeout 288, 299

GetCommandType .. 289

GetConnect ionString....................................... 299

GetConnect ionTimeout 300

GetControlValue.. 544

GetCount ... 322, 336, 340

GetCursorLocat ion 300, 360

GetCursorType... 361

GetDataFormat .. 312

GetDataMember .. 361

GetDataSource ... 362

GetDefaultDatabase... 300

GetDefinedSize .. 312

GetDialect .. 289

GetDirect ion .. 328

GetEditMode.. 362

QALoad 5.02

 889

GetEOF... 363

GetEOS... 390

GetFields... 345, 363

GetFi l ter ... 364

GetIndex .. 364

GetIsolat ionLevel ... 301

GetItem .. 323, 336, 341

GetLineSeparator.. 391

GetLocalAddr ... 781

GetLocalPort .. 782

GetLockType .. 364

GetMarshalOptions.. 365

GetMaxRecords.. 365

GetMode .. 301, 345, 391

GetName 290, 312, 328, 338

GetNamedParameters 290

GetNewEnum 320, 337, 341

GetNumericScale...................................... 313, 329

GetOriginalValue ... 313

GetPageCount .. 366

GetPageSize .. 366

GetParameters.. 290

GetParentURL .. 346

GetPosit ion .. 391

GetPrecision ... 314, 329

GetPrepared.. 291

GetPropert ies.................................... 291, 314, 366

GetProvider .. 302

GetRecordCount .. 367

GetRecordType... 346

GetRemoteAddr.. 783

GetRemotePort ... 783

GetRows ... 367

GetSize.. 330, 392

Getsockname.. 783

GetSort ... 368

GetSource... 347, 368

GetState.................................... 302, 347, 369, 392

GetStatus.. 315, 369

GetStayInSync.. 370

GetString.. 370

GetType.. 315, 338, 393

GetUnderlyingValue.. 316

GetValue .. 316, 330, 339

GetVersion ... 303

glossary .. 865

graph

bar chart ... 255

cumulat ive response t ime distribut ion 255

customizing ... 257

l ine... 255

response t ime distribut ion........................... 255

Graph Toolbar buttons.................................... 249

graphing

bar .. 255

checkpoints.. 255

counters... 256

cumulat ive response t ime distribut ion 255

datapoints.. 255

l ine... 255

Player Performance Counters...................... 256

response t ime distribut ion........................... 255

Server Monitoring Data 256

Top Processes... 257

transact ion throughput 255

graphing... 255

graphing... 255

group

checkpoints.. 250

ClientVantage.. 250

counters... 250

EcoTOOLS6.. 250

player performance counters....................... 250

remote monitoring 250

QALoad 5.02

 890

reports.. 250

RIP Fi les.. 250

server analysis.. 250

server monitoring .. 250

ServerVantage .. 250

Top Processes ... 250

group .. 250

Group

ADO

DB2 . 424, 425, 426, 427, 429, 430, 431, 432,
433, 434

ODBC... 435, 436

ODBC/DB2...... 442, 443, 444, 445, 446, 448,
449, 450, 451, 452, 453, 454, 455, 456,
457, 458, 459, 460, 461, 462, 463, 464,
465, 466, 467, 468, 469, 470

Oracle 7... 475, 476, 477, 478, 479, 480, 481,
482, 485, 486, 487, 488, 489, 490

Oracle 7/8 492, 493, 494

Oracle 8... 501, 502, 504, 505, 506, 507, 508,
509, 510, 511, 512, 513, 514, 515, 516,
517, 518, 519, 520, 521, 522, 523, 524

Oracle Forms Server 534, 535, 536, 537, 538,
539, 540, 541, 542, 543, 544, 545, 546,
547, 548, 549, 550, 551, 552, 553, 554,
610, 611, 612, 613, 614, 615, 616, 617,
618

QALoad ... 622, 623, 625, 626, 628, 629, 630,
631, 632, 633, 634, 635, 636, 637, 638,
639, 640, 642, 643, 644, 645

QARun Integrat ion 645

SAP.. 648, 649, 650, 651, 652, 653, 654, 655,
656, 657

SSL............................ 672, 673, 674, 675, 676

Tuxedo 679, 680, 681, 682, 683, 684, 685,
686, 687, 688, 689, 690, 691, 692, 693,
694, 695, 696, 697

