
Artix ESBTM

Making Software Work TogetherTM

Configuring and Deploying
Artix Solutions, Java Runtime

Version 5.1, Dec 2007

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in
this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license
to these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.
IONA, IONA Technologies, the IONA logos, Orbix, Artix, Making Software Work Together,
Adaptive Runtime Technology, Orbacus, IONA University, and IONA XMLBus are
trademarks or registered trademarks of IONA Technologies PLC and/or its subsidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. CORBA is a trademark or registered trademark of the
Object Management Group, Inc. in the United States and other countries. All other
trademarks that appear herein are the property of their respective owners.
IONA Technologies PLC makes no warranty of any kind to this material including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose. IONA Technologies PLC shall not be liable for
errors contained herein, or for incidental or consequential damages in connection with the furnishing, perform-
ance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publication
and features described herein are subject to change without notice.

Copyright © 2001-2007 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: July 2, 2008

Contents

List of Figures 5

List of Tables 7

Preface 9

Chapter 1 Getting Started 11
Setting your Artix Java Environment 12
Artix Java Environment Variables 13
Customizing your Environment Script 16

Chapter 2 Artix Java Configuration 19
Artix Java Configuration Files 20
Making Your Configuration File Available 22

Chapter 3 Deploying to the Spring Container 23
Introduction 24
Running the Spring Container 26
Deploying an Artix Endpoint 28
Managing the Container using the JMX Console 33
Managing the Container using the Web Service Interface 36
Spring Container Definition File 37
Running Multiple Containers on Same Host 41

Chapter 4 Deploying to a Servlet Container 45
Introduction 46
Configuring Servlet Container to Run an Artix Application 49
Deploying an Artix Endpoint 51
Deploying Artix in a Custom Servlet 55

Chapter 5 Artix Logging 59
Overview of Artix Java Logging 60
3

CONTENTS
Simple Example of Using Logging 62
Default logging.properties File 64
Enabling Logging at the Command Line 68
Logging for Subsystems and Services 69
Logging Message Content 73

Chapter 6 Enabling Reliable Messaging 75
Introduction to WS-RM 76
WS-RM Interceptors 78
Enabling WS-RM 80
Configuring WS-RM 85

Configuring Artix-Specific WS-RM Attributes 86
Configuring Standard WS-RM Policy Attributes 88
WS-RM Configuration Use Cases 93

Configuring WS-RM Persistence 98

Chapter 7 Publishing WSDL Contracts 101
Artix WSDL Publishing Service 102
Configuring the WSDL Publishing Service 104
Configuring for Use in a Servlet Container 108
Querying the WSDL Publishing Service 110

Chapter 8 Accessing Services Using UDDI 113
Introduction to UDDI 114
Configuring a Client to Use UDDI 115

Chapter 9 Enabling High Availability 117
Introduction to High Availability 118
Enabling HA with Static Failover 120
Configuring HA with Static Failover 123
Enabling HA with Dynamic Failover 125
Configuring HA with Dynamic Failover 128

Index 131
4

List of Figures

Figure 1: Exposing an Artix Web Service Endpoint from the Spring Container 24

Figure 2: JMX Console�SpringContainer MBean 34

Figure 3: Exposing an Artix Web Service Endpoint from a Servlet Container 47

Figure 4: Web Services Reliable Messaging 76

Figure 5: Creating References with the WSDL Publishing Service 103
5

LIST OF FIGURES
 6

List of Tables

Table 1: Artix Java Environment Variables 13

Table 2: JMX Console�SpringContainer MBean Operations 35

Table 3: Java.util.logging Handler Classes 64

Table 4: Artix Java Logging Subsystems 69

Table 5: Artix Java WS-ReliableMessaging Interceptors 78

Table 6: Child Elements of the rmManager Custom Spring Bean 86

Table 7: Child Elements of the WS-Policy RMAssertion 88

Table 8: JDBC Store Properties 99

Table 9: WSDL Publishing Service Configuration Options 106
 7

LIST OF TABLES
 8

Preface
What is Covered in this Book
Configuring and Deploying Artix Solutions, Java Runtime explains how to
configure and deploy Artix Java services and applications, including those
written in JAX-WS and JavaScript. For details of using Artix in a C++ or
JAX-RPC environment, see Configuring and Deploying Artix Solutions, C++
Runtime.

Who Should Read this Book
The main audience of Configuring and Deploying Artix Solutions, Java
Runtime is Artix system administrators. However, anyone involved in
designing a large-scale Artix solution will find this book useful.

Knowledge of specific middleware or messaging transports is not required to
understand the general topics discussed in this book. However, if you are
using this book as a guide to deploying runtime systems, you should have a
working knowledge of the middleware transports that you intend to use in
your Artix solutions
9

../deploy/cpp/index.htm
../deploy/cpp/index.htm

PREFACE
Organization of this Guide
This guide is divided into the following chapters:

� Chapter 1, Getting Started, which describes how to set up your Artix
Java environment.

� Chapter 2, Artix Java Configuration, which describes Artix Java
configuration.

� Chapter 3, Deploying to the Spring Container, which describes how to
deploy an Artix Java endpoint to the Spring container.

� Chapter 4, Deploying to a Servlet Container, which describes how to
deploy an Artix Java endpoint to a servlet container.

� Chapter 5, Artix Logging, which describes how to use logging.

� Chapter 6, Enabling Reliable Messaging, which describes how to
enable and configure Web Services Reliable Messaging (WS-RM).

� Chapter 7, Publishing WSDL Contracts, which describes how to enable
the Artix Java WSDL publishing service.

� Chapter 8, Accessing Services Using UDDI, which describes how to
configure a client to access a WSDL contract from a UDDI registry at
runtime.

� Chapter 9, Enabling High Availability, which describes how to enable
and configure both static failover and dynamic failover.

The Artix Documentation Library
For information on the organization of the Artix library, the document
conventions used, and where to find additional resources, see Using the
Artix Library.
 10

../../library_intro/index.htm
../../library_intro/index.htm

CHAPTER 1

Getting Started
This chapter explains how to set your Artix Java runtime system
environment.

In this chapter This chapter discusses the following topics:

Setting your Artix Java Environment page 12

Artix Java Environment Variables page 13

Customizing your Environment Script page 16
11

CHAPTER 1 | Getting Started
Setting your Artix Java Environment

Overview To use the Artix design tools and runtime environment, the host computer
must have several IONA-specific environment variables set. These variables
can be configured during installation, or later using the artix_java_env
script, or configured manually.

Running the artix_java_env script The Artix installation process creates a script named artix_java_env, which
captures the information required to set your host�s environment variables.
Running this script configures your system to use the Artix Java runtime.
The script is located in the following directory of your Artix installation:

ArtixInstallDir\java\bin\artix_java_env
12

Artix Java Environment Variables
Artix Java Environment Variables

Overview This section describes the following environment variables in more detail:

� ARTIX_JAVA_HOME

� JAVA_HOME

� IT_ARTIX_BASE_DIR

� ANT_HOME

� ACTIVEMQ_HOME

� ACTIVEMQ_VERSION

� SPRING_CONTAINER_HOME

� IT_WSDLGEN_CONFIG_FILE

� PATH

The environment variables are explained in Table 1:

Note: You do not have to manually set your environment variables. You
can configure them during installation, or set them later by running the
provided artix_java_env script.

Table 1: Artix Java Environment Variables

Variable Description

ARTIX_JAVA_HOME ARTIX_JAVA_HOME points to the top level of
your Artix Java installation. For example, on
Windows, if you install Artix into the
C:\Program Files\IONA directory,
ARTIX_JAVA_HOME should be set to:

C:\Program Files\IONA\java

JAVA_HOME JAVA_HOME specifies the directory path to your
system�s JDK. This must be set to use the
Artix Designer GUI.

This defaults to the JVM selected when
installing Artix. The Artix installer, by default,
installs a JRE. It also, however, allows you to
specify a previously installed JVM.
13

CHAPTER 1 | Getting Started
IT_ARTIX_BASE_DIR IT_ARTIX_BASE_DIR points to the top level of
your Artix installation. For example, on
Windows, if you install Artix into the
C:\Program Files\IONA directory,
IT_ARTIX_BASE_DIR should be set to that
directory.

ANT_HOME ANT_HOME specifies the directory path to the
ant utility installed by Artix. The default
location is:

IT_ARTIX_BASE_DIR\tools\ant

The ant utility is a Java-based build tool. The
build.xml files located in the sample
directories contain the instructions for building
the sample applications, in an XML format
that is understood by the ant utility. ANT_HOME
must be set to allow the building and running
of the Artix Java samples.

For more information about ant, see
http://ant.apache.org/

ACTIVEMQ_HOME ACTIVEMQ_HOME specifies the directory path to
the ActiveMQ message broker installed by
Artix. The default location is:

IT_ARTIX_BASE_DIR\java\lib\activemq\

activemq\ACTIVEMQ_VERSION

ActiveMQ is an Apache open source JMS
message broker.

ACTIVEMQ_VERSION ACTIVEMQ_VERSION sets the version of
ActiveMQ installed by Artix.

Table 1: Artix Java Environment Variables

Variable Description
14

Artix Java Environment Variables
SPRING_CONTAINER_HOME SPRING_CONTAINER_HOME specifies the directory
path to the Artix Spring container. The default
location is:

ARTIX_JAVA_HOME\containers\
spring_container

IT_WSDLGEN_CONFIG_FILE IT_WSDLGEN_CONFIG_FILE specifies the
configuration used by the Artix WSDLGen code
generator. If this variable is not set, you will be
unable to run WSDLGen. This variable is
required for an Artix Devopment installation.
The default location is:

IT_ARTIX_BASE_DIR\tools\etc\wsdlgen.cfg

Do not modify the default WSDLGen
configuration file.

PATH The Artix bin directories are prepended on the
PATH to ensure that the proper libraries,
configuration files, and utility programs are
used.

The default Artix bin directory is:

UNIX

$ARTIX_JAVA_HOME/bin

Windows

%ARTIX_JAVA_HOME%\bin

Table 1: Artix Java Environment Variables

Variable Description
15

CHAPTER 1 | Getting Started
Customizing your Environment Script

Overview The artix_java_env script sets the Artix Java environment variables using
values obtained from the Artix installer. The script checks each one of these
settings in sequence, and updates them, where appropriate.

The artix_java_env script is designed to suit most needs. However, if you
want to customize it for your own purposes, please note the points made in
this section.

Before you begin You can only run the artix_java_env script once in any console session. If
you run this script a second time, it exits without completing. This prevents
your environment from becoming bloated with duplicate information (for
example, on your PATH and CLASSPATH). In addition, if you introduce any
errors when customizing the artix_java_env script, it also exits without
completing.

This feature is controlled by the ARTIX_JAVA_ENV_SET variable, which is
local to the artix_java_env script. ARTIX_JAVA_ENV_SET is set to true the
first time you run the script in a console; this causes the script to exit when
run again.

Environment variables The following applies to the environment variables set by the
artix_java_env script:

� The JAVA_HOME environment variable defaults to the value obtained
from the Artix installer. If you do not manually set this variable before
running artix_java_env, it takes its value from the installer. The
default location for the JRE supplied with Artix is
IT_ARTIX_BASE_DIR\jre.

� The following environment variables are all set with default values
relative to IT_ARTIX_BASE_DIR:
♦ ANT_HOME

♦ ACTIVEMQ_HOME

If you do not set these variables manually, artix_java_env sets them
with default values based on IT_ARTIX_BASE_DIR. For example, the
default for ANT_HOME on Windows is IT_ARTIX_BASE_DIR\tools\ant.
16

Customizing your Environment Script
� The IT_WSDLGEN_CONFIG_FILE environment variable is a required only
for an Artix Development installation. All other environment variables
are required for both Development and Runtime installations.
17

CHAPTER 1 | Getting Started
18

CHAPTER 2

Artix Java
Configuration
This chapter introduces the main concepts and components
in the Artix Java runtime configuration. It also describes how
you make your configuration available to the runtime.

In this chapter This chapter includes the following sections:

Artix Java Configuration Files page 20

Making Your Configuration File Available page 22
19

CHAPTER 2 | Artix Java Configuration
Artix Java Configuration Files

Overview The Artix Java runtime adopts an approach of zero configuration or
configuration by exception. In other words, configuration is required only if
you want to customize the runtime to exhibit non-default behavior.

Artix Java configuration files The Artix Java runtime supports a number of configuration methods should
you want to change the default behavior, enable specific functionality or
fine-tune a component�s behavior. The supported configuration methods
include XML configuration files, WS-Policy and WSDL extensions. XML
configuration files are, however, the most versatile way to configure the Artix
Java runtime and are the recommended approach to use.

Example 1 shows a simplified example of an Artix Java configuration file.

The code shown in Example 1 can be explained as follows:

1. An Artix Java configuration file is really a Spring XML file. You must
include an opening Spring <beans> element that declares the
namespaces and schema files for the child elements that are
encapsulated by the <beans> element.

2. The contents of your configuration depends on the behavior you want
the Artix Java runtime to exhibit. You can, however, use:

♦ A simplified beans syntax�that is, the child elements of the
Spring <beans> element can be any one of a number of custom
namespaces. For example, you can use <jaxws:endpoint
xmlns:jaxws="http://cxf.apache.org/jaxws"/> elements.

Example 1: Artix Java Configuration File

1 <beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/

beans http://www.springframework.org/schema/beans/
spring-beans-2.0.xsd">

2 <!-- your configuration goes here! -->

</beans>
20

Artix Java Configuration Files
♦ Plain Spring XML�that is, the child elements of the Spring
<beans> element are Spring <bean> elements as defined by the
Spring beans 2.0 schema,
http://www.springframework.org/schema/beans/spring-beans-2.0
.xsd.

Spring framework Spring is a layered Java/J2EE application framework. Artix Java
configuration is based on the Spring core and uses the principles of
Inversion of Control and Dependency Injection.

For more information on the Spring framework, see
www.springframework.org. Of particular relevance is chapter 3 of the Spring
reference guide, The IoC container, which can be found at:
http://static.springframework.org/spring/docs/2.0.x/reference/beans.html

For more information on inversion of control and dependency injection, see
http://martinfowler.com/articles/injection.html

Artix Java configuration options For detailed information on the configuration options available for the Artix
Java runtime, see Artix Configuration Reference, Java Runtime.
21

http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
http://static.springframework.org/spring/docs/2.0.x/reference/beans.html
http://static.springframework.org/spring/docs/2.0.x/reference/beans.html
../../config_ref/java/index.html
http://martinfowler.com/articles/injection.html

CHAPTER 2 | Artix Java Configuration
Making Your Configuration File Available

Overview You can make your configuration file available to the Artix Java runtime in
any one of the following ways:

� Name it cxf.xml and add it your CLASSPATH.

� Use one of the following command-line flags to point to the
configuration file. This allows you to save your configuration file
anywhere on your system and avoid having to add it to your
CLASSPATH. It also means you can give your configuration file any name
you want:

This is a useful approach for portable JAX-WS applications, for
example. It is also the method used in most of the Artix Java samples.
For example, in the WS-Addressing sample, located in the
ArtixInstallDir/java/samples/advanced/ws_addressing directory,
the server start command specifies the server.xml configuration file as
follows:

In this example, the start command is run from the directory in which
the server.xml file resides.

� Programmatically, by creating a bus and passing the configuration file
location as either a URL or string, as follows:

-Dcxf.config.file=<myCfgResource>

-Dcxf.config.file.url=<myCfgURL>

java -Dcxf.config.file=server.xml
 demo.ws_addressing.server.Server

(new SpringBusFactory()).createBus(URL myCfgURL)

(new SpringBusFactory()).createBus(String myCfgResource)
22

CHAPTER 3

Deploying to the
Spring Container
Artix provides a Spring container into which you can deploy
any Spring-based application, including an Artix Web service
endpoint. This document outlines how to deploy and manage
an Artix Web service endpoint in the Spring container.

