
Artix ESB
Java Router, Deployment Guide

Version 5.1
December 2007

Making Software Work Together™

Java Router, Deployment Guide
IONA Technologies

Version 5.1

Published 19 Dec 2007
Copyright © 1999-2007 IONA Technologies PLC

Trademark and Disclaimer Notice

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license to these patents, trademarks, copyrights,
or other intellectual property. Any rights not expressly granted herein are reserved.

IONA, IONA Technologies, the IONA logos, Orbix, Artix, Making Software Work Together, Adaptive Runtime Technology, Orbacus,
IONA University, and IONA XMLBus are trademarks or registered trademarks of IONA Technologies PLC and/or its subsidiaries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.
CORBA is a trademark or registered trademark of the Object Management Group, Inc. in the United States and other countries.
All other trademarks that appear herein are the property of their respective owners.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of any kind to
this material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. IONA
shall not be liable for errors contained herein, or for incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Copyright Notice

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means,
photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third-party intellectual property
right liability is assumed with respect to the use of the information contained herein. IONA Technologies PLC assumes no
responsibility for errors or omissions contained in this publication. This publication and features described herein are subject to
change without notice.

Table of Contents
Preface ... 11

Document Conventions ... 12
Deploying a Standalone Router ... 15

Introduction to Standalone Deployment ... 16
Defining a Standalone Main Method ... 18
Adding Components to the Camel Context .. 20
Adding RouteBuilders to the Camel Context .. 22
Running a Standalone Application .. 24

Deploying into a Spring Container ... 25
Introduction to Spring Deployment ... 26
Defining a Spring Main Method ... 28
Spring Configuration ... 29
Running a Spring Application .. 32

Components ... 33
CORBA ... 34
CXF Component .. 35
File Component ... 37
SOAP ... 39

3

4

List of Figures
1. Standalone Router ... 16
2. Router Deployed in a Spring Container 26

5

6

List of Tables
1. CXF URI Query Options ... 36
2. File URI Query Options .. 37
3. File URI Message Headers ... 38

7

8

List of Examples
1. Standalone Main Method ... 18
2. Adding a Component to the Camel Context 20
3. Adding a RouteBuilder to the Camel Context 22
4. Spring Main Method ... 28
5. Basic Spring XML Configuration ... 29
6. Configuring Components in Spring .. 30

9

10

Preface

Table of Contents
Document Conventions ... 12

11

Document Conventions

Typographical conventions
This book uses the following typographical conventions:

Fixed width (Courier font) in normal text represents
portions of code and literal names of items such as

fixed width

classes, functions, variables, and data structures. For
example, text might refer to the
javax.xml.ws.Endpoint class.

Constant width paragraphs represent code examples or
information a system displays on the screen. For example:

import java.util.logging.Logger;

Fixed width italic words or characters in code and
commands represent variable values you must supply,

Fixed width

italic
such as arguments to commands or path names for your
particular system. For example:

% cd /users/YourUserName

Italic words in normal text represent emphasis and
introduce new terms.

Italic

Bold words in normal text represent graphical user
interface components such as menu commands and
dialog boxes. For example: the User Preferences dialog.

Bold

Keying conventions
This book uses the following keying conventions:

When a command’s format is the same for multiple
platforms, the command prompt is not shown.

No prompt

A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

%

12

Document Conventions

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

#

The notation > represents the MS-DOS or Windows

command prompt.

>

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been eliminated
to simplify a discussion.

...

Brackets enclose optional items in format and syntax
descriptions.

[]

Braces enclose a list from which you must choose an
item in format and syntax descriptions.

{ }

In format and syntax descriptions, a vertical bar separates
items in a list of choices enclosed in {} (braces).

|

Admonition conventions
This book uses the following conventions for admonitions:

Notes display information that may be useful, but not critical.

Tips provide hints about completing a task or using a tool. They may
also provide information about workarounds to possible problems.

Important notes display information that is critical to the task at hand.