UNIFACE. 703, 704, 705, 706, 707, 708, 709,
710, 711, 712, 713, 714, 715, 716, 717,
718, 719, 720

UNIFACE Polyserver 724, 725, 726, 727, 729,
730, 731, 732, 733, 734, 735, 736, 737,
738, 739, 740, 741, 742, 743, 745, 746,
749, 750, 751, 752, 754, 755, 756, 757,
758, 760, 761, 762

WinSock . 767, 768, 769, 770, 771, 772, 773,
774, 775, 776, 777, 778, 779, 780, 781,
782, 783, 784, 785, 786, 787, 788, 789,
790

WWW 798, 799, 801, 803, 804, 805, 807,
808, 809, 811, 812, 814, 815, 816, 817,
819, 820, 821, 822, 823, 824, 825, 826,
827, 828, 829, 830, 831, 832, 833, 834,
835, 836, 837, 838, 839, 840, 841, 842,
843, 844, 845, 846, 847, 849, 851, 852,
854, 859, 860, 861, 862

ADO285, 286, 287, 288, 289, 290, 291, 292,
293, 294, 295, 296, 297, 298, 299, 300, 301,
302, 303, 304, 305, 306, 307, 308, 309, 310,
311, 312, 313, 314, 315, 316, 317, 318, 319,
320, 321, 322, 323, 324, 325, 326, 327, 328,
329, 330, 331, 332, 333, 334, 335, 336, 337,
338, 339, 340, 341, 342, 343, 344, 345, 346,
347, 348, 349, 350, 351, 352, 353, 354, 355,
356, 357, 358, 359, 360, 361, 362, 363, 364,
365, 366, 367, 368, 369, 370, 371, 372, 373,
374, 375, 376, 377, 378, 379, 380, 381, 382,
383, 384, 385, 386, 387, 388, 389, 390, 391,
392, 393, 394, 395, 396, 397, 398, 399, 400