In this chapter This document discusses the following topics:

Introduction page 24

Running the Spring Container page 26

Deploying an Artix Endpoint page 28

Managing the Container using the JMX Console page 33

Managing the Container using the Web Service Interface page 36

Spring Container Definition File page 37

Running Multiple Containers on Same Host page 41
 23

CHAPTER 3 | Deploying to the Spring Container
Introduction

Overview Artix includes a Spring container that is a customized version of the Spring
framework. The Spring framework is a general purpose environment for
deploying and running Java applications. For more information on the
framework, see www.springframework.org. This document explains how to
deploy and manage Artix Web service endpoints in the Spring container.

Graphical representation Figure 1 illustrates how you expose an Artix Web service endpoint from the
Spring container.

Figure 1: Exposing an Artix Web Service Endpoint from the Spring
Container
24

www.springframework.org

Introduction
Essentially, you deploy a WAR file to the Spring container. The WAR file
contains all of the files that the Spring container needs to run your
application, including the WSDL file that defines your service, the code that
you generated from that WSDL file, including the implementation file, any
libraries that your application needs and an Artix runtime Spring-based XML
configuration file to configure your application.

The Spring container loads each WAR file using a unique classloader. The
classloader incorporates a firewall classloader that ensures that any classes
contained in the WAR are loaded before classes in the parent classloader.

Sample code The example code used in this document is taken from the WSDL first
sample application located in the following directory of your Artix
installation:

ArtixInstallDir/java/samples/basic/wsdl_first

However, most of the samples contained in the
ArtixInstallDir/java/samples directory can be deployed to the Spring
container. After reading this chapter you should try deploying some of the
sample applications to the Spring container. For instructions please refer to
the README.txt files in the individual sample directories.
 25

CHAPTER 3 | Deploying to the Spring Container
Running the Spring Container

Overview This section explains how to run the Spring container using the
spring_container command.

Using the spring_container
command

The spring_container command is located in the
ArtixInstallDir/java/bin directory and has the following syntax:

spring_container -config <spring-config-url> -wsdl
<container-wsdl-url> -h -verbose <start|stop>

-config <spring-config-url> Specifies the URL or file location of the
Spring container configuration file used
to launch the Spring container. This flag
is not required. It is optional.

By default the Spring container uses the
spring_container.xml file, which is
located in the
ArtixInstallDir/java/containers/
spring_container/etc directory. You
need only use the -config flag if you are
specifying a different configuration file.
For example, see �Running Multiple
Containers on Same Host� on page 41.

-wsdl <container-wsdl-url> Specifies the URL or file location of the
Spring container WSDL file. This flag is
not required. It is optional.

By default the Spring container uses the
container.wsdl file located in the
ArtixInstallDir/java/containers/
spring_container/etc/wsdl directory.
You need only use the -wsdl flag if you
are specifying a different Spring
container WSDL file. For example, see
�Running Multiple Containers on Same
Host� on page 41
26

Running the Spring Container
Starting the Spring container To start the Spring container, run the following command from the
ArtixInstallDir/java/bin directory:

If you intend starting more that one container on a single host, please refer
to �Running Multiple Containers on Same Host� on page 41.

Stopping the Spring container To stop the Spring container, run the following command from the
ArtixInstallDir/java/bin directory:

If you are running more than one container on the same host, please refer to
�Running Multiple Containers on Same Host� on page 41.

-h Prints usage summary and exits. This
flag is optional.

-v Specifies verbose mode. This flag is
optional.

<start|stop> Starts and stops the Spring container.
These flags are required to start and stop
the Spring container respectively.

spring_container start

spring_container stop
 27

CHAPTER 3 | Deploying to the Spring Container
Deploying an Artix Endpoint

Deployment steps The following steps outline, at a high-level, what you must do to
successfully configure and deploy an Artix endpoint to the Spring container:

1. Write an Artix Java runtime XML configuration file for your application.
See �Configuring your application�.

2. Build a WAR file that contains the configuration file, the WSDL file that
defines your service, and the code that you generated from that WSDL
file, including the implementation file, and any libraries that your
application needs. See �Building a WAR file� on page 31.

3. Deploy the WAR file in one of three ways:

i. Copy the WAR file to the Spring container repository. See
�Deploying the WAR file to the Spring repository� on page 31.

ii. Using the JMX console. See �Managing the Container using the
JMX Console� on page 33.

iii. Using the Web service interface. See �Managing the Container
using the Web Service Interface� on page 36.

Configuring your application You must write an XML configuration file for your application. The Spring
container needs this file to instantiate, configure and assemble the beans in
your application.

Example 2 shows an example of such a file, called spring.xml. It is taken
from the ArtixInstallDir/java/samples/basic/wsdl_first sample
application. Note, however, that most of the samples in the
ArtixInstallDir/java/samples directory contain spring.xml files, which
configure the samples for deployment to the Spring container.

Example 2: Configuration file�spring.xml

<?xml version="1.0" encoding="UTF-8"?>
<!--
 Copyright (c) 1993-2006 IONA Technologies PLC.
 All Rights Reserved.
-->
28

Deploying an Artix Endpoint
The code shown in Example 2 can be explained as follows:

1. The Spring <beans> element is required at the beginning of every Artix
Java configuration file. It is the only Spring element that you need to be
familiar with.

2. Configures a jaxws:endpoint that defines a service and its
corresponding endpoints. The jaxws:endpoint element has the
following properties:

i. id�sets the endpoint name or id.

ii. implementor�specifies the implementation object used by the
service endpoints. In this case, the configuration file references
the SOAPServiceImpl bean, which is defined later in the
configuration file (see 4 below).

1 <beans
 xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xsi:schemaLocation="
 http://cxf.apache.org/jaxws
 http://cxf.apache.org/schemas/jaxws.xsd
 http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd"
>

2 <jaxws:endpoint id="SoapEndpoint"
 implementor="#SOAPServiceImpl"
 address="http://localhost:9000/SoapContext/SoapPort"
 wsdlLocation="hello_world.wsdl"
 endpointName="e:SoapPort"
 serviceName="s:SOAPService"
 xmlns:e="http://apache.org/hello_world_soap_http"
 xmlns:s="http://apache.org/hello_world_soap_http"/>

3 <jaxws:features>
 <bean class="org.apache.cxf.feature.LoggingFeature"/>
 </jaxws:endpoint>

4 <bean id="SOAPServiceImpl"
class="demo.hw.server.GreeterImpl"/>

</beans>

Example 2: Configuration file�spring.xml
 29

CHAPTER 3 | Deploying to the Spring Container
iii. address�specifies the address of the endpoint as defined in the
WSDL file that defines service that is being deployed. In this case,
http://localhost:9000/SoapContext/SoapPort, which is
specified in wsdl:service element in the hello_world.wsdl file
(see iv below for more detail on hello_world.wsdl).

iv. wsdlLocation�specifies the WSDL file that contains the service
definition. The WSDL file location is relative to the WEB-INF/wsdl
directory in the WAR file. If you want to look at the
hello_world.wsdl file used in this example, you can find a copy
of it in the
ArtixInstallDir/java/samples/basic/wsdl_first/wsdl
directory.

v. endpointName�specifies the name of port on which the service
will run. This value is taken from the WSDL file that defines the
service that is being deployed. In this example, the value shown
is taken from the hello_world.wsdl file. See the wsdl:port
element in that file.

vi. serviceName�specifies the name of service. This value is taken
from the WSDL file that defines the service that is being
deployed. In this example, the value shown is taken from the
hello_world.wsdl file. See the wsdl:service element in that file.

vii. xmlns:e�specifies the namespace of the port. This value is taken
from the WSDL file that defines the service that is being
deployed. In this example, the value shown is taken from the
hello_world.wsdl file. See the targetNamespace element in that
file.

viii. xmlns:s�specifies the namespace of the service. This value is
taken from the WSDL file that defines the service that is being
deployed. In this example, the value shown is taken from the
hello_world.wsdl file. See the targetNamespace property in the
wsdl:definitions element in that file.

For more information on configuring an Artix jaxws:endpoint element,
see �Artix Java Configuration� on page 19 and Artix Configuration
Reference, Java Runtime.
30

../../config_ref/java/index.html
../../config_ref/java/index.html

Deploying an Artix Endpoint
3. Configures the Artix Java logging feature. See �Artix Logging� on
page 59 for more details.

4. Identifies the class that implements the service.

Building a WAR file In order to deploy your application to the Spring container you must build a
WAR file that has the following structure and contents:

1. META-INF/spring should include your configuration file. The
configuration file must have a .xml extension.

2. WEB-INF/classes should include your Web service implementation
class and any other classes (including the class hierarchy) generated
by the artix wsdl2java utility. For information using the artix
wsdl2java utility, see the Artix Command Line Reference guide.

3. WEB-INF/wsdl should include the WSDL file that defines the service
that you are deploying.

4. WEB-INF/lib should include any JARs required by your application.

Deploying the WAR file to the
Spring repository

The simplest way to deploy an Artix endpoint to the Spring container is to:

1. Start the Spring container by running the following command from the
ArtixInstallDir/java/bin directory:

For more details on running the Spring container, see �Running the
Spring Container� on page 26.

2. Copy the WAR file to the Spring container repository. The default
location for the repository is:

ArtixInstallDir/java/containers/spring_container/repository

The Spring container automatically scans the repository for newly deployed
applications. The default value at which it scans the repository is every 5000
milliseconds.

Using ant You can use the Apache ant utility to build the Artix Java samples, including
building the WAR files and deploying them to the Spring container. If you
are interested in using the ant utility to build your applications, including

spring_container start
 31

../../command_ref/index.html

CHAPTER 3 | Deploying to the Spring Container
the WAR file for deployment to the Spring container, take a look at an
example build.xml file located in the
ArtixInstallDir/java/samples/basic/wsdl_first directory.

For more information about the ant utility, see http://ant.apache.org/.

Changing the interval at which the
Spring container scans its
repository

You can change the time interval at which the Spring container scans the
repository by changing the scanInterval property in the
spring_container.xml configuration file. See Example 3 on page 37 for
more detail.

Changing the default location of
the container repository

You can change the Spring container repository location by changing the
value of the containerRepository property in the spring_container.xml
configuration file. See Example 3 on page 37 for more detail.
32

http://ant.apache.org/

Managing the Container using the JMX Console
Managing the Container using the JMX
Console

Overview You can use the JMX console to deploy and manage applications in the
Spring container. Specifically you can deploy applications as well as stop,
start, remove, and list applications that are running in the container. You
can also get information on the application�s state. The name of the
deployed WAR file is the name given to the application.

Using the JMX console To use the JMX console to manage applications deployed to the Spring
container do the following:

1. Start the JMX console by running the following command from the
ArtixInstallDir/java/bin directory:

Windows: jmx_console_start.bat

UNIX: jmx_console_start.sh

2. Select the MBeans tag and expand the bean node to view the
SpringContainer MBean (see Figure 2 on page 34). The
SpringContainer MBean is deployed as part of the Spring container. It
gives you access to the management interface for the Spring Container
and can be used to deploy, stop, start, remove and list applications,
and get information on an application�s state.
 33

CHAPTER 3 | Deploying to the Spring Container
Figure 2: JMX Console�SpringContainer MBean
34

Managing the Container using the JMX Console
The operations and their parameters are described in Table 2:

Table 2: JMX Console�SpringContainer MBean Operations

Operation Description Parameters

deploy Deploys an application to the
container repository. The deploy
method copies a WAR file from a
given URL or file location into the
container repository.

location�a URL or file location that
points to the application to be
deployed.
warFileName�the name of the WAR
file as you want it to appear in the
container repository.

stopApplication Stops the specified application. It
does not remove the application from
the container repository.

name�specifies the name of the
application that you want to stop. The
application name is the same as the
WAR file name.

startApplication Starts an application that has
previously been deployed and
subsequently stopped.

name�specifies the name of the
application that you want to start. The
application name is the same as the
WAR file name.

removeApplication Stops and removes an application. It
completely removes an application
from the container repository.

name�specifies the name of the
application that you want to stop and
remove. The application name is the
same as the WAR file name.

listApplicationNames Lists all of the applications that have
been deployed. The applications can
be in one of three states: start, stop,
or failed. An application�s name is the
same as its WAR file name.

None.

getApplicationState Reports the state of an application;
that is, whether it is running or not.

name�specifies the name of the
application whose state you want to
know. The application name is the
same as the WAR file name.
 35

CHAPTER 3 | Deploying to the Spring Container
Managing the Container using the Web
Service Interface

Overview You can use the Web service interface to deploy and manage applications in
the Spring container. The Web service interface is specified in the
container.wsdl file, which is located in the
ArtixInstallDir/java/containers/spring_container/etc/wsdl directory
of your Artix installation.

Client tool At present Artix does not include a client tool for the Web service interface.
You could, however, write one if you are familiar with Web service
development. Please refer to the container.wsdl file and Artix JAX-WS API
reference documentation for more detail.

Changing the port on which the
Web service interface listens

To change the port on which the Web service interface listens, change the
port number of the address property in the spring_container.xml file; that
is, <jaxws:endpoint id="ContainerService"
implementor="#ContainerServiceImpl"

address="http://localhost:2222/AdminContext/AdminPort" ...>.

For more information on the spring_container.xml file, see �Spring
Container Definition File� on page 37.

Adding a port If you want to add a port, such as a JMS port or an HTTPS port, add the
port details to the container.wsdl file.
36

../../javadoc/ws/index.html

Spring Container Definition File
Spring Container Definition File

Overview The Spring container is configured in the spring_container.xml file located
in the following directory of your Artix installation:

ArtixInstallDir/java/containers/spring_container/etc

spring_container.xml The contents of the Spring container configuration file are shown in
Example 3:

Example 3: spring_container.xml

<?xml version="1.0" encoding="UTF-8"?>
<!--
 Copyright (c) 1993-2007 IONA Technologies PLC.
 All Rights Reserved.
-->
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:container="http://schemas.iona.com/soa/

 container-config"
 xsi:schemaLocation="http://www.springframework.org/

 schema/beans
 http://www.springframework.org/schema/

 beans/spring-beans-2.0.xsd
 http://cxf.apache.org/jaxws
 http://cxf.apache.org/schemas/jaxws.xsd
 http://schemas.iona.com/soa/

 container-config
 http://schemas.iona.com/soa/

 container-config.xsd">

 <!-- Bean definition for Container -->

1 <container:container id="container"
containerRepository="ArtixInstallDir\java/containers/spring_c
ontainer/repository" scanInterval="5000"/>

 <!-- Web Service Container Management -->

2 <jaxws:endpoint id="ContainerService"
 37

CHAPTER 3 | Deploying to the Spring Container
 implementor="#ContainerServiceImpl"
address="http://localhost:2222/AdminContext/AdminPort"

 wsdlLocation="/wsdl/container.wsdl"
 endpointName="e:ContainerServicePort"
 serviceName="s:ContainerService"
 xmlns:e="http://cxf.iona.com/container/admin"
 xmlns:s="http://cxf.iona.com/container/admin"/>

 <bean id="ContainerServiceImpl"
class="com.iona.cxf.container.admin.ContainerAdminServiceImpl
">

 <property name="container">
 <ref bean="container" />
 </property>
 </bean>

 <!-- JMX Container Management -->

3 <bean id="mbeanServer"
class="org.springframework.jmx.support.MBeanServerFactoryBean
">

 <property name="locateExistingServerIfPossible"
 value="true" />

 </bean>

 <bean id="exporter"
class="org.springframework.jmx.export.MBeanExporter">

 <property name="beans">
 <map>
 <entry key="bean:name=SpringContainer"

 value-ref="container"/>
 <entry key="connector:name=rmi"

 value-ref="serverConnector"/>
 </map>
 </property>

 <property name="server" ref="mbeanServer"/>
 <property name="assembler" ref="assembler" />
 </bean>

 <bean id="assembler"
class="org.springframework.jmx.export.assembler.InterfaceBase
dMBeanInfoAssembler">

 <property name="interfaceMappings">
 <props>

Example 3: spring_container.xml
38

Spring Container Definition File
The code shown in Example 3 can be explained as follows:

1. Defines a bean that encapsulates the logic for the Spring container.
This bean handles the logic for deploying user applications that are
copied to the specified container repository location. The default
container repository location is:
ArtixInstallDir/java/containers/spring_container/repository.
You can change the repository location by changing the value of the
containerRepository property.