Cautions display information about likely errors that can be
encountered. These errors are unlikely to cause damage to your data
or your systems.

Warnings display information about errors that may cause damage to
your systems. Possible damage from these errors include system
failures and loss of data.

13

Admonition conventions

14

Deploying a Standalone Router
Summary

This chapter describes how to deploy the Java Router in standalone mode.
This means that you can deploy the router independent of any container,
but some extra programming steps are required.

Table of Contents
Introduction to Standalone Deployment ... 16
Defining a Standalone Main Method ... 18
Adding Components to the Camel Context .. 20
Adding RouteBuilders to the Camel Context .. 22
Running a Standalone Application .. 24

15

Introduction to Standalone Deployment
Overview

Figure 1, “Standalone Router” gives an overview of the architecture for a
router deployed in standalone mode.

Figure 1. Standalone Router

Camel context
The Camel context represents the router service itself. In contrast to most
container deployment modes (where the Camel context instance is normally
hidden), the standalone deployment requires you to explicitly create and
initialize the Camel context in your application code. As part of the initialization
procedure, you explicitly create components and route builders and add them
to the Camel context.

Components
Components represent connections to particular kinds of destination—for
example, a file system, a Web service, a JMS broker, a CORBA service, and
so on. In order to read and write messages to and from various destinations,

16

Introduction to Standalone Deployment

you need to configure and register components, by adding them to the Camel
context.

RouteBuilders
The RouteBuilder classes represent the core of your router application,

because they define the routing rules. In a standalone deployment, you are
responsible for managing the lifecycle of RouteBuilder objects. In

particular, you must create instances of the route builder objects and register
them, by adding them to the Camel context.

17

Introduction to Standalone Deployment

Defining a Standalone Main Method
Overview

In the case of a standalone deployment, it is up to the application developer
to create, configure and start a Camel context instance (which encapsulates
the core of the router functionality). For this purpose, you should define a
main() method that performs the following key tasks:

1. Create a Camel context instance.

2. Add components to the Camel context.

3. Add routing rules (RouteBuilder objects) to the Camel context.

4. Start the Camel context, so that it activates the routing rules you defined.

Example of a standalone main
method Example 1, “Standalone Main Method” shows the standard outline of a

standalone main() method, which is defined in an example class,

CamelJmsToFileExample. This example shows how to initialize and

activate a Camel context instance.

Example 1. Standalone Main Method
package org.apache.camel.example.jmstofile;

import javax.jms.ConnectionFactory;

import org.apache.activemq.ActiveMQConnectionFactory;
import org.apache.camel.CamelContext;
import org.apache.camel.CamelTemplate;
import org.apache.camel.Exchange;
import org.apache.camel.Processor;
import org.apache.camel.builder.RouteBuilder;
import org.apache.camel.component.jms.JmsComponent;
import org.apache.camel.impl.DefaultCamelContext;

public final class CamelJmsToFileExample {

private CamelJmsToFileExample() {
}

public static void main(String args[]) throws Exception
{ ❶

CamelContext context = new DefaultCamelContext(); ❷

18

Defining a Standalone Main Method

// Add components to the Camel context. ❸
// ... (not shown)

// Add routes to the Camel context. ❹
// ... (not shown)

// Start the context.
context.start(); ❺

// End of main thread.
}

}

Where the preceding code can be explained as follows:

❶ Define a static main() method to serve as the entry point for running

the standalone router.
❷ For a standalone router, you need to instantiate a Camel context

explicitly. There is just one implementation of CamelContext currently

available, the DefaultCamelContext class.

❸ The first step in initializing the Camel context is to add any components
that your need for your routes (see Adding Components to the Camel
Context).

❹ The second step in initializing the Camel context is to add one or more
RouteBuilder objects (see Adding RouteBuilders to the Camel Context).