group, defin i t ion .. 250

H

heartbeat message.. 238

Help menu ... 200

HelpDialog ... 545

HiByte .. 784

HTM ... 245

HTML character ent i t ies 797

HTML numeric references 797

HTML Page form .. 143

HTML Page i tems... 143

HTML reports... 267

HTTP headers

in Visual Navigator scripts........................... 149

insert ing... 157

HTTPConnectToFormsServlet 545

HTTPConnectToListenerServlet 546

HTTPInit ialFormsConnect 546

HTTPReceiveM essage....................................... 547

HTTPS.. 180

QALoad 5.02

 891

HTTPSetHdrProperty .. 548

HTTPSetListenerServletParms.......................... 548

HTTPSetURL... 549

HTTPXmitMsg.. 549

HTTPXmitTerminalMessage 549

I

ICA fi le ... 68, 69

IconicButton .. 550

ImageItem .. 551

increment variable, Visual Navigator script i tem
... 142

insert ing commands .. 17

insert ing commands in a capture fi le................ 16

instal l ing the NetLoad server module.............. 183

instal l ing UNIX Players............................ 240, 242

integrat ion

Appl icat ion Expert 229

Appl icat ion Vantage 229

ServerVantage .. 231

integrat ion/Appl icat ion Expert 228

integrat ion/Appl icat ion Vantage..................... 228

interface ... 191

IP addresses

Appl icat ion Expert 229

Appl icat ion Vantage 229

IP Spoofing

Visual Navigator script i tem 141

J

Java... 79

Java applet .. 58, 175

JavaContainer .. 551

JavaDoc .. 79

JavaScript .. 56, 79, 173

K

KeyDown .. 407

KeyUp... 407

L

launching Analyze ... 250

l icensing virtual users...................................... 213

ListValuesDialog .. 552

load test

adding Players.. 208

running.. 197

load test .. 208

Load Test Summary

sample.. 258

Load Test Summary ... 258

load-balanced environment, Citrix

script ing techniques 24, 73

load-balanced environment, Citrix 66

LoadFromFile ... 393

LoByte .. 784

Log ... 785

LOG_ERROR... 636

LogComment ... 552

logfi le generat ion ... 211

logfi les.. 64

Logging .. 553

LogonDialog .. 553

M

Machine Assignment tab 197

Machine Assignments, in Session report 259

Machine Configurat ion

saving... 207

Machine Configurat ion tab 194

Machines in Use, in Session report 259

managing datapoints....................................... 255

menu

Analyze .. 246

Help ... 249

Oracle Variabl izat ion 82

View ... 247

Visual Script ing.. 135

menu .. 14

menu .. 239

QALoad 5.02

 892

menu .. 246

MenuInfo ... 554

MenuParametersDialog.................................... 554

merge ServerVantage fi le.................................. 248

monitoring CPU usage..................................... 201

Monitoring Options tab................................... 196

MouseDown ... 408

MouseMove.. 408

MouseUp .. 409

Move .. 371

MoveFirst .. 371

MoveLast .. 372

MoveNext ... 372

MovePrevious... 373

MoveRecord ... 347

MyByteOrder .. 785

N

native character support 168

Navigate_To ... 851

NavigateTo ... 143

NetLoad

creat ing a datapool 184

edit ing a datapool .. 185

entering/edit ing a datapool descript ion 185

instal l ing the server module........................ 183

start ing a session .. 184

start ing the server module........................... 183

NetLoad .. 183

new variable... 162

NextField .. 325

NextParameter.. 326

NextProperty .. 324

NextRecordset .. 373

node-locked l icense.. 213

NTLM authent icat ion, in Visual Navigator scripts
... 149

NUMERIC_REFERENCE_LIST........................... 797

O

OctalToChar .. 636

ODBC ... 435

ODBC/DB2... 438

ofsAct ivateList Item .. 555

ofsAct ivateTreeItem ... 556

ofsAct ivateWindow ... 556

ofsClickButton ... 557

ofsClickTextFieldItem 558

ofsClosePopList .. 559

ofsCloseWindow .. 559

ofsCollapseTreeItem .. 560

ofsColorAdd ... 561

ofsConnectToSocket .. 561

ofsDeActivateWindow 562

ofsDefineTreeNode .. 562

ofsDefineTreeNodeOffset 563

ofsDeIconifyWindow 564

ofsDeSelectItem ... 565

ofsDeselectTreeEvent 565

ofsEdit .. 566

ofsExpandTreeItem .. 567

ofsFindLOVVAlue .. 567

ofsFocus ... 568

ofsHideWindow ... 569

ofsHTTPConnectToFormsServlet 569

ofsHTTPConnectToListenerServlet 570

ofsHTTPDisconnect ... 570

ofsHTTPInit ialFormsConnect 571

