
Artix® ESB
Artix® ESB Deployment Guide

Version 5.5
December 2008

Artix® ESB Deployment Guide
Version 5.5

Publication date 15 Jan 2010
Copyright © 2001-2009 Progress Software Corporation and/or its subsidiaries or affiliates.

Legal Notices

Progress Software Corporation and/or its subsidiaries may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this publication. Except as expressly provided in any written license agreement
from Progress Software Corporation, the furnishing of this publication does not give you any license to these patents, trademarks,
copyrights, or other intellectual property. Any rights not expressly granted herein are reserved.

Progress, IONA, IONA Technologies, the IONA logo, Orbix, High Performance Integration, Artix;, FUSE, and Making Software
Work Together are trademarks or registered trademarks of Progress Software Corporation and/or its subsidiaries in the US and
other countries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in the US and other countries. All other
trademarks that appear herein are the property of their respective owners.

While the information in this publication is believed to be accurate Progress Software Corporation makes no warranty of any kind
to this material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Progress Software Corporation shall not be liable for errors contained herein, or for incidental or consequential damages in
connection with the furnishing, performance or use of this material.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product names as designated
by the companies who market those products.

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means,
photocopying, recording or otherwise, without prior written consent of Progress Software Corporation. No third-party intellectual
property right liability is assumed with respect to the use of the information contained herein. Progress Software Corporation
assumes no responsibility for errors or omissions contained in this publication. This publication and features described herein
are subject to change without notice. Portions of this document may include Apache Foundation documentation, all rights reserved.

Table of Contents
Preface ... 11

What is Covered in This Book ... 12
Who Should Read This Book .. 13
Organization of this Guide .. 14
The Artix ESB Documentation Library ... 15

Artix ESB Configuration Overview ... 17
Artix ESB Configuration Files .. 18
Making Your Configuration File Available .. 21

Setting Up Your Environment ... 23
Using the Artix ESB Environment Script ... 24
Artix ESB Environment Variables .. 25
Customizing your Environment Script .. 27

Configuring Artix ESB Endpoints ... 29
Configuring Service Providers .. 30

Using the jaxws:endpoint Element ... 31
Using the jaxws:server Element ... 35
Adding Functionality to Service Providers ... 38

Configuring Consumer Endpoints ... 40
Artix ESB Logging ... 45

Overview of Artix ESB Logging .. 46
Simple Example of Using Logging .. 48
Default logging.properties File .. 50

Configuring Logging Output .. 51
Configuring Logging Levels ... 53

Enabling Logging at the Command Line ... 54
Logging for Subsystems and Services .. 55
Logging Message Content .. 57

Deploying to an OSGi Container .. 61
Introduction to OSGi ... 62
Packaging and Installing an Application ... 65
Installing a Sample Application ... 70

Deploying to the Spring Container ... 77
Introduction .. 78
Running the Spring Container ... 81
Deploying a Artix ESB Endpoint ... 83
Managing the Container using the JMX Console ... 86
Managing the Container using the Web Service Interface ... 89
Spring Container Definition File ... 90
Running Multiple Containers on Same Host .. 93

Deploying to a Servlet Container ... 97
Introduction .. 98

3

Configuring the Servlet Container ... 99
Using the CXF Servlet ... 101
Using a Custom Servlet ... 107
Using the Spring Context Listener ... 110

Deploying WS-Addressing ... 115
Introduction to WS-Addressing .. 116
WS-Addressing Interceptors .. 117
Enabling WS-Addressing .. 118
Configuring WS-Addressing Attributes ... 120

Enabling Reliable Messaging .. 123
Introduction to WS-RM .. 124
WS-RM Interceptors ... 126
Enabling WS-RM ... 128
Configuring WS-RM .. 132

Configuring Artix ESB-Specific WS-RM Attributes ... 133
Configuring Standard WS-RM Policy Attributes .. 135
WS-RM Configuration Use Cases ... 139

Configuring WS-RM Persistence ... 143
Enabling High Availability .. 145

Introduction to High Availability ... 146
Enabling HA with Static Failover .. 148
Configuring HA with Static Failover ... 150
Enabling HA with Dynamic Failover .. 151
Configuring HA with Dynamic Failover ... 154

Publishing WSDL Contracts ... 157
Artix WSDL Publishing Service .. 158
Configuring the WSDL Publishing Service ... 160
Configuring for Use in a Servlet Container .. 163
Querying the WSDL Publishing Service .. 165

Accessing Services Using UDDI .. 167
Introduction to UDDI .. 168
Configuring a Client to Use UDDI ... 169

A. Artix ESB Binding IDs ... 171
Index .. 173

4

List of Figures
1. Artix ESB Endpoint Deployed in a Spring Container 79
2. JMX Console—SpringContainer MBean 87
3. Artix ESB Endpoint Deployed in a Servlet Container 102
4. Web Services Reliable Messaging ... 124
5. Creating References with the WSDL Publishing Service 159

5

6

List of Tables
1. Artix ESB Environment Variables .. 25
2. Attributes for Configuring a JAX-WS Service Provider Using the
jaxws:endpoint Element ... 32

3. Attributes for Configuring a JAX-WS Service Provider Using the
jaxws:server Element .. 36

4. Elements Used to Configure JAX-WS Service Providers 38
5. Attributes Used to Configure a JAX-WS Consumer 40
6. Elements For Configuring a Consumer Endpoint 42
7. Java.util.logging Handler Classes ... 51
8. Artix ESB Logging Subsystems .. 55
9. Advanced Feature Bundles ... 67
10. Spring Container Command Options 81
11. JMX Console—SpringContainer MBean Operations 87
12. WS-Addressing Interceptors .. 117
13. WS-Addressing Attributes ... 120
14. Artix ESB WS-ReliableMessaging Interceptors 126
15. Children of the rmManager Spring Bean 133
16. Children of the WS-Policy RMAssertion Element 135
17. JDBC Store Properties ... 144
18. WSDL Publishing Service Configuration Options 161
A.1. Binding IDs for Message Bindings .. 171

7

8

List of Examples
1. Namespace .. 18
2. Adding the JAX-WS Schema to the Configuration File 19
3. Artix ESB Configuration File .. 19
4. Simple JAX-WS Endpoint Configuration 33
5. JAX-WS Endpoint Configuration with a Service Name 34
6. Simple JAX-WS Server Configuration ... 37
7. Simple Consumer Configuration ... 43
8. Configuration for Enabling Logging ... 46
9. Configuring the Console Handler .. 51
10. Console Handler Properties ... 51
11. Configuring the File Handler ... 52
12. File Handler Configuration Properties 52
13. Configuring Both Console Logging and File Logging 52
14. Configuring Global Logging Levels .. 53
15. Configuring Logging at the Package Level 53
16. Flag to Start Logging on the Command Line 54
17. Configuring Logging for WS-Addressing 56
18. Adding Logging to Endpoint Configuration 57
19. Adding Logging to Client Configuration 57
20. Setting the Logging Level to INFO .. 58
21. Endpoint Configuration for Logging SOAP Messages 58
22. Bundle Activator Interface .. 66
23. Build Targets for Packaging the Demo as OSGi Bundles 70
24. OSGi BND Control File .. 71
25. Installing HelloWorld to the Equinox OSGi Container 72
26. Starting HelloWorld in the Equinox OSGi Container 73
27. Output from HelloWorld ... 74
28. Configuration File—spring.xml ... 83
29. spring_container.xml ... 90
30. CXF Servlet Configuration File ... 104
31. A web.xml Deployment Descriptor File 106
32. Instantiating a Consumer Endpoint in a Servlet 107
33. Loading Configuration from a Custom Location 108
34. Web Application Configuration for Loading the Spring Context
Listener ... 111
35. Configuration for a Consumer Deployed into a Servlet Container
Using the Spring Context Listener .. 112
36. client.xml—Adding WS-Addressing Feature to Client
Configuration .. 118
37. server.xml—Adding WS-Addressing Feature to Server
Configuration .. 118

9

38. Using the Policies to Configure WS-Addressing 120
39. Enabling WS-RM Using Spring Beans 128
40. Configuring WS-RM using WS-Policy 130
41. Adding an RM Policy to Your WSDL File 130
42. Configuring Artix ESB-Specific WS-RM Attributes 133
43. Configuring WS-RM Attributes Using an RMAssertion in an
rmManager Spring Bean .. 136
44. Configuring WS-RM Attributes as a Policy within a Feature 137
45. Configuring WS-RM in an External Attachment 138
46. Setting the WS-RM Base Retransmission Interval 139
47. Setting the WS-RM Exponential Backoff Property 140
48. Setting the WS-RM Acknowledgement Interval 141
49. Setting the WS-RM Maximum Unacknowledged Message
Threshold .. 141
50. Setting the Maximum Length of a WS-RM Message
Sequence .. 141
51. Setting the WS-RM Message Delivery Assurance Policy 142
52. Configuring the JDBC Store for WS-RM Persistence 144
53. Enabling HA with Static Failover—WSDL File 148
54. Enabling HA with Static Failover—Client Configuration 149
55. Configuring a Random Strategy for Static Failover 150
56. Configuring Your Service to Register with the Locator 151
57. Configuring your Client to Use Locator Mediated Failover 152
58. Configuring the WSDL Publishing Service 160
59. Configuring Artix WSDL Publish Service for Deployment to a Servlet
Container ... 163
60. Configuring a Listener Class .. 164
61. Programming an Application to Use a UDDI Registry 169
62. UDDI Client Configuration .. 169

10

Preface
What is Covered in This Book ... 12
Who Should Read This Book .. 13
Organization of this Guide .. 14
The Artix ESB Documentation Library ... 15

11

What is Covered in This Book
This book explains how to configure and deploy Artix ESB Java Runtime
services and applications, including those written in JAX-WS and JavaScript.
For details of using Artix® ESB in a C++ or JAX-RPC environment, see
Configuring and Deploying Artix Solutions, C++ Runtime1.

1 ../cpp/index.htm

12

../cpp/index.htm
../cpp/index.htm

Who Should Read This Book
The main audience of this book is Artix ESB system administrators. However,
anyone involved in designing a large-scale Artix solution will find this book
useful.

Knowledge of specific middleware or messaging transports is not required to
understand the general topics discussed in this book. However, if you are
using this book as a guide to deploying runtime systems, you should have a
working knowledge of the middleware transports that you intend to use in
your Artix solutions

13

Organization of this Guide
This guide is divided into the following chapters:

• Artix ESB Configuration Overview on page 17 describes Artix Java
configuration files.

• Setting Up Your Environment on page 23 describes how to set up your
Artix Java environment.

• Configuring Artix ESB Endpoints on page 29 describes how to configure
Artix Java endpoints.

• Artix ESB Logging on page 45 describes how to use logging.

• Deploying to the Spring Container on page 77 describes how to deploy an
Artix Java endpoint to the Spring container.

• Deploying to a Servlet Container on page 97 describes how to deploy an
Artix Java endpoint to a servlet container.

• Deploying WS-Addressing on page 115 describes how to configure Artix
Java endpoints to use WS-Addressing.

• Enabling Reliable Messaging on page 123 describes how to enable and
configure Web Services Reliable Messaging (WS-RM)..

• Enabling High Availability on page 145 describes how to enable and
configure both static failover and dynamic failover.

• Publishing WSDL Contracts on page 157 describes how to enable the Artix
Java WSDL publishing service.

• Accessing Services Using UDDI on page 167 which describes how to
configure a client to access a WSDL contract from a UDDI registry at
runtime.

14

The Artix ESB Documentation Library
For information on the organization of the Artix ESB library, the document
conventions used, and where to find additional resources, see Using the Artix
ESB Library2.

2 http://www.iona.com/support/docs/artix/5.5/library_intro/index.htm

15

http://www.iona.com/support/docs/artix/5.5/library_intro/index.htm
http://www.iona.com/support/docs/artix/5.5/library_intro/index.htm
http://www.iona.com/support/docs/artix/5.5/library_intro/index.htm

16

Artix ESB Configuration Overview
Artix ESB takes a minimalist approach to requiring configuration. However, it provides a large number of options
for providing configuration data.

Artix ESB Configuration Files .. 18
Making Your Configuration File Available .. 21

Artix ESB adopts an approach of zero configuration, or configuration by
exception. Configuration is required only if you want to either customize the
runtime to exhibit non-default behavior or if you want to activate some of the
more advanced features.

Artix ESB supports a number of configuration methods if you want to change
the default behavior, enable specific functionality or fine-tune a component’s
behavior. The supported configuration methods include:

• Spring XML configuration

• WS-Policy statements

• WSDL extensions

Spring XML configuration is, however, the most versatile way to configure
Artix ESB and is the recommended approach to use.

17

Artix ESB Configuration Files
Overview

Artix ESB leverages the Spring framework to inject configuration information
into the runtime when it starts up. The XML configuration file used to configure
applications is a Spring XML file that contains some Artix ESB specific
elements.

Spring framework
Spring is a layered Java/J2EE application framework. Artix ESB leverages the
Spring core and uses the principles of Inversion of Control and Dependency
Injection.

For more information on the Spring framework, see http://
www.springframework.org. Of particular relevance is Chapter 3 of the Spring
reference guide, The IoC container1.

For more information on inversion of control and dependency injection, see
http://martinfowler.com/articles/injection.html.

Configuration namespace
The core Artix ESB configuration elements are defined in the
http://cxf.apache.org/jaxws namespace. You must add the entry shown in
Example 1 on page 18 to the beans element of your configuration file.

Example 1. Namespace

<beans ...
xmlns:jaxws="http://cxf.apache.org/jaxws
...>

Advanced features, like WS-Addressing and WS-RM, require the use of
elements in other namespaces. The SOAP and JMS transports also use
elements defined in different namespaces. You must add those namspaces
when configuring those features.

Schema location
Spring XML files use the beans element's xsi:schemaLocation attribute to
locate the schemas required to validate the elements used in the document.
The xsi:schemaLocation attribute is a list of namespaces, and the schema
in which the namespace is defined. Each namespace/schema combination
is defined as a space delimited pair.

You should add the Artix ESB's configuration schemas to the list of schemas
in the attribute as shown in Example 2 on page 19.

1 http://static.springframework.org/spring/docs/2.0.x/reference/beans.html

18

Artix ESB Configuration Overview

http://www.springframework.org
http://www.springframework.org
http://static.springframework.org/spring/docs/2.0.x/reference/beans.html
http://static.springframework.org/spring/docs/2.0.x/reference/beans.html
http://martinfowler.com/articles/injection.html
http://static.springframework.org/spring/docs/2.0.x/reference/beans.html

Example 2. Adding the JAX-WS Schema to the Configuration File

<beans ...
xsi:schemaLocation="

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-
2.0.xsd
http://cxf.apache.org/jaxws
http://cxf.apache.org/schemas/jaxws.xsd
...">

Sample configuration file
Example 3 on page 19 shows a simplified example of a Artix ESB
configuration file.

Example 3. Artix ESB Configuration File

<beans xmlns="http://www.springframework.org/schema/beans" ❶
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:jaxws="http://cxf.apache.org/jaxws" ❷
...
xsi:schemaLocation="

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
http://cxf.apache.org/jaxws ❸
http://cxf.apache.org/schemas/jaxws.xsd">

<!-- your configuration goes here! --> ❹

</beans>

The following describes Example 3 on page 19:

❶ A Artix ESB configuration file is actually a Spring XML file. You must
include an opening Spring beans element that declares the namespaces

and schema files for the child elements that are encapsulated by the
beans element.

❷ Before using the Artix ESB configuration elements, you must declare its
namespace in the configuration's root element.

❸ In order for the runtime and the tooling to ensure that your configuration
file is valid, you need to add the proper entries to the schema location
list.

❹ The contents of the configuration depends on the behavior you want
exhibited by the runtime. You can use:

• Artix ESB specific elements

19

Artix ESB Configuration Files

• Plain Spring XML bean elements

20

Artix ESB Configuration Overview

Making Your Configuration File Available
Overview

You can make the configuration file available to the Artix ESB runtime in one
of the following ways:

• Name the configuration file cxf.xml and add it your CLASSPATH.

• Use one of the following command-line flags to point to the configuration
file:

• -Dcxf.config.file=myCfgResource

• -Dcxf.config.file.url=myCfgURL

This allows you to save the configuration file anywhere on your system and
avoid adding it to your CLASSPATH. It also means you can give your
configuration file any name you want.

This is a useful approach for portable JAX-WS applications. It is also the
method used in most of the Artix ESB samples. For example, in the
WS-Addressing sample, located in the
InstallDir/samples/ws-addressing directory, the server start command
specifies the server.xml configuration file as follows:

java -Dcxf.config.file=server.xml demo.ws_addressing.server.Server

Note
In this example, the start command is run from the directory in
which the server.xml file resides.

• Programmatically, by creating a bus and passing the configuration file
location as either a URL or string. For example:

(new SpringBusFactory()).createBus(URL myCfgURL)
(new SpringBusFactory()).createBus(String myCfgResource)

21

Making Your Configuration File Available

22

Setting Up Your Environment
This chapter explains how to set-up your Artix ESB runtime system environment.

Using the Artix ESB Environment Script ... 24
Artix ESB Environment Variables .. 25
Customizing your Environment Script .. 27

23

Using the Artix ESB Environment Script
Overview

To use the Artix ESB runtime environment, the host computer must have
several environment variables set. These variables can be configured either
during installation, or later using the fuse_env script, The can also be
configured manually.

Running the fuse_env script
The Artix ESB installation process creates a script named fuse_env, which
captures the information required to set your host’s environment variables.
Running this script configures your system to use the Artix ESB runtime. The
script is located in the InstallDir/bin folder.

24

Setting Up Your Environment

Artix ESB Environment Variables
Overview

This section describes the following environment variables in more detail:

• CXF_HOME

• JAVA_HOME

• ANT_HOME

• SPRING_CONTAINER_HOME

• CATALINA_HOME

• PATH

Note
You do not have to manually set your environment variables. You
can configure them during installation, or you can set them later by
running the provided fuse_env script.

Environment variables
The environment variables are explained in Table 1 on page 25.

Table 1. Artix ESB Environment Variables

DescriptionVariable

Specifies the top level of your Artix ESB installation. For example, on Windows, if
you install Artix ESB into the C:\Artix directory, CXF_HOME should be set to

C:\Artix.

CXF_HOME

Specifies the directory path to your system’s JDK.JAVA_HOME

Specifies the directory path to the ant utility. The default location is
InstallDir\tools\ant.

ANT_HOME

Specifies the directory path to the Spring container. The default location is
CXF_HOME\containers\spring_container.

SPRING_CONTAINER_HOME

Specifies the location of the Tomcat instance installed with Artix ESB.CATALINA_HOME

25

Artix ESB Environment Variables

DescriptionVariable

The Artix ESB bin directories are prepended on the PATH to ensure that the proper

libraries, configuration files, and utility programs are used.

PATH

26

Setting Up Your Environment

Customizing your Environment Script
Overview

The fuse_env script sets the Artix ESB environment variables using values
obtained from the installer. The script checks each one of these settings in
sequence, and updates them, where appropriate.

The fuse_env script is designed to suit most needs. However, if you want to
customize it for your own purposes, note the points described in this section.

Before you begin
You can only run the fuse_env script once in any console session. If you run
this script a second time, it exits without completing. This prevents your
environment from becoming bloated with duplicate information (for example,
on your PATH and CLASSPATH). In addition, if you introduce any errors when
customizing the fuse_env script, it also exits without completing.

This feature is controlled by the FUSE_ENV_SET variable, which is local to
the fuse_env script. FUSE_ENV_SET is set to true the first time you run the
script in a console; this causes the script to exit when run again.

Environment variables
The following applies to the environment variables set by the fuse_env script:

• JAVA_HOME defaults to the value obtained from the installer. If you do not

manually set this variable before running fuse_env, it takes its value from
the installer.

• The following environment variables are all set with default values relative
to CXF_HOME:

• ANT_HOME

• SPRING_CONTAINER_HOME

• CATALINA_HOME

If you do not set these variables manually, fuse_env sets them with default
values based on CXF_HOME. For example, the default for ANT_HOME is
CXF_HOME\tools\ant.

27

Customizing your Environment Script

28

Configuring Artix ESB Endpoints
Artix ESB endpoints are configured using one of three Spring configuration elements. The correct element depends
on what type of endpoint you are configuring and which features you wish to use. For consumers you use the
jaxws:client element. For service providers you can use either the jaxws:endpoint element or the
jaxws:server element.

Configuring Service Providers .. 30
Using the jaxws:endpoint Element ... 31
Using the jaxws:server Element ... 35
Adding Functionality to Service Providers ... 38

Configuring Consumer Endpoints ... 40

The information used to define an endpoint is typically defined in the endpoint's
contract. You can use the configuration element's to override the information
in the contract. You can also use the configuration elements to provide
information that is not provided in the contract.

Note
When dealing with endpoints developed using a Java-first approach
it is likely that the SEI serving as the endpoint's contract is lacking
information about the type of binding and transport to use.

You must use the configuration elements to activate advanced features such
as WS-RM. This is done by providing child elements to the endpoint's
configuration element.

29

Configuring Service Providers
Using the jaxws:endpoint Element ... 31
Using the jaxws:server Element ... 35
Adding Functionality to Service Providers ... 38

Artix ESB has two elements that can be used to configure a service provider:

• jaxws:endpoint

• jaxws:server

The differences between the two elements are largely internal to the runtime.
The jaxws:endpoint element injects properties into the
org.apache.cxf.jaxws.EndpointImpl object created to support a service
endpoint. The jaxws:server element injects properties into the
org.apache.cxf.jaxws.support.JaxWsServerFactoryBean object
created to support the endpoint. The EndpointImpl object passes the
configuration data to the JaxWsServerFactoryBean object. The
JaxWsServerFactoryBean object is used to create the actual service object.
Because either configuration element will configure a service endpoint, you
can choose based on the syntax you prefer.

30

Configuring Artix ESB Endpoints

Using the jaxws:endpoint Element
Overview

The jaxws:endpoint element is the default element for configuring JAX-WS
service providers. Its attributes and children specify all of the information
needed to instantiate a service provider. Many of the attributes map to
information in the service's contract. The children are used to configure
interceptors and other advanced features.

Identifying the endpoint being
configured For the runtime to apply the configuration to the proper service provider, it

must be able to identify it. The basic means for identifying a service provider
is to specify the class that implements the endpoint. This is done using the
jaxws:endpoint element's implementor attribute.