❺ The CamelContext.start()method creates a new thread and starts

to process incoming messages using the registered routing rules. If the
main thread now exits, the Camel context sub-thread remains active
and continues to process messages. Typically, you can stop the router
by typing Ctrl-C in the window where you launched the router

application (or by sending a kill signal in UNIX). If you want more

control over stopping the router process, you could use the
CamelContext.stop() method in combination with an

instrumentation library (such as JMX).

19

Defining a Standalone Main Method

Adding Components to the Camel Context
Relationship between components
and endpoints The essential difference between components and endpoints is that, when

configuring a component, you provide concrete connection details (for example,
hostname, IP port, and so on), whereas, when specifying an endpoint URI,
you provide abstract identifiers (for example, queue name, service name, and
so on). It is also possible to define multiple endpoints for each component.
For example, a single message broker (represented by a component) can
support connections to multiple different queues (represented by endpoints).

The relationship between an endpoint and a component is established through
a URI prefix. Whenever you add a component to the Camel context, the
component gets associated with a particular URI prefix (specified as the first
argument to the CamelContext.addComponent() method). Endpoint

URIs that start with that prefix are then automatically parsed by the associated
component.

Example of adding a component
Example 2, “Adding a Component to the Camel Context” shows the outline
of the standalone main() method, highlighting details of how to add a JMS

component to the Camel context.

Example 2. Adding a Component to the Camel Context
public final class CamelJmsToFileExample {

...
public static void main(String args[]) throws Exception

{
CamelContext context = new DefaultCamelContext();

// Add components to the Camel context.
ConnectionFactory connectionFactory = new

ActiveMQConnectionFactory("vm://localhost?broker.persistent=false");
❶

context.addComponent("test-jms",
JmsComponent.jmsComponentAutoAcknowledge(connectionFactory));
❷

// Add routes to the Camel context.
// ... (not shown)

// Start the context.
context.start();

// End of main thread.

20

Adding Components to the Camel
Context

}
}

Where the preceding code can be explained as follows:

❶ Before you can add a JMS component to the Camel context, you need
to create a JMS connection factory (an implementation of
javax.jms.ConnectionFactory). In this example, the JMS

connection factory is implemented by the FUSE Message Broker class,
ActiveMQConnectionFactory. The broker URL,

vm://localhost, specifies a broker that is co-located in the same

Java Virtual Machine (JVM) as the router. The broker library automatically
instantiates the new broker as soon as you try to send a message to it.

❷ Add a JMS component named test-jms to the Camel context. This

example uses a JMS componenet with the auto-acknowledge option set
to true. This implies that messages received from a JMS queue will
automatically be acknowledged (receipt confirmed) by the JMS
component.

21

Adding Components to the Camel
Context

Adding RouteBuilders to the Camel Context
Overview

RouteBuilder objects represent the core of your router application, because

they embody the routing rules you want to implement. In the case of a
standalone deployment, you have to manage the lifecycle of your
RouteBuilder objects explicitly, which involves instantiating the

RouteBuilder classes and adding them to the Camel context.

Example of adding a RouteBuilder
Example 3, “Adding a RouteBuilder to the Camel Context” shows the outline
of the standalone main() method, highlighting details of how to add a

RouteBuilder object to the Camel context.

Example 3. Adding a RouteBuilder to the Camel Context
package org.apache.camel.example.jmstofile;
...
public class JmsToFileRoute extends RouteBuilder { ❶

public void configure() {
from("test-jms:queue:test.queue").to("file://test");

❷
// set up a listener on the file component
from("file://test").process(new Processor() { ❸

public void process(Exchange e) {
System.out.println("Received exchange: " +

e.getIn());
}

});
}

}

public final class CamelJmsToFileExample {
...
public static void main(String args[]) throws Exception

{
CamelContext context = new DefaultCamelContext();

// Add components to the Camel context.
// ... (not shown)

// Add routes to the Camel context.
context.addRoutes(new JmsToFileRoute()); ❹

// Start the context.