ofsHTTPSDoSSLHandshake.............................. 570

ofsHTTPSetHdrProperty 570

ofsHTTPSetListenerServletParms 571

ofsIconifyWindow ... 571

ofsIndexKey ... 572

ofsIndexSKey.. 573

ofsIn itSessionCmdLine.................................... 574

ofsIn itSessionTimeZone................................... 574

QALoad 5.02

 893

ofsList ItemValue .. 575

ofsLoadValue.. 575

ofsLOVRequestRow .. 576

ofsLOVSelect ion ... 577

ofsMenuParamDlgOK 577

ofsOpenWindow .. 578

ofsRemoveFocus... 579

ofsScrol l .. 579

ofsScrol lSize.. 580

ofsSelectItem .. 580

ofsSelectMenuItem ... 581

ofsSelectTreeEvent ... 582

ofsSendRecv ... 582

ofsServerSideDisconnect 583

ofsSetColorDepth ... 583

ofsSetCursorPosit ion .. 584

ofsSetDisplaySize.. 584

ofsSetErrorDialogTit le 585

ofsSetExpectedServerMsg 585

ofsSetFontName... 586

ofsSetFontSize .. 587

ofsSetFontStyle... 587

ofsSetFontWeight ... 588

ofsSetICXTicket .. 588

ofsSetIn it ialVersion .. 589

ofsSetJavaContainerArgName.......................... 590

ofsSetJavaContainerArgValue 590

ofsSetJavaContainerEvent 591

ofsSetLogonDatabase 591

ofsSetLogonPassWord 592

ofsSetLogonUserName..................................... 593

ofsSetNoRequiredVAList 593

ofsSetPropertyBoolean 594

ofsSetPropertyByte ... 595

ofsSetPropertyByteArray 595

ofsSetPropertyCharacter................................... 596

ofsSetPropertyDate... 596

ofsSetPropertyFloat .. 597

ofsSetPropertyInteger....................................... 598

ofsSetPropertyPoint ... 598

ofsSetPropertyRectangle 599

ofsSetPropertyString .. 600

ofsSetPropertyStringArray 600

ofsSetPropertyVoid .. 601

ofsSetRequiredVAList 602

ofsSetRunOptions.. 602

ofsSetScaleInfo ... 603

ofsSetScreenResolut ion 604

ofsSetSelect ion ... 604

ofsSetServerFai ledMsg...................................... 605

ofsSetServletMode.. 605

ofsSetValue... 606

ofsSetWindowLocat ion 606

ofsSetWindowSize.. 607

ofsShowWindow .. 608

ofsSocketDisconnect .. 608

ofsStartSubMessage.. 609

ofsTabControlTopPage 609

ofsUnSetPropertyBoolean 610

open ... 303, 348, 374, 394

OPEN_DATA_POOL... 637

opening a t im ing fi le 250

OpenSchema.. 304

opt ions

Workbench

directory .. 12

fi le.. 12

opt ions... 12

Oracle

conversion opt ions.. 80

opt imizing Player for 240

recording opt ions .. 80

Oracle... 80

Oracle... 80

QALoad 5.02

 894

Oracle... 240

Oracle 7 .. 471

Oracle 7/8... 491

Oracle 8 .. 495

Oracle command reference................................ 85

Oracle Forms Server

C++ scripts

appl icat ion statements 32, 95

connect ion statements 31, 94

debugging .. 34, 98

disconnect statements......................... 34, 98

moving the transact ion loop 35, 98

OFS and WWW Universal sessions.... 37, 100

C++ scripts ... 30

C++ scripts ... 94

conversion opt ions.. 87

overview ... 85

playback error codes 88, 233

recording opt ions... 86

server-side recording...................................... 85

Oracle Forms Server ... 79

Oracle Forms Server ... 86

Oracle Forms Server ... 87

Oracle Forms Server ... 525

Oracle Forms Server method reference.............. 94

OracleAppsLogin .. 610

OracleForms... 611

OracleFormsMsg... 611

Output report ... 261

overview ... 245

overview of Appl icat ion Expert in tegrat ion 228

overview of Appl icat ion Expert /Appl icat ion
Vantage integrat ion 228

Overview of the QALoad Conductor 191

P

pacing

field on Script Assignment tab 193

Page i tems .. 143

PageCheck.. 143

parameters ... 242, 243

password-protected directory 62, 179, 807

Ping .. 409

Player

default parameters....................................... 242

errors.. 211

log fi les... 64

opt imizing ... 240

overview... 239

startup .. 243

transfer UNIX scripts........................... 186, 242

Player ... 240

Player ... 242

Player ... 243

player performance counters

graphing .. 256

player performance counters........................... 253

Players

adding to a test .. 208

Players.. 208

PlayMedia .. 851

Point... 410

PopList ... 612

PopupHelp ... 612

Post_To... 852

PostTo .. 143

Pre-defined reports

Cl ient Throughput 258, 262

Concurrent Users... 258

Output ... 258