For instances where different endpoint's share a common implementation, it
is possible to provide different configuration for each endpoint. There are two
approaches for distinguishing a specific endpoint in configuration:

• a combination of the serviceName attribute and the endpointName

attribute

The serviceName attribute specifies the wsdl:service element defining
the service's endpoint. The endpointName attribute specifies the specific
wsdl:port element defining the service's endpoint. Both attributes are
specified as QNames using the format ns:name. ns is the namespace of
the element and name is the value of the element's name attribute.

Tip
If the wsdl:service element only has one wsdl:port element,
the endpointName attribute can be omitted.

• the name attribute

The name attribute specifies the QName of the specific wsdl:port element
defining the service's endpoint. The QName is provided in the format

31

Using the jaxws:endpoint Element

{ns}localPart. ns is the namespace of the wsdl:port element and
localPart is the value of the wsdl:port element's name attribute.

Attributes
The attributes of the jaxws:endpoint element configure the basic properties
of the endpoint. These properties include the address of the endpoint, the
class that implements the endpoint, and the bus that hosts the endpoint.

Table 2 on page 32 describes the attribute of the jaxws:endpoint element.

Table 2. Attributes for Configuring a JAX-WS Service Provider Using the jaxws:endpoint Element

DescriptionAttribute

Specifies a unique identifier that other configuration elements can use to refer to the
endpoint.

id

Specifies the class implementing the service. You can specify the implementation class
using either the class name or an ID reference to a Spring bean configuring the
implementation class. This class must be on the classpath.

implementor

Specifies the class implementing the service. This attribute is useful when the value
provided to the implementor attribute is a reference to a bean that is wrapped using

Spring AOP.

implementorClass

Specifies the address of an HTTP endpoint. This value overrides the value specified in the
services contract.

address

Specifies the location of the endpoint's WSDL contract. The WSDL contract's location is
relative to the folder from which the service is deployed.

wsdlLocation

Specifies the value of the service's wsdl:port element's name attribute. It is specified as

a QName using the format ns:name where ns is the namespace of the wsdl:port element.

endpointName

Specifies the value of the service's wsdl:service element's name attribute. It is specified

as a QName using the format ns:name where ns is the namespace of the wsdl:service

element.

serviceName

Specifies if the service should be automatically published. If this is set to false, the

developer must explicitly publish the endpoint as described in Publishing a Service in
Developing Artix® Applications with JAX-WS.

publish

Specifies the ID of the Spring bean configuring the bus used to manage the service endpoint.
This is useful when configuring several endpoints to use a common set of features.

bus

Specifies the ID of the message binding the service uses. A list of valid binding IDs is
provided in Appendix A on page 171.

bindingUri

32

Configuring Artix ESB Endpoints

http://www.iona.com/support/docs/artix/5.5/jaxws_pguide/jaxws_pguide.pdf

DescriptionAttribute

Specifies the stringified QName of the service's wsdl:port element. It is specified as a

QName using the format {ns}localPart. ns is the namespace of the wsdl:port element

and localPart is the value of the wsdl:port element's name attribute.

name

Specifies if the bean is an abstract bean. Abstract beans act as parents for concrete bean
definitions and are not instantiated. The default is false. Setting this to true instructs

the bean factory not to instantiate the bean.

abstract

Specifies a list of beans that the endpoint depends on being instantiated before it can be
instantiated.

depends-on

Specifies that the user created that bean using Artix ESB APIs, such as
Endpoint.publish() or Service.getPort().

createdFromAPI

The default is false.

Setting this to true does the following:

• Changes the internal name of the bean by appending .jaxws-endpoint to its id

• Makes the bean abstract

In addition to the attributes listed in Table 2 on page 32, you might need to
use multiple xmlns:shortName attributes to declare the namespaces used by
the endpointName and serviceName attributes.

Example
Example 4 on page 33 shows the configuration for a JAX-WS endpoint that
specifies the address where the endpoint is published. The example assumes
that you want to use the defaults for all other values or that the implementation
has specified values in the annotations.

Example 4. Simple JAX-WS Endpoint Configuration

<beans ...
xmlns:jaxws="http://cxf.apache.org/jaxws"
...
schemaLocation="...
http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd
...">

<jaxws:endpoint id="example"
implementor="org.apache.cxf.example.DemoImpl"
address="http://localhost:8080/demo" />

</beans>

33

Using the jaxws:endpoint Element

Example 5 on page 34 shows the configuration for a JAX-WS endpoint whose
contract contains two service definitions. In this case, you must specify which
service definition to instantiate using the serviceName attribute.

Example 5. JAX-WS Endpoint Configuration with a Service Name

<beans ...
xmlns:jaxws="http://cxf.apache.org/jaxws"
...
schemaLocation="...
http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd
...">

<jaxws:endpoint id="example2"
implementor="org.apache.cxf.example.DemoImpl"
serviceName="samp:demoService2"
xmlns:samp="http://org.apache.cxf/wsdl/example" />
</beans>

The xmlns:samp attribute specifies the namespace in which the WSDL
service element is defined.

34

Configuring Artix ESB Endpoints

Using the jaxws:server Element
Overview

The jaxws:server element is an element for configuring JAX-WS service
providers. It injects the configuration information into the
org.apache.cxf.jaxws.support.JaxWsServerFactoryBean. This is a
Artix ESB specific object. If you are using a pure Spring approach to building
your services, you will not be forced to use Artix ESB specific APIs to interact
with the service.

The attributes and children of the jaxws:server element specify all of the
information needed to instantiate a service provider. The attributes specify
the information that is required to instantiate an endpoint. The children are
used to configure interceptors and other advanced features.

Identifying the endpoint being
configured In order for the runtime to apply the configuration to the proper service

provider, it must be able to identify it. The basic means for identifying a service
provider is to specify the class that implements the endpoint. This is done
using the jaxws:server element's serviceBean attribute.

For instances where different endpoint's share a common implementation, it
is possible to provide different configuration for each endpoint. There are two
approaches for distinguishing a specific endpoint in configuration:

• a combination of the serviceName attribute and the endpointName

attribute

The serviceName attribute specifies the wsdl:service element defining
the service's endpoint. The endpointName attribute specifies the specific
wsdl:port element defining the service's endpoint. Both attributes are
specified as QNames using the format ns:name. ns is the namespace of
the element and name is the value of the element's name attribute.

Tip
If the wsdl:service element only has one wsdl:port element,
the endpointName attribute can be omitted.

• the name attribute

The name attribute specifies the QName of the specific wsdl:port element
defining the service's endpoint. The QName is provided in the format

35

Using the jaxws:server Element

{ns}localPart. ns is the namespace of the wsdl:port element and
localPart is the value of the wsdl:port element's name attribute.

Attributes
The attributes of the jaxws:server element configure the basic properties
of the endpoint. These properties include the address of the endpoint, the
class that implements the endpoint, and the bus that hosts the endpoint.

Table 3 on page 36 describes the attribute of the jaxws:server element.

Table 3. Attributes for Configuring a JAX-WS Service Provider Using the jaxws:server Element

DescriptionAttribute

Specifies a unique identifier that other configuration elements can use to refer to the endpoint.id

Specifies the class implementing the service. You can specify the implementation class using
either the class name or an ID reference to a Spring bean configuring the implementation
class. This class must be on the classpath.

serviceBean

Specifies the class implementing the service. This attribute is useful when the value provided
to the implementor attribute is a reference to a bean that is wrapped using Spring AOP.

serviceClass

Specifies the address of an HTTP endpoint. This value will override the value specified in
the services contract.

address

Specifies the location of the endpoint's WSDL contract. The WSDL contract's location is
relative to the folder from which the service is deployed.

wsdlLocation

Specifies the value of the service's wsdl:port element's name attribute. It is specified as a

QName using the format ns:name, where ns is the namespace of the wsdl:port element.

endpointName

Specifies the value of the service's wsdl:service element's name attribute. It is specified

as a QName using the format ns:name, where ns is the namespace of the wsdl:service

element.

serviceName

Specifies if the service should be automatically published. If this is set to false, the developer

must explicitly publish the endpoint as described in Publishing a Service in Developing
Artix® Applications with JAX-WS.

start

Specifies the ID of the Spring bean configuring the bus used to manage the service endpoint.
This is useful when configuring several endpoints to use a common set of features.

bus

Specifies the ID of the message binding the service uses. A list of valid binding IDs is provided
in Appendix A on page 171.

bindingId

36

Configuring Artix ESB Endpoints

http://www.iona.com/support/docs/artix/5.5/jaxws_pguide/jaxws_pguide.pdf

DescriptionAttribute

Specifies the stringified QName of the service's wsdl:port element. It is specified as a

QName using the format {ns}localPart, where ns is the namespace of the wsdl:port

element and localPart is the value of the wsdl:port element's name attribute.

name

Specifies if the bean is an abstract bean. Abstract beans act as parents for concrete bean
definitions and are not instantiated. The default is false. Setting this to true instructs the

bean factory not to instantiate the bean.

abstract

Specifies a list of beans that the endpoint depends on being instantiated before the endpoint
can be instantiated.

depends-on

Specifies that the user created that bean using Artix ESB APIs, such as Endpoint.publish()
or Service.getPort().

createdFromAPI

The default is false.

Setting this to true does the following:

• Changes the internal name of the bean by appending .jaxws-endpoint to its id

• Makes the bean abstract

In addition to the attributes listed in Table 3 on page 36, you might need to
use multiple xmlns:shortName attributes to declare the namespaces used by
the endpointName and serviceName attributes.

Example
Example 6 on page 37 shows the configuration for a JAX-WS endpoint that
specifies the address where the endpoint is published.

Example 6. Simple JAX-WS Server Configuration

<beans ...
xmlns:jaxws="http://cxf.apache.org/jaxws"
...
schemaLocation="...
http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd
...">

<jaxws:server id="exampleServer"
serviceBean="org.apache.cxf.example.DemoImpl"
address="http://localhost:8080/demo" />

</beans>

37

Using the jaxws:server Element

Adding Functionality to Service Providers
Overview

The jaxws:endpoint and the jaxws:server elements provide the basic
configuration information needed to instantiate a service provider. To add
functionality to your service provider or to perform advanced configuration
you must add child elements to the configuration.

Child elements allow you to do the following:

• Change the endpoint's logging behavior

• Add interceptors to the endpoint's messaging chain

• Enable WS-Addressing features

• Enable reliable messaging

Elements
Table 4 on page 38 describes the child elements that jaxws:endpoint
supports.

Table 4. Elements Used to Configure JAX-WS Service Providers

DescriptionElement

Specifies a list of JAX-WS Handler implementations for processing messages.

For more information on JAX-WS Handler implementations see Writing

Handlers in Developing Artix® Applications with JAX-WS.

jaxws:handlers

Specifies a list of interceptors that process inbound requests. For more
information see Developing Interceptors for the Java Runtime.

jaxws:inInterceptors

Specifies a list of interceptors that process inbound fault messages. For more
information see Developing Interceptors for the Java Runtime.

jaxws:inFaultInterceptors

Specifies a list of interceptors that process outbound replies. For more
information see Developing Interceptors for the Java Runtime.

jaxws:outInterceptors

Specifies a list of interceptors that process outbound fault messages. For more
information see Developing Interceptors for the Java Runtime.

jaxws:outFaultInterceptors

Specifies a bean configuring the message binding used by the endpoint. Message
bindings are configured using implementations of the
org.apache.cxf.binding.BindingFactory interface.a

jaxws:binding

Specifies the class implementing the data binding used by the endpoint. This
is specified using an embedded bean definition.

jaxws:dataBinding
b

38

Configuring Artix ESB Endpoints

http://www.iona.com/support/docs/artix/5.5/jaxws_pguide/jaxws_pguide.pdf
http://www.iona.com/support/docs/artix/5.5/jaxws_pguide/jaxws_pguide.pdf
http://www.iona.com/support/docs/artix/5.5/java_interceptors/java_interceptors.pdf
http://www.iona.com/support/docs/artix/5.5/java_interceptors/java_interceptors.pdf
http://www.iona.com/support/docs/artix/5.5/java_interceptors/java_interceptors.pdf
http://www.iona.com/support/docs/artix/5.5/java_interceptors/java_interceptors.pdf

DescriptionElement

Specifies a Java executor that is used for the service. This is specified using an
embedded bean definition.

jaxws:executor

Specifies a list of beans that configure advanced features of Artix ESB. You can
provide either a list of bean references or a list of embedded beans.

jaxws:features

Specifies an implementation of the org.apache.cxf.service.Invoker

interface used by the service. c
jaxws:invoker

Specifies a Spring map of properties that are passed along to the endpoint.
These properties can be used to control features like enabling MTOM support.

jaxws:properties

Specifies a bean configuring the JaxWsServiceFactoryBean object used to

instantiate the service.

jaxws:serviceFactory

aThe SOAP binding is configured using the soap:soapBinding bean.
bThe jaxws:endpoint element does not support the jaxws:dataBinding element.
cThe Invoker implementation controls how a service is invoked. For example, it controls whether each request is handled by a new instance

of the service implementation or if state is preserved across invocations.

39

Adding Functionality to Service Providers

Configuring Consumer Endpoints
Overview

JAX-WS consumer endpoints are configured using the jaxws:client element.
The element's attributes provide the basic information necessary to create a
consumer.

To add other functionality, like WS-RM, to the consumer you add children to
the jaxws:client element. Child elements are also used to configure the
endpoint's logging behavior and to inject other properties into the endpoint's
implementation.

Basic Configuration Properties
The attributes described in Table 5 on page 40 provide the basic information
necessary to configure a JAX-WS consumer. You only need to provide values
for the specific properties you want to configure. Most of the properties have
sensible defaults, or they rely on information provided by the endpoint's
contract.

Table 5. Attributes Used to Configure a JAX-WS Consumer

DescriptionAttribute

Specifies the HTTP address of the endpoint where the consumer will make requests. This
value overrides the value set in the contract.

address

Specifies the ID of the message binding the consumer uses. A list of valid binding IDs is
provided in Appendix A on page 171.

bindingId

Specifies the ID of the Spring bean configuring the bus managing the endpoint.bus

Specifies the value of the wsdl:port element's name attribute for the service on which the

consumer is making requests. It is specified as a QName using the format ns:name, where

ns is the namespace of the wsdl:port element.

endpointName

Specifies the value of the wsdl:service element's name attribute for the service on which

the consumer is making requests. It is specified as a QName using the format ns:name where

ns is the namespace of the wsdl:service element.

serviceName

Specifies the username used for simple username/password authentication.username

Specifies the password used for simple username/password authentication.password

Specifies the name of the service endpoint interface(SEI).serviceClass

40

Configuring Artix ESB Endpoints

DescriptionAttribute

Specifies the location of the endpoint's WSDL contract. The WSDL contract's location is
relative to the folder from which the client is deployed.

wsdlLocation

Specifies the stringified QName of the wsdl:port element for the service on which the

consumer is making requests. It is specified as a QName using the format {ns}localPart,

name

where ns is the namespace of the wsdl:port element and localPart is the value of the

wsdl:port element's name attribute.

Specifies if the bean is an abstract bean. Abstract beans act as parents for concrete bean
definitions and are not instantiated. The default is false. Setting this to true instructs the

bean factory not to instantiate the bean.

abstract

Specifies a list of beans that the endpoint depends on being instantiated before it can be
instantiated.

depends-on

Specifies that the user created that bean using Artix ESB APIs like Service.getPort().createdFromAPI

The default is false.

Setting this to true does the following:

• Changes the internal name of the bean by appending .jaxws-client to its id

• Makes the bean abstract

In addition to the attributes listed in Table 5 on page 40, it might be
necessary to use multiple xmlns:shortName attributes to declare the
namespaces used by the endpointName and the serviceName attributes.

Adding functionality
To add functionality to your consumer or to perform advanced configuration,
you must add child elements to the configuration.

Child elements allow you to do the following:

• Change the endpoint's logging behavior

• Add interceptors to the endpoint's messaging chain

• Enable WS-Addressing features

• Enable reliable messaging

41

Configuring Consumer Endpoints

Table 6 on page 42 describes the child element's you can use to configure
a JAX-WS consumer.

Table 6. Elements For Configuring a Consumer Endpoint

DescriptionElement

Specifies a bean configuring the message binding used by the endpoint. Message
bindings are configured using implementations of the
org.apache.cxf.binding.BindingFactory interface.a

jaxws:binding

Specifies the class implementing the data binding used by the endpoint. You
specify this using an embedded bean definition. The class implementing the
JAXB data binding is org.apache.cxf.jaxb.JAXBDataBinding.

jaxws:dataBinding

Specifies a list of beans that configure advanced features of Artix ESB. You can
provide either a list of bean references or a list of embedded beans.

jaxws:features

Specifies a list of JAX-WS Handler implementations for processing messages.

For more information in JAX-WS Handler implementations see Writing Handlers

in Developing Artix® Applications with JAX-WS.

jaxws:handlers

Specifies a list of interceptors that process inbound responses. For more
information see Developing Interceptors for the Java Runtime.

jaxws:inInterceptors

Specifies a list of interceptors that process inbound fault messages. For more
information see Developing Interceptors for the Java Runtime.

jaxws:inFaultInterceptors

Specifies a list of interceptors that process outbound requests. For more
information see Developing Interceptors for the Java Runtime.

jaxws:outInterceptors

Specifies a list of interceptors that process outbound fault messages. For more
information see Developing Interceptors for the Java Runtime.

jaxws:outFaultInterceptors

Specifies a map of properties that are passed to the endpoint.jaxws:properties

Specifies an org.apache.cxf.endpoint.ConduitSelector implementation

for the client to use. A ConduitSelector implementation will override the

jaxws:conduitSelector

default process used to select the Conduit object that is used to process

outbound requests.
aThe SOAP binding is configured using the soap:soapBinding bean.

Example
Example 7 on page 43 shows a simple consumer configuration.

42

Configuring Artix ESB Endpoints

http://www.iona.com/support/docs/artix/5.5/jaxws_pguide/jaxws_pguide.pdf
http://www.iona.com/support/docs/artix/5.5/java_interceptors/java_interceptors.pdf
http://www.iona.com/support/docs/artix/5.5/java_interceptors/java_interceptors.pdf
http://www.iona.com/support/docs/artix/5.5/java_interceptors/java_interceptors.pdf
http://www.iona.com/support/docs/artix/5.5/java_interceptors/java_interceptors.pdf

Example 7. Simple Consumer Configuration

<beans ...
xmlns:jaxws="http://cxf.apache.org/jaxws"
...
schemaLocation="...
http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd
...">

<jaxws:client id="bookClient"
serviceClass="org.apache.cxf.demo.BookClientImpl"
address="http://localhost:8080/books"/>

...
</beans>

43

Configuring Consumer Endpoints

44

Artix ESB Logging
This chapter describes how to configure logging in the Artix ESB runtime.

Overview of Artix ESB Logging .. 46
Simple Example of Using Logging .. 48
Default logging.properties File .. 50

Configuring Logging Output .. 51
Configuring Logging Levels ... 53

Enabling Logging at the Command Line ... 54
Logging for Subsystems and Services .. 55
Logging Message Content .. 57

45

Overview of Artix ESB Logging
Overview

Artix ESB uses the Java logging utility, java.util.logging. Logging is
configured in a logging configuration file that is written using the standard
java.util.Properties format. To run logging on an application, you can
specify logging programmatically or by defining a property at the command
that points to the logging configuration file when you start the application.

Default logging.properties file
Artix ESB comes with a default logging.properties file, which is located
in your InstallDir/etc directory. This file configures both the output
destination for the log messages and the message level that is published. The
default configuration sets the loggers to print message flagged with the
WARNING level to the console. You can either use the default file without
changing any of the configuration settings or you can change the configuration
settings to suit your specific application.

Logging feature
Artix ESB includes a logging feature that can be plugged into your client or
your service to enable logging. Example 8 on page 46 shows the configuration
to enable the logging feature.

Example 8. Configuration for Enabling Logging

<jaxws:endpoint...>
<jaxws:features>
<bean class="org.apache.cxf.feature.LoggingFeature"/>

</jaxws:features>
</jaxws:endpoint>

For more information, see Logging Message Content on page 57.

Where to begin?
To run a simple example of logging follow the instructions outlined in a Simple
Example of Using Logging on page 48.

For more information on how logging works in Artix ESB, read this entire
chapter.

More information on
java.util.logging The java.util.logging utility is one of the most widely used Java logging

frameworks. There is a lot of information available online that describes how
to use and extend this framework. As a starting point, however, the following
documents gives a good overview of java.util.logging:

• http://java.sun.com/j2se/1.5.0/docs/guide/logging/overview.html

46

Artix ESB Logging

http://java.sun.com/j2se/1.5.0/docs/guide/logging/overview.html

• http://java.sun.com/j2se/1.5.0/docs/api/java/util/logging/
package-summary.html

47

Overview of Artix ESB Logging

http://java.sun.com/j2se/1.5.0/docs/api/java/util/logging/package-summary.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/logging/package-summary.html

Simple Example of Using Logging
Changing the log levels and
output destination To change the log level and output destination of the log messages in the

wsdl_first sample application, complete the following steps:

1. Run the sample server as described in the Running the demo using java
section of the README.txt file in the InstallDir/samples/wsdl_first

directory. Note that the server start command specifies the default
logging.properties file, as follows:

CommandPlatform

start java -Djava.util.logging.config.file=%CXF_HOME%\etc\logging.properties

demo.hw.server.Server

Windows

java -Djava.util.logging.config.file=$CXF_HOME/etc/logging.properties

demo.hw.server.Server &

UNIX

The default logging.properties file is located in the InstallDir/etc
directory. It configures the Artix ESB loggers to print WARNING level log
messages to the console. As a result, you see very little printed to the
console.

2. Stop the server as described in the README.txt file.

3. Make a copy of the default logging.properties file, name it

mylogging.properties file, and save it in the same directory as the

default logging.properties file.

4. Change the global logging level and the console logging levels in your
mylogging.properties file to INFO by editing the following lines of

configuration:

.level= INFO
java.util.logging.ConsoleHandler.level = INFO

5. Restart the server using the following command:

48

Artix ESB Logging

CommandPlatform

start java -Djava.util.logging.config.file=%CXF_HOME%\etc\mylogging.properties

demo.hw.server.Server

Windows

java -Djava.util.logging.config.file=$CXF_HOME/etc/mylogging.properties

demo.hw.server.Server &

UNIX

Because you configured the global logging and the console logger to log
messages of level INFO, you see a lot more log messages printed to the
console.

