
Artix ESB
Java Router, Getting Started

Version 5.5
December 2008

Java Router, Getting Started
Progress Software

Version 5.5

Published 10 Dec 2008
Copyright © 2008 IONA Technologies PLC , a wholly-owned subsidiary of Progress Software Corporation.

Legal Notices

Progress Software Corporation and/or its subsidiaries may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this publication. Except as expressly provided in any written license agreement
from Progress Software Corporation, the furnishing of this publication does not give you any license to these patents, trademarks,
copyrights, or other intellectual property. Any rights not expressly granted herein are reserved.

Progress, IONA, IONA Technologies, the IONA logo, Orbix, High Performance Integration, Artix, FUSE, and Making Software
Work Together are trademarks or registered trademarks of Progress Software Corporation and/or its subsidiaries in the US and
other countries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in the US and other countries. All other
trademarks that appear herein are the property of their respective owners.

While the information in this publication is believed to be accurate Progress Software Corporation makes no warranty of any kind
to this material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Progress Software Corporation shall not be liable for errors contained herein, or for incidental or consequential damages in
connection with the furnishing, performance or use of this material.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product names as designated
by the companies who market those products.

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means,
photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third-party intellectual property
right liability is assumed with respect to the use of the information contained herein. IONA Technologies PLC assumes no
responsibility for errors or omissions contained in this publication. This publication and features described herein are subject to
change without notice. Portions of this document may include Apache Foundation documentation, all rights reserved.

Table of Contents
Introducing Java Router .. 9

Architecture ... 10
How to Develop a Router Application .. 13

Java Router Tutorial ... 15
Prerequisites ... 16
Tutorial Overview ... 18
Tutorial: Install m2eclipse into the Eclipse IDE .. 20
Tutorial: Add Repositories to the Maven Index ... 25
Tutorial: Add the FUSE Archetypes Catalog .. 31
Tutorial: Create a New Project ... 33
Tutorial: Build and Run the Simple Router .. 38

3

4

List of Figures
1. Architecture of the Java Router .. 10
2. Overview of the Tutorial ... 18
3. Eclipse New Update Site Dialog ... 21
4. Searching the Subclipse and Mylyn Sites 22
5. Search Results Pane ... 23
6. Search Results for m2eclipse .. 24
7. Eclipse Open Perspective Dialog .. 26
8. Eclipse Show View Dialog .. 27
9. Maven Indexes Tab ... 28
10. Adding the FUSE Release Repository to Maven Indexes 28
11. Adding the FUSE Snapshot Repository to Maven Indexes 29
12. Maven Indexes View with FUSE Repositories 30
13. Maven Archetypes Preferences .. 31
14. Remote Archetype Catalog Dialog ... 32
15. Select a Wizard Dialog .. 34
16. New Maven Project - Project Location 35
17. New Maven Project - Select an Archetype 36
18. New Maven Project - Specify Archetype Parameters 37
19. Package Explorer View of Simple Router Project 39
20. Icons on the Console Tab in Eclipse .. 40
21. Missing Artifact Errors ... 40

5

6

List of Tables
1. Java Router Repositories .. 25
2. Java Router Archetypes ... 33

7

8

Introducing Java Router
This chapter describes the architecture of the Java Router and introduces some basic concepts that are important
for understanding how the router works.

Architecture ... 10
How to Develop a Router Application .. 13

9

Architecture
Overview

Figure 1 on page 10 gives a general overview of the Java Router architecture.
This architecture is designed with the basic requirement in mind that the
router should be deployable in a wide variety of different container types.

Figure 1. Architecture of the Java Router

Router
The router service is represented by a Camel context object, which
encapsulates routing rules (in the form of RouteBuilder objects) and

components (which enable the router to bind to various network protocols
and other resources). The router application itself consists either of Java code
or XML configuration, or possibly a combination of the two.

