
Artix ESBTM

Making Software Work TogetherTM

Configuration Reference,
C++ Runtime
Version 5.0, July 2007

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in
this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license
to these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.
IONA, IONA Technologies, the IONA logos, Orbix, Artix, Making Software Work
Together, Adaptive Runtime Technology, Orbacus, IONA University, and IONA XMLBus
are trademarks or registered trademarks of IONA Technologies PLC and/or its
subsidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. CORBA is a trademark or registered trademark of the
Object Management Group, Inc. in the United States and other countries. All other
trademarks that appear herein are the property of their respective owners.
IONA Technologies PLC makes no warranty of any kind to this material including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose. IONA Technologies PLC shall not be liable for
errors contained herein, or for incidental or consequential damages in connection with the furnishing, perform-
ance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publica-
tion and features described herein are subject to change without notice.

Copyright © 2001-2007 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: June 4, 2009

Contents

Preface 7

What is Covered in this Book 7
Who Should Read this Book 7
How to Use this Book 8
The Artix Documentation Library 8

Chapter 1 Artix Runtime 9
ORB Plug-ins 10
Binding Lists 18
Event Log 28
Initial Contracts 32
Initial References 36
JVM Options 41
Message Snoop 42
Multi-threading 45
Policies 50
QName Aliases 60
Reference Compatibility 63

Chapter 2 Artix Plug-ins 67
AmberPoint 69
Bus 70
CA WSDM Observer 72
Client-Side High Availability 75
Container 77
Database Environment 78
FTP 87
JMS 91
JMX 95
Local Log Stream 98
Log4J Log Stream 102
Locator Service 103
Locator Endpoint Manager 106
3

CONTENTS
Peer Manager 108
Performance Logging 110
Remote Method Invocation 112
Routing 113
Service Lifecycle 117
Session Manager 120
Session Endpoint Manager 121
Session Manager Simple Policy 122
SOAP 123
Transformer Service 125
Tuxedo 129
Web Services Addressing 130
Web Services Chain Service 134
Web Services Reliable Messaging 136
WSDL Publishing Service 145
XML File Log Stream 147
Custom Plug-ins 150

Chapter 3 Artix Security 153
Applying Constraints to Certificates 155
bus:initial_contract 157
bus:security 158
initial_references 160
password_retrieval_mechanism 162
plugins:asp 163
plugins:at_http 166
plugins:atli2_tls 171
plugins:csi 172
plugins:gsp 173
plugins:https 178
plugins:iiop_tls 179
plugins:java_server 183
plugins:login_client 186
plugins:login_service 187
plugins:security 188
plugins:wsdl_publish 191
plugins:wss 192
policies 194
policies:asp 200
4

CONTENTS
policies:bindings 203
policies:csi 205
policies:external_token_issuer 208
policies:https 209
policies:iiop_tls 213
policies:security_server 223
policies:soap:security 225
principal_sponsor 226
principal_sponsor:csi 230
principal_sponsor:http 233
principal_sponsor:https 235
principal_sponsor:wsse 237

Chapter 4 CORBA 241
plugins:codeset 243
plugins:giop 246
plugins:giop_snoop 247
plugins:http and https 249
plugins:iiop 253
plugins:naming 258
plugins:ots 260
plugins:ots_lite 263
plugins:ots_encina 265
plugins:poa 271
poa:FQPN 272
Core Policies 274
CORBA Timeout Policies 276
IONA Timeout Policies 277
policies:giop 278
policies:giop:interop_policy 280
policies:http 282
policies:iiop 284
policies:invocation_retry 289

Index 291
5

CONTENTS
6

Preface
What is Covered in this Book
The Artix Configuration Reference, C++ Runtime provides a
comprehensive reference of Artix configuration variables in a C++ runtime
environment. These variables are stored in an Artix .cfg configuration file.
This book also applies to systems using the Artix Java API for XML-Based
Remote Procedure Call (JAX-RPC).

For details of configuring systems in a pure Java environment, see Artix
Configuration Reference, Java Runtime. This book applies to systems that
use the Artix Java API for XML-Based Web Services (JAX-WS).

Who Should Read this Book
This book is intended for use by system administrators, in conjunction with
Configuring and Deploying Artix Solutions, C++ Runtime. It assumes that
the reader is familiar with Artix administration. Anyone involved in designing
a large scale Artix solution will also find this book useful.

Knowledge of middleware or messaging transports is not required to
understand the general topics discussed in this book. However, if you are
using this book as a guide to deploying runtime systems, you should have a
working knowledge of the middleware transports that you intend to use in
your Artix solutions.

Note: When deploying Artix in a distributed architecture with other
middleware, please see the documentation for that middleware product.
You may require access to an administrator. For example, a Tuxedo
administrator is required to complete a Tuxedo distributed architecture.
7

../../deploy/cpp/index.htm
../../config_ref/java/index.html
../../config_ref/java/index.html

PREFACE
How to Use this Book
This book is organized as follows:

� Chapter 1 describes the configuration variables for the core Artix
runtime (for example, logging and multi-threading).

� Chapter 2 describes the configuration variables for specific Artix
plug-ins (for example, Artix locator, SOAP, or JMS).

� Chapter 3 describes the variables used to configure Artix security
features (for example, passwords and certificates).

� Chapter 4 describes the variables used to configure CORBA plug-ins
(for example, IIOP and OTS).

The Artix Documentation Library
For information on the organization of the Artix library, the document
conventions used, and where to find additional resources, see Using the
Artix Library
 8

../../library_intro/index.htm
../../library_intro/index.htm

CHAPTER 1

Artix Runtime
Artix is based on IONA�s highly configurable Adaptive Runtime
(ART) infrastructure. This provides a high-speed, robust, and
scalable backbone for deploying integration solutions. This
chapter explains the configuration settings for the core Artix
runtime.

In this chapter This chapter includes the following:

ORB Plug-ins page 10

Binding Lists page 18

Event Log page 28

Initial Contracts page 32

Initial References page 36

JVM Options page 41

Message Snoop page 42

Multi-threading page 45

Policies page 50

QName Aliases page 60

Reference Compatibility page 63
9

CHAPTER 1 | Artix Runtime
ORB Plug-ins

Overview The orb_plugins variable specifies the list of plug-ins that Artix processes
load during initialization. A plug-in is a class or code library that can be
loaded into an Artix application at runtime. These plug-ins enable you to
load network transports, payload format mappers, error logging streams,
and other features on the fly.

The default orb_plugins entry includes the following:

All other plug-ins that implement bindings and transports load transparently
when the WSDL file is loaded into an application. These plug-ins do not
need to be explicitly listed in orb_plugins. Artix determines what plug-ins
are required from the content of the WSDL file.

However, plug-ins for other services (for example, for security, locator,
session manager, routing, XSLT transformation, logging, and so on) must all
be included in the orb_plugins entry.

Artix plug-ins Each network transport and payload format that Artix interoperates with
uses its own plug-in. Many of the Artix services features also use plug-ins.
Artix plug-ins include the following:

� �JAX-RPC plug-ins�.

� �Transport plug-ins�.

� �Payload format plug-ins�.

� �Service plug-ins�.

� �Internal ORB plug-ins�

orb_plugins = ["xmlfile_log_stream",
 "iiop_profile",
 "giop",
 "iiop"];
10

ORB Plug-ins
JAX-RPC plug-ins

Java plug-ins written using JAX-RPC are configured differently from C++
plug-ins. For the most part, only custom plug-ins are written using JAX-RPC.
However, the JMS transport plug-in is also written using JAX-RPC and
requires that you configure it appropriately.

Java plug-in loader When using a Java plug-in, you must include an entry for the java plug-in
loader in the orb_plugins list, as shown in Example 1.

The java plug-in automatically loads the JMS transport plug-in.

java_plugins variable In addition to including the java plug-in loader in the orb_plugin list, you
must specify the java_plugins configuration variable, which lists the
names of the Java plug-ins that are to be loaded. java_plugins is a list like
orb_plugins. A plug-in cannot be listed in both variables. Only Java
plug-ins should be listed in java_plugins; and Java plug-ins should not be
listed in orb_plugins.

For example, if you are using a custom Java plug-in called my_java_handler
in your application you would use the configuration similar to the fragment
shown in Example 2 to load the plug-ins.

In addition, you must also specify a plug-in factory class, for example:

For more details, see �Custom Plug-ins� on page 150.

Example 1: Including the Java Plug-in Loader

orb_plugins=[..., "java", ...];

Example 2: Loading a Java Plug-in

orb_plugins=["xml_log_stream", ... "java", ...];
java_plugins=["my_java_handler"];

plugins:my_java_handler:classname="myJavaHandlerFactory"
11

CHAPTER 1 | Artix Runtime
Artix JAX-RPC plug-ins

The following JAX-RPC plug-ins are also supplied by Artix, and can be
included in your java_plugins list:

Transport plug-ins

The Artix transport plug-ins are listed in Table 1.

java_uddi_proxy Dynamically locates existing Web services endpoints
using the UDDI service.

rmi Enables Remote Method Invocation support to allow
communication with remote objects (for example,
Enterprise Java Beans).

Table 1: Artix Transport Plug-ins

Plug-in Transport

at_http Provides support for HTTP.

https Provides support for HTTPS.

iiop Provides support for CORBA IIOP.

iiop_profile Provides support for CORBA IIOP profile.

giop Provides support for CORBA GIOP.

tunnel Provides support for the IIOP transport using
non-CORBA payloads.

tuxedo Provides support for Tuxedo interoperability.

mq Provides support for IBM WebSphere MQ
interoperability, and MQ transactions.

tibrv Provides support for TIBCO Rendezvous
interoperability.

java Provides support for Java Message Service (JMS)
interoperability (and also for Java UDDI and custom
Java plug-ins).
12

ORB Plug-ins
Payload format plug-ins

The Artix payload format plug-ins are listed in Table 2.

Service plug-ins

Artix service feature plug-ins are listed in Table 3.

Table 2: Artix Payload Format Plug-ins

Plug-in Payload Format

soap Decodes and encodes messages using the SOAP format.
See also �SOAP� on page 123.

G2 Decodes and encodes messages packaged using the
G2++ format.

fml Decodes and encodes messages packaged in FML
format.

tagged Decodes and encodes messages packed in variable
record length messages or another self-describing
message format.

tibrv Decodes and encodes TIBCO Rendezvous messages.

fixed Decodes and encodes fixed record length messages.

ws_orb Decodes and encodes CORBA messages.

Table 3: Artix Service Plug-ins

Plug-in Artix Feature

bus_loader In a pure CORBA application, add a
bus_loader at the end of your plug-in list
to start the bus and initialize all
BusPlugins. Not needed if your
application uses IT_Bus::init.
13

CHAPTER 1 | Artix Runtime
bus_response_monitor Enables performance logging. Monitors
response times of Artix client/server
requests. See also �Performance Logging�
on page 110.

locator_client Queries the locator and returns a
reference to a target service. See also the
Artix Locator Guide.

locator_endpoint Enables endpoints to use the Artix locator
service. See also �Locator Endpoint
Manager� on page 106.

ots Enables the CORBA OTS transaction
system. See also �Bus� on page 70.

ots_lite Enables the OTS Lite transaction system,
which supports one-phase commit
transactions. See also �Bus� on page 70.

request_forwarder Enables forwarding of write requests from
slave replicas to master replicas. See also
�Database Environment� on page 78.

routing Enables Artix routing. See �Routing� on
page 113.

service_locator Enables the Artix locator. An Artix server
acting as the locator service must load
this plug-in. See also �Locator Service� on
page 103.

session_manager_service Enables the Artix session manager. An
Artix server acting as the session manager
must load this plug-in. See also �Session
Manager� on page 120.

Table 3: Artix Service Plug-ins (Continued)

Plug-in Artix Feature
14

../../locator_guide/index.htm

ORB Plug-ins
session_endpoint_manager Enables the Artix session manager.
Endpoints wishing to be managed by the
session manager must load this plug-in.
See also �Session Endpoint Manager� on
page 121.

sm_simple_policy Enables the policy mechanism for the
Artix session manager. Endpoints wishing
to be managed by the session manager
must load this plug-in. See also �Session
Manager Simple Policy� on page 122.

service_lifecycle Enables service lifecycle for the Artix
router. This optimizes performance of the
router by cleaning up proxies/routes that
are no longer in use. See also �Service
Lifecycle� on page 117.

uddi_proxy Dynamically locates existing Web services
endpoints using the UDDI service. See
also �java_plugins variable� on page 11.

wsat_protocol Enables the WS-Atomic Transaction
(WS-AT) system. See also �Bus� on
page 70.

ws_chain Enables you to link together a series of
services into a multi-part process. See
also �Web Services Chain Service� on
page 134.

ws_coordination_service Enables the WS-Coordination service,
which coordinates two-phase commit
transactions. See also �Bus� on page 70.

Table 3: Artix Service Plug-ins (Continued)

Plug-in Artix Feature
15

CHAPTER 1 | Artix Runtime
ws_coloc Enables colocation for applications that
share a common binding. For example,
using the Artix transformer with an Artix
server, you can colocate both processes.
Instead of passing through the messaging
stack, messages are passed directly,
which improves performance. See also
�Colocation request-level interceptors� on
page 23.

wsdl_publish Enables Artix endpoints to publish and
download Artix WSDL files. See also
�WSDL Publishing Service� on page 145.

wsrm Enables Web Services Reliable
Messaging. See also �Web Services
Reliable Messaging� on page 136.

wsrm_db Enables Web Services Reliable Messaging
persistence. Automatically loads the wsrm
plug-in. See also �Web Services Reliable
Messaging� on page 136.

xmlfile_log_stream Enables you to view Artix logging output
in a file. See also �XML File Log Stream�
on page 147.

xslt Enables Artix to process XSLT scripts. See
also �Transformer Service� on page 125.

Table 3: Artix Service Plug-ins (Continued)

Plug-in Artix Feature
16

ORB Plug-ins
Internal ORB plug-ins

This applies to CORBA integrations only. It is possible to specify whether the
default ORB shares settings with an internal ORB. In certain circumstances
such as initialization, Orbix creates an internal ORB instance. The
share_variables_with_internal_orb setting is used to prevent an internal
CORBA ORB from loading Artix plug-ins.

For example, if you set an indirect persistence mode policy on an Artix
CORBA server, and also use the Artix locator_endpoint plug-in.
Essentially, in this case, the Artix CORBA endpoint is talking to both Artix
and Orbix locators.

Setting share_variables_with_internal_orb to false prevents the internal
ORB (IT_POAInternalORB) from sharing the default ORB plug-ins. The
default setting is as follows:

The list of plug-ins available for the internal ORB is specified using the
IT_POAInternalORB configuration scope.

share_variables_with_internal_orb = "false";

IT_POAInternalORB
{
 orb_plugins = ["iiop_profile", "giop", "iiop"];
}

17

CHAPTER 1 | Artix Runtime
Binding Lists

Overview When using Artix�s CORBA functionality you need to configure how Artix
binds itself to message interceptors. The Artix binding namespace contains
variables that specify interceptor settings. An interceptor acts on a message
as it flows from sender to receiver.

Computing concepts that fit the interceptor abstraction include transports,
marshaling streams, transaction identifiers, encryption, session managers,
message loggers, containers, and data transformers. Interceptors are based
on the �chain of responsibility� design pattern. Artix creates and manages
chains of interceptors between senders and receivers, and the interceptor
metaphor is a means of creating a virtual connection between a sender and
a receiver.

The binding namespace includes the following variables:

� client_binding_list
� server_binding_list

client_binding_list

Artix provides client request-level interceptors for OTS, GIOP, and POA
colocation (where server and client are collocated in the same process).
Artix also provides message-level interceptors used in client-side bindings
for IIOP, SHMIOP and GIOP.

The binding:client_binding_list specifies a list of potential client-side
bindings. Each item is a string that describes one potential interceptor
binding. The default value is:

Interceptor names are separated by a plus (+) character. Interceptors to the
right are �closer to the wire� than those on the left. The syntax is as follows:

� Request-level interceptors, such as GIOP, must precede message-level
interceptors, such as IIOP.

� GIOP or POA_coloc must be included as the last request-level
interceptor.

binding:client_binding_list = ["OTS+POA_Coloc","POA_Coloc","OTS+GIOP+IIOP","GIOP+IIOP"];
18

Binding Lists
� Message-level interceptors must follow the GIOP interceptor, which
requires at least one message-level interceptor.

� The last message-level interceptor must be a message-level transport
interceptor, such as IIOP or SHMIOP.

When a client-side binding is needed, the potential binding strings in the list
are tried in order, until one successfully establishes a binding. Any binding
string specifying an interceptor that is not loaded, or not initialized through
the orb_plugins variable, is rejected.

For example, if the ots plug-in is not configured, bindings that contain the
OTS request-level interceptor are rejected, leaving ["POA_Coloc",
"GIOP+IIOP", "GIOP+SHMIOP"]. This specifies that POA colocations should
be tried first; if that fails, (the server and client are not collocated), the GIOP
request-level interceptor and the IIOP message-level interceptor should be
used. If the ots plug-in is configured, bindings that contain the OTS request
interceptor are preferred to those without it.

server_binding_list

binding:server_binding_list specifies interceptors included in
request-level binding on the server side. The POA request-level interceptor is
implicitly included in the binding.