49

Simple Example of Using Logging

Default logging.properties File

Configuring Logging Output .. 51
Configuring Logging Levels ... 53

The default logging configuration file, logging.properties, is located in
the InstallDir/etc directory. It configures the Artix ESB loggers to print
WARNING level messages to the console. If this level of logging is suitable for
your application, you do not have to make any changes to the file before using
it. You can, however, change the level of detail in the log messages. For
example, you can change whether log messages are sent to the console, to
a file or to both. In addition, you can specify logging at the level of individual
packages.

Note
This section discusses the configuration properties that appear in
the default logging.properties file. There are, however, many
other java.util.logging configuration properties that you can
set. For more information on the java.util.logging API, see the
java.util.logging javadoc at: http://java.sun.com/j2se/1.5/docs/
api/java/util/logging/package-summary.html.

50

Artix ESB Logging

http://java.sun.com/j2se/1.5/docs/api/java/util/logging/package-summary.html
http://java.sun.com/j2se/1.5/docs/api/java/util/logging/package-summary.html

Configuring Logging Output
The Java logging utility, java.util.logging, uses handler classes to output
log messages. Table 7 on page 51 shows the handlers that are configured
in the default logging.properties file.

Table 7. Java.util.logging Handler Classes

Outputs toHandler Class

Outputs log messages to the consoleConsoleHandler

Outputs log messages to a fileFileHandler

Important
The handler classes must be on the system classpath in order to be
installed by the Java VM when it starts. This is done when you set
the Artix ESB environment. For details on setting the Artix ESB
environment, see Using the Artix ESB Environment Script on page 24.

Configuring the console handler
Example 9 on page 51 shows the code for configuring the console logger.

Example 9. Configuring the Console Handler

handlers= java.util.logging.ConsoleHandler

The console handler also supports the configuration properties shown in
Example 10 on page 51.

Example 10. Console Handler Properties

java.util.logging.ConsoleHandler.level = WARNING ❶
java.util.logging.ConsoleHandler.formatter = java.util.logging.SimpleFormatter ❷

The configuration properties shown in Example 10 on page 51 can be
explained as follows:

❶ The console handler supports a separate log level configuration property.
This allows you to limit the log messages printed to the console while
the global logging setting can be different (see Configuring Logging
Levels on page 53). The default setting is WARNING.

51

Configuring Logging Output

❷ Specifies the java.util.logging formatter class that the console

handler class uses to format the log messages. The default setting is the
java.util.logging.SimpleFormatter.

Configuring the file handler
Example 11 on page 52 shows code that configures the file handler.

Example 11. Configuring the File Handler

handlers= java.util.logging.FileHandler

The file handler also supports the configuration properties shown in
Example 12 on page 52.

Example 12. File Handler Configuration Properties

java.util.logging.FileHandler.pattern = %h/java%u.log ❶
java.util.logging.FileHandler.limit = 50000 ❷
java.util.logging.FileHandler.count = 1 ❸
java.util.logging.FileHandler.formatter = java.util.logging.XMLFormatter ❹

The configuration properties shown in Example 12 on page 52 can be
explained as follows:

❶ Specifies the location and pattern of the output file. The default setting
is your home directory.

❷ Specifies, in bytes, the maximum amount that the logger writes to any
one file. The default setting is 50000. If you set it to zero, there is no

limit on the amount that the logger writes to any one file.
❸ Specifies how many output files to cycle through. The default setting is

1.

❹ Specifies the java.util.logging formatter class that the file handler

class uses to format the log messages. The default setting is the
java.util.logging.XMLFormatter.

Configuring both the console
handler and the file handler You can set the logging utility to output log messages to both the console and

to a file by specifying the console handler and the file handler, separated by
a comma, as shown in Example 13 on page 52.

Example 13. Configuring Both Console Logging and File Logging

handlers= java.util.logging.FileHandler, java.util.logging.ConsoleHandler

52

Artix ESB Logging

Configuring Logging Levels
Logging levels

The java.util.logging framework supports the following levels of logging,
from the least verbose to the most verbose:

• SEVERE

• WARNING

• INFO

• CONFIG

• FINE

• FINER

• FINEST

Configuring the global logging
level To configure the types of event that are logged across all loggers, configure

the global logging level as shown in Example 14 on page 53.

Example 14. Configuring Global Logging Levels

.level= WARNING

Configuring logging at an
individual package level The java.util.logging framework supports configuring logging at the level

of an individual package. For example, the line of code shown in
Example 15 on page 53 configures logging at a SEVERE level on classes in
the com.xyz.foo package.

Example 15. Configuring Logging at the Package Level

com.xyz.foo.level = SEVERE

53

Configuring Logging Levels

Enabling Logging at the Command Line
Overview

You can run the logging utility on an application by defining a
java.util.logging.config.file property when you start the application.
You can either specify the default logging.properties file or a
logging.properties file that is unique to that application.

Specifying the log configuration
file on application start-up To specify logging on application start-up add the flag shown in

Example 16 on page 54 when starting the application.

Example 16. Flag to Start Logging on the Command Line

-Djava.util.logging.config.file=myfile

54

Artix ESB Logging

Logging for Subsystems and Services
You can use the com.xyz.foo.level configuration property described in
Configuring logging at an individual package level on page 53 to set
fine-grained logging for specified Artix ESB logging subsystems.

Artix ESB logging subsystems
Table 8 on page 55 shows a list of available Artix ESB logging subsystems.

Table 8. Artix ESB Logging Subsystems

DescriptionSubsystem

Artix ESB containercom.iona.cxf.container

Aegis bindingorg.apache.cxf.aegis

colocated bindingorg.apache.cxf.binding.coloc

HTTP bindingorg.apache.cxf.binding.http

JBI bindingorg.apache.cxf.binding.jbi

Java Object bindingorg.apache.cxf.binding.object

SOAP bindingorg.apache.cxf.binding.soap

XML bindingorg.apache.cxf.binding.xml

Artix ESB busorg.apache.cxf.bus

configuration frameworkorg.apache.cxf.configuration

server and client endpointsorg.apache.cxf.endpoint

interceptorsorg.apache.cxf.interceptor

Front-end for JAX-WS style message exchange, JAX-WS handler
processing, and interceptors relating to JAX-WS and configuration

org.apache.cxf.jaxws

JBI container integration classesorg.apache.cxf.jbi

JCA container integration classesorg.apache.cxf.jca

JavaScript front-endorg.apache.cxf.js

HTTP transportorg.apache.cxf.transport.http

secure version of HTTP transport, using HTTPSorg.apache.cxf.transport.https

55

Logging for Subsystems and Services

DescriptionSubsystem

JBI transportorg.apache.cxf.transport.jbi

JMS transportorg.apache.cxf.transport.jms

transport implementation using local file systemorg.apache.cxf.transport.local

HTTP transport and servlet implementation for loading JAX-WS
endpoints into a servlet container

org.apache.cxf.transport.servlet

WS-Addressing implementationorg.apache.cxf.ws.addressing

WS-Policy implementationorg.apache.cxf.ws.policy

WS-ReliableMessaging (WS-RM) implementationorg.apache.cxf.ws.rm

WSS4J security implementationorg.apache.cxf.ws.security.wss4j

Example
The WS-Addressing sample is contained in the
InstallDir/samples/ws_addressing directory. Logging is configured in
the logging.properties file located in that directory. The relevant lines of
configuration are shown in Example 17 on page 56.

Example 17. Configuring Logging for WS-Addressing

java.util.logging.ConsoleHandler.formatter = demos.ws_addressing.common.ConciseFormatter
...
org.apache.cxf.ws.addressing.soap.MAPCodec.level = INFO

The configuration in Example 17 on page 56 enables the snooping of log
messages relating to WS-Addressing headers, and displays them to the console
in a concise form.

For information on running this sample, see the README.txt file located in
the InstallDir/samples/ws_addressing directory.

56

Artix ESB Logging

Logging Message Content
You can log the content of the messages that are sent between a service and
a consumer. For example, you might want to log the contents of SOAP
messages that are being sent between a service and a consumer.

Configuring message content
logging To log the messages that are sent between a service and a consumer, and

vice versa, complete the following steps:

1. Add the logging feature to your endpoint's configuration.

2. Add the logging feature to your consumer's configuration.

3. Configure the logging system log INFO level messages.

Adding the logging feature to an
endpoint Add the logging feature your endpoint's configuration as shown in

Example 18 on page 57.

Example 18. Adding Logging to Endpoint Configuration

<jaxws:endpoint ...>
<jaxws:features>
<bean class="org.apache.cxf.feature.LoggingFeature"/>

</jaxws:features>
</jaxws:endpoint>

The example XML shown in Example 18 on page 57 enables the logging of
SOAP messages.

Adding the logging feature to a
consumer Add the logging feature your client's configuration as shown in

Example 19 on page 57.

Example 19. Adding Logging to Client Configuration

<jaxws:client ...>
<jaxws:features>

<bean class="org.apache.cxf.feature.LoggingFeature"/>
</jaxws:features>

</jaxws:client>

57

Logging Message Content

The example XML shown in Example 19 on page 57 enables the logging of
SOAP messages.

Set logging to log INFO level
messages Ensure that the logging.properties file associated with your service is

configured to log INFO level messages, as shown in Example 20 on page 58.

Example 20. Setting the Logging Level to INFO

.level= INFO
java.util.logging.ConsoleHandler.level = INFO

Logging SOAP messages
To see the logging of SOAP messages modify the wsdl_first sample application
located in the InstallDir/samples/wsdl_first directory, as follows:

1. Add the jaxws:features element shown in Example 21 on page 58

to the cxf.xml configuration file located in the wsdl_first sample's

directory:

Example 21. Endpoint Configuration for Logging SOAP Messages

<jaxws:endpoint name="{http://apache.org/hello_world_soap_http}SoapPort"
createdFromAPI="true">

<jaxws:properties>
<entry key="schema-validation-enabled" value="true" />

</jaxws:properties>
<jaxws:features>
<bean class="org.apache.cxf.feature.LoggingFeature"/>

</jaxws:features>
</jaxws:endpoint>

2. The sample uses the default logging.properties file, which is located

in the InstallDir/etc directory. Make a copy of this file and name it

mylogging.properties.

3. In the mylogging.properties file, change the logging levels to INFO

by editing the .level and the

java.util.logging.ConsoleHandler.level configuration properties

as follows:

.level= INFO
java.util.logging.ConsoleHandler.level = INFO

58

Artix ESB Logging

4. Start the server using the new configuration settings in both the cxf.xml

file and the mylogging.properties file as follows:

CommandPlatform

start java -Djava.util.logging.config.file=%CXF_HOME%\etc\mylogging.properties

demo.hw.server.Server

Windows

java -Djava.util.logging.config.file=$CXF_HOME/etc/mylogging.properties

demo.hw.server.Server &

UNIX

5. Start the hello world client using the following command:

CommandPlatform

java -Djava.util.logging.config.file=%CXF_HOME%\etc\mylogging.properties

demo.hw.client.Client .\wsdl\hello_world.wsdl

Windows

java -Djava.util.logging.config.file=$CXF_HOME/etc/mylogging.properties

demo.hw.client.Client ./wsdl/hello_world.wsdl

UNIX

The SOAP messages are logged to the console.

59

Logging Message Content

60

Deploying to an OSGi Container
Applications developed using the Artix ESB Java Runtime can be installed into an OSGi container. Once installed
the applications can use many of the advanced Artix features.

Introduction to OSGi ... 62
Packaging and Installing an Application ... 65
Installing a Sample Application ... 70

61

Introduction to OSGi
Overview

The adoption of OSGi is a key strategy for Progress Software's SOA portfolio.
OSGi is a mature, lightweight, component system that solves many challenges
associated with medium and large scale development projects. Through the
use of bundles complexity is reduced by separating concerns and ensuring
dependencies are minimally coupled via well defined interface communication.
This also promotes the reuse of components in much the same way that SOA
promotes the reuse of services. And, since each bundle effectively is given
an isolated environment, and since dependencies are explicitly defined,
versioning and dynamic updates are possible. These are just a few of the
many benefits of OSGi. Users wishing to learn more should check out http://
www.osgi.org/Main/HomePage and see for yourself why Progress Software
recommends the use of OSGi in your projects.

Before you can install an application into an OSGi container, you need to
package it into one or more OSGi bundles. An OSGi bundle is a JAR that
contains extra information that is used by the OSGi container. This extra
information specifies the packages this bundle exposes to the other bundles
in the container and any packages on which this bundle depends.

Supported containers
Artix Java applications should work in any OSGi container. However, they are
only supported in the following containers:

• FUSE ESB 4.0

• Apache ServiceMix 4.0.0.3

• Equinox 3.4.0

Artix includes the Equinox 3.4.0 container. The build files for a selection of
the sample applications include Ant targets for setting up and launching the
included Equinox runtime.

If you would rather use FUSE ESB you can download it from http://
fusesource.com.

If you would rather use Apache ServiceMix you can download it from http://
servicemix.apache.org/SMX4.

Supported features
All of the the core functionality of the Artix ESB Java Runtime is available in
an OSGi container. A number of the enterprise features are also available
including:

62

Deploying to an OSGi Container

http://www.osgi.org/Main/HomePage
http://www.osgi.org/Main/HomePage
http://fusesource.com
http://fusesource.com
http://servicemix.apache.org/SMX4
http://servicemix.apache.org/SMX4

• the CORBA transport

• the advanced WSDL publishing features

• working with the Artix locator

• static and dynamic fail-over

• security

Application packaging
Before you can install an application into an OSGi container it needs to be
packaged into one or more OSGi bundles. An OSGi bundle is essentially a
standard JAR. Where an OSGi bundle and a plain JAR differ is in the contents
of their manifest files. An OSGi bundle's manifest contains a number of
properties that specify the following:

• the Java packages which this bundle exposes to other bundles

• the Java packages, and other resources, on which this bundle depends

• the version number of the bundle

Bundle life-cycles
Applications in an OSGi environment are subject to the life-cycle of its bundles.
Bundles have six life-cycle states:

Installed
All bundles start in the installed state. Bundles in the installed state are
waiting for all of their dependencies to be resolved. Once all of the
bundle's dependencies are resolved it moves to the next life-cycle state.

Resolved
Bundles are moved into the resolved state when the following conditions
are met:

• The runtime environment meets or exceeds the one specified by the
bundle.

• All of the packages imported by the bundle are exposed by bundles
that are either in the resolved state or that can be moved into the
resolved state at the same time as the current bundle.

• All of the required bundles are either in the resolved state or can be
resolved at the same time as the current bundle.

63

Introduction to OSGi

Important
All of an application's bundles must be in the resolved state
before it can be started.

If, at any time, one of the above conditions ceases to be satisfied the
bundle is moved back into the installed state. This can happen if a bundle
containing an imported package is removed from the container.

Starting
The starting state is a transitory state between the resolved state and
the active state. When a bundle is started, the container needs to create
the resources for the bundle. The container will also call the start()

method of the bundle's bundle activator if one is provided.

Active
Bundles in the active state are available to do work. What a bundle does
in the active state depends on the contents of the bundle. For a bundle
containing a JAX-WS service provider this means the service is available
to accept requests.

Stopping
The stopping state is a transitory state between the active state and the
resolved state. When a bundle is stopped, the container needs to clean
up the resources for the bundle. The container will also call the stop()

method of the bundle's bundle activator if one is provided.

Uninstalled
When a bundle is uninstalled it is moved from the resolved state to the
uninstalled state. Bundles in this state cannot be transitioned back into
the resolved state or any other state. It must be explicitly re-installed.

For application developers the important life-cycle states are the starting state
and the stopping state. The endpoints exposed by your application need to
be published during in the start state. The published endpoints need to be
stopped during the stopping state.

64

Deploying to an OSGi Container

Packaging and Installing an Application
Overview

Artix comes with several sample applications that show how to package and
install applications into an OSGi container. While there are a number of tools
available and the different OSGi containers use varying deployment
mechanisms the basic steps are the same:

1. Determine how the application will publish its endpoints.

In order for your application to be started by the OSGi framework it needs
to have logic that instantiates the resources used by the application. For
a JAX-WS server application this means that the service provider
endpoints need to be created and published. For a JAX-WS client
application this means that the object implementing the client's business
logic needs to be instantiated. The application may also need some logic
to clean up its resources when shutting down.

There are two ways to get the resources for your application started:

• rely on Sring-DM to publish the endpoints

• publish the endpoints in a BundleActivator object

2. Decide how you want to bundle the application.

Depending on the complexity of you application, it may make sense to
break your application into several bundles. You will also want to be very
deliberate in determining if your application's bundles include any third
party libraries.

Tip
The best practice is to find OSGi bundles containing all of the
third party libraries needed by your application and use the OSGi
dependency mechanism to resolve them.

3. Create bundles for each of your application's modules.

4. Install the bundles to the container.

65

Packaging and Installing an Application

Once your bundles are installed, you can start and stop them using the
container's commands. You can also upgrade them in place when needed.

Publishing endpoints using
Spring-DM Spring Dynamic Modules for OSGi Service Platforms(Spring-DM) scans bundles

in an OSGi container and automatically creates a Spring application context
for any bundles that contains a Spring XML file in its META-INF/spring
folder. It will inject all of the beans defined in the configuration file into the
application context. For JAX-WS server, you would include a jaxws:endpoint
element for each service provider your application exposes. Spring-DM will
inject them into the application context and publish the endpoints when the
bundle is started.

Before using Spring-DM you need to make sure the required bundles are
installed into your OSGi container. You also need to make sure they are started.
The demos included with Artix ESB configure the included Equinox container
to install and start the Spring-DM bundles. FUSE ESB and Apache ServiceMix
include support for Spring-DM as part of their default configuration. If your
container does not include Spring-DM support you can down load it from
http://www.springsource.org/osgi.

Important
When using Spring-DM to publish endpoints you must include the
following DynamicImport-Package statement in the bundle's manifest:

DynamicImport-Package: org.apache.cxf.*

This allows the Spring framework to construct the proper Artix ESB
objects.

Publishing endpoints in a bundle
activator The org.osgi.framework .BundleActivator is an OSGi API used by the

OSGi framework when it starts and stops bundles. As shown in
Example 22 on page 66, it has two methods that need to be implemented.

Example 22. Bundle Activator Interface

interface BundleActivator
{
public void start(BundleContext context)
throws java.lang.Exception;

public void stop(BundleContext context)
throws java.lang.Exception;

}

66

Deploying to an OSGi Container

http://www.springsource.org/osgi

The start() method is called when the container starts the bundle. This is
where you would instantiate and publish any service provider endpoints
exposed by a server application. For a client application, this is the method
that would instantiate the client's application logic.

The stop() method is called when the container stops the bundle. This is
where you would stop any endpoints exposed by a server.

When using a bundle activator you need to add the Bundle-Activator property
to the bundle's manifest. This property tells the container which class in the
bundle to use when activating the bundle.

For more information on publishing service provider endpoints see Publishing
a Service in Developing Artix® Applications with JAX-WS.

Creating bundles
You can hand edit the manifest files for each of your application's bundles
and manually assemble them using the standard Java mechanism for creating
JARs. Hand editing a manifest is a tedious and error prone process and is
not recommended. You should use one of the many tools available for creating
OSGi bundles.

Artix includes the bnd1 tool from Peter Kriens. It automates the construction
of OSGi bundle manifests by introspecting the contents of the classes being
packaged in the bundle. Using the knowledge of the classes contained in the
bundle, the tool can calculate the proper values to populate the
Import-Packages and the Export-Package properties in the bundle manifest.

The bnd tool can be used as an Ant task and is the foundation for the Maven
bundle plug-in2 from Apache Felix.

Required bundles
The Artix ESB Java Runtime core components are included in an OSGi bundle
called org.apache.cxf.cxf-bundle. The advanced features are packaged
in the bundles listed in Table 9 on page 67.

Table 9. Advanced Feature Bundles

BundlesFeature

it-soa-ha-common-api, it-soa-ha-discovery-client-locator-rt,

it-soa-common-rt

Locator Service Discovery Support

1 http://www.aqute.biz/Code/Bnd
2 http://cwiki.apache.org/FELIX/apache-felix-maven-bundle-plugin-bnd.html

67

Packaging and Installing an Application

http://www.iona.com/support/docs/artix/5.5/jaxws_pguide/jaxws_pguide.pdf
http://www.iona.com/support/docs/artix/5.5/jaxws_pguide/jaxws_pguide.pdf
http://www.aqute.biz/Code/Bnd
http://cwiki.apache.org/FELIX/apache-felix-maven-bundle-plugin-bnd.html
http://cwiki.apache.org/FELIX/apache-felix-maven-bundle-plugin-bnd.html
http://www.aqute.biz/Code/Bnd
http://cwiki.apache.org/FELIX/apache-felix-maven-bundle-plugin-bnd.html

BundlesFeature

it-soa-ha-common-api, it-soa-ha-discovery-client-locator-rt,

it-soa-ha-failover-locator-rt, it-soa-common-rt

High Availability

it-soa-wsdlpublish-api, it-soa-wsdlpublish-rt, it-soa-common-rtWSDL Publishing

it-soa-security-bundle, it-soa-common-rtSecurity

it-soa-bindings-corba-rt, it-soa-common-rtCORBA

it-soa-transports-ftp-api, it-soa-transports-ftp-rt,

it-soa-common-rt

FTP Transport

Before you can launch your application, all of the Artix ESB bundles required
by your application must be installed into the container.

Tip
The Equinox configuration file generated by the Ant target included
in the OSGi demos automatically loads the
org.apache.cxf.cxf-bundle bundle.

Tip
FUSE ESB and Apache ServiceMix install the
org.apache.cxf.cxf-bundle bundle by default.

Required packages
Artix ESB Java Runtime applications depend on a number of runtime packages.
Because of the complex nature of the dependencies in Artix, you cannot rely
on the bnd tool to automatically determine the needed imports. You will need
to explicitly declare them.