22

Adding RouteBuilders to the Camel
Context

context.start();

// End of main thread.
}

}

Where the preceding code can be explained as follows:

❶ Define a class that inherits from
org.apache.camel.builder.RouteBuilder in order to define

your routing rules. If required, you can define multiple RouteBuilder

classes.
❷ The first route implements a hop from a JMS queue to the file system.

That is, messages are read from the JMS queue, test.queue, and

then written to files in the test directory. The JMS endpoint, which

has a URI prefixed by test-jms, uses the JMS component registered

in Example 2, “Adding a Component to the Camel Context”.
❸ The second route reads (and deletes) the messages from the test

directory and displays the messages in the console window. To display
the messages, the route implements a custom processor (implemented
inline). See for more details about implementing custom processors.

❹ Call the CamelContext.addRoutes() method to add a

RouteBuilder object to the Camel context.

23

Adding RouteBuilders to the Camel
Context

Running a Standalone Application
Setting the CLASSPATH

Configure your application's CLASSPATH as follows:

1. Add all of the JAR files in RouterRoot/lib and

RouterRoot/lib/optional to your CLASSPATH. This step can be

simplified if you use a general-purpose build tool such as Apache Maven
[http://maven.apache.org/] or Apache Ant [http://ant.apache.org/] to build
your application.

Running the application
Assuming that you have coded a main() method, as described in Defining

a Standalone Main Method, you can run your application using Sun's J2SE
interpreter with the following command:

java org.apache.camel.example.jmstofile.CamelJmsToFileExample

If you are developing the application using a Java IDE (for example, Eclipse
[http://www.eclipse.org/] or IntelliJ [http://www.jetbrains.com/idea/]), you
can typically run your application by selecting the
CamelJmsToFileExample class and directing the IDE to run the class.

Normally, an IDE would automatically choose the static main() method as

the entry point to run the class.

24

Running a Standalone Application

http://maven.apache.org/
http://maven.apache.org/
http://ant.apache.org/
http://ant.apache.org/
http://www.eclipse.org/
http://www.eclipse.org/
http://www.jetbrains.com/idea/
http://www.jetbrains.com/idea/

Deploying into a Spring Container
Summary

This chapter describes how to deploy the Java Router into a Spring container.
A notable feature of the Spring container deployment is that it enables you
to specify routing rules in an XML configuration file.

Table of Contents
Introduction to Spring Deployment ... 26
Defining a Spring Main Method ... 28
Spring Configuration ... 29
Running a Spring Application .. 32

25

Introduction to Spring Deployment
Overview

Figure 2, “Router Deployed in a Spring Container” gives an overview of the
architecture for a router deployed into a Spring container.

Figure 2. Router Deployed in a Spring Container

Spring wrapper class
To instantiate a Spring container, Java Router provides the Spring wrapper
class, org.apache.camel.spring.Main, which exposes methods for

creating a Spring container. The wrapper class simplifies the procedure for
creating a Spring container, because it includes a lot of boilerplate code
required for the router. For example, the wrapper class specifies a default
location for the Spring configuration file and adds the Camel context schema
to the Spring configuration, enabling you to specify routes using the
camelContext XML element.

Lifecycle of RouteBuilder objects
The Spring container is responsible for managing the lifecycle of
RouteBuilder objects. In practice, this means that the router developer

need only define the RouteBuilder classes. The Spring container will find

26

Introduction to Spring Deployment

and instantiate the RouteBuilder objects after it starts up (see Spring

Configuration).

Spring configuration file
The Spring configuration file is a key feature of the Spring container. Through
the Spring configuration file you can instantiate and link together Java objects.
You can also configure any Java object using the dependency injection feature.

In addition to these generic features of the Spring configuration file, Java
Router defines an extension schema that enables you to define routing rules
in XML.

Component configuration
In order to use certain transport protocols in your routes, you must configure
the corresponding component and add it to the Camel context. You can add
components to the Camel context by defining bean elements in the Spring

configuration file (see Configuring components).

