
Making Software Work TogetherTM

Artix Data ServicesTM

Getting Started
Version 3.8, September 2008

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in
this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license
to these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.
IONA, IONA Technologies, the IONA logos, Orbix, Artix, Making Software Work Together,
Adaptive Runtime Technology, Orbacus, IONA University, and IONA XMLBus are
trademarks or registered trademarks of IONA Technologies PLC and/or its subsidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. CORBA is a trademark or registered trademark of the
Object Management Group, Inc. in the United States and other countries. All other
trademarks that appear herein are the property of their respective owners.
IONA Technologies PLC makes no warranty of any kind to this material including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose. IONA Technologies PLC shall not be liable for
errors contained herein, or for incidental or consequential damages in connection with the furnishing, perform-
ance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publication
and features described herein are subject to change without notice.

Copyright © 2008 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: September 27, 2008

Contents

Preface 5

Chapter 1 Creating Projects 7
Before You Begin 8

Starting Artix Data Services Designer 9
Downloading Sample Getting Started Data 10

Creating a Project with the Project Wizard 11
Creating a Project Manually 14

Chapter 2 Creating Data Models 17
Creating a Data Model from a Text File 19

Creating the Transactions Data Model from Transactions.txt 20
Creating the Customers Data Model from Customers.txt 28

Creating a Data Model from an XML Schema 34
Creating a Data Model from Other Sources 38

Creating a Data Model from a Set of XML Documents 39
Creating a Data Model from a Database 42

Creating a Data Model Manually 47
Creating the Accounts Data Model Manually 48
Creating the Customers Data Model Manually 60

Adding Validation Rules 69
Adding Validation Rules for Accounts Data Model 70
Adding Validation Rules for Transactions Data Model 74

Chapter 3 Creating Transformations 79
Creating a Simple Transformation 80

Starting to Create a Transformation 81
Creating a Local Transformation 83
Testing the Local Transformation in Your Main Transformation 86
Creating a Filter 88
Testing the Filter in Your Main Transformation 90
3

CONTENTS
Making Your Transformation More Complex 92
Before You Continue 93
Adding More Input Models to Your Main Transformation 95
Adding Local Transformations 96
Adding Functions 99
Adding Nested Local Transformations 104
Adding Hash Tables 112
Adding Filters 116
Adding Java Methods 122
Adding Introspect Functions 125

Chapter 4 Overview of ANT Tasks 129
4

Preface
What This Book Covers
This book is intended to help you get started quickly with Artix Data
Services. It provides demonstration walkthroughs of various tasks that you
can perform in Artix Data Services Designer.

Who Should Read This Book
This book is intended for Artix Data Services users who wish to quickly
familiarise with using the product.

Prerequisites
See the Artix Data Services Installation Guide for a full list of supported
platforms and other prerequisites relating to the use of Artix Data Services.

How This Book Is Structured
This book contains the following chapters:

� Chapter 1, �Creating Projects� describes how to create projects in Artix
Data Services Designer.

� Chapter 2, �Creating Data Models� describes how to create data
models in Artix Data Services Designer from various different sources.
It also describes how to validate data models to ensure that they can
successfully parse valid data.

� Chapter 3, �Creating Transformations� describes how to create
transformations in Artix Data Services Designer that allow you to map
various elements in one or more input data models to various elements
in an output data model. It also describes how to run your
transformations to ensure that they are valid.
5

PREFACE
The Artix Data Services Documentation Library
For information on the organization of the Artix Data Services
documentation library, and the document conventions used, see the Artix
Data Services Documentation Library Overview at http://www.iona.com/
support/docs/artix/data_services/3.7/index.xml
 6

http://www.iona.com/support/docs/artix/data_services/3.7/index.xml
http://www.iona.com/support/docs/artix/data_services/3.7/index.xml

CHAPTER 1

Creating Projects
In Artix Data Services, projects are used to store the data
models, transformations and other working files for the various
tasks you might wish to perform. Creating a project is therefore
a prerequisite before you can perform any other task in Artix
Data Services. There are different ways of creating new
projects, depending on whether you choose to use the Project
Wizard or create a project manually. This chapter
demonstrates both methods of creating a project in Artix Data
Services.

In this chapter This chapter discusses the following topics:

Before You Begin page 8

Creating a Project with the Project Wizard page 11

Creating a Project Manually page 14
7

CHAPTER 1 | Creating Projects
Before You Begin

Overview Before you start working through the demonstrations, this section provides
details of how to start the Artix Data Services Designer and download the
supplied Getting Started plug-in to your product installation.

In this section This section discusses the following topics:

Starting Artix Data Services Designer page 9

Downloading Sample Getting Started Data page 10
8

Before You Begin
Starting Artix Data Services Designer

Overview Because you can install or deploy Artix Data Services in different ways and
on different platforms, there are various ways you can subsequently start
Artix Data Services Designer.

Installed via IONA Downloads
page

If you have installed Artix Data Services via the IONA Downloads page, do
any of the following to start the Artix Data Services Designer:

Windows:

� Select Programs|IONA|Artix Data Services|Artix DS Designer from
the Start menu.

� Click the icon on your Windows desktop.

� Use Windows Explorer to navigate to your Artix Data Services
installation directory and double click artix-ds-designer.exe.

UNIX:

� Run the artix-ds-designer command from your Artix Data Services
installation directory.

Installed via Java Web Start If you have deployed Artix Data Services using Java Web Start, the Artix
Data Services Designer is automatically opened when you first deploy the
product. To open the Designer on subsequent occasions:

Windows:

Select Start > Run and enter javaws -viewer.

UNIX:

Run the javaws -viewer command from any shell.

Note: If you have not yet installed the product, see the Artix Data
Services Installation Guide for details of the installation steps.
9

CHAPTER 1 | Creating Projects
Downloading Sample Getting Started Data

Overview Your Artix Data Services installation includes a series of sample data files
and completed examples that are designed to assist you in working your
way through these demonstrations. Before you continue, you must ensure
that you download all the relevant Getting Started material.

Download steps Follow these steps to download the sample Getting Started material:

1. In the main window of the Artix Data Services Designer workbench,
click the Getting Started - Not Installed link. This opens the Confirm
Download dialog.

2. Click OK to proceed with the download. You will then be prompted
when the download has completed successfully.

Location of sample data By default, the sample Getting Started material is downloaded to the
following location on your machine:

Windows:
C:\Documents and Settings\username\My Documents\My IONA

Projects\Getting Started

UNIX:
/userhome/My IONA Projects/Getting Started

Layout of sample data The Getting Started folder contains the following subfolders:

/Guide This contains a PDF copy of this Getting Started guide.

/Samples This contains a series of subfolders that correspond to the
various chapters in this guide. Each subfolder contains various
data files that you will need to complete various
demonstrations. Each subfolder also contains a completed
example of the end result of the particular demonstration it
covers. As you work through the demonstrations, you will be
prompted to work with particular sample files.

/Videos This contains an HTML file with a link to various video tutorials
that will help you to familiarise with using Artix Data Services.
10

Creating a Project with the Project Wizard
Creating a Project with the Project Wizard

Overview The project wizard provides a step-by-step guide to creating projects. This
demonstration shows how to use the project wizard to create a project
called MyProject.iop. This project file will then be used as the basis for
working through the rest of the Getting Started material.

Demonstration steps The steps are:

1. Start Artix Data Services Designer, if you have not already done so.

Artix Data Services Designer opens with the Welcome window
displayed. If this is the first time you have opened Artix Data Services
Designer, the Tip Of The Day dialog is also displayed.

2. If it is displayed, uncheck the Show Tips on startup check box and
click Close to cancel the Tip Of The Day dialog.

3. Click the Project Wizard link in the Welcome window. This opens the
Setup panel of the Project Wizard.

4. For the purposes of this demonstration, type "MyProject" in the File
name field. (Notice how the filename in the Location field is
automatically updated to "MyProject.iop" as you type.)

5. Click the browse button beside the Location field to open the file
browser.

6. For the purposes of this demonstration, navigate to My IONA
Projects/Getting Started, and click Open.

The selected path is then automatically displayed in the Location field.

Note: This demonstration caters for all properties associated with the
wizard. Some of these properties are probably not very useful at the
beginning stages of using Artix Data Services Designer, but it will become
apparent later why the properties were created.
11

CHAPTER 1 | Creating Projects
7. Click Next to open the Paths panel of the Project Wizard. This panel
lets you specify one or more directory location paths in the file system
where your working files, such as your data models, will be stored.
These are the directories that Artix Data Services Designer will "know"
about when you work within the project.

The default path on Windows is C:\Documents and
Settings\username\My Documents\My IONA Projects. The default
path on UNIX is /userhome/My IONA Projects. The alias represents
the name by which the full path will be represented within Artix Data
Services Designer.

8. You may add other paths if you wish by clicking the icon. For the
purposes of this demonstration, click the icon to open the Select
dialog, navigate to My IONA Projects/Getting Started, and click
Select. The selected path is automatically added to the Path column,
and the corresponding value in the Alias column is displayed as
Getting Started.

9. The Project Wizard includes an Advanced button that allows you to
display or hide optional panels within the wizard. For the purposes of
this demonstration, click the Advanced button to view the optional
panels. This means that the Next button on the Paths panel should
now be enabled.

10. Click Next to open the Project Properties panel of the Project Wizard.
These properties allow you to determine how your project file is to be
stored and accessed.

For the purposes of this demonstration, accept all the default values for
now. Try clicking on each of the fields listed and notice how
context-sensitive descriptions of each field are displayed at the bottom
of the panel.

11. Click Next to open the Profile Settings panel of the Project Wizard.
These settings allow you to determine characteristics and behavior of
deployed Java code in terms of code style, versioning and the location
into which generated code is deployed.

For the purposes of this demonstration, accept all the default values for
now. Again, try clicking on the various fields listed and notice how
12

Creating a Project with the Project Wizard
context-sensitive descriptions of each field are displayed at the bottom
of the panel.

12. Click Next to open the Aliases panel of the Project Wizard. This allows
you to set up various preferred aliases that will enable you to choose
between seeing different sets of names for the same components
within your data models. By default, there is only one "[default]" alias
defined. For the purposes of this demonstration, simply accept the
default setting.

13. Click Finish. If you are prompted to open the project in a new frame,
click Yes. (This prompt only appears if you have already created
another project.)

The new project is then automatically displayed in the Project window
along with the various paths you added for the project.
13

CHAPTER 1 | Creating Projects
Creating a Project Manually

Overview You can create a project manually without using the Project Wizard. This
demonstration shows how to manually create a project called
MyProject.iop. This project file will then be used as the basis for working
through the rest of the Getting Started material.

Demonstration steps The steps are:

1. Start Artix Data Services Designer, if you have not already done so.

Artix Data Services Designer opens with the Welcome window
displayed. If this is the first time you have opened Artix Data Services
Designer, the Tip Of The Day dialog is also displayed.

2. If it is displayed, uncheck the Show Tips on startup check box and
click Close to cancel the Tip Of The Day dialog.

3. Select File > New > Project. This opens the Create wizard.

4. For the purposes of this demonstration, navigate to My IONA
Projects/Getting Started, type "MyProject" in the File name field
and click Create.

If you are prompted to open the project in a new frame, click Yes. (This
prompt only appears if you have already created another project.)

Note: If you have already created MyProject.iop using the project wizard
in the previous section, but you wish to work through this section anyway,
simply choose another name for the project you create here. You could call
it MyProject2.iop for example.

Note: This demonstration only pays attention to obvious project
properties such as directories.

Note: Remember, if you have already created MyProject.iop using
the project wizard in the previous section, type a different name in
the File name field here. Type "MyProject2" for example.
14

Creating a Project Manually
If it is displayed, uncheck the Show Tips on startup check box and
click Close to cancel the Tip Of The Day dialog.

This opens the Project Properties dialog for your project with the
Paths icon automatically selected. This panel lets you specify one or
more directory location paths in the file system where your working
files, such as your data models, will be stored. These are the
directories that Artix Data Services will "know" about when you work
within the project.

The default path on Windows is C:\Documents and
Settings\username\My Documents\My IONA Projects. The default
path on UNIX is /userhome/My IONA Projects. The alias represents
the name by which the full path will be represented within Artix Data
Services Designer.

5. You may add other paths if you wish by clicking the icon. For the
purposes of this demonstration, click the icon to open the Select
dialog, navigate to My IONA Projects/Getting Started/Standards
Libraries, and click Select. The selected path is automatically added
to the Path column, and the corresponding value in the Alias column is
displayed as Standards Libraries.

6. Click on the icon to add another path. This opens the Select
dialog.

7. For the purposes of this demonstration, navigate to My IONA
Projects/Examples, and click Select.

The selected path is automatically added to the Path column, and the
corresponding value in the Alias column is displayed as Examples.

8. Click the Properties icon to view the various project properties. These
properties allow you to determine how your project file is to be stored
and accessed.

For the purposes of this demonstration, accept all the default values for
now. Try clicking on each of the fields listed and notice how
context-sensitive descriptions of each field are displayed at the bottom
of the panel.
15

CHAPTER 1 | Creating Projects
9. Click the Profiles icon, click Default, and then click the Open button to
view the various profile settings. These settings allow you to determine
characteristics and behavior of deployed Java code in terms of code
style, versioning and the location into which generated code is
deployed.

For the purposes of this demonstration, accept all the default values for
now. Again, try clicking on the various fields listed and notice how
context-sensitive descriptions of each field are displayed at the bottom
of the panel.

10. Click OK on the Profile Settings panel to reopen the Project Properties
panel.

11. Click the Preferred Aliases icon to set up various aliases that will
enable you to choose between seeing different sets of names for the
same components within your data models. By default, there is only
one "[default]" alias defined. For the purposes of this demonstration,
simply accept the default setting.

12. Click OK.

The new project is then automatically displayed in the Project window
along with the various paths you added for the project.
16

CHAPTER 2

Creating Data
Models
In Artix Data Services, data models are organised within
projects and can consist of various different types of data
components, including simple and complex types. They are
used to represent some real-world data in which you are
interested. From data models, you can generate Java code that
can then be used to parse, validate and transform conformant
data. Data models generally consist of about 10 or more
different types of data components but, for the purposes of
illustration, this chapter focuses specifically on four
components�simple data types, complex types, elements and
enumerations. This chapter describes how to create data
models in various different ways and from various different
data sources.

In this chapter This chapter discusses the following topics:

Creating a Data Model from a Text File page 19

Creating a Data Model from an XML Schema page 34

Creating a Data Model from Other Sources page 38

Creating a Data Model Manually page 47
17

CHAPTER 2 | Creating Data Models
Adding Validation Rules page 69
18

Creating a Data Model from a Text File
Creating a Data Model from a Text File

Overview This section describes how to create a data model by importing a text file.
First, it demonstrates how to create a Transactions data model by importing
a Transactions.txt file. Then it demonstrates how to create a Customers data
model by importing a Customers.txt file.

In this section This section discusses the following topics:

Creating the Transactions Data Model from Transactions.txt page 20

Creating the Customers Data Model from Customers.txt page 28
19

CHAPTER 2 | Creating Data Models
Creating the Transactions Data Model from Transactions.txt

Overview This subsection demonstrates how to create a Transactions data model by
importing a Transactions.txt file. In the Text File Import Wizard, you can set
properties for the fields associated with a model instead of doing so in the
Properties window outside the wizard. After creating the model, you can test
its accuracy by parsing a valid text file through it.

Steps Follow these steps to start creating your data model:

1. In the Project window of the workbench, ensure that MyProject.iop is
opened. If you need to open it, you may do so by selecting File > Open
Project from the menu bar.

2. Navigate to the My IONA Projects/Getting
Started/Samples/Creating Data Models/From a Text File folder

3. Right-click the From a Text File folder and select Import > Import
Text File. This opens the Import File panel of the Text File Import
Wizard.

4. Navigate to Getting Started/Samples/Creating Data Models/From a
Text File. Then select Transactions.txt and click Next. This opens
the Model Directory panel.

5. Accept the default folder From a Text File as the location where you
want the data model to be stored. Then click Next. This opens the
Profiles panel.

6. Notice the Advanced button that is in the Steps section on the
left-hand side of the panel. Alternately clicking the Advanced button
displays and hides some optional items in the list of steps.

Note: This sample data model is based on the Transactions.txt file
that is supplied within the Getting Started/Samples/Creating Data
Models/From a Text File folder of your Artix Data Services Getting
Started material. This demonstration is illustrated by the Creating a Data
Model from a Text File video tutorial which you can access from the
Getting Started/Videos folder.
20

Creating a Data Model from a Text File
7. Click Advanced to display the optional steps and then click Next. This
opens the Mapping File panel.

8. Click Next. This opens the Model Name & Target Namespace panel.
Notice how the model name defaults to the name of the file that is
being imported. Leave the target namespace for now, because it can
be specified at a later stage.

9. Click Next. This opens the File Encoding & Text Quotation panel.

10. Click Next. This opens the Record Types panel displaying one "Header"
row and two "Row" rows. The header is separated from rows as
displayed here. Notice how the check box in the Header column is
correctly checked for the "Header" row. (Do not adjust this.)

11. In the Name column, double click on "Row 1", type "Customer Details"
as the value instead, and then press Enter. Then double click on "Row
2", type "Row Count" as the value instead, and press Enter again.
Notice how steps 9 and 10 in the left-hand pane automatically change
from "Row 1" and "Row 2" to "Customer Details" and "Row Count"
respectively.

12. Click the Type column for Row Count and select "Fixed Length"
instead.

13. Click Next. This opens the Header panel.

14. The Header record is a delimited format type and this has been
automatically picked up by the wizard. Notice how the delimiter is set
as a comma (do not adjust this). Click the various columns in the
Preview table and notice how the values in the Selected Column
Name and Selected Column Data Type fields change accordingly. In
this case, the selected column data type is always "String", because
these are header values.

15. Click Next to open the Customer Details panel.

Note: Notice how the panel name here, "Customer Details", is based
on the change that you made on the Record Types panel. If you had
not made that change, the panel name here would be called "Row 1"
instead.
21

CHAPTER 2 | Creating Data Models
16. The Customer Details records are a delimited format type and this has
been automatically picked up by the wizard. Notice how the delimiter
is set as a comma (do not adjust this). Click the various columns in the
Preview table and notice how the values in the Selected Column
Name and Selected Column Data Type fields change accordingly.

17. Click Next to open the Row Count panel.

18. The Row Count record is a fixed format type and this has been
automatically picked up by the wizard. In the Fixed Offset Properties
section, click the final column to automatically place a boundary
between the "=" and "7". This causes a new column to be displayed in
the Preview - Column Data Types section.

19. Click the first column in the Preview - Column Data Types section.
Then type "Prefix" in the Selected Column Name field and press Enter.
This causes the first column name to change to "Prefix".

20. Select "String" as the value in the Selected Column Data Type field.

21. Click the second column in the Preview - Column Data Types section.
Then type "Value" in the Selected Column Name field and press Enter.
This causes the second column name to change to "Value".

22. Select "Long" as the value in the Selected Column Data Type field.

23. Click Finish. This causes Transactions.dod to be automatically
created and displayed in the Project and Explorer windows of the
workbench. A Transactions.dod tab is also automatically displayed in
the main window of the workbench.

In the Messages window, an Importing Text File tab is opened to
indicate that the import has been successful.

24. Click Transactions.dod in the Explorer window. This causes the
properties for the data model to be displayed in the Properties window.

Note: Notice how the panel name here, "Row Count", is based on
the change that you made on the Record Types panel. If you had not
made that change, the panel name here would be called "Row 2"
instead.
22

Creating a Data Model from a Text File
25. In the General section of the Properties window, set the value for
Target Namespace to
http://www.iona.com/ArtixDataServices/GettingStarted/

Transaction.