You need to import the following packages into your bundle:

• javax.jws

• javax.wsdl

• META-INF.cxf

• META-INF.cxf.osgi

68

Deploying to an OSGi Container

• org.apache.cxf.bus

• org.apache.cxf.bus.spring

• org.apache.cxf.bus.resource

• org.apache.cxf.configuration.spring

• org.apache.cxf.resource

• org.springframework.beans.factory.config

69

Packaging and Installing an Application

Installing a Sample Application
The WSDL-first example

This section is going to use the WSDL-first sample included with Artix to walk
you through installing an application into an OSGi container. This sample,
which is located in InstallDir/java/samples/basic/wsdl-first, is a
simple Hello World application that is developed using the JAX-WS APIs.

Its build file contains two Ant targets for installing the sample into the included
Equinox OSGi container:

• osgi—Packages the application into two bundles.

• start.equinox—Generates a configuration file listing the bundles required
by the demo and starts the Equinox container in console mode.

Once you have started the container and built the bundles, you can install
them into the running container and see the client make requests against the
service. Once you are finished testing the example you can stop the application
and uninstall it.

This section is going to focus on the osgi Ant target, the process of installing
the application into the running container, and the process of uninstalling the
application.

Building the bundles
Example 23 on page 70 shows the Ant targets used to package the WSDL-first
demo into two bundles.

Example 23. Build Targets for Packaging the Demo as OSGi Bundles

<target name="osgi" depends="build"> ❶
<antcall target="osgi.endpoint"/>
<antcall target="osgi.jaxb.model"/>

</target>

<property name="bundle.model.version" value="1.0"/> ❷
<property name="bundle.endpoint.version" value="1.0"/>

<target name="osgi.endpoint" depends="build"> ❸
<echo level="info" message="Generating CXF Endpoint OSGi bundle..."/>
<cxfbnd private-package="demo.hw.server.impl;version=${bundle.endpoint.version},

!org.apache.hello_world_soap_http.*" ❹
import="${default.cxf.osgi.import}"
include-resource="META-

INF/spring/=spring/osgi/,hello_world.wsdl=wsdl/hello_world.wsdl"
bundle="${cxf.war.file.name}_endpoint"

70

Deploying to an OSGi Container

version="${bundle.endpoint.version}"/>
</target>

<target name="osgi.jaxb.model" depends="build"> ❺
<echo level="info" message="Generating CXF JAXB Model OSGi bundle..."/>
<cxfbnd import="*"

export="org.apache.hello_world_soap_http.*;version=${bundle.model.version}"

bundle="${cxf.war.file.name}_model"
version="${bundle.model.version}"/>

</target>

The Ant targets in Example 23 on page 70 do the following:

❶ Calls the targets that are responsible for building the actual bundles.

❷ Sets the name and version of the bundles as properties.

❸ Packages the service implementation into an OSGi bundle.

❹ Calls the cxfbnd Ant marco to invoke the bnd tool.

The cxfbnd Ant marco is in the
InstallDir/java/sample/common_build.xml file.

❺ Packages the the JAXB classes used by the service implementation into
an OSGi bundle.

This target also uses the cxfbnd Ant marco.

The cxfbnd Ant macro builds a BND driver file similar to the one shown in
Example 24 on page 71. It then calls the bnd tool to package the specified
classes into an OSGi bundle.

Example 24. OSGi BND Control File

Private-Package: demo.hw.server.impl;version=1.0, !org.apache.hello_world_soap_http.*
Import-Package: javax.jws, javax.wsdl, META-INF.cxf, org.apache.cxf.bus,
org.apache.cxf.bus.spring, org.apache.cxf.bus.resource, org.apache.cxf.configuration.spring,
org.apache.cxf.resource, org.springframework.beans.factory.config, *
Include-Resource: META-INF/spring/=spring/osgi/,hello_world.wsdl=wsdl/hello_world.wsdl
Bundle-Version: 1.0
Require-Bundle: org.apache.cxf.cxf-bundle
DynamicImport-Package: org.apache.cxf.*

To package the demo as OSGI bundles you would enter the following:

>ant osgi

71

Installing a Sample Application

When Ant finishes building and packaging the demo you will find the following
bundles in the build folder:

• helloworld_endpoint-1.0.jar—the bundle holding the service

implementation

• helloworld_model-1.0.jar—the bundle holding the JAXB objects used

by the service implementation

Note
The demo splits the application into two bundles merely to illustrate
that application can be partitioned into multiple bundles. There is
no requirement that an application be split into multiple bundles. In
fact, unless another application required the JAXB model used by
the HelloWorld application, it would be neater to package this
application as a single bundle.

Installing the application
Once you have packaged your application into bundles, you must install them
to a running OSGi container. How you install bundles into your OSGi container
will depend on your OSGi container.

If you are using the included Equinox OSGi container you use the install
command as shown in Example 25 on page 72.

Example 25. Installing HelloWorld to the Equinox OSGi Container

osgi>install InstallDir/java/samples/basic/wsdl_first/build/helloworld_endpoint-1.0.jar
Bundle id is 58
[Framework Event Dispatcher] INFO helloworld_endpoint-1.0 - BundleEvent INSTALLED
osgi>install InstallDir/java/samples/basic/wsdl_first/build/helloworld_model-1.0.jar
Bundle id is 59
[Framework Event Dispatcher] INFO helloworld_model-1.0 - BundleEvent INSTALLED

Important
You need the bundle IDs to work with the bundles once they are
installed in the container. The IDs are the only means of addressing
specific bundles.

When the bundles are installed they are placed into the installed life-cycle
state. The Equinox container does not automatically move them into the
resolved state.

72

Deploying to an OSGi Container

In this state the bundles cannot do anything. The container knows that the
bundles are loaded and that their contents are available to bundles that need
them.

Starting the application
Before an application can be used the bundle containing the service
implementation must be moved into the active life-cycle state and all of the
bundles containing dependencies must be in the resolved, or active, life-cycle
state.

In the demo, the service implementation is packaged in the
helloworld_endpoint-1.0 bundle. The bundle contains a Spring
configuration file that defines the endpoint to be created by the application.
The Equinox configuration generated for the demo installs and starts the
Spring-DM bundles. The Spring-DM extender bundle creates a Spring
ApplicationContext for the jaxws:endpoint element included in the
endpoint bundle's META-INF/spring directory. For more information about
writing Spring configuration for a service provider see Configuring Service
Providers on page 30.

Note
FUSE ESB and Apache ServiceMix 4 also come preloaded with the
Spring-DM extender bundle.

To start the demo application you use the container's start command as shown
in Example 26 on page 73.

Example 26. Starting HelloWorld in the Equinox OSGi Container

osgi>start 58

Tip
The start command uses the bundle ID of the bundle you wish to
start as its argument.

When you issue the start command for the endpoint bundle, the container
begins trying to resolve all of the bundle's dependencies. Because the endpoint
bundle depends on packages from the model bundle, the container
automatically resolves the helloworld_model-1.0 bundle before resolving
the endpoint bundle. Once the endpoint's bundle's dependencies are resolved,

73

Installing a Sample Application

the container activates it. This leaves the model bundle in the resolved
life-cycle state and the endpoint bundle in the active life-cycle state.

Running the client
Once the endpoint bundle is fully started, the HelloWorld service provider is
ready to accept requests from consumers. To test the application you can run
the client against the service provider by executing the ant client command.
Example 27 on page 74 shows the expected results.

Example 27. Output from HelloWorld

Buildfile: build.xml

validate.thirdparty.classpath:

maybe.generate.code:

compile:

create.spring.war:

demo.build:

build:

client:

validate.thirdparty.classpath:
[java] file:/C:/iona/artix_5.5/java/samples/basic/wsdl_first/wsdl/hello_world.wsdl
[java] Invoking sayHi...
[java] Server responded with: Bonjour
[java]
[java] Invoking greetMe...
[java] Server responded with: Hello Finn
[java]
[java] Invoking greetMe with invalid length string, expecting exception...
[java] Caught expected WebServiceException:
[java] Marshalling Error: cvc-maxLength-valid: Value 'Invoking greetMe with invalid length

string, expecting exception...
' with length = '67' is not facet-valid with respect to maxLength '30' for type 'MyStringType'.

[java]
[java] Invoking greetMeOneWay...
[java] No response from server as method is OneWay
[java]
[java] Invoking pingMe, expecting exception...
[java] Expected exception: PingMeFault has occurred: PingMeFault raised by server
[java] FaultDetail major:2
[java] FaultDetail minor:1

74

Deploying to an OSGi Container

BUILD SUCCESSFUL
Total time: 6 seconds

Stopping the application
When you are ready to take the service provider off line you can simply move
it from the active state to the resolved state. This will shut down the service
provider and free the resources it is using. However, the contents of the
application's bundle remain available to other bundles.

To stop a bundle in Equinox you use the stop command.

Tip
Stopped bundles can be easily reactivated using the start command.

Uninstalling the application
When you want to completely remove any resources exposed by your
application's bundles you need to uninstall the bundles. Once a bundle is
uninstalled none of its exported resources are available to bundles in the
container. It also cannot be re-started. It must be reinstalled before it can be
used again.

To uninstall bundles from the Equinox container you use the uninstall
command.

75

Installing a Sample Application

76

Deploying to the Spring Container
Artix ESB provides a Spring container into which you can deploy any Spring-based application, including a Artix
ESB service endpoint. This chapter outlines how to deploy and manage a Artix ESB service endpoint in the Spring
container.

Introduction .. 78
Running the Spring Container ... 81
Deploying a Artix ESB Endpoint ... 83
Managing the Container using the JMX Console ... 86
Managing the Container using the Web Service Interface ... 89
Spring Container Definition File ... 90
Running Multiple Containers on Same Host .. 93

77

Introduction
Overview

Artix ESB includes a Spring container that is a customized version of the
Spring framework. The Spring framework is a general purpose environment
for deploying and running Java applications. For more information on the
framework, see www.springframework.org. This document explains how to
deploy and manage Artix ESB service endpoints in the Spring container.

Figure 1 on page 79 shows how to access a deployed Artix ESB endpoint in
the Spring container.

78

Deploying to the Spring Container

www.springframework.org

Figure 1. Artix ESB Endpoint Deployed in a Spring Container

You deploy a Web Archive (WAR) file to the Spring container. The WAR file
contains all of the files that the Spring container needs to run your application.
These include the WSDL file that defines your service, the code that you
generated from the WSDL file, including the implementation file, and any

79

Introduction

libraries that your application requires. It also includes a Artix ESB runtime
Spring-based XML configuration file to configure your application.

The Spring container loads each WAR file using a unique class loader. The
class loader incorporates a firewall class loader that ensures that any classes
contained in the WAR are loaded before classes in the parent class loader
are loaded.

Sample XML
The example XML used in this chapter is taken from the Spring container
sample application located in:

InstallDir/samples/spring_container

Most of the samples contained in the InstallDir/samples directory can
be deployed to the Spring container. After reading this chapter, you can try
deploying some of the sample applications to the Spring container. For
instructions, see the README.txt files in each sample directory.

80

Deploying to the Spring Container

Running the Spring Container
Overview

This section explains how to run the Spring container using the
spring_container command.

Using the spring_container
command The spring_container command is located in the InstallDir/bin directory,

and has the following syntax:

spring_container [-config spring-config-url] [-wsdl
container-wsdl-url] [-h] [-verbose] [[start] | [stop]]

Table 10. Spring Container Command Options

Specifies the URL or file location of the Spring container configuration file, which is used
to launch the Spring container. This flag is optional.

-config

spring-config-url

By default, the Spring container uses the spring_container.xml file, which is located
in the InstallDir/containers/spring_container/etc directory.

You should only use the -config flag if you are specifying a different configuration file. For
example, see Running Multiple Containers on Same Host on page 93 .

Specifies the URL or file location of the Spring container WSDL file. This flag is optional.-wsdl

container-wsdl-url By default, the Spring container uses the container.wsdl file located in the
InstallDir/containers/spring_container/etc/wsdldirectory.

You should only use the -wsdl flag if you are specifying a different Spring container WSDL
file. For example, see Running Multiple Containers on Same Host on page 93

Prints usage summary and exits. This flag is optional.-h

Specifies verbose mode. This flag is optional.-v

Starts and stops the Spring container. These flags are required to start and stop the Spring
container respectively.

<start|stop>

Starting the Spring container
To start the Spring container, run the following command from the
InstallDir/bin directory:

spring_container start

81

Running the Spring Container

If you wish to start more that one container on a single host, see Running
Multiple Containers on Same Host on page 93.

Stopping the Spring container
To stop the Spring container, run the following command from the
InstallDir/bin directory:

spring_container stop

If you are running more than one container on the same host, see Running
Multiple Containers on Same Host on page 93.

82

Deploying to the Spring Container

Deploying a Artix ESB Endpoint
Deployment steps

The following steps outline, at a high-level, what you must do to successfully
configure and deploy a Artix ESB endpoint to the Spring container:

1. Write a Artix ESB configuration file for your application. See Configuring
your application on page 83.

2. Build a WAR file that contains the configuration file, the WSDL file that
defines your service, and the code that you generated from that WSDL
file, including the implementation file, and any libraries that your
application requires. See Building a WAR file on page 84.

3. Deploy the WAR file in one of the following ways:

• Copy the WAR file to the Spring container repository. See Deploying
the WAR file to the Spring repository on page 85.

• Use the JMX console. See Managing the Container using the JMX
Console on page 86.

• Use the Web service interface. See Managing the Container using the
Web Service Interface on page 89.

Configuring your application
You must write an XML configuration file for your application. The Spring
container requires this file to instantiate, configure, and assemble the beans
in your application.

Example 28 on page 83 shows the spring.xml configuration file used in
the Spring container sample application. You can use any name for your
configuration file, however, it must end with a .xml extension. This example
file is taken from the InstallDir/samples/spring_container sample
application. Most of the samples in the InstallDir/samples directory
contain files namedspring.xml, which configure the samples for deployment
to the Spring container.

Example 28. Configuration File—spring.xml

<?xml version="1.0" encoding="UTF-8"?>
<beans ❶

xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

83

Deploying a Artix ESB Endpoint

xmlns:jaxws="http://cxf.apache.org/jaxws"
xsi:schemaLocation="

http://cxf.apache.org/jaxws
http://cxf.apache.org/schemas/jaxws.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<jaxws:endpoint id="SoapEndpoint" ❷
implementor="#SOAPServiceImpl"
address="http://localhost:9000/SoapContext/SoapPort"
wsdlLocation="hello_world.wsdl"
endpointName="e:SoapPort"
serviceName="s:SOAPService"
xmlns:e="http://apache.org/hello_world_soap_http"
xmlns:s="http://apache.org/hello_world_soap_http"/>

<bean id="SOAPServiceImpl" class="demo.hw.server.GreeterImpl"/> ❸
</beans>

The code shown in Example 28 on page 83 can be explained as follows:

❶ The Spring beans element is required at the beginning of every Artix

ESB configuration file. It is the only Spring element that you must be
familiar with.

❷ Configures a jaxws:endpoint element that defines a service and its

corresponding endpoints.

Important
The location of the WSDL file specified in the wsdlLocation
is relative to the WAR's WEB_INF/wsdl folder.

For more information on configuring a Artix ESB jaxws:endpoint
element, see Using the jaxws:endpoint Element on page 31.

❸ Identifies the class that implements the service.

Building a WAR file
To deploy your application to the Spring container you must build a WAR file
that has the following structure and contents:

• META-INF/spring should include your configuration file. The configuration

file must have a .xml extension.

• WEB-INF/classes should include your Web service implementation class,

and any other classes (including the class hierarchy) generated by the artix

84

Deploying to the Spring Container

wsdl2java utility. For details, see artix wsdl2java in Artix® ESB Command
Reference.

• WEB-INF/wsdl should include the WSDL file that defines the service that

you are deploying.

• WEB-INF/lib should include any JARs required by your application.

Deploying the WAR file to the
Spring repository The simplest way to deploy a Artix ESB endpoint to the Spring container is

to:

1. Start the Spring container by running the following command:

InstallDir/bin/spring_container start

2. Copy the WAR file to the Spring container repository.

The default location for the repository is
InstallDir/containers/spring_container/repository.

The Spring container automatically scans the repository for newly deployed
applications. The default value at which it scans the repository is every 5000
milliseconds.

Using Ant to build a WAR file and
deploy to the Spring container You can use the Apache ant utility to build the Artix ESB sample applications.

This includes building the WAR files and deploying them to the Spring
container. If you want to use the ant utility to build your applications, including
the WAR file for deployment to the Spring container, see the example
build.xml file located in the
InstallDir/samples/spring_container/wsdl_first directory.

For more information about the ant utility, see http://ant.apache.org/.

Changing the interval at which
the Spring container scans its
repository

You can change the time interval at which the Spring container scans the
repository by changing the scanInterval property in the
spring_container.xml configuration file. See Example 29 on page 90 for
more detail.

Changing the default location of
the container repository You can change the Spring container repository location by changing the value

of the containerRepository property in the spring_container.xml
configuration file. See Example 29 on page 90 for more detail.

85

Deploying a Artix ESB Endpoint

http://www.iona.com/support/docs/artix/5.5/command_ref/command_ref.pdf
http://ant.apache.org/

Managing the Container using the JMX Console
Overview

You can use the JMX console to deploy and manage applications in the Spring
container. The JMX console enables you to deploy applications, as well as
stop, start, remove, and list applications that are running in the container.
You can also get information on the application’s state. The name of the
deployed WAR file is the name given to the application.

Using the JMX console
To use the JMX console to manage applications deployed to the Spring
container, do the following:

1. Start the JMX console by running the following command from the
InstallDir/bin directory:

CommandPlatform

jmx_console_start.batWindows

jmx_console_start.shUNIX

2. Select the MBeans tag and expand the bean node to view the
SpringContainer MBean (see Figure 2 on page 87).

The SpringContainer MBean is deployed as part of the Spring
container. It provides access to the management interface for the Spring
Container and can be used to deploy, stop, start, remove and list
applications. I can also get information on an application’s state.

86

Deploying to the Spring Container

Figure 2. JMX Console—SpringContainer MBean

The operations and their parameters are described in Table 11 on page 87.

Table 11. JMX Console—SpringContainer MBean Operations

ParametersDescriptionOperation

location — A URL or file location that
points to the application to be deployed.

Deploys an application to the container
repository. The deploy method copies a

deploy

warFileName — The name of the WAR file
as you want it to appear in the container
repository.

WAR file from a given URL or file location
and puts the copy into the container
repository.

name — Specifies the name of the

application that you want to stop. The

Stops the specified application. It does not
remove the application from the container
repository.

stopApplication

application name is the same as the WAR
file name.

87

Managing the Container using the JMX Console

ParametersDescriptionOperation

name — Specifies the name of the

application that you want to start. The

Starts an application that has previously
been deployed and subsequently stopped.

startApplication

application name is the same as the WAR
file name.

name — Specifies the name of the

application that you want to stop and

Stops and removes an application. It
completely removes an application from
the container repository.

removeApplication

remove. The application name is the same
as the WAR file name.

NoneLists all of the applications that have been
deployed. The applications can be in one

listApplicationNames

of three states: start, stop, or failed. An
application’s name is the same as its WAR
file name.

name — Specifies the name of the

application whose state you want to know.

Reports whether an application is running
or not.

getApplicationState

The application name is the same as the
WAR file name.

88

Deploying to the Spring Container

Managing the Container using the Web Service
Interface
Overview

You can use the Web service interface to deploy and manage applications in
the Spring container. The Web service interface is specified in the
container.wsdl file, which is located in the
InstallDir/containers/spring_container/etc/wsdl directory of your
installation.

Client tool
Artix ESB does not currently include a client tool for the Web service interface.
However, you can write one if you are familiar with Web service development.
Please see the container.wsdl file and the Developing Artix® Applications
with JAX-WS for more details.

Changing the port the Web
service interface listens on To change the port that the Web service interface listens on, you must change

the port number of the address property in the spring_container.xml file,
as shown:

<jaxws:endpoint id="ContainerService"
implementor="#ContainerServiceImpl"

address="http://localhost:2222/AdminContext/Ad
minPort" ...>

You do not need to change the container.wsdl file.

For more information on the spring_container.xml file, see Spring
Container Definition File on page 90.

Adding a port
If you want to add a port, such as a JMS port or an HTTPS port, add the port
details to the container.wsdl file.

89

Managing the Container using the Web Service Interface

http://www.iona.com/support/docs/artix/5.5/jaxws_pguide/jaxws_pguide.pdf
http://www.iona.com/support/docs/artix/5.5/jaxws_pguide/jaxws_pguide.pdf

Spring Container Definition File
Overview

The Spring container is configured in the spring_container.xml file located
in the following directory of your installation:

InstallDir/containers/spring_container/etc

spring_container.xml
The contents of the Spring container configuration file are shown in
Example 29 on page 90.

Example 29. spring_container.xml

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:jaxws="http://cxf.apache.org/jaxws"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:container="http://schemas.iona.com/soa/container-config"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.0.xsd

http://cxf.apache.org/jaxws
http://cxf.apache.org/schemas/jaxws.xsd

http://schemas.iona.com/soa/container-config
http://schemas.iona.com/soa/container-config.xsd">

<!-- Bean definition for Container -->
<container:container id="container" containerRepository="C:\iona\fuse-services-frame

work/containers/spring_container/repository" scanInterval="5000"/> ❶

<!-- Web Service Container Management -->
<jaxws:endpoint id="ContainerService" ❷

implementor="#ContainerServiceImpl"
address="http://localhost:2222/AdminContext/AdminPort"
wsdlLocation="/wsdl/container.wsdl"
endpointName="e:ContainerServicePort"
serviceName="s:ContainerService"
xmlns:e="http://cxf.iona.com/container/admin"
xmlns:s="http://cxf.iona.com/container/admin"/>

<bean id="ContainerServiceImpl" class="com.iona.cxf.container.admin.ContainerAdminSer
viceImpl">

<property name="container">
<ref bean="container" />

</property>
</bean>

90

Deploying to the Spring Container

<!-- JMX Container Management -->
<bean id="mbeanServer" class="org.springframework.jmx.support.MBeanServerFactoryBean"> ❸

<property name="locateExistingServerIfPossible" value="true" />
</bean>

<bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
<property name="beans">
<map>
<entry key="bean:name=SpringContainer" value-ref="container"/>
<entry key="connector:name=rmi" value-ref="serverConnector"/>

</map>
</property>
<property name="server" ref="mbeanServer"/>
<property name="assembler" ref="assembler" />

</bean>

<bean id="assembler" class="org.springframework.jmx.export.assembler.InterfaceBasedMBean
InfoAssembler">

<property name="interfaceMappings">
<props>
<prop key="bean:name=SpringContainer">com.iona.cxf.container.managed.JMXContain

er</prop>
</props>

</property>
</bean>

<bean id="serverConnector" class="org.springframework.jmx.support.ConnectorServerFactory
Bean" depends-on="registry">

<property name="serviceUrl" value="service:jmx:rmi:///jndi/rmi://local
host:1099/jmxrmi/server"/>
</bean>

<bean id="registry" class="org.springframework.remoting.rmi.RmiRegistryFactoryBean">
<property name="port" value="1099"/>

</bean>
</beans>

The XML shown in Example 29 on page 90 does the following:

❶ Defines a bean that encapsulates the logic for the Spring container. This
bean handles the logic for deploying user applications that are copied
to the specified container repository location. The default container
repository location is:
InstallDir/containers/spring_container/repository. You can

change the repository location by changing the value of the
containerRepository attribute.