The scanInterval property sets the time interval at which the
repository is scanned. It is set in milliseconds. The default value is set
to 5000 milliseconds. Removing this attribute disables scanning.

2. Defines an application that creates a Web service interface that you
can use to manage the Spring container.

The ContainerServiceImpl bean contains the server implementation
code and the container administration logic.

 <prop key="bean:name=SpringContainer">
 com.iona.cxf.container.managed.JMXContainer</prop>

 </props>
 </property>
 </bean>

 <bean id="serverConnector"
class="org.springframework.jmx.support.ConnectorServerFactory
Bean" depends-on="registry" >

 <property name="serviceUrl"
 value="service:jmx:rmi:///jndi/rmi://localhost:1099/
 jmxrmi/server"/>

 </bean>

 <bean id="registry"
class="org.springframework.remoting.rmi.RmiRegistryFactoryBea
n">

 <property name="port" value="1099"/>
 </bean>

</beans>

Example 3: spring_container.xml
 39

CHAPTER 3 | Deploying to the Spring Container
To change the port on which the Web service interface listens, change
the address property; that is,
address="http://localhost:2222/AdminContext/AdminPort".

3. Defines Spring beans that allow you to use a JMX console to manage
the Spring container.

For more information, please refer to the JMX chapter of the Spring
2.0.x reference document available at:

http://static.springframework.org/spring/docs/2.0.x/reference/jmx.html
40

http://static.springframework.org/spring/docs/2.0.x/reference/jmx.html

Running Multiple Containers on Same Host
Running Multiple Containers on Same Host

Steps To run more than one Spring container on the same host, complete the
following steps:

1. Make a copy of the container.wsdl file, which is located in the
ArtixInstallDir/java/containers/spring_container/etc/wsdl
directory.

2. In your new copy, my_container.wsdl, change the port on which the
Web service interface listens to something other than 2222 by changing
the address property shown below:

3. Make a copy of the spring_container.xml file, which is located in the
ArtixInstallDir/java/containers/spring_container/etc directory.

4. Make the following changes to your new copy,
my_spring_container.xml:

i. Container repository location�change the following line:

to point to a new container repository. For example:

<service name="ContainerService">
 <port name="ContainerServicePort"

binding="tns:ContainerServiceBinding">
 <soap:address

location="http://localhost:2222/AdminContext/AdminPort"/>
 </port>
</service>

<container:container id="container"
containerRepository="ArtixInstallDir\java/containers/spring_c
ontainer/repository" scanInterval="5000"/>

<container:container id="container"
containerRepository="ArtixInstallDir\java/containers/spring_c
ontainer/repository2" scanInterval="5000"/>
 41

CHAPTER 3 | Deploying to the Spring Container
ii. Change the port on which the Web service interface listens to the
port that you specified in your my_container.wsdl file by
changing the address property shown below:

iii. If you want to use the JMX console to manage your new
container, change the JMX port to something other than 1099 in
the following line:

Otherwise you can comment out the JMX configuration code.

iv. Change the RMI registry port to something other than 1099 in the
following line:

5. Make a copy of the JMX console launch script,
jmx_console_start.bat, which is located in the
ArtixInstallDir/java/bin directory.

6. Change the following line in your copy of the JMX console launch script
to point to the JMX port that you specified in step 2 (iii) above:

7. Start the new container by passing the URL or file location of its
configuration file, my_spring_container.xml, to the spring_container
command.

<jaxws:endpoint id="ContainerService"
implementor="#ContainerServiceImpl" address="
http://localhost:2222/AdminContext/AdminPort"

<bean id="serverConnector"
class="org.springframework.jmx.support.ConnectorServerFactory
Bean" depends-on="registry" >

 <property name="serviceUrl"
value="service:jmx:rmi:///jndi/rmi://localhost:1099/jmxrmi/se
rver"/>

</bean>

<bean id="registry"
class="org.springframework.remoting.rmi.RmiRegistryFactoryBea
n">

 <property name="port" value="1099"/>
</bean>

service:jmx:rmi:///jndi/rmi://localhost:1099/jmxrmi/server
42

Running Multiple Containers on Same Host
For example, where the my_spring_container.xml file has been saved
in the ArtixInstallDir/java/containers/spring_container/etc
directory, run the following command:

8. To view the new container using the JMX console, run the JMX console
launch script that you created in steps 3 and 4 above.

9. Stop the new container by passing the URL or file location of its WSDL
file, my_container.wsdl, to the spring_container command.

For example, where the my_container.wsdl file has been saved to the
ArtixInstallDir/java/containers/spring_container/wsdl
directory, run the following command:

ArtixInstallDir/java/bin/spring_container -config
..\containers\spring_container\etc\my_spring_container.xml
start

ArtixInstallDir/java/bin/spring_container -wsdl
..\containers\spring_container\wsdl\my_container.wsdl stop
 43

CHAPTER 3 | Deploying to the Spring Container
44

CHAPTER 4

Deploying to a
Servlet Container
You can deploy and run an Artix Web service endpoint in any
servlet container. This document explains how.

In this chapter This document discusses the following topics:

Introduction page 46

Configuring Servlet Container to Run an Artix Application page 49

Deploying an Artix Endpoint page 51

Deploying Artix in a Custom Servlet page 55
 45

CHAPTER 4 | Deploying to a Servlet Container
Introduction

Overview You can deploy and run an Artix Web service endpoint from any servlet
container. Artix provides a standard servlet, the CXF servlet, which acts as
an adapter for the Web service endpoints.

You can also deploy Artix enabled endpoints from a custom servlet. This is
the only way to deploy Artix enabled consumer endpoints into a servlet
container.

Sample application This document uses, as an example, the Artix WSDL first sample application
that is included in the following directory of your Artix installation:

ArtixInstallDir/java/samples/basic/wsdl_first

For information on how to run this sample application, see the README.txt
in that directory.

Graphical overview Figure 3 on page 47 shows the main components of the WSDL first sample
application when deployed to a servlet container and illustrates how you can
expose an Artix Web service endpoint from a servlet container:
46

Introduction
Figure 3: Exposing an Artix Web Service Endpoint from a Servlet
Container
 47

CHAPTER 4 | Deploying to a Servlet Container
Servlet container The servlet container shown in Figure 3 on page 47 can be any servlet
container. All hosted services are accessed through the same IP port; for
example, if you use Tomcat, the default IP port is 8080.

Deployed WAR file Services are deployed to the servlet container in a Web Archive (WAR) file,
as shown in Figure 3 on page 47. The deployed WAR file contains the
compiled code for the service being deployed, a copy of the WSDL file that
defines the service, the WSDL stub code, and configuration files.

CXF servlet The CXF servlet shown in Figure 3 on page 47 is a standard servlet provided
by Artix. It acts as an adapter for Web service endpoints and is part of the
Artix Java runtime. It is implemented by the
org.apache.cxf.transport.servlet.CXFServlet class.

cxf-servlet.xml file The cxf-servlet.xml file configures the endpoints that plug into the CXF
servlet.

web.xml file The web.xml file is a standard deployment descriptor file that tells the
servlet container to load the
org.apache.cxf.transport.servlet.CXFServlet class.
48

Configuring Servlet Container to Run an Artix Application
Configuring Servlet Container to Run an Artix
Application

Overview Before you can deploy an Artix Web service endpoint to your servlet
container you must configure the servlet container so that it can run Artix
applications. How you do this depends on the servlet container that you are
using. This section highlights the key configuration steps that you must
complete and uses Tomcat as an example servlet container.

Making certain Artix JARs
available to your application

You need to make all of the JAR files in the ArtixInstallDir/java/lib
directory available to your application. The only exception is the *jbi*.jar
files.

If, for example, you are using Tomcat 5.x or lower, copy the JAR files from
your ArtixInstallDir/java/lib directory to your
CATALINA_HOME/shared/lib directory.

If, however, you are using Tomcat 6, copy the JAR files from your
ArtixInstallDir/java/lib directory to your CATALINA_HOME/lib directory.

Making the Artix licenses.txt file
available to Artix Java runtime

You must make sure that the Artix licenses.txt file is available to the
servlet container. For example, if you are using Tomcat, copy the Artix
licenses.txt file from the ArtixInstallDir/etc directory, where it is
stored by default, to the CATALINA_HOME/shared/classes directory.

Note: You must restart Tomcat after you copy the Artix JAR files to the
CATALINA_HOME/shared/lib or CATALINA_HOME/lib directory. Tomcat does
not dynamically pick up the JAR files.
 49

CHAPTER 4 | Deploying to a Servlet Container
Using ant to automate servlet
container configuration

The Artix Java samples directory, ArtixInstallDir/java/samples, includes
a common_build.xml file that contains an ant target that copies the Artix
JAR files to CATALINA_HOME/shared/lib and the Artix licenses.txt file to
the CATALINA_HOME/shared/classes directory. The relevant ant target is
shown in Example 4:

This common_build.xml file is included in the build.xml file that is used to
build and run the Artix Java servlet container sample application, which is
contained in the ArtixInstallDir/java/samples/hello_world directory.

Example 4: common.xml�Ant Target that Configures Tomcat

<target name="prepare.tomcat"
unless="cxf.jars.present.in.tomcat">

 <copy todir="${env.CATALINA_HOME}/shared/lib">
 <fileset dir="${cxf.home}/lib">
 <include name="*.jar"/>
 <exclude name="*jbi*.jar" />
 </fileset>
 </copy>
 <copy file="${cxf.home}/../etc/licenses.txt"

todir="${env.CATALINA_HOME}/shared/classes"/>
</target>
50

Deploying an Artix Endpoint
Deploying an Artix Endpoint

Deployment steps The following outlines, at a high-level, what you must do to successfully
deploy an Artix Web service endpoint to a servlet container:

1. Build a WAR file that contains the your application, the WSDL file that
defines your service, a web.xml deployment descriptor file that tells the
servlet container to load the CXF servlet class, and a cxf-servlet.xml
deployment descriptor file that configures the endpoints that plug into
the CXF servlet.

2. Deploy the WAR file to your servlet container.

Building a WAR file In order to deploy your application to a servlet container you must build a
WAR file that has the following directories and files:

1. WEB-INF should include a:

i. cxf-servlet.xml file�which configures the endpoints that plug
into the CXF servlet. When the CXF servlet starts up, it reads the
jaxws:endpoint elements from this file and initializes a service
endpoint for each one. See Example 5 on page 52 for more
information.

ii. web.xml file�which instructs the servlet container to load the
org.apache.cxf.transport.servlet.CXFServlet class. A
reference version of this file is contained in your
ArtixInstallDir/java/etc directory. You can use this reference
copy and do not need to make any changes to it.

2. WEB-INF/classes should include your Web service implementation
class and any other classes (including the class hierarchy) generated
by the artix wsdl2java utility.

3. WEB-INF/wsdl should include the WSDL file that defines the service
that you are deploying.

4. WEB-INF/lib should include any JARs required by your application.
 51

CHAPTER 4 | Deploying to a Servlet Container
Example cxf-servlet.xml file The cxf-servlet.xml file configures the endpoints that plug into the CXF
servlet. When the CXF servlet starts up it reads the list of jaxws:endpoint
elements in this file and initializes a service endpoint for each one.

Example 5 shows the cxf-servlet.xml file used in the Artix WSDL first
sample application. It contains one jaxws:endpoint element that configures
the Greeter service endpoint.

Example 5: cxf-servlet.xml file

<?xml version="1.0" encoding="UTF-8"?>
1 <beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xmlns:soap="http://cxf.apache.org/bindings/soap"
 xsi:schemaLocation="
http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.0.
xsd

http://cxf.apache.org/bindings/soap
http://cxf.apache.org/schemas/configuration/soap.xsd

http://cxf.apache.org/jaxws
http://cxf.apache.org/schemas/jaxws.xsd">

2 <jaxws:endpoint
 id="hello_world"
 implementor="demo.hw.server.GreeterImpl"
 wsdlLocation="WEB-INF/wsdl/hello_world.wsdl"
 address="/hello_world">
 <jaxws:features>
 <bean class=

 "org.apache.cxf.feature.LoggingFeature"/>
 </jaxws:features>
 </jaxws:endpoint>
</beans>
52

Deploying an Artix Endpoint
The code shown in Example 5 on page 52 can be explained as follows:

1. The Spring <beans> element is required at the beginning of every Artix
Java configuration file. It is the only Spring element that you need to be
familiar with.

2. Configures a jaxws:endpoint that defines a service and its
corresponding endpoints. The jaxws:endpoint element has the
following properties:

i. id�sets the endpoint name or id.

ii. implementor�specifies the implementation object used by the
service endpoints. In this case, the configuration file references
the demo.hw.server.GreeterImpl bean, which is included in the
application WAR file.

iii. wsdlLocation�specifies the WSDL file that contains the service
definition. The WSDL file location is relative to the WEB-INF/wsdl
directory in the WAR file. If you want to look at the
hello_world.wsdl file used in this example, you can find a copy
of it in the
ArtixInstallDir/java/samples/basic/wsdl_first/wsdl
directory.

iv. address�specifies the address of the endpoint as defined in the
WSDL file that defines service that is being deployed. In this case,
http://localhost:9000/SoapContext/SoapPort, which is
specified in wsdl:service element in the hello_world.wsdl file.

v. The jaxws:features element defines features that can be added
to your endpoint. In this example the logging feature is added to
the deployed endpoint.

For more information on the jaxws:features element, see �Artix
Java Configuration� on page 19.

For more information on logging, see �Artix Logging� on page 59
 53

CHAPTER 4 | Deploying to a Servlet Container
Reference web.xml file You must include a web.xml deployment descriptor file that tells the servlet
container to load the CXF servlet. Example 6 shows the web.xml file that is
used in the Artix servlet container sample application. You do not need to
change this file. A reference copy is located in ArtixInstallDir/java/etc
directory.

Deploying WAR file to the servlet
container

How you deploy your WAR file depends on the servlet container that you are
using. For example, to deploy your WAR file to Tomcat, copy it to the
Tomcat CATALINA_HOME/server/webapp directory.

If you are using a different servlet container, please refer to the deployment
documentation for that container.

Example 6: web.xml deployment descriptor file

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web

Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>
 <display-name>cxf</display-name>
 <description>cxf</description>
 <servlet>
 <servlet-name>cxf</servlet-name>
 <display-name>cxf</display-name>
 <description>Apache CXF Endpoint</description>
 <servlet-class>org.apache.cxf.transport.servlet.

 CXFServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>cxf</servlet-name>
 <url-pattern>/services/*</url-pattern>
 </servlet-mapping>
 <session-config>
 <session-timeout>60</session-timeout>
 </session-config>
</web-app>
54

Deploying Artix in a Custom Servlet
Deploying Artix in a Custom Servlet

Overview In some cases, you will want to write a custom servlet that deploys Artix
enabled endpoints.

One reason for using a custom servlet is to deploy Artix enabled consumer
endpoints into a servlet container. The default CXF servlet does not support
the deployment of Artix�s client-side libraries.

Procedure The procedure for using a custom servlet is very similar to the one for using
the default CXF servlet:

1. Implement a servlet that instantiates an Artix enabled endpoint.

2. Package your servlet in a WAR that contains the Artix Java libraries
and the configuration needed by your application.

3. Deploy the WAR file into your servlet container.

Differences from using the default
servlet

Aside from writing the servlet, there are a few important differences between
using the default servlet and using a custom servlet:

� The configuration file does not need to be called cxf-servlet.xml.

The default behavior will be similar to that of a regular Artix
application. It will look for its configuration in a file called
WEB-INF/classes/cxf.xml. If you want to locate the configuration in a
different file, you can programmatically configure the servlet to load the
configuration file.

� Any paths in the configuration file are relative to the servlet�s
WEB-INF/classes folder.
 55

CHAPTER 4 | Deploying to a Servlet Container
Implementing the servlet Implementing the servlet is straight forward. You simply need to add logic to
the servlet�s constructor to instantiate the Artix endpoint. Example 7 shows
an example of instantiating a consumer endpoint in a servlet.