Player Performance...................................... 266

Response Time Analysis............................... 258

Server Monitoring.. 258

Summary.. 258

Top Ten Longest Checkpoint Durat ions..... 263

Transact ion Throughput 258

QALoad 5.02

 895

PrintVariant ... 401

PromptList .. 613

PutAbsolutePage... 374

PutAbsolutePosit ion ... 375

PutAct iveConnect ion 292, 349, 375

PutAttributes............................ 304, 316, 331, 339

PutBookmark.. 376

PutCacheSize.. 376

PutCharset .. 395

PutCollect ... 377

PutCommandText .. 292

PutCommandTimeout 293, 305

PutCommandType... 293

PutConnect ionString 305

PutConnect ionTimeout 306

PutCursorLocat ion 306, 377

PutCursorType ... 378

PutDataFormat ... 317

PutDataMember ... 378

PutDefaultDatabase.. 306

PutDefinedSize... 317

PutDialect ... 294

PutDirect ion ... 331

PutFi l ter .. 379

PutIndex ... 379

PutIsolat ionLevel ... 307

PutLineSeparator .. 395

PutLockType... 379

PutMarshalOptions.. 380

PutMaxRecords .. 380

PutMode... 307, 350, 396

PutName... 294, 332

PutNamedParameters....................................... 295

PutNumericScale 318, 332

PutPageSize... 381

PutPosit ion ... 396

PutPrecision ... 318, 333

PutPrepared.. 295

PutProvider .. 308

PutRefAct iveConnect ion 296, 350, 381

PutRefDataSource... 382

PutRefSource.. 382

PutSize.. 333

PutSort ... 383

PutSource ... 350, 383

PutStayInSync.. 383

PutType.. 319, 334, 396

PutValue... 319, 334, 340

Q

QALoad .. 619

QALoad Analyze Menus 246

QALoad can't find TUXDIR environment variable
... 188

QALoad Conductor.. 250

QALoad Player Main Window 240

QALoad Player Menus 239

QALoad Script Development Workbench

menus.. 14

toolbar buttons.. 14

QALoad Script Development Workbench 14

QALoad Script Development Workbench 250

QARun Integrat ion .. 645

QARun scripts

automatical ly generate 187

manually generat ing.................................... 188

QARun scripts.. 187

R

RadioButton ... 613

ramp-up session ... 215

RandNumString ... 853

RANDOM_NUMBER.. 637

RANDOM_STRING .. 638

Read ... 397

read datapool, Visual Navigator script i tem 141

READ_DATA_RECORD 638

QALoad 5.02

 896

ReadText ... 397

recording

Java... 79

load tests .. 219

mult iple middleware sessions........................ 13

Oracle Forms Server 85

recording .. 13

Recording middleware cal ls 15

recording opt ions

ADO ... 66

Citrix .. 68

IIOP.. 120

Oracle... 80

Oracle Forms Server 86

SAP... 101, 105

TUXEDO .. 111

UNIFACE.. 116

Winsock ... 120

WWW .. 170

recording opt ions... 66

recording opt ions... 68

recording opt ions... 80

recording opt ions... 86

recording opt ions... 101

recording opt ions... 111

recording opt ions... 116

recording opt ions... 120

recording opt ions... 170

Recording toolbar... 15

Refresh .. 323, 337, 342

Region .. 853

Remote M onitoring

counters ... 222

removing datapool data........................... 210, 216

renaming datapool variables............................ 162

Replay a script with PeopleSoft cert i ficates 113

report ing

comma-separated value............................... 267

report ing .. 267

reports

Analyze

Client Throughput 262

Concurrent Users..................................... 260

Output ... 261

Player Performance.................................. 266

Response Time Analysis 260

Server Monitoring 262

Session ... 259

Summary ... 258

Top Ten Longest Checkpoint Durat ion .. 263

Transact ion Throughput 262

Analyze .. 258

Appl icat ion Expert 266

Appl icat ion Vantage.................................... 266

CSV .. 268

integrat ion ... 266

reports, how to view .. 269

reports, pre-defined . 258, 260, 261, 262, 263, 266

ReQuery ... 384

reset variable, Visual Navigator script i tem 142

Response .. 785

Response Time Analysis report 260

ResponseLength ... 786

RESTART_TRANSACTION_BOTTOM 854

RESTART_TRANSACTION_TOP....................... 854

restart ing transact ions

DO_SetTransact ionCleanup 628

DO_SetTransact ionStart 629

enabl ing

from the Script Assignment tab 193

SAP scripts.. 38, 107

Resync .. 324, 384

RMI .. 79

RND_DELAY .. 639

QALoad 5.02

 897

RND_DELAY_RANGE....................................... 639