The syntax is similar to client_binding_list. However, in contrast to the
client_binding_list, the left-most interceptors in the
server_binding_list are �closer to the wire�, and no message-level
interceptors can be included (for example, IIOP). For example:

An empty string ("") is a valid server-side binding string. This specifies that
no request-level interceptors are needed. A binding string is rejected if any
named interceptor is not loaded and initialized.

The default server_binding_list is ["OTS", ""]. If the ots plug-in is not
configured, the first potential binding is rejected, and the second potential
binding ("") is used, with no explicit interceptors added.

binding:server_binding_list = ["OTS",""];
19

CHAPTER 1 | Artix Runtime
Binding Lists for Custom Interceptors

Overview The binding:artix namespace includes variables that configure Artix
applications to use custom interceptors.

Artix interceptors are listed in the order that they are invoked on a message
when it passes through a messaging chain. For example, if a server request
interceptor list is specified as "interceptor_1+interceptor_2", the
message is passed into interceptor_1 as it leaves the binding. When
interceptor_1 processes the message, it is passed into interceptor_2 for
more processing. interceptor_2 then passes the message along to the
application code.

The interceptor chain is specified as a single string, and each interceptor
name must be separated by a + character (for example,
"interceptor_1+interceptor_2+interceptor_3").

The variables in the binding:artix namespace are as follows:

� client_message_interceptor_list

� client_request_interceptor_list

� server_message_interceptor_list

� server_request_interceptor_list

These settings apply to all services activated in a single Artix bus. See also
�Port level interceptor chains� on page 22.

client_message_interceptor_list

binding:artix:client_message_interceptor_list is a string that
specifies an ordered list of message-level interceptors for a C++ or
JAX-RPC client application. Each interceptor is separated using a +
character, for example:

There is no default value.

binding:artix:client_message_interceptor_list =
 "interceptor_1+interceptor_2";
20

Binding Lists
client_request_interceptor_list

binding:artix:client_request_interceptor_list is a string that
specifies an ordered list of request-level interceptors for a C++ or JAX-RPC
client application. Each interceptor is separated using a + character, for
example:

There is no default value.

server_message_interceptor_list

binding:artix:server_message_interceptor_list is a string that
specifies an ordered list of message-level interceptors for a C++ or
JAX-RPC server application. Each interceptor is separated using a +
character, for example:

There is no default value.

server_request_interceptor_list

binding:artix:server_request_interceptor_list is a string that
specifies an ordered list of request-level interceptors for a C++ or JAX-RPC
server application. Each interceptor is separated using a + character, for
example:

There is no default value.

binding:artix:client_request_interceptor_list =
 "interceptor_1+interceptor_2";

binding:artix:server_message_interceptor_list =
 "interceptor_1+interceptor_2";

binding:artix:server_request_interceptor_list =
 "interceptor_1+interceptor_2";
21

CHAPTER 1 | Artix Runtime
Port level interceptor chains Each of the variables in the binding:artix namespace can also be specified
at the level of a service port. This more fine-grained approach enables you to
configure different interceptor chains for different endpoints in the same
application. For example:

The syntax of a ServiceQname is NamespaceURI:LocalPart. The following
example shows a service defined as FooService with a target namespace of
http://www.myco.com/myservice:

binding:artix:client_request_interceptor_list:ServiceQname:PortName=
"interceptor_1+interceptor_2";

binding:artix:server_request_interceptor_list:ServiceQname:PortName=
"interceptor_1+interceptor_2";

binding:artix:client_message_interceptor_list:ServiceQname:PortName=
"interceptor_1+interceptor_2";

binding:artix:server_message_interceptor_list:ServiceQname:PortName=
"interceptor_1+interceptor_2"";

binding:artix:client_request_interceptor_list:http://www.myco.com/myservice:FooService:FooPort=
"interceptor_1+interceptor_2";
22

Binding Lists
Colocation request-level interceptors

Overview The Artix support for colocation enables an Artix client proxy to talk directly
to a collocated Artix service, without incurring any marshalling or transport
overhead. Collocated means that the client proxy and the service belong to
the same Artix bus. Instead of passing messages through the messaging
stack, messages are passed directly between the two, thereby improving
performance.

colocation request-level
configuration

Because the collocated layer bypasses the binding and transport layer, you
can specify colocation request-level interceptors directly along the
invocation path. For example:

When configuring colocation, you must ensure the following:

� The service must be collocated with the client proxy, otherwise, the
ws_coloc interceptors have no effect, and the invocation is treated as
remote.

� ws_coloc must be specified as the last client request-level interceptor
and the first server request-level interceptor. This enables other
request-level interceptors to be used with colocation, and also enables
the use of Artix contexts. Any interceptors specified after the ws_coloc
interceptor in the client chain, or before the ws_coloc interceptor in the
server chain, will be ignored.

Using this approach, an existing Artix messaging port-based service (for
example, a SOAP/HTTP or CORBA service) can be configured to add
colocation quality-of-service without any change to the WSDL contracts.

binding:artix:client_request_interceptor_list:http://www.myco.com/myservice:FooService:FooPort=
"A+B+C+ws_coloc";

binding:artix:server_request_interceptor_list:http://www.myco.com/myservice:FooService:FooPort=
"ws_coloc+C+B+A";

Note: You do not need to specify the ws_coloc plug-in on your
orb_plugins list. When ws_coloc is specified in the request-level
interceptor chain, the ws_coloc plug-in is loaded automatically.
23

CHAPTER 1 | Artix Runtime
Interceptor Factory Plug-in

Overview An Artix plug-in that implements an interceptor is dynamically loaded when
the interceptor name is specified in the binding list (see �Binding Lists for
Custom Interceptors� on page 20).

You must either include the interceptor plug-in name in your orb_plugins
list, or specify an interceptor factory plug-in.

interceptor_factory:InterceptorFactoryName:plugin

interceptor_factory:InterceptorFactoryName:plugin specifies the name
of the plug-in used by a custom interceptor. The format of this variable is as
follows:

For example,

You do not need to add such configuration for the interceptors that are
implemented internally by the various Artix plug-ins (for example, security,
service_lifecycle, and artix_response_time_interceptor). These are all
hard coded already.

C++applications The following names are used in this syntax:

� The name of the interceptor factory: InterceptorFactoryName

� If the interceptor is implemented as a plug-in, the name of the plug-in:
(PluginName)

� The name of the shared library that hosts the plug-in: SharedLibName

Note: For JAX-RPC applications, you also have the option of specifying a
handler classname (see �Java Handler Class� on page 26).

interceptor_factory:InterceptorFactoryName:plugin="PluginName";

interceptor_factory:TestInterceptor:plugin= "test_interceptor";
24

Binding Lists
You must always specify the mapping between the plug-in name and the
shared library name, using the following configuration syntax:

There are two ways in which a plug-in can be loaded:

� Specify the plug-in name in the ORB plug-ins list, for example:

Using this approach, the plug-in is loaded during ORB initialization.

� Configure a mapping between an interceptor factory name and the
plug-in name as follows:

Using this approach, the plug-in is loaded when the interceptor list is
parsed.

JAX-RPC applications For JAX-RPC applications, the interceptor factory is called a
HandlerFactory. This can be registered with the Artix bus any of the
following ways:

� Write a JAX-RPC plug-in and register a handler factory inside the
plug-in. For details, see Developing Artix Applications with JAX-RPC.

� Register directly with the Artix bus in your server or client mainline
code. If you use this approach, you do not need any additional plug-in
configuration, just specify the interceptor factory names in the list.

The HandlerFactory should be registered before registering the servant
on the server side, and before creating the client proxy base on the
client-side. The public API is:

For more details, see Developing Artix Applications with JAX-RPC.

� Alternatively, you can use configuration to dynamically register a Java
handler without writing a plug-in, or creating a HandlerFactory. For
details, see �Java Handler Class� on page 26.

plugins:PluginName:shlib_name = "SharedLibName";

orb_plugins = [..., "PluginName", ...];

interceptor_factory:InterceptorFactoryName:plugin="PluginName";

bus.registerHandlerFactory(new MyHandlerFactory());
25

../../jaxrpc_pguide/index.html
../../jaxrpc_pguide/index.html

CHAPTER 1 | Artix Runtime
Java Handler Class

Overview Specifying a JAX-RPC handler class in configuration enables dynamic
creation and registration of a HandlerFactory for your handler. On startup,
the runtime searches the configured list of interceptors for names that are
used to identify a classname for a Java handler. The runtime wraps the
specified handlers in a GenericHandlerFactory, and registers these
factories with the Artix bus

Configuring an endpoint to use a Java handler is a two step process. First,
specify an implementation class and associate it with a name. Second, add
the handler to one of the endpoint�s interceptor chains.

handler:handler_name:classname

handler:HandlerName:classname specifies the Java implementation class
for your handler. This information is used to dynamically create and register
a HandlerFactory for your handler. This variable has the following syntax:

The value you supply for HandlerName is the name by which the handler will
be referred to in interceptor chains. The value you supply for
handlerClassname is the fully qualified class name of your handler�s
implementation. For example, if you wrote a handler in a class called
com.acme.myHandler you would add the following variable to your
endpoint�s configuration:

When adding the handler to the endpoint�s interceptor chain you would refer
to the handler using my_handler_app.

handler:HandlerName:classname="handlerClassname";

handler:my_handler_app:classname="com.acme.myHandler";

Note: If you implemented your handler as an Artix plug-in, you must
specify its implementation as described in �JAX-RPC plug-in classes� on
page 151.
26

Binding Lists
handlers and interceptor chains You must configure your application to load the handlers at the appropriate
points in the message chain. This is done using the following configuration
variables in the application�s configuration scope:

� binding:artix:client_message_interceptor_list
� binding:artix:client_request_interceptor_list
� binding:artix:server_message_interceptor_list
� binding:artix:server_request_interceptor_list

The handlers are placed in the list in the order they will be invoked on the
message as it passes through the messaging chain. The following example
shows an application that uses both client and server handlers.

For more details, see �Binding Lists for Custom Interceptors� on page 20.

java_interceptors
{
 handler:first_handler:classname="com.acme.myFirstHandler";
 handler:second_handler:classname="com.acme.mySecondHandler";
 ...
 client
 {
 binding:artix:client_request_interceptor_list =

"first_handler+second_handler";
 binding:artix:client_message_interceptor_list =

"first_handler+second_handler";
 };
 server
 {
 binding:artix:server_request_interceptor_list=

"second_handler+first_handler";
 binding:artix:server_message_interceptor_list =

"second_handler+first_handler";
 };
};
27

CHAPTER 1 | Artix Runtime
Event Log

Overview The event_log namespace controls logging levels in Artix. It includes the
following variables:

� event_log:filters

� event_log:filters:bus:pre_filter

� event_log:log_service_names:active

� event_log:log_service_names:services

For details on HTTP trace logging, see
policies:http:trace_requests:enabled

event_log:filters

The event_log:filters variable can be set to provide a wide range of
logging levels. The default event_log:filters setting displays errors only:

The following setting displays errors and warnings only:

Adding INFO_MED causes all of request/reply messages to be logged (for all
transport buffers):

The following setting displays typical trace statement output (without the
raw transport buffers being printed):

event_log:filters = ["*=FATAL+ERROR"];

event_log:filters = ["*=FATAL+ERROR+WARNING"];

event_log:filters = ["*=FATAL+ERROR+WARNING+INFO_MED"];

event_log:filters = ["*=FATAL+ERROR+WARNING+INFO_HI"];
28

Event Log
The following setting displays all logging:

The default configuration settings enable logging of only serious errors and
warnings. For more exhaustive output, select a different filter list at the
default scope, or include a more expansive event_log:filters setting in
your configuration scope.

Table 4 shows the full syntax used by the event_log:filters variable to
specify Artix logging severity levels.

event_log:filters = ["*=*"];

Table 4: Artix Logging Severity Levels

Severity Level Description

INFO_LO[W] Low verbosity informational messages.

INFO_MED[IUM] Medium verbosity informational messages.

INFO_HI[GH] High verbosity informational messages.

INFO[_ALL] All informational messages.

WARN[ING] Warning messages.

ERR[OR] Error messages.

FATAL[_ERROR] Fatal error messages.

* All messages.
29

CHAPTER 1 | Artix Runtime
event_log:filters:bus:pre_filter

event_log:filters:bus:pre_filter provides filtering of log messages that
are sent to the EventLog before they are output to the LogStream. This
enables you to minimize the time spent generating log messages that will be
ignored. For example:

In this example, only WARNING, ERROR and FATAL priority log messages are
sent to the EventLog. This means that no processing time is wasted
generating strings for INFO log messages. The EventLog then only sends
FATAL and ERROR log messages to the LogStream for the IT_BUS subsystem.

event_log:log_service_names:active

event_log:log_service_names:active specifies whether to enable logging
for specific services. You can use Artix service subsystems to log for Artix
services, such as the locator, and also for services that you have developed.
This can be useful if you are running many services, and need to filter
services that are particularly noisy.

Using service-based logging involves extra configuration and performance
overhead, and is disabled by default. To enable logging for specific services,
set this variable as follows:

For more details, see event_log:log_service_names:services.

event_log:filters:bus:pre_filter = "WARN+ERROR+FATAL";
event_log:filters = ["IT_BUS=FATAL+ERROR", "IT_BUS.BINDING=*"];

Note: event_log:filters:bus:pre_filter defaults to * (all messages).
Setting this variable to WARN+ERROR+FATAL improves performance
significantly.

event_log:log_service_names:active = "true";
30

Event Log
event_log:log_service_names:services

event_log:log_service_names:services specifies the specific service
names that you wish to enable logging for. This variable is specified as
follows:

Each service name must be specified in the following format:

"{NamespaceURI}LocalPart"

For example:

To enable logging for specific services, perform the following steps:

1. Set the following variables:

2. Set your event log filters as appropriate, for example:

For more details, see event_log:log_service_names:active

Further information For more detailed information on logging, see Configuring and Deploying
Artix Solutions.

event_log:log_service_names:services = ["ServiceName1",
"ServiceName2", ...];

"{http://www.my-company.com/bus/tests}SOAPHTTPService"

event_log:log_service_names:active = "true";
event_log:log_service_names:services = ["ServiceName1",

"ServiceName2"];

event_log:filters = ["IT_BUS=FATAL+ERROR",
 "ServiceName1=WARN+ERROR+FATAL", "ServiceName2=ERROR+FATAL",
 "ServiceName2.IT_BUS.BINDING.CORBA=INFO+WARN+ERROR+FATAL"
];
31

../../deploy/cpp/index.htm
../../deploy/cpp/index.htm

CHAPTER 1 | Artix Runtime
Initial Contracts

Overview Initial contracts specify the location of the WSDL contracts for Artix services.
This provides a uniform mechanism for finding Artix service contracts, and
enables user code to be written in a location transparent way.

Because variables in the bus:initial_contract namespace are in the
global scope of artix.cfg, every application can access them.Contracts for
Artix services specify a localhost:0 port, which means that the operating
system assigns a TCP/IP port on startup. To explicitly set a port, copy the
relevant WSDL contract to another location, and edit to include the port. In
the application scope, add a bus:initial_contract:url entry that points to
the edited WSDL file.