91

Spring Container Definition File

The scanInterval attribute sets the time interval at which the repository
is scanned. It is set in milliseconds. The default value is set to 5000
milliseconds. Removing this attribute disables scanning.

❷ Defines an application that creates a Web service interface that you can
use to manage the Spring container.

The ContainerServiceImpl bean contains the server implementation
code and the container administration logic.

To change the port on which the Web service interface listens, change
the address property.

❸ Defines Spring beans that allow you to use a JMX console to manage
the Spring container.

For more information, see the JMX chapter of the Spring 2.0.x reference
document available at http://static.springframework.org/spring/docs/
2.0.x/reference/jmx.html.

92

Deploying to the Spring Container

http://static.springframework.org/spring/docs/2.0.x/reference/jmx.html
http://static.springframework.org/spring/docs/2.0.x/reference/jmx.html

Running Multiple Containers on Same Host
Overview

You might want to run more than one instance of a Spring container on a
single host. This allows you to load balance between multiple containers and
also allows you to separate applications. Setting up multiple Spring containers
to run on a single host requires you to modify each container's configuration
so that there are no resource clashes.

Procedure
If you want to run more than one Spring container on the same host, you
must do the following:

1. Make a copy of the container.wsdl file, which is located in the

InstallDir/containers/spring_container/etc/wsdl directory.

2. In your new copy, my_container.wsdl, change the port on which the

Web service interface listens from 2222 to another port by changing the

address property as shown below:

<service name="ContainerService">
<port name="ContainerServicePort" binding="tns:ContainerServiceBinding">
<soap:address location="http://localhost:2222/AdminContext/AdminPort"/>
</port>
</service>

3. Make a copy of the spring_container.xml file, which is located in

the InstallDir/containers/spring_container/etc directory.

4. Make the following changes to your new copy, my_spring_container.xml:

1. Container repository location—change the container's
containerRepository property to point to a new repository.

For example, you change:

<container:container id="container"
containerRepository="c:\iona\fuse-services-framework/containers/spring_container/re

pository"
scanInterval="5000"/>

To:

93

Running Multiple Containers on Same Host

<container:container id="container"
containerRepository="MyNewContainerRepository/spring_container/repository"
scanInterval="5000"/>

2. Change the port on which the Web service interface listens by changing
the address property as follows:

<jaxws:endpoint id="ContainerService"
implementor="#ContainerServiceImpl"
address=" http://localhost:2222/AdminContext/AdminPort">

3. Change the JMX port from 1099 to a new port as show in the following

line:

<bean id="serverConnector"
class="org.springframework.jmx.support.ConnectorServerFactoryBean"
depends-on="registry">
<property name="serviceUrl" value="service:jmx:rmi:///jndi/rmi://local

host:1099/jmxrmi/server"/>
</bean>

4. Change the RMI registry port from 1099 to a new port as shown in

the following snipit:

<bean id="registry" class="org.springframework.remot
ing.rmi.RmiRegistryFactoryBean">
<property name="port" value="1099"/>
</bean>

5. Make a copy of the JMX console launch script,
jmx_console_start.bat, which is located in the InstallDir/bin

directory.

6. Change the following line in the copy of the JMX console launch script
to point to the JMX port that is specified above:

service:jmx:rmi:///jndi/rmi://localhost:1099/jmxrmi/server

7. Start the new container by passing the URL, or file location of its
configuration file, my_spring_container.xml, to the start_container

script as follows:

94

Deploying to the Spring Container

InstallDir/bin/spring_container -config my_spring_contain
er.xml start

8. To view the new container using the JMX console, run the JMX console
launch script created in steps 5 and 6.

9. Stop the new container by passing the URL or file location of its WSDL
file, my_container.wsdl, to the spring_container command.

For example, if the my_container.wsdl file has been saved to the
InstallDir/containers/spring_container/wsdl directory, run
the following command:

InstallDir/bin/spring_container -wsdl ..\containers\spring_con
tainer\wsdl\my_container.wsdl stop

95

Running Multiple Containers on Same Host

96

Deploying to a Servlet Container
Artix ESB endpoints can be deployed into any servlet container. Artix ESB provides a standard servlet adapter
that works for most service providers. It is also possible to deploy Artix ESB endpoints using a Spring context or
by creating a custom servlet to instantiate the Artix ESB endpoint.

Introduction .. 98
Configuring the Servlet Container ... 99
Using the CXF Servlet ... 101
Using a Custom Servlet ... 107
Using the Spring Context Listener ... 110

97

Introduction
Overview

Servlet containers are a common platform for running Web services. The Artix
ESB runtime's light weight and plugability make it easy to deploy endpoints
into a servlet container. There are several ways to deploy endpoints into a
servlet container:

• a Artix ESB provided servlet adapter class

• a custom servlet

• the Spring servlet context listener

• the Artix ESB JCA connector

Note
Not all servlet containers support JCA connectors

Deploying service providers
The preferred way to deploy a service provider into a servlet container is to
use the CXF servlet. The CXF servlet only requires a few additional pieces of
configuration to deploy a service provider into the servlet container. Much of
the additional information is either canned information required deploy the
servlet or Artix ESB configuration for the endpoint.

It is also possible to deploy a service provider using any of the other methods.

Deploying service consumers
Service consumers cannot be deployed using the CXF servlet. They can be
deployed using either a custom servlet that creates the required proxies or
using the Artix ESB JCA adapter.

For more information on using the JCA adapter read Artix for J2EE (JAX-WS)
.

98

Deploying to a Servlet Container

http://www.iona.com/support/docs/artix/5.5/j2ee-jaxws/j2ee_jaxws.pdf

Configuring the Servlet Container
Overview

Before you can deploy a Artix ESB endpoint to your servlet container you must
make the Artix ESB runtime libraries available to the container. There are two
ways to accomplish this:

1. Add the required libraries to the container's shared library folder

This approach has the advantage of keeping individual WAR files small.
It also ensures that all of the Artix ESB servlets are using the same version
of the libraries.

2. Add the required libraries to each application's WAR file

This approach has the advantage of flexibility. Each WAR can contain the
versions of the libraries it requires.

Required libraries
Artix ESB endpoints require all of the JAR files in the InstallDir/lib directory
except the following:

• cxf-*-jbi-*.jar

• ap-*.jar

• artix.jar

• bnd*.jar

• compendium*.jar

• derby*

• geronimo-ejb*

• geronimo-j2ee*

• geronimo-servlet*

• it-soa-ads*.jar

99

Configuring the Servlet Container

• it-soa-broker.jar

• it-soa-container*.jar

• it-soa-jaxwsgenerator*.jar

• it-soa-management*

• it-soa-router.jar

• it-soa-tools

• it-soa-transport-mq*

• osgi-3.4.0.jar

• pax*

• spring-osgi*.jar

• servlet-api*.jar

• geronimo-servlet_*.jar

• jetty-*.jar

Automating servlet container
configuration The Artix ESB samples directory, InstallDir/samples, includes a

common_build.xml file that contains utilities that automates the configuration
of the servlet environment.

One utility is the copy-war-libs Ant target. It copies the required libraries to
the folder specified in the war-lib. For example, to install the required libraries
into a Tomcat 6 installation enter ant copy-war-libs
-Dwar-lib=CATALINA_HOME\lib.

The other utility is the cxfwar macro. The macro is used to build the WAR
files for all of the Artix ESB samples. Its default result is to make a WAR
containing all of the required libraries. This behavior can be changed by setting
the without.libs property to true.

100

Deploying to a Servlet Container

Using the CXF Servlet
Overview

Artix ESB provides a standard servlet, the CXF servlet, which acts as an
adapter for the Web service endpoints. The CXF servlet is the easiest method
for deploying Web services into a servlet container.

Figure 3 on page 102 shows the main components of a Artix ESB endpoint
deployed using the CXF servlet.

101

Using the CXF Servlet

Figure 3. Artix ESB Endpoint Deployed in a Servlet Container

102

Deploying to a Servlet Container

• Deployed WAR file — Service providers are deployed to the servlet container
in a Web Archive (WAR) file. The deployed WAR file contains:

• the compiled code for the service provider being deployed

• the WSDL file defining the service

• the Artix ESB configuration file

This file, called cxf-servlet.xml, is standard Artix ESB configuration
file that defines all of the endpoints contained in the WAR.

• the Web application deployment descriptor

All Artix ESB Web applications using the standard CXF servlet need to
load the org.apache.cxf.transport.servlet.CXFServlet class.

• CXF servlet — The CXF servlet is a standard servlet provided by Artix ESB.
It acts as an adapter for Web service endpoints and is part of the Artix ESB
runtime. The CXF servlet is implemented by the
org.apache.cxf.transport.servlet.CXFServlet class.

Deployment steps
To deploy a Artix ESB endpoint to a servlet container you must:

1. Build a WAR that contains your application and all the required support
files.

2. Deploy the WAR file to your servlet container.

Building a WAR
To deploy your application to a servlet container, you must build a WAR file.
The WAR file's WEB-INF folder should include the following:

• cxf-servlet.xml — a Artix ESB configuration file specifying the endpoints

that plug into the CXF servlet. When the CXF servlet starts up, it reads the
jaxws:endpoint elements from this file, and initializes a service endpoint

for each one. See Servlet configuration file for more information.

• web.xml — a standard web application file that instructs the servlet

container to load the org.apache.cxf.transport.servlet.CXFServlet

class.

103

Using the CXF Servlet

Tip
A reference version of this file is contained in your InstallDir/etc
directory. You can use this reference copy without making changes
to it.

• classes — a folder including your Web service implementation class and

any other classes required to support the implementation.

• wsdl — a folder including the WSDL file that defines the service you are

deploying.

• lib — a folder including any JARs required by your application.

Servlet configuration file
The cxf-servlet.xml file is a Artix ESB configuration file that configures
the endpoints that plug into the CXF servlet. When the CXF servlet starts up
it reads the jaxws:endpoint elements in this file and initializes a service
endpoint for each one.

Example 30 on page 104 shows a simple cxf-servlet.xml file.

Example 30. CXF Servlet Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans" ❶

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance
xmlns:jaxws="http://cxf.apache.org/jaxws"
xmlns:soap="http://cxf.apache.org/bindings/soap"
xsi:schemaLocation="

http://www.springframework.org/schema/beans http://www.springframe
work.org/schema/beans/spring-beans-2.0.xsd
http://cxf.apache.org/bindings/soap http://cxf.apache.org/schemas/configuration/soap.xsd
http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd">

<jaxws:endpoint ❷
id="hello_world"
implementor="demo.hw.server.GreeterImpl"
wsdlLocation="WEB-INF/wsdl/hello_world.wsdl"
address="/hello_world">

<jaxws:features>
<bean class="org.apache.cxf.feature.LoggingFeature"/>

</jaxws:features>
</jaxws:endpoint>

</beans>

104

Deploying to a Servlet Container

The code shown in Example 30 on page 104 is explained as follows:

❶ The Spring beans element is required at the beginning of every Artix

ESB configuration file. It is the only Spring element that you need to be
familiar with.

❷ The jaxws:endpoint element defines a service provider endpoint. The

jaxws:endpoint element has the following attributes:

• id — Sets the endpoint id.

• implementor — Specifies the class implementing the service.

Important
This class needs to be included in the WAR's
WEB-INF/classes folder.

• wsdlLocation — Specifies the WSDL file that contains the service

definition.

Important
The WSDL file location is relative to the WAR's
WEB-INF/wsdl folder.

• address — Specifies the address of the endpoint as defined in the

service's WSDL file that defines service that is being deployed.

• jaxws:features — Defines features that can be added to your

endpoint.

For more information on configuring a jaxws:endpoint element, see
Using the jaxws:endpoint Element on page 31.

Web application configuration
You must include a web.xml deployment descriptor file that instructs the
servlet container to load the CXF servlet. Example 31 on page 106 shows a
web.xml file. It is not necessary to change this file. A reference copy is located
in the InstallDir/etc directory.

105

Using the CXF Servlet

Example 31. A web.xml Deployment Descriptor File

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN" "ht
tp://java.sun.com/dtd/web-app_2_3.dtd">
<web-app>

<display-name>cxf</display-name>
<description>cxf</description>
<servlet>

<servlet-name>cxf</servlet-name>
<display-name>cxf</display-name>
<description>Apache CXF Endpoint</description>
<servlet-class>org.apache.cxf.transport.servlet.CXFServlet</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>
<servlet-mapping>

<servlet-name>cxf</servlet-name>
<url-pattern>/services/*</url-pattern>

</servlet-mapping>
<session-config>

<session-timeout>60</session-timeout>
</session-config>

</web-app>

Deploying a WAR file to the
servlet container How you deploy your WAR file depends on the servlet container that you are

using. For example, to deploy your WAR file to Tomcat, you copy it to the
Tomcat CATALINA_HOME/server/webapp directory.

106

Deploying to a Servlet Container

Using a Custom Servlet
Overview

In some cases, you might want to write a custom servlet that deploys Artix
ESB enabled endpoints. A common reason is to deploy Artix ESB client
applications into a servlet container. The CXF servlet does not support
deploying pure client applications.

Procedure
The procedure for using a custom servlet is similar to the one for using the
default CXF servlet:

1. Implement a servlet that instantiates a Artix ESB enabled endpoint.

2. Package your servlet in a WAR that contains the Artix ESB libraries and
the configuration needed for your application.

3. Deploy the WAR to your servlet container.

Differences from using the default
servlet There are a few important differences between using the CXF servlet and

using a custom servlet:

• The configuration file is not called cxf-servlet.xml.

The default behavior is similar to that of a regular Artix ESB application. It
looks for its configuration in a file called WEB-INF/classes/cxf.xml. If
you want to locate the configuration in a different file, you can
programmatically configure the servlet to load the configuration file.

• Any paths in the configuration file are relative to the servlet’s
WEB-INF/classes folder.

Implementing the servlet
Implementing the servlet is easy. You simply add logic to the servlet’s
constructor to instantiate the Artix ESB endpoint. Example 32 on page 107
shows an example of instantiating a consumer endpoint in a servlet.

Example 32. Instantiating a Consumer Endpoint in a Servlet

public class HelloWorldServlet extends HttpServlet
{
private static Greeter port;

public HelloWorldServlet()

107

Using a Custom Servlet

{
URL wsdlURL = getClass().getResource("/hello_world.wsdl");

port = new SOAPService(wsdlURL,
new QName("http://apache.org/hello_world_soap_http",
"SOAPService")).getSoapPort();

}

...
}

If you choose not to use the default location for the configuration file, then
you must add code for loading the configuration file. To load the configuration
from a custom location do the following:

1. Use the ServletContext to resolve the file location into a URL.

2. Create a new bus for the application using the resolved URL.

3. Set the application’s default bus to the newly created bus.

Example 33 on page 108 shows an example of loading the configuration from
the WEB-INF/client.xml file.

Example 33. Loading Configuration from a Custom Location

public class HelloWorldServlet extends HttpServlet
{
public init(ServletConfig cfg)
{
URL configUrl=cfg.getServletContext().getResource("WEB-

INF/client.xml");
Bus bus = new SpringBusFactory().createBus(url);
BusFactory.setDefaultBus(bus);

}

...
}

Depending on what other features you want to use, you might need to add
additional code to your servlet. For example, if you want to use WS-Security
in a consumer you must add code to your servlet to load the credentials and
add them to your requests.

Building the WAR file
To deploy your application to a servlet container you must build a WAR file
that has the following directories and files:

108

Deploying to a Servlet Container

• The WEB-INF folder should include a web.xml file which instructs the

servlet container to load the custom servlet.

• The WEB-INF/classes folder should include the following:

• The implementation class and any other classes (including the class
hierarchy) generated by the artix wsdl2java utility

• The default cxf.xml configuration file

• Other resource files that are referenced by the configuration.

• The WEB-INF/wsdl folder should include the WSDL file that defines the

service being deployed.

• The WEB-INF/lib folder should include any JARs required by the

application.

109

Using a Custom Servlet

Using the Spring Context Listener
Overview

An alternative approach to instantiating endpoints inside a servlet container
is to use the Spring context listener. The Spring context listener provides more
flexibility in terms of how an application is wired together. It uses the
application's Spring configuration to determine what object to instantiate and
loads the objects into the application context used by the servlet container.

The added flexibility adds complexity. The application developer must know
exactly what application components need to loaded. They also must know
what Artix ESB components need to be loaded. If any component is missing,
the application will not not load properly and the desired endpoints will not
be created.

Procedure
The following steps are involved in building and packaging a Web application
that uses the Spring context listener:

1. Develop the application's business logic.

Only the service implementation needs to be developed service provider
endpoints.

The business logic for service consumers should be encapsulated in a
Java class and not as part of the main() method.

2. Update the application's web.xml file to load the Spring context listener

and the application's Spring configuration.

3. Create a Spring configuration file that explicitly loads all of the
application's components and all of the required Artix ESB components.

4. Package the application into a WAR file for deployment.

Configuring the Web application
The servlet container looks in the WEB-INF/web.xml file to determine what
classes are needed to activate the Web application. When deploying a Artix
ESB based application using the Spring context listener, the servlet container
needs to load the
org.springframework.web.context.ContextLoaderListener class.
This is specified using the listener element and its listener-class child.

The org.springframework.web.context.ContextLoaderListener class
uses a context parameter called contextConfigLocation to determine the

110

Deploying to a Servlet Container

location of the Spring configuration file. The context parameter is configured
using the context-parameter element. The context-param element has
two children that specify parameters and their values. The param-name
element specifies the parameter's name. The param-value element specifies
the parameter's value.

Example 34 on page 111 shows a web.xml file that configures the servlet
container to load the Spring listener and a Spring configuration file.

Example 34. Web Application Configuration for Loading the Spring Context Listener

<!DOCTYPE web-app
PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

"http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app>
<context-param> ❶
<param-name>contextConfigLocation</param-name>
<param-value>WEB-INF/beans.xml</param-value>

</context-param>

<listener> ❷
<listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>

</listener>
...

</web-app>

The XML in Example 34 on page 111 does the following:

❶ Specifies that the Spring context listener will load the application's Spring
configuration from WEB-INF/beans.xml.

❷ Specifies that the servlet container should load the Spring context listener.

Creating the Spring configuration
The Spring configuration file for a application using the Spring context listener
is similar to a standard Artix ESB configuration file. It uses all of the same
endpoint configuration elements described in Configuring Artix ESB
Endpoints on page 29. It can also contain standard Spring beans.

The difference between a typical Artix ESB configuration file and a
configuration file for using the Spring context listener is that the Spring context
listener configuration must import the configuration for all of the Artix ESB
runtime components used by the endpoint's exposed by the application. These
components are imported into the configuration as resources using an import
element for each component's configuration.

111

Using the Spring Context Listener

Example 35 on page 112 shows the configuration for a simple consumer
endpoint being deployed using the Spring context listener.

Example 35. Configuration for a Consumer Deployed into a Servlet Container Using the Spring Context Listener

<beans ... >

<import resource="classpath:META-INF/cxf/cxf.xml" />
<import resource="classpath:META-INF/cxf/cxf-extension-jaxws.xml" />
<import resource="classpath:META-INF/cxf/cxf-extension-soap.xml" />
<import resource="classpath:META-INF/cxf/cxf-extension-http-binding.xml" />
<import resource="classpath:META-INF/cxf/cxf-servlet.xml" />

<jaxws:client id="funguy"
address="http://localhost:9000/funguyTool"
serviceClass="org.laughs.funGuyImpl" />

</beans>

The import elements at the beginning of Example 35 on page 112 import
the required Artix ESB component configuration. The required Artix ESB
component configuration files depends on the features being used by the
endpoints. At a minimum, an application in a servlet container will need the
components shown in Example 35 on page 112.

Tip
Importing the cxf-all.xml configuration file will automatically
import all of the Artix ESB components.

Building the WAR
To deploy your application to a servlet container, you must build a WAR file.
The WEB-INF folder should include the following:

• beans.xml — the Spring configuration file configuring the application's

beans.

• web.xml — the web application file that instructs the servlet container to

load the Spring context listener.

• classes — a folder including the Web service implementation class and

any other classes required to support the implementation.

• wsdl — a folder including the WSDL file that defines the service being

deployed.

112

Deploying to a Servlet Container

• lib — a folder including any JARs required by the application.

113

Using the Spring Context Listener

114

Deploying WS-Addressing
Artix ESB supports WS-Addressing for JAX-WS applications. This chapter explains how to deploy WS-Addressing
in the Artix ESB runtime environment.

Introduction to WS-Addressing .. 116
WS-Addressing Interceptors .. 117
Enabling WS-Addressing .. 118
Configuring WS-Addressing Attributes ... 120

115

Introduction to WS-Addressing
Overview

WS-Addressing is a specification that allows services to communicate
addressing information in a transport neutral way. It consists of two parts:

• A structure for communicating a reference to a Web service endpoint

• A set of Message Addressing Properties (MAP) that associate addressing
information with a particular message

Supported specifications
Artix ESB supports both the WS-Addressing 2004/08 specification and the
WS-Addressing 2005/03 specification.

Further information
For detailed information on WS-Addressing, see the 2004/08 submission at
http://www.w3.org/Submission/ws-addressing/.

116

Deploying WS-Addressing

http://www.w3.org/Submission/ws-addressing/

WS-Addressing Interceptors
Overview

In Artix ESB, WS-Addressing functionality is implemented as interceptors.
The Artix ESB runtime uses interceptors to intercept and work with the raw
messages that are being sent and received. When a transport receives a
message, it creates a message object and sends that message through an
interceptor chain. If the WS-Addressing interceptors are added to the
application's interceptor chain, any WS-Addressing information included with
a message is processed.