27

Introduction to Spring Deployment

Defining a Spring Main Method
Overview

Java Router defines a convenient wrapper class for the Spring container. To
instantiate a Spring container instance, all that you need to do is write a short
main()method that delegates creation of the container to the wrapper class.

Example of a Spring main method
Example 4, “Spring Main Method” shows how to define a Spring main()

method for your router application.

Example 4. Spring Main Method
package my.package.name;

public class Main {
public static void main(String[] args) {

org.apache.camel.spring.Main.main(args);
}

}

Where org.apache.camel.spring.Main is the Spring wrapper class,

which defines a static main()method that instantiates the Spring container.

Spring options

28

Defining a Spring Main Method

Spring Configuration
Overview

You can use a Spring configuration file to configure the following basic aspects
of a router application:

• Specify the Java packages that contain RouteBuilder classes.

• Define routing rules in XML.

• Configure components.

In addition to these core aspects of router configuration, you can of course
take advantage of the generic Spring mechanisms for configuring and linking
together Java objects within the Spring container.

Location of the Spring
configuration file The Spring configuration file for your router application must be stored at the

following location, relative to your CLASSPATH:

META-INF/spring/camel-context.xml

Basic Spring configuration
Example 5, “Basic Spring XML Configuration” shows a basic Spring XML
configuration file that instantiates and activates RouteBuilder classes

defined in the my.package.name Java package.

Example 5. Basic Spring XML Configuration
<?xml version="1.0" encoding="UTF-8"?>

<!-- Configures the Camel Context-->
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
❶

http://activemq.apache.org/camel/schema/spring
http://activemq.apache.org/camel/schema/spring/camel-spring.xsd">
❷

<camelContext
xmlns="http://activemq.apache.org/camel/schema/spring"> ❸

<package>my.package.name</package> ❹

29

Spring Configuration

</camelContext>
</beans>

Where the preceding configuration can be explained as follows:

❶ This line specifies the location of the Spring framework schema. The
URL should represent a real, physical location from where you can
download the schema. The version of the Spring schema currenlty
supported by Java Router is Spring 2.0.

❷ This line specifies the location of the Camel context schema. The URL
shown in this example always points to the latest version of the schema.

❸ Define a camelContext element, which belongs to the namespace,

http://activemq.apache.org/camel/schema/spring.

❹ Use the package element to specify one or more Java package names.

As it starts up, the Spring wrapper automatically instantiates and
activates any RouteBuilder classes that it finds in the specified

packages.

Configuring components
To configure router components, use the generic Spring bean configuration
mechanism (which implements a dependency injection configuration pattern).
That is, you define a Spring bean element to create a component instance,

where the class attribute specifies the full class name of the relevant Java

Router component. Bean properties on the component class can then be set
using the Spring properties element. Using the dependency injection

mechanism, it is relatively straightforward to figure what properties you can
set by consulting the JavaDoc for the relevant component.

Example 6, “Configuring Components in Spring” shows how to configure a
JMS component using Spring configuration. This component configuration
enables you to access endpoints of the format
jms:[queue|topic]:QueueOrTopicName in your routing rules.

Example 6. Configuring Components in Spring
<?xml version="1.0" encoding="UTF-8"?>

<beans ... >

<camelContext useJmx="true"
xmlns="http://activemq.apache.org/camel/schema/spring">

<!-- Java packages (not shown) ... -->
</camelContext>

30

Spring Configuration

<!-- Configure the default ActiveMQ broker URL -->
<bean id="jms"

class="org.apache.camel.component.jms.JmsComponent"> ❶
<property name="connectionFactory"> ❷

<bean
class="org.apache.activemq.ActiveMQConnectionFactory"> ❸

<property name="brokerURL"
value="vm://localhost?broker.persistent=false&broker.useJmx=false"/>
❹

</bean>
</property>

</bean>

</beans>

Where the preceding configuration can be explained as follows:

❶ Use the class attribute to specify the name of the component class—in

this example, we are configuring the JMS component class,
JmsComponent. The id attribute specifies the prefix to use for JMS

endpoint URIs. For example, with the id equal to jms you can connect

to an endpoint like jms:queue:FOO.BAR in your application code.