26. Select File > Save All from the menu bar, or click the icon on the
toolbar, to save the data model.

27. In the Explorer window, expand "File" and double click the
Transactions complex type. This opens a Transactions tab within the
Transactions.dod tab in the main window of the workbench. Expand
the Header, Customer Details, and Row Count elements to view the
contents. Compare the details displayed with those in the
Transactions.txt file that you imported.

Setting up a validation rule for the
row count

Let�s set up a validation rule that will determine whether the value of the
Row Count record is equal to the number of Customer Details records. If it is
not, a validation error should be raised. Follow these steps to set up this
validation rule against the row count record:

1. Right-click Transactions.dod in the Explorer window and select New
> Validation Rule. This opens the New Validation Rule dialog.

2. Type "rowCheckRule" in the text box and click OK. This automatically
opens a rowCheckRule tab within the Transactions.dod tab in the main
window of the workbench, with a default type of XPath. In this case,
the rule is entered in the left hand pane of the tab and XPath syntax is
displayed in the right hand pane

3. First, let�s add the XPath syntax for the Value element to the XPath
rule. To do this, click the Transactions tab to open it, expand Row
Count, right-click Value in the Component column, and select Copy
XPath. Then click the rowCheckRule tab to reopen it, click in the
shaded text area in the left hand pane in the tab, and select
Edit>Paste from the meu bar. This copies the XPath syntax for the
Value element to the XPath rule.

Note: Creating a validation rule directly under the .dod file itself
means that it is a global validation rule rather than being tied
specifically to any one particular element within the data model.
23

CHAPTER 2 | Creating Data Models
4. Click at the end of the XPath rule for the purposes of ensuring the
cursor is in the correct position for adding the next part of it.

5. Next let�s check whether the Value element does not match the
number of Customer Details records. To do this, scroll down in the
right-hand pane and double click the != (Not Equal) operator to select
it. This adds != to the XPath rule in the left-hand pane.

6. Click at the end of the XPath rule for the purposes of ensuring the
cursor is in the correct position for adding the next part of it.

7. Next let�s specify that we are dealing with a number count in this case.
To do this, scroll up in the right-hand pane and double click the
"number count(node-set)" function to select it. This adds count() to
the XPath rule in the left-hand pane.

8. Next let�s specify that we want to count the number of Customer
Details records. To do this, click the Transactions tab to reopen it,
right-click Customer Details in the Component column, and select
Copy XPath from the context menu. Then click the rowCheckRule tab
to reopen it, make sure that you click within the parentheses for the
count() function in the left-hand pane, and select Edit>Paste from the
menu bar. This copies the XPath syntax for the Customer Details
element to the XPath rule.

9. If the validation rule is true, the data model should raise a validation
error. Therefore, type "Invalid row count" in the Error Message pane.

10. Uncheck the Ignore Document Node check box, to enable the imported
XPath syntax to be read successfully.

11. Select File > Save All from the menu bar, or click the icon on the
toolbar, to save the data model.

Note: The XPath rule should now look as follows:
/Transactions/RowCount/Value!=count(Transactions/
CustomerDetails)
24

Creating a Data Model from a Text File
Applying the validation rule to the
data model

Follow these steps to apply the validation rule to the data model:

1. Click the Transactions tab to reopen it in the main window of the
workbench.

2. In the Type column, click "Transactions". This displays the properties
for the Transactions complex type in the Properties window.

3. In the Properties window, scroll down to the Validation section and
click the field beside Validation Rules. This opens a validation rules
dialog.

4. Click the icon. This opens the Add Validation Rule dialog.

5. Now apply the global rowCheckRule validation rule to the Transactions
type. Expand "Local", select the "rowCheckRule" global validation rule,
and click OK. This adds rowCheckRule to the validation rules dialog.

6. Click OK to close the validation rules dialog. The Validation Rules field
in the Properties window now displays "1".

7. Select File > Save All from the menu bar, or click the icon on the
toolbar, to save the data model.

Testing the accuracy of your data
model

You need to ensure that your data model is accurate by checking to see if it
can parse some real-world data. You can do this using a feature of the
Designer called the Run Wizard, which allows you to read data into a model
and in so doing create Java class instances of that model. In this case, you
can read the supplied Transactions.txt file into your Transactions data
model, as follows:

1. Ensure that the Transactions.dod data model is open in the Explorer
window.

2. Expand "File", right-click the Transactions complex type in the Explorer
window, and select Run Component. This opens the Run Wizard
dialog.

3. In this case, the Name field automatically defaults to "Transactions"
(that is, the name of the selected component) and the Target field
defaults to the path location of the selected component. The Build
Before Running check box is checked by default.

4. For the purposes of this demonstration, accept all the default values on
the Run Wizard dialog and click Run.
25

CHAPTER 2 | Creating Data Models
A dialog box is displayed prompting you to load the data you want to
parse. Click the icon in the dialog box to close it.

This opens a Transactions tab (with a icon beside its name) within
the Transactions.dod tab. This tab will be used to show the structure of
the deployed object based on your data model. Because you have not
yet loaded any data into the object, it is displayed for now in its empty
state with a red X.

In the Messages window, notice that an empty Run Transactions tab
has been created at this point.

5. Click the (Load) icon in the Transactions tab in the main window.
This opens the Select Input File/Directory dialog.

6. Navigate to the Getting Started/Samples/Creating Data
Models/From a Text File folder and select Transactions.txt. Then
click Open.

7. A Note dialog is displayed prompting you that files in subdirectories
will be parsed by default. Click OK on this dialog.

8. A Confirm dialog is displayed prompting you that changing the URI will
allow your data to be overwritten. Click Yes on this dialog.

In the case of this demonstration, there are no parsing errors, so Artix Data
Services creates instances of the model, based on your data. A green tick
appears beside Transactions in the Transactions tab to indicate that parsing
has been successful. You can now expand the Transactions node in the
main window to view a Header record, seven CustomerDetails records, and
a RowCount record.

At this point, the Run Transactions tab in the Messages window displays a
message indicating that parsing has been successful.

Checking the validation rule
against row count

Follow these steps to test the validation rule that you have set up against
Row Count:

1. Click the Validation tab at the bottom of the workbench to open the
Validation window. In this case, no validation errors are currently being
reported. This is because the value of Row Count currently matches
the number of Customer Details records loaded (that is, 7).

2. Expand Row Count in the Transactions tab (with a icon beside its
name) .
26

Creating a Data Model from a Text File
3. Change the value for the Value row to, for example, "5".

4. Click anywhere else in the tab and a validation error is now
automatically reported in the Validation window.

5. Expand the validation error and it displays the "Invalid Row Count"
error that has been set up.

6. Now change the value for Value back to "7" in the Transactions tab.

7. Click anywhere else in the tab and the validation error that was
reported in the Validation window now automatically disappears.

This proves that the validation rule we have set up is working, because it is
raising a validation error only when expected.
27

CHAPTER 2 | Creating Data Models
Creating the Customers Data Model from Customers.txt

Overview This subsection demonstrates how to create a Customers data model by
importing a Customers.txt file. In the Text File Import Wizard, you can set
properties for the fields associated with a model instead of doing so in the
Properties window outside the wizard. After creating the model, you can test
its accuracy by parsing a valid text file through it.

Steps Follow these steps to start creating your data model:

1. In the Project window of the workbench, ensure that MyProject.iop is
opened. If you need to open it, you may do so by selecting File > Open
Project from the menu bar.

2. Navigate to the My IONA Projects/Getting
Started/Samples/Creating Data Models/From a Text File folder.

3. Right-click the From a Text File folder and select Import > Import
Text File. This opens the Import File panel of the Text File Import
Wizard.

4. Navigate to Getting Started/Samples/Creating Data Models/From a
Text File. Then select Customers.txt and click Next. This opens the
Model Directory panel.

5. Accept the default folder From a Text File as the location where you
want the data model to be stored. Then click Next. This opens the
Profiles panel.

6. Notice the Advanced button that is in the Steps section on the
left-hand side of the panel. Alternately clicking the Advanced button
displays and hides some optional items in the list of steps.

Note: You may skip this section if you are going to follow the instructions
in �Creating the Customers Data Model Manually� on page 60.

Note: This sample data model is based on the Customers.txt file that is
supplied within the Getting Started/Samples/Creating Data
Models/From a Text File folder of your Artix Data Services Getting
Started material.
28

Creating a Data Model from a Text File
7. Click Advanced to display the optional steps and then click Next. This
opens the Mapping File panel.

8. Click Next. This opens the Model Name & Target Namespace panel.
Notice how the model name defaults to the name of the file that is
being imported. Leave the target namespace for now, because it can
be specified at a later stage.

9. Click Next. This opens the File Encoding & Text Quotation panel.

10. Click Next. This opens the Record Types panel displaying one "Row"
row.

11. In the Name column, double click on "Row", type "Customer" as the
value instead, and then press Enter. Notice how step 8 in the left-hand
pane automatically changes from "Row" to "Customer".

12. Click the value in the Type column and select "Fixed Length".

13. Click Next. This opens the Customer panel.

14. According to the data in the Customers.xls file that is supplied within
the Getting Started/Samples/Creating Data Models/From a Text
File folder of your Artix Data Services Getting Started material, the
length for Customer Number is 6, so in the Fixed Offset Properties
section, click column 6 to automatically place a boundary between
columns 5 and 6. This causes a new column, to be displayed in the
Preview - Column Data Types section.

15. Click the first column in the Preview - Column Data Types section.
Then type "Customer Number" in the Selected Column Name field and
press Enter. This causes the first column name to change to "Customer
Number".

16. Accept "String" as the value in the Selected Column Data Type field.

Note: Notice how the panel name here, "Customer", is based on the
change that you made on the Record Types panel. If you had not
made that change, the panel name here would be called "Row"
instead.

Note: The boundary comes after column 5 in this case, because the
column numbers are starting at 0 rather than 1.
29

CHAPTER 2 | Creating Data Models
17. According to the data in the Customers.xls file, the length for
Customer Acronym is 12, so in the Fixed Offset Properties section,
click column 18 to automatically place a boundary between columns
17 and 18. This causes a new column, to be displayed in the Preview
- Column Data Types section.

18. Click the second column in the Preview - Column Data Types section.
Then type "Customer Acronym" in the Selected Column Name field
and press Enter. This causes the second column name to change to
"Customer Acronym".

19. Accept "String" as the value in the Selected Column Data Type field.

20. Repeat steps 17-19 in a similar fashion for the remaining fields. The
following is a table of all the fields (columns) that need to be set up:

Column Name Column Data
Type

Start
Column

End
Column

Customer Number String 0 5

Customer Acronym String 6 17

Address Line 1 String 18 67

Address Line 2 String 68 117

Address Line 3 String 118 167

Address Line 4 String 168 217

Address Line 5 String 218 267

Post Zip Code String 268 275

Telephone Number String 276 295

Email Address String 296 345

BIC String 346 356

Fax Number String 357 376

Telex Number String 377 396

Country of Residence String 397 398
30

Creating a Data Model from a Text File
21. After all boundaries have been determined and the correct column
names have been specified in each case, click Finish. This causes
Customers.dod to be automatically created and displayed in the
Project and Explorer windows of the workbench. A Customers.dod tab
is also automatically displayed in the main window of the workbench.

In the Messages window, an Importing Text File tab is opened to
indicate that the import has been successful.

22. In the Explorer window, expand "File", right-click the "Customers"
complex type, select Rename, and rename it to "Customers File".

23. In the Explorer window, right-click the "Customers" element (under the
complex type), select Rename, and rename it to "Customers File" also.

24. Click Customers.dod in the Explorer window. This causes the
properties for the data model to be displayed in the Properties window.

25. In the General section of the Properties window, set the value for
Target Namespace to
http://www.iona.com/ArtixDataServices/GettingStarted/

Customer.

26. Select File > Save All from the menu bar, or click the icon on the
toolbar, to save the data model.

Fedwire Code String 399 407

Chips Participant Code String 408 411

Chips UID String 412 417

Sort Code String 418 423

Bankleitzhal Code String 424 431

Note: Because the fields are of fixed length, boundaries can be easily
determined as the last column before the start of the next letter. So, for
example, after the "Customer Acronym" column, click "F" in column 18 to
determine the boundary of the "Address Line 1" column. Similarly, click
"W" in column 68 to determine the boundary of the "Address Line 2"
column, and so on.

Column Name Column Data
Type

Start
Column

End
Column
31

CHAPTER 2 | Creating Data Models
27. In the Explorer window, expand "File" and double click the Customers
File complex type. This opens a Customers File tab within the
Customers.dod tab in the main window of the workbench. Expand the
Customer element to view the contents. Compare the details displayed
with those in the Customers.txt file that you imported.

Testing the accuracy of your data
model

You need to ensure that your data model is accurate by checking to see if it
can parse some real-world data. You can do this using a feature of the
Designer called the Run Wizard, which allows you to read data into a model
and in so doing create Java class instances of that model. In this case, you
can read the supplied Customers.txt file into your Customers data model, as
follows:

1. Ensure that the Customers.dod data model is currently open.

2. Expand "File", right-click the Customers File complex type in the
Explorer window, and select Run Component. This opens the Run
Wizard dialog.

3. In this case, the Name field automatically defaults to "Customers File"
(that is, the name of the selected component) and the Target field
defaults to the path location of the selected component. The Build
Before Running check box is checked by default.

4. For the purposes of this demonstration, accept all the default values on
the Run Wizard dialog and click Run.

A dialog box is displayed prompting you to load the data you want to
parse. Click the icon in the dialog box to close it.

This opens a Customers File tab (with a icon beside its name)
within the Customers.dod tab. This tab will be used to show the
structure of the deployed object based on your data model. Because
you have not yet loaded any data into the object, it is displayed for now
in its empty state with a red X.

In the Messages window, notice that an empty Run Customers File tab
has been created at this point.

5. Click the (Load) icon in the Customers File tab in the main window.
This opens the Select Input File/Directory dialog.
32

Creating a Data Model from a Text File
6. Navigate to the Getting Started/Samples/Creating Data
Models/From a Text File folder and select Customers.txt. Then
click Open.

7. A Note dialog is displayed prompting you that files in subdirectories
will be parsed by default. Click OK on this dialog.

8. A Confirm dialog is displayed prompting you that changing the URI will
allow your data to be overwritten. Click Yes on this dialog.

In the case of this demonstration, there are no parsing errors, so Artix Data
Services creates instances of the model, based on your data. A green tick
appears beside CustomersFile in the Customers File tab to indicate that
parsing has been successful. You can now expand the CustomersFile node
in the main window to view all the records in the file.
33

CHAPTER 2 | Creating Data Models
Creating a Data Model from an XML Schema

Overview This section describes how to create a data model by importing an XML
schema. It demonstrates how to create a Statements data model by
importing a Statements.xsd file. In the XML Schema Import Wizard, you can
set properties for the fields associated with the model instead of doing so in
the Properties window outside the wizard. After creating the model, you can
test its accuracy by parsing a valid XML file through it.

Steps Follow these steps to start creating your data model:

1. In the Project window of the workbench, ensure that MyProject.iop is
opened. If you need to open it, you may do so by selecting File > Open
Project from the menu bar.

2. Navigate to the My IONA Projects/Getting
Started/Samples/Creating Data Models/From an XML Schema folder

3. Right-click the From an XML Schema folder and select Import > Import
XML Schema. This opens the Files To Import panel of the XML
Schema Import Wizard.

4. Navigate to Getting Started/Samples/Creating Data Models/From
an XML Schema. Then select Statements.xsd and click Next. This
opens the Target Directory panel.

5. Accept the default folder From an XML Schema as the location where
you want the data model to be stored.

6. Notice the Advanced button that is in the Steps section on the
left-hand side of the panel. Alternately clicking the Advanced button
displays and hides some optional items in the list of steps.

Note: This sample data model is based on the Statements.xsd file that
is supplied within the Getting Started/Samples/Creating Data
Models/From an XML Schema folder of your Artix Data Services Getting
Started material. This demonstration is illustrated by the Creating a Data
Model from an XML Schema video tutorial which you can access from the
Getting Started/Videos folder.
34

Creating a Data Model from an XML Schema
7. Click Advanced to display the optional steps and then click Next. This
opens the Profiles panel. Accept the defaults for the purposes of this
example.

8. Click Next. This opens the Mapping File panel. There is no mapping
file associated with the XML schema, so you do not need to select a
mapping file.

9. Click Finish. This causes Statements.dod to be automatically created
and displayed in the Project and Explorer windows of the workbench.
A Statements.dod tab is also automatically opened in the main
window of the workbench.

In the Messages window, an Importing XML Schema tab is opened to
indicate that the import has been successful.

10. Click Statements.dod in the Explorer window. This causes the
properties for the data model to be displayed in the Properties window.
Notice how the Target Namespace field has been automatically
populated in this case with a namespace of http://www.iona.com/
ArtixDataServices/Training/Statements, based on the imported
schema.

11. Select File > Save All from the menu bar, or click the icon on the
toolbar, to save the data model.

12. In the Explorer window, double click the StatementFile complex type.
This opens a StatementFile tab within the Statements.dod tab in the
main window of the workbench. Expand the Statement element to
view the contents. Compare the details displayed with those in the
Statements.xsd file that you imported.
35

CHAPTER 2 | Creating Data Models
Testing the accuracy of your data
model

You need to ensure that your data model is accurate by checking to see if it
can parse some real-world data. You can do this using a feature of the
Designer called the Run Wizard, which allows you to read data into a model
and in so doing create Java class instances of that model. In this case, you
can read the supplied StatementsXML.xml file into your Statements data
model, as follows:

1. Ensure that the Statements.dod data model is currently open in the
Explorer window.

2. Right-click the StatementFile complex type in the Explorer window and
select Run Component. This opens the Run Wizard dialog.

3. In this case, the Name field automatically defaults to "StatementFile"
(that is, the name of the selected component) and the Target field
defaults to the path location of the selected component. The Build
Before Running check box is checked by default.

4. For the purposes of this demonstration, accept all the default values on
the Run Wizard dialog and click Run.

A dialog box is displayed prompting you to load the data you want to
parse. Click the icon in the dialog box to close it.

This opens a StatementFile tab (with a icon beside its name) within
the Statements.dod tab. This tab will be used to show the structure of
the deployed object based on your data model. Because you have not
yet loaded any data into the object, it is displayed for now in its empty
state.

In the Messages window, notice that an empty Run StatementFile tab
has been created at this point.

5. Click the (Load) icon in the StatementFile tab in the main window.
This opens the Select Input File/Directory dialog.

6. Navigate to the Getting Started/Samples/Creating Data
Models/From an XML Schema folder and select StatementsXML.xml.
Then click Open.

7. A Note dialog is displayed prompting you that files in subdirectories
will be parsed by default. Click OK on this dialog.

8. A Confirm dialog is displayed prompting you that changing the URI will
allow your data to be overwritten. Click Yes on this dialog.
36

Creating a Data Model from an XML Schema
In the case of this demonstration, there are no parsing errors, so Artix Data
Services creates instances of the model, based on your data. A green tick
appears beside StatementFile in the StatementFile tab to indicate that
parsing has been successful. You may now expand the StatementFile node
in the main window to view all the records in the file.
37

CHAPTER 2 | Creating Data Models
Creating a Data Model from Other Sources

Overview In Artix Data Services, there are several importers available to create data
models from other formats. These include text files, XML schemas, XML
instance documents, Java classes, and databases. The principle behind
creating data models by importing schemas or databases is the same
despite the fact that what is being imported is different. This section
describes how to create a data model by importing a database or an XML
file.