If you choose not to use the default location for the configuration file, you
will also need to add code for loading the configuraiton file. To Load the
configuration from a custom location do the following:

1. Use the ServletContext resolve the file location into a URL.

2. Create a new bus for for your application using the resolved URL.

3. Set your application�s default bus to the newly created bus.

Example 7: Instantiating a Consumer Endpoint in a Servlet

public class HelloWorldServlet extends HttpServlet
{
 private static Greeter port;

 public HelloWorldServlet()
 {
 URL wsdlURL = getClass().getResource("/hello_world.wsdl");
 port = new SOAPService(wsdlURL,
 new QName("http://apache.org/hello_world_soap_http",
 "SOAPService")).getSoapPort();
 }

 ...
}

56

Deploying Artix in a Custom Servlet
Example 8 shows an example of loading the configuration from
WEB-INF/client.xml.

You may also have to add aditional code to your servlet depending on what
other features you want to use. For example, if you want to use WS-Security
in a consumer you will need to add code to your servlet to load the
credentials and add them to your requests.

Building the WAR file In order to deploy your application to a servlet container you must build a
WAR file that has the following directories and files:

1. WEB-INF should include a web.xml file which instructs the servlet
container to load your custom servlet.

2. WEB-INF/classes should include the following:

i. Your implementation class and any other classes (including the
class hierarchy) generated by the artix wsdl2java utility

ii. The default cxf.xml configuration file

iii. Any other resource files that are referenced by the configuration.

3. WEB-INF/wsdl should include the WSDL file that defines the service
that you are deploying.

4. WEB-INF/lib should include any JARs required by your application.

Example 8: Loading Configuration from a Custom Location

public class HelloWorldServlet extends HttpServlet
{
 public init(ServletConfig cfg)
 {
 URL configUrl=cfg.getServletContext().getResource("WEB-INF/client.xml");
 Bus bus = new SpringBusFactory().createBus(url);
 BusFactory.setDefaultBus(bus);
 }

 ...
}

 57

CHAPTER 4 | Deploying to a Servlet Container
58

CHAPTER 5

Artix Logging
This chapter describes how to configure logging in the Artix
Java runtime.

In this chapter This chapter includes the following sections:

Overview of Artix Java Logging page 60

Simple Example of Using Logging page 62

Default logging.properties File page 64

Enabling Logging at the Command Line page 68

Logging for Subsystems and Services page 69

Logging Message Content page 73
59

CHAPTER 5 | Artix Logging
Overview of Artix Java Logging

Overview The Artix Java runtime uses the Java logging utility, java.util.logging.
Logging is configured in a logging configuration file that is written using the
standard java.util.Properties format. To run logging on an application,
you can specify logging programmatically or by defining a property at the
command that points to the logging configuration file when you start the
application.

Default logging.properties file The Artix Java runtime comes with a default logging.properties file. The
logging.properties file is located in your ArtixInstallDir/java/etc
directory. This file configures the output destination for the log messages
and the message level that is published. The default logging.properties
file configures the Artix Java loggers to print log messages of level WARNING
to the console. You can use this file without changing any of the
configuration settings or you can change the configuration settings to best
suit your application.

Logging feature The Artix Java runtime includes a logging feature that you can plug in to
your client or service to enable logging. The following configuration enables
the logging feature:

For more information, see �Logging Message Content� on page 73.

Where to begin? If you want to run a simple example of logging without the need to
understand everything about logging, follow the instructions outlined in a
�Simple Example of Using Logging� on page 62.

For more information on how logging works in the Artix Java runtime, read
the entire chapter.

<jaxws:endpoint...>
 <jaxws:features>
 <bean class="org.apache.cxf.feature.LoggingFeature"/>
 </jaxws:features>
</jaxws:endpoint>
60

Overview of Artix Java Logging
More information on
java.util.logging

The java.util.logging utility is one of the most widely used Java logging
frameworks. There is a lot of user information available online that describes
how to use and extend this framework. As a starting point, however, the
following document gives a good overview of java.util.logging:

http://java.sun.com/j2se/1.5.0/docs/guide/logging/overview.html

For details on the java.util.logging API, see
http://java.sun.com/j2se/1.5.0/docs/api/java/util/logging/package-summary.
html
61

http://java.sun.com/j2se/1.5.0/docs/guide/logging/overview.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/logging/package-summary.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/logging/package-summary.html

CHAPTER 5 | Artix Logging
Simple Example of Using Logging

Overview This section walks you through a simple example of using logging in the
Artix Java runtime.

Changing the log levels and output
destination in hello world sample

To change the log level and output destination of the log messages in the
WSDL first sample application, complete the following steps:

1. Build and run the WSDL first sample server as described in the Build
using wsdl2java and javac and run using java section of the
README.txt file in the
ArtixInstallDir/java/samples/basic/wsdl_first directory. Note
that the server start command specifies the default
logging.properties file, as follows:

Windows:

UNIX:

The default logging.properties file is located in the
ArtixInstallDir/java/etc directory. It configures the Artix Java
loggers to print WARNING level log messages to the console. As a result,
you will see very little printed to the console.

2. Stop the server as described in the README.txt file.

3. Make a copy of the default logging.properties file, name it
mylogging.properties file, and save it in the same directory as the
default logging.properties file; that is, ArtixInstallDir/java/etc

start java -Djava.util.logging.config.file=%ARTIX_JAVA_HOME%\
etc\logging.properties demo.hw.server.Server

java -Djava.util.logging.config.file=$ARTIX_JAVA_HOME/etc/
logging.properties demo.hw.server.Server &
62

Simple Example of Using Logging
4. Change the global logging level and the console logging levels in your
mylogging.properties file to INFO by editing the following lines of
configuration:

5. Restart the server using the following command:

Windows:

UNIX:

Because you have configured the global logging and the console logger
to log messages of level INFO, you will see a lot more log messages
printed to the console.

.level= INFO

java.util.logging.ConsoleHandler.level = INFO

start java
-Djava.util.logging.config.file=%ARTIX_JAVA_HOME%\etc\myloggi
ng.properties demo.hw.server.Server

java
-Djava.util.logging.config.file=$ARTIX_JAVA_HOME/etc/myloggin
g.properties demo.hw.server.Server &
63

CHAPTER 5 | Artix Logging
Default logging.properties File

Overview The default logging configuration file, logging.properties, is located in the
ArtixInstallDir/java/etc directory. It configures the Artix Java loggers to
print WARNING level messages to the console. If this level of logging suits your
application, you do not have to make any changes to the file before using it.
You can, however, change the level of detail in the log messages and
whether, for example, the log messages are sent to the console, to a file or
to both. In addition, you can specify logging at the level of individual
packages.

In this subsection This section discusses the configuration properties that appear in the default
logging.properties file. There are, however, many other
java.util.logging configuration properties that you can set. For more
information on the java.util.logging API, see the java.util.logging
javadoc at: http://java.sun.com/j2se/1.5/docs/api/java/util/logging/
package-summary.html

Configuring logging output The Java logging utility, java.util.logging, uses handler classes to output
log messages. Table 3 shows the handlers that are configured in the default
default logging.properties file:

The handler classes must be on the system classpath in order to be installed
by the Java VM when it starts. This is done when you set the Artix Java
environment. For details on how to set the Artix Java environment, see
�Setting your Artix Java Environment� on page 12

Table 3: Java.util.logging Handler Classes

Handler Class Outputs to

ConsoleHandler Outputs log messages to the console.

FileHandler Outputs log messages to a file.
64

http://java.sun.com/j2se/1.5/docs/api/java/util/logging/package-summary.html
http://java.sun.com/j2se/1.5/docs/api/java/util/logging/package-summary.html

Default logging.properties File
Configuring the Console Handler

The following line of code configures the console handler:

Configuring the File Handler

The following line of code configures the file handler:

The file handler also supports the configuration properties shown in
Example 9:

The configuration properties shown in Example 9 can be explained as
follows:

1. Specifies the location and pattern of the output file. The default setting
is your home directory.

2. Specifies, in bytes, the maximum amount that the logger writes to any
one file. The default setting is 50000. If you set to zero, there is no limit
on the amount that the logger writes to any one file.

3. Specifies how many output files to cycle through. The default setting is
1.

4. Specifies the java.util.logging formatter class that the file handler
class uses to format the log messages. The default setting is the
java.util.logging.XMLFormatter.

handlers= java.util.logging.ConsoleHandler

handlers= java.util.logging.FileHandler

Example 9: File Handler Configuration Properties

1 java.util.logging.FileHandler.pattern = %h/java%u.log
2 java.util.logging.FileHandler.limit = 50000
3 java.util.logging.FileHandler.count = 1
4 java.util.logging.FileHandler.formatter =

java.util.logging.XMLFormatter
65

CHAPTER 5 | Artix Logging
Configuring Both the Console Handler and the File Handler

In addition, you can set the logging utility to output log messages to both the
console and to a file by specifying the console handler and the file handler,
separated by a comma, as follows:

The console handler also supports the configuration properties shown in
Example 10:

The configuration properties shown in Example 10 can be explained as
follows:

1. The console handler supports a separate log level configuration
property. This allows you to limit the log messages printed to the
console while the global logging setting can be different (see
Configuring global logging levels). The default setting is WARNING.

2. Specifies the java.util.logging formatter class that the console
handler class uses to format the log messages. The default setting is
the java.util.logging.SimpleFormatter.

Configuring global logging levels The java.util.logging framework supports the following levels of logging,
from least verbose to most verbose:

� SEVERE
� WARNING
� INFO
� CONFIG
� FINE
� FINER
� FINEST

To configure the types of event that are logged across all loggers, configure
the global logging level as follows:

handlers= java.util.logging.FileHandler,
java.util.logging.ConsoleHandler

Example 10:Console Handler

1 java.util.logging.ConsoleHandler.level = WARNING
2 java.util.logging.ConsoleHandler.formatter =

java.util.logging.SimpleFormatter

.level= WARNING
66

Default logging.properties File
The global logging level can be overridden by setting a package-specific log
level. For more information, see Configuring logging at an individual package
level.

Configuring logging at an
individual package level

The java.util.logging framework supports configuring logging at the level
of an individual package. For example, the following line of code configures
logging at a SEVERE level on classes in the com.xyz.foo package:

com.xyz.foo.level = SEVERE
67

CHAPTER 5 | Artix Logging
Enabling Logging at the Command Line

Overview You can run the logging utility on an application by defining a
java.util.logging.config.file property when you start the application.
You can specify the default logging.properties file or a
logging.properties file that is unique to that application.

Specifying the log configuration
file on application start-up

To specify logging on application start-up run the following command:

For example, the following commands start the server in the WSDL first
sample application (see �Simple Example of Using Logging� on page 62):

Windows:

UNIX:

Note that the start command specifies the default logging.properties file.

java -Djava.util.logging.config.file=myfile

start java
-Djava.util.logging.config.file=$ARTIX_JAVA_HOME/etc/logging.
properties demo.hw.server.Server

java
-Djava.util.logging.config.file=$ARTIX_JAVA_HOME/etc/logging.
properties demo.hw.server.Server &
68

Logging for Subsystems and Services
Logging for Subsystems and Services

Overview You can use the com.xyz.foo.level configuration property described in
�Configuring logging at an individual package level� on page 67 to set
fine-grained logging for specified Artix Java logging subsystems.

Artix Java logging subsystems Table 4 shows a list of available Artix Java logging subsystems:

Table 4: Artix Java Logging Subsystems

Subsystem Description

com.iona.cxf.container Artix Java container.

com.iona.cxf.ha.failover Artix Java high availability services back-end.

com.iona.cxf.locator Artix Java locator client and endpoint, which
provide support for communicating with the Artix
locator.

com.iona.cxf.management.amberpoint Artix Java AmperPoint integration.

com.iona.cxf.management.bmc Artix Java BMC Patrol integration.

com.iona.cxf.peer_manager Peer manager component of high availability
implementation.

com.iona.cxf.security Artix Java security service. Extends WSS4j
security for secure web services and clients.

com.iona.cxf.transport.ftp Artix Java FTP transport.

com.iona.cxf.wsdlpublish Artix Java WSDL publishing service.

org.apache.cxf.aegis Artix Java Aegis binding.

org.apache.cxf.binding.coloc Artix Java colocated binding.

org.apache.cxf.binding.http Artix Java HTTP binding.

org.apache.cxf.binding.jbi Artix Java JBI binding. For use with JBI
containers.
69

CHAPTER 5 | Artix Logging
org.apache.cxf.binding.object Artix Java Java Object binding.

org.apache.cxf.binding.soap Artix Java SOAP binding.

org.apache.cxf.binding.xml Artix Java XML binding.

org.apache.cxf.bus Artix Java bus.

org.apache.cxf.configuration Artix Java configuration framework.

org.apache.cxf.endpoint Artix Java server and client endpoints.

org.apache.cxf.interceptor Artix Java interceptors.

org.apache.cxf.jaxws Front-end for JAX-WS style message exchange,
JAX-WS handler processing, and interceptors
relating to JAX-WS and configuration.

org.apache.cxf.jbi JBI container integration classes.

org.apache.cxf.jca JCA container integration classes.

org.apache.cxf.js Artix Java JavaScript front-end.

org.apache.cxf.transport.http Artix Java HTTP transport.

org.apache.cxf.transport.https Artix Java secure version of HTTP transport, using
HTTPS.

org.apache.cxf.transport.jbi Artix Java JBI transport. For integration with JBI
container.

org.apache.cxf.transport.jms Artix Java JMS transport.

org.apache.cxf.transport.local Artix Java transport implementation using local
file system.

org.apache.cxf.transport.servlet Artix Java HTTP transport and servlet
implementation for loading JAX-WS endpoints
into a servlet container.

org.apache.cxf.ws.addressing Artix Java WS-Addressing implementation.

Table 4: Artix Java Logging Subsystems

Subsystem Description
70

Logging for Subsystems and Services
Examples of configuring Artix Java
subsystems

Examples of configuring logging for specific Artix Java subsystems can be
seen in some of the Artix Java samples. Two such examples are:

� Security

� WS-Addressing

Security

The authentication sample application is contained in the
ArtixInstallDir/java/samples/security/authentication directory.
Logging is configured in the logging.properties file located in the etc
directory. The relevant line of configuration is:

For information on running this sample, see the README.txt file located in
the ArtixInstallDir/java/samples/security/authentication directory.

org.apache.cxf.ws.policy Artix Java WS-Policy specification
implementation. Provides the framework for
building and applying WS-Policy policy
assertions.

org.apache.cxf.ws.rm Artix Java WS-ReliableMessaging (WS-RM)
implementation.

org.apache.cxf.ws.security.wss4j Artix Java WSS4J security implementation.

org.apache.yoko.bindings.corba Artix Java CORBA binding.

org.apache.yoko.bindings.corba.interceptors Artix Java CORBA binding interceptors. Used for
intercepting and working with the raw messages.

org.apache.yoko.bindings.corba.runtime Implementation of the CORBA binding runtime.
Reading and writing the content of the message.

org.apache.yoko.tools.common.idltypes Artix Java CORBA implementation of the CORBA
IDL types.

org.apache.yoko.tools.processors.wsdl Artix Java CORBA binding creation of a WSDL
file.

Table 4: Artix Java Logging Subsystems

Subsystem Description

com.iona.cxf.security.level=INFO
71

CHAPTER 5 | Artix Logging
WS-Addressing

The WS-Addressing sample is contained in the
ArtixInstallDir/java/samples/advanced/ws_addressing directory.
Logging is configured in the logging.properties file located in that
directory. The relevant lines of configuration are as follows:

This configuration enables the snooping of log messages relating to
WS-Addressing headers and displays them to the console in a concise form.

For information on running this sample, see the README.txt file located in
the ArtixInstallDir/java/samples/advanced/ws_addressing directory.

java.util.logging.ConsoleHandler.formatter =
demos.ws_addressing.common.ConciseFormatter

...
org.apache.cxf.ws.addressing.soap.MAPCodec.level = INFO
72

Logging Message Content
Logging Message Content

Overview You can log the content of the messages that are sent between a service and
a consumer. For example, you might want to log the contents of SOAP
messages that are being sent between a service and a consumer.