WS-Addressing Interceptors
The WS-Addressing implementation consists of two interceptors, as described
in Table 12 on page 117.

Table 12. WS-Addressing Interceptors

DescriptionInterceptor

A logical interceptor responsible for aggregating the
Message Addressing Properties (MAPs) for outgoing
messages.

org.apache.cxf.ws.addressing.MAPAggregator

A protocol-specific interceptor responsible for encoding and
decoding the Message Addressing Properties (MAPs) as
SOAP headers.

org.apache.cxf.ws.addressing.soap.MAPCodec

117

WS-Addressing Interceptors

Enabling WS-Addressing
Overview

To enable WS-Addressing the WS-Addressing interceptors must be added to
the inbound and outbound interceptor chains. This is done in one of the
following ways:

• Artix ESB Features

• RMAssertion and WS-Policy Framework

• Using Policy Assertion in a WS-Addressing Feature

Adding WS-Addressing as a
Feature WS-Addressing can be enabled by adding the WS-Addressing feature to the

client and the server configuration as shown in Example 36 on page 118 and
Example 37 on page 118 respectively.

Example 36. client.xml—Adding WS-Addressing Feature to Client
Configuration

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:jaxws="http://cxf.apache.org/jaxws"
xmlns:wsa="http://cxf.apache.org/ws/addressing"
xsi:schemaLocation="
http://www.springframework.org/schema/beans ht

tp://www.springframework.org/schema/beans/spring-beans.xsd">

<jaxws:client ...>
<jaxws:features>

<wsa:addressing/>
</jaxws:features>

</jaxws:client>
</beans>

Example 37. server.xml—Adding WS-Addressing Feature to Server
Configuration

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:jaxws="http://cxf.apache.org/jaxws"
xmlns:wsa="http://cxf.apache.org/ws/addressing"
xsi:schemaLocation="

http://www.springframework.org/schema/beans http://www.spring

118

Deploying WS-Addressing

framework.org/schema/beans/spring-beans.xsd">

<jaxws:endpoint ...>
<jaxws:features>

<wsa:addressing/>
</jaxws:features>

</jaxws:endpoint>
</beans>

119

Enabling WS-Addressing

Configuring WS-Addressing Attributes
Overview

The Artix ESB WS-Addressing feature element is defined in the namespace
http://cxf.apache.org/ws/addressing. It supports the two attributes described
in Table 13 on page 120.

Table 13. WS-Addressing Attributes

ValueAttribute Name

A boolean that determines if duplicate MessageIDs are tolerated. The default
setting is true.

allowDuplicates

A boolean that indicates if the presence of the UsingAddressing element in the

WSDL is advisory only; that is, its absence does not prevent the encoding of
WS-Addressing headers.

usingAddressingAdvisory

Configuring WS-Addressing
attributes Configure WS-Addressing attributes by adding the attribute and the value you

want to set it to the WS-Addressing feature in your server or client configuration
file. For example, the following configuration extract sets the
allowDublicates attribute to false on the server endpoint:

<beans ... xmlns:wsa="http://cxf.apache.org/ws/addressing"
...>

<jaxws:endpoint ...>
<jaxws:features>

<wsa:addressing allowDuplicates="false"/>
</jaxws:features>

</jaxws:endpoint>
</beans>

Using a WS-Policy assertion
embedded in a feature In Example 38 on page 120 an addressing policy assertion to enable

non-anonymous responses is embedded in the policies element.

Example 38. Using the Policies to Configure WS-Addressing

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:wsa="http://cxf.apache.org/ws/addressing"
xmlns:wsp="http://www.w3.org/2006/07/ws-policy"
xmlns:policy="http://cxf.apache.org/policy-config"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-

120

Deploying WS-Addressing

utility-1.0.xsd"
xmlns:jaxws="http://cxf.apache.org/jaxws"
xsi:schemaLocation="

http://www.w3.org/2006/07/ws-policy http://www.w3.org/2006/07/ws-policy.xsd
http://cxf.apache.org/ws/addressing http://cxf.apache.org/schema/ws/addressing.xsd
http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd
http://www.springframework.org/schema/beans http://www.springframe
work.org/schema/beans/spring-beans.xsd">

<jaxws:endpoint name="{http://cxf.apache.org/greeter_control}GreeterPort"
createdFromAPI="true">

<jaxws:features>
<policy:policies>

<wsp:Policy xmlns:wsam="http://www.w3.org/2007/02/addressing/metadata">
<wsam:Addressing>

<wsp:Policy>
<wsam:NonAnonymousResponses/>

</wsp:Policy>
</wsam:Addressing>

</wsp:Policy>
<policy:policies>

</jaxws:features>
</jaxws:endpoint>

</beans>

121

Configuring WS-Addressing Attributes

122

Enabling Reliable Messaging
Artix ESB supports WS-Reliable Messaging(WS-RM). This chapter explains how to enable and configure WS-RM
in Artix ESB.

Introduction to WS-RM .. 124
WS-RM Interceptors ... 126
Enabling WS-RM ... 128
Configuring WS-RM .. 132

Configuring Artix ESB-Specific WS-RM Attributes ... 133
Configuring Standard WS-RM Policy Attributes .. 135
WS-RM Configuration Use Cases ... 139

Configuring WS-RM Persistence ... 143

123

Introduction to WS-RM
Overview

WS-ReliableMessaging (WS-RM) is a protocol that ensures the reliable delivery
of messages in a distributed environment. It enables messages to be delivered
reliably between distributed applications in the presence of software, system,
or network failures.

For example, WS-RM can be used to ensure that the correct messages have
been delivered across a network exactly once, and in the correct order.

How WS-RM works
WS-RM ensures the reliable delivery of messages between a source and a
destination endpoint. The source is the initial sender of the message and the
destination is the ultimate receiver, as shown in Figure 4 on page 124.

Figure 4. Web Services Reliable Messaging

The flow of WS-RM messages can be described as follows:

1. The RM source sends a CreateSequence protocol message to the RM
destination. This contains a reference for the endpoint that receives
acknowledgements (the wsrm:AcksTo endpoint).

2. The RM destination sends a CreateSequenceResponse protocol message
back to the RM source. This message contains the sequence ID for the
RM sequence session.

3. The RM source adds an RM Sequence header to each message sent by
the application source. This header contains the sequence ID and a unique
message ID.

124

Enabling Reliable Messaging

4. The RM source transmits each message to the RM destination.

5. The RM destination acknowledges the receipt of the message from the RM
source by sending messages that contain the RM
SequenceAcknowledgement header.

6. The RM destination delivers the message to the application destination in
an exactly-once-in-order fashion.

7. The RM source retransmits a message that it has not yet received an
acknowledgement.

The first retransmission attempt is made after a base retransmission
interval. Successive retransmission attempts are made, by default, at
exponential back-off intervals or, alternatively, at fixed intervals. For more
details, see Configuring WS-RM on page 132.

This entire process occurs symmetrically for both the request and the response
message; that is, in the case of the response message, the server acts as the
RM source and the client acts as the RM destination.

WS-RM delivery assurances
WS-RM guarantees reliable message delivery in a distributed environment,
regardless of the transport protocol used. Either the source or the destination
endpoint logs an error if reliable delivery can not be assured.

Supported specifications
Artix ESB supports the 2005/02 version of the WS-RM specification, which
is based on the WS-Addressing 2004/08 specification.

Further information
For detailed information on WS-RM, see the specification at http://
specs.xmlsoap.org/ws/2005/02/rm/ws-reliablemessaging.pdf.

125

Introduction to WS-RM

http://specs.xmlsoap.org/ws/2005/02/rm/ws-reliablemessaging.pdf
http://specs.xmlsoap.org/ws/2005/02/rm/ws-reliablemessaging.pdf

WS-RM Interceptors
Overview

In Artix ESB, WS-RM functionality is implemented as interceptors. The Artix
ESB runtime uses interceptors to intercept and work with the raw messages
that are being sent and received. When a transport receives a message, it
creates a message object and sends that message through an interceptor
chain. If the application's interceptor chain includes the WS-RM interceptors,
the application can participate in reliable messaging sessions. The WS-RM
interceptors handle the collection and aggregation of the message chunks.
They also handle all of the acknowledgement and retransmission logic.

Artix ESB WS-RM Interceptors
The Artix ESB WS-RM implementation consists of four interceptors, which
are described in Table 14 on page 126.

Table 14. Artix ESB WS-ReliableMessaging Interceptors

DescriptionInterceptor

Deals with the logical aspects of providing reliability
guarantees for outgoing messages.

org.apache.cxf.ws.rm.RMOutInterceptor

Responsible for sending the CreateSequence
requests and waiting for their
CreateSequenceResponse responses.

Also responsible for aggregating the sequence
properties—ID and message number—for an
application message.

Responsible for intercepting and processing RM
protocol messages and SequenceAcknowledgement

org.apache.cxf.ws.rm.RMInInterceptor

messages that are piggybacked on application
messages.

Responsible for encoding and decoding the reliability
properties as SOAP headers.

org.apache.cxf.ws.rm.soap.RMSoapInterceptor

Responsible for creating copies of application
messages for future resending.

org.apache.cxf.ws.rm.RetransmissionInterceptor

Enabling WS-RM
The presence of the WS-RM interceptors on the interceptor chains ensures
that WS-RM protocol messages are exchanged when necessary. For example,
when intercepting the first application message on the outbound interceptor
chain, the RMOutInterceptor sends a CreateSequence request and waits

126

Enabling Reliable Messaging

to process the original application message until it receives the
CreateSequenceResponse response. In addition, the WS-RM interceptors
add the sequence headers to the application messages and, on the destination
side, extract them from the messages. It is not necessary to make any changes
to your application code to make the exchange of messages reliable.

For more information on how to enable WS-RM, see Enabling
WS-RM on page 128.

Configuring WS-RM Attributes
You control sequence demarcation and other aspects of the reliable exchange
through configuration. For example, by default Artix ESB attempts to maximize
the lifetime of a sequence, thus reducing the overhead incurred by the
out-of-band WS-RM protocol messages. To enforce the use of a separate
sequence per application message configure the WS-RM source’s sequence
termination policy (setting the maximum sequence length to 1).

For more information on configuring WS-RM behavior, see Configuring
WS-RM on page 132.

127

WS-RM Interceptors

Enabling WS-RM
Overview

To enable reliable messaging, the WS-RM interceptors must be added to the
interceptor chains for both inbound and outbound messages and faults.
Because the WS-RM interceptors use WS-Addressing, the WS-Addressing
interceptors must also be present on the interceptor chains.

You can ensure the presence of these interceptors in one of two ways:

• Explicitly, by adding them to the dispatch chains using Spring beans

• Implicitly, using WS-Policy assertions, which cause the Artix ESB runtime
to transparently add the interceptors on your behalf.

Spring beans—explicitly adding
interceptors To enable WS-RM add the WS-RM and WS-Addressing interceptors to the

Artix ESB bus, or to a consumer or service endpoint using Spring bean
configuration. This is the approach taken in the WS-RM sample that is found
in the InstallDir/samples/ws_rm directory. The configuration file,
ws-rm.cxf, shows the WS-RM and WS-Addressing interceptors being added
one-by-one as Spring beans (see Example 39 on page 128).

Example 39. Enabling WS-RM Using Spring Beans

<?xml version="1.0" encoding="UTF-8"?>
❶<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/

beans http://www.springframework.org/schema/beans/spring-beans.xsd">
❷ <bean id="mapAggregator" class="org.apache.cxf.ws.addressing.MAPAggregator"/>

<bean id="mapCodec" class="org.apache.cxf.ws.addressing.soap.MAPCodec"/>
❸ <bean id="rmLogicalOut" class="org.apache.cxf.ws.rm.RMOutInterceptor">

<property name="bus" ref="cxf"/>
</bean>
<bean id="rmLogicalIn" class="org.apache.cxf.ws.rm.RMInInterceptor">

<property name="bus" ref="cxf"/>
</bean>
<bean id="rmCodec" class="org.apache.cxf.ws.rm.soap.RMSoapInterceptor"/>
<bean id="cxf" class="org.apache.cxf.bus.CXFBusImpl">

❹ <property name="inInterceptors">
<list>

<ref bean="mapAggregator"/>
<ref bean="mapCodec"/>
<ref bean="rmLogicalIn"/>
<ref bean="rmCodec"/>

128

Enabling Reliable Messaging

</list>
</property>

❺ <property name="inFaultInterceptors">
<list>

<ref bean="mapAggregator"/>
<ref bean="mapCodec"/>
<ref bean="rmLogicalIn"/>
<ref bean="rmCodec"/>

</list>
</property>

❻ <property name="outInterceptors">
<list>

<ref bean="mapAggregator"/>
<ref bean="mapCodec"/>
<ref bean="rmLogicalOut"/>
<ref bean="rmCodec"/>

</list>
</property>

❼ <property name="outFaultInterceptors">
<list>

<ref bean="mapAggregator">
<ref bean="mapCodec"/>
<ref bean="rmLogicalOut"/>
<ref bean="rmCodec"/>

</list>
</property>

</bean>
</beans>

The code shown in Example 39 on page 128 can be explained as follows:

❶ A Artix ESB configuration file is a Spring XML file. You must include an
opening Spring beans element that declares the namespaces and schema

files for the child elements that are encapsulated by the beans element.

❷ Configures each of the WS-Addressing interceptors—MAPAggregator

and MAPCodec. For more information on WS-Addressing, see Deploying

WS-Addressing on page 115.
❸ Configures each of the WS-RM interceptors—RMOutInterceptor,

RMInInterceptor, and RMSoapInterceptor.

❹ Adds the WS-Addressing and WS-RM interceptors to the interceptor
chain for inbound messages.

❺ Adds the WS-Addressing and WS-RM interceptors to the interceptor
chain for inbound faults.

❻ Adds the WS-Addressing and WS-RM interceptors to the interceptor
chain for outbound messages.

129

Enabling WS-RM

❼ Adds the WS-Addressing and WS-RM interceptors to the interceptor
chain for outbound faults.

WS-Policy framework—implicitly
adding interceptors The WS-Policy framework provides the infrastructure and APIs that allow you

to use WS-Policy. It is compliant with the November 2006 draft publications
of the Web Services Policy 1.5—Framework1 and Web Services Policy
1.5—Attachment2 specifications.

To enable WS-RM using the Artix ESB WS-Policy framework, do the following:

1. Add the policy feature to your client and server endpoint.
Example 40 on page 130 shows a reference bean nested within a
jaxws:feature element. The reference bean specifies the

AddressingPolicy, which is defined as a separate element within the

same configuration file.

Example 40. Configuring WS-RM using WS-Policy

<jaxws:client>
<jaxws:features>
<ref bean="AddressingPolicy"/>

</jaxws:features>
</jaxws:client>
<wsp:Policy wsu:Id="AddressingPolicy" xmlns:wsam="http://www.w3.org/2007/02/address
ing/metadata">

<wsam:Addressing>
<wsp:Policy>
<wsam:NonAnonymousResponses/>

</wsp:Policy>
</wsam:Addressing>

</wsp:Policy>

2. Add a reliable messaging policy to the wsdl:service element—or any

other WSDL element that can be used as an attachment point for policy
or policy reference elements—to your WSDL file, as shown in
Example 41 on page 130.

Example 41. Adding an RM Policy to Your WSDL File

<wsp:Policy wsu:Id="RM"
xmlns:wsp="http://www.w3.org/2006/07/ws-policy"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-

1 http://www.w3.org/TR/2006/WD-ws-policy-20061117/
2 http://www.w3.org/TR/2006/WD-ws-policy-attach-20061117/

130

Enabling Reliable Messaging

http://www.w3.org/TR/2006/WD-ws-policy-20061117/
http://www.w3.org/TR/2006/WD-ws-policy-attach-20061117/
http://www.w3.org/TR/2006/WD-ws-policy-attach-20061117/
http://www.w3.org/TR/2006/WD-ws-policy-20061117/
http://www.w3.org/TR/2006/WD-ws-policy-attach-20061117/

1.0.xsd">
<wsam:Addressing xmlns:wsam="http://www.w3.org/2007/02/addressing/metadata">

<wsp:Policy/>
</wsam:Addressing>
<wsrmp:RMAssertion xmlns:wsrmp="http://schemas.xmlsoap.org/ws/2005/02/rm/policy">

<wsrmp:BaseRetransmissionInterval Milliseconds="10000"/>
</wsrmp:RMAssertion>

</wsp:Policy>
...
<wsdl:service name="ReliableGreeterService">

<wsdl:port binding="tns:GreeterSOAPBinding" name="GreeterPort">
<soap:address location="http://localhost:9020/SoapContext/GreeterPort"/>
<wsp:PolicyReference URI="#RM" xmlns:wsp="http://www.w3.org/2006/07/ws-policy"/>

</wsdl:port>
</wsdl:service>

131

Enabling WS-RM

Configuring WS-RM
Configuring Artix ESB-Specific WS-RM Attributes ... 133
Configuring Standard WS-RM Policy Attributes .. 135
WS-RM Configuration Use Cases ... 139

You can configure WS-RM by:

• Setting Artix ESB-specific attributes that are defined in the Artix ESB WS-RM
manager namespace, http://cxf.apache.org/ws/rm/manager.

• Setting standard WS-RM policy attributes that are defined in the
http://schemas.xmlsoap.org/ws/2005/02/rm/policy namespace.

132

Enabling Reliable Messaging

Configuring Artix ESB-Specific WS-RM Attributes
Overview

To configure the Artix ESB-specific attributes, use the rmManager Spring
bean. Add the following to your configuration file:

• The http://cxf.apache.org/ws/rm/manager namespace to your list of
namespaces.

• An rmManager Spring bean for the specific attribute that your want to

configure.

Example 42 on page 133 shows a simple example.

Example 42. Configuring Artix ESB-Specific WS-RM Attributes

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:wsrm-mgr="http://cxf.apache.org/ws/rm/manager"

xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframe
work.org/schema/beans/spring-beans.xsd
http://cxf.apache.org/ws/rm/manager http://cxf.apache.org/schemas/configuration/wsrm-man
ager.xsd">
...
<wsrm-mgr:rmManager>
<!--
...Your configuration goes here

-->
</wsrm-mgr:rmManager>

Children of the rmManager Spring
bean Table 15 on page 133 shows the child elements of the rmManager Spring

bean, defined in the http://cxf.apache.org/ws/rm/manager namespace.

Table 15. Children of the rmManager Spring Bean

DescriptionElement

An element of type RMAssertionRMAssertion

An element of type DeliveryAssuranceType that
describes the delivery assurance that should apply

deliveryAssurance

An element of type SourcePolicyType that allows you
to configure details of the RM source

sourcePolicy

133

Configuring Artix ESB-Specific WS-RM Attributes

DescriptionElement

An element of type DestinationPolicyType that allows
you to configure details of the RM destination

destinationPolicy

Example
For an example, see Maximum unacknowledged messages
threshold on page 141.

134

Enabling Reliable Messaging

Configuring Standard WS-RM Policy Attributes
Overview

You can configure standard WS-RM policy attributes in one of the following
ways:

• RMAssertion in rmManager Spring bean

• Policy within a feature

• WSDL file

• External attachment

WS-Policy RMAssertion Children
Table 16 on page 135 shows the elements defined in the
http://schemas.xmlsoap.org/ws/2005/02/rm/policy namespace:

Table 16. Children of the WS-Policy RMAssertion Element

DescriptionName

Specifies the amount of time that must pass without receiving a message before
an endpoint can consider an RM sequence to have been terminated due to
inactivity.

InactivityTimeout

Sets the interval within which an acknowledgement must be received by the
RM Source for a given message. If an acknowledgement is not received within

BaseRetransmissionInterval

the time set by the BaseRetransmissionInterval, the RM Source will

retransmit the message.

Indicates the retransmission interval will be adjusted using the commonly known
exponential backoff algorithm (Tanenbaum).

ExponentialBackoff

For more information, see Computer Networks, Andrew S. Tanenbaum, Prentice
Hall PTR, 2003.

In WS-RM, acknowledgements are sent on return messages or sent stand-alone.
If a return message is not available to send an acknowledgement, an RM

AcknowledgementInterval

Destination can wait for up to the acknowledgement interval before sending a

135

Configuring Standard WS-RM Policy Attributes

DescriptionName

stand-alone acknowledgement. If there are no unacknowledged messages, the
RM Destination can choose not to send an acknowledgement.

More detailed reference
information For more detailed reference information, including descriptions of each

element’s sub-elements and attributes, please refer to http://
schemas.xmlsoap.org/ws/2005/02/rm/wsrm-policy.xsd.

RMAssertion in rmManager
Spring bean You can configure standard WS-RM policy attributes by adding an

RMAssertion within a Artix ESB rmManager Spring bean. This is the best
approach if you want to keep all of your WS-RM configuration in the same
configuration file; that is, if you want to configure Artix ESB-specific attributes
and standard WS-RM policy attributes in the same file.

For example, the configuration in Example 43 on page 136 shows:

• A standard WS-RM policy attribute, BaseRetransmissionInterval,

configured using an RMAssertion within an rmManager Spring bean.

• An Artix ESB-specific RM attribute, intraMessageThreshold, configured

in the same configuration file.

Example 43. Configuring WS-RM Attributes Using an RMAssertion in an rmManager Spring Bean

<beans xmlns:wsrm-policy="http://schemas.xmlsoap.org/ws/2005/02/rm/policy"
xmlns:wsrm-mgr="http://cxf.apache.org/ws/rm/manager"

...>
<wsrm-mgr:rmManager id="org.apache.cxf.ws.rm.RMManager">

<wsrm-policy:RMAssertion>
<wsrm-policy:BaseRetransmissionInterval Milliseconds="4000"/>

</wsrm-policy:RMAssertion>
<wsrm-mgr:destinationPolicy>

<wsrm-mgr:acksPolicy intraMessageThreshold="0" />
</wsrm-mgr:destinationPolicy>

</wsrm-mgr:rmManager>
</beans>

Policy within a feature
You can configure standard WS-RM policy attributes within features, as shown
in Example 44 on page 137.