In this section This section discusses the following topics:

Creating a Data Model from a Set of XML Documents page 39

Creating a Data Model from a Database page 42
38

Creating a Data Model from Other Sources
Creating a Data Model from a Set of XML Documents

Overview This subsection demonstrates how to create an AccountsXML data model by
importing an AccountsXML.xml file. In the XML Instance(s) Import Wizard,
you can set properties for the fields associated with a model instead of doing
so in the Properties window outside the wizard. After creating the model,
you can test its accuracy by parsing a valid XML file through it.

Steps Follow these steps to start creating your data model:

1. In the Project window of the workbench, ensure that MyProject.iop is
opened. If you need to open it, you may do so by selecting File > Open
Project from the menu bar.

2. Navigate to the My IONA Projects/Getting
Started/Samples/Creating Data Models/From Other Sources folder.

3. Right-click the From Other Sources folder and select Import >
Import XML Instance(s), This opens the Files To Import panel of the
XML Instance(s) Import Wizard.

4. Navigate to Getting Started/Samples/Creating Data Models/From
Other Sources. Then select AccountsXML.xml and click Next. This
opens the Target Directory panel.

5. Accept the default folder From Other Sources as the location where
you want the data model to be stored.

6. Notice the Advanced button that is in the Steps section on the
left-hand side of the panel. Alternately clicking the Advanced button
displays and hides some optional items in the list of steps.

7. Click Advanced to display the optional steps and then click Next. This
opens the Profiles panel. Accept the defaults for the purposes of this
example.

Note: This sample data model is based on the AccountsXML.xml file that
is supplied within the Getting Started/Samples/Creating Data
Models/From Other Sources folder of your Artix Data Services Getting
Started material.
39

CHAPTER 2 | Creating Data Models
8. Click Next. This opens the Mapping File panel. There is no mapping
file associated with the XML instance documents, so you do not need
to select a mapping file.

9. Click Finish. This causes AccountXML.dod to be automatically created
and displayed in the Project and Explorer windows of the workbench.
An AccountsXML.dod tab is also automatically opened in the main
window of the workbench.

In the Messages window, an Importing XML Instance(s) tab is opened
to indicate that the import has been successful.

10. Select File > Save All from the menu bar, or click the icon on the
toolbar, to save the data model.

11. In the Explorer window, expand "AccountsFile" and double click the
AccountsFile complex type. This opens an AccountsFile tab within the
AccountsXML.dod tab in the main window of the workbench. Expand
the Account element to view the contents. Compare the details
displayed with those in the original Accounts.dod data model.

Testing the accuracy of your data
model

You need to ensure that your data model is accurate by checking to see if it
can parse some real-world data. You can do this using a feature of the
Designer called the Run Wizard, which allows you to read data into a model
and in so doing create Java class instances of that model. In this case, you
can read the supplied AccountsXML.xml file into your AccountsXML data
model, as follows:

1. Ensure that the AccountsXML.dod data model is currently open.

2. Right-click the AccountsFile complex type in the Explorer window and
select Run Component. This opens the Run Wizard dialog.

3. In this case, the Name field automatically defaults to "AccountsFile"
(that is, the name of the selected component) and the Target field
defaults to the path location of the selected component. The Build
Before Running check box is checked by default.

4. For the purposes of this demonstration, accept all the default values on
the Run Wizard dialog and click Run.

A dialog box is displayed prompting you to load the data you want to
parse. Click the icon in the dialog box to close it.
40

Creating a Data Model from Other Sources
This opens an AccountsFile tab (with a icon beside its name) within
the AccountsXML.dod tab. This tab will be used to show the structure
of the deployed object based on your data model. Because you have
not yet loaded any data into the object, it is displayed for now in its
empty state with a red X.

In the Messages window, notice that an empty Run AccountsFile tab
has been created at this point.

5. Click the (Load) icon in the AccountsFile tab in the main window.
This opens the Select Input File dialog.

6. Navigate to the Getting Started/Samples/Creating Data
Models/From Other Sources folder and select AccountsXML.xml. Then
click Open.

7. A Note dialog is displayed prompting you that files in subdirectories
will be parsed by default. Click OK on this dialog.

8. A Confirm dialog is displayed prompting you that changing the URI will
allow your data to be overwritten. Click Yes on this dialog.

In the case of this demonstration, there are no parsing errors at this point,
so Artix Data Services creates instances of the model, based on your data. A
green tick appears beside AccountsFile in the AccountsFile tab to indicate
that parsing has been successful. You may now expand the AccountsFile
node in the main window to view all the records in the file. Compare the
details with those in the original Accounts.txt and you will see that the two
are exactly the same.
41

CHAPTER 2 | Creating Data Models
Creating a Data Model from a Database

Overview This subsection demonstrates how to create a data model by importing a
MySQL database called "adsubs" (Artix Data Services Universal Banking
System). After creating the model, you can test its validity by parsing valid
database entries through it.

Prerequisites Before you proceed, you must first use MySQL on your machine to create
the sample "adsubs" database. A text file called ADSUBS_SQL is supplied in
the Getting Started/Samples/Creating Data Models/From Other
Sources folder in your Artix Data Services Getting Started material. This text
file contains the SQL necessary to create the database and its constituent
tables. Use the "source" option in MySQL to execute the statements in the
text file.

Steps After you have used MySQL to create the "adsubs" database, follow these
steps to start creating your data model:

1. In the Project window of the workbench, ensure that MyProject.iop is
opened. If you need to open it, you may do so by selecting File > Open
Project from the menu bar.

2. Navigate to the My IONA Projects/Getting
Started/Samples/Creating Data Models/From Other Sources folder.

3. Right-click the From Other Sources folder and select Import >
Import Database, This opens the Model Directory panel of the Import
Database Wizard.

4. Accept the default folder From Other Sources as the location where
you want the data model to be stored.

5. Click Next. This opens the Connection Properties panel.

6. Type "ADSUBS" in the Model Name field.

7. Type "http://www.iona.com/ArtixDataServices/GettingStarted/ADSUBS"
in the Target Namespace field.
42

Creating a Data Model from Other Sources
8. For the purposes of this demonstration, select "MySQL" in the
Database Dialect field. (This indicates the type of database from which
you wish to import.) The JDBC Driver Class Name field is then
automatically populated with "com.mysql.jdbc.Driver".

9. Update the value in the Database URL field with the name of your
database, so make sure that the value reads as follows:

jdbc:mysql://localhost:3306/adsubs

10. Type a valid user name for connecting to the database in the
Username field.

11. Type a valid password for connecting to the database in the Password
field.

12. Click Edit Classpath, click the icon, and navigate to and select the
mysql-connector-java-x.x.x-bin.jar file (where x.x.x represents
the version number) in your MySQL Connector folder. This then adds
this .jar file to the classpath.

13. Click Next. This opens the Import Type panel. Notice how the
Automatic table detection check box is checked by default. (Do not
adjust this.)

14. Click Next. This opens the Table Selection panel with a list of all
possible tables in your database that may be imported. Notice how all
the tables in the database are selected for import by default. Also,
notice how the Import related tables check box and the Child only
button are both selected by default. (Do not adjust these settings.)

15. Click Next. This opens the Import Options panel. Notice the various
default selections and values on this panel. (Do not adjust these.)

Note: The default port for MySQL is 3306. If you are using an
alternative port, replace 3306 in the preceding URL with whatever
port your installation of MySQL is using.

Note: For the purposes of connecting to a MySQL database, you
might need to type a user name of root in this case.
43

CHAPTER 2 | Creating Data Models
16. Click Next. This opens the Types Mapping panel. At this stage, it is not
certain what the mappings should be changed to, and types can be
changed later anyway. So you can ignore this panel for now.

17. Click Next repeatedly to display each of your databse tables in turn. In
each case, all the fields and their types and the primary keys are
displayed. You may change the types at this stage or you can wait until
later.

18. Click Finish when you are ready. This causes ADSUBS.dod to be
automatically created and displayed in the Project and Explorer
windows of the workbench. In this case, each imported table is created
as a complex type.

19. Select File > Save All from the menu bar, or click the icon on the
toolbar, to save the data model.

20. In the Explorer window, double click each complex type in turn to open
it in its own tab, and compare the details displayed with those in the
original database table.

Testing the accuracy of your data
model

You need to ensure that your data model is accurate by checking to see if it
can parse some real-world data. You can do this using a feature of the
Designer called the Run Wizard, which allows you to read data into a model
and in so doing create Java class instances of that model. In this case, you
can read the contents of the adsubs database into your ADSUBS data
model, as follows:

1. Ensure that the ADSUBS.dod data model is currently open.

2. Right-click (for example) the accounts complex type in the Explorer
window and select Run Component. This opens the Run Wizard
dialog.

Note: Some characters such as "/", "(" and ")" are incompatible with
Artix Data Services Designer. If some of your fields have such
characters in them, Artix Designer prompts you to change the name.

Note: It is assumed that you have already used MySQL to populate the
various tables in the adsubs database with relevant data.
44

Creating a Data Model from Other Sources
3. In this case, the Name field automatically defaults to "accounts" (that
is, the name of the selected component) and the Target field defaults
to the path location of the selected component. The Build Before
Running check box is checked by default.

4. For the purposes of this demonstration, accept all the default values on
the Run Wizard dialog and click Run.

This opens an accounts tab (with a icon beside its name) within the
ADSUBS.dod tab. This tab will be used to show the structure of the
deployed object based on your data model. Because you have not yet
loaded any data into the object, it is displayed for now in its empty
state with a red X.

In the Messages window, note that an empty Run accounts tab has
been created at this point.

5. Click the (Advanced) icon in the accounts tab in the main
window. This opens the Advaned dialog.

6. Ensure that the Input icon is selected.

7. Select "(Database)" in the Format field.

8. Click Yes on the Confirm dialog to continue.

9. Type "com.mysql.jdbc.Driver" in the JDBC Driver Class Name field.

10. Type "jdbc:mysql://localhost:3306/adsubs" in the Database URL field.

11. Type a valid user name for connecting to the database in the
Username field.

12. Type a valid password for connecting to the database in the Password
field.

13. Click OK.

In the case of this demonstration, there are no parsing errors at this
point, so Artix Data Services creates instances of the model, based on

Note: If you are using an alternative port, replace 3306 in the
preceding URL with whatever port your installation of MySQL is
using.

Note: For the purposes of connecting to a MySQL database, you
might need to type a user name of root in this case.
45

CHAPTER 2 | Creating Data Models
your data. A green tick appears beside accounts in the accounts tab to
indicate that parsing has been successful. You may now expand the
accounts node in the main window to view all the records in the table.
Compare the details with those in the original database table and you
will see that the two are exactly the same.
46

Creating a Data Model Manually
Creating a Data Model Manually

Overview This section describes how to manually create two different data models�
one called Accounts, and another called Customer.

In this section This section discusses the following topics:

Creating the Accounts Data Model Manually page 48

Creating the Customers Data Model Manually page 60
47

CHAPTER 2 | Creating Data Models
Creating the Accounts Data Model Manually

Overview This subsection demonstrates how to manually create an Accounts data
model. The data model is built up from simple types into complex types.
Each simple type has its own properties, such as minimum and maximum
lengths, that are specified accordingly. The model contains two complex
types�one that represents an individual account record (called Account)
and another that represents a series of account records (called Accounts
File). It then shows how to deploy the Accounts model and test its accuracy
by parsing a valid text file through it.

Creating the empty data model Follow these steps to start creating your data model:

1. In the Project window of the workbench, ensure that MyProject.iop is
opened. If you need to open it, you may do so by selecting File > Open
Project from the menu bar.

2. Navigate to the My IONA Projects/Getting
Started/Samples/Creating Data Models/Manually folder.

3. Right-click the Manually folder and select New > Data Model from the
context menu. Alternatively, click the the Manually folder and select
File > New > Data Model from the menu bar. This opens the Setup
panel of the New Data Model Wizard.

4. Ensure that the Create new empty data model button is selected.

5. Type "Accounts" in the Data Model name field.

Note: This sample data model is based on the information in the
Accounts.xls file that is supplied within the Getting
Started/Samples/Creating Data Models/Manually folder of your Artix
Data Services Getting Started material. This demonstration is illustrated by
the Creating a Project video tutorial which you can access from the
Getting Started/Videos folder.

Note: Some types, such as dates, also require validation. However,
validation rules are outside the scope of this particular demonstration.
48

Creating a Data Model Manually
6. For the purposes of this demonstration, type the following in the
Namespace field:

http://www.iona.com/ArtixDataServices/GettingStarted/Account

7. For the purposes of this demonstration, accept the default location in
the Location field.

8. Click Finish. This causes Accounts.dod to be automatically created
and displayed in the Project and Explorer windows of the workbench.
An Accounts.dod tab is also automatically opened in the main window
of the workbench.

Creating an AccountNumber type Now that you have created an empty data model, start creating data types
for it. First, create an AccountNumber type as follows:

1. In the Explorer window, right-click on Accounts.dod and select New >
Atomic Simple Type from the context menu. This opens the Atomic
Simple Type Wizard.

2. Type "AccountNumber" in the Type name field.

3. Click Next. This opens the Base Type panel.

4. Select String and then click Finish. "AccountNumber" is now
automatically displayed under Accounts.dod in the Explorer window.

5. Click "AccountNumber" in the Explorer window. This causes properties
for the type to be automatically displayed in the Properties window.

6. In the Properties window, scroll down to the Validation section and set
the value for both Min Length and Max Length to 12.

Creating an AccountName type Next create an AccountName type as follows:

1. In the Explorer window, right-click on Accounts.dod and select New >
Atomic Simple Type from the context menu. This opens the Atomic
Simple Type Wizard.

2. Type "AccountName" in the Type name field.

3. Click Next. This opens the Base Type panel.

Note: This will be the target namespace for this data model.
49

CHAPTER 2 | Creating Data Models
4. Select String and then click Finish. "AccountName" is now
automatically displayed under Accounts.dod in the Explorer window.
Properties for the type are also automatically displayed in the
Properties window.

5. In the Properties window, scroll down to the Validation section and set
the value for both Min Length and Max Length to 20.

Creating a Blocked type Next create a Blocked type as follows:

1. In the Explorer window, right-click on Accounts.dod and select New >
Atomic Simple Type from the context menu. This opens the Atomic
Simple Type Wizard.

2. Type "Blocked" in the Type name field.

3. Click Next. This opens the Base Type panel.

4. Select String and then click Finish. "Blocked" is now automatically
displayed under Accounts.dod in the Explorer window. Properties for
the type are also automatically displayed in the Properties window.

5. In the Properties window, scroll down to the Validation section and set
the value for both Min Length and Max Length to 1.

Creating OpeningBalance and
ClosingBalance types

Next create an OpeningBalance type as follows:

1. In the Explorer window, right-click on Accounts.dod and select New >
Atomic Simple Type from the context menu. This opens the Atomic
Simple Type Wizard.

2. Type "OpeningBalance" in the Type name field.

3. Click Next. This opens the Base Type panel.

4. Expand Built-in, expand Numeric, click decimal, and then click
Finish. "OpeningBalance" is now automatically displayed under
Accounts.dod in the Explorer window. Properties for the type are also
automatically displayed in the Properties window.

5. In the Properties window, scroll down to the Validation section and set
the values for Min Total Digits and Max Total Digits to 1 and 16
respectively.
50

Creating a Data Model Manually
Now repeat steps 1�5 to create a ClosingBalance type. (In this case, make
sure that you substitute each occurrence of "OpeningBalance" with
"ClosingBalance" in the instructions.)

Creating a Customer type Next create a Customer type as follows:

1. In the Explorer window, right-click on Accounts.dod and select New >
Atomic Simple Type from the context menu. This opens the Atomic
Simple Type Wizard.

2. Type "Customer" in the Type name field.

3. Click Next. This opens the Base Type panel.

4. Select String and then click Finish. "Customer" is now automatically
displayed under Accounts.dod in the Explorer window. Properties for
the type are also automatically displayed in the Properties window.

5. In the Properties window, scroll down to the Validation section and set
the values for both Min Length and Max Length to 6.

Creating a Currency Type Next create a Currency type as follows:

1. In the Explorer window, right-click on Accounts.dod and select New >
Atomic Simple Type from the context menu. This opens the Atomic
Simple Type Wizard.

2. Type "Currency" in the Type name field.

3. Click Next. This opens the Base Type panel.

4. Select String and then click Finish. "Currency" is now automatically
displayed under Accounts.dod in the Explorer window. Properties for
the type are also automatically displayed in the Properties window.

5. In the Properties window, scroll down to the Validation section and set
the values for both Min Length and Max Length to 3.

Creating OpeningBalanceDate,
ClosingBalanceDate and
LastStatementDate types

Next create an OpeningBalanceDate type as follows:

1. In the Explorer window, right-click on Accounts.dod and select New >
Atomic Simple Type from the context menu. This opens the Atomic
Simple Type Wizard.

2. Type "OpeningBalanceDate" in the Type name field.

3. Click Next. This opens the Base Type panel.
51

CHAPTER 2 | Creating Data Models
4. Select Generic Date and then click Finish. "OpeningBalanceDate" is
now automatically displayed under Accounts.dod in the Explorer
window. Properties for the type are also automatically displayed in the
Properties window.

Now repeat steps 1�4 to create a ClosingBalanceDate and
LastStatementDate type respectively. (In each case, make sure that you
substitute each occurrence of "OpeningBalanceDate" with either
"ClosingBalanceDate" or "LastStatementDate", as appropriate.)

Creating a LastStatementNo type Next create a LastStatementNo type as follows:

1. In the Explorer window, right-click on Accounts.dod and select New >
Atomic Simple Type from the context menu. This opens the Atomic
Simple Type Wizard.

2. Type "LastStatementNo" in the Type name field.

3. Click Next. This opens the Base Type panel.

4. Select int and then click Finish. "LastStatementNo" is now
automatically displayed under Accounts.dod in the Explorer window.
Properties for the type are also automatically displayed in the
Properties window.

5. In the Properties window, scroll down to the Validation section and set
the values for both Min Total Digits and Max Total Digits to 12.

Creating a CardNumber type Next create a CardNumber type as follows:

1. In the Explorer window, right-click on Accounts.dod and select New >
Atomic Simple Type from the context menu. This opens the Atomic
Simple Type Wizard.

2. Type "CardNumber" in the Type name field.

3. Click Next. This opens the Base Type panel.

4. Select String and then click Finish. "CardNumber" is now automatically
displayed under Accounts.dod in the Explorer window. Properties for
the type are also automatically displayed in the Properties window.

5. In the Properties window, scroll down to the Validation section and set
the values for both Min Length and Max Length to 16.
52

Creating a Data Model Manually
Creating an Account complex type Next create an Account complex type that will represent one account record
whose fields are based on all the simple types you have already created, as
follows:

1. In the Explorer window, right-click on Accounts.dod and select New >
Complex Type from the context menu. This opens the New Complex
Type dialog.

2. Type "Account" in the text box and click OK. The Account complex type
is automatically displayed under Accounts.dod in the Explorer window.
An Account tab is also automatically opened within the Accounts.dod
tab in the main window of the workbench.

A dialog box is displayed prompting you how you may add components
to the complex type. Click the icon in the dialog box to close it.

3. Select all simple types displayed under Accounts.dod in the Explorer
window, by clicking the first simple type displayed and then clicking
the last simple type while pressing the Shift key. This causes all simple
types to appear highlighted in the Explorer window.