The bus:initial_contract:url namespace includes the following
variables:

� container

� locator

� peermanager

� sessionmanager

� sessionendpointmanager

� uddi_inquire

� uddi_publish

� login_service

In addition, the following variable enables you to specify a well-known
directory where contracts are stored:

� initial_contract_dir
32

Initial Contracts
container

bus:initial_contract:url:container specifies the location of the WSDL
contract for the Artix container serivice. For example:

locator

bus:initial_contract:url:locator specifies the location of the WSDL
contract for the Artix locator service. For example:

peermanager

bus:initial_contract:url:peermanager specifies the location of the
WSDL contract for the Artix peer manager. For example:

sessionmanager

bus:initial_contract:url:sessionmanager specifies the location of the
WSDL contract for the Artix session manager. For example:

bus:initial_contract:url:container =
"InstallDir/artix/Version/wsdl/container.wsdl";

bus:initial_contract:url:locator =
"InstallDir/artix/Version/wsdl/locator.wsdl";

bus:initial_contract:url:peermanager =
"InstallDir/artix/Version/wsdl/peer-manager.wsdl";

bus:initial_contract:url:sessionmanager =
"InstallDir/artix/Version/wsdl/session-manager.wsdl";
33

CHAPTER 1 | Artix Runtime
sessionendpointmanager

bus:initial_contract:url:sessionendpointmanager specifies the location
of the WSDL contract for the Artix session endpoint manager. For example:

uddi_inquire

bus:initial_contract:url:uddi_inquire specifies the location of the
WSDL contract for the Artix UDDI inquire service. For example:

uddi_publish

bus:initial_contract:url:uddi_publish specifies the location of the
WSDL contract for the Artix UDDI publish service. For example:

login_service

bus:initial_contract:url:login_service specifies the location of the
WSDL contract for the Artix peer manager. For example:

bus:initial_contract:url:sessionendpointmanager =
"InstallDir/artix/Version/wsdl/session-manager.wsdl";

bus:initial_contract:url:uddi_inquire =
"InstallDir/artix/Version/wsdl/uddi/uddi_v2.wsdl";

bus:initial_contract:url:uddi_publish =
"InstallDir/artix/Version/wsdl/uddi/uddi_v2.wsdl";

bus:initial_contract:url:login_service =
"InstallDir/artix/Version/wsdl/login_service.wsdl";
34

Initial Contracts
initial_contract_dir

bus:initial_contract_dir specifies a well-known directory for accessing
service contracts. This enables you to configure multiple documents without
explicitly setting every document in configuration. If you specify a
well-known directory, you only need to copy the WSDL documents to this
directory before the application uses them. For example:

The value "." means use the directory from where the application was
started. You can specify multiple directories as follows:

Further information For more information on finding WSDL contracts, see Configuring and
Deploying Artix Solutions.

bus:initial_contract_dir=["."];

bus:initial_contract_dir = [".", "../../etc"];
35

../../deploy/cpp/index.htm
../../deploy/cpp/index.htm

CHAPTER 1 | Artix Runtime
Initial References

Overview Initial references provide a uniform mechanism for enabling servers and
clients to communicate with services deployed in the Artix container. This
enables user code to be written in a location transparent way. The
bus:initial_references namespace includes the following variables:

� locator

� peermanager

� sessionmanager

� sessionendpointmanager

� uddi_inquire

� uddi_publish

� login_service

� container

locator

bus:initial_references:url:locator specifies the location of an initial
endpoint reference for the Artix locator service. For example:

For example, the locator.ref initial reference file can be generated using
the following command:

In this example, it_container_admin asks the Artix container service in
ContainerService.url to publish an endpoint reference to a locator service.
The same command can be used when a server or a client obtains an
endpoint reference.

bus:initial_references:url:locator = "./locator.ref";

it_container_admin -container ContainerService.url
-publishreference -service
{http://ws.iona.com/locator}LocatorService -file locator.ref
36

Initial References
peermanager

bus:initial_references:url:peermanager specifies the location of an
initial endpoint reference for the Artix peer manager service. For example:

For example, the peermanager.ref initial reference file can be generated
using the following command:

In this example, it_container_admin asks the Artix container service in
ContainerService.url to publish an endpoint reference to a peer manager
service. The same command can be used when a server or a client obtains
an endpoint reference.

sessionmanager

bus:initial_references:url:sessionmanager specifies the location of an
initial endpoint reference for the Artix session manager service. For example:

For example, the sessionmanager.ref initial reference file can be generated
using the following command:

In this example, it_container_admin asks the Artix container service in
ContainerService.url to publish an endpoint reference to a session
manager service. The same command can be used when a server or a client
obtains an endpoint reference.

bus:initial_references:url:peermanager = "./peermanager.ref";

it_container_admin -container ContainerService.url
-publishreference -service
{http://ws.iona.com/peer_manager}PeerManagerService -file
peermanager.ref

bus:initial_references:url:sessionmanager =
"./sessionmanager.ref";

it_container_admin -container ContainerService.url
-publishreference -service
{http://ws.iona.com/sessionmanager}SessionManagerService
-file sessionmanager.ref
37

CHAPTER 1 | Artix Runtime
sessionendpointmanager

bus:initial_references:url:sessionendpointmanager specifies the
location of an initial endpoint reference for the Artix session endpoint
manager service. For example:

For example, the sessionendpointmanager.ref initial reference file can be
generated using the following command:

In this example, it_container_admin asks the Artix container service in
ContainerService.url to publish an endpoint reference to a session
endpoint manager service. The same command can be used when a server
or a client obtains an endpoint reference.

uddi_inquire

bus:initial_references:url:uddi_inquire specifies the location of an
initial endpoint reference for the Artix UDDI inquire service. For example:

For example, the uddi_inquire.ref initial reference file can be generated
using the following command:

In this example, it_container_admin asks the Artix container service in
ContainerService.url to publish an endpoint reference to a UDDI inquire
service. The same command can be used when a server or a client obtains
an endpoint reference.

bus:initial_references:url:sessionendpointmanager =
"./sessionendpointmanager.ref";

it_container_admin -container ContainerService.url
-publishreference -service
{http://ws.iona.com/sessionmanager}SessionEndpointManagerService
-file sessionendpointmanager.ref

bus:initial_references:url:uddi_inquire = "./uddi_inquire.ref";

it_container_admin -container ContainerService.url
-publishreference -service
{http://www.iona.com/uddi_over_artix}UDDI_InquireService
-file uddi_inquire.ref
38

Initial References
uddi_publish

bus:initial_references:url:uddi_publish specifies the location of an
initial endpoint reference for the Artix UDDI publish service. For example:

For example, the uddi_publish.ref initial reference file can be generated
using the following command:

In this example, it_container_admin asks the Artix container service in
ContainerService.url to publish an endpoint reference to a UDDI publish
service. The same command can be used when a server or a client obtains
an endpoint reference.

login_service

bus:initial_references:url:login_service specifies the location of an
initial endpoint reference for the Artix login service. For example:

For example, the login_service.ref initial reference file can be generated
using the following command:

In this example, it_container_admin asks the Artix container service in
ContainerService.url to publish an endpoint reference to a login service.
The same command can be used when a server or a client obtains an
endpoint reference.

bus:initial_references:url:uddi_publish = "./uddi_publish.ref";

it_container_admin -container ContainerService.url
-publishreference -service
{http://www.iona.com/uddi_over_artix}UDDI_PublishService
-file uddi_publish.ref

bus:initial_references:url:login_service =
"./login_service.ref";

it_container_admin -container ContainerService.url
-publishreference -service
{http://ws.iona.com/login_service}LoginService -file
locator.ref
39

CHAPTER 1 | Artix Runtime
container

bus:initial_references:url:container specifies the location of an initial
endpoint reference for the Artix container service. For example:

For example, the container.ref initial reference file can be generated using
the following command:

In this example, it_container_admin asks the Artix container service in
ContainerService.url to publish an endpoint reference to a container
service. The same command can be used when a server or a client obtains
an endpoint reference.

bus:initial_references:url:container = "./container.ref";

it_container_admin -container ContainerService.url
-publishreference -service
{http://ws.iona.com/container}ContainerService -file
container.ref
40

JVM Options
JVM Options

Overview You can use the jvm_options configuration variable to pass parameters into
a Java Virtual Machine (JVM) that is started in an Artix process. For
example, you can use this variable to pass in parameters for debugging an
Artix service written using JAX-RPC that is deployed in an Artix container.

jvm_options

jvm_options specifies parameters that are passed to a JVM that is started in
an Artix process. This configuration variable takes the following syntax:

For example:

This example passes in parameters to debug an Artix Java service that is
deployed in an Artix container. These JVM options enable Java Platform
Debugging Architecture (JPDA) on port 8787.

Further information For details on using JPDA, see
http://java.sun.com/j2se/1.4.2/docs/guide/jpda/.

jvm_options=["-Dname=Value,-Dname=Value, ...", "..."];

jvm_options = ["-Xdebug",
"-Xrunjdwp:transport=dt_socket,address=8787,server=y,suspend=y",
"-verbose:class"];
41

http://java.sun.com/j2se/1.4.2/docs/guide/jpda/

CHAPTER 1 | Artix Runtime
Message Snoop

Overview Artix message snoop is a message interceptor that sends input/output
messages to the Artix log to enable viewing of the message content. This is a
useful debugging tool when developing and testing an Artix system. The
artix:interceptors:message_snoop namespace includes the following
configuration variables:

� artix:interceptors:message_snoop:enabled

� artix:interceptors:message_snoop:log_level

� artix:interceptors:message_snoop:log_subsystem

artix:interceptors:message_snoop:enabled

artix:interceptors:message_snoop:enabled specifies whether message
snoop is enabled. Message snoop is enabled by default. It is automatically
added as the last interceptor before the binding to detect any changes that
other interceptors might make to the message. By default, message_snoop
logs at INFO_MED in the MESSAGE_SNOOP subsystem.

Message snoop is invoked on every message call, twice in the client and
twice in the server (assuming Artix is on both sides). This means that it can
impact on performance. More importantly, message snoop involves risks to
confidentiality. You can disable message snoop using the following setting:

artix:interceptors:message_snoop:enabled = "false";

WARNING: For security reasons, it is strongly recommended that
message snoop is disabled in production deployments.
42

Message Snoop
artix:interceptors:message_snoop:log_level

artix:interceptors:message_snoop:log_level specifies a message snoop
log level globally or for a service port. The following example sets the level
globally:

The following example sets the level for a service port:

artix:interceptors:message_snoop:log_subsystem

artix:interceptors:message_snoop:log_subsystem specifies a specific
subsystem globally or for a service port. The following example sets the
subsystem globally:

The following example sets the subsystem for a service port:

artix:interceptors:message_snoop:log_level = "WARNING";
event_log:filters = ["*=WARNING", "IT_BUS=INFO_HI+WARN+ERROR",

"MESSAGE_SNOOP=WARNING"];

artix:interceptors:message_snoop:http://www.acme.com/tests:mySer
vice:myPort:log_level = "INFO_MED";

event_log:filters = ["*=INFO_MED", "IT_BUS=",
"MESSAGE_SNOOP=INFO_MED"];

artix:interceptors:message_snoop:log_subsystem = "MY_SUBSYSTEM";
event_log:filters = ["*=INFO_MED", "IT_BUS=",

"MY_SUBSYSTEM=INFO_MED"];

artix:interceptors:message_snoop:http://www.acme.com/tests:mySer
vice:myPort:log_subsystem = "MESSAGE_SNOOP";

event_log:filters = ["*=INFO_MED", "IT_BUS=",
"MESSAGE_SNOOP=INFO_MED"];
43

CHAPTER 1 | Artix Runtime
If message snoop is disabled globally, but configured for a service/port, it is
enabled for that service/port with the specified configuration only. For
example:

Setting message snoop in conjunction with log filters is useful when you
wish to trace only messages that are relevant to a particular service, and you
do not wish to see logging for others (for example, the container, locator,
and so on).

artix:interceptors:message_snoop:enabled = "false";

artix:interceptors:message_snoop:http://www.acme.com/tests:mySer
vice:myPort:log_level = "WARNING";

artix:interceptors:message_snoop:http://www.acme.com/tests:mySer
vice:myPort:log_subsystem = "MY_SUBSYSTEM";

event_log:filters = ["*=WARNING", "IT_BUS=INFO_HI+WARN+ERROR",
"MY_SUBSYSTEM=WARNING"];
44

Multi-threading
Multi-threading

Overview Variables in the thread_pool namespace control multi-threading. Thread
pools can be configured globally for Artix instances in a configuration scope,
or configured on a per-service basis.

The thread_pool namespace includes following variables:

� thread_pool:initial_threads

� thread_pool:high_water_mark

� thread_pool:low_water_mark

� thread_pool:max_queue_size

� thread_pool:stack_size

The following variable applies to automatic work queues:

� service:owns_workqueue

The following variables configure threading for custom transports and
transports such as HTTP, JMS, Tibco and MQ:

� policy:messaging_transport:client_concurrency

� policy:messaging_transport:concurrency

� policy:messaging_transport:max_threads

� policy:messaging_transport:min_threads

thread_pool:initial_threads

thread_pool:initial_threads specifies the number of initial threads in
each service�s thread pool. Defaults to 2.

This variable can be set at different levels in your configuration. The
following is a global setting:

The following setting is at the level of a fully-qualified service name, which
overrides the global setting:

thread_pool:initial_threads = "3";

service:http://my.tns1/:SessionManager:thread_pool:initial_threads = �3�;
45

CHAPTER 1 | Artix Runtime
thread_pool:high_water_mark

thread_pool:high_water_mark specifies the maximum number of threads
allowed in each service�s thread pool. Defaults to 25.

This variable can be set at different levels in your configuration. The
following is a global setting:

The following setting is at the level of a fully-qualified service name, which
overrides the global setting:

thread_pool:low_water_mark

thread_pool:low_water_mark sets the minimum number of threads in each
service�s thread pool. Artix will terminate unused threads until only this
number exists. Defaults to 5.

This variable can be set at different levels in your configuration. The
following is a global setting:

The following setting is at the level of a fully-qualified service name, which
overrides the global setting:

thread_pool:high_water_mark = "10";

service:http://my.tns1/:SessionManager:thread_pool:high_water_mark = "10";

thread_pool:low_water_mark = "5";

service:http://my.tns1/:SessionManager:thread_pool:low_water_mark = "5";
46

Multi-threading
thread_pool:max_queue_size

thread_pool:max_queue_size specifies the maximum number of request
items that can be queued on the internal work queue. If this limit is
exceeded, Artix considers the server to be overloaded, and gracefully closes
down connections to reduce the load. Artix rejects subsequent requests until
there is free space in the work queue.

Defaults to -1, which means that there is no upper limit on the size of the
request queue. In this case, the maximum work queue size is limited by
how much memory is available to the process. The following is a global
setting:

The following setting is at the level of a fully-qualified service name, which
overrides the global setting:

thread_pool:stack_size

thread_pool:stack_size specifies the stack size for each thread. The stack
size is specified in bytes. The default is the following global setting:

The following setting is at the level of a fully-qualified service name, which
overrides the global setting:

thread_pool:max_queue_size = "10";

service:http://my.tns1/:SessionManager:thread_pool:max_queue_size = "10";

thread_pool:stack_size = "1048576";

service:http://my.tns1/:SessionManager:thread_pool:stack_size = "1048576";
47

CHAPTER 1 | Artix Runtime
service:owns_workqueue

service:owns_workqueue specifies whether a services can own an
automatic work queue. If this variable is set to true, the service can own a
work queue, if needed. For example, if your application calls
Service::get_workqueue(), this creates and returns a work queue specific
to that service.

If this variable is set to is false, the service never owns a work queue, and
uses the bus work queue instead. The default value is true.

This variable can be set at different levels in your configuration. The
following is a global setting, which means that all services in a bus have
their own work queue:

The following setting is at the level of a fully-qualified service name, which
overrides the global setting, and means that only the specified service has
its own work queue:

policy:messaging_transport:client_concurrency

policy:messaging_transport:client_concurrency specifies the number of
ClientTransport instances created per WSDLPort instance. This controls
multi-threading on the client side. The default value is 1.

This variable applies to Artix transports that use a combination of the
MESSAGING_PORT_DRIVEN and MULTI_THREADED policies (see Developing
Advanced Artix Plug-ins in C++).

In general, requests from transports such as HTTP must block until the
previous reply has been received. If there are multiple invocations blocking
on a proxy, these must be queued and effectively serialized. This variable
enables the transport mechanism to use a pool of underlying connections,
and thereby scale it up.

For example, the Artix HTTP, JMS, and Tibco transports implement this
threading model. You can specify this variable to the configuration scope
where you start your client with these transports.

service:owns_workqueue = "true";

service:http://my.tns1/:SessionManager:owns_workqueue = "true";
48

../../plugin_guide/index.htm
../../plugin_guide/index.htm

Multi-threading
policy:messaging_transport:concurrency

policy:messaging_transport:concurrency specifies the number of threads
in the messaging port's thread pool, when the multi-threaded policy is in
effect. The default is 1.

This variable configures the thread pool for a transport that uses a
combination of the MESSAGING_PORT_DRIVEN and MULTI_THREADED policies
(see Developing Advanced Artix Plug-ins in C++).

For example, the Artix JMS and Tibco transports implement this threading
model. You can specify this variable to the scope where you start your server
with the JMS or Tibco transport.

policy:messaging_transport:max_threads

policy:messaging_transport:max_threads specifies the maximum number
of threads in the messaging port's thread pool, when the multi-instance
policy is in effect. The default is 1.

This variable configures the thread pool for a transport that uses a
combination of the MESSAGING_PORT_DRIVEN and MULTI_INSTANCE policies
(see Developing Advanced Artix Plug-ins in C++).

For example, the Artix MQ transport implements this threading model. You
can specify this variable to the scope where you start your server with the
MQ transport.

policy:messaging_transport:min_threads

policy:messaging_transport:min_threads specifies the mininum number
of threads in the messaging port's thread pool, when the multi-instance
policy is in effect. The default is 1.

This variable configures the thread pool for a transport that uses a
combination of the MESSAGING_PORT_DRIVEN and MULTI_INSTANCE policies
(see Developing Advanced Artix Plug-ins in C++).

For example, the Artix MQ transport implements this threading model. You
can specify this variable to the scope where you start your server with the
MQ transport.
49

../../plugin_guide/index.htm
../plugin_guide/index.htm
../../plugin_guide/index.htm

CHAPTER 1 | Artix Runtime
Policies

Overview The policies namespace contain variables that control a range of runtime
settings. For example, publishing host names, HTTP buffers and trace
logging.

Transport policies

These include the following:

� policies:at_http:client:proxy_server

� policies:at_http:server_address_mode_policy:publish_hostname

� policies:at_http:server_address_mode_policy:local_hostname

� policies:http:buffer:prealloc_shared

� policies:http:buffer:prealloc_size

� policies:http:client_address_mode_policy:local_hostname

� policies:http:server_address_mode_policy:local_hostname

� policies:http:server_address_mode_policy:port_range

� policies:http:trace_requests:enabled

� policies:iiop:client_address_mode_policy:local_hostname

� policies:iiop:server_address_mode_policy:local_hostname

� policies:iiop:server_address_mode_policy:port_range

� policies:iiop:server_address_mode_policy:publish_hostname

� policies:soap:server_address_mode_policy:local_hostname

� policies:soap:server_address_mode_policy:publish_hostname

Bus policies

These include the following:

� policies:bus:resolved_endpoint:max_retries
50

Policies
policies:at_http:client:proxy_server

policies:at_http:client:proxy_server specifies the URL of the HTTP
proxy server (if one exists) along a request/response chain.