136

Enabling Reliable Messaging

http://schemas.xmlsoap.org/ws/2005/02/rm/wsrm-policy.xsd
http://schemas.xmlsoap.org/ws/2005/02/rm/wsrm-policy.xsd

Example 44. Configuring WS-RM Attributes as a Policy within a Feature

<xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:wsa="http://cxf.apache.org/ws/addressing"
xmlns:wsp="http://www.w3.org/2006/07/ws-policy"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-

utility-1.0.xsd"
xmlns:jaxws="http://cxf.apache.org/jaxws"
xsi:schemaLocation="

http://www.w3.org/2006/07/ws-policy http://www.w3.org/2006/07/ws-policy.xsd
http://cxf.apache.org/ws/addressing http://cxf.apache.org/schema/ws/addressing.xsd
http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd
http://www.springframework.org/schema/beans http://www.springframe
work.org/schema/beans/spring-beans.xsd">

<jaxws:endpoint name="{http://cxf.apache.org/greeter_control}GreeterPort" created
FromAPI="true">

<jaxws:features>
<wsp:Policy>

<wsrm:RMAssertion xmlns:wsrm="http://schem
as.xmlsoap.org/ws/2005/02/rm/policy">

<wsrm:AcknowledgementInterval Milliseconds="200" />
</wsrm:RMAssertion>
<wsam:Addressing xmlns:wsam="http://www.w3.org/2007/02/address

ing/metadata">
<wsp:Policy>

<wsam:NonAnonymousResponses/>
</wsp:Policy>

</wsam:Addressing>
</wsp:Policy>

</jaxws:features>
</jaxws:endpoint>

</beans>

WSDL file
If you use the WS-Policy framework to enable WS-RM, you can configure
standard WS-RM policy attributes in your WSDL file. This is a good approach
if you want your service to interoperate and use WS-RM seamlessly with
consumers deployed to other policy-aware Web services stacks.

137

Configuring Standard WS-RM Policy Attributes

For an example, see WS-Policy framework—implicitly adding
interceptors on page 130 where the base retransmission interval is configured
in the WSDL file.

External attachment
You can configure standard WS-RM policy attributes in an external attachment
file. This is a good approach if you cannot, or do not want to, change your
WSDL file.

Example 45 on page 138 shows an external attachment that enables both
WS-A and WS-RM (base retransmission interval of 30 seconds) for a specific
EPR.

Example 45. Configuring WS-RM in an External Attachment

<attachments xmlns:wsp="http://www.w3.org/2006/07/ws-policy" xmlns:wsa="ht
tp://www.w3.org/2005/08/addressing">

<wsp:PolicyAttachment>
<wsp:AppliesTo>

<wsa:EndpointReference>
<wsa:Address>http://localhost:9020/SoapContext/GreeterPort</wsa:Address>

</wsa:EndpointReference>
</wsp:AppliesTo>
<wsp:Policy>

<wsam:Addressing xmlns:wsam="http://www.w3.org/2007/02/addressing/metadata">
<wsp:Policy/>

</wsam:Addressing>
<wsrmp:RMAssertion xmlns:wsrmp="http://schemas.xmlsoap.org/ws/2005/02/rm/policy">

<wsrmp:BaseRetransmissionInterval Milliseconds="30000"/>
</wsrmp:RMAssertion>

</wsp:Policy>
</wsp:PolicyAttachment>

</attachments>/

138

Enabling Reliable Messaging

WS-RM Configuration Use Cases
Overview

This subsection focuses on configuring WS-RM attributes from a use case
point of view. Where an attribute is a standard WS-RM policy attribute, defined
in the http://schemas.xmlsoap.org/ws/2005/02/rm/policy namespace, only
the example of setting it in an RMAssertion within an rmManager Spring
bean is shown. For details of how to set such attributes as a policy within a
feature; in a WSDL file, or in an external attachment, see Configuring Standard
WS-RM Policy Attributes on page 135.

The following use cases are covered:

• Base retransmission interval

• Exponential backoff for retransmission

• Acknowledgement interval

• Maximum unacknowledged messages threshold

• Maximum length of an RM sequence

• Message delivery assurance policies

Base retransmission interval
The BaseRetransmissionInterval element specifies the interval at which
an RM source retransmits a message that has not yet been acknowledged. It
is defined in the http://schemas.xmlsoap.org/ws/2005/02/rm/wsrm-policy.xsd
schema file. The default value is 3000 milliseconds.

Example 46 on page 139 shows how to set the WS-RM base retransmission
interval.

Example 46. Setting the WS-RM Base Retransmission Interval

<beans xmlns:wsrm-policy="http://schemas.xmlsoap.org/ws/2005/02/rm/policy
...>
<wsrm-mgr:rmManager id="org.apache.cxf.ws.rm.RMManager">

<wsrm-policy:RMAssertion>
<wsrm-policy:BaseRetransmissionInterval Milliseconds="4000"/>

</wsrm-policy:RMAssertion>

139

WS-RM Configuration Use Cases

http://schemas.xmlsoap.org/ws/2005/02/rm/policy
http://schemas.xmlsoap.org/ws/2005/02/rm/wsrm-policy.xsd

</wsrm-mgr:rmManager>
</beans>

Exponential backoff for
retransmission The ExponentialBackoff element determines if successive retransmission

attempts for an unacknowledged message are performed at exponential
intervals.

The presence of the ExponentialBackoff element enables this feature. An
exponential backoff ratio of 2 is used by default.

Example 47 on page 140 shows how to set the WS-RM exponential backoff
for retransmission.

Example 47. Setting the WS-RM Exponential Backoff Property

<beans xmlns:wsrm-policy="http://schemas.xmlsoap.org/ws/2005/02/rm/policy
...>
<wsrm-mgr:rmManager id="org.apache.cxf.ws.rm.RMManager">

<wsrm-policy:RMAssertion>
<wsrm-policy:ExponentialBackoff="4"/>

</wsrm-policy:RMAssertion>
</wsrm-mgr:rmManager>
</beans>

Acknowledgement interval
The AcknowledgementInterval element specifies the interval at which the
WS-RM destination sends asynchronous acknowledgements. These are in
addition to the synchronous acknowledgements that it sends on receipt of an
incoming message. The default asynchronous acknowledgement interval is 0
milliseconds. This means that if the AcknowledgementInterval is not
configured to a specific value, acknowledgements are sent immediately (that
is, at the first available opportunity).

Asynchronous acknowledgements are sent by the RM destination only if both
of the following conditions are met:

• The RM destination is using a non-anonymous wsrm:acksTo endpoint.

• The opportunity to piggyback an acknowledgement on a response message
does not occur before the expiry of the acknowledgement interval.

Example 48 on page 141 shows how to set the WS-RM acknowledgement
interval.

140

Enabling Reliable Messaging

Example 48. Setting the WS-RM Acknowledgement Interval

<beans xmlns:wsrm-policy="http://schemas.xmlsoap.org/ws/2005/02/rm/policy
...>
<wsrm-mgr:rmManager id="org.apache.cxf.ws.rm.RMManager">

<wsrm-policy:RMAssertion>
<wsrm-policy:AcknowledgementInterval Milliseconds="2000"/>

</wsrm-policy:RMAssertion>
</wsrm-mgr:rmManager>
</beans>

Maximum unacknowledged
messages threshold The maxUnacknowledged attribute sets the maximum number of

unacknowledged messages that can accrue per sequence before the sequence
is terminated.

Example 49 on page 141 shows how to set the WS-RM maximum
unacknowledged messages threshold.

Example 49. Setting the WS-RM Maximum Unacknowledged Message Threshold

<beans xmlns:wsrm-mgr="http://cxf.apache.org/ws/rm/manager
...>
<wsrm-mgr:reliableMessaging>

<wsrm-mgr:sourcePolicy>
<wsrm-mgr:sequenceTerminationPolicy maxUnacknowledged="20" />

</wsrm-mgr:sourcePolicy>
</wsrm-mgr:reliableMessaging>
</beans>

Maximum length of an RM
sequence The maxLength attribute sets the maximum length of a WS-RM sequence.

The default value is 0, which means that the length of a WS-RM sequence
is unbound.

When this attribute is set, the RM endpoint creates a new RM sequence when
the limit is reached, and after receiving all of the acknowledgements for the
previously sent messages. The new message is sent using a new sequence.

Example 50 on page 141 shows how to set the maximum length of an RM
sequence.

Example 50. Setting the Maximum Length of a WS-RM Message Sequence

<beans xmlns:wsrm-mgr="http://cxf.apache.org/ws/rm/manager
...>
<wsrm-mgr:reliableMessaging>

141

WS-RM Configuration Use Cases

<wsrm-mgr:sourcePolicy>
<wsrm-mgr:sequenceTerminationPolicy maxLength="100" />

</wsrm-mgr:sourcePolicy>
</wsrm-mgr:reliableMessaging>
</beans>

Message delivery assurance
policies You can configure the RM destination to use the following delivery assurance

policies:

• AtMostOnce — The RM destination delivers the messages to the application
destination only once. If a message is delivered more than once an error is
raised. It is possible that some messages in a sequence may not be
delivered.

• AtLeastOnce — The RM destination delivers the messages to the
application destination at least once. Every message sent will be delivered
or an error will be raised. Some messages might be delivered more than
once.

• InOrder — The RM destination delivers the messages to the application
destination in the order that they are sent. This delivery assurance can be
combined with the AtMostOnce or AtLeastOnce assurances.

Example 51 on page 142 shows how to set the WS-RM message delivery
assurance.

Example 51. Setting the WS-RM Message Delivery Assurance Policy

<beans xmlns:wsrm-mgr="http://cxf.apache.org/ws/rm/manager
...>
<wsrm-mgr:reliableMessaging>

<wsrm-mgr:deliveryAssurance>
<wsrm-mgr:AtLeastOnce />

</wsrm-mgr:deliveryAssurance>
</wsrm-mgr:reliableMessaging>
</beans>

142

Enabling Reliable Messaging

Configuring WS-RM Persistence
Overview

The Artix ESB WS-RM features already described in this chapter provide
reliability for cases such as network failures. WS-RM persistence provides
reliability across other types of failure such as an RM source or a RM
destination crash.

WS-RM persistence involves storing the state of the various RM endpoints in
persistent storage. This enables the endpoints to continue sending and
receiving messages when they are reincarnated.

Artix ESB enables WS-RM persistence in a configuration file. The default
WS-RM persistence store is JDBC-based. For convenience, Artix ESB includes
Derby for out-of-the-box deployment. In addition, the persistent store is also
exposed using a Java API. To implement your own persistence mechanism,
you can implement one using this API with your preferred DB Developing
Artix® Applications with JAX-WS.

Important
WS-RM persistence is supported for oneway calls only, and it is
disabled by default.

How it works
Artix ESB WS-RM persistence works as follows:

• At the RM source endpoint, an outgoing message is persisted before
transmission. It is evicted from the persistent store after the
acknowledgement is received.

• After a recovery from crash, it recovers the persisted messages and
retransmits until all the messages have been acknowledged. At that point,
the RM sequence is closed.

• At the RM destination endpoint, an incoming message is persisted, and
upon a successful store, the acknowledgement is sent. When a message
is successfully dispatched, it is evicted from the persistent store.

143

Configuring WS-RM Persistence

http://www.iona.com/support/docs/artix/5.5/jaxws_pguide/jaxws_pguide.pdf
http://www.iona.com/support/docs/artix/5.5/jaxws_pguide/jaxws_pguide.pdf

• After a recovery from a crash, it recovers the persisted messages and
dispatches them. It also brings the RM sequence to a state where new
messages are accepted, acknowledged, and delivered.

Enabling WS-persistence
To enable WS-RM persistence, you must specify the object implementing the
persistent store for WS-RM. You can develop your own or you can use the
JDBC based store that comes with Artix ESB.

The configuration shown below enables the JDBC-based store that comes
with Artix ESB:

<bean id="RMTxStore" class="org.apache.cxf.ws.rm.persistence.jdbc.RMTxStore"/>
<wsrm-mgr:rmManager id="org.apache.cxf.ws.rm.RMManager">

<property name="store" ref="RMTxStore"/>
</wsrm-mgr:rmManager>

Configuring WS-persistence
The JDBC-based store that comes with Artix ESB supports the properties
shown in Table 17 on page 144.

Table 17. JDBC Store Properties

Default SettingTypeAttribute Name

org.apache.derby.jdbc.EmbeddedDriverStringdriverClassName

nullStringuserName

nullStringpassWord

jdbc:derby:rmdb;create=trueStringurl

The configuration shown in Example 52 on page 144 enables the JDBC-based
store that comes with Artix ESB, while setting the driverClassName and url
to non-default values.

Example 52. Configuring the JDBC Store for WS-RM Persistence

<bean id="RMTxStore" class="org.apache.cxf.ws.rm.persistence.jdbc.RMTxStore">
<property name="driverClassName" value="com.acme.jdbc.Driver"/>
<property name="url" value="jdbc:acme:rmdb;create=true"/>

</bean>

144

Enabling Reliable Messaging

Enabling High Availability
This chapter explains how to enable and configure high availability (HA) in the Artix ESB runtime.

Introduction to High Availability ... 146
Enabling HA with Static Failover .. 148
Configuring HA with Static Failover ... 150
Enabling HA with Dynamic Failover .. 151
Configuring HA with Dynamic Failover ... 154

145

Introduction to High Availability
Overview

Scalable and reliable applications require high availability to avoid any single
point of failure in a distributed system. You can protect your system from
single points of failure using replicated services.

A replicated service is comprised of multiple instances, or replicas, of the
same service. Together these act as a single logical service. Clients invoke
requests on the replicated service, and Artix ESB delivers the requests to one
of the member replicas. The routing to a replica is transparent to the client.

HA with static failover
Artix ESB supports HA with static failover in which replica details are encoded
in the service WSDL file. The WSDL file contains multiple ports, and possibly
multiple hosts, for the same service. The number of replicas in the cluster
remains static as long as the WSDL file remains unchanged. Changing the
cluster size involves editing the WSDL file.

HA with dynamic failover
Artix also supports HA with dynamic failover. HA with dynamic failover is one
in which number of replicas in a cluster can be dynamically increased and
decreased simply by starting and stopping instances of the server application.
The Artix locator service is central to this feature.

The Artix locator service provides a lightweight mechanism for balancing
workloads among a group of services. When several services with the same
service name register with the Artix locator service, it automatically creates
a list of references to each instance of this service. The locator hands out
references to clients using a round-robin or random algorithm. This process
is automatic and invisible to both clients and services.

The discovery mechanism can also be used in failover scenarios. The Artix
locator service only hands out references for service replicas that it believes
to be active, on the basis of the dynamic state of the cluster as maintained
by the peer manager instance collocated with the Artix locator service. Mutual
heart-beating between the peer manager instances associated with the Artix
locator service and service replicas, allow each to detect the availability of
the other.

Dynamic failover also has the advantage that cluster membership is not fixed.
It is easy to grow or shrink the cluster size by simply starting and stopping
replica instances. Newly started replicas transparently register with the Artix
locator service, and their references are immediately eligible for discovery by

146

Enabling High Availability

new clients. Similarly, gracefully shutdown services transparently deregister
themselves with the Artix locator service.

Sample applications
The examples shown in this chapter are taken from the HA sample applications
that are located in the /java/samples/ha directory of your Artix installation.

For information on how to run these samples applications, see the README.txt
files on the sample directories.

More information about the
locator service For more information on the Artix locator service, including how to configure

it, see the Artix Locator Guide1.

1 ../../locator_guide/index.htm

147

Introduction to High Availability

../../locator_guide/index.htm
../../locator_guide/index.htm

Enabling HA with Static Failover
Overview

To enable HA with static failover, you must:

• Encode replica details in your service WSDL file

• Add the clustering feature to your client configuration

Encode replica details in your
service WSDL file You must encode the details of the replicas in your cluster in your service

WSDL file. Example 53 on page 148 shows a WSDL file extract that defines
a service cluster of three replicas.

Example 53. Enabling HA with Static Failover—WSDL File

❶<wsdl:service name="ClusteredService">
❷ <wsdl:port binding="tns:Greeter_SOAPBinding" name="Replica1">

<soap:address location="http://localhost:9001/SoapContext/Replica1"/>
</wsdl:port>

❸ <wsdl:port binding="tns:Greeter_SOAPBinding" name="Replica2">
<soap:address location="http://localhost:9002/SoapContext/Replica2"/>

</wsdl:port>

❹ <wsdl:port binding="tns:Greeter_SOAPBinding" name="Replica3">
<soap:address location="http://localhost:9003/SoapContext/Replica3"/>

</wsdl:port>

</wsdl:service>

The WSDL extract shown in Example 53 on page 148 can be explained as
follows:

❶ Defines a service, ClusterService, which is exposed on three ports:

1. Replica1

2. Replica2

3. Replica3

❷ Defines Replica1 to expose the ClusterService as a SOAP over HTTP

endpoint on port 9001.

148

Enabling High Availability

❸ Defines Replica2 to expose the ClusterService as a SOAP over HTTP

endpoint on port 9002.

❹ Defines Replica3 to expose the ClusterService as a SOAP over HTTP

endpoint on port 9003.

Add the clustering feature to your
client configuration In your client configuration file, add the clustering feature as shown in

Example 54 on page 149

Example 54. Enabling HA with Static Failover—Client Configuration

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:jaxws="http://cxf.apache.org/jaxws"
xmlns:clustering="http://cxf.apache.org/clustering"
xsi:schemaLocation="http://cxf.apache.org/jaxws
http://cxf.apache.org/schemas/jaxws.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<jaxws:client name="{http://apache.org/hello_world_soap_http}Replica1"
createdFromAPI="true">

<jaxws:features>
<clustering:failover/>

</jaxws:features>
</jaxws:client>

<jaxws:client name="{http://apache.org/hello_world_soap_http}Replica2"
createdFromAPI="true">

<jaxws:features>
<clustering:failover/>

</jaxws:features>
</jaxws:client>

<jaxws:client name="{http://apache.org/hello_world_soap_http}Replica3"
createdFromAPI="true">

<jaxws:features>
<clustering:failover/>

</jaxws:features>
</jaxws:client>

</beans>

149

Enabling HA with Static Failover

Configuring HA with Static Failover
Overview

By default, HA with static failover uses a sequential strategy when selecting
a replica service if the original service with which a client is communicating
becomes unavailable or fails. The sequential strategy selects a replica service
in the same sequential order every time it is used. Selection is determined by
Artix ESB’s internal service model and results in a deterministic failover
pattern.

Configuring a random strategy
You can configure HA with static failover to use a random strategy instead of
the sequential strategy when selecting a replica. The random strategy selects
a replica service at random each time a service becomes unavailable or fails.
The choice of failover target from the surviving members in a cluster is entirely
random.

To configure the random strategy, adding the configuration shown in
Example 55 on page 150 to your client configuration file:

Example 55. Configuring a Random Strategy for Static Failover

<beans ...>
❶ <bean id="Random" class="org.apache.cxf.clustering.RandomStrategy"/>

<jaxws:client name="{http://apache.org/hello_world_soap_http}Replica3"
createdFromAPI="true">

<jaxws:features>
<clustering:failover>

❷ <clustering:strategy>
<ref bean="Random"/>

</clustering:strategy>
</clustering:failover>

</jaxws:features>
</jaxws:client>

</beans>

The configuration shown in Example 55 on page 150 can be explained as
follows:

❶ Defines a Random bean and implementation class that implements the

random strategy.
❷ Specifies that the random strategy be used when selecting a replica.

150

Enabling High Availability

Enabling HA with Dynamic Failover
Overview

To enable HA with dynamic failover, you do the following:

1. Configure your service to register with the Artix locator on page 151

2. Configure your client to use locator meditated failover on page 152

3. Ensure the Artix locator is running on page 153

Configure your service to register
with the Artix locator To configure your service to register with the Artix locator service add

configuration shown in Example 56 on page 151 to your server configuration
file.

Example 56. Configuring Your Service to Register with the Locator

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:locatorEndpoint="http://com.iona.soa/discovery/locator/endpoint"

...>

<!-- Configuration for Locator runtime support -->
❶ <bean id="LocatorSupport"
class="com.iona.soa.discovery.locator.rt.cxf.LocatorSupport">

<property name="bus" ref="cxf"/>
<property name="contract">

<value>http://localhost:9000/services/LocatorService</value>
</property>

</bean>

<jaxws:endpoint name="{http://apache.org/hello_world_soap_http}SoapPort"
createdFromAPI="true">

❷ <jaxws:features>
<locatorEndpoint:registerOnPublish monitorLiveness="true"

heartbeatInterval="10001" />
</jaxws:features>

</jaxws:endpoint>

</beans>

The configuration shown in Example 56 on page 151 is taken from the HA
sample and can be explained as follows:

❶ Enables the service to use the Artix locator service.

151

Enabling HA with Dynamic Failover

❷ The registerOnPublish feature enables the published endpoint to

register with the Artix locator service.

Configure your client to use
locator meditated failover To configure your client to use locator mediated failover add the configuration

shown in Example 57 on page 152 to your client configuration file.

Example 57. Configuring your Client to Use Locator Mediated Failover

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:clustering="http://cxf.apache.org/clustering"...>

❶ <bean id="LocatorSupport"
class="com.iona.soa.discovery.locator.rt.cxf.LocatorSupport">

<property name="bus" ref="cxf"/>
<property name="contract">

<value>./wsdl/locator.wsdl</value>
</property>

</bean>

❷ <bean id="LocatorMediated"
class="com.iona.soa.failover.locator.rt.cxf.LocatorMediatedStrategy">

<property name="bus" ref="cxf"/>
...

</bean>

<jaxws:client name="{http://apache.org/hello_world_soap_http}SoapPort"
createdFromAPI="true">

<jaxws:features>
<clustering:failover>

<clustering:strategy>
<ref bean="LocatorMediated"/>

</clustering:strategy>
</clustering:failover>

</jaxws:features>
</jaxws:client>

</beans>

The configuration shown in Example 57 on page 152 is from the HA sample
and can be explained as follows:

❶ Enables the client to use the Artix locator service to find services.

152

Enabling High Availability

❷ Enables failover support using the Artix locator service.

Ensure the Artix locator is running
Ensure that the Artix locator service is running. To start the Artix locator
service, run the following command:

ArtixInstallDir/java/bin/start_locator.bat

For more information, see the Artix Locator Guide2.