Configuring message content
logging

To log the SOAP messages that are sent between a service and a consumer,
and vice versa, complete the following steps:

1. Add the logging feature to your service configuration

2. Add the logging feature to your client configuration

3. Configure logging to log INFO level messages

Add the logging feature to your service configuration

Add the logging feature your service configuration as shown in Example 11:

Add the logging feature to your client configuration

Add the logging feature your client configuration as shown in Example 12:

Example 11:Adding Logging Feature to Your Service Configuration

<jaxws:endpoint ...>

 <jaxws:features>
 <bean class="org.apache.cxf.feature.LoggingFeature"/>
 </jaxws:features>

</jaxws:endpoint>

Example 12:Adding Logging Feature to Your Client Configuration

<jaxws:client ...>

 <jaxws:features>
 <bean class="org.apache.cxf.feature.LoggingFeature"/>
 </jaxws:features>

</jaxws:client>
73

CHAPTER 5 | Artix Logging
Configure logging to log INFO level messages

Ensure that the logging.properties file associated with your service is
configured to log INFO level messages, as follows:

.level= INFO

java.util.logging.ConsoleHandler.level = INFO
74

CHAPTER 6

Enabling Reliable
Messaging
Artix supports Web Services Reliable Messaging (WS-Reliable
Messaging).This chapter explains how to enable and configure
WS-RM in an Artix Java runtime environment.

In this chapter This chapter discusses the following topics:

Introduction to WS-RM page 76

WS-RM Interceptors page 78

Enabling WS-RM page 80

Configuring WS-RM page 85

Configuring WS-RM Persistence page 98
75

CHAPTER 6 | Enabling Reliable Messaging
Introduction to WS-RM

Overview Web Services Reliable Messaging (WS-RM) is a protocol that ensures the
reliable delivery of messages in a distributed environment. It enables
messages to be delivered reliably between distributed applications in the
presence of software, system, or network failures.

For example, WS-RM can be used to ensure that the correct messages have
been delivered across a network exactly once, and in the correct order. Web
Services Reliable Messaging is also known as WS-ReliableMessaging.

How WS-RM works WS-RM ensures the reliable delivery of messages between a source and
destination endpoint. The source is the initial sender of the message and the
destination is the ultimate receiver, as shown in Figure 4.

Figure 4: Web Services Reliable Messaging
76

Introduction to WS-RM
The flow of WS-RM messages can be described as follows:

1. The RM source sends a CreateSequence protocol message to the RM
destination. This contains a reference for the source endpoint that
receives acknowledgements (wsrm:AcksTo endpoint).

2. The RM destination sends a CreateSequenceResponse protocol
message back to the RM source. This contains the sequence ID for the
RM sequence session.

3. The RM source adds an RM Sequence header to each message sent by
the application source. This contains the sequence ID, and a unique
message ID.

4. The RM source transmits each message to the RM destination.

5. The RM destination acknowledges the receipt of the message from the
RM source by sending messages that contain the RM
SequenceAcknowledgement header.

6. The RM destination delivers the message to the application destination
in an exactly-once-in-order fashion.

7. The RM source retransmits a message for which it has not yet received
an acknowledgement.

The first retransmission attempt is made after a base retransmission
interval. Successive retransmission attempts are made, by default, at
exponential back-off intervals or, alternatively, at fixed intervals. For
more details, see �Configuring WS-RM� on page 85.

This entire process occurs symmetrically for both the request and the
response message; that is, in the case of the response message, the server
acts as the RM source and the client acts as the RM destination.

WS-RM delivery assurances WS-RM guarantees reliable message delivery in a distributed environment,
regardless of the transport protocol used. The source or destination endpoint
logs an error if reliable delivery can not be assured.

Supported specifications Artix supports the 2005/02 version of the WS-RM specification, which is
based on the WS-Addressing 2004/08 specification.

Further information For detailed information on WS-RM, see the specification at:
http://specs.xmlsoap.org/ws/2005/02/rm/ws-reliablemessaging.pdf
77

http://specs.xmlsoap.org/ws/2005/02/rm/ws-reliablemessaging.pdf

CHAPTER 6 | Enabling Reliable Messaging
WS-RM Interceptors

Overview In Artix Java, WS-RM functionality is implemented as interceptors. The Artix
Java runtime uses interceptors to intercept and work with the raw messages
that are being sent and received. When a transport receives a message, it
does as little work as possible, creates a message object and sends that
message through an interceptor chain. Each interceptor has an opportunity
to do what is required to the message. This can include reading it,
transforming it, validating the message, processing headers, and so on.

Artix Java WS-RM Interceptors The Artix Java WS-RM implementation consists of four interceptors, which
are described in Table 5:

Table 5: Artix Java WS-ReliableMessaging Interceptors

Interceptor Description

org.apache.cxf.ws.rm.RMOutInterceptor Deals with the logical aspects of providing
reliability guarantees for outgoing messages.

Responsible for sending the CreateSequence
requests and waiting for their
CreateSequenceResponse responses.

Also responsible for aggregating the sequence
properties�ID and message number�for an
application message.

org.apache.cxf.ws.rm.RMInInterceptor Responsible for intercepting and processing
RM protocol messages and
SequenceAcknowledgement messages that are
piggybacked on application messages.

org.apache.cxf.ws.rm.soap.RMSoapInterceptor Responsible for encoding and decoding the
reliability properties as SOAP headers.

org.apache.cxf.ws.rm.RetransmissionInterceptor Responsible for creating copies of application
messages for future resending.
78

WS-RM Interceptors
Enabling WS-RM The presence of the WS-RM interceptors on the interceptor chains ensures
that WS-RM protocol messages are exchanged when necessary. For
example, upon intercepting the first application message on the outbound
interceptor chain, the RMOutInterceptor sends a CreateSequence request
and only processes the original application message after it receives the
CreateSequenceResponse response. In addition, the WS-RM interceptors
add the sequence headers to the application messages and, on the
destination side, extract them from the messages. You do not, therefore,
have to make any changes to your application code to make the exchange of
messages reliable.

For more information on how to enable WS-RM, see �Enabling WS-RM� on
page 80.

Configuring WS-RM Attributes You can control sequence demarcation and other aspects of the reliable
exchange through configuration. For example, by default Artix attempts to
maximize the lifetime of a sequence, thus reducing the overhead incurred by
the out-of-band WS-RM protocol messages. You can, however, enforce the
use of a separate sequence per application message by configuring the
WS-RM source�s sequence termination policy (setting the maximum
sequence length to 1).

For more information on configuring WS-RM behavior, see �Configuring
WS-RM� on page 85.
79

CHAPTER 6 | Enabling Reliable Messaging
Enabling WS-RM

Overview To enable WS-RM, and thereby make the exchange of messages between
two endpoints reliable, the WS-RM interceptors must be present on the
interceptor chains for inbound and outbound messages and faults. WS-RM
uses WS-Addressing and, therefore, the WS-Addressing interceptors must
also be present on the interceptor chains.

You can ensure the presence of these interceptors in one of two ways:

� Explicitly, by adding them to the dispatch chains using Spring beans;
or

� Implicitly, using WS-Policy assertions, which cause the Artix runtime
to transparently add the interceptors on your behalf.

Both of these approaches to enabling WS-RM are discussed in the following
subsections:

� Spring beans�explicitly adding interceptors

� Artix Java WS-Policy framework�implicitly adding interceptors

Spring beans�explicitly adding
interceptors

You can enable WS-RM by adding the WS-RM and WS-Addressing
interceptors to the Artix Java bus or to a consumer or service endpoint using
Spring bean configuration. This is the approach taken in the WS-RM sample
that is contained in the ArtixInstallDir/java/samples/ws_rm directory.
The configuration file, ws-rm.cxf, shows the WS-RM and WS-Addressing
interceptors being added one-by-one as Spring beans (see Example 13).

Example 13:Enabling WS-RM Using Spring Beans

<?xml version="1.0" encoding="UTF-8"?>
1 <beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/

 beans
http://www.springframework.org/schema/beans/spring-beans.xsd"
>

2 <bean id="mapAggregator"

class="org.apache.cxf.ws.addressing.MAPAggregator"/>
80

Enabling WS-RM
 <bean id="mapCodec"
class="org.apache.cxf.ws.addressing.soap.MAPCodec"/>

3 <bean id="rmLogicalOut"
class="org.apache.cxf.ws.rm.RMOutInterceptor">

 <property name="bus" ref="cxf"/>
 </bean>
 <bean id="rmLogicalIn"

class="org.apache.cxf.ws.rm.RMInInterceptor">
 <property name="bus" ref="cxf"/>
 </bean>
 <bean id="rmCodec"

class="org.apache.cxf.ws.rm.soap.RMSoapInterceptor"/>

 <bean id="cxf" class="org.apache.cxf.bus.CXFBusImpl">
4 <property name="inInterceptors">

 <list>
 <ref bean="mapAggregator"/>
 <ref bean="mapCodec"/>
 <ref bean="rmLogicalIn"/>
 <ref bean="rmCodec"/>
 </list>
 </property>

5 <property name="inFaultInterceptors">
 <list>
 <ref bean="mapAggregator"/>
 <ref bean="mapCodec"/>
 <ref bean="rmLogicalIn"/>
 <ref bean="rmCodec"/>
 </list>
 </property>

6 <property name="outInterceptors">
 <list>
 <ref bean="mapAggregator"/>
 <ref bean="mapCodec"/>
 <ref bean="rmLogicalOut"/>
 <ref bean="rmCodec"/>
 </list>
 </property>

7 <property name="outFaultInterceptors">
 <list>
 <ref bean="mapAggregator"/>
 <ref bean="mapCodec"/>
 <ref bean="rmLogicalOut"/>
 <ref bean="rmCodec"/>
 </list>

Example 13:Enabling WS-RM Using Spring Beans
81

CHAPTER 6 | Enabling Reliable Messaging
The code shown in Example 13 on page 80 can be explained as follows:

1. An Artix Java configuration file is really a Spring XML file. You must
include an opening Spring <beans> element that declares the
namespaces and schema files for the child elements that are
encapsulated by the <beans> element.

2. Configures each of the WS-Addressing interceptors�MAPAggregator
and MAPCodec.

3. Configures each of the WS-RM interceptors�RMOutInterceptor,
RMInInterceptor, and RMSoapInterceptor.

4. Adds the WS-Addressing and WS-RM interceptors to the interceptor
chain for inbound messages.

5. Adds the WS-Addressing and WS-RM interceptors to the interceptor
chain for inbound faults.

6. Adds the WS-Addressing and WS-RM interceptors to the interceptor
chain for outbound messages.

7. Adds the WS-Addressing and WS-RM interceptors to the interceptor
chain for outbound faults.

 </property>
 </bean>
</beans>

Example 13:Enabling WS-RM Using Spring Beans
82

Enabling WS-RM
Artix Java WS-Policy
framework�implicitly adding
interceptors

The Artix Java WS-Policy framework provides the infrastructure and APIs
that allow you to use WS-Policy. It is compliant with the November 2006
draft publications of the Web Services Policy 1.5�Framework and Web
Services Policy 1.5�Attachment specifications.

To enable WS-RM using the Artix Java WS-Policy framework, do the
following:

1. Add the policy feature to your client and server endpoint. Example 14
shows a reference bean nested within a jaxws:feature element. The
reference bean specifies the AddressingPolicy, which is defined as a
separate element within the same configuration file.

2. Add a reliable messaging policy to the wsdl:service element�or any
other WSDL element that can be used as an attachment point for
policy or policy reference elements�in your WSDL file, as shown in
Example 15.

Example 14:Configuring WS-RM using WS-Policy

<jaxws:client>
 <jaxws:features>
 <ref bean="AddressingPolicy"/>
 </jaxws:features>
</jaxws:client>

<wsp:Policy wsu:Id="AddressingPolicy"
xmlns:wsam="http://www.w3.org/2007/02/addressing/metadata">

 <wsam:Addressing>
 <wsp:Policy>
 <wsam:NonAnonymousResponses/>
 </wsp:Policy>
 </wsam:Addressing>
</wsp:Policy>

Example 15:Adding an RM Policy to Your WSDL File

<wsp:Policy wsu:Id="RM"
 xmlns:wsp="http://www.w3.org/2006/07/ws-policy"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-20040
1-wss-wssecurity-utility-1.0.xsd">
83

http://www.w3.org/TR/2006/WD-ws-policy-20061117/
http://www.w3.org/TR/2006/WD-ws-policy-attach-20061117/
http://www.w3.org/TR/2006/WD-ws-policy-attach-20061117/

CHAPTER 6 | Enabling Reliable Messaging
 <wsam:Addressing
xmlns:wsam="http://www.w3.org/2007/02/addressing/metadata">

 <wsp:Policy/>
 </wsam:Addressing>
 <wsrmp:RMAssertion

xmlns:wsrmp="http://schemas.xmlsoap.org/ws/2005/02/rm/policy"
>

 <wsrmp:BaseRetransmissionInterval Milliseconds="10000"/>
 </wsrmp:RMAssertion>
</wsp:Policy>
...
<wsdl:service name="ReliableGreeterService">
 <wsdl:port binding="tns:GreeterSOAPBinding"

name="GreeterPort">
 <soap:address

location="http://localhost:9020/SoapContext/GreeterPort"/>
 <wsp:PolicyReference URI="#RM"

xmlns:wsp="http://www.w3.org/2006/07/ws-policy"/>
 </wsdl:port>
</wsdl:service>

Example 15:Adding an RM Policy to Your WSDL File
84

Configuring WS-RM
Configuring WS-RM

Overview You can configure WS-RM by:

� Setting Artix-specific attributes that are defined in the Artix Java
WS-RM manager namespace,
http://cxf.apache.org/ws/rm/manager; and

� Setting standard WS-RM policy attributes that are defined in the
http://schemas.xmlsoap.org/ws/2005/02/rm/policy namespace.

In this section This section describes how to set both attribute types. It includes the
following subsections:

Configuring Artix-Specific WS-RM Attributes page 86

Configuring Standard WS-RM Policy Attributes page 88

WS-RM Configuration Use Cases page 93
85

CHAPTER 6 | Enabling Reliable Messaging
Configuring Artix-Specific WS-RM Attributes

Overview To configure the Artix-specific attributes, use the Artix Java rmManager
custom Spring bean. In your Artix Java configuration file:

1. Add the http://cxf.apache.org/ws/rm/manager namespace to your
list of namespaces.

2. Add an rmManager custom Spring bean for the specific attribute that
your want to configure, as shown in Example 16.

Child elements of rmManager
custom Spring bean

Table 6 shows the child elements of the rmManager custom Spring bean,
defined in the http://cxf.apache.org/ws/rm/manager namespace:

Example 16:Configuring Artix-Specific WS-RM Attributes

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

1 xmlns:wsrm-mgr="http://cxf.apache.org/ws/rm/manager"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd
 http://cxf.apache.org/ws/rm/manager

http://cxf.apache.org/schemas/configuration/wsrm-manager.xsd
 ">
...

2 <wsrm-mgr:rmManager>
 ...Your configuration goes here
</wsrm-mgr:rmManager>

Table 6: Child Elements of the rmManager Custom Spring Bean

Element Descriptions

RMAssertion An element of type RMAssertion.

deliveryAssurance An element of type
DeliveryAssuranceType that describes
the delivery assurance that should
apply.
86

Configuring WS-RM
More detailed reference information

For more detailed reference information, including descriptions of each
element�s sub-elements and attributes, please refer to the Artix
Configuration Reference, Java Runtime.

Example For an example, see �Maximum unacknowledged messages threshold� on
page 95.

sourcePolicy An element of type SourcePolicyType
that allows you to configure details of
the RM source.

destinationPolicy An element of type
DestinationPolicyType that allows
you to configure details of the RM
destination.

Table 6: Child Elements of the rmManager Custom Spring Bean

Element Descriptions
87

../../config_ref/java/index.html
../../config_ref/java/index.html

CHAPTER 6 | Enabling Reliable Messaging
Configuring Standard WS-RM Policy Attributes

Overview You can configure standard WS-RM policy attributes in one of the following
ways:

� RMAssertion in rmManager custom Spring bean

� Policy within a feature

� WSDL file

� External attachment

WS-Policy RMAssertion Child
Elements

Table 7 shows the elements defined in the
http://schemas.xmlsoap.org/ws/2005/02/rm/policy namespace:

Table 7: Child Elements of the WS-Policy RMAssertion

Name Description

InactivityTimeout Specifies the duration after which an
endpoint that has received no
application or control messages may
consider the RM sequence to have
been terminated due to inactivity.