RollbackTrans... 308

RR__FailedMsg ... 639

RR__GetDebugFlag... 640

RR__printf .. 640

Run menu .. 200

Runform ... 614

Running a Load Test .. 213

running a simple test 243

running a test

Detai ls view .. 198

running a test ... 197

running a test ... 231

Running Scripts, in Session report 259

runt ime data transfer 215

Runtime window

Detai ls view .. 198

Session view ... 199

Runtime window ... 197

Runtime Window menu 200

S

sample Load Test Summary 258

SAP

conversion opt ions.............................. 102, 106

handl ing mult iple logons...................... 41, 110

post-test log fi les.. 103

recording opt ions................................. 101, 105

script ing techniques 41, 110

troubleshoot ing 189, 190

SAP ... 101

SAP ... 102

SAP command index, Version 6.2 657

SAP command index, Versions 4.x 646

SAPGui_error_handler...................................... 659

SAPGuiApplicat ion ... 659

SAPGuiCheckScreen ... 660

SAPGuiCheckStatusbar 661

SAPGuiCmd0 ... 661

SAPGuiCmd1 ... 662

SAPGuiCmd1Coll .. 662

SAPGuiCmd1Elmnt ... 663

SAPGuiCmd1Sub ... 664

SAPGuiCmd1Sub1 ... 664

SAPGuiCmd2 ... 665

SAPGuiCmd3 ... 666

SAPGuiConnect ... 666

SAPGuiCreateColl .. 667

SAPGuiDestroyColl .. 667

SAPGuiPropIdStr .. 668

SAPGuiPropIdStrExists..................................... 668

SAPGuiPropIdStrExistsEnd 669

SAPGuiSessionInfo... 669

SAPGuiSetCheckScreenWildcard 670

SAPGuiVerCheckStr ... 671

Save.. 385

SaveToFile .. 398

saving machine configurat ions 207

ScanExpr .. 786

ScanFloat .. 787

ScanInt ... 787

ScanLenString .. 788

ScanRewind.. 788

ScanSkip ... 789

ScanString .. 789

script

adding messages for playback 17

insert ing a datapool 157, 161

Java .. 79

transfer ... 186, 242

script .. 186

script .. 242

Script Assignment tab 193

Script Assignments, in Session Report 259

script conversion ... 154

QALoad 5.02

 898

script debugging

Act iveData for Oracle..................................... 83

script debugging... 211

Script Development Workbench

configuring .. 12

start ing ... 248

script edit ing

insert ing commands...................................... 17

insert ing Visual Navigator i tems 156

techniques

Citrix 22, 23, 24, 70, 71, 72, 73

general ... 18, 19

SAP......................... 38, 41, 42, 107, 110, 111

Tuxedo 42, 43, 44, 113, 114, 115

Winsock 45, 47, 50, 51, 53, 121, 123, 126,
127, 129

script elements, Visual Navigator 137

script val idat ion ... 243

SCRIPT_MESSAGE.. 643

server analysis .. 253, 256

Server Analysis Agents

sett ing up monitoring.................................. 227

Server Analysis Agents 201, 227

server farm, Citrix

script ing techniques 24, 73

server farm, Citrix .. 66

Server Monitoring

Remote M onitoring 221

ServerVantage .. 230

Top Processes ... 257

Server Monitoring 196, 201

Server Monitoring .. 253

Server Monitoring Data

graphing... 256

Server Monitoring Data 253

Server Monitoring Report 262

server repl ies

Winsock 51, 53, 127, 129

ServerVantage 201, 231, 250, 253, 256, 262

service level threshold

opt ion on Script Assignment tab................. 193

Session report ... 259

Set .. 854

SET_ABORT_FUNCTION 642

SetApplicat ion .. 410

SetCitrixPort .. 411

SetConnectTimeout ... 411

SetDisconnectTimeout 411

SetDomainLoginInfo 412

SetEnableCounters... 412

SetEnableWildcardM atching 413

SetEOS.. 398

SetExpectedServerMsg 614

SetHeartbeat ... 615

SetICAFile... 413

SetLoginInfo .. 413

SetPingTimeout .. 414

SetProxy ... 615

SetTimeout ... 789

Sett ing a default m iddleware session 12

sett ing Conductor opt ions............................... 203

Sett ing Up a Test 192, 202

Sett ing up a test session ID 203

Sett ing up QALoad to run Oracle scripts on UNIX
... 84

Sett ing up QALoad to run Tuxedo scripts on
UNIX .. 112

SetTyperate... 790

SetWaitPointTimeout 414

SetWindowMatchName................................... 414

SetWindowMatchTit le..................................... 414

SetWindowRetries.. 415

SetWindowTimeout ... 415

SetWindowVerificat ion 415

ShowMediaRP.. 859

QALoad 5.02

 899

simulate

browser caching 62, 179

CGI requests... 56, 173

cookie... 60, 177