Endpoints
In general, an endpoint is a specific source or a sink of messages, identified
by a URI. In practice, this means that an endpoint maps either to a network
location or to some other resource that can produce or absorb a stream of
messages. Within a routing rule, endpoints are used in two distinct ways: the
source endpoint appears at the start of a rule (for example, in a from()

command) and acts as a source of request messages and a sink for reply
messages (if any); the target endpoint appears at the end of a rule (for

10

Introducing Java Router

example, in a to() command) and acts as a sink for request messages and

a source of reply messages.

Components
A component is a plug-in that integrates the router core with a particular
network protocol or external resource. From the perspective of a router
developer, a component appears to be a factory for creating a specific type
of endpoint. For example, there is a file component that can be used to create
endpoints that read/write messages to and from particular directories or files.
There is a CXF component that enables you to create endpoints that
communicate with Web services (and related protocols).

Typically, before you can use a particular component, you need to configure
it and add it to the Camel context. Some components, however, are embedded
in the router core and do not need to be configured. The embedded
components are as follows:

• Bean.

• Direct.

• File.

• JMX.

• Log.

• Mock.

• SEDA.

• Timer.

• VM.

11

Architecture

For more details about the available components see the Deployment Guide
and the list of Camel components
[http://activemq.apache.org/camel/components.html].

RouteBuilders
The RouteBuilder classes encapsulate the routing rules. A router developer

defines custom classes that inherit from RouteBuilder and adds instances

of these classes to the CamelContext.

Deployment options
The router architecture is designed to facilitate deploying the router into
different kinds of container. The following deployment options are currently
supported:

• Spring container deployment—the router application is deployed into a
Spring container and you can use the Spring configuration file to configure
components and define routes.

• Standalone deployment—you must write a main() method in the

application code, which is responsible for creating and registering
RouteBuilder objects as well as configuring and registering components.

For more details about the deployment options, see the Deployment Guide.

Camel context
A CamelContext represents a single Camel routing rulebase. It defines the

context used to configure routes and details which policies should be used
during message exchanges between endpoints.

12

Introducing Java Router

http://activemq.apache.org/camel/components.html
http://activemq.apache.org/camel/components.html

How to Develop a Router Application
Outline of the development steps

The following steps give a broad outline of what is involved in developing a
router application:

1. Choose a deployment option—the router architecture is designed to support
multiple deployment options. Currently, the following deployment options
are supported:

• Spring container deployment.

• Standalone deployment.

2. Define routing rules in Java DSL or in XML—depending on the deployment
option, you define the routing rules either in Java DSL or in XML.

3. Configure components—if you need to use components not already
embedded in the router core, you must configure the components using
either Java code or (in the case of a Spring container) XML.

4. Deploy the router—to deploy the router, follow the instructions for the
particular container or deployment option that you have chosen. See the
Deployment Guide for details.

13

How to Develop a Router Application

14

Java Router Tutorial
This tutorial describes how to create, build and run a simple router using Apache Maven and the Eclipse IDE.

Prerequisites ... 16
Tutorial Overview ... 18
Tutorial: Install m2eclipse into the Eclipse IDE .. 20
Tutorial: Add Repositories to the Maven Index ... 25
Tutorial: Add the FUSE Archetypes Catalog .. 31
Tutorial: Create a New Project ... 33
Tutorial: Build and Run the Simple Router .. 38

15

Prerequisites
Overview

Before you can follow the steps described in this tutorial, you must have the
following:

• An active Internet connection (required by Maven).

• Java runtime on page 16 .

• Apache Maven 2 on page 16 .

• Eclipse on page 16 .

Java runtime
You should already have installed a Java runtime, as described in the Install
Guide. Both Maven and Eclipse expect that the JAVA_HOME environment

variable points at the root directory of your Java runtime (JDK 1.5.x) and that
the Java bin directory is on your PATH.

Apache Maven 2
Apache Maven [http://maven.apache.org/] is a general purpose tool for building
and packaging applications. You need to install Maven in order to generate
the tutorial code. You can download the latest version (Maven 2.x) from the
following location: http://maven.apache.org/download.html.