4. Drag and drop the highlighted simple types from the Explorer window
over to the Account complex type in the main window of the
workbench. This causes all the simple types to be displayed in the
main window under the Account complex type.

5. Click the "Account" complex type in the Explorer window. This causes
the properties for the complex type to be displayed in the Properties
window.

6. For the purposes of this example, the account records are based on
data in a fixed-format text file called Accounts.txt. The record format
needs to be specified as a property of the "Account" complex type. In
the Properties window, scroll down to the Presentation section and set
the value for Format Type to Fixed.

7. Each record in the Accounts.txt file ends with a CRLF (carriage return
line feed). This needs to be set as another property of the "Account"
complex type, so that the data model will know to look for the CRLF at
the end of each record it comes across in the text file. In the Properties
window, click in the text area beside the Terminator field and then
click the icon in the field. This opens the Insert Character dialog.
53

CHAPTER 2 | Creating Data Models
8. Select CR and click Insert. Then select LF and click Insert. Then click
OK. This causes <CR><LF> and 0D0A to be displayed as the value for
Terminator.

9. Select File > Save All from the menu bar, or click the icon on the
toolbar, to save the data model.

Creating an Accounts File
complex type

Next create an Accounts File complex type that can consist of multiple
instances of the Account complex type (that is, it can contain multiple
account records) as follows:

1. In the Explorer window, right-click on Accounts.dod and select New >
Complex Type from the context menu. This opens the New Complex
Type dialog.

2. Type "Accounts File" in the text box and click OK. The Accounts File
complex type is automatically displayed under Accounts.dod in the
Explorer window. An Accounts File tab is also automatically opened
within the Accounts.dod tab in the main window of the workbench.

3. Click the Account complex type in the Explorer window, and drag and
drop it over to the Accounts File complex type in the main window of
the workbench. This causes the Account complex type to be displayed
in the main window under the Accounts File complex type.

4. The cardinality value determines how many instances of the Account
complex type can pertain to the Accounts File complex type (that is,
how many account records can pertain to the accounts file). This is set
to 1 by default, which would mean that the accounts file could only
contain one account record. For the purposes of this example, the
accounts file needs to be able to contain one or more account records,
so the cardinality value needs to be changed in this case. Right-click
the Account complex type in the Component column, select
Cardinality, and then select 1..* instead.

5. Click Accounts.dod in the Explorer window. This causes the properties
for the data model to be displayed in the Properties window. Notice
how the namespace you specified in the New Data Model Wizard is
now displayed in the Target Namespace field in the Properties
window.
54

Creating a Data Model Manually
6. Select File > Save All from the menu bar, or click the icon on the
toolbar, to save the data model.

Creating an Accounts File element To enable the model to be subsequently used in code, you must also create
an element for the Accounts File complex type as follows:

1. In the Explorer window, right-click on Accounts.dod and select New >
Element from the context menu. This opens the New Element dialog.

2. Type "Accounts File" in the text box and click OK. This opens the
Select Type dialog.

3. Expand "Local", click the Accounts File complex type, and click OK.
This displays a dialog box prompting you to open the type for the
element.

4. Click Yes on the dialog box. The Accounts File element is automatically
displayed under Accounts.dod in the Explorer window.

5. Select File > Save All from the menu bar, or click the icon on the
toolbar, to save the data model.

At this point, you have finished establishing the framework of your Accounts
data model. It now consists of:

� An Accounts File complex type and element that can represent your
accounts file.

� An Account complex type that can represent each record in your
accounts file.

� Various simple types that can represent the various fields in each
account record.

The next step is to test the accuracy of the Accounts data model by checking
to see if it can parse a valid text file.
55

CHAPTER 2 | Creating Data Models
Testing the accuracy of your data
model

You need to ensure that your data model is accurate by checking to see if it
can parse some real-world data. You can do this using a feature of the
Designer called the Run Wizard, which allows you to read data into a model
and create Java class instances of that model. In this case, you can read the
supplied Accounts.txt file into your Accounts data model, as follows:

1. Ensure that the Accounts.dod data model is currently open.

2. Right-click the Accounts File complex type in the Explorer window and
select Run Component. This opens the Run Wizard dialog.

In this case, the Name field automatically defaults to "Accounts File"
(that is, the name of the selected component) and the Target field
defaults to the path location of the selected component. The Build
Before Running check box is checked by default.

3. For the purposes of this demonstration, accept all the default values on
the Run Wizard dialog and click Run.

A dialog box is displayed prompting you to load the data you want to
parse. Click the icon in the dialog box to close it.

This opens an Accounts File tab (with a icon beside its name) within
the Accounts.dod tab. This tab will be used to show the structure of
the deployed object based on your data model. Because you have not
yet loaded any data into the object, it is displayed for now in its empty
state with a red X.

In the Messages window, note that an empty Run Accounts File tab
has been created at this point.

4. Click the (Load) icon in the Accounts File tab in the main window.
This opens the Select Input File/Directory dialog.

5. Navigate to the Getting Started/Samples/Creating Data
Models/Manually folder and select Accounts.txt. Then click Open.

6. A Note dialog is displayed prompting you that files in subdirectories
will be parsed by default. Click OK on this dialog.

7. A Confirm dialog is displayed prompting you that changing the URI will
allow your data to be overwritten. Click Yes on this dialog.
56

Creating a Data Model Manually
In the case of this demonstration, a dialog box is opened indicating that
there is a parsing error on the OpeningBalance type. The error is also
displayed in the Run Accounts File tab in the Messages window. This
parsing error now needs to be corrected, as described next.

Fixing parsing errors relating to
balance amounts

Parsing errors are an indication that a data model is not completely
accurate. For the purposes of this demonstration, there is a parsing error
relating to the OpeningBalance field. The Accounts.txt file expects the
opening balance amount to consist of 14 integer digits and 2 fraction digits,
but these have not been set as properties of the OpeningBalance type in the
data model.

Follow these steps to fix the parsing error:

1. Click OpeningBalance in the Explorer window. This causes the
properties for that type to be displayed in the Properties window.

2. In the Properties window, scroll down to the Presentation/Advanced
section and type "." (that is, a period) in the Decimal Separator field.
The value ". [2e]" is then displayed in that field.

3. In the Properties window, scroll down to the Validation section and set
the values for Min Integer Digits and Max Integer Digits to 1 and 14
respectively.

4. Set the value for Min Fraction Digits and Max Fraction Digits to 0 and
2 respectively.

5. Click the (Reload Active Run Configuration) icon on the toolbar to
automatically reload the Accounts.txt file into the updated model.

In this case, another dialog box is opened indicating that there is now a
parsing error on the ClosingBalance type. Again, the Accounts.txt file
expects the closing balance amount to consist of 14 integer digits and
2 fraction digits, but these have not been set as properties of the
ClosingBalance type in the data model. The error is also displayed in
the Run Accounts File tab in the Messages window.

6. Click ClosingBalance in the Explorer window and repeat steps 2-5.

In this case, another dialog box is opened indicating that there is now a
parsing error on the OpeningBalanceDate type. This parsing error now
needs to be corrected, as described next.
57

CHAPTER 2 | Creating Data Models
Fixing parsing errors relating to
dates

The Accounts.txt file expects the opening balance date to have a date format
of yyMMdd, but this has not been set as a property of the
OpeningBalanceDate type in the data model. Follow these steps to fix this
parsing error:

1. Click OpeningBalanceDate in the Explorer window. This causes the
properties for that type to be displayed in the Properties window.

2. In the Properties window, scroll down to the Presentation section and
click the Date Format field. This opens a date format dialog.

3. Click the icon beside the Pattern field in the dialog. This opens the
Insert Character dialog.

4. The date format in this case needs to have a format of yyMMdd (note
the case sensitivity). Double click "y" twice in the Char column, then
double click "M" twice, and then double click "d" twice. The Pattern
field on the Insert Character dialog now displays "yyMMdd".

5. Click OK. The Pattern field in the first date format dialog now displays
"yyMMdd" also.

6. Click OK. The Date Format field in the Properties window now
displays "yyMMdd" also.

7. Click the (Reload Active Run Configuration) icon to automatically
reload the Accounts.txt file into the updated model.

In this case, another dialog box is opened indicating that there is now a
parsing error on the ClosingBalanceDate type. Again, the Accounts.txt
file expects the closing balance date to have a date format of yyMMdd,
but this has not been set as a property of the ClosingBalanceDate type
in the data model. The error is also displayed in the Run Accounts File
tab in the Messages window.

8. Click ClosingBalanceDate in the Explorer window and repeat steps
2-7.

In this case, another dialog box is opened indicating that there is now a
parsing error on the LastStatementDate type. Again, the Accounts.txt
file expects the last statement date to have a date format of yyMMdd,
but this has not been set as a property of the LastStatementDate type
in the data model. The error is also displayed in the Run Accounts File
tab in the Messages window.
58

Creating a Data Model Manually
9. Click LastStatementDate in the Explorer window and repeat steps 2-7.

When the data model is finally accurate and all parsing errors have been
fixed, Artix Data Services then creates instances of the model, based on your
data. In this case, a green tick appears beside AccountsFile in the Accounts
File tab to indicate that parsing has been successful. The Run AccountsFile
tab in the Messages window also displays a message that parsing has been
successful. You may now expand the AccountsFile node in the main window
to view all the records in the file.
59

CHAPTER 2 | Creating Data Models
Creating the Customers Data Model Manually

Overview This subsection demonstrates how to manually create a Customers data
model. The data model is built up from simple types into complex types.
Each simple type has its own properties that are specified accordingly. The
model contains two complex types�one that represents an individual
customer record (called Customer) and another that represents a list of
customer records (called Customers File). It then shows how to deploy the
Customers model and test its accuracy by parsing a valid text file through it.

Creating the empty data model Follow these steps to start creating your data model:

1. In the Project window of the workbench, ensure that MyProject.iop is
opened. If you need to open it, you may do so by selecting File > Open
Project from the menu bar.

2. Navigate to the My IONA Projects/Getting
Started/Samples/Creating Data Models/Manually folder

3. Right-click the Manually folder and select New > Data Model from the
context menu. Alternatively, click the Manually folder and select File >
New > Data Model from the menu bar. This opens the Setup panel of
the New Data Model Wizard.

4. Ensure that the Create new empty data model button is selected.

Note: An alternative way of creating the Customers data model is to
import its contents from the Customers.txt file. You may skip this section
if you have already followed the instructions in �Creating a Data Model
from a Text File� on page 19 to create the Customers data model from a
text file rather than manually.

Note: The information on which this data model is based is contained in
the Customers.xls file that is supplied within the Getting
Started/Samples/Creating Data Models/Manually folder of your Artix
Data Services Getting Started material.

Note: Some types, such as dates, also require validation. However,
validation rules are outside the scope of this particular demonstration.
60

Creating a Data Model Manually
5. Type "Customers" in the Data Model name field.

6. For the purposes of this demonstration, type the following in the
Namespace field:

http://www.iona.com/ArtixDataServices/GettingStarted/Customer

7. For the purposes of this demonstration, accept the default location in
the Location field.

8. Click Finish. This causes Customers.dod to be automatically created
and displayed in the Project and Explorer windows of the workbench.
A Customers.dod tab is also automatically opened in the main window
of the workbench.

Creating a Customer Number type Now that you have created an empty data model, start creating data types
for it. First, create a Customer Number type as follows:

1. In the Explorer window, right-click on Customers.dod and select New
> Atomic Simple Type from the context menu. This opens the Atomic
Simple Type Wizard.

2. Type "Customer Number" in the Type name field.

3. Click Next. This opens the Base Type panel.

4. Select String and then click Finish. "Customer Number" is now
automatically displayed under Accounts.dod in the Explorer window.

5. Click "Customer Number" in the Explorer window. This causes
properties for the type to be automatically displayed in the Properties
window.

6. In the Properties window, scroll down to the Validation section and set
the value for both Min Length and Max Length to 6.

Creating a Customer Acronym
type

Next create a Customer Acronym type as follows:

1. In the Explorer window, right-click on Customers.dod and select New
> Atomic Simple Type from the context menu. This opens the Atomic
Simple Type Wizard.

2. Type "Customer Acronym" in the Type name field.

Note: This will be the target namespace for this data model.
61

CHAPTER 2 | Creating Data Models
3. Click Next. This opens the Base Type panel.

4. Select String and then click Finish. "Customer Acronym" is now
automatically displayed under Accounts.dod in the Explorer window.
Properties for the type are also automatically displayed in the
Properties window.

5. In the Properties window, scroll down to the Validation section and set
the value for both Min Length and Max Length to 12.

Creating an Address Line type Next create an AddressLine type as follows:

1. In the Explorer window, right-click on Customers.dod and select New
> Atomic Simple Type from the context menu. This opens the Atomic
Simple Type Wizard.

2. Type "Address Line" in the Type name field.

3. Click Next. This opens the Base Type panel.

4. Select String and then click OK. "Address Line" is now automatically
displayed under Accounts.dod in the Explorer window. Properties for
the type are also automatically displayed in the Properties window.

5. In the Properties window, scroll down to the Validation section and set
the value for Min Length to 0 and set the value for Max Length to 50.

Creating an Address complex type Next create an Address complex type that will be able to hold multiple
address lines, as follows:

1. In the Explorer window, right-click on Customers.dod and select New
> Complex Type from the context menu. This opens the New Complex
Type dialog.

2. Type "Address" in the text box and click OK. The Address complex type
is automatically displayed under Customers.dod in the Explorer
window. An Address tab is also automatically opened within the
Customers.dod tab in the main window of the workbench.

A dialog box is displayed prompting you how you may add components
to the complex type. Click the icon in the dialog box to close it.
62

Creating a Data Model Manually
3. Click the Address Line type in the Explorer window. Then drag and
drop it over to the Address complex type in the main window of the
workbench. This causes Address Line to be displayed in the main
window under the Address complex type.

4. For the purposes of this example, the address needs to contains 5
address lines, so the cardinality value needs to be changed in this
case. Right-click Address Line in the Component column, select
Cardinality, select n, type "5" as the fixed cardinality value, and click
OK.

Creating other simple types Now create the rest of the simple types that relate to the Customers data
model. In each case, make sure that you right-click on Customers.dod and
select New > Atomic Simple Type to start creating the type. These types
include:

Name Atomic Type Min
Length

Max
Length

Post Zip Code String 8 8

Telephone Number String 20 20

Email Address String 50 50

BIC String 11 11

Fax Number String 20 20

Telex Number String 0 20

Country Of Residence String 0 2

Fedwire Code String 0 9

Chips Participant Code String 0 4

Chips UID String 0 6

Sort Code String 0 6

Bankleitzhal Code String 0 8
63

CHAPTER 2 | Creating Data Models
For details of these types, refer to the Customers.xls file that is supplied
within the Getting Started/Samples/Creating Data Models/Manually
folder of your Artix Data Services Getting Started material.

Creating a Customer complex type Next create a Customer complex type that will represent one customer
record whose fields are based on all the simple types you have already
created, as follows:

1. In the Explorer window, right-click on Customers.dod and select New
> Complex Type from the context menu. This opens the New Complex
Type dialog.

2. Type "Customer" in the text box and click OK. The Customer complex
type is automatically displayed under Customers.dod in the Explorer
window. A Customer tab is also automatically opened within the
Customers.dod tab in the main window of the workbench.

A dialog box is displayed prompting you how you may add components
to the complex type. Click the icon in the dialog box to close it.

3. Select all simple types displayed under Customers.dod in the Explorer
window, by clicking the first simple type displayed and then clicking
the last simple type while pressing the Shift key. This causes all simple
types and the Address complex type to appear highlighted in the
Explorer window.

4. Drag and drop the highlighted types from the Explorer window over to
the Customer complex type in the main window of the workbench.
This causes all the simple types and Address complex type to be
displayed in the main window under the Customer complex type.

5. Right-click the Address Line simple type in the main window and
select Delete. This opens the Confirm delete dialog. Then click OK to
delete Address Line from the list of components.

6. Click the "Customer" complex type in the Explorer window. This causes
the properties for the complex type to be displayed in the Properties
window.

Note: You need to delete this from the list of components, because
the Address complex type is already set up to pull in the Address Line
type with a cardinality of 5.
64

Creating a Data Model Manually
7. For the purposes of this example, the customer records are based on
data in a fixed-format text file called Customers.txt. The record format
needs to be specified as a property of the "Customer" complex type. In
the Properties window, scroll down to the Presentation section and set
the value for Format Type to Fixed.

8. Each record in the Customers.txt file ends with a CRLF (carriage return
line feed). This needs to be set as another property of the "Customer"
complex type, so that the data model will know to look for the CRLF at
the end of each record it comes across in the text file. In the Properties
window, click in the text area beside the Terminator field and then
click the icon in the field. This opens the Insert Character dialog.

9. Select CR and click Insert. Then select LF and click Insert. Then click
OK. This causes <CR><LF> and 0D0A to be displayed as the value for
Terminator.

10. Select File > Save All from the menu bar, or click the icon on the
toolbar, to save the data model.

Creating a Customers File
complex type

Next create a Customers File complex type that can consist of multiple
instances of the Customer complex type (that is, it can contain multiple
customer records) as follows:

1. In the Explorer window, right-click on Customers.dod and select New
> Complex Type from the context menu. This opens the New Complex
Type dialog.

2. Type "Customers File" in the text box and click OK. The Customers File
complex type is automatically displayed under Customers.dod in the
Explorer window. A Customers File tab is also automatically opened
within the Customers.dod tab in the main window of the workbench.

3. Click the Customer complex type in the Explorer window, and drag and
drop it over to the Customers File complex type in the main window of
the workbench. This causes the Customer complex type to be
displayed in the main window under the Customers File complex type.

4. The cardinality value determines how many instances of the Customer
complex type can pertain to the Customers File complex type (that is,
how many customer records can pertain to the customers file). This is
set to 1 by default, which would mean that the customers file could
65

CHAPTER 2 | Creating Data Models
only contain one account record. For the purposes of this example, the
customers file needs to be able to contain one or more customer
records, so the cardinality value needs to be changed in this case.
Right-click the Customer complex type in the Component column,
select Cardinality, and then select 1..* instead.

5. Click Customers.dod in the Explorer window. This causes the
properties for the data model to be displayed in the Properties window.
Notice how the namespace you specified in the New Data Model
Wizard is now displayed in the Target Namespace field in the
Properties window.

6. Select File > Save All from the menu bar, or click the icon on the
toolbar, to save the data model.

Creating a Customers File element To enable the model to be subsequently used in code, you must also create
an element for the Customers File complex type as follows:

1. In the Explorer window, right-click on Customers.dod and select New
> Element from the context menu. This opens the New Element
dialog.

2. Type "Customers File" in the text box and click OK. This opens the
Select Type dialog.

3. Expand "Local", click the Customers File complex type, and click OK.
This displays a dialog box prompting you to open the type for the
element.

4. Click Yes on the dialog box. The Customers File element is
automatically displayed under Customers.dod in the Explorer window.

5. Select File > Save All from the menu bar, or click the icon on the
toolbar, to save the data model.

At this point, you have finished establishing the framework of your
Customers data model. It now consists of:

� A Customers File complex type and element that can represent your
customers file.

� A Customer complex type that can represent each record in your
customers file.

� Various simple types that can represent the various fields in each
customer record.
66

Creating a Data Model Manually
The next step is to test the accuracy of the Customers data model by
checking to see if it can parse a valid text file.