frame.. 59, 176

Java applet .. 58, 175

JavaScript ... 56, 173

password-protected directories.............. 62, 179

stat ic HTML page................................... 62, 179

Visual Basic script 58, 174

SkipExpr ... 790

SkipLine.. 399

SLEEP

as a component of checkpoint durat ion 245

Visual Navigator i tem 143

SLEEP.. 143

SLEEP.. 643

sleep factor

field on Script Assignment tab 193

socket resources.. 189

Sort Grid dialog box ... 254

sort ing data .. 254

SSL .. 180, 671

SSL scripts... 181, 231

start ing a test .. 231

Start ing Conductor from the command l ine... 214

start ing the NetLoad server module 183

startup parameters ... 242

stat ist ics.. 221

streaming media

streaming media support 167

Visual Navigator... 132

streaming media... 167

stripping datapools 210, 216

SubRequests

Addit ional .. 143

SubRequests.. 143

Summary report ... 258

summary test results.. 199

Supports... 386

SYNCH ... 644

synch, Visual Navigator script i tem................. 141

SYNCHRONIZE.. 644

T

TabControl ... 616

technical support ... i i

technical support ... 864

technical support ... 874

test

start ing... 231

stat ist ics ... 221

test.. 221

test.. 231

test in formation ... 259

Test In formation Window 192

Test Options menu .. 200

test results

checkpoint detai ls.. 251

email ing... 268

Load Test Summary 258

sort ing.. 254

viewing .. 270

test results.. 251

test results.. 254

test results.. 258

test results.. 268

test results, th inning the data.......................... 203

TextArea... 616

TextField .. 617

The Default Session Prompt didn 't open?....... 188

th inning data points.. 255

th inning test data

procedure... 255

th inning test data .. 203

QALoad 5.02

 900

thresholds... 217, 218

TIM ... 245

t im ing data, th inning out 203

t im ing fi le

troubleshoot ing ... 232

t im ing updates... 215

t ips

UNIX .. 231

t ips.. 231

Tl ist... 617

toolbar

graph .. 249

Recording ... 15

toolbar .. 200

toolbar .. 249

toolbar buttons .. 14, 249

Tools menu .. 248

Top Processes

detai l data .. 254

graphing... 257

traffic fi l ters

in Visual Navigator 139

transact ion cleanup

Visual Navigator i tem 141

transact ion durat ion

understanding durat ions 245

transact ion loop ... 131

transact ion throughput

report ... 262

Tree... 618

troubleshoot ing

Performance issues with SAP or Citrix scripts
... 190

QALoad can't find TUXDIR environment
variable .. 188

SAP script val idat ion fai ls 189

The default session prompt didn 't open 188

Winsock running out of socket resources ... 189

troubleshoot ing ... 190

Tuxedo

conversion opt ions...................................... 112

recording opt ions .. 111

Tuxedo ... 111

Tuxedo ... 112

Tuxedo ... 676

Tuxedo command reference............................ 113

Type ... 416

TypeChar ... 416

TypeVK... 417

U

UFIELD ... 721

UnEscapeStr ... 790

UNIFACE

conversion opt ions...................................... 116

recording opt ions .. 116

UNIFACE Polyserver .. 722

Universal session

WWW/Oracle Forms Server................... 37, 100

Universal session .. 13

UNIX

instal l ing Players.................................. 240, 242

running tests.. 231

transfer scripts 186, 242

UNIX .. 186

UNIX .. 242

UNIX/DB2 playback 186, 243

Update.. 324, 386

UpdateBatch .. 387

Using Integrated Server M onitoring with QALoad
... 227

Using the debug window................................. 216

using the Funct ion Wizard 17

V

val idat ion

procedure

Conductor ... 211

QALoad 5.02

 901

Player ... 243

VARDATA... 645

variables

adding .. 162

naming... 162

replacing in Visual Navigator 166

Visual Navigator... 160

variabl izat ion

Visual Navigator... 131

Winsock scripts...................................... 47, 123

Variabl izat ion menu .. 82

Variabl ize dialog box ... 82

Veri fy .. 860

veri fying checkpoints... 65

view .. 245

View Menu ... 200, 247

viewing

reports.. 269

test results .. 270

viewing... 270

Viewing datapool usage................................... 217

viewing log fi les ... 211

viewing rip fi les.. 211

virtual user l icensing.. 213

Virtual User menu.. 200