❷ When you set the property named, connectionFactory, Spring

implicitly calls the JmsComponent.setConnectionFactory()

method to initialize the JMS component at run time.
❸ The connection factory property is initialized to be an instance of

ActiveMQConnectionFactory (that is, an instance of a FUSE

Message Broker message queue).
❹ When you set the brokerURL property on

ActiveMQConnectionFactory, Spring implicitly calls the

setBrokerURL() method on the connection factory instance. In this

example, the broker URL, vm://localhost, specifies a broker that

is co-located in the same Java Virtual Machine (JVM) as the router.The
broker library automatically instantiates the new broker as soon as you
try to send a message to it.

For more details about configuring components in Spring, see Components.

31

Spring Configuration

Running a Spring Application
Setting the CLASSPATH

Configure your application's CLASSPATH as follows:

1. Add all of the JAR files in RouterRoot/lib and

RouterRoot/lib/optional to your CLASSPATH. This step can be

simplified if you use a general-purpose build tool such as Apache Maven
[http://maven.apache.org/] or Apache Ant [http://ant.apache.org/] to build
your application.

2. Add the directory containing META-INF/spring/camel-context.xml

to your CLASSPATH.

Running the application
Assuming that you have coded a main() method, as described in Defining

a Spring Main Method, you can run your application using Sun's J2SE
interpreter with the following command:

java my.package.name.Main

If you are developing the application using a Java IDE (for example, Eclipse
[http://www.eclipse.org/] or IntelliJ [http://www.jetbrains.com/idea/]), you
can typically run your application by selecting the my.package.name.Main

class and directing the IDE to run the class. Normally, an IDE would
automatically choose the static main() method as the entry point to run the

class.

32

Running a Spring Application

http://maven.apache.org/
http://maven.apache.org/
http://ant.apache.org/
http://ant.apache.org/
http://www.eclipse.org/
http://www.eclipse.org/
http://www.jetbrains.com/idea/
http://www.jetbrains.com/idea/

Components
Summary

In Java Router, a component is essentially an integration plug-in, which can
be used to enable integration with different kinds of protocol, containers,
databases, and so on. By adding a component to your Camel context, you
gain access to a particular type of endpoint, which can then be used as the
sources and targets of your routes. This reference chapter provides an
overview of the components available in Java Router.

Table of Contents
CORBA ... 34
CXF Component .. 35
File Component ... 37
SOAP ... 39

33

CORBA
Overview

The CORBA protocol does not have a dedicated component. It is supported
through the CXF component—see CXF Component.

34

CORBA

CXF Component
Overview

The CXF component enables you to access endpoints using the Apache CXF
[http://incubator.apache.org/cxf/] open services framework (primarily Web
services). Because CXF has support for multiple different protocols, you can
use a CXF component to access many different kinds of service. For example,
CXF supports the following bindings (message encodings):

• SOAP 1.1.

• SOAP 1.2

• CORBA

• XML

And CXF supports the following transports:

• HTTP

• RESTful HTTP

• IIOP (transport for CORBA only)

• JMS

• WebSphere MQ

• FTP

Adding the CXF component
There is no need to add the CXF component to the Camel context; it is
automatically loaded by the router core.

Endpoint URI format
A CXF endpoint has a URI that conforms to the following format:

cxf://Address?QueryOptions

Where Address is the physical address of the endpoint, whose format is

binding/transport specific (for example, the HTTP URL format, http://, for

SOAP/HTTP or the corbaloc format, corbaloc:iiop:, for CORBA/IIOP).

You can optionally add a list of query options, ?QueryOptions, in the

following format:

35

CXF Component

http://incubator.apache.org/cxf/
http://incubator.apache.org/cxf/

?Option=Value&Option=Value&Option=Value...