Testing the accuracy of your data
model

You need to ensure that your data model is accurate by checking to see if it
can parse some real-world data. You can do this using a feature of the
Designer called the Run Wizard, which allows you to read data into a model
and in so doing create Java class instances of that model. In this case, you
can read the supplied Customers.txt file into your Customers data model, as
follows:

1. Ensure that the Customers.dod data model is open in the Explorer
window.

2. Right-click the Customers File complex type in the Explorer window
and select Run Component. This opens the Run Wizard dialog.

In this case, the Name field automatically defaults to "Customers File"
(that is, the name of the selected component) and the Target field
defaults to the path location of the selected component. The Build
Before Running check box is checked by default.

3. For the purposes of this demonstration, accept all the default values on
the Run Wizard dialog and click Run.

A dialog box is displayed prompting you to load the data you want to
parse. Click the icon in the dialog box to close it.

This opens a Customers File tab (with a icon beside its name)
within the Customers.dod tab. This tab will be used to show the
structure of the deployed object based on your data model. Because
you have not yet loaded any data into the object, it is displayed for now
in its empty state with a red X.

In the Messages window, note that an empty Run Customers File tab
has been created at this point.

4. Click the (Load) icon in the Customers File tab in the main window.
This opens the Select Input File/Directory dialog.

5. Navigate to the Getting Started/Samples/Creating Data
Models/Manually folder and select Customers.txt. Then click Open.
67

CHAPTER 2 | Creating Data Models
In the case of this demonstration, there are no parsing errors, so Artix Data
Services creates instances of the model, based on your data. A green tick
appears beside CustomersFile in the Customers File tab to indicate that
parsing has been successful. You may now expand the CustomersFile node
in the main window to view all the records in the file.
68

Adding Validation Rules
Adding Validation Rules

Overview Data types such as dates, or elements with a type of "double", must be
validated to enable them to work in Artix Data Services Designer. Validation
is commonly performed in the Properties window. Some properties have
lists (that is, enumerations) associated with them, which are defined in the
Properties window. Elements with a type of "double" require integer and
fraction composition to be specified. This demonstration shows how to set
up such validation rules for the Accounts and Transactions data models.

In this section This section discusses the following topics:

Adding Validation Rules for Accounts Data Model page 70

Adding Validation Rules for Transactions Data Model page 74
69

CHAPTER 2 | Creating Data Models
Adding Validation Rules for Accounts Data Model

Overview This subsection demonstrates how to set up validation rules for the
Accounts.dod data model.

Opening the Accounts.dod file Follow these steps to open the Accounts.dod file (if it is not already open):

1. In the Project window of the workbench, ensure that MyProject.iop is
opened. If you need to open it, you may do so by selecting File > Open
Project from the menu bar.

2. Navigate to the My IONA Projects/Getting
Started/Samples/Creating Data Models/Manually folder.

3. Right-click the Accounts.dod file and select Open Selected. This
causes Accounts.dod to be automatically displayed in the Explorer
window of the workbench. The Accounts.dod tab is also automatically
displayed in the main window of the workbench.

Adding validation rules for
Blocked type

Follow these steps to add validation rules for the Blocked type:

1. Click "Blocked" in the Explorer window. This causes the properties for
that type to be displayed in the Properties window.

2. In the Properties window, scroll down to the Validation section and
click in the Enumeration field. Then click the down arrow in the field
to open the Select Component dialog.

3. Click Enumeration. This opens the New Enumeration dialog.

4. Type "Blocked" as the name of the enumeration and click OK. This
opens a Blocked tab (with a icon beside its name) within the
Accounts.dod tab.

Note: The validation values assigned in this demonstration are based on
the values specified in the Accounts_validation.xls file that is supplied
within the Getting Started/Samples/Creating Data Models/Adding
Validation Rules folder of your Artix Data Services Getting Started
material.
70

Adding Validation Rules
5. Click the icon to add a new value to the enumeration. This opens
the New Enumeration Value dialog.

6. Type "Y" and click OK. This causes a new row to be added to the
Blocked tab, with "Y" as the displayed value.

7. Click the icon to add a new value to the enumeration. This opens
the New Enumeration Value dialog.

8. Type "N" and click OK. This causes a new row to be added to
Enumeration with "N" as the displayed value.

9. Double click the Name column of the "N" row, type "No" and press
Enter. "No" is now displayed as the name of the "N" value.

10. Double click the Name column of the "Y" row, type "Yes" and press
Enter. "Yes" is now displayed as the name of the "Y" value.

11. Select File > Save All from the menu bar, or click the icon on the
toolbar, to save the data model.

Adding validation rules for
CardNumber type

Follow these steps to add validation rules for the CardNumber type:

1. Click "CardNumber" in the Explorer window. This causes the properties
for that type to be displayed in the Properties window.

2. In the Properties window, scroll down to the Validation section and
click in the Pattern field.

3. Select Java Regex from the drop down list and then click the icon
to the right of the field. This displays "Java Regex" in the first half of the
Pattern field and also opens the Insert Character dialog.

4. Select the following pattern or type it manually in the Pattern field on
the Insert Character dialog:

[0-9]{4}[0-9]{4}[0-9]{4}[0-9]{4}

5. Click OK. The pattern is then displayed in the Properties window.

6. To ensure that all validation is correct, in the Explorer window
right-click Accounts.dod and select Verify Component(s). This opens a
Verification tab in the Messages window and the last line should read
"Verification passed".

7. Select File > Save All from the menu bar, or click the icon on the
toolbar, to save the data model.
71

CHAPTER 2 | Creating Data Models
Validating your data model Follow these steps to validate your data model:

1. Ensure that the Accounts.dod data model is open in the Explorer
window.

2. Right-click the Accounts File complex type in the Explorer window and
select Run Component. This opens the Run Wizard dialog.

In this case, the Name field automatically defaults to "Accounts File"
(that is, the name of the selected component) and the Target field
defaults to the path location of the selected component. The Build
Before Running check box is checked by default.

3. For the purposes of this demonstration, accept all the default values on
the Run Wizard dialog and click Run.

This opens an Accounts File tab (with a icon beside its name) within
the Accounts.dod tab. This tab shows the structure of the deployed
object based on your data model. Because you previously loaded data
into the object, the data is automatically reloaded at this point and the
AccountsFile node is expanded.

In this case, there are no validation errors, because the format of the
card number details in the imported text file exactly matches the
format of the CardNumber type in your data model.

4. Now try loading some invalid data for the Blocked type, to see what
happens. To do this, click the (Load) icon to open the Select Input
File/Directory dialog. Then navigate to the Getting
Started/Samples/Creating Data Models/Adding Validation Rules

folder, select Accounts_invalid.txt, and click Open.

5. A Note dialog is displayed prompting you that files in subdirectories
will be parsed by default. Click OK on this dialog.

6. A Confirm dialog is displayed prompting you that changing the URI will
allow your data to be overwritten. Click Yes on this dialog.

7. Notice how the first Account record is now automatically marked with
a red X. Expand it and you will see that the Blocked element is also
marked in red. This is because the Blocked type is only meant to
accept a value of "Y" or "N", but it is currently displaying an invalid
value of "A" for the first record.
72

Adding Validation Rules
8. Click the Validation tab at the bottom of the workbench to open the
Validation window. In this case, a validation failure is now being
reported against that Blocked element.

9. Now try making the format of one of the CardNumber elements
deliberately invalid. To do this, expand a particular Account record in
the tab and click the value for its constituent CardNumber. Click the
down arrow that is displayed in the CardNumber field and update its
value on the Multiline textual value dialog, by inserting a hyphen after
every fourth digit, as follows:

4325-6486-3757-2678

10. Click OK to close the dialog and then click anywhere in the workbench.
Notice how that CardNumber element and its parent Account
component are now automatically marked in red with an X.

The Validation window is now reporting additional validation errors
against that CardNumber element.

11. Now try loading valid data again, to see what happens. To do this,
click the (Load) icon to open the Select Input File/Directory dialog.
Then navigate to the Getting Started/Samples/Creating Data
Models/Manually folder, select Accounts.txt, and click Open. Notice
how all Account records are now automatically displayed as valid
again.

This proves that the validation rules for the Blocked and CardNumber types
are working, because validation failures are being correctly reported against
invalid data.
73

CHAPTER 2 | Creating Data Models
Adding Validation Rules for Transactions Data Model

Overview Xpath is predominantly used to apply validation rules to models. This
subsection demonstrates how to use Xpath to set up a rule to validate the
Commission field in the Transactions.dod data model.

Opening the Transactions.dod file Follow these steps to open the Transactions.dod file (if it is not already
open):

1. In the Project window of the workbench, ensure that MyProject.iop is
opened. If you need to open it, you may do so by selecting File > Open
Project from the menu bar.

2. Navigate to the My IONA Projects/Getting
Started/Samples/Creating Data Models/From a Text File folder.

3. Right-click the Transactions.dod file and select Open Selected. This
causes Transactions.dod to be automatically displayed in the
Explorer window of the workbench. The Transactions.dod tab is also
automatically displayed in the main window of the workbench.

Adding a rule for Commission type In this case, the validation rule is going to be created as a global validation
rule so that it can be reused: Follow these steps to create the validation rule:

1. Right-click Transactions.dod in the Explorer window and select New
> Validation Rule. This opens the New Validation Rule dialog.

2. Type "Commission Check" in the text box and click OK. This
automatically opens a Commission Check tab within the
Transactions.dod tab in the main window of the workbench, with a
default type of XPath. In this case, the rule is entered in the left hand
pane of the tab and XPath syntax is displayed in the right hand pane

Note: Creating a validation rule directly under the .dod file itself
means that it is a global validation rule rather than being tied
specifically to any one particular element within the data model.
74

Adding Validation Rules
3. In this case, the rule will determine whether the value of commission is
greater than the product of 0.02 and the value of amount. Therefore,
click in the shaded area at the top of the left-hand pane in the main
window and type "Commission > 0.02 * Amount" as the XPath rule.

4. If the validation rule is true, the data model should throw an error.
Therefore, type "Commission Error" in the Error Message pane.

5. Select File > Save All from the menu bar, or click the icon on the
toolbar, to save the data model.

6. In the Explorer window, expand File and double click the Transactions
complex type. This opens the Transactions complex type in the main
window of the workbench.

7. Because the node names used in the Xpath rule do not refer to the
parent node in any way, the rule must be applied directly to the
Customer Details complex type, so that the model can interpret the
validation rule correctly. In the Type column, click "Customer Details".
This displays the properties for the Customer Details type in the
Properties window.

8. In the Properties window, scroll down to the Validation section and
click the field beside Validation Rules. This opens a validation rules
dialog.

9. Click the icon. This opens the Add Validation Rule dialog.

10. Now apply the global Commission Check validation rule to the
Customer Details type. Expand "Local", select the "Commision Check"
global validation rule, and click OK. This adds Commission Check to
the validation rules dialog.

11. Click OK to close the validation rules dialog. The Validation Rules field
in the Properties window now displays "1".

12. Select File > Save All from the menu bar, or click the icon on the
toolbar, to save the data model.
75

CHAPTER 2 | Creating Data Models
Validating your data model Follow these steps to validate your data model:

1. Ensure that the Transactions.dod data model is currently open in the
Explorer window.

2. Expand "File", right-click the Transactions complex type in the Explorer
window, and select Run Component. This opens the Run Wizard
dialog.

3. In this case, the Name field automatically defaults to "Transactions"
(that is, the name of the selected component) and the Target field
defaults to the path location of the selected component. The Build
Before Running check box is checked by default.

4. For the purposes of this demonstration, accept all the default values on
the Run Wizard dialog and click Run.

This opens a Transactions tab (with a icon beside its name) within
the Transactions.dod tab. This tab will be used to show the structure of
the deployed object based on your data model. Because you previously
loaded data into the object, the data is automatically reloaded at this
point and the Transactions node is expanded.

In this case, there are no validation errors, because none of the data
you previously loaded will fail this validation check.

5. Now try loading some invalid data to see what happens. To do this,
click the (Load) icon to open the Select Input File dialog. Then
navigate to the Getting Started/Samples/Creating Data
Models/Adding Validation Rules folder, select
Transactions_invalid.txt, and click Open.

6. A Note dialog is displayed prompting you that files in subdirectories
will be parsed by default. Click OK on this dialog.

7. A Confirm dialog is displayed prompting you that changing the URI will
allow your data to be overwritten. Click Yes on this dialog.

8. Notice how some Customer Details records now show a green (valid)
tick and some show a red (invalid) X. Expand the first Customer Details
record that is showing a red (invalid) X, and check the value of
"Amount" and the value of "Commission". Notice how Amount is -500
and Commission is 8.
76

Adding Validation Rules
9. Click the Validation tab at the bottom of the workbench to open the
Validation window. Expand the node beside the component name in
the Validation window to view the invalid records. Notice how
"Commission Error" is displayed as the error message in each case.

This proves that the Commission Check validation rule is working, because
validation failures are being correctly reported against records where the
value of Commission is greater than the value of Amount * 0.02.
77

CHAPTER 2 | Creating Data Models
78

CHAPTER 3

Creating
Transformations
This chapter shows how to create transformations in Artix Data
Services Designer. Transformations are created within projects
and consist of at least two data models that represent input
and output data. They allow users to map elements in the input
model to elements in the output model for the purposes of
transforming your data in some way. A transformation may
consist of multiple input and output models. This chapter first
describes how to create a simple transformation and then
describes how to make it more complex by adding various types
of components to it.

In this chapter This chapter discusses the following topics:

Creating a Simple Transformation page 80

Making Your Transformation More Complex page 92
79

CHAPTER 3 | Creating Transformations
Creating a Simple Transformation

Overview This section is designed to get you started with creating a simple
transformation called StatGen.tfd. The transformation will contain one input
model called Transactions and one output model called Statements. Its
purpose is to read in a series of Customer Details records and to produce
statement lines for various customers. After creating the simple
transformation, you can run it in the Run Wizard to test its validity and
generate Java class instances from it.

In this section This section discusses the following topics:

Note: This demonstration is illustrated by the Creating a Simple
Transformation video tutorial which you can access from the Getting
Started/Videos folder of your Artix Data Services Getting Started
material. A completed version of this transformation is supplied in the
Getting Started/Samples/Creating Transformations/Simple
Transformation/Completed Transformation folder.

Starting to Create a Transformation page 81

Creating a Local Transformation page 83

Testing the Local Transformation in Your Main Transformation page 86

Creating a Filter page 88

Testing the Filter in Your Main Transformation page 90
80

Creating a Simple Transformation
Starting to Create a Transformation

Overview This section describes how to start creating a transformation.

Steps Follow these steps:

1. In the Project view of the workbench, ensure that MyProject.iop is
opened. If you need to open it, you may do so by selecting File > Open
Project from the menu bar.

2. Navigate to the My IONA Projects/Getting
Started/Samples/Creating Transformations/Simple

Transformation folder.

3. Right-click the Simple Transformation folder and select New >
Transform. This opens the Setup panel of the New Transform wizard.

4. For the purposes of this example, the transformation is called StatGen,
because its purpose will be to generate statements based on
transaction details. So type "StatGen" in the Transform name field.

5. Accept the default location in the Location field.

6. Click the Advanced button to display some optional panels and then
click Next. This opens the Select New Input Data Type panel, which
allows you to add the data model that you want to use as input for the
transformation. For the purposes of this example, the Transactions
data model needs to be added as your input.

7. Click the icon. This opens the Select New Input Data Model
dialog.

8. Navigate to My IONA Projects/Getting Started/Samples/Creating
Transformations, select Transactions.dod and click OK. This opens
the Select New Input Type dialog.

9. Expand Local, expand File, select the Transactions complex type, and
click OK. The Transactions data model is now added to the Select New
Input Data Type panel.
81

CHAPTER 3 | Creating Transformations
10. Click Next. This opens the Select New Output Data Type panel, which
allows you to add the data model that you want to use as output for
the transformation. For the purposes of this example, the Statements
data model needs to be added as your output.

11. Click the icon. This opens the Select New Input Data Model
dialog.

12. Navigate to My IONA Projects/Getting Started/Samples/Creating
Transformations, select Statements.dod and click OK. This opens the
Select New Output Type dialog.

13. Expand Local, select the StatementFile complex type, and click OK.
The Statements data model is now added to the Select New Output
Data Type panel.

14. Click Finish. This causes StatGen.tfd to be automatically created and
displayed in the Project and Explorer views of the workbench. A
StatGen.tfd tab is also automatically opened in the main view of the
workbench. Notice how the Transactions complex type is displayed
along with its Header and Customer Details elements in the Inputs
section of the MAIN tab. Notice also how the StatementFile complex
type is displayed along with its Statement element in the Outputs
section of the MAIN tab.
82

Creating a Simple Transformation
Creating a Local Transformation

Overview A transformation is made functional by adding functions to it. This is done
by creating a local transformation that is contained within the main
transformation. The local transformation will represent an individual
operation and encapsulates functionality that can be reused within the main
transformation, to cause an iterative loop effect. Therefore, elements with a
cardinality of more than 1 (that is, elements of which there can be multiple
instances) must be mapped within a local transformation so that they can
be handled correctly. Local transformations work in exactly the same way as
other transformations. This section describes how to automatically add a
local transformation called "Record to StmtLine" within your main StatGen
transformation.

Automatically adding a local
transformation

Follow these steps to automatically add a local transformation within your
main transformation:

1. Expand "Statement" in the Outputs section to display its three
sub-elements.

2. Click "Customer Details" in the Inputs section to highlight it.

3. Click "Customer Details" again and drag your mouse across to
"StmtLine" in the Outputs section while holding the left mouse key.

A Warning dialog is now displayed with the following text:

4. Click OK to automatically create the local transformation.

This creates a "CustomerDetails To StmtLine" local transformation
which is automatically opened in a new tab (with a icon beside
its name) within the StatGen.tfd tab. The new local transformation has

The translation requires a mapping between two different
complex types. Would you like to create a local transform
and proceed with the mapping?
83

CHAPTER 3 | Creating Transformations
"Customer Details" as its input parameter and "StatementLine" as its
output parameter.

Mapping input "Name" to output
"PostingNarrative"

In this case, you want the name in each Customer Details record to be
displayed as a posting narrative in your output statements. You therefore
need to map "Name" in your input model to "PostingNarrative" in your output
model. To do this:

1. Click the Record to StmtLine tab to reopen it.

2. Click "Name" in the Inputs section to highlight it.

3. Click "Name" again and drag your mouse across to "PostingNarrative"
while holding the left mouse key.

This displays an arrow going from "Name" to "PostingNarrative". This arrow
is an indicator that there is now a mapping between these two elements.

Mapping input "Amount" to output
"TxAmount"

In this case, you also want the amount in each Customer Details record to
be displayed as a transaction amount in your output statements. You
therefore need to map "Amount" in your input model to "TxAmount" in your
output model. To do this:

1. Try to connect "Amount" in the Inputs section to "TxAmount" in the
Outputs section, again by clicking "Amount" in the Inputs section and
dragging your mouse across to "TxAmount" while holding the left
mouse key. In this case, you receive the following message:

Note: For the purposes of this example, rename the local transformation
to "Record to StmtLine". To do this, click the MAIN tab, right-click the
local transformation in the ALL section, select Rename, type "Record to
StmtLine" and click OK. The new name is automatically reflected in the
local transformation and its corresponding tab.

The translation requires a narrowing of the valid range of
numbers. Would you like to create a CAST function and
proceed with the mapping?
84

Creating a Simple Transformation
This message indicates that you cannot set up a straightforward
mapping between "Amount" and "TxAmount" because they are not of
the same type�one is a double and the other is a float.

2. Click OK to indicate that you want a CAST function to be automatically
created to force a compatible mapping between the "Amount" double
type and the "TxAmount" float type.