For example:

You can specify the HTTP proxy server in different ways. The order of
priority is as follows:

1. Context API.

2. WSDL file.

3. Command line configuration, for example:

4. This configuration variable.

policies:at_http:server_address_mode_policy:publish_hostname

policies:at_http:server_address_mode_policy:publish_hostname
specifies how the server�s address is published in dynamically generated
Artix service contracts when using the HTTP transport. The possible values
are as follows:

Note: Artix does not support the existence of more than one proxy server
along a request/response chain.

policies:at_http:client:proxy_server =
"http://localhost:0/SOAPHTTPProxy";

client -BUSCONFIG_policies:at_http:client:proxy_server="http://localhost:0/SOAPHTTPProxy"

canonical Publishes the fully qualified hostname of the machine in the
http:address element of the dynamic WSDL (for example,
http://myhost.mydomain.com).

unqualified Publishes the unqualified local hostname of the machine in
the http:address element of the dynamic WSDL. This does
not include the domain name with the hostname (for
example, http://myhost).
51

CHAPTER 1 | Artix Runtime
For example:

The following values are deprecated:

policies:at_http:server_address_mode_policy:local_hostname

policies:at_http:server_address_mode_policy:local_hostname
specifies the server hostname that is published in dynamically generated
Artix contracts. For example:

This variable accepts any valid string value. The specified hostname is
published in the http:address element, which describes the server�s
location. If no hostname is specified,
policies:at_http:server_address_mode_policy:publish_hostname is
used instead.

ipaddress Publishes the IP address associated with the machine in the
http:address element of the dynamic WSDL (for example,
http://10.1.2.3). This is the default behavior.

policies:at_http:server_address_mode_policy:publish_hostname="canonical";

false Publishes the IP address of the running server in the
http:address element.

true Publishes the hostname of the machine hosting the running
server in the http:address element of the WSDL contract.

Note: Setting the service URL programatically overrides this configuration
variable. For more details, see Developing Artix Applications with C++
and Developing Artix Applications with JAX-RPC.

policies:at_http:server_address_mode_policy:local_hostname="207.45.52.34";

Note: See also
policies:http:server_address_mode_policy:local_hostname, which
specifies the host name that the server listens on.
52

../../jaxrpc_pguide/index.html

Policies
policies:http:buffer:prealloc_shared

policies:http:buffer:prealloc_shared specifies whether the HTTP
pre-allocation buffer is shared among threads. Defaults to false. This
means that each thread pre-allocates its own buffer on the first invocation
for that thread.

If this variable is set to true, the buffer is shared among threads:

This means that the same buffer pre-allocation gets shared among all
threads. Therefore, your application must ensure that multiple invocations
are not active at the same time.

See also policies:http:buffer:prealloc_size.

policies:http:buffer:prealloc_size

policies:http:buffer:prealloc_size specifies the pre-allocated size of
the HTTP buffer in bytes. The default value is 0, which means there is no
pre-allocation.

When this variable is set, Artix pre-allocates chunks of the specified buffer
size to avoid repeated allocations and deallocations. Each thread
(dispatcher or reply consumer) performs this pre-allocation on the first
message. Then repeated invocations on the same thread reuse this buffer.
For example, the following setting specifies a 2 MB buffer:

User applications should work out their worst case load in advance, and set
this variable to an appropriate value. This allocation can be reused by each
subsequent request/reply on the dispatcher/consumer thread. When the
Artix bus is shut down, the buffer allocation is freed.

policies:http:buffer:prealloc_shared = "true";

policies:http:buffer:prealloc_size = "2097152";
53

CHAPTER 1 | Artix Runtime
policies:http:client_address_mode_policy:local_hostname

policies:http:client_address_mode_policy:local_hostname specifies
the outgoing client hostname. This enables you to explicitly specify the
hostname that the client binds on, when initiating a TCP connection.

This provides support for multi-homed client host machines with multiple
hostnames or IP addresses (for example, those using multiple DNS aliases
or multiple network interface cards).

For example, if you have a client machine with two network addresses
(207.45.52.34 and 207.45.52.35), you can explicitly set this variable to
either address:

This variable accepts any valid string value. It is unspecified by default, and
the client uses the 0.0.0.0 wildcard address. In this case, the network
interface card used is determined by the operating system.

policies:http:server_address_mode_policy:local_hostname

policies:http:server_address_mode_policy:local_hostname enables
you to explicitly specify the host name that the server listens on when using
the HTTP transport. This is unspecified by default.

For example, if you have a multi-homed server host machine with two
network addresses (207.45.52.34 and 207.45.52.35), you can explicitly set
this variable to either address:

policies:http:client_address_mode_policy:local_hostname =
"207.45.52.34";

policies:http:server_address_mode_policy:local_hostname =
"207.45.52.34";

Note: See also
policies:at_http:server_address_mode_policy:local_hostname, which
specifies the hostname published in dynamically generated Artix contracts.
54

Policies
policies:http:server_address_mode_policy:port_range

policies:http:server_address_mode_policy:port_range specifies a
range of HTTP ports in the following format: FromPort:ToPort

For example:

policies:http:server_address_mode_policy:port_range="4003:4008";

Note: The specified port_range has no effect when a fixed TCP port is
specified for the SOAP address in the WSDL contract. The WSDL setting
takes precedence over this .cfg file setting.
55

CHAPTER 1 | Artix Runtime
policies:http:trace_requests:enabled

policies:http:trace_requests:enabled specifies whether to enable
HTTP-specific trace logging. The default is false. To enable HTTP tracing,
set this variable as follows:

This setting outputs INFO level messages that show full HTTP buffers
(headers and body) as they go to and from the wire.

You should also set your log filter as follows to pick up the HTTP additional
messages, and then resend the logs:

For example, you could enable HTTP trace logging to verify that basic
authentication headers are written to the wire correctly.

Similarly, to enable HTTPS-specific trace logging, use the following setting:

policies:iiop:client_address_mode_policy:local_hostname

policies:iiop:client_address_mode_policy:local_hostname enables
you to explicitly specify the host name that the client binds on. This is
unspecified by default.

For example, if you have a machine with two network addresses
(207.45.52.34 and 207.45.52.35), you can explicitly set this variable to
either address:

policies:http:trace_requests:enabled="true";

event_log:filters = ["IT_HTTP=*"];

policies:https:trace_requests:enabled="true";

policies:iiop:client_address_mode_policy:local_hostname =
"207.45.52.34";
56

Policies
policies:iiop:server_address_mode_policy:local_hostname

policies:iiop:server_address_mode_policy:local_hostname enables
you to explicitly specify the host name that the server listens on and
publishes in its IORs. This is unspecified by default.

For example, if you have a machine with two network addresses
(207.45.52.34 and 207.45.52.35), you can explicitly set this variable to
either address:

policies:iiop:server_address_mode_policy:port_range

policies:iiop:server_address_mode_policy:port_range specifies the
range of ports that a server uses when there is no well-known addressing
policy specified for the port. Specified values take the format of
FromPort:ToPort, for example:

policies:iiop:server_address_mode_policy:publish_hostname

policies:iiop:server_address_mode-policy:publish_hostname specifes
whether IIOP exports hostnames or IP addresses in published profiles.
Defaults to false (exports IP addresses, and does not export hostnames). To
use hostnames in object references, set this variable to true:

policies:iiop:server_address_mode_policy:local_hostname =
"207.45.52.34";

policies:iiop:server_address_mode_policy:port_range="4003:4008"

policies:iiop:server_address_mode_policy:publish_hostname=true
57

CHAPTER 1 | Artix Runtime
policies:soap:server_address_mode_policy:local_hostname

policies:soap:server_address_mode_policy:local_hostname specifies
the server hostname that is published in dynamically generated Artix
contracts when using SOAP as a transport.For example:

This variable accepts any valid string value. The specified hostname is
published in the soap:address element, which describes the server�s
location. If no hostname is specified,
policies:soap:server_address_mode_policy:publish_hostname is used
instead.

policies:soap:server_address_mode_policy:publish_hostname

policies:soap:server_address_mode_policy:publish_hostname specifies
how the server�s address is published in dynamically generated Artix
contracts when using SOAP as a transport. The possible values are as
follows:

policies:soap:server_address_mode_policy:local_hostname="207.45.52.34";

canonical Publishes the fully qualified hostname of the machine in the
soap:address element of the dynamic WSDL (for example,
http://myhost.mydomain.com).

unqualified Publishes the unqualified local hostname of the machine in
the soap:address element of the dynamic WSDL. This does
not include the domain name with the hostname (for
example, http://myhost).

ipaddress Publishes the IP address associated with the machine in the
soap:address element of the dynamic WSDL (for example,
http://10.1.2.3).
58

Policies
For example:

The following values are deprecated:

policies:bus:resolved_endpoint:max_retries

policies:bus:resolved_endpoint:max_retries applies to service proxies
whose address details are obtained using resolve_initial_references().
This variable specifies the number of transparent rebinds for transient
connection errors. Values can be in the range of zero to infinity. The default
value is 0.

Resolved proxies are initialized using the ClientProxyBase(QName
ServiceName) constructor.This tells the Artix bus the name of the initialized
service, but does not supply its WSDL or address. The bus obtains the
address by calling resolve_initial_references().

Resolved proxies are fault tolerant and can rebind if errors occur. By default,
they do not rebind, and throw an exception if the connection is lost.
However, if you set policies:bus:resolved_endpoint:max_retries to a
value greater than zero, the proxy tries to rebind using
resolve_initial_references(). For example, if you use the
locator_client plug-in to resolve initial references, the service proxy can
perform dynamic failover.

policies:soap:server_address_mode_policy:publish_hostname="ipaddress";

false Publishes the IP address of the running server in the
soap:address element. This is the default behavior.

true Publishes the hostname of the machine hosting the running
server in the soap:address element of the WSDL contract.

Note: Setting the service URL programatically overrides this configuration
variable. For more details, see Developing Artix Applications with C++
and Developing Artix Applications with JAX-RPC.
59

../../jaxrpc_pguide/index.html

CHAPTER 1 | Artix Runtime
QName Aliases

Overview QName aliases are shorthand names for services in Artix .cfg configuration
files. QNames are specified in the following format:

{NamespaceURI}LocalPart

For example: {http://ws.iona.com/locator}LocatorService. In this case,
the bus:initial_references:url:locator variable is used as a shorthand
instead of a more verbose format, such as
bus:initial_references:url:LocatorService:http://ws.iona.com/loca

tor.

The bus:qname_alias namespace includes the following variables:

� container

� locator

� peermanager

� sessionmanager

� sessionendpointmanager

� uddi_inquire

� uddi_publish

� login_service

container

bus:qname_alias:container specifies the QName alias for the Artix
container service. For example:

bus:qname_alias:container =
"{http://ws.iona.com/container}ContainerService";
60

QName Aliases
locator

bus:qname_alias:locator specifies the QName alias for the Artix locator
service. For example:

peermanager

bus:qname_alias:peermanager specifies the QName alias for the Artix peer
manager service. For example:

sessionmanager

bus:qname_alias:sessionmanager specifies the QName alias for the Artix
session manager service. For example:

sessionendpointmanager

bus:qname_alias:sessionendpointmanager specifies the QName alias for
the Artix session endpoint manager service. For example:

bus:qname_alias:locator =
"{http://ws.iona.com/locator}LocatorService";

bus:qname_alias:peermanager =
"{http://ws.iona.com/peer_manager}PeerManagerService";

bus:qname_alias:sessionmanager =
"{http://ws.iona.com/sessionmanager}SessionManagerService";

bus:qname_alias:sessionendpointmanager =
"{http://ws.iona.com/sessionmanager}SessionEndpointManagerService";
61

CHAPTER 1 | Artix Runtime
uddi_inquire

bus:qname_alias:uddi_inquire specifies the QName alias for the Artix
UDDI inquire service. For example:

uddi_publish

bus:qname_alias:uddi_publish specifies the QName alias for the Artix
UDDI publish service. For example:

login_service

bus:qname_alias:login_service specifies the QName alias for the Artix
login service. For example:

bus:qname_alias:uddi_inquire =
"{http://www.iona.com/uddi_over_artix}UDDI_InquireService";

bus:qname_alias:uddi_publish =
"{http://www.iona.com/uddi_over_artix}UDDI_PublishService";

bus:qname_alias:login_service =
"{http://ws.iona.com/login_service}LoginService";
62

Reference Compatibility
Reference Compatibility

Overview The bus namespace includes configuration variables that specify backward
compatibility with proprietary Artix reference and endpoint reference
formats. It includes the following:

� bus:non_compliant_epr_format

� bus:reference_2.1_compat

bus:non_compliant_epr_format

bus:non_compliant_epr_format specifies backward compatibility with the
Artix 4.0 proprietary endpoint reference format. The endpoint references
published by Artix 4.1 or higher are compliant with the W3C
WS-Addressing specification.

The default value of this variable in artix.cfg is false, which means to use
WS-A compliant endpoint references. To use the proprietary Artix 4.0
endpoint reference format, set this variable as follows:

Artix 4.0 endpoint reference format

Artix 4.0 does not support the wsaw:ServiceName element and
EndpointName attribute specified by the WS-Addressing WSDL binding. This
defines a WSDLBindingSchema for embedding WSDL information in the
endpoint reference (EPR) metadata.

The proprietary format of an Artix 4.0 EPR can cause interoperability issues
because it serializes the WSDL service as a wsdl:service element in EPR
metadata. Other vendors cannot deserialize the wsdl:service element
when processing EPR metadata. Artix 4.0 also does not support
deserializing a ServiceName element, if present, in the inbound EPR.

bus:non_compliant_epr_format="true";
63

CHAPTER 1 | Artix Runtime
Artix 4.1 or higher endpoint reference format

Artix 4.1 or higher supports the wsaw:ServiceName element and
EndpointName attribute. The on-the-wire format of an Artix 4.1 or higher
EPR containing metadata is different from an Artix 4.0 EPR. Artix 4.1 or
higher serializes WSDL metadata in the EPR metadata as a
wsaw:ServiceName element, and deserializes the wsaw:ServiceName
element, and its EndpointName attribute, if present in the inbound EPR.

Artix 4.1 or higher does not publish the optional EndpointName attribute if
the WSDL service has only one port, but does if the service has multiple
endpoints. The EPR format introduced in Artix 4.1 is slightly different from
the Artix 4.0 format, but complies with W3C specifications and facilitates
interoperability between vendors.

Migrating from Artix 4.0

The following applies when migrating from Artix 4.0:

Zero impact scenarios There is no impact if deployed Artix 4.0 applications
still use deprecated Artix references, and do not use WS-Addressing EPRs.
Perform one-step migration to Artix 4.1 or higher, both on the client and
server sides.

Mixed deployments The format of the WS-Addressing EPR that Artix 4.0
clients receive from Artix services (for example, the locator), depends on the
value of the bus:non_compliant_epr_format variable set on the Artix
service side. Some Artix 4.0 applications must be reconfigured if they use
WS-A EPRs and decide to migrate to Artix 4.1 or higher in phases. For
example, upgrade to Artix 4.1 or higher on server side, and Artix 4.0 on
client side.

Possible failing scenarios In some cases of mixed deployment, Artix 4.0
client applications can fail while deserializing the EPR coming on the wire.
For example, clients of Artix 4.1 or higher transient servants and default
servants. Normal servants and multi-port services will still work.

Solution to failing cases If Artix 4.0 clients get an IT_Bus exception while
creating a proxy using the EPR, the bus:non_compliant_epr_format
configuration value on the Artix 4.1 or higher server side must be set to true
to get the Artix 4.0 (non-compliant) format. There is no need to change any
source code. The trace logs on the server side contain an entry for the
bus:non_compliant_epr_format configuration variable.
64

Reference Compatibility
bus:reference_2.1_compat

bus:reference_2.1_compat specifies backward compatability with pre-Artix
3.0.1 versions of an Artix reference. For example:

If this variable is set to true, the Artix reference is generated in the pre-Artix
3.0.1 format. If this is not set or set to false, Artix references are generated
in the Artix 3.0.1 format.

Artix 3.0.1 reference format

From Artix 3.0.1, the proprietary references produced by Artix no longer use
a hard coded reference_properties element name. Instead, Artix
references use extension element names that are described in the port
definition.