After installing Maven, you need to change the following settings in your
operating system environment:

• Set the M2_HOME environment variable to point at the Maven root directory.

• Set the MAVEN_OPTS environment variable to -Xmx512M in order to expand

the amount of memory available for Maven builds.

• Add the Maven bin directory (%M2_HOME%\bin on Windows or

$M2_HOME/bin on UNIX) to your PATH.

Eclipse
Eclipse [http://www.eclipse.org/] is an open source Integrated Development
Environment (IDE), which you can use to develop applications in Java (and
other languages).In this tutorial, Eclipse is used to build and run the tutorial
example. You can download the latest version of Eclipse from the following
location: http://www.eclipse.org/downloads/. There are various Eclipse

16

Java Router Tutorial

http://maven.apache.org/
http://maven.apache.org/
http://maven.apache.org/download.html
http://www.eclipse.org/
http://www.eclipse.org/
http://www.eclipse.org/downloads/

packages available—make sure that the package you download supports Java
development. It is recommended that you install Eclipse version 3.3 or higher
(the tutorial was tested with version 3.4).

After installing Eclipse, you need to change the following settings in your
operating system environment:

• Add the Eclipse root directory to your PATH (the eclipse binary is located

in the root directory).

17

Prerequisites

Tutorial Overview
Overview

Figure 2 on page 18 gives an overview of the architecture of the router that
features in this tutorial.

Figure 2. Overview of the Tutorial

The simple router shown in Figure 2 on page 18 consists of the following
parts:

• Router—the core component of the simple router. It consists of an instance
of org.apache.camel.builder.RouteBuilder type, which is responsible

for routing messages between component endpoints.

The main() function of the simple router application calls a Spring wrapper

class to start up a Spring container.

• Spring container—a standard container that enables you to instantiate and
configure Java objects using an XML syntax (see Spring
[http://www.springframework.org/]) . Spring also supports concepts such
as dependency injection and reversion of control.

• Spring configuration file—by default, the Spring wrapper looks for Spring
configuration files matching the pattern, META-INF/spring/*.xml, on

the current classpath.

18

Java Router Tutorial

http://www.springframework.org/
http://www.springframework.org/

In this example, the Spring container is configured with the name of a Java
package, tutorial. The Spring wrapper initializes any router artifacts (for

example, instances of RouteBuilder) that it finds in the specified Java

package.

• File endpoints—the RouteBuilder instance is responsible for routing

messages between different endpoints. In this example, all of the endpoints
are file endpoints. A file endpoint is used to read or write messages to the
file system.

Tutorial stages
The tutorial consists of the following stages:

1. Tutorial: Install m2eclipse into the Eclipse IDE on page 20 .

2. Tutorial: Add Repositories to the Maven Index on page 25 .

3. Tutorial: Add the FUSE Archetypes Catalog on page 31.

4. Tutorial: Create a New Project on page 33.

5. Tutorial: Build and Run the Simple Router on page 38 .

19

Tutorial Overview

Tutorial: Install m2eclipse into the Eclipse IDE
Overview

The m2eclipse plug-in from Sonatype [http://m2eclipse.sonatype.org/]

integrates Maven functionality with the Eclipse IDE. After m2eclipse is

installed, you can use Maven archetypes to generate projects within the Eclipse
IDE. The m2eclipse plug-in also provides an editor for Maven POM files and

support for managing Maven repositories. For a full list of features, see the
m2eclipse Wiki [http://docs.codehaus.org/display/M2ECLIPSE/Home].

Plug-in dependencies
The m2eclipse plug-in depends on the following Maven plug-ins:

• Subclipse plug-in—integrates Eclipse with the Subversion version control
system.

• Mylyn plug-in—integrates Eclipse with task management software (for
example, JIRA).

Instructions on how to install these prerequisite plug-ins are included in the
following install instructions.