The CAST function is automatically displayed in the ALL section of the
Record to StmtLine tab, with "Amount" in the Inputs section connected
to "Arg1" in the CAST function, and "Result" in the CAST function
connected to "TxAmount" in the Outputs section.

Note: The reason why you could set up a direct mapping between
"Name" and "PostingNarrative" is because they are both strings.
85

CHAPTER 3 | Creating Transformations
Testing the Local Transformation in Your Main Transformation

Overview Now that you have set up a local transformation and its associated functions
and mappings, you can check to see how it has made your main
transformation more functional.

Running the transformation You are now ready to run the transformation to see the potential results it
will produce. To do this:

1. Click the MAIN tab and you will see that the "Record to StmtLine" local
transformation is displayed in the ALL section, with "Customer Details"
in the Inputs section connected to "Customer Details" in the local
transformation, and "StatementLine" in the local transformation
connected to "StmtLine" in the Outputs section.

2. Right-click StatGen.tfd in the Explorer window and select Run
Component. This opens the Run Wizard dialog.

3. In this case, the Name field automatically defaults to "StatGen" (that is,
the name of the selected component) and the Target field defaults to
the path location of the selected transformation. The Build Before
Running check box is checked by default.

4. For the purposes of this demonstration, accept all the default values on
the Run Wizard dialog and click Run.

This opens a StatGen tab (with a icon beside its name) within the
StatGen.tfd tab. This tab will be used to show the results from running
your transformation.

A dialog box is displayed prompting you to load the data you want to
parse. Click the icon in the dialog box to close it.

5. Click the (Load) icon in the Inputs section to open the Select Input
File/Directory dialog. Then navigate to the Getting
Started/Samples/Creating Transformations folder, select
Transactions.txt, and click Open.

6. A Note dialog is displayed prompting you that files in subdirectories
will be parsed by default. Click OK on this dialog.
86

Creating a Simple Transformation
7. A Confirm dialog is displayed prompting you that changing the URI will
allow your data to be overwritten. Click Yes on this dialog.

8. This loads the relevant data records into your input model.

9. Expand "Transactions" in the Inputs section to view the various
Customer Details records that form your input. Notice how an arrow is
now automatically mapped from each CustomerDetails record to
"Customer Details" in the Record to StmtLine local transformation.

10. Click the (Perform Transformation) icon on the toolbar. This
automatically sets up a connection between "StatementLine" in the
Record to StmtLine local transformation and the output model.
Relevant data from the input model is now automatically loaded in the
output model.

In this case, expand StatementFile and Statement and you will see
seven StmtLine records corresponding to the seven CustomerDetails
records in the Inputs section. Expand each StmtLine record and you
will see that it includes values for TxAmount and PostingNarrative.
This proves that your local transformation is working correctly, because
it has produced the expected results.

Note: The errors being reported in the Outputs section at this point are
validation errors. These are due to the fact that various other mandatory
elements (that is, elements with a cardinality of 1) within StatementFile
are not currently being mapped to. Ignore these validation errors for the
purposes of this demonstration.
87

CHAPTER 3 | Creating Transformations
Creating a Filter

Overview Suppose that you want to produce statement lines for only one particular
customer rather than all customers. In this case, you can add a filter to your
transformation to filter out any Customer Details records that you are not
interested in. For the purposes of this example, let�s assume that you now
only want to produce statement lines for the customer Mr. Scrooge.

Starting to create a filter Follow these steps to start creating a filter within your main transformation:

1. Click the Design tab and then click the MAIN tab to reopen the
transformation.

2. Click the arrow that is between the Inputs section and the local
transformation, to highlight it.

3. Right-click the highlighted arrow and select Add Filter from the context
menu. This opens a Filter Customer Details tab for the filter (with a

 icon beside its name) within the StatGen.tfd tab.

Notice how the Inputs section of the filter tab is automatically
populated with the relevant input type. Notice also how it is
automatically mapped to the Value pane in the Outputs section.

4. For the purposes of this example, rename the filter to "JustScrooge". To
do this, click the MAIN tab, right-click the filter in the ALL section,
select Rename, type "JustScrooge" and click OK. The new name is
automatically reflected in the filter and its corresponding tab.

Note: The Outputs section for a filter is divided into a Condition
pane and a Value pane. The purpose of these will be shown in a
minute. You cannot add output models to filters.
88

Creating a Simple Transformation
Adding the EQUALS function to
your filter

You now need to specify the logic of the filter that you want to implement.
For the purposes of this example, let�s use a logic function called EQUALS.
Follow these steps to add the EQUALS function to your filter:

1. Click the JustScrooge tab to reopen it.

2. In the ALL section, right-click and select New > Function. This opens
the New Function dialog.

3. Expand Logic, select EQUALS and click OK. The EQUALS function is
now displayed in the ALL section.

4. Connect "Name" in the Inputs section to "Arg1" in the EQUALS
function. This displays an arrow going from "Name" to "Arg1", and Arg1
is now displayed in black.

5. Right-click "Arg2" in the EQUALS function and select Set Constant
Value from the context menu. This opens the Set Constant Value
dialog.

6. Type "Mr Scrooge" in the text box and click OK. Mr Scrooge is now
displayed in the ALL section as a constant value for Arg2.

7. Connect "Result" in the EQUALS function to "boolean" in the Condition
part of the Outputs section. This displays an arrow going from "Result"
to "boolean", and Result is now displayed in black.
89

CHAPTER 3 | Creating Transformations
Testing the Filter in Your Main Transformation

Overview Now that you have set up a filter and its associated functions and mappings,
you can check to see what difference it makes to your transformation.

Mapping main inputs and outputs When you set up a filter, it will be displayed in the ALL section of your main
transformation. Click the MAIN tab and you will see that the "JustScrooge"
filter is displayed in the ALL section, with "Customer Details" as its input
parameter and "Value" as its output parameter.

Notice how "Customer Details" in the Inputs section is now automatically
mapping to "Customer Details" in the JustScrooge filter. Notice also how
"Value" in the JustScrooge filter is automatically mapping to "Customer
Details" in the Record to StmtLine local transformation.

Running the transformation You may now run your transformation to see the potential results that the
new filter will produce. To do this:

1. Right-click StatGen.tfd in the Explorer window and select Run
Component. This opens the Run Wizard dialog.

2. In this case, the Name field automatically defaults to "StatGen" (that is,
the name of the selected component) and the Target field defaults to
the path location of the selected transformation. The Build Before
Running check box is checked by default.

3. For the purposes of this demonstration, accept all the default values on
the Run Wizard dialog and click Run.

This reopens the Run tab (with a icon beside its name) within the
StatGen.tfd tab. This tab will be used to show the results from running
your transformation. The relevant data records are automatically
reloaded into your input model.

Note: You can move components around and change their position in the
ALL section if you wish. Simply click the name of a component in the ALL
section and drag your mouse while holding the left mouse key. That
component will then move position accordingly.
90

Creating a Simple Transformation
4. Expand "Transactions" in the Inputs section to view the various
Customer Details records that form your input. Notice how an arrow is
now automatically mapped from each CustomerDetails record to
"Customer Details" in the JustScrooge filter.

5. Relevant data from the input model is automatically loaded in the
output model. In this case, expand StatementFile and Statement and
you will now see only two StmtLine records. Expand each StmtLine
record and you will see that they are based on the two CustomerDetails
records for Mr Scrooge. No StmtLine records have been produced for
any other customer. This proves that your newly added filter is working
correctly, because it has produced the expected results.

You have now successfully created a simple transformation that includes
both a local transformation and a filter with associated functions and
mappings. Next let�s look at how you can make your transformation more
complex by adding more models and components to it.

Note: Again, the errors being reported in the Outputs section at this point
are validation errors due to the fact that various other mandatory elements
(that is, elements with a cardinality of 1) within StatementFile are not
currently being mapped to. Ignore these validation errors for the purposes
of this demonstration.
91

CHAPTER 3 | Creating Transformations
Making Your Transformation More Complex

Overview This section expands on what you learned in the previous section. It shows
how you can make your transformation more complex by adding various
other components to it.

In this section This section discusses the following topics:

Before You Continue page 93

Adding More Input Models to Your Main Transformation page 95

Adding Local Transformations page 96

Adding Functions page 99

Adding Nested Local Transformations page 104

Adding Hash Tables page 112

Adding Filters page 116

Adding Java Methods page 122

Adding Introspect Functions page 125
92

Making Your Transformation More Complex
Before You Continue

Overview There are some features and components in the simple transformation you
have just created that are not relevant to the more complex example. To
make your transformation suitable for continuing with the complex example,
you need to make various adjustments to the transformation as outlined
next. These modifications are a good way of showing you how you can
modify a transformation.

Delete the JustScrooge filter The JustScrooge filter is not a relevant feature of the more complex
demonstration. Please make sure that you delete the JustScrooge filter now
as follows:

1. Click the Design tab and then click the MAIN tab.

2. Right-click the JustScrooge filter and select Delete. This opens a
Confirm Delete dialog.

3. Click OK to confirm that you want to delete the filter. This opens a
Confirm Component Delete dialog.

4. Click Yes to confirm that you want to delete the filter. The filter and its
associated mappings are then automatically deleted from the MAIN
tab.

Note: Notice how "Customer Details" in the Record to StmtLine local
transformation is now displayed in red, because you have removed its
corresponding input mapping.
93

CHAPTER 3 | Creating Transformations
Delete the CAST function The CAST function is not a relevant feature of the Record to StmtLine local
transformation in the more complex demonstration. Please make sure that
you delete the CAST function from the Record to StmtLine local
transformation as follows:

1. Click the Record to StmtLine tab.

1. Right-click the CAST function and select Delete. This opens a Confirm
Delete dialog.

2. Click OK to confirm that you want to delete the function. The function
and its associated mappings are then automatically deleted from the
Record to StmtLine tab.

Delete the mapping between
Name and PostingNarrative

The mapping between Name and PostingNarrative is not a relevant feature
of the Record to StmtLine local transformation in the more complex
demonstration. Please make sure that you delete the mapping between
Name and PostingNarrative from the Record to StmtLine local
transformation as follows:

1. Click the Record to StmtLine tab.

1. Right-click the mapping between Name and PostingNarrative, and
select Delete. This opens a Confirm Delete dialog.

2. Click OK to confirm that you want to delete the mapping. The
connection between Name and PostingNarrative is then automatically
deleted from the Record to StmtLine tab.

Move the Record to StmtLine local
transformation

Another modification that is required for the complex demonstration is to
move the location of the Record to StmtLine local transformation within the
main transformation. However, you are not ready to do this just yet.
Instructions on how to do this will be provided later.
94

Making Your Transformation More Complex
Adding More Input Models to Your Main Transformation

Overview The main StatGen transformation already contains one input model called
Transactions. Now let�s start making it more complex by adding two more
input models to it�Customers and Accounts.

Steps Follow these steps to add the additional input models:

1. Click the MAIN tab.

1. In the Inputs section, click the (New Global Input) icon. This
opens the Select New Input Data Model dialog.

2. Navigate to My IONA Projects/Getting Started/Samples/Creating
Transformations, select Customers.dod and click OK. This opens the
Select New Input Type dialog.

3. Expand "Local", select the Customers File complex type, and click OK.
The Customers data model is now added as part of your input for the
transformation, and the Customers File complex type is displayed
along with its Customer element in the Inputs section of the MAIN tab.

4. In the Inputs section, click the (New Global Input) icon. This
opens the Select New Input Data Model dialog.

5. Navigate to My IONA Projects/Getting Started/Samples/Creating
Transformations, select Accounts.dod and click OK. This opens the
Select New Input Type dialog.

6. Expand "Local", select the Accounts File complex type, and click OK.
The Accounts data model is now added as part of your input for the
transformation, and the Accounts File complex type is displayed along
with its Account element in the Inputs section of the MAIN tab.

You now have three input models and one output model in your
transformation. However, the transformation as it stands is not very
functional, so the next step is to add a new local transformation to it. See
�Adding Local Transformations� on page 96 for more details.

Note: Before you continue, ensure that you have created all data models
as instructured in chapter 2 of this guide.
95

CHAPTER 3 | Creating Transformations
Adding Local Transformations

Overview The simple demonstration has already shown how to create a local
transformation called "Record to StmtLine". For the purposes of this more
complex demonstration, you now need to create another local
transformation called "AccountTxns to Statement".

Automatically adding the new
local transformation

Follow these steps to automatically add the new local transformation within
your main transformation:

1. Click the MAIN tab.

2. Connect "Account" (under Accounts File) in the Inputs section to
"Statement" in the Outputs section.

A Warning dialog is now displayed with the following text:

3. Click OK to automatically create the local transformation.

This creates an "Account To Statement" local transformation which is
automatically opened in a new tab (with a icon beside its name)
within the StatGen.tfd tab. The new local transformation has "Account"
as its input parameter and "Statement" as its output parameter.

The translation requires a mapping between two different
complex types. Would you like to create a local transform
and proceed with the mapping?

Note: For the purposes of this example, rename the new local
transformation to "AccountTxns to Statement". To do this, click the MAIN
tab, right-click the "Account To Statement" local transformation in the ALL
section, select Rename, type "AccountTxns to Statement" and click OK.
The new name is automatically reflected in the local transformation and its
corresponding tab.
96

Making Your Transformation More Complex
Adding more input models to the
new local transformation

For the purposes of this example, two more input models now need to be
added to the AccountTxns to Statement local transformation, as follows:

1. Click the AccountTxns to Statement tab to open it.

2. In the Inputs section, click the (New Local Input) icon
(Alternatively, right-click in the ALL section and select New > Local
Input.) This opens the Add input dialog with a list of existing input
models.

3. Select Transactions and click OK. This opens the Select New Input
Path dialog.

4. Select Transactions and click OK. This displays the Transactions
complex type along with its Header and Customer Details elements in
the Inputs section of the AccountTxns to Statement tab.

5. In the Inputs section, click the (New Local Input) icon
(Alternatively, right-click in the ALL section and select New > Local
Input.) This opens the Add input dialog with a list of existing input
models.

6. Select Customers File and click OK. This opens the Select New Input
Path dialog.

7. Select Customers File and click OK. This displays the Customers File
complex type along with its Customer element in the Inputs section of
the AccountTxns to Statement tab.
97

CHAPTER 3 | Creating Transformations
Setting up main mappings to the
new local transformation

When a local transformation contains only one input and output model, Artix
Data Services Designer automatically handles the mapping between inputs
and outputs for you in the MAIN tab. However, when you add additional
input or output models to a local transformation, you must manually set up
the additional mappings yourself. For the purposes of this example:

1. Click the MAIN tab.

2. Connect "Transactions" in the Inputs section to "Transactions" in the
AccountTxns to Statement local transformation. This displays a second
arrow going from the Inputs section to the new local transformation,
and Transactions in the local transformation is now displayed in black.

3. Connect "Customers File" in the Inputs section to "Customers File" in
the Transactions to Statement local transformation. This displays a
third arrow going from the Inputs section to the new local
transformation, and Customers File in the local transformation is now
displayed in black.

4. Select File > Save > Save Tab As and click StatGen.tfd to populate
it in the File name field. Then navigate to the My IONA
Projects/Getting Started/Samples/Creating Transformations
folder, double click Adding Local Transformations, and click Save.
This saves the updated transformation into the Adding Local
Transformations folder.

At this point, your transformation is not very functional, so you need to add
some functions to it. See �Adding Functions� on page 99 for more details.

Note: Function parameters are displayed in red to warn you that
they have no associated mapping. When you establish a mapping for
a function parameter, it is then displayed in black.
98

Making Your Transformation More Complex
Adding Functions

Overview Transformations are built up from functions that are chained together to
convert one or more values from the input model to a node in the output
model. The elements in an input model are translated to that of the output
model. These elements are not always compatible and must therefore be
"cast" or modified by the use of functions to ensure compatibility.

The purpose of this demonstration is to show how you can use NOW and
CONVERTDATE functions to determine the statement date node in the
output model. For the purposes of this demonstration, the CONVERTDATE
function will be used to translate the generic date that is derived from the
NOW function to the ISO8601 statement date node in the output model.

Starting to create functions Follow these steps to start creating functions within your existing
transformation:

1. In the Project view of the workbench, ensure that MyProject.iop is
opened. If you need to open it, you may do so by selecting File > Open
Project from the menu bar.

2. Navigate to the My IONA Projects/Getting
Started/Samples/Creating Transformations/Adding Local

Transformations folder

3. Right-click the StatGen.tfd file and select Open Selected. This opens
the StatGen.tfd transformation in the main view of the workbench.

Note: The transformation created in this section is only partially
complete, so the transformed statement will be invalid. However, you
should look out for the stmtDate node which uses the function at this
stage.

Note: Before you continue, ensure that you have completed the
instructions in �Adding Local Transformations� on page 96.
99

CHAPTER 3 | Creating Transformations
Mapping input "OpeningBalance"
to output "StartBalance"

In this case, you want the opening balance in each Account record to be
displayed as a start balance in your output statements. You therefore need
to map "OpeningBalance" in your Account input model to "StartBalance" in
your output model. To do this:

1. Click the AccountTxns to Statement tab.

2. Try to connect "OpeningBalance" (under Account) in the Inputs section
to "StartBalance" (under Hdr) in the Outputs section. In this case, you
receive the following message:

This message indicates that you cannot set up a straightforward
mapping between "OpeningBalance" and "StartBalance" because they
are not of the same type�one is a decimal and the other is a float.

3. Click OK to indicate that you want a CAST function to be automatically
created to force a compatible mapping between the "OpeningBalance"
decimal type and the "StartBalance" float type.

The CAST function is automatically displayed in the ALL section of the
AccountTxns to Statement tab, with "OpeningBalance" in the Inputs
section connected to "Arg1" in the CAST function, and "Result" in the
CAST function connected to "StartBalance" in the Outputs section.

Mapping input "ClosingBalance"
to output "EndBalance"

You also want the closing balance in each Account record to be displayed as
an end balance in your output statements. You therefore need to map
"ClosingBalance" in your Account input model to "EndBalance" in your
output model. To do this:

1. Click the AccountTxns to Statement tab.

2. Try to connect "ClosingBalance" (under Account) in the Inputs section
to "EndBalance" (under Tlr) in the Outputs section. In this case, you
receive the following message:

The translation requires a narrowing of the valid range of
numbers. Would you like to create a CAST function and
proceed with the mapping?

The translation requires a narrowing of the valid range of
numbers. Would you like to create a CAST function and
proceed with the mapping?
100

Making Your Transformation More Complex
This message indicates that you cannot set up a straightforward
mapping between "ClosingBalance" and "EndBalance" because they are
not of the same type�one is a decimal and the other is a float.

3. Click OK to indicate that you want a CAST function to be automatically
created to force a compatible mapping between the "ClosingBalance"
decimal type and the "EndBalance" float type.

The CAST function is automatically displayed in the ALL section of the
AccountTxns to Statement tab, with "ClosingBalance" in the Inputs
section connected to "Arg1" in the CAST function, and "Result" in the
CAST function connected to "EndBalance" in the Outputs section.

Creating NOW and
CONVERTDATE functions

Next create an operation to assign the current date to the statement date.
Start by creating a date function called NOW. Follow these steps:

1. Click the AccountTxns to Statement tab.

2. In the ALL section, right-click and select New > Function. This opens
the New Function dialog.

3. Expand Date & Time, select NOW and click OK. The NOW function is
displayed in the ALL section.

4. Try to connect "Result" in the NOW function to "StmtDate" in the
Outputs section. This displays the following message:

This message indicates that the NOW function returns a Generic date
that is incompatible with the StmtDate type, and is prompting you to
automatically create a CONVERTDATE function that will convert the
date derived from the NOW function to the correct type.