For example, when using SOAP, an Artix 3.0.1 stringified reference has the
following format:

bus:reference_2.1_compat = "true";

<?xml version='1.0' encoding='utf-8'?>
<m1:reference service="m2:AccountService"
 wsdlLocation="file:./bank.wsdl"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:m1="http://www.iona.com/bus"
 xmlns:m2="http://www.iona.com/bus/tests"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <port name="AccountPort" binding="m2:AccountBinding">
 <m3:address xsi:type="m3:tAddress"

location="http://localhost:999/AccountService/AccountPort/"
 xmlns:m3="http://schemas.xmlsoap.org/wsdl/soap/">
 </m3:address>
 </port>
</m1:reference>
65

CHAPTER 1 | Artix Runtime
Pre-Artix 3.0.1 reference format

In earlier versions, stringified references had the following format:

<?xml version='1.0' encoding='utf-8'?>
<m1:reference service="m2:AccountService"
 wsdlLocation="file:./bank.wsdl"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:m1="http://www.iona.com/bus"
 xmlns:m2="http://www.iona.com/bus/tests"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <port name="AccountPort" binding="m2:AccountBinding">
 <reference_properties xsi:type="m3:tAddress"
 location="http://localhost:999/AccountService/AccountPort/"
 xmlns:m3="http://schemas.xmlsoap.org/wsdl/soap/">
 </reference_properties>
 </port>
</m1:reference>

Note: This change is wire incompatible with previous versions of Artix.
66

CHAPTER 2

Artix Plug-ins
Artix is built on IONA�s Adaptive Runtime architecture (ART),
which enables users to configure services as plug-ins to the
core product. This chapter explains the configuration settings
for Artix-specific plug-ins.

Overview Each Artix transport, payload format, and service has properties that are
configurable as plug-ins to the Artix runtime. The variables used to configure
plug-in behavior are specified in the configuration scopes of each Artix
runtime instance, and follow the same order of precedence. A plug-in setting
specified in the global configuration scope is overridden by a value set in a
narrower scope.

For example, if you set plugins:routing:use_pass_through to true in the
global scope, and set it to false in the my_app scope, all Artix runtimes,
except for those running in the my_app scope, use true for this value. Any
Artix instance using the my_app scope uses false for this value.

In this chapter This chapter includes the following:

AmberPoint page 69

Bus page 70

CA WSDM Observer page 72

Client-Side High Availability page 75

Container page 77
67

CHAPTER 2 | Artix Plug-ins
Database Environment page 78

FTP page 87

JMS page 91

JMX page 95

Local Log Stream page 98

Log4J Log Stream page 102

Locator Service page 103

Locator Endpoint Manager page 106

Peer Manager page 108

Performance Logging page 110

Remote Method Invocation page 112

Routing page 113

Service Lifecycle page 117

Session Manager page 120

Session Endpoint Manager page 121

Session Manager Simple Policy page 122

SOAP page 123

Transformer Service page 125

Tuxedo page 129

Web Services Addressing page 130

Web Services Chain Service page 134

Web Services Reliable Messaging page 136

WSDL Publishing Service page 145

XML File Log Stream page 147

Custom Plug-ins page 150
68

AmberPoint
AmberPoint

Overview The plugins:ap_nano_agent namespace configures integration with the
AmberPoint SOA management system. It includes the following variables:

� plugins:ap_nano_agent:hostname_address:local_hostname

� plugins:ap_nano_agent:hostname_address:publish_hostname

plugins:ap_nano_agent:hostname_address:local_hostname

plugins:ap_nano_agent:hostname_address:local_hostname is an arbitrary
string used as the client hostname instead of trying to resolve it using the
underlying IP runtime. This is undefined by default.

plugins:ap_nano_agent:hostname_address:publish_hostname

plugins:ap_nano_agent:hostname_address:publish_hostname specifies
the form in which the Artix AmberPoint Agent resolves the host address that
an Artix service consumer (Artix proxy) runs on. This variable takes the
following values:

unqualified The host name in short form, without the domain
name (hostname).

ipaddress The host name in the form of an IP address (for
example, 123.4.56.789). This is the default.

canonical The host name takes a fully qualified form
(hostname.domainname).

true same as unqualified

false same as ipaddress
69

CHAPTER 2 | Artix Plug-ins
Bus

Overview The plugins:bus namespace includes the following variables:

� plugins:bus:register_client_context

� plugins:bus:default_tx_provider:plugin

plugins:bus:register_client_context

plugins:bus:register_client_context specifies whether to register a
client context. You can enable registration of client contexts as follows:

The client context provides information about the origin of the incoming
request (for example, its original IP address). By default, the context is not
registered. This avoids any extra overhead associated with obtaining this
information and populating the context.

plugins:bus:default_tx_provider:plugin

plugins:bus:default_tx_provider:plugin specifies the default
transaction system used by Artix when a new transaction is started by
bus.transactions().begin_transaction(). The specified value is the
plug-in name of the transaction system provider plug-in. The available
values are:

plugins:bus:register_client_context = "true";

ots_tx_provider Uses OTS as the transaction provider. Creates either an
OTS Lite (single-resource) or OTS Encina
(multi-resource) transaction. This is the default setting.
For details of the additional configuration used to specify
whether OTS Lite or OTS Encina is used, see Chapter 4.

wsat_tx_provider Uses a WS-Coordination/WS-AtomicTransaction
provider. The coordination service can either be run
in-process or inside the Artix container.
70

Bus
Selecting a transaction provider

The choice of which transaction provider to use depends on the type of Artix
binding your application uses. If most of your communication is over a
CORBA binding, use ots_tx_provider. If most of your communication uses
a SOAP binding, use wsat_tx_provider.

In both cases, Artix automatically interposes a transaction context of the
correct type when a call is made over a particular binding. For example, if
the default provider is OTS, and the application makes an outbound SOAP
call, Artix includes a WS-AtomicTransaction SOAP header in the SOAP call.
In this case, the transaction is still coordinated by OTS.

Similarly, if the default provider is WSAT, and a CORBA call is made, Artix
automatically includes an OTS CORBA service context in the IIOP call. In
this case, the transaction is coordinated by a WS-Coordination service.

orb_plugin configuration

The appropriate plug-in for your transaction system must also be loaded. For
example, to load the OTS plug-in, include the ots plug-in name in the
orb_plugins list:

For full details of using transaction systems in Artix, see Developing Artix
Applications in C++.

artix.cfg
ots_lite_client_or_server {
 plugins:bus:default_tx_provider:plugin = "ots_tx_provider";
 orb_plugins = [..., "ots"];
};
71

../../prog_guide/index.htm
../../prog_guide/index.htm

CHAPTER 2 | Artix Plug-ins
CA WSDM Observer

Overview The plugins:ca_wsdm_observer namespace configures integration with the
CA WSDM management system. It includes the following variables:

� plugins:ca_wsdm_observer:auto_register

� plugins:ca_wsdm_observer:config_poll_time

� plugins:ca_wsdm_observer:handler_type

� plugins:ca_wsdm_observer:max_queue_size

� plugins:ca_wsdm_observer:min_queue_size

� plugins:ca_wsdm_observer:report_wait_time

plugins:ca_wsdm_observer:auto_register

plugins:ca_wsdm_observer:auto_register specifies whether the Artix CA
WSDM observer automatically registers observed services with a WSDM
service. The default is:

If you have a large number of observed services, the runtime performance
may be decreased because of equally large register service requests sent to
a WSDM service.

You can set this variable to false and manually import service details from
WSDL definitions into a WSDM console. However, this only works for
SOAP-HTTP non-transient services. This is because WSDM can not import
non-SOAP services described in WSDL, while Artix does not publish WSDL
for transient services.

plugins:ca_wsdm_observer:auto_register = "true";
72

CA WSDM Observer
plugins:ca_wsdm_observer:config_poll_time

plugins:ca_wsdm_observer:config_poll_time specifies how often, in
seconds, the observer should poll a WSDM service for configuration
updates, use the following variable:

The default is 180 seconds (3 minutes). Configuration updates tell the
observer whether transaction monitors have been enabled. If so, the
observer copies input/output raw messages, and reports them to a WSDM
service if duration or request/response size thresholds have been exceeded.

plugins:ca_wsdm_observer:handler_type

plugins:ca_wsdm_observer:handler_type specifies a value that identifies
an Artix observer to a WSDM service. It should be above 200. The default is:

In addition, if you change the default, you must also update the following
file with the new handler type:

Entries in this file take a format of observertype.X=ArtixObserver, where X
is the handler type value. The default entry is:

observertype.217=ArtixObserver

plugins:ca_wsdm_observer:config_poll_time

plugins:ca_wsdm_observer:handler_type = "217";

WSDM-Install-Dir/server/default/conf/WsdmSOMMA_Basic.properties
73

CHAPTER 2 | Artix Plug-ins
plugins:ca_wsdm_observer:max_queue_size

plugins:ca_wsdm_observer:max_queue_size specifies the maximum
number of service request records that the observer queue can hold. For
example:

The default is 500. New records are dropped when the queue size reaches
this value. If report_wait_time is not set, this variable is ignored. In this
case, reports are sent as soon as the queue size is equal to max_queue_size.

plugins:ca_wsdm_observer:min_queue_size

plugins:ca_wsdm_observer:min_queue_size specifies how many service
request records must be available in a queue before a report is sent to a
WSDM service. For example:

The default is 5. Set this variable if your load is expected to be large. If this
variable is too low, the observer may send reports too frequently, and if it is
too high, the memory footprint may increase significantly.

plugins:ca_wsdm_observer:report_wait_time

plugins:ca_wsdm_observer:report_wait_time specifies how often reports
should be sent in seconds. For example:

This variable is an alternative to min_queue_size, which instead specifies
the frequency of reports on a time basis. This variable should be used with
max_queue_size.

plugins:ca_wsdm_observer:max_queue_size = "600";

plugins:ca_wsdm_observer:min_queue_size = "6";

plugins:ca_wsdm_observer:report_wait_time = 10;
74

Client-Side High Availability
Client-Side High Availability

Overview The variables in the plugins:ha_conf namespace configure client-side high
availability settings:

� plugins:ha_conf:strategy

� plugins:ha_conf:random:selection

plugins:ha_conf:strategy

plugins:ha_conf:strategy specifies whether the client uses random or
sequential endpoint selection. Defaults to sequential. Specifying random
enables client applications to select a random server each time they
connect. The following example applies globally:

The following example applies at the level of a service:

plugins:ha_conf:random:selection

plugins:ha_conf:random:selection specifies whether the client always
selects a random server or only after the client loses connectivity with the
first server in the list. Possible values are always or subsequent. Defaults to
always.

Specify always if you want your clients to be uniformly load-balanced across
different servers. The following example applies globally:

plugins:ha_conf:strategy="random";

plugins:ha_conf:strategy:http://www.iona.com/test:SOAPHTTPService="random";

plugins:ha_conf:strategy="random";
plugins:ha_conf:random:selection="always";
75

CHAPTER 2 | Artix Plug-ins
Specify subsequent if you want your clients to favour a particular server for
their initial connectivity. The following example applies globally:

The following example applies at the level of a service:

plugins:ha_conf:strategy="random";
plugins:ha_conf:random:selection="subsequent";

plugins:ha_conf:strategy:http://www.iona.com/test:SOAPHTTPService="random";
plugins:ha_conf:random:selection:http://www.iona.com/test:SOAPHTTPService="subsequent";
76

Container
Container

Overview The plugins:container namespace specifies settings for the Artix container
service. It includes the following variables:

� plugins:container:deployfolder

� plugins:container:deployfolder:readonly

plugins:container:deployfolder

plugins:container:deployfolder specifies the location of a local folder
where deployment descriptor files are saved to, and where they are read
from on restart. For example:

At startup, the container looks in the configured deployment folder and
deploys the contents of the folder.

By default, this folder enabled for dynamic read/write deployment. This
means that the container adds and removes files from the deployment folder
dynamically as services are deployed or removed from the container.

plugins:container:deployfolder:readonly

plugins:container:deployfolder:readonly specifies whether the local
folder used to store deployment descriptor file is a read-only folder. This can
be used as an initialization folder to predeploy the same required set of
services after every restart.

This variable should be used in conjunction with
plugins:container:deployfolder. For example, the following configuration
enables a read-only persistent deployment folder:

plugins:container:deployfolder="../etc";

plugins:container:deployfolder:readonly="true";
77

CHAPTER 2 | Artix Plug-ins
Database Environment

Overview The variables in the plugins:artix:db namespace configure database
environment and service replication settings:

� plugins:artix:db:allow_minority_master

� plugins:artix:db:auto_demotion

� plugins:artix:db:checkpoint_period

� plugins:artix:db:db_open_retry_attempts

� plugins:artix:db:download_files

� plugins:artix:db:election_timeout

� plugins:artix:db:env_name

� plugins:artix:db:error_file

� plugins:artix:db:home

� plugins:artix:db:iiop:port

� plugins:artix:db:inter_db_open_sleep_period

� plugins:artix:db:max_buffered_msgs

� plugins:artix:db:max_msg_buffer_size

� plugins:artix:db:max_ping_retries

� plugins:artix:db:ping_lifetime

� plugins:artix:db:ping_retry_interval

� plugins:artix:db:priority

� plugins:artix:db:replace_when_forwarding

� plugins:artix:db:replica_name

� plugins:artix:db:replicas

� plugins:artix:db:roundtrip_timeout

� plugins:artix:db:sync_retry_attempts

� plugins:artix:db:use_shutdown_hook

� plugins:artix:db:verbose_logging
78

Database Environment
plugins:artix:db:allow_minority_master

plugins:artix:db:allow_minority_master specifies whether a lone slave
can promote itself to a master if it sees that the current master is
unavailable. This is only allowed when the replica cluster has two members.
This variable defaults to false (not allowed). If it is set to true, a slave that
cannot reach its partner replica will promote itself to master, even though it
only has fifty per cent of the votes (one out of two).

It is recommended that high availability clusters have an odd number of
members, and the recommended minimum number is three. It is only
possible to use a cluster with two members if you specify the following
configuration:

plugins:artix:db:auto_demotion

plugins:artix:db:auto_demotion specifies whether a master automatically
demotes itself to a slave when it loses contact with the majority of the
replica cluster. Defaults to true.

The problem of duplicate masters is crucial for any election-based high
availability system. Every effort must be taken to ensure that only one
master exists at any one time, because database updates made to multiple
masters can be extremely difficult to resolve.

The most common cause of duplicate masters to appear is a network
partition. This is a split in the network that leaves the current master on one
side and a majority of slaves on the other side. Because the slaves have the
majority of votes, they elect a master on their side.

WARNING: This variable must be used with caution. If it is set to true,
and the two replicas in the cluster become separated due to a network
partition, they are both promoted to master. This can be very problematic
because both replicas could make database updates, and resolving those
updates later could be very difficult, if not impossible.

plugins:artix:db:allow_minority_master="true";
79

CHAPTER 2 | Artix Plug-ins
When this variable is set to true, duplicate masters should never exist. If a
master loses contact with the majority of the replica set, it will automatically
demote itself to slave.

plugins:artix:db:checkpoint_period

plugins:artix:db:checkpoint_period specifies how often in seconds the
Artix DB plug-in wakes up and performs a Berkeley DB checkpoint on its
environment, as prescribed by Sleepycat.

Defaults to 900 seconds (15 minutes), which should be meet all
eventualities. Setting this to a value less than 60 seconds may have a
negative impact on performance.

plugins:artix:db:db_open_retry_attempts

plugins:artix:db:db_open_retry_attempts specifies the number of
attempts made by a slave to open its new database.

When a slave starts for the first time and synchronizes with an existing
master, it may take some time for a slave to receive the master's database
over the wire, especially if the database is large. If the slave gets no such
file or directory errors when starting up, it may help to increase this
value. Defaults to 5.

WARNING: This variable must be used with caution. If it is set to false,
there is a chance that duplicate masters may appear after a network
partition. If this happens, and the partition is repaired (allowing the
masters to see each other), both masters will self-demote to a slave, hold
an election to determine who is most up-to-date, and re-elect a master. If
this occurs, any updates made on a demoted master when it was
separated from the replicas will be lost.
80

Database Environment
plugins:artix:db:download_files

plugins:artix:db:download_files specifies whether fresh slaves
download the entire database from the master before starting up. Defaults to
true. Before starting up, fresh slaves have no database files on their local
filesystem.

There may be circumstances where fresh slaves should not download the
entire database before starting up. For example, if the database very large, it
may be desirable to allow Berkeley DB to synchronize the databases
instead.

plugins:artix:db:election_timeout

plugins:artix:db:election_timeout specifies the time spent attempting
to elect a new master. If a master can not be found in this time, a new
election is started. Defaults to 2000 milliseconds (2 seconds). You should not
often need to change this setting.

plugins:artix:db:env_name

plugins:artix:db:env_name specifies the filename for the Berkeley DB
environment file. The value specified must be the same for all replicas.
Defaults to db_env. You should not need to change this setting.

plugins:artix:db:error_file

plugins:artix:db:error_file specifies the file that Berkeley DB error
messages are sent to. For example:

The file name can have any extension, so long as it is valid for its operating
system. The default value is "".

If plugins:artix:db:verbose_logging is set to true, additional Berkeley
DB messages about replication, deadlock, and recovery are also sent to this
file.

plugins:artix:db:error_file="c:\logs\berkeleydb.log";
81

CHAPTER 2 | Artix Plug-ins
plugins:artix:db:home

plugins:artix:db:home specifies the directory where Berkeley DB stores all
the files for the service databases. Each service should have a dedicated
folder for its data stores. This is especially important for replicated services.

Defaults to ReplicaConfigScope_db (for example, rep1_db), where
ReplicaConfigScope is the inner-most replica configuration scope. You
should not need to explicitly set this variable. If this directory does not
already exist, it will be created in the current working directory.

plugins:artix:db:iiop:port

plugins:artix:db:iiop:port specifies the IIOP port that the replica service
starts on, and is used for communications between replicas. Defaults to 0.