BaseRetransmissionInterval Sets the interval within which an
acknowledgement must be received by
the RM Source for a given message. If
an acknowledgement is not received
within the time set by the
BaseRetransmissionInterval, the RM
Source will retransmit the message.

ExponentialBackoff Indicates the retransmission interval
will be adjusted using the commonly
known exponential backoff algorithm
(Tanenbaum).

For more information, see Computer
Networks, Andrew S. Tanenbaum,
Prentice Hall PTR, 2003.
88

Configuring WS-RM
More detailed reference information

For more detailed reference information, including descriptions of each
element�s sub-elements and attributes, please refer to
http://schemas.xmlsoap.org/ws/2005/02/rm/wsrm-policy.xsd.

RMAssertion in rmManager
custom Spring bean

You can configure standard WS-RM policy attributes by adding an
RMAssertion within an Artix Java rmManager custom Spring bean. This is a
good approach if you want to keep all of your WS-RM configuration in the
same configuration file; that is, if you want to configure Artix-specific
attributes and standard WS-RM policy attributes in the same file.

For example, the configuration in Example 17 shows:

1. A standard WS-RM policy attribute, BaseRetransmissionInterval,
being configured using an RMAssertion within an rmManager custom
Spring bean; and

2. An Artix-specific RM attribute, intraMessageThreshold, being
configured in the same configuration file.

AcknowledgementInterval In WS-RM, acknowledgements are sent
on return messages or sent
stand-alone. If a return message is not
available to send an acknowledgement,
an RM Destination can wait for up to
the acknowledgement interval before
sending a stand-alone
acknowledgement. If there are no
unacknowledged messages, the RM
Destination can choose not to send an
acknowledgement.

Table 7: Child Elements of the WS-Policy RMAssertion

Name Description

Example 17:Configuring WS-RM Attributes Using an RMAssertion in an
rmManager Custom Spring Bean

<beans
xmlns:wsrm-policy="http://schemas.xmlsoap.org/ws/2005/02/rm/p
olicy"
xmlns:wsrm-mgr="http://cxf.apache.org/ws/rm/manager"
89

http://schemas.xmlsoap.org/ws/2005/02/rm/wsrm-policy.xsd

CHAPTER 6 | Enabling Reliable Messaging
Policy within a feature You can configure standard WS-RM policy attributes within features, as
shown in Example 18.

...>

<wsrm-mgr:rmManager id="org.apache.cxf.ws.rm.RMManager">
1 <wsrm-policy:RMAssertion>

 <wsrm-policy:BaseRetransmissionInterval
Milliseconds="4000"/>

 </wsrm-policy:RMAssertion>
2 <wsrm-mgr:destinationPolicy>

 <wsrm-mgr:acksPolicy intraMessageThreshold="0" />
 </wsrm-mgr:destinationPolicy>
</wsrm-mgr:rmManager>
</beans>

Example 17:Configuring WS-RM Attributes Using an RMAssertion in an
rmManager Custom Spring Bean

Example 18:Configuring WS-RM Attributes as a Policy within a Feature

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:wsa="http://cxf.apache.org/ws/addressing"
 xmlns:wsp="http://www.w3.org/2006/07/ws-policy"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-20040
1-wss-wssecurity-utility-1.0.xsd"

 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xsi:schemaLocation="
http://www.w3.org/2006/07/ws-policy

http://www.w3.org/2006/07/ws-policy.xsd
http://cxf.apache.org/ws/addressing

http://cxf.apache.org/schema/ws/addressing.xsd
http://cxf.apache.org/jaxws

http://cxf.apache.org/schemas/jaxws.xsd
http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd"
>

 <jaxws:endpoint
name="{http://cxf.apache.org/greeter_control}GreeterPort"
createdFromAPI="true">

 <jaxws:features>
90

Configuring WS-RM
WSDL file If you use the Artix Java WS-Policy framework to enable WS-RM, you can
configure standard WS-RM policy attributes in your WSDL file. This is a
good approach if you want your service to interoperate and use WS-RM
seamlessly with consumers deployed to other policy-aware Web services
stacks.

For an example, see �Artix Java WS-Policy framework�implicitly adding
interceptors� on page 83 in which the base retransmission interval is
configured in the WSDL file.

External attachment You can configure standard WS-RM policy attributes in an external
attachment file. This is a good approach if you cannot or do not want to
change your WSDL file.

Example 19 shows an external attachment that enables both WS-A and
WS-RM (base retransmission interval of 30 seconds) for a specific EPR.

 <wsp:Policy>
 <wsrm:RMAssertion

xmlns:wsrm="http://schemas.xmlsoap.org/ws/2005/02/rm/policy">
 <wsrm:AcknowledgementInterval

Milliseconds="200" />
 </wsrm:RMAssertion>
 <wsam:Addressing

xmlns:wsam="http://www.w3.org/2007/02/addressing/metadata">
 <wsp:Policy>
 <wsam:NonAnonymousResponses/>
 </wsp:Policy>
 </wsam:Addressing>
 </wsp:Policy>
 </jaxws:features>
 </jaxws:endpoint>
</beans>

Example 18:Configuring WS-RM Attributes as a Policy within a Feature

Example 19:Configuring WS-RM in an External Attachment

<attachments xmlns:wsp="http://www.w3.org/2006/07/ws-policy"
xmlns:wsa="http://www.w3.org/2005/08/addressing">

 <wsp:PolicyAttachment>
 <wsp:AppliesTo>
 <wsa:EndpointReference>
91

CHAPTER 6 | Enabling Reliable Messaging

<wsa:Address>http://localhost:9020/SoapContext/GreeterPort</w
sa:Address>

 </wsa:EndpointReference>
 </wsp:AppliesTo>
 <wsp:Policy>
 <wsam:Addressing

xmlns:wsam="http://www.w3.org/2007/02/addressing/metadata">
 <wsp:Policy/>
 </wsam:Addressing>
 <wsrmp:RMAssertion

xmlns:wsrmp="http://schemas.xmlsoap.org/ws/2005/02/rm/policy"
>

 <wsrmp:BaseRetransmissionInterval
Milliseconds="30000"/>

 </wsrmp:RMAssertion>`
 </wsp:Policy>
 </wsp:PolicyAttachment>
</attachments>

Example 19:Configuring WS-RM in an External Attachment
92

Configuring WS-RM
WS-RM Configuration Use Cases

Overview This subsection focuses on configuring WS-RM attributes from a use case
point of view. Where an attribute is a standard WS-RM policy attribute,
defined in the http://schemas.xmlsoap.org/ws/2005/02/rm/policy
namespace, only the example of setting it in an RMAssertion within an
rmManager custom Spring bean is shown. For details of how to set such
attributes as a policy within a feature; in a WSDL file; or in an external
attachment, see �Configuring Standard WS-RM Policy Attributes� on
page 88.

The following use cases are covered:

� Base retransmission interval

� Exponential backoff for retransmission

� Acknowledgement interval

� Maximum unacknowledged messages threshold

� Maximum length of an RM sequence

� Message delivery assurance policies

Base retransmission interval The BaseRetransmissionInterval element specifies the interval at which
an RM source retransmits a message that has not yet been acknowledged. It
is defined in the
http://schemas.xmlsoap.org/ws/2005/02/rm/wsrm-policy.xsd schema file.
The default value is 3000 milliseconds.
93

http://schemas.xmlsoap.org/ws/2005/02/rm/policy

CHAPTER 6 | Enabling Reliable Messaging
Configuring the base retransmission interval

The following example shows how to set the WS-RM base retransmission
interval:

Exponential backoff for
retransmission

The ExponentialBackoff element determines if successive retransmission
attempts for an unacknowledged message are performed at exponential
intervals.

The presence of the ExponentialBackoff element enables this feature and
an exponential backoff ratio of 2 is used by default.

Configuring exponential backoff for retransmission

The following example shows how to set the WS-RM exponential backoff for
retransmission:

<beans
xmlns:wsrm-policy="http://schemas.xmlsoap.org/ws/2005/02/rm/p
olicy

...>

<wsrm-mgr:rmManager id="org.apache.cxf.ws.rm.RMManager">
 <wsrm-policy:RMAssertion>
 <wsrm-policy:BaseRetransmissionInterval

Milliseconds="4000"/>
 </wsrm-policy:RMAssertion>
</wsrm-mgr:rmManager>

</beans>

<beans
xmlns:wsrm-policy="http://schemas.xmlsoap.org/ws/2005/02/rm/p
olicy

...>

<wsrm-mgr:rmManager id="org.apache.cxf.ws.rm.RMManager">
 <wsrm-policy:RMAssertion>
 <wsrm-policy:ExponentialBackoff="4"/>
 </wsrm-policy:RMAssertion>
</wsrm-mgr:rmManager>

</beans>
94

Configuring WS-RM
Acknowledgement interval The AcknowledgementInterval element specifies the interval at which the
WS-RM destination sends asynchronous acknowledgements. These are in
addition to the synchronous acknowledgements that it sends upon receipt of
an incoming message. The default asynchronous acknowledgement interval
is 0 milliseconds. This means that if the AcknowledgementInterval is not
configured to a specific value, acknowledgements are sent immediately (that
is, at the first available opportunity).

Asynchronous acknowledgements are sent by the RM destination only if
both of the following conditions are met:

� The RM destination is using a non-anonymous wsrm:acksTo endpoint.

� The opportunity to piggyback an acknowledgement on a response
message does not occur before the expiry of the acknowledgement
interval.

Configuring the WS-RM acknowledgement interval

The following example shows how to set the WS-RM acknowledgement
interval:

Maximum unacknowledged
messages threshold

The maxUnacknowledged attribute sets the maximum number of
unacknowledged messages that can accrue per sequence before the
sequence is terminated.

<beans
xmlns:wsrm-policy="http://schemas.xmlsoap.org/ws/2005/02/rm/p
olicy

...>

<wsrm-mgr:rmManager id="org.apache.cxf.ws.rm.RMManager">
 <wsrm-policy:RMAssertion>
 <wsrm-policy:AcknowledgementInterval

Milliseconds="2000"/>
 </wsrm-policy:RMAssertion>
</wsrm-mgr:rmManager>

</beans>
95

CHAPTER 6 | Enabling Reliable Messaging
Configuring the maximum unacknowledged messages threshold

The following example shows how to set the WS-RM maximum
unacknowledged messages threshold:

Maximum length of an RM
sequence

The maxLength attribute sets the maximum length of a WS-RM sequence.
The default value is 0, which means that the length of a WS-RM sequence is
unbound.

When this attribute is set, the RM endpoint creates a new RM sequence
when the limit is reached and after receiving all of the acknowledgements
for the previously sent messages. The new message is sent using a new
sequence.

Configuring the maximum length of a WS-RM sequence

The following example shows how to set the maximum length of an RM
sequence:

<beans xmlns:wsrm-mgr="http://cxf.apache.org/ws/rm/manager
...>

<wsrm-mgr:rmManager>
 <wsrm-mgr:sourcePolicy>
 <wsrm-mgr:sequenceTerminationPolicy

maxUnacknowledged="20" />
 </wsrm-mgr:sourcePolicy>
</wsrm-mgr:rmManager>

</beans>

<beans xmlns:wsrm-mgr="http://cxf.apache.org/ws/rm/manager
...>

<wsrm-mgr:rmManager>
 <wsrm-mgr:sourcePolicy>
 <wsrm-mgr:sequenceTerminationPolicy maxLength="100" />

</wsrm-mgr:sourcePolicy>
</wsrm-mgr:rmManager>

</beans>
96

Configuring WS-RM
Message delivery assurance
policies

You can configure the RM destination to use the following delivery
assurance policies:

� AtMostOnce�The RM destination delivers the messages to the
application destination at most once without duplication or an error
will be raised. It is possible that some messages in a sequence may not
be delivered.

� AtLeastOnce�The RM destination delivers the messages to the
application destination at least once. Every message sent will be
delivered or an error will be raised. Some messages might be delivered
more than once.

� InOrder�The RM destination delivers the messages to the application
destination in the order that they are sent. This delivery assurance can
be combined with the AtMostOnce or AtLeastOnce assurances.

Configuring WS-RM message delivery assurance policies

The following example show how to set the WS-RM message delivery
assurance:

<beans xmlns:wsrm-mgr="http://cxf.apache.org/ws/rm/manager
...>

<wsrm-mgr:rmManager>
 <wsrm-mgr:deliveryAssurance>
 <wsrm-mgr:AtLeastOnce />
 </wsrm-mgr:deliveryAssurance>
</wsrm-mgr:rmManager>

</beans>
97

CHAPTER 6 | Enabling Reliable Messaging
Configuring WS-RM Persistence

Overview The Artix WS-RM features already described in this chapter provide
reliability for cases such as network failures. WS-RM persistence provides
reliability across other types of failure such as an RM source or destination
crash.

WS-RM persistence involves storing the state of the various RM endpoints in
persistent storage. This enables the endpoints when reincarnated to
continue sending and receiving messages as they did before the crash.

Artix enables WS-RM persistence in a configuration file. The default WS-RM
persistence store is JDBC-based. For convenience, Artix includes Derby for
out-of-the-box deployment. In addition, the persistent store is also exposed
using a Java API. If you want to implement your own persistence
mechanism, you can implement one using this API with your preferred DB
(see Developing Artix Applications with JAX-WS).

How it works Artix WS-RM persistence works as follows:

� At the RM source endpoint, an outgoing message is persisted before
transmission. It is evicted from the persistent store after the
acknowledgement is received.

� After a recovery from crash, it recovers the persisted messages and
retransmits until all the messages have been acknowledged. At that
point, the RM sequence is closed.

� At the RM destination endpoint, an incoming message is persisted,
and upon a successful store, the acknowledgement is sent. When a
message is successfully dispatched, it is evicted from the persistent
store.

� After a recovery from a crash, it recovers the persisted messages and
dispatches them. It also brings the RM sequence to a state where new
messages are accepted, acknowledged, and delivered.

Note: WS-RM persistence is supported for oneway calls only. It is
disabled by default.
98

../../jaxws_pguide/index.html

Configuring WS-RM Persistence
Enabling WS-persistence To enable WS-RM persistence, you must specify the object implementing
the persistent store for WS-RM. You can develop your own or use the JDBC
based store that comes with Artix.

The configuration shown below enables the JDBC-based store that comes
with Artix:

Configuring WS-persistence The JDBC-based store that comes with Artix supports the properties shown
in Table 8:

The configuration below shows an example of enabling the JDBC-based
store that comes with Artix, while setting the driverClassName and url to
non-default values:

<bean id="RMTxStore"
class="org.apache.cxf.ws.rm.persistence.jdbc.RMTxStore"/>

<wsrm-mgr:rmManager id="org.apache.cxf.ws.rm.RMManager">
 <property name="store" ref="RMTxStore"/>
</wsrm-mgr:rmManager>

Table 8: JDBC Store Properties

Attribute Name Type Default Setting

driverClassName String org.apache.derby.jdbc.EmbeddedDriver

userName String null

passWord String null

url String jdbc:derby:rmdb;create=true

<bean id="RMTxStore"
class="org.apache.cxf.ws.rm.persistence.jdbc.RMTxStore">

 <property name="driverClassName"
value="com.acme.jdbc.Driver"/>

 <property name="url" value="jdbc:acme:rmdb;create=true"/>
</bean>
99

CHAPTER 6 | Enabling Reliable Messaging
100

CHAPTER 7

Publishing WSDL
Contracts
This chapter describes how to publish WSDL files that
correspond to specific Web services. This enables consumers
to access a WSDL file and invoke on a service.

In this chapter This chapter discusses the following topics:

Artix WSDL Publishing Service page 102

Configuring the WSDL Publishing Service page 104

Configuring for Use in a Servlet Container page 108

Querying the WSDL Publishing Service page 110
101

CHAPTER 7 | Publishing WSDL Contracts
Artix WSDL Publishing Service

Overview The Artix WSDL publishing service enables Artix processes to publish WSDL
files for specific Web services. Published WSDL files can be downloaded by
consumers or viewed in a Web browser. They can also be downloaded by
Web service processes created by other vendor tools (for example, Systinet).