5. Click OK to indicate that you want the CONVERTDATE function to be
automatically created.

This automatically creates the CONVERTDATE function and displays it
in the ALL section of the AccountTxns to Statement tab, with "Result"
in the NOW function connected to "Arg1" in the CONVERTDATE

The translation requires a change to the type of date. Would
you like to create a CONVERTDATE function and proceed
with the mapping?

Note: In this case, the StmtDate is an ISO8601 type of date.
101

CHAPTER 3 | Creating Transformations
function, and "Result" in the CONVERTDATE function connected to
"StmtDate" in the Outputs section.

This ensures that the correct ISO8601 type will be returned as the
statement date.

Creating the ADD function Next create an operation to map the LastStatementNo in the Account input
model to the StmtNo in the Statement output model, but to increment it by
1 in the process. Start by creating a mathematical function called ADD,
which will have the LastStatementNo as its first argument and a constant
value of 1 as its second argument. Follow these steps:

1. Click the AccountTxns to Statement tab.

2. In the ALL section, right-click and select New > Function. This opens
the New Function dialog.

3. Expand Math, then expand Arithmetic, select ADD and click OK. The
ADD function is displayed in the ALL section.

4. Connect "LastStatementNo" in the Account input model to "Arg1" in the
ADD function. This displays an arrow going from "LastStatementNo" to
"Arg1".

5. Right-click "Arg2" in the ADD function and select Set Constant Value.
This opens the Set Constant Value dialog.

6. Type "1" as the constant value and click OK. This sets Arg2 to a value
of 1.

7. Try to connect "Result" in the ADD function to "StmtNo" in the
Statement output model. This raises the following error:

This message indicates that the ADD function returns a number type
that is incompatible with the StmtNo, and is prompting you to
automatically create a CAST function that will convert the number
derived from the ADD function to the correct type.

The translation requires a narrowing of the valid range of
numbers. Would you like to create a CAST function and
proceed with the mapping?

Note: In this case, the StmtNo is an integer type.
102

Making Your Transformation More Complex
8. Click OK to indicate that you want the CAST function to be
automatically created.

This automatically creates the CAST function and displays it in the ALL
section of the AccountTxns to Statement tab, with "Result" in the ADD
function connected to "Arg1" in the CAST function, and "Result" in the
CAST function connected to "StmtNo" in the Outputs section.

This ensures that the correct integer type will be returned as the
statement number.

9. Select File > Save > Save Tab As and click StatGen.tfd to populate
it in the File name field. Then navigate to the My IONA
Projects/Getting Started/Samples/Creating Transformations
folder, double click Adding Functions, and click Save. This saves the
updated transformation into the Adding Functions folder.

You have now added various functions and mappings to successfully output
the starting balance, ending balance, statement date and statement
number. However, the transformation still needs further updating. Two more
local transformations need to be created at this point, this time within the
AccountTxns to Statement local transformation. So let�s look at adding some
nested local transformations next. See �Adding Nested Local
Transformations� on page 104 for more details.
103

CHAPTER 3 | Creating Transformations
Adding Nested Local Transformations

Overview You can nest components within other components. For example, you can
nest one or more local transformations within another local transformation.
For the purposes of this demonstration, two more local transformations
called "Populate NameAndAddress" and "Record to StmtLine" need to be
added within the existing �AccountTxns to Statement� local transformation.

Moving the "Record to StmtLine"
local transformation

Follow these steps to move the "Record to StmtLine" local transformation
under "AccountTxns to Statement".

1. In the Project view of the workbench, ensure that MyProject.iop is
opened. If you need to open it, you may do so by selecting File > Open
Project from the menu bar.

2. Navigate to the My IONA Projects/Getting
Started/Samples/Creating Transformations/Adding Functions
folder.

3. Right-click the StatGen.tfd file and selected Open Selected. This
opens the StatGen.tfd transformation in the main view of the
workbench.

4. Click the MAIN tab.

5. In the ALL section, right-click the Record to StmtLine local
transformation and select Delete. This opens a Confirm Delete dialog.

6. Click OK. This opens a Confirm Component Delete dialog.

7. Click No on the Confirm Component Delete dialog.

8. Click the AccountTxns to Statement tab to open it.

Note: Remember, you have already created a Record to StmtLine local
transformation as part of the simple demonstration. This now needs to be
moved, so that it will become a nested local transformation under
AccountTxns to Statement.

Note: Before you continue, ensure that you have completed the
instructions in �Adding Functions� on page 99.
104

Making Your Transformation More Complex
9. Right-click in the ALL section and select New > Transform Reference.
This opens the New Transform Reference dialog.

10. Expand My IONA Projects/Getting Started/Samples/Creating
Transformations/Adding Functions and click StatGen.tfd.

11. Click OK. This opens the Select Component dialog.

12. Select Record to StmtLine and click OK. This adds the Record to
StmtLine local transformation to the AccountTxns to Statement tab.

Adding SIZE and DIVIDE
functions within "AccountTxns to
Statement"

Now that the Record to StmtLine local transformation has been moved, let�s
add functions that will allow the output from "Record to StmtLine" to be
mapped to the StmtPage in the Statement output model. This means that
we can take a series of individual records and use them as a collection to
determine an overall count of the records.

In this case, a SIZE function will be used to take the output from Record to
StmtLine and return the size of the input list. Then a DIVIDE function will
take the size of the input list and divide it by 10, to output the correct value
for Statement Page (that is, there will be 10 statement records per page).
Follow these steps:

1. Click the AccountTxns to Statement tab.

2. In the ALL section, right-click and select New > Function. This opens
the New Function dialog.

3. Expand Collections, select SIZE and click OK. The SIZE function is
displayed in the ALL section.

4. In the ALL section, right-click and select New > Function. This opens
the New Function dialog.

5. Expand Math, then Arithmetic, select DIVIDE and click OK. The
DIVIDE function is displayed in the ALL section.

6. Connect "StatementLine" in the Record to StmtLine local
transformation to "Arg1" in the SIZE function. This displays an arrow
going from "StatementLine" "Arg1" in SIZE.

7. Connect "Result" in the SIZE function to "Arg1" in the DIVIDE function.
This displays an arrow going from "Result" in SIZE to "Arg1" in DIVIDE.

8. Right-click "Arg2" in the DIVIDE function and select Set Constant
Value from the context menu. This opens the Set Constant Value
dialog.
105

CHAPTER 3 | Creating Transformations
9. Type "10" in the text box and click OK. 10 is now displayed in the ALL
section as a constant value for Arg2 in DIVIDE.

10. Expand "Hdr" in the Statement output model.

11. Try to connect "Result" in the DIVIDE function to "StmtPage" in the
Statement output model. This raises the following error:

This message indicates that the DIVIDE function returns a number type
that is incompatible with the StmtPage, and is prompting you to
automatically create a CAST function that will convert the number
derived from the DIVIDE function to the correct type.

12. Click OK to indicate that you want the CAST function to be
automatically created.

This automatically creates the CAST function and displays it in the ALL
section of the AccountTxns to Statement tab, with "Result" in the
DIVIDE function connected to "Arg1" in the CAST function, and "Result"
in the CAST function connected to "StmtPage" in the Outputs section.

This ensures that the correct integer type will be returned as the
statement page.

Adding functions within "Record
to StmtLine"

Follow these steps to add functions within the "Record to StmtLine" local
transformation:

1. Click the Record to StmtLine tab to open it.

1. In the ALL section, right-click and select New > Function. This opens
the New Function dialog.

2. Expand Date & Time, select CONVERTDATE and click OK. This opens
the Select Return Type dialog.

3. Expand Date & Time, select ISO8601 date, and click OK. The
CONVERTDATE function is now displayed in the ALL section of the
Record to StmtLine tab.

The translation requires a narrowing of the valid range of
numbers. Would you like to create a CAST function and
proceed with the mapping?

Note: In this case, the StmtPage is an integer type.
106

Making Your Transformation More Complex
4. Connect "Transaction Date" in the Inputs section to "Arg1" in the
CONVERTDATE function. This displays an arrow going from
"Transaction Date" to "Arg1", and Arg1 is now displayed in black.

5. Connect "Result" in the CONVERTDATE function to both "PostingDate"
and "ValueDate" in the Outputs section. This displays arrows going
from "Result" to both "PostingDate and "ValueDate", and Result is now
displayed in black.

6. In the ALL section of the Record to StmtLine tab, right-click and select
New > Function. This opens the New Function dialog.

7. Expand Logic, select GREATERTHAN and click OK. The
GREATERTHAN function is now displayed in the ALL section of the
Record to StmtLine tab.

8. Connect "Amount" in the Inputs section to "Arg1" in the
GREATERTHAN function. This displays an arrow going from "Amount"
to "Arg1", and Arg1 is now displayed in black.

9. Right-click "Arg2" in the GREATERTHAN function and select Set
Constant Value from the context menu. This opens the Set Constant
Value dialog.

10. Type "0" in the text box and click OK. 0 is now displayed in the ALL
section as a constant value for Arg2.

11. In the ALL section of the Record to StmtLine tab, right-click and select
New > Function. This opens the New Function dialog.

12. Expand Logic, select IF and click OK. This opens the Select Return
Type dialog where you can choose the type you want the IF function to
return.

13. Expand Text, select String and click OK. The IF function is now
displayed in the ALL section of the Record to StmtLine tab. The IF
function is now set to return a string type.

14. Connect "Result" in the GREATERTHAN function to "Condition" in the
IF function. This displays an arrow going from "Result" to "Condition",
and Condition is now displayed in black.

15. Right-click "WhenTrue" in the IF function and select Set Constant
Value from the context menu. This opens the Set Constant Value
dialog.
107

CHAPTER 3 | Creating Transformations
16. Type "DR" in the text box and click OK. DR is now displayed in the ALL
section as a constant value for WhenTrue.

17. Right-click "WhenFalse" in the IF function and select Set Constant
Value from the context menu. This opens the Set Constant Value
dialog.

18. Type "CR" in the text box and click OK. CR is now displayed in the ALL
section as a constant value for WhenFalse.

19. Connect "Result" in the IF function to "DrCr" in the Outputs section.
This displays an arrow going from "Result" to "DrCr", and Result is now
displayed in black.

20. Connect "Amount" in the Inputs section to "TxAmount" in the Outputs
section. This automatically prompts you to set up a CAST function
between the two types. Click OK to add the CAST function.

21. Connect "Currency" in the Inputs section to the "Ccy" attribute of
TxAmount in the Outputs section. This displays an arrow going from
"Currency" to "Ccy".

22. Click the AccountTxns to Statement tab to open it.

23. Connect "Customer Details" (under Transactions) in the Inputs section
to "Customer Details" in the Record to StmtLine local transformation.
This displays an arrow going from "Customer Details" In the Inputs
section to "Customer Details" in the Record to StmtLine local
transformation, and Customer Details in the local transformation is
now displayed in black.

24. Connect "StatementLine" in the Record to StmtLine local
transformation to "StmtLine" in the Outputs section. This displays an
arrow going from "StatementLine" to "StmtLine", and StatementLine is
now displayed in black.
108

Making Your Transformation More Complex
Creating a "Populate
NameAndAddress" local
transformation

Follow these steps to create a "Populate NameAndAddress" local
transformation under "AccountTxns to Statement":

1. Click the AccountTxns to Statement tab.

2. In the ALL section, right-click and select New > Local Transform. This
opens the New Local Transform dialog.

3. Type "Populate NameAndAddress" in the text box and click OK. This
opens a Populate NameAndAddress tab (with a icon beside its
name) within the StatGen.tfd tab.

4. In the Inputs section of the Populate NameAndAddress tab, click the
 (New Local Input) icon (Alternatively, right-click in the ALL

section and select New > Local Input.) This opens the Add Input
dialog.

5. Select "Customers File" and click OK. This opens the Select New Input
Path dialog.

6. Select "Customer" and click OK. This displays the Customer complex
type and its elements in the Inputs section of the Populate
NameAndAddress tab.

7. In the Outputs section of the Populate NameAndAddress tab, click the
 (New Local Output) icon (Alternatively, right-click in the ALL

section and select New > Local Output.) This opens the Select New
Output Path dialog.

8. Expand "Hdr", select "NameAddress", and click OK. This displays the
PostalAddress1 complex type and its elements in the Outputs section
of the Populate NameAndAddress tab.

Adding functions within "Populate
NameAndAddress"

Follow these steps to add functions to the "Populate NameAndAddress" local
transformation:

1. Click the Populate NameAndAddress tab.

1. In the ALL section, right-click and select New > Function. This opens
the New Function dialog.

2. Expand Collections, select UNION and click OK. The UNION function
is now displayed in the ALL section of the Populate NameAndAddress
tab.
109

CHAPTER 3 | Creating Transformations
3. Connect "Customer Acronym" in the Inputs section to "Arg1" in the
UNION function. This displays an arrow going from "Customer
Acronym" to "Arg1", and Arg1 is now displayed in black.

4. Expand "Address" in the Inputs section and connect its constituent
"AddressLine" to "Arg2" in the UNION function. This displays an arrow
going from "AddressLine" to "Arg2", and Arg2 is now displayed in black.

5. In the ALL section of the Populate NameAndAddress tab, right-click
and select New > Function. This opens the New Function dialog.

6. Expand Collections, select SUBLIST and click OK. The SUBLIST
function is now displayed in the ALL section of the Populate
NameAndAddress tab.

7. Connect "Result" in the UNION function to "List" in the SUBLIST
function. This displays an arrow going from "Result" to "List", and both
parameters are now displayed in black.

8. Right-click "BeginIndex" in the SUBLIST function and select Set
Constant Value from the context menu. This opens the Set Constant
Value dialog.

9. Type "0" in the text box and click OK. 0 is now displayed in the ALL
section as a constant value for BeginIndex.

10. Right-click "EndIndex" in the SUBLIST function and select Set
Constant Value from the context menu. This opens the Set Constant
Value dialog.

11. Type "5" in the text box and click OK. 5 is now displayed in the ALL
section as a constant value for EndIndex.

12. Connect "Result" in the SUBLIST function to "AdrLine" in the Outputs
section. This displays an arrow going from "Result" to "AdrLine", and
Result is now displayed in black.

13. Connect "Country Of Residence" in the Inputs section to "Ctry" in the
Outputs section.

14. Click the AccountTxns to Statement tab to open it.

15. Connect "Customer" (under Customers File) in the Inputs section to
"Customer" in the Populate NameAndAddress local transformation.
This displays an arrow going from "Customer" in the Inputs section to
"Customer" in the Populate NameAndAddress local transformation, and
Customer in the local transformation is now displayed in black.
110

Making Your Transformation More Complex
16. Connect "PostalAddress1" in the Populate NameAndAddress local
transformation to "NameAddress" in the Outputs section. This displays
an arrow going from "PostalAddress1" to "NameAddress", and
PostalAddress1 is now displayed in black.

17. Select File > Save > Save Tab As and click StatGen.tfd to populate
it in the File name field. Then navigate to the My IONA
Projects/Getting Started/Samples/Creating Transformations
folder, double click Adding Nested Local Transformations, and click
Save. This saves the updated transformation into the Adding Nested
Local Transformations folder.

Next, let�s look at adding a hash table to the transformation. See �Adding
Hash Tables� on page 112 for more details.
111

CHAPTER 3 | Creating Transformations
Adding Hash Tables

Overview The hashtable function allows you to create a hash table of values that can
be referenced by the transformation code. This is useful in cases where you
want an input string value (for example, "USD") to act as key to an output
string (for example, "US Dollar"), so the hash table operates as a simple set
of one-to-one mappings. At deployment time, this structure is created as
java.util.hashtable.

The purpose of this demonstration is to show how you can use a currency
hash table to assign names and values to different currencies. After the
transformation is created, it is then deployed and its validity is tested using
the Run Wizard by transforming a file from the input model to the output
model.

Creating a hash table in a
transformation

Follow these steps to create a hash table in a transformation:

1. In the Project view of the workbench, ensure that MyProject.iop is
opened. If you need to open it, you may do so by selecting File > Open
Project from the menu bar.

2. Navigate to the My IONA Projects/Getting
Started/Samples/Creating Transformations/Adding Nested Local

Transformations folder

3. Right-click the StatGen.tfd file and select Open Selected. This opens
the StatGen.tfd transformation in the main view of the workbench.

4. Click the AccountTxns to Statement tab.

5. In the ALL section, right-click and select New > Hashtable. This opens
the Hashtable dialog.

Note: The transformation created in this section is only partially
complete, so the transformed statement will be invalid. However, you
should look out for the currency node which uses the hash table at this
stage.

Note: Before you continue, ensure that you have completed the
instructions in �Adding Nested Local Transformations� on page 104.
112

Making Your Transformation More Complex
6. For the purposes of this example, the hash table is to be called
Currencies. Type "Currencies" in the Name field.

7. For the purposes of this example, four different currency codes and
their names are to be added to the hash table. Type the following
inputs and output respectively (click to add each new row):

The hash table now contains four rows of data.

8. Click OK. The Currencies hash table is displayed in the ALL section
with an invalid Arg 1 and Result.

9. Now you need to specify the mappings between the input and output
models. Connect "currency" in the Account input model to "Arg 1" of
the Currencies hash table. This displays an arrow going from "currency"
to "Arg 1".

10. Connect "Result" in the Currencies hash table to "Ccy" of Startbalance
(under the Hdr element) and "Ccy" of EndBalance (under the Tlr
element) in the Statement output model. This displays arrows going
from "Result" to "Ccy" of both StartBalance and EndBalance.

11. Select File > Save > Save Tab As and click StatGen.tfd to populate
it in the File name field. Then navigate to the My IONA
Projects/Getting Started/Samples/Creating Transformations
folder, double click Adding Hash Tables, and click Save. This saves
the updated transformation into the Adding Hash Tables folder.

12. Click Save to save your changes to the StatGen.tfd file.

Input Output

EUR Euro

GBP British Pound

JPY Japenese Yen

USD US Dollar
113

CHAPTER 3 | Creating Transformations
Running the transformation Now try running your transformation to see the effect of the hash table on
the results produced. To do this:

1. Right-click StatGen.tfd in the Explorer window and select Run
Component. This opens the Run Wizard dialog.

2. In this case, the Name field automatically defaults to "StatGen" (that is,
the name of the selected component) and the Target field defaults to
the path location of the selected transformation. The Build Before
Running check box is checked by default.

3. For the purposes of this demonstration, accept all the default values on
the Run Wizard dialog and click Run.

This opens a Run tab (with a icon beside its name) within the
StatGen.tfd tab. This tab will be used to show the results from running
your transformation. In this case, the data that you previously loaded
into your Transactions, Customers, and Accounts data models is now
reloaded.

4. For the first record listed in the Outputs section, expand Statement,
then expand Hdr, StartBalance, and click Ccy. For the same record,
also expand Tlr, EndBalance, and click Ccy.

5. Select the AccountsFile tab in the Inputs section and expand the first
Account. In this case, notice how the "GBP" in the Inputs section maps
to two instances of "British Pound" in the Outputs section.

6. For the second record listed in the Outputs section, expand Statement,
then expand Hdr, StartBalance, and click Ccy. For the same record,
also expand Tlr, EndBalance, and click Ccy.

7. Select the AccountsFile tab in the Inputs section and expand the
second Account. In this case, notice how the "USD" in the Inputs
section maps to two instances of "US Dollar" in the Outputs section.