URI query options
The CXF URI supports the query options described in Table 1, “CXF URI
Query Options”.

Table 1. CXF URI Query Options

DescriptionOption

The endpoint address (overriding the value that appears
in the fist part of theCXF URI).

address

The format used to represent messages internally.
Currently, the only supported format is POJO (Plain Old
Java Object).

dataFormat

A service endpoint interface (SEI) class name. If the SEI
class is appropriately annotated, it also determines the

serviceClass

WSDL location, service name, and port name for the
WSDL endpoint.

The port QName (defaults to the value of the annotation
in the service class, if one is specified).

portName

The service QName (defaults to the value of the
annotation in the service class, if one is specified).

serviceName

Location of the WSDL contract file (defaults to the value
of the annotation in the service class, if one is specified).

wsdlURL

You can combine these options in various ways, in order to provide the
requisite details about a service endpoint. For example, you would typically
define a CXF URI in one of the following ways:

• CXF URI based on an SEI class—if you specify just the serviceClass

option, CXF implicitly takes the port name, service name, and WSDL
location from the annotations on the SEI class.

• CXF URI with explicit options—alternatively, you can specify the port name,
portName, service name, serviceName, and WSDL location, wsdlURL,

expicitly using the CXF query options.

36

CXF Component

File Component
Overview

The file component provides access to the file system, enabling you to read
messages from files and write messages to files. It is useful for simple
demonstrations and testing purposes.

Adding the file component
There is no need to add the file component to the Camel context; it is
embedded in the router core.

Endpoint URI format
A file endpoint has a URI that conforms to the following format:

file://FileOrDirectory?QueryOptions

?Option=Value&Option=Value&Option=Value...

URI query options
The file URI supports the query options described in Table 2, “File URI Query
Options”.

Table 2. File URI Query Options

DescriptionDefaultOption

Milliseconds before polling of the file/directory starts.1000initialDelay

Milliseconds before the next poll of the file/directory.500delay

If , poll once after the initial delay.falseuseFixedDelay

If true and the file URI specifies a directory path, the file component polls

for changes in all sub-directories.

truerecursive

If true, lock the file for the duration of the processing.truelock

Only process files that match the regular expression pattern.nullregexPattern

If true, delete the file after processing (the default is to move it).falsedelete

If true, do not move, delete, or modify the file in any way. This option is

good for read only data, or for ETL type requirements.

falsenoop

Specifies the string to prepend to the file's path name when moving it. For
example to move processed files into the done directory, set this option to

done/.

nullmoveNamePrefix

37

File Component

DescriptionDefaultOption

Specifies the string to append to the file's path name when moving it. For
example to rename processed files from foo to foo.old set this value to

.old.

nullmoveNamePostfix

When writing to a file, if this option is true, append to the end of the file;

if this option is false, replace the file.

trueappend

Message headers
The message headers shown in Table 3, “File URI Message Headers” can
be used to affect the behavior of the file component.

Table 3. File URI Message Headers

DescriptionHeader

Specifies the output file name (relative to the endpoint directory) to be used
for the output message when sending to the endpoint. If this is not present,
a generated message ID is used instead.

org.apache.camel.file.name

38

File Component

SOAP
Overview

The SOAP protocol does not have a dedicated component. It is supported
through the CXF component—see CXF Component.

39

SOAP

40

	Java Router, Deployment Guide
	Table of Contents
	Preface
	Document Conventions

	Deploying a Standalone Router
	Introduction to Standalone Deployment
	Defining a Standalone Main Method
	Adding Components to the Camel Context
	Adding RouteBuilders to the Camel Context
	Running a Standalone Application

	Deploying into a Spring Container
	Introduction to Spring Deployment
	Defining a Spring Main Method
	Spring Configuration
	Running a Spring Application

	Components
	CORBA
	CXF Component
	File Component
	SOAP