The WSDL publishing service enables Artix applications to be used in
various deployment models�for example, J2EE�without the need to
specify file system locations. It is the recommended way to publish WSDL
files for Artix services.

The WSDL publishing service is implemented by the
com.iona.cxf.wsdlpublish.WSDLPublish class. This class can be loaded by
any Artix process that hosts a Web service endpoint. This includes server
applications, Artix routing applications, and applications that expose a
callback object.

Use with endpoint references It is recommended that you use the WSDL publishing service for any
applications that generate and export references. To use references, the
consumer must have access to the WSDL file referred to by the reference.
The simplest way to accomplish this is to use the WSDL publishing service.

Figure 5 shows an example of creating references with the WSDL publishing
service. The WSDL publishing service automatically opens a port, from
which consumers can download a copy of the server�s dynamically updated
WSDL file. Generated references have their WSDL location set to the
following URL:

http://Hostname:WSDLPublishPort/QueryString
102

Artix WSDL Publishing Service
Hostname is the server host, WSDLPublishPort is a TCP/IP port used to serve
up the WSDL file, and QueryString is a string that requests a particular
WSDL file (see �Querying the WSDL Publishing Service� on page 110). If a
client accesses the WSDL location URL, the server converts the WSDL
model to XML on the fly and returns the WSDL contract in a HTTP message.

Multiple transports The WSDL publishing service makes the WSDL file available through an
HTTP URL. However, the Web service described in the WSDL file can use a
transport other than HTTP.

Figure 5: Creating References with the WSDL Publishing Service
103

CHAPTER 7 | Publishing WSDL Contracts
Configuring the WSDL Publishing Service

Overview To configure the WSDL publishing service in the Artix Java runtime you
must create an Artix Java configuration file to set the configuration options
that are described in this section.

Configuration file Example 20 shows an example of such a configuration file. It is written
using plain Spring beans. For more detailed information on each of the
configuration options, see �WSDL publishing service configuration options�
on page 106:

Note: If you want to run the WSDL publishing service in a servlet
container, please refer to �Configuring for Use in a Servlet Container� on
page 108.

Example 20:Configuring the WSDL Publishing Service

1 <beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/

beans http://www.springframework.org/schema/beans/
spring-beans-2.0.xsd">

2 <bean id="WSDLPublishManager"
class="com.iona.cxf.wsdlpublish.WSDLPublishManager">

 <property name="enabled" value="true"/>
 <property name="bus" ref="cxf"/>
 <property name="WSDLPublish" ref="WSDLPublish"/>
 </bean>

3 <bean id="WSDLPublish"
class="com.iona.cxf.wsdlpublish.WSDLPublish">

4 <property name="publishPort" value="27220"/>
5 <property name="publishHostname" value="myhost"/>
6 <property name="catalogFacility" value="true"/>
7 <property name="processWSDL" value="standard"/>
8 <property name="removeSchemas" ref="rschemas"/>

 </bean>
104

Configuring the WSDL Publishing Service
The configuration shown in Example 20 can be explained as follows:

1. An Artix Java configuration file is really a Spring XML file. You must
include an opening Spring <beans> element that declares the
namespaces and schema files for the child elements that are
encapsulated by the <beans> element.

2. Specifies the com.iona.cxf.wsdlpublish.WSDLPublishManager class,
which implements the WSDL publishing service manager. The WSDL
publishing service manager enables the WSDL publishing service.

3. Specifies the com.iona.cxf.wsdlpublish.WSDLPublish class, which
implements the WSDL publishing service.

4. The publishPort property specifies the TCP/IP port on which the
WSDL files are published.

5. The publishHostname property specifies the hostname on which the
WSDL publishing service is available.

6. The catalogFacility property specifies that the catalog facility is
enabled.

7. The processWSDL property specifies the type of processing that is done
on the WSDL file before the WSDL file is published.

8. The removeSchemas property specifies a list of the target namespaces
of the extensions that are removed when the processWSDL property is
set to standard. It this example it references rschemas, which is
configured in the next line of code. See 9 below.

9. Configures a rschema bean, which specifies the
com.iona.cxf.wsdlpublish.Valuelist class. The
com.iona.cxf.wsdlpublish.Valuelist class has a value attribute,
which you can use to list the schemas that you want removed from the
WSDL file. In this case, http://cxf.apache.org/ and
http://schemas.iona.com/ are removed.

9 <bean id="rschemas"
class="com.iona.cxf.wsdlpublish.Valuelist"
value="http://cxf.apache.org/ http://schemas.iona.com/"/>

</beans>

Example 20:Configuring the WSDL Publishing Service
105

CHAPTER 7 | Publishing WSDL Contracts
WSDL publishing service
configuration options

Table 9 describes each of the WSDL publishing service configuration
options.

Table 9: WSDL Publishing Service Configuration Options

Configuration
Option

Description

publishPort An integer that specifies the TCP/IP port that
WSDL files are published on.

If the port is in use, the server process will start
and an error message indicating the address is
already in use will be raised.

The default value is 27220.

publishHostname A string that specifies the hostname on which the
WSDL publishing service is available.

The default value is localhost.

catalogFacility A boolean that when set to true enables the
catalog facility, and when set to false disables the
catalog facility.

A catalog facility provides another way to access
WSDL and .xsd files (as opposed to on a file
system).

The default value is true.
106

Configuring the WSDL Publishing Service
processWSDL A string that specifies the type of processing that is
done on the WSDL file before the WSDL file is
published.

The processWSDL option has three possible values:

� none�no processing of the WSDL file takes
place; that is, the WSDL document is
published as is.

� artix�the WSDL file is processed so that
relative paths of imported/included schemas
are modified, and the imported/included
schemas are published on the modified path.

� standard�same as artix, but non-standard
extensions are also removed.

The default setting is artix.

removeSchemas A value list that removes the target namespaces
that are listed when the processWSDL option is set
to standard.

The default setting is http://cxf.apache.org/
and http://schemas.iona.com/.

Table 9: WSDL Publishing Service Configuration Options

Configuration
Option

Description
107

CHAPTER 7 | Publishing WSDL Contracts
Configuring for Use in a Servlet Container

Overview You can run the Artix WSDL publishing service in a servlet container, such
as Tomcat. This section assumes that you already know how to deploy and
run Artix applications in a servlet container. If not, please refer to �Deploying
to a Servlet Container� on page 45.

Configuration steps To configure the Artix WSDL publishing service to run in a servlet container,
such as Tomcat, complete the following steps:

1. Create a spring.xml configuration file

2. Configure a listener class in the web.xml file

Create a spring.xml configuration
file

Create a spring.xml configuration file as shown in Example 21 and include
it in the WEB-INF directory of your application WAR file.

Example 21:Configuring Artix WSDL Publish Service for Deployment to a
Servlet Container

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xsi:schemaLocation="
http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd
http://cxf.apache.org/jaxws

http://cxf.apache.org/schemas/jaxws.xsd">

 <import resource="classpath:META-INF/cxf/cxf.xml"/>
 <import

resource="classpath:META-INF/cxf/cxf-extension-soap.xml"/>
 <import

resource="classpath:META-INF/cxf/cxf-extension-http-binding.x
ml"/>

 <import resource="classpath:META-INF/cxf/cxf-servlet.xml"/>

 <bean id="com.iona.cxf.wsdlpublish.WSDLPublishManager"
class="com.iona.cxf.wsdlpublish.WSDLPublishManager">

 <property name="bus" ref="cxf"/>
 <property name="WSDLPublish" ref="WSDLPublish"/>
108

Configuring for Use in a Servlet Container
Configure a listener class in the
web.xml file

Add the configuration shown in Example 22 to your application�s web.xml
file. Include the web.xml file in the WEB-INF directory of your application
WAR file.

 <property name="enabled" value="true"/>
 </bean>

 <bean id="cxf" class="org.apache.cxf.bus.CXFBusImpl"/>
 <bean id="WSDLPublish"

class="com.iona.cxf.wsdlpublish.WSDLPublish">
 <property name="deployedInContainer" value="true"/>
 </bean>

</beans>

Example 21:Configuring Artix WSDL Publish Service for Deployment to a
Servlet Container

Example 22:Configuring a Listener Class

<web-app>
...
 <context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>WEB-INF/spring.xml</param-value>
 </context-param>

 <listener>
 <listener-class>
 org.springframework.web.context.ContextLoaderListener
 </listener-class>
 </listener>

</web-app>
109

CHAPTER 7 | Publishing WSDL Contracts
Querying the WSDL Publishing Service

Overview Each HTTP GET request for a WSDL file must have a query appended to it.
The Artix Java runtime supports RESTful services and, as a result, an HTTP
GET request is not automatically destined for the WSDL publishing service.

The WSDL publishing service supports the following queries:

Example query syntax The following are examples of query syntax that are serviced:

� Using ?wsdl:

� Using ?xsd. If a WSDL file has an imported schema, for example,
schema1.xsd, you can find the schema using the following query:

� Using ?services:

Returns a HTTP page that lists all documents associated with active
services.

Example query syntax when
running in a servlet container

The following is an example of the query syntax that you can use to query
the WSDL publishing service when it is running in a servlet container. The
examples shown refer to Tomcat running on port 8080:

?wsdl Returns the WSDL file for the published endpoint.

?xsd Returns the schema file for the published endpoint.

?services Returns a HTML formatted page with a list of all published
endpoints and any resolved schemas. The ?services query is
not supported when the WSDL publishing service is running
in a servlet container.

http://localhost:27220/SoapContext2/SoapPort2?wsdl

http://localhost:27220/SoapContext2/SoapPort2?xsd=schema1.xsd

http://localhost:27220?services
110

Querying the WSDL Publishing Service
� Using ?wsdl:

� Using ?xsd. If a WSDL file has an imported schema, for example,
schema1.xsd, you can find the schema using the following query:

http://host/8080/services/servicename?wsdl

http://host/8080/services/servicename?xsd=schema1.xsd

Note: services? is not supported when WSDL publishing service is
running in a servlet container.
111

CHAPTER 7 | Publishing WSDL Contracts
112

CHAPTER 8

Accessing Services
Using UDDI
Artix provides support for Universal Description, Discovery and
Integration (UDDI).

In this chapter This chapter contains the following sections:

Introduction to UDDI page 114

Configuring a Client to Use UDDI page 115
 113

CHAPTER 8 | Accessing Services Using UDDI
Introduction to UDDI

Overview A Universal Description, Discovery and Integration (UDDI) registry is a form
of database that facilitates the storage and retrieval of Web services
endpoints. It is particularly useful for making Web services available on the
Internet. Instead of making your service WSDL contract available to clients
in the form of a file, you can publish the WSDL contract in a UDDI registry.
Clients can then query the UDDI registry and retrieve the WSDL contract at
runtime.

Sample applications Artix includes UDDI sample applications, which can be found in the
following directories:

� ArtixInstallDir/java/samples/integration/uddi/client
� ArtixInstallDir/java/samples/integration/uddi/juddi

For information on how to run these sample applications, refer to the
README.txt files in the sample directories.

jUDDI Artix includes an open source UDDI registry called jUDDI. The sample
applications use this registry to store UDDI information. For more
information, see http://ws.apache.org/juddi/.

Design time UDDI support Artix Registry/Repository enables you to publish WSDL contracts to UDDI at
design time. For example, you can use Artix Registry/Repository to import
and publish a WSDL contract at design time and a client can dynamically
retrieve it at runtime.

For more information about Artix Registry/Repository�s UDDI support, see:

� The Adding a UDDI Registry chapter in the Artix Registry/Repository
Administrator�s Guide; and

� The Publishing to UDDI chapter in the Artix Registry/Repository
Deployer�s Guide.
114

http://ws.apache.org/juddi/
http://www.iona.com/support/docs/artix/repository/1.5/rep_deploy/index.htm
http://www.iona.com/support/docs/artix/repository/1.5/rep_deploy/index.htm
http://www.iona.com/support/docs/artix/repository/1.5/rep_admin/index.htm
http://www.iona.com/support/docs/artix/repository/1.5/rep_admin/index.htm

Configuring a Client to Use UDDI
Configuring a Client to Use UDDI

Overview Clients can be configured to dynamically retrieve service WSDL contracts
from a UDDI registry without the need for UDDI-specific code.

Client code For example, the following client code is valid for use with a UDDI registry
once the client is configured to use UDDI (see Client configuration).

Client configuration To configure a JAX-WS client to use UDDI add the configuration shown in
Example 23 to the client configuration file:

QName serviceQName = new QName("http://hello", "HelloService");
HelloService service = new HelloService(serviceQName, null);

Example 23: UDDI�Client Configuration

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd"
>

1 <bean id="UddiClientSupport"

class="com.iona.cxf.uddi.client.UddiResolver">
 <property name="bus" ref="cxf"/>

2 <property name="uddiUrl"
value="http://localhost:8888/uddi/inquire"/>

 </bean>
</beans>
 115

CHAPTER 8 | Accessing Services Using UDDI
The configuration shown in Example 23 on page 115 can be explained as
follows:

1. Specifies the UDDI resolver, which is used to query the UDDI registry
when the client requests a service endpoint. The client code does not
have to explicitly specify UDDI�the UDDI resolver plugs in at the bus
level and queries the UDDI registry.

2. Specifies the inquire URL for the UDDI repository. In the example
shown, the inquire URL specifies the jUDDI repository that ships with
Artix.
116

CHAPTER 9

Enabling High
Availability
This chapter explains how to enable and configure high
availability (HA) in the Artix Java runtime.

In this chapter This chapter discusses the following topics:

Introduction to High Availability page 118

Enabling HA with Static Failover page 120

Configuring HA with Static Failover page 123

Enabling HA with Dynamic Failover page 125

Configuring HA with Dynamic Failover page 128
117

CHAPTER 9 | Enabling High Availability
Introduction to High Availability

Overview Scalable and reliable Artix applications require high availability to avoid any
single point of failure in a distributed system. You can protect your system
from single points of failure using replicated services.

A replicated service is comprised of multiple instances, or replicas, of the
same service. Together these act as a single logical service. Clients invoke
requests on the replicated service, and Artix delivers the requests to one of
the member replicas. The routing to a replica is transparent to the client.

HA with static failover Artix supports HA with static failover in which replica details are encoded in
the service WSDL file. The WSDL file contains multiple ports, and possibly
multiple hosts, for the same service. The number of replicas in the cluster
remains static as long as the WSDL file remains unchanged. Changing the
cluster size involves editing the WSDL file.

HA with dynamic failover Artix also supports HA with dynamic failover. HA with dynamic failover is
one in which number of replicas in a cluster can be dynamically increased
and decreased simply by starting and stopping instances of the server
application. The Artix locator service is central to this feature.

The Artix locator service provides a lightweight mechanism for balancing
workloads among a group of services. When several services with the same
service name register with the Artix locator service, it automatically creates
a list of references to each instance of this service. The locator hands out
references to clients using a round-robin or random algorithm. This process
is automatic and invisible to both clients and services.

The discovery mechanism can also be used in failover scenarios. The Artix
locator service only hands out references for service replicas that it believes
to be active, on the basis of the dynamic state of the cluster as maintained
by the peer manager instance collocated with the Artix locator service.
Mutual heart-beating between the peer manager instances associated with
the Artix locator service and service replicas, allow each to detect the
availability of the other.
118

Introduction to High Availability
Dynamic failover also has the advantage that cluster membership is not
fixed. It is easy to grow or shrink the cluster size by simply starting and
stopping replica instances. Newly started replicas transparently register with
the Artix locator service, and their references are immediately eligible for
discovery by new clients. Similarly, gracefully shutdown services
transparently deregister themselves with the Artix locator service.

Sample applications The examples shown in this chapter are taken from the HA sample
applications that are located in the following directory of your Artix
installation:

For information on how to run these samples applications, see the
README.txt files on the sample directories.

More information about the
locator service

For more information on the Artix locator service, including how to configure
it, see the Artix Locator Guide.