This variable must be set in a sub-scope for each replica specified in the
plugins:artix:db:replicas list. The following example shows a sub-scope
for the rep1 replica:

plugins:artix:db:inter_db_open_sleep_period

plugins:artix:db:inter_db_open_sleep_period specifies the amount of
time spent sleeping between failed database open attempts on the slave
side. This variable is related to
plugins:artix:db:db_open_retry_attempts.

Defaults to 2000 milliseconds (2 seconds).

plugins:artix:db:max_buffered_msgs

plugins:artix:db:max_buffered_msgs specifies the maximum number of
batch messages stored in the message buffer of a high availabilty database.
All messages are sent and the buffer is flushed when this limit is reached.
Defaults to 10. This feature helps to reduce the traffic between replicas.

rep1{
 plugins:artix:db:priority ="80";
 plugins:artix:db:iiop:port ="2000";
 };
82

Database Environment
plugins:artix:db:max_msg_buffer_size

plugins:artix:db:max_msg_buffer_size specifies the maximum size of
the message buffer of a high availabilty database. All messages are sent and
the buffer is flushed when this limit is reached. Defaults to 10240. This
feature helps to reduce the traffic between replicas.

plugins:artix:db:max_ping_retries

plugins:artix:db:max_ping_retries specifies how many failed pings
between replicas can happen before the remote replica is considered
unreachable. The replica is then marked as unavailable until it can be
pinged again.

Defaults to 1. This means that if one ping fails, the replica is marked as
UNAVAIL, and no attempt is made to send it any database update or election
packets until it becomes available again.

For more details, see plugins:artix:db:ping_lifetime.

plugins:artix:db:ping_lifetime

plugins:artix:db:ping_lifetime specifies the amount of time that the
servant pinging replicas waits for before returning. Defaults to 10000
milliseconds (10 seconds).

Replicas monitor each other using inter-replica pings. These pings are
optimized to minimize the amount of network traffic between replicas. This
optimization is based on specifying long-lived pings.

If the server process dies before returning, the caller gets an immediate
notification of the failure of the ping. However, if the server machine dies,
the notification occurs when plugins:artix:db:roundtrip_timeout
expires. This is because the server-side TCP/IP stack can not notify the
caller of connection failure if the host machine dies unexpectedly.
83

CHAPTER 2 | Artix Plug-ins
plugins:artix:db:ping_retry_interval

plugins:artix:db:ping_retry_interval specifies the number of
milliseconds between inter-replica ping attempts. Defaults to 2000
milliseconds (2 seconds).

For more details, see plugins:artix:db:ping_lifetime.

plugins:artix:db:priority

plugins:artix:db:priority specifies the replica priority. The higher the
priority the more likely the replica is to be elected as master. This variable
should be set if you are using replication.

There is no guarantee that the replica with the highest priority is elected
master. The first consideration for electing a master is who has the most
current database. Setting a priority of 0 means that the replica is never
elected master. Defaults to 1.

This variable must be set in a sub-scope for each replica. See the example
for plugins:artix:db:iiop:port.

plugins:artix:db:replace_when_forwarding

plugins:artix:db:replace_when_forwarding specifies whether the port
name or service name in the WSDL file is used as the replaceable artifact
when mastership moves around. Possible values are port or service.

The Artix demos use port, and this is the IONA-preferred option. However,
if you wish to have multiple WSDL services representing your cluster instead
of multiple WSDL ports on one service, you can specify service instead.

plugins:artix:db:replica_name

plugins:artix:db:replica_name specifies a simple string name for the
replica. It indicates the replica in the plugins:artix:db:replicas list that
this configuration refers to.

This variable must be set if plugins:artix:db:replicas is set, otherwise a
DBException/BAD_CONFIGURATION is thrown. Each replica must have its own
unique name, and must be present in the list.
84

Database Environment
Defaults to the replica�s innermost configuration scope (for example, rep1).
This value is automatically inferred and does not need to be explicitly set,
unless you wish to use a different replica name.

plugins:artix:db:replicas

plugins:artix:db:replicas specifies a cluster of replica services. This
variable takes a list of replicas specified using the following syntax:

ReplicaName=HostName:PortNum

For example, the following entry configures a cluster of three replicas spread
across three machines named jimi, noel, and mitch.

Defaults to an empty list.

plugins:artix:db:roundtrip_timeout

plugins:artix:db:roundtrip_timeout specifies the amount of time that a
replica waits for a response from a ping sent to another replica. Defaults to
20000 milliseconds (20 seconds).

If this variable is not set, some failed pings may take a long time to return
(for example, if the target machine loses power). When a machine fails, the
TCP/IP stack on the machine can not terminate the connection. The client
still waits for a reply, and thinks that the connection is still valid.

The client only sees that the connection dies when TCP/IP times out and
marks the connection as terminated. The variable prevents this situation
from occurring.

plugins:artix:db:replicas=[�rep1=jimi:2000�, �rep2=mitch:3000�,
�rep3=noel:4000�];

Note: It is recommended that you set ReplicaName to the same value as
the replica�s configuration scope (see plugins:artix:db:replica_name).

Note: This variable must be set to a larger value than
plugins:artix:db:ping_lifetime. Otherwise, valid pings would be
regarded as having timed out when they are still in progress.
85

CHAPTER 2 | Artix Plug-ins
plugins:artix:db:sync_retry_attempts

plugins:artix:db:sync_retry_attempts specifies the maximum number of
times that the slave sends a synchronization request to the master. This is
used when a slave starts for the first time and synchronizes with an existing
master.

Slave synchronization is performed by the slave sending a request to the
master to write a small piece of data to its database, and then the slave
waiting for this data to appear. When the data appears on the slave side,
the slave knows it is processing live records from the master and is
up-to-date and synchronized. Defaults to 5. You should rarely need to
change this setting.

plugins:artix:db:use_shutdown_hook

plugins:artix:db:use_shutdown_hook enables the Artix DB plug-in to be
used correctly within a container. Defaults to true. This setting should not
be changed, unless directed by IONA support.

plugins:artix:db:verbose_logging

plugins:artix:db:verbose_logging specifies whether more Berkeley DB
messages about replication, deadlock and recovery are sent to the error file.
Defaults to false. Setting this variable to true has effect only when
plugins:artix:db:error_file is also set to true.
86

FTP
FTP

Overview The plugins:ftp namespace contains variables for File Transfer Protocol.
These include the following:

� plugins:ftp:policy:client:filenameFactory

� plugins:ftp:policy:client:replyFileLifecycle

� plugins:ftp:policy:connection:connectMode

� plugins:ftp:policy:connection:connectTimeout

� plugins:ftp:policy:connection:receiveTimeout

� plugins:ftp:policy:connection:scanInterval

� plugins:ftp:policy:connection:useFilenameMaskOnScan

� plugins:ftp:policy:credentials:name

� plugins:ftp:policy:credentials:password

� plugins:ftp:policy:server:filenameFactory

� plugins:ftp:policy:server:requestFileLifecycle

plugins:ftp:policy:client:filenameFactory

plugins:ftp:policy:client:filenameFactory specifies the name of the
class that implements the client�s filename factory. This generates the
filenames used for storing request messages on the FTP server, and
determines the name of the associated replies.

This class name must be listed on the endpoint�s class path. The default
setting is:

plugins:ftp:policy:client:filenameFactory="com.iona.jbus.transpo
rts.ftp.policy.client.DefaultFilenameFactory";
87

CHAPTER 2 | Artix Plug-ins
plugins:ftp:policy:client:replyFileLifecycle

plugins:ftp:policy:client:replyFileLifecycle specifies the name of
the class that implements the client's reply lifecycle policy. The reply
lifecycle policy is responsible for instructing the Artix runtime whether a
reply file must be deleted or moved to a different FTP server location.

This class name must be listed on the endpoint�s class path. The default
setting is:

plugins:ftp:policy:connection:connectMode

plugins:ftp:policy:connection:connectMode specifies the connection
mode used to connect to the FTP daemon. Valid values are passive and
active. The default is:

plugins:ftp:policy:connection:connectTimeout

plugins:ftp:policy:connection:connectTimeout specifies a timeout value
in milliseconds for establishing a connection with a remote FTP daemon.
The default is:

plugins:ftp:policy:connection:receiveTimeout

plugins:ftp:policy:connection:receive:Timeout specifies a receive
timeout value in milliseconds for the FTP daemon filesystem scanner. The
receive timeout will occur when the following condition is met:

plugins:ftp:policy:client:replyFileLifecycle="com.iona.jbus.tran
sports.ftp.policy.client.DefaultReplyFileLifecycle";

plugins:ftp:policy:connection:connectMode="passive";

plugins:ftp:policy:connection:connectTimeout="-1";

CurrentTime - StartReplyScanningTime >=
plugins:ftp:policy:connection:receiveTimeout
88

FTP
It is recommended that the receive timeout value is greater than
plugins:ftp:policy:connection:scanInterval * 1000. If this value is set
to 0, it is guaranteed that there will be at least one scan of the remote FTPD
filesystem before the timeout. The default is:

plugins:ftp:policy:connection:scanInterval

plugins:ftp:policy:connection:scanInterval specifies the interval, in
seconds, at which the request and reply locations are scanned for updates.
The default is:

plugins:ftp:policy:connection:useFilenameMaskOnScan

plugins:ftp:policy:connection:useFilenameMaskOnScan specifies
whether the Artix runtime uses a filename mask when calling the FTP
daemon with a FTP LIST command (for example, LIST myrequests*).

Some FTP daemons do not implement support for listing a subset of files
based on a filename mask. To enable interoperability with such servers, this
variable must be set to false. However, if you know that an FTP daemon
supports a filtered LIST command, setting this variable to true increases
FTP transport performance. The default is:

plugins:ftp:policy:credentials:name

plugins:ftp:policy:credentials:name specifies the FTP daemon user
name. This variable along with
plugins:ftp:policy:credentails:password must have credentails that
allows the Artix runtime to list, add, move and remote files from the
filesystem location provided using FTP WSDL extensors. The default is:

plugins:ftp:policy:connection:receiveTimeout="-1";

plugins:ftp:policy:connection:scanInterval="5";

plugins:ftp:policy:connection:useFilenameMaskOnScan="false";

plugins:ftp:policy:credentials:name="anonymous";
89

CHAPTER 2 | Artix Plug-ins
plugins:ftp:policy:credentials:password

plugins:ftp:policy:credentials:password specifies the FTP daemon
user password. The default is:

plugins:ftp:policy:server:filenameFactory

plugins:ftp:policy:server:filenameFactory specifies the name of the
class that implements the client�s filename factory. The filename factory is
responsible for identifying which requests to dispatch, and how to name
reply messages.

This class name must be listed on the endpoint�s class path. The default
setting is:

plugins:ftp:policy:server:requestFileLifecycle

plugins:ftp:policy:server:requestFileLifecycle specifies the name of
the class that implements the server's request lifecycle policy. The request
lifecycle policy is responsible for instructing the Artix runtime whether a
request file must be deleted or moved to a different FTP server location.

This class name must be listed on the endpoint�s class path. The default
setting is:

plugins:ftp:policy:credentials:password="anonymous@anonymous.net";

plugins:ftp:policy:server:filenameFactory="com.iona.jbus.transpo
rts.ftp.policy.server.DefaultFilenameFactory";

plugins:ftp:policy:server:requestFileLifecycle="com.iona.jbus.tr
ansports.ftp.policy.server.DefaultRequestFileLifecycle";
90

JMS
JMS

Overview The variables in the plugins:jms namespace configure settings for
interoperability with the Java Message Service. These include the following:

� plugins:jms:policies:binding_establishment:backoff_ratio

� plugins:jms:policies:binding_establishment:initial_iteration_del

ay

� plugins:jms:policies:binding_establishment:backoff_ratio

� plugins:jms:pooled_session_high_water_mark

� plugins:jms:pooled_session_low_water_mark

For information on configuring multi-threading with JMS, see
policy:messaging_transport:concurrency.

plugins:jms:policies:binding_establishment:backoff_ratio

plugins:jms:policies:binding_establishment:backoff_ratio specifies
the degree to which delays between reconnection retries increase from one
retry to the next. This is used when Artix tries to reconnect to the Java
Message Service after a connection is dropped (for example, if JMS becomes
unavailable, or a network error occurs).

The successive delays between retries use the following geometric
progression:

Retry
Number

Delay

1 initial_iteration_delay x backoff_ratio 0

2 initial_iteration_delay x backoff_ratio 1

n initial_iteration_delay x backoff_ratio (n-1)
91

CHAPTER 2 | Artix Plug-ins
For example, if the initial_iteration_delay is 1000 milliseconds, and the
backoff_ratio is 2:

� The first retry waits 1000 milliseconds.

� The second retry waits 1000 x 2 milliseconds.

� The third retry waits 1000 x 2 2 milliseconds.

....

� The nth retry waits 1000 x 2 (n-1) milliseconds.

The data type is long, and values must be greater than or equal to 0.
Defaults to 2:

In your code, in the event of an initial failure, or an inability to make a
connection after the configured retries have been exhausted, a method call
will receive a RemoteException, which wraps a TransportException.

plugins:jms:policies:binding_establishment:initial_iteration_delay

plugins:jms:policies:binding_establishment:initial_iteration_dela

y specifies the amount of time, between the first and second attempts to
establish a connection with a JMS broker.

The data type is long, and values must be greater than or equal to 0.
Defaults to 1000 milliseconds:

plugins:jms:policies:binding_establishment:backoff_ratio="2";

plugins:jms:policies:binding_establishment:initial_iteration_delay="1000";
92

JMS
plugins:jms:policies:binding_establishment:max_binding_iterations

plugins:jms:policies:binding_establishment:max_binding_iterations
specifies the limit on the number of times that an Artix client tries to
reconnect to a JMS broker. To disable reconnecting to the Java Message
Service, set this variable to 0.

The data type is long, and values must be greater than or equal to 0.
Defaults to 5:

plugins:jms:pooled_session_high_water_mark

plugins:jms:pooled_session_high_water_mark specifies the limit on the
number of temporary JMS queues. The high water mark minus the low
water mark equals the number of soft references that are stored.

Temporary queues that are stored as soft references will only be garbage
collected if memory becomes an issue for the client. However, any
temporary queue that is reaped will potentially be replaced by another
queue later. The default value is:

For example, by default, there are 520 temporary queues�500 soft
references and 20 strong references (see
plugins:jms:pooled_session_low_water_mark).

plugins:jms:policies:binding_establishment:max_binding_iterations="5";

plugins:jms:pooled_session_high_water_mark = "500";

Note: Setting the high water mark value too high could cause problems
with the JMS broker that the client is not aware of.
93

CHAPTER 2 | Artix Plug-ins
plugins:jms:pooled_session_low_water_mark

plugins:jms:pooled_session_low_water_mark specifies the number of
temporary JMS queues that are stored as strong references. This is the
number of queues that remain in memory.

Temporary queues stored as strong references will never be garbage
collected, unless the client times out. In the event of a timeout, the
temporary queue is reaped to avoid it being used by another invocation.
However, any temporary queue that is reaped will potentially be replaced by
another queue later. The default value is:

For example, by default, there are 520 temporary queues�20 strong
references and 500 soft references (see
plugins:jms:pooled_session_high_water_mark).

plugins:jms:pooled_session_low_water_mark = "20";
94

JMX
JMX

Overview The plugins:bus_management namespace includes variables that specify
JMX monitoring of the Artix runtime. JMX stands for Java Management
Extensions. These variables include:

� plugins:bus_management:enabled

� plugins:bus_management:connector:enabled

� plugins:bus_management:connector:port

� plugins:bus_management:connector:registry:required

� plugins:bus_management:connector:url:publish

� plugins:bus_management:connector:url:file

� plugins:bus_management:http_adaptor:enabled

� plugins:bus_management:http_adaptor:port

plugins:bus_management:enabled

plugins:bus_management:enabled specifies whether the Artix runtime can
be managed locally using JMX MBeans. The default setting is false. To
enable local JMX monitoring, set this variable to true:

This setting enables a local access to JMX runtime MBeans. The
bus_management plug-in wraps runtime components into open dynamic
MBeans and registers them with a local MBeanServer.

plugins:bus_management:enabled="true";
95

CHAPTER 2 | Artix Plug-ins
plugins:bus_management:connector:enabled

plugins:bus_management:connector:enabled specifies whether the Artix
runtime can be managed remotely using JMX MBeans. The default setting is
false. To enable remote JMX monitoring, set the following variables to
true:

These settings allow for both local and remote access.