Steps to install the m2eclipse
plug-in Perform the following steps to install the m2eclipse plug-in:

1. Start the Eclipse IDE. Use the Eclipse instance that is provided as part of
the Artix installation, in the following directory:

ArtixRoot/tools/eclipse

Double-click on the eclipse.exe executable (Windows) or enter eclipse

at the command line (UNIX/Linux).

Note
The version of Eclipse provided with Artix is 3.3.2. You must have
Eclipse version 3.3 or 3.4 in order to be compatible with the
m2eclipse plug-in.

2. To add the Subclipse update site to the Eclipse site list, choose the menu
item, Help|Software Updates|Find and Install, which brings up the Install
wizard. In the Feature Updates panel, select the Search for new features
to install radiobutton and then click Next.

20

Java Router Tutorial

http://m2eclipse.sonatype.org/
http://m2eclipse.sonatype.org/
http://docs.codehaus.org/display/M2ECLIPSE/Home
http://docs.codehaus.org/display/M2ECLIPSE/Home

3. In the Update sites to visit panel, click the New Remote Site button to
bring up the New Update Site dialog. In the URL field, insert the URL for
the Subclipse update site,
http://subclipse.tigris.org/update_1.4.x. Enter Subclipse in

the Name field.

Figure 3. Eclipse New Update Site Dialog

Click OK to add the Subclipse site. After performing this step, the Subclipse
update site should now be listed in the Sites to include in search list in
the Update sites to visit panel.

4. Add the Mylyn update sites to the Eclipse site list. Follow the procedure
described in the preceding step to add either of the following sites
(depending on whether your Eclipse version is 3.3 or 3.4):

http://download.eclipse.org/tools/mylyn/update/e3.3
http://download.eclipse.org/tools/mylyn/update/e3.4

Next, follow the same procedure to add the following site:

http://download.eclipse.org/tools/mylyn/update/extras

5. To search the Subclipse and Mylyn update sites, check the boxes next to
the Subclipse and Mylyn sites in the Sites to include in search list, as
shown in Figure 4 on page 22.

21

Tutorial: Install m2eclipse into the Eclipse IDE

Figure 4. Searching the Subclipse and Mylyn Sites

Click Finish to perform a search of the selected update sites.

6. In the Search Results pane, select all of the listed featues and clieck Next.

22

Java Router Tutorial

Figure 5. Search Results Pane

7. In the Feature License pane, select the first radio button to accept the
license agreements and then click Next. Click Next again, to accept the
Optional Features. Click Finish to start the installation of the features and
follow the on-screen directions. When the installation is finished, restart
the Eclipse IDE.

8. After restarting the Eclipse IDE, choose Help|Software Updates|Find and
Install to bring up the Install wizard again.

9. Add the m2eclipse update site to the update site list. Following the same

procedure as before, use the New Remote Site button to add the following
site:

http://m2eclipse.sonatype.org/update/

After performing this step, the m2eclipse update site should appear in

the site list.

10. Follow the same procedure as before to install the m2eclipse plug-in,

except that when you get to the Search Results pane, you must omit the
optional Maven Integration for AJDT feature (in order to avoid a clash with
the existing Eclipse configuration).

23

Tutorial: Install m2eclipse into the Eclipse IDE

Figure 6. Search Results for m2eclipse

11.When the installation is finished, restart the Eclipse IDE.

24

Java Router Tutorial

Tutorial: Add Repositories to the Maven Index
Overview

This stage of the tutorial describes how to add the Java Router repositories
to the Maven Index in Eclipse. The m2eclipse plug-in uses the list of

repositories in the Maven Index to discover Maven archetypes and other Maven
artifacts.

Java Router repositories
Java Router artifacts are stored in the following repositories:

Table 1. Java Router Repositories

DescriptionRepository URL

Repository of stable
releases.

http://repo.fusesource.com/maven2/

Repository of
current snapshot

http://repo.fusesource.com/maven2-snapshot/

release (updated
nightly).