ArtixInstallDir/java/samples/ha
119

../../locator_guide/index.htm

CHAPTER 9 | Enabling High Availability
Enabling HA with Static Failover

Overview To enable HA with static failover, you must:

� Encode replica details in your service WSDL file

� Add the clustering feature to your client configuration

Encode replica details in your
service WSDL file

You must encode the details of the replicas in your cluster in your service
WSDL file. Example 24 shows a WSDL file extract that defines a service
cluster of three replicas:

Example 24:Enabling HA with Static Failover�WSDL File

1 <wsdl:service name="ClusteredService">

i
 <wsdl:port binding="tns:Greeter_SOAPBinding"

name="Replica1">
 <soap:address

location="http://localhost:9001/SoapContext/Replica1"/>
 </wsdl:port>

ii <wsdl:port binding="tns:Greeter_SOAPBinding"
name="Replica2">

 <soap:address
location="http://localhost:9002/SoapContext/Replica2"/>

 </wsdl:port>

iii <wsdl:port binding="tns:Greeter_SOAPBinding"
name="Replica3">

 <soap:address
location="http://localhost:9003/SoapContext/Replica3"/>

 </wsdl:port>

</wsdl:service>
120

Enabling HA with Static Failover
The WSDL extract shown in Example 24 on page 120 is taken from the
replicated_hello_world.wsdl file located in the
ArtixInstallDir/java/samples/ha/static_failover/wsdl directory. It
can be explained as follows:

1. Defines a service, ClusterService, which is exposed on three ports:

i. Replica1�exposes the ClusterService as a SOAP over HTTP
endpoint on port 9001.

ii. Replica2�exposes the ClusterService as a SOAP over HTTP
endpoint on port 9002.

iii. Replica3�exposes the ClusterService as a SOAP over HTTP
endpoint on port 9003.

Add the clustering feature to your
client configuration

In your client configuration file, add the clustering feature as shown in
Example 25:

Example 25:Enabling HA with Static Failover�Client Configuration

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xmlns:clustering="http://cxf.apache.org/clustering"
 xsi:schemaLocation="
http://cxf.apache.org/jaxws

http://cxf.apache.org/schemas/jaxws.xsd
http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd"
>

 <jaxws:client

name="{http://apache.org/hello_world_soap_http}Replica1"
 createdFromAPI="true">
 <jaxws:features>
 <clustering:failover/>
 </jaxws:features>
 </jaxws:client>

 <jaxws:client
name="{http://apache.org/hello_world_soap_http}Replica2"

 createdFromAPI="true">
 <jaxws:features>
 <clustering:failover/>
121

CHAPTER 9 | Enabling High Availability
 </jaxws:features>
 </jaxws:client>

 <jaxws:client
name="{http://apache.org/hello_world_soap_http}Replica3"

 createdFromAPI="true">
 <jaxws:features>
 <clustering:failover/>
 </jaxws:features>
 </jaxws:client>

</beans>

Example 25:Enabling HA with Static Failover�Client Configuration
122

Configuring HA with Static Failover
Configuring HA with Static Failover

Overview By default, HA with static failover uses a sequential strategy when selecting
a replica service if the original service with which a client is communicating
becomes unavailable or fails. The sequential strategy selects a replica
service in the same sequential order every time it is used. Selection is
determined by Artix� internal service model and results in a deterministic
failover pattern.

Configuring a random strategy You can configure HA with static failover to use a random strategy instead of
the sequential strategy when selecting a replica. The random strategy
selects a replica service at random each time a service becomes unavailable
or fails. The choice of failover target from the surviving members in a cluster
is entirely random.

To configure the random strategy, adding the configuration shown in
Example 26 to your client configuration file:

Example 26:Configuring a Random Strategy for Static Failover

<beans ...>
1 <bean id="Random"

class="org.apache.cxf.clustering.RandomStrategy"/>

 <jaxws:client

name="{http://apache.org/hello_world_soap_http}Replica3"
 createdFromAPI="true">
 <jaxws:features>
 <clustering:failover>

2 <clustering:strategy>
 <ref bean="Random"/>
 </clustering:strategy>
 </clustering:failover>
 </jaxws:features>
 </jaxws:client>
</beans>
123

CHAPTER 9 | Enabling High Availability
The configuration shown in Example 26 on page 123 can be explained as
follows:

1. Defines a Random bean and implementation class that implements the
random strategy.

2. Specifies that the random strategy be used when selecting a replica.
124

Enabling HA with Dynamic Failover
Enabling HA with Dynamic Failover

Overview To enable HA with dynamic failover, you must:

1. Configure your service to register with the Artix locator

2. Configure your client to use locator meditated failover

3. Ensure the Artix locator is running

Configure your service to register
with the Artix locator

To configure your service to register with the Artix locator service add
configuration shown in Example 27 to your server configuration file.

Example 27:Configuring Your Service to Register with the Locator

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:locatorEndpoint="http://cxf.iona.com/locator/endpoint"
...>

1 <bean id="LocatorSupport"
class="com.iona.cxf.locator.LocatorSupport">

 <property name="bus" ref="cxf"/>
 <property name="contract">
 <value>./wsdl/locator.wsdl</value>
 </property>
 </bean>

 <jaxws:endpoint

name="{http://apache.org/hello_world_soap_http}SoapPort"
 createdFromAPI="true">

2 <jaxws:features>
 <locatorEndpoint:registerOnPublish

monitorLiveness="true"/>
 </jaxws:features>
 </jaxws:endpoint>

</beans>
125

CHAPTER 9 | Enabling High Availability
The configuration shown in Example 27 is taken from the HA sample and
can be explained as follows:

1. Enables the service to use the Artix locator service.

2. The registerOnPublish feature enables the published endpoint to
register with the Artix locator service.

Configure your client to use
locator meditated failover

To configure your client to use locator mediated failover add the
configuration shown in Example 28 to your client configuration file.

Example 28:Configuring your Client to Use Locator Mediated Failover

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:clustering="http://cxf.apache.org/clustering"...>

1 <bean id="LocatorSupport"
class="com.iona.cxf.locator.LocatorSupport">

 <property name="bus" ref="cxf"/>
 <property name="contract">
 <value>./wsdl/locator.wsdl</value>
 </property>
 </bean>

2 <bean id="LocatorMediated"

class="com.iona.cxf.ha.failover.LocatorMediatedStrategy">
 <property name="bus" ref="cxf"/>
 </bean>

 <jaxws:client

name="{http://apache.org/hello_world_soap_http}SoapPort"
 createdFromAPI="true">
 <jaxws:features>
 <clustering:failover>
 <clustering:strategy>
 <ref bean="LocatorMediated"/>
 </clustering:strategy>
 </clustering:failover>
 </jaxws:features>
 </jaxws:client>

</beans>
126

Enabling HA with Dynamic Failover
The configuration shown in Example 28 on page 126 is from the HA sample
and can be explained as follows:

1. Enables the client to use the Artix locator service to find services.

2. Enables failover support using the Artix locator service.

Ensure the Artix locator is running Ensure that the Artix locator service is running. To start the Artix locator
service, run the following command:

For more information, see the Artix Locator Guide.

ArtixInstallDir/java/bin/start_locator.bat
127

../../locator_guide/index.htm

CHAPTER 9 | Enabling High Availability
Configuring HA with Dynamic Failover

Overview You can change the default behavior of HA with dynamic failover by
configuring the following aspects of the feature:

� Enabling Artix locator to check the state of a registered service

� Setting the heartbeat interval

� Initial delay in locator response

� Maximum number of client retries

� Delay between client retry attempts

� Sequential backoff in client retry attempts

Enabling Artix locator to check the
state of a registered service

The monitorLiveness attribute enables the Artix locator service to check, at
regular intervals, whether a registered service is still live or not. It is disabled
by default.

To enable the Artix locator service to monitor the state of a registered
service, add the following to your server configuration file:

Setting the heartbeat interval The heartbeatInterval attribute specifies the frequency, in milliseconds, at
which the Artix locator service checks the state of a registered service. It
depends on the monitorLiveness attribute being set to true. The default
value is 10000 milliseconds (10 seconds).

To change the default heartbeat interval, add the following to your server
configuration file:

<locatorEndpoint:registerOnPublish monitorLiveness="true">

<locatorEndpoint:registerOnPublish monitorLiveness="true"
heartbeatInterval="10001"/>
128

Configuring HA with Dynamic Failover
Initial delay in locator response The initialDelay attribute specifies an initial delay, in milliseconds, in the
Artix locator service�s response to the client�s request for an EPR. The
default value is 0.

To change the initial delay in the Artix locator�s response to the client�s
request for an EPR, add the following to your client configuration file:

Maximum number of client retries The maxRetries attribute specifies the maximum number of times that the
client retries to connect to a service. The default value is 3.

To change the number of times that the client retries to connect to a service,
add the following to your client configuration file:

Delay between client retry
attempts

The intraRetryDelay attribute specifies the delay, in milliseconds, between
the client�s attempts to retry connecting to the service. The default value is
5000 milliseconds.

To change the delay between a client�s attempts to retry connecting to a
service, add the following to your client configuration file:

<bean id="LocatorMediated"
class="com.iona.cxf.ha.failover.LocatorMediatedStrategy">

 <property name="initialDelay" value="500"/>
</bean>

<bean id="LocatorMediated"
class="com.iona.cxf.ha.failover.LocatorMediatedStrategy">

 <property name="maxRetries" value="5"/>
</bean>

<bean id="LocatorMediated"
class="com.iona.cxf.ha.failover.LocatorMediatedStrategy">

 <property name="intraRetryDelay" value="4000"/>
</bean>
129

CHAPTER 9 | Enabling High Availability
Sequential backoff in client retry
attempts

The backoff attribute specifies an exponential backoff in the client�s retry
attempts. The default value is 1.0, which essentially does not exponentially
increase the amount of time between a client�s retry attempts.

To change the exponential backoff, add the following to your client
configuration file:

<bean id="LocatorMediated"
class="com.iona.cxf.ha.failover.LocatorMediatedStrategy">

 <property name="backoff" value="1.2"/>
</bean>
130

Index

A
AcknowledgementInterval 95
ACTIVEMQ_HOME 14
ACTIVEMQ_VERSION 14
ANT_HOME 14
ant target 50
application source 77
Artix Java configuration

options 21
Artix Java configuration file

simplified example 20
Artix Java environment

customizing artix_java_env 16
setting 12
variables 13

artix_java_env script 12
ARTIX_JAVA_ENV_SET 16
ARTIX_JAVA_HOME 13
Artix locator service 118, 119

starting 127
AtLeastOnce 97
AtMostOnce 97

B
backoff 130
BaseRetransmissionInterval 93
build.xml 50

C
catalogFacility 105, 106
common_build.xml 50
configuration

options 21
ConsoleHandler 65
container.wsdl 36
containerRepository 32, 39
ContainerServiceImpl 39
CreateSequence 77
CreateSequenceResponse 77
cxf.xml 22
CXF servlet 48
cxf-servlet.xml 48, 51, 52

D
-Dcxf.config.file 22
Dependency Injection 21
deploy 35
driverClassName 99
dynamic failover 118

client configuration 126
configuring 128
enabling 125
service configuration 125

E
endpoint references 102
ExponentialBackoff 94

F
FileHandler 65

G
getApplicationState 35

H
heartbeatInterval 128
high availability 117�130

Artix locator service 118, 119
backoff 130
client configuration 121
configuring dynamic failover 128
configuring random strategy 123
configuring static failover 123
dynamic failover 118
enabling dynamic failover 125
enabling static failover 120
heartbeatInterval 128
initialDelay 129
intraRetryDelay 129
maxRetries 129
monitorLiveness 128
random algorithm 118
round-robin algorithm 118
sample application 119
131

INDEX
starting locator service 127
static failover 118

I
initialDelay 129
InOrder 97
intraRetryDelay 129
Inversion of Control 21
IT_ARTIX_BASE_DIR 14
IT_WSDLGEN_CONFIG_FILE 15

J
java.util.logging 60, 61
java.util.Properties 60
JAVA_HOME 13
jaxws:endpoint 29, 51

address 30
id 29
implementor 29

JMX console 33
deploy 35
getApplicationState 35
listApplicationNames 35
removeApplication 35
startApplication 35
stopApplication 35

L
listApplicationNames 35
logging 59�??

configuring output 64
ConsoleHandler 65
enabling at command line 68
feature 60
FileHandler 65
individual packages 67
java.util.logging 60, 61
java.util.Properties 60
levels 66
logging.properties default file 64
message content 73
properties file 60
services 69
simple example 62
subsystems 69

logging.properties
default file 64

logging.properties file 60

logging feature 60

M
maxLength 96
maxRetries 129
maxUnacknowledged 95
monitorLiveness 128

O
oneway calls 98

P
passWord 99
persistence 98
processWSDL 105, 107
publishHostname 105, 106
publishPort 105, 106

R
random algorithm 118
random strategy 123
removeApplication 35
removeSchemas 105, 107
replicated services 118
rmManager 86
round-robin algorithm 118
rschema 105

S
scanInterval 32, 39
Sequence 77
SequenceAcknowledgement 77
servlet container 45�54

configuration file 48
deploying Artix endpoint 51
sample application 25
WAR file 51

spring.xml 28
Spring container 23�??

building a WAR file 31
configuring your application for 28
deployment steps 28
graphical representation 24
spring_container.xml 37
Web interface 36

spring container
running multiple 41
132

INDEX
spring_container.xml 32, 37
SPRING_CONTAINER_HOME 15
Spring framework 21, 24
startApplication 35
static failover 118

configuring 123
enabliing 120

stopApplication 35

U
UDDI

configuring a client 115
design time support 114
introduction to 114

userName 99

W
WAR file 51

for Spring container 31
web.xml 48, 51
Web service interface

adding a port 36
changing port 36
Spring container 36

Web Services Reliable Messaging 75
WSDL publishing service 101�110

catalogFacility 105, 106
configuring 104
processWSDL 105
publishHostname 105, 106
publishPort 105, 106
querying 110

removeSchemas 105, 107
rschema 105

WS-Policy framework 91
WS-Policy RMAssertion 88
WS-ReliableMessaging 75�99
WS-RM 75�99

AcknowledgementInterval 95
AtLeastOnce 97
AtMostOnce 97
BaseRetransmissionInterval 93
configuring 85
destination 76
driverClassName 99
enabling 80
ExponentialBackoff 94
external attachment 91
initial sender 76
InOrder 97
interceptors 78
maxLength 96
maxUnacknowledged 95
passWord 99
persistence 98
policy attributes in feature 90
rmManager 86
source 76
ultimate receiver 76
url 99
userName 99
WS-Policy framework 91

wsrm:AcksTo 77
133

INDEX
134

	List of Figures
	List of Tables
	Preface
	Getting Started
	Setting your Artix Java Environment
	Artix Java Environment Variables
	Customizing your Environment Script

	Artix Java Configuration
	Artix Java Configuration Files
	Making Your Configuration File Available

	Deploying to the Spring Container
	Introduction
	Running the Spring Container
	Deploying an Artix Endpoint
	Managing the Container using the JMX Console
	Managing the Container using the Web Service Interface
	Spring Container Definition File
	Running Multiple Containers on Same Host

	Deploying to a Servlet Container
	Introduction
	Configuring Servlet Container to Run an Artix Application
	Deploying an Artix Endpoint
	Deploying Artix in a Custom Servlet

	Artix Logging
	Overview of Artix Java Logging
	Simple Example of Using Logging
	Default logging.properties File
	Enabling Logging at the Command Line
	Logging for Subsystems and Services
	Logging Message Content

	Enabling Reliable Messaging
	Introduction to WS-RM
	WS-RM Interceptors
	Enabling WS-RM
	Configuring WS-RM
	Configuring Artix-Specific WS-RM Attributes
	Configuring Standard WS-RM Policy Attributes
	WS-RM Configuration Use Cases

	Configuring WS-RM Persistence

	Publishing WSDL Contracts
	Artix WSDL Publishing Service
	Configuring the WSDL Publishing Service
	Configuring for Use in a Servlet Container
	Querying the WSDL Publishing Service

	Accessing Services Using UDDI
	Introduction to UDDI
	Configuring a Client to Use UDDI

	Enabling High Availability
	Introduction to High Availability
	Enabling HA with Static Failover
	Configuring HA with Static Failover
	Enabling HA with Dynamic Failover
	Configuring HA with Dynamic Failover

	Index