8. Select File > Save > Save Tab As and click StatGen.tfd to populate
it in the File name field. Then navigate to the My IONA
Projects/Getting Started/Samples/Creating Transformations
folder, double click Adding Hash Tables, and click Save. This saves
the updated transformation into the Adding Hash Tables folder.
114

Making Your Transformation More Complex
You have now added a hash table to successfully output the currency name
of input currency codes. However, the transformation still needs further
updating. Next, let�s add a filter that will allow records to be extracted in the
transaction file, using the credit card numbers that match the credit card
numbers in the accounts file. See �Adding Filters� on page 116 for more
details.
115

CHAPTER 3 | Creating Transformations
Adding Filters

Overview Filters are used to create mappings for recurring elements, so that only a
subset of a group of recurring elements is returned as part of the
transformation. A filter will first examine the two fields on which a
comparison is based, discard the differences between them, perform the
comparison, and return a subset that contains the matching records. The
filter does this recursively. In Artix Data Services filters, the Inputs section
expects a data model on which the filter logic can operate. The Outputs
section is divided in two�the top section is the boolean logic which must
be true, and the bottom section specifies what the output should be.

This section describes how to create two different filters within the
AccountTxns to Statement local transformation. A "SameAccount" filter will
be created to get the records in the transaction file that match the credit
card numbers in the accounts file. (The credit card format is different
between the accounts file and the transaction file, so it needs to be modified
before a comparison is made.) A "FindCustomerRecord" filter will be created
to

Creating the SameAccount filter Follow these steps to create the SameAccount filter:

1. Click the AccountTxns to Statement tab.

2. Click the arrow that is between "Customer Details" (under
Transactions) in the Inputs section and "Customer Details" in the
Record to StmtLine local transformation. This highlights the arrow.

3. Right-click the highlighted arrow and select Add Filter from the context
menu. This opens a Filter Customer Details tab for the filter (with a

 icon beside its name) within the AccountTxns to Statement tab.

Note: The transformation created in this section is only partially
complete, so the transformed statement will be invalid.

Note: Before you continue, ensure that you have completed the
instructions in �Adding Hash Tables� on page 112.
116

Making Your Transformation More Complex
Notice how the Inputs section of the filter tab is automatically
populated with the Customer Details input type. Notice also how it is
automatically mapped to the Value pane in the Outputs section.

4. For the purposes of this example, rename the filter to "SameAccount".
To do this, click the AcountTxns to Statement tab, right-click the filter
in the ALL section, select Rename, type "SameAccount" and click OK.
The new name is automatically reflected in the filter and its
corresponding tab.

5. Now select the input model that will contain the second element to be
involved in the comparison. For the purposes of this comparison select
the Accounts model, as follows:

i. Click the (New Local Input) icon. (Alternatively, right-click in
the ALL section and select New > Local Input.) This opens the
Add input dialog with a list of existing input models.

ii. Select Account and click OK. This displays the Account complex
type in the Inputs section of the SameAccount filter.

Adding a REPLACEALL function
to the SameAccount filter

In the Transactions model, the card numbers include hyphens between the
numbers. In the Accounts model, the card numbers do not include any
hyphens or spaces. Because the card numbers are represented differently
between the two models, the elements need to be stripped of anything but
numbers so that it will be possible to successfully compare them and
continue filtering records. To do this, use a text function called
REPLACEALL. Follow these steps to create the REPLACEALL function:

1. In the ALL section, right-click and select New > Function. This opens
the New Function dialog.

2. Expand Text, select REPLACEALL and click OK.

3. Connect "Card Number" in the Customer Details input model to "String"
in the REPLACEALL function. This displays an arrow going from "Card
Number" to "String".

Note: Customer Details will be the first input element to be involved
in the comparison.
117

CHAPTER 3 | Creating Transformations
4. The next step is to set as a constant value what it is you want to be
replaced, which in this case is a hyphen. Right-click "Regex" of
REPLACEALL and select Set Constant Value. This opens the Set
constant value dialog.

5. Type " "-" " and click OK. This causes "-" to be dispayed for Regex.

6. The next step is to set as a constant value what it is you want to
replace the hyphen with, which in this case is an empty string.
Right-click "Replacement" of REPLACEALL and select Set Constant
Value. This opens the Set constant value dialog.

7. Type " "" " and click OK. This causes "" to be displayed for
Replacement.

Adding an EQUALS function to the
SameAccount filter

Now that the format of the comparable elements has been made to match,
you may proceed with enabling the comparison. To do this, use a logic
function called EQUALS. Follow these steps to create the EQUALS function:

1. In the ALL section, right-click and select New > Function. This opens
the New Function dialog.

2. Expand Logic, select EQUALS and click OK. The EQUALS function is
displayed in the ALL section.

3. Connect "Result" in the REPLACEALL function to "Arg1" in the EQUALS
function. This displays an arrow going from "Result" to "Arg1".

4. Connect "CardNumber" in the Account input model to "Arg2" in the
EQUALS function. This displays an arrow going from "CardNumber" to
"Arg2".

5. The result of the EQUALS function is the condition on which the filter
is based. Connect "Result" in the EQUALS function to the boolean
element in the Condition output pane. This displays an arrow going
from "Result" to the boolean element.

6. If the condition is met, that transaction record will be stored in the any
element of Value Output. Notice how "Customer Details" in the Inputs
section is already automatically mapped to the any element in the
Value output pane. Do not adjust this.
118

Making Your Transformation More Complex
Completing mappings for the
SameAccount filter

99% of the filter is now complete. In the AccountTxns to Statement local
transformation, "Customer Details" (under Transactions) in the Inputs
section is already automatically mapped to "Customer Details" in the
SameAccount filter. Similarly, "Value" in the SameAccount filter is already
automatically mapped to "Customer Details" in the Record to StmtLine local
transformation.

To complete the filter mappings, connect "Account" in the Inputs section to
"Account" in the SameAccount filter. This displays an arrow going from the
Account input model to "Account" in the SameAccount filter.

Creating the FindCustomerRecord
filter

Follow these steps to create the FindCustomerRecord filter:

1. Click the AccountTxns to Statement tab.

2. Click the arrow that is between "Customer" (under Customers File) in
the Inputs section and "Customer" in the Populate NameAndAddress
local transformation. This highlights the arrow.

3. Right-click the highlighted arrow and select Add Filter from the context
menu. This opens a Filter Customer tab for the filter (with a icon
beside its name) within the AccountTxns to Statement tab.

Notice how the Inputs section of the filter tab is automatically
populated with the Customer input type. Notice also how it is
automatically mapped to the Value pane in the Outputs section.

4. For the purposes of this example, rename the filter to
"FindCustomerRecord". To do this, click the AcountTxns to Statement
tab, right-click the filter in the ALL section, select Rename, type
"FindCustomerRecord" and click OK. The new name is automatically
reflected in the filter and its corresponding tab.

Note: The SameAccount filter represents an individual statement line in
the statement model.

Note: Customer will be the first input element to be involved in the
comparison.
119

CHAPTER 3 | Creating Transformations
5. Now select the input model that will contain the second element to be
involved in the comparison. For the purposes of this comparison select
the Accounts model, as follows:

iii. Click the (New Local Input) icon. (Alternatively, right-click in
the ALL section and select New > Local Input.) This opens the
Add input dialog with a list of existing input models.

iv. Select Account and click OK. This displays the Account complex
type in the Inputs section of the FindCustomerRecord filter.

Adding an EQUALS function to the
FindCustomerRecord filter

To enable the comparison between the two input models, use a logic
function called EQUALS. Follow these steps to create the EQUALS function:

1. In the ALL section, right-click and select New > Function. This opens
the New Function dialog.

2. Expand Logic, select EQUALS and click OK. The EQUALS function is
displayed in the ALL section.

3. Connect "Customer Number" in the Customer input model to "Arg1" in
the EQUALS function. This displays an arrow going from "Customer
Number" to "Arg1".

4. Connect "Customer" in the Account input model to "Arg2" in the
EQUALS function. This displays an arrow going from "Customer" to
"Arg2".

5. The result of the EQUALS function is the condition on which the filter
is based. Connect "Result" in the EQUALS function to the boolean
element in the Condition output pane. This displays an arrow going
from "Result" to the boolean element.

6. If the condition is met, that customer record will be stored in the any
element of Value Output. Notice how "Customer" in the Inputs section
is already automatically mapped to the any element in the Value
output pane. Do not adjust this.
120

Making Your Transformation More Complex
Completing mappings for the
FindCustomerRecord filter

99% of the filter is now complete. In the AccountTxns to Statement local
transformation, "Customer" (under Customers File) in the Inputs section is
already automatically mapped to "Customer" in the FindCustomerRecord
filter. Similarly, "Value" in the FindCustomerRecord filter is already
automatically mapped to "Customer" in the Populate NameAndAddress local
transformation.

To complete the filter mappings, connect "Account" in the Inputs section to
"Account" in the FindCustomerRecord filter. This displays an arrow going
from the Account input model to "Account" in the FindCustomerRecord filter

Select File > Save > Save Tab As and click StatGen.tfd to populate it in
the File name field. Then navigate to the My IONA Projects/Getting
Started/Samples/Creating Transformations folder, double click Adding
Filters, and click Save. This saves the updated transformation into the
Adding Filters folder.
121

CHAPTER 3 | Creating Transformations
Adding Java Methods

Overview Java methods can be used to write new methods that will be embedded in
the class representing the transformation in deployment time.

The purpose of this demonstration is to show how you can use a Java
method to look up a transaction from a vendor and then assign it to a
vendorID. The input parameter type is defined as "long", because the vendor
ID that is passed in is of type "long". The return type is a string, so that it
can be displayed as such in the output model.

Steps Follow these steps to use Java methods in a transformation:

1. In the Project view of the workbench, ensure that MyProject.iop is
opened. If you need to open it, you may do so by selecting File > Open
Project from the menu bar.

2. Navigate to the My IONA Projects/Getting
Started/Samples/Creating Transformations/Adding Filters folder

3. Right-click the StatGen.tfd file and select Open Selected. This opens
the StatGen.tfd transformation in the main view of the workbench.

4. Click the Record to StmtLine tab.

5. Right-click in the ALL section of the Record to StmtLine local
transformation and select New > Java Method. This opens the Java
Method dialog.

6. Click the Signature tab.

7. Type "CreateNarrative" in the Method Name field.

8. In the Parameters section, click the icon to add a new parameter
row.

9. Type "vendorID" in the Name column.

Note: The transformation created in this section is only partially
complete, so the transformed statement will be invalid.

Note: Before you continue, ensure that you have completed the
instructions in �Adding Filters� on page 116.
122

Making Your Transformation More Complex
10. Click anyType in the Type column. This opens the Select Argument
Type dialog.

11. Expand Numeric, select long and click OK.

12. In the Return Type section, click Select. This opens the Select Return
Type dialog.

13. Expand Text, select String and click OK.

14. Click the Code tab at the top of the dialog. The method declaration is
displayed.

15. Type return "Transaction from vendor:"+vendorID; and click OK.
The CreateNarrative method is displayed in the ALL section.

16. Connect "Vendor ID" in the Customer Details input model to "vendorID"
in the CreateNarrative method. This displays an arrow going from
"Vendor ID" to "vendorID".

17. Connect "Result" in the CreateNarrative method to "PostingNarrative"
under the StatementLine element in the Statement output model. This
displays an arrow going from "Result" to "PostingNarrative".

18. Select File > Save> Save Tab As and navigate to the My IONA
Projects/Getting Started/Samples/Creating

Transformations/Adding Java Methods folder.

19. Click Save to save your changes to the StatGen.tfd file.

Running the transformation Now run your transformation to see the effect of the Java method on the
results produced. To do this:

1. Right-click StatGen.tfd in the Explorer window and select Run
Component. This opens the Run Wizard dialog.

2. In this case, the Name field automatically defaults to "StatGen" (that is,
the name of the selected component) and the Target field defaults to
the path location of the selected transformation. The Build Before
Running check box is checked by default.

3. For the purposes of this demonstration, accept all the default values on
the Run Wizard dialog and click Run.

This opens a Run tab (with a icon beside its name) within the
StatGen.tfd tab. This tab will be used to show the results from running
your transformation. In this case, the data that you previously loaded
123

CHAPTER 3 | Creating Transformations
into your Transactions, Customers, and Accounts data models is now
reloaded.

4. Invalid StatementFile is displayed in the output section. (It is invalid
because some of the mandatory elements have not been mapped at
this stage.)

5. Expand Statement and then expand StmtLine for one or all records
available. PostingNarrative should be displayed for that record.
124

Making Your Transformation More Complex
Adding Introspect Functions

Overview This section describes how to use introspect functions in transformations.
Introspect functions return a value of the part of a complex type value which
a user can then map to an output data model.

The purpose of this demonstration is to show how you can use an introspect
function to extract country of residence from the Customer model, and
concatenate it with an account number to identify the location of a
customers account.

Steps Follow these steps to use introspect functions in a transformation:

1. In the Project view of the workbench, ensure that MyProject.iop is
opened. If you need to open it, you may do so by selecting File > Open
Project from the menu bar.

2. Navigate to the My IONA Projects/Getting
Started/Samples/Creating Transformations/Adding Java Methods
folder

3. Right-click the StatGen.tfd file and select Open Selected. This opens
the StatGen.tfd transformation in the main view of the workbench.

4. Click the AccountTxns to Statement tab.

5. Right-click in the ALL section and select New > Introspector.

Note: The transformation created in this section will be finally complete,
so the transformed statement will be valid. Look out for the Account node
which uses the introspect function at this stage.

Note: Before you continue, ensure that you have completed the
instructions in �Adding Java Methods� on page 122.

Note: If you have not disabled tool tips, a tool tip is displayed at this
point. It will prompt you to first map the input type of the introspect
function and then double click on it to specify the return type, which
will enable you to map its output.
125

CHAPTER 3 | Creating Transformations
The Introspect function is displayed in the ALL section, with "Arg1" as
its input and "Result" as its output.

6. Connect "Value" in the FindCustomerRecord filter to "Arg 1" in the
Introspect function. This displays an arrow going from "Value" to "Arg
1".

7. Double click on "Arg 1" of Introspector. This opens the Select Path
dialog.

8. Select the Customer complex type and click OK. This displays
"Customer" as Arg 1 of the Introspect function.

9. Double click on "Result" of Introspector. This opens the Select Path
dialog.

10. Select the "Country Of Residence" element and click OK. "Country Of
Residence" is now displayed as Result of the Introspect function.

11. Right-click in the ALL section and select New > Function. This opens
the New Function dialog.

12. Expand Text, select CONCAT, and click OK. The CONCAT function is
displayed in the ALL section.

13. Connect "Country Of Residence" in the Introspect function to "Arg 1" in
the CONCAT function. This displays an arrow going from "Country Of
Residence" to "Arg 1".

14. Connect "AccountNumber" in the Account input model to "Arg 2" in the
CONCAT function. This displays an arrow going from "AccountNumber"
to "Arg 2".

15. Connect "Result" in the CONCAT function to "Account" (under Hdr) in
the Statement output model. This displays an arrow going from
"Result" to "Account".

16. Select File > Save > Save Tab As and click StatGen.tfd to populate
it in the File name field. Then navigate to the My IONA
Projects/Getting Started/Samples/Creating Transformations
folder, double click Adding Introspect Functions, and click Save.
This saves the updated transformation into the Adding Introspect
Functions folder.
126

Making Your Transformation More Complex
Running the transformation Now try running your transformation to see the effect of the introspect
function on the results produced. To do this:

1. Right-click StatGen.tfd in the Explorer window and select Run
Component. This opens the Run Wizard dialog.

2. In this case, the Name field automatically defaults to "StatGen" (that is,
the name of the selected component) and the Target field defaults to
the path location of the selected transformation. The Build Before
Running check box is checked by default.

3. For the purposes of this demonstration, accept all the default values on
the Run Wizard dialog and click Run.

This opens a Run tab (with a icon beside its name) within the
StatGen.tfd tab. This tab will be used to show the results from running
your transformation. In this case, the data that you previously loaded
into your Transactions, Customers, and Accounts data models is now
reloaded.

4. Expand Statement and then expand Hdr for one or all records
available. Notice how Account is now different from what it was
before. It now has a 2-character country of residence code at the start.
127

CHAPTER 3 | Creating Transformations
128

CHAPTER 4

Overview of ANT
Tasks
A number of Apache ANT (http://ant.apache.org/) tasks
specific to Artix Data Services are packaged within the
artix-ds-designerXXX.jar file. These enable deployment and
exports to be automated with an ANT script. This is useful
where the build of Artix Data Services generated components
are to be included within overall project builds, without any
requirement to manually deploy the components from within
the Artix Data Services Designer.

In this chapter This chapter discusses the following topics:

Using the supplied ANT tasks page 130

Deployment page 130

Deployments directory page 130
129

CHAPTER 4 | Overview of ANT Tasks
Using the supplied ANT tasks To use these tasks, you will need to include task definitions such as the
following at the top of your ANT file (where the classpath reference includes
the artix-ds-designerXXX.jar and artix-commonX.jar files):

Deployment Regarding deployment, an Ant build file is used to construct individual build
files for each deployment. The build-template.xml file is delivered with the
toolkit. At deployment time, namespace-specific build files are constructed
by replacing various placeholders with the specific values for the
deployment. The following replacements will occur at deployment time:

� @namespace@ is replaced by the namespace.

� @package@ is replaced by the deployment package.

� @directory@ is replaced by the deployment directory (the deployment
package with '.' replaced by '/').

� @date@ is replaced by the deployment date in the format yy/MM/dd.

� @time@ is replaced by the deployment time in the format hh/mm/ss.

� @javadoc.link@ is replaced by the 'build.javadoc.link' property taken
from the system.properties

� file.

� @cvsheader@ is replaced by the default CVS header.

Deployments directory The directory named "Deployments" is the directory where data models and
transformationss are deployed to. Under this directory you can find all Ant
build files, Java source code, compiled Java classes, and jar files created at
deployment time. You can specify the location of this deployment directory
by altering the profile settings of the Artix Data Services Designer.

<taskdef name="deploy" classname="biz.c24.io.ant.DeployTask"
classpathref="classpath" loaderref="java.lang.ClassLoader"/>

Note: The loaderref attribute is required for full compatibility with
versions of Ant prior to 1.6.0.
130

	Preface
	What This Book Covers
	Who Should Read This Book
	Prerequisites
	How This Book Is Structured
	The Artix Data Services Documentation Library

	Creating Projects
	Before You Begin
	Starting Artix Data Services Designer
	Downloading Sample Getting Started Data

	Creating a Project with the Project Wizard
	Creating a Project Manually

	Creating Data Models
	Creating a Data Model from a Text File
	Creating the Transactions Data Model from Transactions.txt
	Creating the Customers Data Model from Customers.txt

	Creating a Data Model from an XML Schema
	Creating a Data Model from Other Sources
	Creating a Data Model from a Set of XML Documents
	Creating a Data Model from a Database

	Creating a Data Model Manually
	Creating the Accounts Data Model Manually
	Creating the Customers Data Model Manually

	Adding Validation Rules
	Adding Validation Rules for Accounts Data Model
	Adding Validation Rules for Transactions Data Model

	Creating Transformations
	Creating a Simple Transformation
	Starting to Create a Transformation
	Creating a Local Transformation
	Testing the Local Transformation in Your Main Transformation
	Creating a Filter
	Testing the Filter in Your Main Transformation

	Making Your Transformation More Complex
	Before You Continue
	Adding More Input Models to Your Main Transformation
	Adding Local Transformations
	Adding Functions
	Adding Nested Local Transformations
	Adding Hash Tables
	Adding Filters
	Adding Java Methods
	Adding Introspect Functions

	Overview of ANT Tasks