Steps to add repositories
Perform the following steps to add the Java Router repositories to the Maven
index:

1. Start the Eclipse IDE, either by double-clicking on the Eclipse icon or by
entering the following command:

eclipse

2. To open the Java perspective in the Eclipse workbench, choose the menu
item, Window|Open Perspective|Other. From the Open Perspective
dialog, select Java and click OK.

25

Tutorial: Add Repositories to the Maven Index

Figure 7. Eclipse Open Perspective Dialog

3. To open the Maven Indexes view in the Eclipse workbench, choose the
menu item, Window|Show View|Other.

26

Java Router Tutorial

Figure 8. Eclipse Show View Dialog

From the Show View dialog, select the Maven Indexes view and click OK.
The Maven Indexes tab now appears at the bottom of the Eclipse
workbench.

27

Tutorial: Add Repositories to the Maven Index

Figure 9. Maven Indexes Tab

4. To add the FUSE release repository to the Maven Indexes, right click the
Maven Indexes view and select Add Index. The Add Repository Index
dialog appears.

Figure 10. Adding the FUSE Release Repository to Maven Indexes

Enter http://repo.fusesource.com/maven2/ in the Repository URL

field, enter fuse in the Repository Id field, and then click OK. The new

repository now appears in the Maven Indexes list, but you need to wait for
a minute or so before the index contents are fully populated (check the

28

Java Router Tutorial

status bar in the bottom right corner). If any errors occur while updating
the new index, these will appear in the Console tab.

5. To add the FUSE snapshot repository to the Maven Indexes, right click the
Maven Indexes view and select Add Index. The Add Repository Index
dialog appears.

Figure 11. Adding the FUSE Snapshot Repository to Maven Indexes

Enter http://repo.fusesource.com/maven2-snapshot/ in the

Repository URL field, enter fuse-snapshot in the Repository Id field,

and then click OK.

6. After performing the preceding steps, your Maven Index view should look
like the following:

29

Tutorial: Add Repositories to the Maven Index

Figure 12. Maven Indexes View with FUSE Repositories

30

Java Router Tutorial

Tutorial: Add the FUSE Archetypes Catalog
Overview

This stage of the tutorial explains how to add the FUSE archetypes catalog
to the list of catalogs accessible from m2eclipse. This ensures that you can

access the FUSE archetypes when you run the Create a Maven Project in
Eclipse (see Tutorial: Create a New Project on page 33).

Steps to add the FUSE archetypes
catalog Perform the following steps to add the FUSE archetypes catalog:

1. Choose the menu item, Windows|Preferences, to open the Preferences
dialog and drill down to the Maven|Archetypes preferences, as shown.

Figure 13. Maven Archetypes Preferences

2. Click Add Remote Catalog to bring up the Remote Archetype Catalog
dialog. In the Catalog File text box, enter

31

Tutorial: Add the FUSE Archetypes Catalog

http://repo.fusesource.com/maven2 and in the Description text box,

enter FUSE Archetypes. Click OK.

Figure 14. Remote Archetype Catalog Dialog

3. In the Preferences dialog, click Apply and then click OK.

32

Java Router Tutorial

Tutorial: Create a New Project
Overview

In this stage of the tutorial, you will use the Maven build tool to generate code
for a simple router application based on Java Router.

Camel archetypes
A Maven archetype is analogous to a new project wizard: it generates the
outline of a sample project, where the generated project follows the standard
Maven directory layout. Java Router provides the following Maven archetypes
to generates basic projects:

Table 2. Java Router Archetypes

DescriptionArchetype

Generates an example of a simple route
written in Java DSL.

camel-archetype-java

Generates an example of a simple route
written in Spring XML.

camel-archetype-spring

Generates an example of a simple route
written in Scala.

camel-archetype-scala

Generates an example of a simple Spring
XML route featuring the FUSE Message
Broker (Enterprise ActiveMQ).

camel-archetype-activemq

Generates a starting point for writing your
own Java Router component. For more

camel-archetype-component

details, see Implementing a Component in
the Java Router, Programmer's Guide.