2 ../../locator_guide/index.htm

153

Enabling HA with Dynamic Failover

../../locator_guide/index.htm
../../locator_guide/index.htm

Configuring HA with Dynamic Failover
Overview

You can change the default behavior of HA with dynamic failover by
configuring the following aspects of the feature:

• Enabling Artix locator to check the state of a registered service on page 154

• Setting the heartbeat interval on page 154

• Initial delay in locator response on page 154

• Maximum number of client retries on page 155

• Delay between client retry attempts on page 155

• Sequential backoff in client retry attempts on page 155

Enabling Artix locator to check
the state of a registered service The monitorLiveness attribute enables the Artix locator service to check,

at regular intervals, whether a registered service is still live or not. It is disabled
by default.

To enable the Artix locator service to monitor the state of a registered service,
add the following to your server configuration file:

<locatorEndpoint:registerOnPublish monitorLiveness="true">

Setting the heartbeat interval
The heartbeatInterval attribute specifies the frequency, in milliseconds,
at which the Artix locator service checks the state of a registered service. It
depends on the monitorLiveness attribute being set to true. The default
value is 10000 milliseconds (10 seconds).

To change the default heartbeat interval, add the following to your server
configuration file:

<locatorEndpoint:registerOnPublish monitorLiveness="true"
heartbeatInterval="10001"/>

Initial delay in locator response
The initialDelay attribute specifies an initial delay, in milliseconds, in the
Artix locator service’s response to the client’s request for an EPR. The default
value is 0.

154

Enabling High Availability

To change the initial delay in the Artix locator’s response to the client’s request
for an EPR, add the following to your client configuration file:

<bean id="LocatorMediated" class="com.iona.soa.failover.locat
or.rt.cxf.LocatorMediatedStrategy">

<property name="initialDelay" value="500"/>
</bean>

Maximum number of client retries
The maxRetries attribute specifies the maximum number of times that the
client retries to connect to a service. The default value is 3.

To change the number of times that the client retries to connect to a service,
add the following to your client configuration file:

<bean id="LocatorMediated" class="com.iona.soa.failover.locat
or.rt.cxf.LocatorMediatedStrategy">

<property name="maxRetries" value="5"/>
</bean>

Delay between client retry
attempts The intraRetryDelay attribute specifies the delay, in milliseconds, between

the client’s attempts to retry connecting to the service. The default value is
5000 milliseconds.

To change the delay between a client’s attempts to retry connecting to a
service, add the following to your client configuration file:

<bean id="LocatorMediated" class="com.iona.soa.failover.locat
or.rt.cxf.LocatorMediatedStrategy">

<property name="intraRetryDelay" value="4000"/>
</bean>

Sequential backoff in client retry
attempts The backoff attribute specifies an exponential backoff in the client’s retry

attempts. The default value is 1.0, which essentially does not exponentially
increase the amount of time between a client’s retry attempts.

To change the exponential backoff, add the following to your client
configuration file:

<bean id="LocatorMediated" class="com.iona.soa.failover.locat
or.rt.cxf.LocatorMediatedStrategy">

<property name="backoff" value="1.2"/>
</bean>

155

Configuring HA with Dynamic Failover

156

Publishing WSDL Contracts
This chapter describes how to publishWSDL files that correspond to specific Web services. This enables consumers
to access a WSDL file and invoke on a service.

Artix WSDL Publishing Service .. 158
Configuring the WSDL Publishing Service ... 160
Configuring for Use in a Servlet Container .. 163
Querying the WSDL Publishing Service .. 165

157

Artix WSDL Publishing Service
Overview

The Artix WSDL publishing service enables Artix processes to publish WSDL
files for specific Web services. Published WSDL files can be downloaded by
consumers or viewed in a Web browser. They can also be downloaded by
Web service processes created by other vendor tools.

The WSDL publishing service enables Artix applications to be used in various
deployment models—for example, J2EE—without the need to specify file
system locations. It is the recommended way to publish WSDL files for Artix
services.

The WSDL publishing service is implemented by the
com.iona.soa.wsdlpublish.rt.WSDLPublish class. This class can be
loaded by any Artix process that hosts a Web service endpoint. This includes
server applications, Artix routing applications, and applications that expose
a callback object.

Use with endpoint references
It is recommended that you use the WSDL publishing service for any
applications that generate and export references. To use references, the
consumer must have access to the WSDL file referred to by the reference.
The simplest way to accomplish this is to use the WSDL publishing service.

Figure 5 on page 159 shows an example of creating references with the WSDL
publishing service. The WSDL publishing service automatically opens a port,
from which consumers can download a copy of the server’s dynamically
updated WSDL file. Generated references have their WSDL location set to
the following URL:

http://Hostname:WSDLPublishPort/QueryString

Hostname is the server host, WSDLPublishPort is a TCP/IP port used to
serve up the WSDL file, and QueryString is a string that requests a particular
WSDL file (see Querying the WSDL Publishing Service on page 165). If a client
accesses the WSDL location URL, the server converts the WSDL model to
XML on the fly and returns the WSDL contract in a HTTP message.

158

Publishing WSDL Contracts

Figure 5. Creating References with the WSDL Publishing Service

Multiple transports
The WSDL publishing service makes the WSDL file available through an HTTP
URL. However, the Web service described in the WSDL file can use a transport
other than HTTP.

159

Artix WSDL Publishing Service

Configuring the WSDL Publishing Service
Overview

To configure the WSDL publishing service in the Artix Java runtime you must
create an Artix Java configuration file to set the configuration options that are
described in this section.

Note
If you want to run the WSDL publishing service in a servlet container,
please refer to Configuring for Use in a Servlet Container on page 163.

Configuration file
Example 58 on page 160 shows an example of such a configuration file. It is
written using plain Spring beans. For more detailed information on each of
the configuration options, see WSDL publishing service configuration
options on page 161:

Example 58. Configuring the WSDL Publishing Service

❶<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/

beans http://www.springframework.org/schema/beans/
spring-beans-2.0.xsd">

❷ <bean id="WSDLPublishManager" class="com.iona.soa.wsdlpublish.rt.WSDLPublishManager">
<property name="enabled" value="true"/>
<property name="bus" ref="cxf"/>
<property name="WSDLPublish" ref="WSDLPublish"/>

</bean>

❸ <bean id="WSDLPublish" class="com.iona.soa.wsdlpublish.rt.WSDLPublish">
❹ <property name="publishPort" value="27220"/>
❺ <property name="publishHostname" value="myhost"/>
❻ <property name="catalogFacility" value="true"/>
❼ <property name="processWSDL" value="standard"/>
❽ <property name="removeSchemas" ref="rschemas"/>

</bean>
❾ <bean id="rschemas" class="com.iona.cxf.wsdlpublish.Valuelist" value="ht
tp://cxf.apache.org/ http://schemas.iona.com/"/>

</beans>

160

Publishing WSDL Contracts

The configuration shown in Example 58 on page 160 can be explained as
follows:

❶ Includes an opening Spring beans element that declares the namespaces

and schema files for the child elements that are encapsulated by the
beans element.

❷ Specifies the com.iona.soa.wsdlpublish.rt.WSDLPublishManager

class, which implements the WSDL publishing service manager. The
WSDL publishing service manager enables the WSDL publishing service.

❸ Specifies the com.iona.soa.wsdlpublish.rt.WSDLPublish class,

which implements the WSDL publishing service.
❹ The publishPort property specifies the TCP/IP port on which the WSDL

files are published.
❺ The publishHostname property specifies the hostname on which the

WSDL publishing service is available.
❻ The catalogFacility property specifies that the catalog facility is enabled.

❼ The processWSDL property specifies the type of processing that is done
on the WSDL file before the WSDL file is published.

❽ The removeSchemas property specifies a list of the target namespaces
of the extensions that are removed when the processWSDL property is
set to standard. It this example it references rschemas, which is
configured in the next line of code.

❾ Configures a rschema bean, which specifies the

com.iona.cxf.wsdlpublish.Valuelist class. The

com.iona.cxf.wsdlpublish.Valuelist class has a value attribute,

which you can use to list the schemas that you want removed from the
WSDL file. In this case, http://cxf.apache.org/ and
http://schemas.iona.com/ are removed.

WSDL publishing service
configuration options Table 18 on page 161 describes each of the WSDL publishing service

configuration options.

Table 18. WSDL Publishing Service Configuration Options

DescriptionConfiguration Option

An integer that specifies the TCP/IP port that WSDL files are published on. If the port is in
use, the server process will start and an error message indicating the address is already in
use will be raised. The default value is 27220.

publishPort

A string that specifies the hostname on which the WSDL publishing service is available.
The default value is localhost.

publishHostname

161

Configuring the WSDL Publishing Service

DescriptionConfiguration Option

A boolean that when set to true enables the catalog facility, and when set to false disables

the catalog facility. A catalog facility provides another way to access WSDL and XML Schema
files (as opposed to on a file system). The default value is true.

catalogFacility

A string that specifies the type of processing that is done on the WSDL file before the WSDL
file is published.

processWSDL

The processWSDL option has three possible values:

• none—no processing of the WSDL file takes place; that is, the WSDL document is

published as is.

• artix—the WSDL file is processed so that relative paths of imported/included schemas

are modified, and the imported/included schemas are published on the modified path.

• standard—same as artix, but non-standard extensions are also removed.

The default setting is artix.

A value list that removes the target namespaces that are listed when the processWSDL
option is set to standard. The default setting is http://cxf.apache.org/ and

http://schemas.iona.com/.

removeSchemas

162

Publishing WSDL Contracts

Configuring for Use in a Servlet Container
Overview

You can run the Artix WSDL publishing service in a servlet container, such
as Tomcat. This section assumes that you already know how to deploy and
run Artix applications in a servlet container. If not, please refer to Deploying
to a Servlet Container on page 97.

Configuration steps
To configure the Artix WSDL publishing service to run in a servlet container,
such as Tomcat, complete the following steps:

1. Create a spring.xml configuration file on page 163

2. Configure a listener class in the web.xml file on page 164

Create a spring.xml configuration
file Create a spring.xml configuration file as shown in Example 59 on page 163

and include it in the WEB-INF directory of your application WAR file.

Example 59. Configuring Artix WSDL Publish Service for Deployment to a Servlet Container

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:jaxws="http://cxf.apache.org/jaxws"
xsi:schemaLocation="

http://www.springframework.org/schema/beans http://www.springframe
work.org/schema/beans/spring-beans.xsd
http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd">

<import resource="classpath:META-INF/cxf/cxf.xml"/>
<import resource="classpath:META-INF/cxf/cxf-extension-soap.xml"/>
<import resource="classpath:META-INF/cxf/cxf-extension-http-binding.xml"/>
<import resource="classpath:META-INF/cxf/cxf-servlet.xml"/>

<bean id="com.iona.soa.wsdlpublish.rt.WSDLPublishManager" class="com.iona.soa.wsdlpub
lish.rt.WSDLPublishManager">

<property name="bus" ref="cxf"/>
<property name="WSDLPublish" ref="WSDLPublish"/>
<property name="enabled" value="true"/>

</bean>

<bean id="cxf" class="org.apache.cxf.bus.CXFBusImpl"/>
<bean id="WSDLPublish" class="com.iona.soa.wsdlpublish.rt.WSDLPublish">

<property name="deployedInContainer" value="true"/>
</bean>

163

Configuring for Use in a Servlet Container

</beans>

Configure a listener class in the
web.xml file Add the configuration shown in Example 60 on page 164 to your application’s

web.xml file. Include the web.xml file in the WEB-INF directory of your
application WAR file.

Example 60. Configuring a Listener Class

<web-app>
...

<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>WEB-INF/spring.xml</param-value>

</context-param>

<listener>
<listener-class>

org.springframework.web.context.ContextLoaderListener
</listener-class>

</listener>

</web-app>

164

Publishing WSDL Contracts

Querying the WSDL Publishing Service
Overview

Each HTTP GET request for a WSDL file must have a query appended to it.
The Artix Java runtime supports RESTful services and, as a result, an HTTP
GET request is not automatically destined for the WSDL publishing service.

The WSDL publishing service supports the following queries:

?wsdl

Appending ?wsdl to the address returns the WSDL file for the published

endpoint.

?xsd

Appending ?xsd to the address returns the schema file for the published

endpoint.

?services

Appending ?services to the address returns an HTML formatted page

with a list of all published endpoints and any resolved schemas. The
?services query is not supported when the WSDL publishing service

is running in a servlet container.

Example query syntax
The following are examples of query syntax that are serviced:

• Using ?wsdl:

http://localhost:27220/SoapContext2/SoapPort2?wsdl

• Using ?xsd. If a WSDL file has an imported schema, for example,

schema1.xsd, you can find the schema using the following query:

http://localhost:27220/SoapContext2/SoapPort2?xsd=schema1.xsd

• Using ?services:

http://localhost:27220?services

165

Querying the WSDL Publishing Service

Returns an HTML page that lists all documents associated with active
services.

Example query syntax when
running in a servlet container The following is an example of the query syntax that you can use to query

the WSDL publishing service when it is running in a servlet container. The
examples shown refer to Tomcat running on port 8080:

• Using ?wsdl:

http://host/8080/services/servicename?wsdl

• Using ?xsd. If a WSDL file has an imported schema, for example,

schema1.xsd, you can find the schema using the following query:

http://host/8080/services/servicename?xsd=schema1.xsd

Note
services? is not supported when WSDL publishing service is
running in a servlet container.

166

Publishing WSDL Contracts

Accessing Services Using UDDI
Artix provides support for Universal Description, Discovery and Integration (UDDI).

Introduction to UDDI .. 168
Configuring a Client to Use UDDI ... 169

167

Introduction to UDDI
Overview

A Universal Description, Discovery and Integration (UDDI) registry is a form
of database that facilitates the storage and retrieval of Web services endpoints.
It is particularly useful for making Web services available on the Internet.
Instead of making your service WSDL contract available to clients in the form
of a file, you can publish the WSDL contract in a UDDI registry. Clients can
then query the UDDI registry and retrieve the WSDL contract at runtime.

Sample applications
Artix includes UDDI sample applications, which can be found in the following
directories:

• ArtixInstallDir/java/samples/integration/uddi/client

• ArtixInstallDir/java/samples/integration/uddi/juddi

For information on how to run these sample applications, refer to the
README.txt files in the sample directories.

jUDDI
Artix includes an open source UDDI registry called jUDDI. The sample
applications use this registry to store UDDI information. For more information,
see http://ws.apache.org/juddi/.

168

Accessing Services Using UDDI

http://ws.apache.org/juddi/

Configuring a Client to Use UDDI
Overview

Clients can be configured to dynamically retrieve service WSDL contracts from
a UDDI registry without the need for UDDI-specific code.

Client code
The following client code is valid for use with a UDDI registry once the client
is configured to use UDDI (see Client configuration on page 169).

Example 61. Programming an Application to Use a UDDI Registry

QName serviceQName = new QName("http://hello", "HelloService");
HelloService service = new HelloService(serviceQName, null);

Client configuration
To configure a JAX-WS client to use UDDI add the configuration shown in
Example 62 on page 169 to the client's configuration file:

Example 62. UDDI Client Configuration

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="

http://www.springframework.org/schema/beans http://www.springframe
work.org/schema/beans/spring-beans.xsd">

❶ <bean id="UddiClientSupport" class="com.iona.cxf.uddi.client.UddiResolver">
<property name="bus" ref="cxf"/>

❷ <property name="uddiUrl" value="http://localhost:8888/uddi/inquire"/>
</bean>

</beans>

The configuration shown in Example 62 on page 169 can be explained as
follows:

❶ Specifies the UDDI resolver, which is used to query the UDDI registry
when the client requests a service endpoint. The client code does not
have to explicitly specify UDDI—the UDDI resolver plugs in at the bus
level and queries the UDDI registry.

❷ Specifies the inquire URL for the UDDI repository. In the example shown,
the inquire URL specifies the jUDDI repository that ships with Artix.

169

Configuring a Client to Use UDDI

170

Appendix A. Artix ESB Binding IDs
Table A.1. Binding IDs for Message Bindings

IDBinding

http://cxf.apache.org/bindings/corbaCORBA

http://apache.org/cxf/binding/httpHTTP/REST

http://schemas.xmlsoap.org/wsdl/soap/httpSOAP 1.1

http://schemas.xmlsoap.org/wsdl/soap/http?mtom=trueSOAP 1.1 w/ MTOM

http://www.w3.org/2003/05/soap/bindings/HTTP/SOAP 1.2

http://www.w3.org/2003/05/soap/bindings/HTTP/?mtom=trueSOAP 1.2 w/ MTOM

http://cxf.apache.org/bindings/xformatXML

171

172

Index
A
AcknowledgementInterval, 140
ANT_HOME, 25
application source, 124
AtLeastOnce, 142
AtMostOnce, 142

B
BaseRetransmissionInterval, 139
BundleActivator, 66

C
CATALINA_HOME, 25
catalogFacility, 161, 162
configuration namespace, 18
CreateSequence, 124
CreateSequenceResponse, 124
CXF_HOME, 25

D
driverClassName, 144
dynamic failover, 146

client configuration, 152
service configuration, 151

E
endpoint references, 158
environment script, 24
ExponentialBackoff, 140

F
fuse_env, 24
FUSE_ENV_SET, 27

H
high availability

client configuration, 149

configuring random strategy, 150
configuring static failover, 150
dynamic failover, 146
enabling static failover, 148
locator service, 146
random algorithm, 146
round-robin algorithm, 146
static failover, 146

I
InOrder, 142

J
JAVA_HOME, 25
jaxws:binding, 38, 42
jaxws:client

abstract, 41
address, 40
bindingId, 40
bus, 40
createdFromAPI, 41
depends-on, 41
endpointName, 40
name, 41
password, 40
serviceClass, 40
serviceName, 40
username, 40
wsdlLocation, 41

jaxws:conduitSelector, 42
jaxws:dataBinding, 38, 42
jaxws:endpoint

abstract, 33
address, 32
bindingUri, 32
bus, 32
createdFromAPI, 33
depends-on, 33
endpointName, 32
id, 32
implementor, 32
implementorClass, 32
name, 33

173

publish, 32
serviceName, 32
wsdlLocation, 32

jaxws:exector, 39
jaxws:features, 39, 42
jaxws:handlers, 38, 42
jaxws:inFaultInterceptors, 38, 42
jaxws:inInterceptors, 38, 42
jaxws:invoker, 39
jaxws:outFaultInterceptors, 38, 42
jaxws:outInterceptors, 38, 42
jaxws:properties, 39, 42
jaxws:server

abstract, 37
address, 36
bindingId, 36
bus, 36
createdFromAPI, 37
depends-on, 37
endpointName, 36
id, 36
name, 37
publish, 36
serviceBean, 36
serviceClass, 36
serviceName, 36
wsdlLocation, 36

jaxws:serviceFactory, 39

L
locator service, 146

M
maxLength, 141
maxUnacknowledged, 141

P
passWord, 144
PATH, 26
processWSDL, 161, 162
publishHostname, 161
publishPort, 161

R
random algorithm, 146
random strategy, 150
removeSchemas, 161, 162
replicated services, 146
RMAssertion, 135
round-robin algorithm, 146

S
Sequence, 124
SequenceAcknowledgment, 125
SPRING_CONTAINER_HOME, 25
static failover, 146

configuring, 150
enabling, 148

U
UDDI

configuring a client, 169
userName, 144

W
WS-RM

AcknowledgementInterval, 140
AtLeastOnce, 142
AtMostOnce, 142
BaseRetransmissionInterval, 139
configuring, 132
destination, 124
driverClassName, 144
enabling, 128
ExponentialBackoff, 140
externaL attachment, 138
initial sender, 124
InOrder, 142
interceptors, 126
maxLength, 141
maxUnacknowledged, 141
passWord, 144
rmManager, 133
source, 124
ultimate receiver, 124

174

url, 144
userName, 144

WSDL publishing service
catalogFacility, 161, 162
configuring, 160
processWSDL, 161, 162
publishHostname, 161
publishPort, 161
querying, 165
removeSchemas, 161, 162

wsrm:AcksTo, 124

175

176

	Artix® ESB Deployment Guide
	Table of Contents
	Preface
	What is Covered in This Book
	Who Should Read This Book
	Organization of this Guide
	The Artix ESB Documentation Library

	Artix ESB Configuration Overview
	Artix ESB Configuration Files
	Making Your Configuration File Available

	Setting Up Your Environment
	Using the Artix ESB Environment Script
	Artix ESB Environment Variables
	Customizing your Environment Script

	Configuring Artix ESB Endpoints
	Configuring Service Providers
	Using the jaxws:endpoint Element
	Using the jaxws:server Element
	Adding Functionality to Service Providers

	Configuring Consumer Endpoints

	Artix ESB Logging
	Overview of Artix ESB Logging
	Simple Example of Using Logging
	Default logging.properties File
	Configuring Logging Output
	Configuring Logging Levels

	Enabling Logging at the Command Line
	Logging for Subsystems and Services
	Logging Message Content

	Deploying to an OSGi Container
	Introduction to OSGi
	Packaging and Installing an Application
	Installing a Sample Application

	Deploying to the Spring Container
	Introduction
	Running the Spring Container
	Deploying a Artix ESB Endpoint
	Managing the Container using the JMX Console
	Managing the Container using the Web Service Interface
	Spring Container Definition File
	Running Multiple Containers on Same Host

	Deploying to a Servlet Container
	Introduction
	Configuring the Servlet Container
	Using the CXF Servlet
	Using a Custom Servlet
	Using the Spring Context Listener

	Deploying WS-Addressing
	Introduction to WS-Addressing
	WS-Addressing Interceptors
	Enabling WS-Addressing
	Configuring WS-Addressing Attributes

	Enabling Reliable Messaging
	Introduction to WS-RM
	WS-RM Interceptors
	Enabling WS-RM
	Configuring WS-RM
	Configuring Artix ESB-Specific WS-RM Attributes
	Configuring Standard WS-RM Policy Attributes
	WS-RM Configuration Use Cases

	Configuring WS-RM Persistence

	Enabling High Availability
	Introduction to High Availability
	Enabling HA with Static Failover
	Configuring HA with Static Failover
	Enabling HA with Dynamic Failover
	Configuring HA with Dynamic Failover

	Publishing WSDL Contracts
	Artix WSDL Publishing Service
	Configuring the WSDL Publishing Service
	Configuring for Use in a Servlet Container
	Querying the WSDL Publishing Service

	Accessing Services Using UDDI
	Introduction to UDDI
	Configuring a Client to Use UDDI

	Appendix A. Artix ESB Binding IDs
	Index