Remote access is performed through JMX Remote, using an RMI Connector
on a default port of 1099. When the configuration has been set, you can use
the following default JNDI-based JMXServiceURL to connect remotely:

plugins:bus_management:connector:port

plugins:bus_management:connector:port specifies a port for remote JMX
access. For example, given the following setting:

You can then use the following JMXServiceURL:

plugins:bus_management:connector:registry:required

plugins:bus_management:connector:registry:required specifies whether
the connector uses a stub-based JMXServiceURL. For example, the
following settings enable stub-based access:

plugins:bus_management:enabled="true";
plugins:bus_management:connector:enabled="true";

service:jmx:rmi://host:1099/jndi/artix

plugins:bus_management:connector:port="2000";

service:jmx:rmi://host:2000/jndi/artix

plugins:bus_management:enabled="true";
plugins:bus_management:connector:enabled="true";
plugins:bus_management:connector:registry:required="false";
96

JMX
See the javax.management.remote.rmi package for more details on remote
JMX.

plugins:bus_management:connector:url:publish

plugins:bus_management:connector:url:publish specifies whether
publishing the JMXServiceURL to a local file is enabled. To enable this,
specify the following:

plugins:bus_management:connector:url:file

plugins:bus_management:connector:url:file specifies a filename for
publishing the JMXServiceURL to a local file. For example, the following
settings override the default filename:

plugins:bus_management:http_adaptor:enabled

plugins:bus_management:http_adaptor:enabled specifies whether the
default HTTP adaptor console supplied by the JMX reference
implementation is enabled. To enable this adaptor, specify the following:

plugins:bus_management:http_adaptor:port

plugins:bus_management:http_adaptor:port specifies a port for the
default HTTP adaptor console supplied by the JMX reference
implementation. For example:

To access the HTTP adaptor on this port, specify http://localhost:7659 in
your browser.

plugins:bus_management:connector:url:publish="true";

plugins:bus_management:connector:url:publish="true";
plugins:bus_management:connector:url:file="../../service.url";

plugins:bus_management:http_adaptor:enabled="true";

plugins:bus_management:http_adaptor:port="7659";
97

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/remote/rmi/package-summary.html

CHAPTER 2 | Artix Plug-ins
Local Log Stream

Overview The variables in the plugins:local_log_stream namespace configure
text-based logging. By default, Artix is configured to log messages in an XML
format. You can change this behavior using the local_log_stream plug-in.

The plugins:local_log_stream namespace contains the following
variables:

� plugins:local_log_stream:buffer_file

� plugins:local_log_stream:filename

� plugins:local_log_stream:filename_date_format

� plugins:local_log_stream:log_elements

� plugins:local_log_stream:log_thread_id

� plugins:local_log_stream:milliseconds_to_log

� plugins:local_log_stream:precision_logging

� plugins:local_log_stream:rolling_file

plugins:local_log_stream:buffer_file

plugins:local_log_stream:buffer_file specifies whether the output
stream is sent to a buffer before it writes to a local log file. To specify this
behavior, set this variable to true:

When set to true, by default, the buffer is output to a file every 1000
milliseconds when there are more than 100 messages logged. This log
interval and number of log elements can also be configured.

plugins:local_log_stream:buffer_file = "true";
98

Local Log Stream
plugins:local_log_stream:filename

plugins:local_log_stream:filename sets the output stream to the
specified local text file. For example:

If you do not specify a file name, logging is sent to stdout.

plugins:local_log_stream:filename_date_format

plugins:local_log_stream:filename_date_format specifies the format of
the date in a text-based rolling log file. The specified date conforms to the
format rules of the ANSI C strftime() function. For example:

On the 31st January 2006, this results in a log file named
my_log_2006_01_31.

plugins:local_log_stream:log_elements

plugins:local_log_stream:log_elements specifies the number of log
messages that must be in the buffer before they are output to a log file. The
default is 100 messages.

For example, the following configuration writes the log output to a log file if
there are more than 20 log messages in the buffer.

plugins:local_log_stream:filename = "/var/adm/mylocal.log";

plugins:local_log_stream:rolling_file="true";
plugins:local_log_stream:filename="my_log";
plugins:local_log_stream:filename_date_format="_%Y_%m_%d";

plugins:local_log_stream:log_elements = "20";
99

CHAPTER 2 | Artix Plug-ins
plugins:local_log_stream:log_thread_id

plugins:local_log_stream:log_thread_id specifies whether the thread ID
is logged in the log message or not, for example:

The default is true.

plugins:local_log_stream:milliseconds_to_log

plugins:local_log_stream:milliseconds_to_log specifies how often in
milliseconds that the log buffer is output to a log file. The default is 1000
milliseconds.

For example, the following configuration writes the log output to a log file
every 400 milliseconds.

plugins:local_log_stream:precision_logging

plugins:local_log_stream:precision_logging specifies whether events
are logged with time precision in nanoseconds, or at the granularity of
seconds. The default value is false (to avoid changing the logging output of
deployed systems).

To enable precision logging, use the following setting:

plugins:local_log_stream:log_thread_id = "true";

plugins:local_log_stream:milliseconds_to_log = "400";

plugins:local_log_stream:precision_logging = "true";
100

Local Log Stream
plugins:local_log_stream:rolling_file

plugins:local_log_stream:rolling_file is a boolean which specifies that
the logging plug-in creates a new log file each day to prevent the log file
from growing indefinitely. In this model, the stream appends the current
date to the configured filename. This produces a complete filename, for
example:

A new file begins with the first event of the day and ends at 23:59:59 each
day. The default behavior is true. To disable rolling file behavior, set this
variable to false. For example:

/var/adm/artix.log.02172006

plugins:local_log_stream:rolling_file = "false";
101

CHAPTER 2 | Artix Plug-ins
Log4J Log Stream

Overview The plugins:log4j_log_stream namespace configures integration with
Apache�s log4j logging tool. This namespace contains the following variable:

� plugins:log4j_log_stream:use_stderr

plugins:log4j_log_stream:use_stderr

plugins:log4j_log_stream:use_stderr specifies whether to redirect the
log4j log stream to standard error. The default is false. To redirect to
standard error, specify the following setting:

You must ensure that the local_log_stream plug-in is present in your
orb_plugins list.

plugins:log4j_log_stream:use_stderr = "true";
102

Locator Service
Locator Service

Overview The locator service plug-in, service_locator, is configured by the variables
in the plugins:locator namespace:

� plugins:locator:peer_timeout

� plugins:locator:persist_data

� plugins:locator:selection_method

� plugins:locator:service_group

� plugins:locator:wsdl_port

plugins:locator:peer_timeout

plugins:locator:peer_timeout specifies the amount of time, in
milliseconds, that the locator plug-in waits between keep-alive pings of the
endpoints that are registered with it. The default and minimum setting is
10000 milliseconds (10 seconds).

The locator uses a third-party peer manager to ping its endpoints. For more
details, see �Peer Manager� on page 108.

plugins:locator:persist_data

plugins:locator:persist_data enables persistence in the locator. This
variable specifies whether the locator uses a persistent database to store
references. For example:

Defaults to false, which means that the locator uses an in-memory map to
store references. When replicating the locator you must set persist_data to
true. If you do not, replication does not work.

plugins:locator:persist_data="true";
103

CHAPTER 2 | Artix Plug-ins
plugins:locator:selection_method

plugins:locator:selection_method specifies the load balancing selection
method used by the locator.

When plugins:locator:persist_data is set to true, the locator to
switches from round robin to random load balancing.

You can change the default behavior of the locator to always use random
load balancing by setting the following:

plugins:locator:service_group

plugins:locator:service_group specifies an arbitrary group name for an
Artix service or bus. For example, you can use this to query the locator for a
specified group of services.

There are no restrictions on assigning services to groups in different
processes. Services in the same process can belong to different groups, or to
no group. Services in different processes can belong to the same group. By
default, a service belongs to no group. Specifying a group in an Artix .cfg
file takes precedence over specifying a group in a WSDL file.

Specifying a group for a service

The following example defines a QName alias named corba_svc, and
assigns this to a group named CORBAGroup.

Specifying a group for a bus

You can also define a global group for all services in the current bus. All
services that do not have a group definition in WSDL or configuration then
belong to the global group by default.

plugins:locator:selection_method = �random�;

bus:qname_alias:corba_svc =
"{http://demo.iona.com/advanced/LocatorQuery}CORBAService";

plugins:locator:service_group:corba_svc = "CORBAGroup";

plugins:locator:service_group = "DefaultGroupName";
104

Locator Service
plugins:locator:wsdl_port

plugins:locator:wsdl_port specifies a locator WSDL port for a locator
replica service. This allows the locator to specify the WSDL port that it uses
when registering its own servant. This feature enables forwarding of write
requests from a slave to a master locator. The following is an example
setting:

Defaults to the replica�s locator configuration scope name (for example,
Locator1). This value is automatically inferred and does not need to be
explicitly set, unless you wish to use a different WSDL port name.

plugins:locator:wsdl_port=Locator1;
105

CHAPTER 2 | Artix Plug-ins
Locator Endpoint Manager

Overview The locator endpoint manager plug-in, locator_endpoint, is configured by
the following variables:

� plugins:locator_endpoint:exclude_endpoints

� plugins:locator_endpoint:include_endpoints

plugins:locator_endpoint:exclude_endpoints

plugins:locator_endpoint:exclude_endpoints specifies endpoints to be
exluded from the locator. For example, if do not you want to register the
container service, but want to register all the endpoints that are activated in
that container, use the following setting:

You can also wildcard your service names. This enables you to filter based
on a specified namespace. For example:

plugins:locator_endpoint:exclude_endpoints =
["{http://ws.iona.com/container}ContainerService"];

plugins:locator_endpoint:exclude_endpoints =
["{http://www.sample.com/finance}*"];
106

Locator Endpoint Manager
plugins:locator_endpoint:include_endpoints

plugins:locator_endpoint:include_endpoints specifies endpoints to be
included in the locator. For example, if you only want to register the session
manager, but not any of the endpoints that it manages, use the following
setting:

You can also wildcard your service names. This enables you to filter based
on a namespace. For example:

plugins:locator_endpoint:include_endpoints =
["{http://ws.iona.com/sessionmanager}SessionManagerService"];

plugins:locator_endpoint:include_endpoints =
["{http://www.sample.com/finance}*"];

Note: Combining the exclude_endpoints and include_endpoints
variables is ambiguous. If you do this, the application will fail to initialize.
107

CHAPTER 2 | Artix Plug-ins
Peer Manager

Overview The peer manager is used by the locator and session manager to ping their
endpoints, and verify that they are still running. The peer_manager plug-in is
transparently loaded by the following plug-ins:

� service_locator
� locator_endpoint
� session_manager_service
� session_endpoint_manager

The peer_manager includes the following configuration variables:

� plugins:peer_manager:ping_on_failure

� plugins:bus_response_monitor:type

plugins:peer_manager:ping_on_failure

plugins:peer_manager:ping_on_failure specifies whether the receiver of a
ping failure performs a reverse ping to verify the validity of the failure.
Defaults to false. To enable this feature, set this variable as follows:

The peer manager service on both sides ping each other as a health check
(for example, locator endpoint manager and locator service). If this variable
is set, the peer manager that sees the ping failure confirms the validity of
the failure by performing a ping itself. If this reverse ping succeeds, the ping
failure is spurious and can be ignored. However, if it does not succeed, this
is a genuine ping failure, and the appropriate callback is notified.

For example, this feature is useful in circumstances where a hardware clock
malfunctions and creates unnecessary ping failure-like conditions
(reregistrations or removal of endpoints).

For details on how the locator service and endpoint manager interact with
the peer manager, and how they react to failure, see the Artix Locator Guide.

plugins:peer_manager:ping_on_failure = "true";
108

../../locator_guide/index.htm

Peer Manager
plugins:peer_manager:timeout_delta

plugins:peer_manager:timeout_delta specifies the time allowed for
failover detection in milliseconds. The default is 2000.

For example, increasing the value of this variable to 10000 ensures that only
a real failure results in an endpoint being removed from the locator�s list of
endpoints:

plugins:peer_manager:timeout_delta = "10000";
109

CHAPTER 2 | Artix Plug-ins
Performance Logging

Overview The bus response monitor and response time collector plug-ins configure
settings for Artix performance logging. The response time collector plug-in
periodically collects data from the response monitor plug-in and logs the
results. See Configuring and Deploying Artix Solutions for full details of Artix
performance logging.

The Artix performance logging plug-ins include the following variables:

� plugins:bus_response_monitor:type

� plugins:it_response_time_collector:filename.

� plugins:it_response_time_collector:server-id.

plugins:bus_response_monitor:type

plugins:bus_response_monitor:type specifies whether logging is output to
a file or stored in memory. Specifying file outputs performance logging
data to a file, while specifying memory places the data into memory so it can
be retrieved using the Artix container service. When file is enabled, memory
is also enabled. For example:

plugins:it_response_time_collector:filename

plugins:it_response_time_collector:filename specifies the location of
the performance log file. For example:

plugins:bus_response_monitor:type = file;

plugins:it_response_time_collector:filename =
"/var/log/my_app/perf_logs/treasury_app.log";
110

../../deploy/cpp/index.htm

Performance Logging
plugins:it_response_time_collector:server-id

plugins:it_response_time_collector:server-id specifies a server ID that
will be reported in your log messages. This server ID is particularly useful in
the case where the server is a replica that forms part of a cluster.

In a cluster, the server ID enables management tools to recognize log
messages from different replica instances. For example:

This setting is optional; and if omitted, the server ID defaults to the ORB
name of the server. In a cluster, each replica must have this value set to a
unique value to enable sensible analysis of the generated performance logs.
This setting can also be used to explicitly set a client ID that is reported in
your log messages.

plugins:it_response_time_collector:server-id = "my_server_app1";
111

CHAPTER 2 | Artix Plug-ins
Remote Method Invocation

Overview The Java Remote Method Invocation plug-in, rmi, is configured by the
following variables:

� plugins:rmi:registry_port

� plugins:rmi:registry_port

plugins:rmi:registry_port

plugins:rmi:registry_port specifies the port used to contact an RMI
registry. The Artix bus can optionally run an RMI registry as a convenience
for testing. The default setting is as follows:

plugins:rmi:start_registry

plugins:rmi:start_registry specifies whether to start an RMI registry.
The Artix bus can optionally run an RMI registry as a convenience for
testing. The default setting is false. To start an RMI registry, use the
following setting:

plugins:rmi:registry_port = "1099";

plugins:rmi:start_registry = "true";
112

Routing
Routing

Overview The routing plug-in uses the following variables:

� plugins:routing:proxy_cache_size

� plugins:routing:reference_cache_size

� plugins:routing:wsdl_url

� plugins:routing:use_bypass

� plugins:routing:use_pass_through

� plugins:routing:wrapped

plugins:routing:proxy_cache_size

plugins:routing:proxy_cache_size specifies the maximum number of
proxified server references in the router. This is the number of references
that have been converted into a proxy and are ready for invocation.

plugins:routing:proxy_cache_size works in conjunction with
plugins:routing:reference_cache_size. Having a smaller setting for
proxy_cache_size enables the router to conserve memory, while still being
ready for invocations. This is because proxified references use more
resources than unproxified references (for example, for client connections
and bindings). The default setting is:

plugins:routing:proxy_cache_size="50";

The router caches references on a least recently used basis in the following
order: proxified, unproxified. A proxified reference is demoted to an
unproxified reference when the proxy_cache_size limit is reached.
Unproxified references are promoted to proxies upon invocation.

For example, take a SOAP-HTTP client and CORBA server banking system
with 1,500 accounts. By default, the 50 most recently used accounts are
present in the router as proxified references. The next 1450 most recently
used are unproxified references.

Note: Router proxification is available for the following bindings and
transports: CORBA, SOAP, HTTP, and IIOP Tunnel.
113

CHAPTER 2 | Artix Plug-ins
plugins:routing:reference_cache_size

plugins:routing:reference_cache_size specifies the maximum number of
unproxified server references in the router. This refers to the number of
references that must be proxified before they can be invoked on.
plugins:routing:reference_cache_size works in conjunction with
plugins:routing:proxy_cache_size. Having a larger setting for
reference_cache_size enables the router to conserve memory, while still
being ready for invocations. Unproxified references use less resources than
proxies (for example, for client connections and bindings). The default
setting is unbounded:

plugins:routing:reference_cache_size="-1";

The router caches transient references on a least recently used basis in the
following order: proxified, unproxified. Unproxified references are promoted
to proxies upon invocation. For an example, see
plugins:routing:proxy_cache_size.

plugins:routing:wsdl_url

plugins:routing:wsdl_url specifies the URL to search for Artix contracts
that contain the routing rules for your application. This value can point to
WSDL in any location, it does not need to be on the local machine.

This value can be either a single URL or a list of URLs. If your application is
using the routing plug-in, you must specify a value for this variable. The
following example is from a default artix.cfg file:

The following example specifies multiple routes:

plugins:routing:wsdl_url="../wsdl/router.wsdl";

plugins:routing:wsdl=["route1.wsdl", "../route2.wsdl",
 "/artix/routes/route3"];
114

Routing
Contract names must be relative to the location from which the Artix router
is started. In this example, the router expects that route1.wsdl is located in
the directory in which it was started, and route2.wsdl was located one
directory level higher.

plugins:routing:use_bypass

plugins:routing:use_bypass specifies a special optimization for
CORBA-only routes. It enables you to use CORBA location forwarding to
connect CORBA clients directly to CORBA servers, bypassing the Artix
routing plug-in.

When the client sends the first request to the router, the router sends back a
CORBA location forwarding reply, which tells the client to connect directly to
the server at the end of the route. The client sends this and all subsequent
requests directly to the server, bypassing the router completely. This feature
is disabled by default. To enable bypass mode, use the following setting:

Routes that must examine the content of each request cannot support
bypass mode because the requests do not go through the router. The
following types of route support bypass mode:

� Straight source-destination routes.