Steps to create a new project
Perform the following steps to generate a new Java Router project:

1. Choose the menu item, File|New|Other, to open the Select a wizard
dialog. From the scrollbox, select Maven Project and then click Next.

33

Tutorial: Create a New Project

../prog_guide/prog_guide.pdf

Figure 15. Select a Wizard Dialog

2. The next wizard step allows you to customize the project location, if desired.
Click Next.

34

Java Router Tutorial

Figure 16. New Maven Project - Project Location

3. The next wizard step lets you select the archetype to generate your Maven
project. From the Catalog drop-down list, select the FUSE Archetypes
catalog. Then use the scrollbar to locate the camel-archetype-java

archetype, version 1.5.1.0-fuse, and select the archetype. Click Next.

35

Tutorial: Create a New Project

Figure 17. New Maven Project - Select an Archetype

Note
If you cannot find the current version of the archetype in the
preceding list, your Maven indexes might be out of date. To update
the indexes, right-click inside theMaven Indexes view, and select
Update Index.

36

Java Router Tutorial

Note
If you want to generate an older version of an archetype, uncheck
the box beside Show the last version of Archetype only to display
the full list of archetypes in the scroll box.

4. The next wizard step prompts you to supply the basic parameters of the
archetype. Enter tutorial in the Group Id field, enter simple-router

in the Artifact Id field, and enter tutorial in the Package field. Click

Finish to generate the simple-router project.

Figure 18. New Maven Project - Specify Archetype Parameters

37

Tutorial: Create a New Project

Tutorial: Build and Run the Simple Router
Overview

In this stage of the tutorial, you will learn how to use the Eclipse IDE to build
and run the simple router application.

Steps to build and run the simple
router Perform the following steps to build and run the simple router:

1. Normally, you do not have to do anything to build the simple router project.
By default, Eclipse is configured to build projects automatically (for
example, the simple-router project would be built as soon as it is

imported into Eclipse).

If the project is not yet built, however, you can either enable automatic
building (select Project|Build Automatically) or force the build manually
(select Project|Build All). A prerequisite for a successful build is that all
of the project's Maven dependencies are satisfied (in other words, Maven
can locate and download all of the artifacts it needs for this project). If you
have trouble with Maven dependencies, see Troubleshooting Maven
dependencies on page 40.

2. To view the source code for the simple router application, click on the
Package Explorer tab on the left of the Eclipse workbench and then drill
down to simple-router|src/main/java|tutorial|MyRouteBuilder.java.

38

Java Router Tutorial

Figure 19. Package Explorer View of Simple Router Project

Double-click on MyRouteBuilder.java to open the Java source file for

the simple router.

3. To run the simple router application, right-click MyRouteBuilder.java

in the Package Explorer tab (see Figure 19 on page 39) and select Run
As|Java Application.

4. When the router starts up, you should see lines like the following appear
in the Console tab (normally located at the bottom of the Eclipse
workbench):

28-Aug-2008 11:32:55 org.apache.camel.spring.Main doStart
INFO: Apache Camel 1.5.1.0-fuse starting
28-Aug-2008 11:32:55 org.springframework.context.support.Ab
stractApplicationContext prepareRefresh
...

When the router is running, it reads messages from the
TutorialRoot/simple-router/src/data directory and routes them to

the TutorialRoot/simple-router/target/messages directory. To see

39

Tutorial: Build and Run the Simple Router

whether the router is running correctly, check that the messages have
arrived under the target/messages directory.

Note
If you want to inspect the target/messages directory from within

the Eclipse environment, you will need to right-click the target

directory and select Refresh.

5. To shut down the simple router, click on the Console tab and, to the right
of the Console tab, look for the icons shown in Figure 20 on page 40 .

Figure 20. Icons on the Console Tab in Eclipse

Click on the red square (leftmost icon shown in Figure 20 on page 40)
to shut down the router application.