virtual users

adding on-the-fly ... 202

Visual Basic script 58, 174

Visual Navigator

Act ion i tem .. 149

cl ient cert i ficate ... 140

convert ing a script 154

datapools.. 160

DBCS.. 133

fi les... 155

Find and Replace.. 166

form elements.. 150

forms.. 150

frames .. 146

HTML Page form .. 143

HTML Page i tems... 143

insert ing script i tems................................... 156

interface... 134

menus.. 135

overview... 130

recording a script ... 155

replacing variables....................................... 166

script elements... 137

streaming media support 132

transact ion loop... 131

tree-view .. 137

variables... 160

variabl izat ion ... 131

Web Playback Options form........................ 138

XML ... 152, 164

XML support 132, 162, 167

visual script ing... 130

W

WaitForCaptionChange................................... 417

WaitForScreenUpdate...................................... 417

WaitForWindowActivate 418

WaitForWindowCreate.................................... 418

WaitForWindowDestroy 419

WaitForWindowMinimize............................... 419

WaitForWindowMove 420

WaitForWindowResize..................................... 420

WaitForWindowStyleChange.......................... 421

Web browser

configure.. 167

viewing test results 270

Web Playback Options form 138

Winsock

character representat ion 45, 121

command reference..................................... 121

QALoad 5.02

 902

recording opt ions... 120

script .. 117

server repl ies 51, 53, 127, 129

variabl izat ion ... 47, 123

Winsock ... 120

Winsock ... 762

Winsock running out of socket resources........ 189

Workbench

start ing ... 248

Workbench .. 248

Workspace.. 245

Write .. 399

WriteText ... 400

WWW

conversion opt ions...................................... 169

insert ing script i tems manually 156

recording opt ions... 170

streaming media .. 167

XML support 132, 162, 167

WWW .. 169

WWW .. 170

WWW .. 791

WWW command reference............................. 171

WWW scripts... 137

WWW session

Visual Script ing.. 134

WWW_FATAL_ERROR..................................... 861

X

X_Coord ... 861

XmitMsg .. 618

XmitTerminalMessage..................................... 618

XML

report format, Analyze................................. 245

XML requests... 163

XML support 132, 162, 167

XmlRequest .. 862

XSL... 245

Y

Y_Coord ... 862

Z

zip fi le, creat ing in Analyze 268

	QALoad online help
	Getting started with QALoad
	Welcome to QALoad
	The load testing process
	Developing scripts
	Setting up the Conductor
	Validating scripts
	Running a load test
	Analyzing test results

	Script Development Workbench
	Overview of the Script Development Workbench
	About the Script Development Workbench
	Sessions
	Developing a test script
	Using EasyScript
	NetLoad
	UNIX
	Testing with QARun
	Troubleshooting

	Conductor
	Overview of the QALoad Conductor
	About the Conductor
	Setting up a test
	Running a test
	Running a series of tests (batch)
	Monitoring a running test
	Recording and replaying a test
	Analyzing load test data
	Integration and server monitoring
	Troubleshooting

	Player
	Overview of the QALoad Player
	About the Player
	Dialog box and field descriptions
	How to...

	Analyze
	Overview of QALoad Analyze
	About Analyze
	Accessing test data
	Displaying detail data
	Creating a chart or graph
	Customizing a chart or graph
	Viewing reports
	Publishing or sharing test results

	Language Reference
	Contents of QALoad Language Reference
	ADO
	Citrix
	DB2
	ODBC
	ODBC/DB2
	Oracle 7
	Oracle 7/8
	Oracle 8
	Oracle Forms Server
	QALoad
	QARun integration
	SAP 4.x
	SAP 6.x
	SSL
	Tuxedo
	Uniface
	Uniface Polyserver (Versions 7.2.04 - 7.2.06)
	Winsock
	WWW

	Compuware customer support
	Contact information
	World Wide Web Information

	QALoad glossary
	Non-alphabetic
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Accessibility features
	Accessibility of QALoad components
	Accessibility of QALoad documentation
	Assistive technology tools that enhance the accessibility of QALoad
	Product shortcut keys

	Compuware customer support
	Contact information
	World Wide Web Information

	Index