Troubleshooting Maven
dependencies If Maven fails to locate some of the dependencies required for your project,

you will see errors like the following, in the Problems tab at the bottom of
the Eclipse workbench:

Figure 21. Missing Artifact Errors

Missing Maven dependencies give rise to Missing artifact errors. The Type
column clearly identifies this as a Maven problem: to resolve it, check the
following points:

1. If you are working behind a HTTP proxy, it is necessary to configure Maven
with the proxy details, otherwise Maven will not be able to download

40

Java Router Tutorial

artifacts. For details, see the Maven guide to using proxies
[http://maven.apache.org/guides/mini/guide-proxies.html].

2. Make sure that the Maven Indexes view list all of the repositories you
need. Your list should include at least the repositories, workspace, local,

central, fuse, and fuse-snapshot. The central Maven repository,

central, contains a huge range of third-party software, but occasionally

you might find that you need to add a new repository to access a particular
third-party product.

For instructions on how to add repositories to the Maven Indexes list, see
Tutorial: Add Repositories to the Maven Index on page 25.

3. Make sure that the Maven indexes cache is up to date. Right-click inside
the Maven Indexes view, and select Update Index.

4. The repositories must be listed in your project's POM file, pom.xml. To

check the list of repositories accessible to your project, double-click the
pom.xml file (see Figure 19 on page 39) to open the file in the POM

editor. Click the Repositories tab at the bottom of the editor pane to see
the project's current repository list. To edit the repository list, click the
pom.xml tab and edit the XML source directly. Save the pom.xml file

(Ctrl-S) to make the changes effective.

Note
In the version of m2eclipse tested for this tutorial, the editing

features in the Repositories tab of the POM editor were not
functioning properly. You must edit from the pom.xml tab instead.

The minimum set of repositories required for a Java Router project are:

http://repo.fusesource.com/maven2
http://repo.fusesource.com/maven2-snapshot

To include these repositories in your proejct, add the following repository

elements to the pom.xml file:

<repositories>
<repository>
<id>fusesource.m2</id>
<name>FUSE Open Source Community Release Reposit

ory</name>

41

Tutorial: Build and Run the Simple Router

http://maven.apache.org/guides/mini/guide-proxies.html
http://maven.apache.org/guides/mini/guide-proxies.html

<url>http://repo.fusesource.com/maven2</url>
<snapshots>
<enabled>false</enabled>

</snapshots>
<releases>
<enabled>true</enabled>

</releases>
</repository>
<repository>
<id>fusesource.m2-snapshot</id>
<name>FUSE Open Source Community Snapshot Reposit

ory</name>
<url>http://repo.fusesource.com/maven2-snapshot</url>

<snapshots>
<enabled>true</enabled>

</snapshots>
<releases>
<enabled>false</enabled>

</releases>
</repository>
</repositories>

5. You also need to ensure that your project's pom.xml file specifies all of the

requisite Maven dependencies. The minimum set of dependencies for a
Java Router project is:

<dependencies>
<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-core</artifactId>
<version>${camel-version}</version>

</dependency>
<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-spring</artifactId>
<version>${camel-version}</version>

</dependency>
</dependencies>

However, a typical project could have many additional dependencies. In
particular, most of the Java Router components are packaged as separate
Maven artifacts. Each time you add another Java Router component to
your project, you will usually need to add a dependency to your pom.xml

file (the exceptions are the few components that belong to the camel-core

artifact).

42

Java Router Tutorial

6. When you are finished checking the previous points, select Project|Update
All Maven Dependencies to download the missing artifacts to your local
Maven repository.

43

Tutorial: Build and Run the Simple Router

44

	Java Router, Getting Started
	Table of Contents
	Introducing Java Router
	Architecture
	How to Develop a Router Application

	Java Router Tutorial
	Prerequisites
	Tutorial Overview
	Tutorial: Install m2eclipse into the Eclipse IDE
	Tutorial: Add Repositories to the Maven Index
	Tutorial: Add the FUSE Archetypes Catalog
	Tutorial: Create a New Project
	Tutorial: Build and Run the Simple Router