� Failover: This is achieved by co-operation between CORBA and the
router. If a server fails, the forwarded CORBA client automatically falls
back to the original IOR, the router. The router then re-forwards the
client to a healthy server.

� Load balancing: Load cannot be balanced per-operation using bypass.
The router forwards each client to a different server, but when a client
is forwarded all its requests go to the same server. If the server fails,
the client is re-forwarded to the next healthy server in the round-robin,
like failover.

Note: This variable does not accept a mixture of back slashes and
forward slashes. You must specify locations using only �\� or �/�.

plugins:routing:use_bypass="true";
115

CHAPTER 2 | Artix Plug-ins
plugins:routing:use_bypass and plugins:routing:use_pass_through
can both be set together. Bypass is used for CORBA-only applications, while
pass-through applies in all other cases. Bypass gives best performance
because the router effectively disappears. However, pass-through may be
preferable in the following cases:

� Bypass is disabled for per-operation, fan-out, and transport-attribute
routes.

� Bypassed clients must be able to connect directly to the destination
servers. Bypass is not suitable if the router is being used as part of a
firewall, or as a connection concentrator.

plugins:routing:use_pass_through

plugins:routing:use_pass_through specifies whether the router receives a
message and sends it directly to the destination without parsing. This only
applies when the source and destination use the same binding.

The default is true. The router copies the message buffer directly from the
source endpoint to the destination endpoint (if both use the same binding).
This disables reference proxification for same-protocol routes (for example,
HTTP-to-HTTP).

However, if you want all connections to go through the router, set this
variable to false. This means that all references are used across the router.

plugins:routing:wrapped

plugins:routing:wrapped specifies whether a SOAP message uses a
doc-literal WRAPPED style. This enables the router to properly unwrap all
parts of the message. The default value is false.To enable this feature,
specify the following:

Note: Some attributes are carried in the message body, instead of by the
transport. Such attributes are always propagated when the pass-through
optimization is in effect, regardless of attribute propagation rules.

plugins:routing:wrapped="true";
116

Service Lifecycle
Service Lifecycle

Overview The service lifecycle plug-in enables garbage collection of old or unused
proxy services. Dynamic proxy services are used when the Artix router
bridges services that have patterns such as callback, factory, or passes
references to other services. When the router encounters a reference in a
message, it proxifies it into one that a receiving application can use. For
example, an IOR from a CORBA server cannot be used by a SOAP client, so
a new route is dynamically created for the SOAP client.

Dynamic proxies persist in the router memory and can have a negative effect
on performance. You can overcome this by using service garbage collection
to clean up proxies that are no longer used. This cleans up unused proxies
when a threshold has been reached on a least recently used basis.

The Artix plugins:service_lifecycle namespace includes the following
variables:

� plugins:service_lifecycle:evict_static_services

� plugins:service_lifecycle:long_lived_services

� plugins:service_lifecycle:max_cache_size

plugins:service_lifecycle:evict_static_services

plugins:service_lifecycle:evict_static_services specifies whether
the service lifecycle plug-in only evicts transient services or considers all
services for eviction. By default, only transient services are evicted. To evict
both transient and static services, specify the following setting:

plugins:service_lifecycle:evict_static_services="true";
117

CHAPTER 2 | Artix Plug-ins
plugins:service_lifecycle:long_lived_services

plugins:service_lifecycle:long_lived_services specifies a list of
services to exclude from the eviction list. This marks certain services as
important, so that even if they are not used over a long period that, they are
not evicted. For example:

You can specify a single service as follows:

plugins:service_lifecycle:max_cache_size

plugins:service_lifecycle:max_cache_size specifies the maximum
cache size of servants managed by the service_lifecycle plug-in. For
example:

To enable service lifecycle, you must also add the service_lifecycle
plug-in to the orb_plugins list, for example:

plugins:service_lifecycle:long_lived_services =
[�http://demo.myco.com/bank:ATMService�,
�http://demo.myco.com/bank:LoanService�];

plugins:service_lifecycle:long_lived_services =
�http://demo.myco.com/bank:LoanService�;

plugins:service_lifecycle:max_cache_size = "30";

orb_plugins = ["xmlfile_log_stream", "service_lifecycle",
"routing"];
118

Service Lifecycle
When writing client applications, you must make allowances for the garbage
collection service; in particular, ensure that exceptions are handled
appropriately. For example, a client may attempt to proxify to a service that
has already been garbage collected. To prevent this, do either of the
following:

� Handle the exception, get a new reference, and continue. However, in
some cases, this may not be possible if the service has state.

� Set max_cache_size to a reasonable limit to ensure that all your clients
can be accommodated. For example, if you always expect to support
20 concurrent clients, each with a transient service session, you might
wish to configure the max_cache_size to 30.

You must not impact any clients, and ensure that a service is no longer
needed when it is garbage collected. However, if you set max_cache_size
too high, this may use up too much router memory and have a negative
impact on performance. For example, a suggested range for this setting is
30-100.

Note: For a more scalable approach to managing proxies, see
plugins:routing:proxy_cache_size and
plugins:routing:reference_cache_size. This uses a single default
servant (instead of the multiple servants used by service lifecycle), thereby
minimizing the impact on router resources.
119

CHAPTER 2 | Artix Plug-ins
Session Manager

Overview The session manager, session_manager_service, is configured by the
following variable:

� plugins:session_manager_service:peer_timeout

plugins:session_manager_service:peer_timeout

plugins:session_manager_service:peer_timeout specifies the amount of
time, in milliseconds, that the session manager plug-in waits between
keep-alive pings of the endpoints registered with it. The default and
minimum setting is 10000 milliseconds (10 seconds).

The session manager uses a third-party peer manager to ping its endpoints
For more details, see �Peer Manager� on page 108.
120

Session Endpoint Manager
Session Endpoint Manager

Overview The session endpoint manager plug-in, session_endpoint_manager, is
configured by the following variables:

� plugins:session_endpoint_manager:default_group

� plugins:session_endpoint_manager:header_validation

� plugins:session_endpoint_manager:peer_timeout

plugins:session_endpoint_manager:default_group

plugins:session_endpoint_manager:default_group specifies the default
group name for all endpoints that are instantiated using the configuration
scope.

plugins:session_endpoint_manager:header_validation

plugins:session_endpoint_manager:header_validation specifies whether
or not a server validates the session headers passed to it by clients. Default
value is true.

plugins:session_endpoint_manager:peer_timeout

plugins:session_endpoint_manager:peer_timeout specifies the amount of
time, in milliseconds, the session endpoint manager plug-in waits between
keep-alive pings back to the session manager. The default and minimum
setting is 10000 milliseconds (10 seconds).

The session endpoint manager uses a third-party peer manager to ping back
to the session manager. For more details, see �Peer Manager� on page 108.
121

CHAPTER 2 | Artix Plug-ins
Session Manager Simple Policy

Overview The session manager�s simple policy plug-in, sm_simple_policy, is
configured by the following variables:

� plugins:sm_simple_policy:max_concurrent_sessions

� plugins:sm_simple_policy:min_session_timeout

� plugins:sm_simple_policy:max_session_timeout

plugins:sm_simple_policy:max_concurrent_sessions

plugins:sm_simple_policy:max_concurrent_sessions specifies the
maximum number of concurrent sessions the session manager will allocate.
Default value is 1.

plugins:sm_simple_policy:min_session_timeout

plugins:sm_simple_policy:min_session_timeout specifies the minimum
amount of time, in seconds, allowed for a session�s timeout setting. Zero
means the unlimited. Default is 5.

plugins:sm_simple_policy:max_session_timeout

plugins:sm_simple_policy:max_session_timeout specifies the maximum
amount of time, in seconds, allowed for a session�s timesout setting. Zero
means the unlimited. Default is 600.
122

SOAP
SOAP

Overview The soap plug-in includes the following configuration settings:

� plugins:soap:encoding

� plugins:soap:validating

� plugins:soap:write_xsi_type

plugins:soap:encoding

plugins:soap:encoding specifies the character encoding used when the
SOAP plug-in writes service requests or notification broadcasts to the wire.
The valid settings are fully qualified IANA codeset names (Internet Assigned
Numbers Authority). The default value is UTF-8. By default, this variable is
not listed in the artix.cfg file.

For a listing of valid codesets visit the IANA�s website
(http://www.iana.org/assignments/character-sets).

plugins:soap:validating

plugins:soap:validating specifies whether XML schema validation is
performed at runtime. This is not performed by default. To enable runtime
schema validation, use the following setting:

Schema validation is only available in the SOAP binding for read operations,
and is not supported for write operations.

plugins:soap:validating = "true";
123

http://www.iana.org/assignments/character-sets

CHAPTER 2 | Artix Plug-ins
plugins:soap:write_xsi_type

plugins:soap:write_xsi_type specifies whether to write the types of
message parts in the log file. When set to true, this identifies each of the
types associated with the message parts in the log file.

This only affects the content of the log file, giving you more information on
the type contained in each message part. This variable for very useful for
debugging purposes.
124

Transformer Service
Transformer Service

Overview The Artix transformer service uses Artix endpoints that are configured in its
configuration scope using the artix:endpoint:endpoint_list. For each
endpoint that uses the transformer, you must specify an operation map with
the corresponding endpoint_name from the endpoint list. The
artix:endpoint namespace contains the following variables:

� artix:endpoint:endpoint_list

� artix:endpoint:endpoint_name:wsdl_location

� artix:endpoint:endpoint_name:wsdl_port

The transformer service (xslt plug-in) includes the following configuration
variables:

� plugins:xslt:endpoint_name:operation_map

� plugins:xslt:endpoint_name:trace_filter

� plugins:xslt:endpoint_name:use_element_name

� plugins:xslt:servant_list

artix:endpoint:endpoint_list

artix:endpoint:endpoint_list specifies a list of endpoint names that are
used to identify the defined endpoints. Each name in the list represents an
endpoint configured with the other variables in this namespace. The
endpoint names in this list are used by the Web service chain plug-in and
the Artix transformer. For example:

artix:endpoint:endpoint_list = ["corba", "tunnel"];
125

CHAPTER 2 | Artix Plug-ins
artix:endpoint:endpoint_name:wsdl_location

artix:endpoint:endpoint_name:wsdl_location specifies the location of
the Artix contract defining this endpoint. For example:

artix:endpoint:endpoint_name:wsdl_port

artix:endpoint:endpoint_name:wsdl_port specifes the port that defines
the physical representation of the endpoint. Use the following format:

For example:

plugins:xslt:endpoint_name:operation_map

plugins:xslt:endpoint_name:operation_map specifies a list of XSLT
operations and scripts to be used in processing the recieved XML messages.
This list of scripts is used by each servant to process requests. Each
endpoint specified in the servant list has a corresponding operation map
entry. The operation map is specified as a list using the syntax .

Each entry specifies a logical operation defined in the service contract by an
operation element, and the XSLT script to run when a request is made on
the operation. You must specify an XSLT script for every operation defined.
If you do not, the transformer raises an exception when the unmapped
operation is invoked.

artix:endpoint:corba:wsdl_location="C:\myDir/test/wsdl/simple_service.wsdl";

[{service_qname}]service_name[/port_name]

artix:endpoint:my_endpoint:wsdl_port="{http://www.mycorp.com/}MyService/MyPort";

plugins:xslt:endpoint_name:operantion_map = ["wsdlOp1@filename1"
, "wsdlOp2@filename2", ..., "wsdlOpN@filenameN"];
126

Transformer Service
plugins:xslt:endpoint_name:trace_filter

plugins:xslt:endpoint_name:trace_filter specifies optional debug
settings for the output of the XSLT engine. For example:

These settings are described as follows:

plugins:xslt:endpoint_name:use_element_name

plugins:xslt:endpoint_name:use_element_name specifies whether to use
the message part element name or message part name when performing
transformations. The default value is false, which means to use the
message part name.

Using the message part element name matches the behavior of Artix
content-based routing. To use the message part element name, specify the
following setting:

The following WSDL file extract shows an example message part element
name and part name:

plugins:xslt:endpoint_name:trace_filter =
"INPUT+TEMPLATE+ELEMENT+GENERATE+SELECT";

INPUT Traces the XML input passed to the XSLT engine.

TEMPLATE Traces template matches in the XSLT script.

ELEMENT Traces element generation.

GENERATE Traces generation of text and attributes.

SELECT Traces node selections in the XSLT script.

plugins:xslt:endpoint_name:use_element_name = "true";

<message name="client_request_message">
 <part element="tns:client_request_type" name="client_request"/>
</message>
127

CHAPTER 2 | Artix Plug-ins
The following XSL file extract shows the example part element name when
this variable is set to true:

If this variable is set to false, the part name is used instead (in this case,
client_request).

plugins:xslt:servant_list

plugins:xslt:servant_list specifies a list of endpoints that are
instaniated as servants by the transformer. For example:

<xsl:template match="client_request_type">
 <xsl:value-of select="first_name"/>
 <xsl:text> </xsl:text>
 <xsl:value-of select="last_name"/>
</xsl:template>

plugins:xslt:servant_list=["endpoint_one", "endpoint_two" ...]
128

Tuxedo
Tuxedo

Overview The Tuxedo plug-in includes the following variable:

� plugins:tuxedo:server

plugins:tuxedo:server

plugins:tuxedo:server is a boolean that specifies if the Artix process is a
Tuxedo server and must be started using tmboot. The default is:

plugins:tuxedo:server = "false";
129

CHAPTER 2 | Artix Plug-ins
Web Services Addressing

Overview The plugins:messaging_port plug-in specifies variables that support
WS-Addressing (WS-A) and WS-ReliableMessaging (WS-RM). These
include:

� plugins:messaging_port:base_replyto_url

� plugins:messaging_port:supports_wsa_mep

� plugins:messaging_port:supports_wsa_2005_mep

� plugins:messaging_port:wsrm_enabled

See also Web Services Reliable Messaging.

plugins:messaging_port:base_replyto_url

plugins:messaging_port:base_replyto_url specifies a base URI for a
WS-Addressing reply-to endpoint. The scope of a reply-to endpoint is at the
proxy level, and two Artix proxies can not share the same endpoint. This
means that each proxy has its own reply-to endpoint. For example, if the
base URI is specified as:

And if two proxies are instantiated, the first proxy will have a reply-to
endpoint whose URI is as follows:

Similarly, the second proxy will have a reply-to endpoint whose URI is as
follows:

plugins:messaging_port:base_replyto_url=
"http://localhost:0/WSATestClient/BaseReplyTo/";

"http://localhost:2356/WSATestClient/BaseReplyTo/ReplyTo0001";

"http://localhost:2356/WSATestClient/BaseReplyTo/ReplyTo0002";
130

Web Services Addressing
The WS-A reply-to endpoint can be set at the Artix bus-level (like the earlier
example) or at a WSDL port-level, for example:

plugins:messaging_port:supports_wsa_mep

plugins:messaging_port:supports_wsa_mep specifies whether a
WS-Addressing 2004 Message Exchange Pattern (MEP) is enabled. You can
specify this setting either at the Artix bus-level or a specific WSDL port level.
Port-specific configuration overrides bus-specific configuration. When you
enable WS-ReliableMessaging, a WS-Addressing 2004 MEP is enabled
automatically (see �plugins:messaging_port:wsrm_enabled� on page 132).

Bus-specific configuration

To enable WS-A at bus level, use the following setting:

WSDL port-specific configuration

To enable WS-A at a specific WSDL port level, you must specify the WSDL
service QName and the WSDL port name, for example:

plugins:messaging_port:base_replyto_url:http://www.iona.com/bus/
tests:SOAPHTTPService:SOAPHTTPPort=
"http://localhost:0/WSATestClient/BaseReplyTo/";

plugins:messaging_port:supports_wsa_mep = "true";

plugins:messaging_port:supports_wsa_mep:http://www.iona.com/bus/
tests:SOAPHTTPService:SOAPHTTPPort="true";

Note: Either WS-A 2004 or WS-A 2005 should be enabled. If both are
enabled, Artix enables WS-A 2005, and ignores WS-A 2004, and logs a
MessagingPort warning message.
131

CHAPTER 2 | Artix Plug-ins
plugins:messaging_port:supports_wsa_2005_mep

plugins:messaging_port:supports_wsa_2005_mep specifies whether a
WS-Addressing 2005 Message Exchange Pattern (MEP) is enabled. You can
specify this setting either at the Artix bus-level or a specific WSDL port level.
Port-specific configuration overrides bus-specific configuration.

Bus-specific configuration

To enable WS-A at bus level, use the following setting:

WSDL port-specific configuration

To enable WS-A at a specific WSDL port level, you must specify the WSDL
service QName and the WSDL port name, for example:

plugins:messaging_port:wsrm_enabled

plugins:messaging_port:wsrm_enabled specifies whether
WS-ReliableMessaging is enabled. WS-RM can be enabled either at the
bus-level or a specific WSDL port level. Port-specific configuration overrides
bus-specific configuration. If you wish to make a two-way invocation, you
must configure a WS-RM-enabled WSDL port with a non-anonymous
reply-to endpoint.

Bus-specific configuration

To enable WS-RM for a specific bus, use the following setting:

plugins:messaging_port:supports_wsa_2005_mep = "true";

plugins:messaging_port:supports_wsa_2005_mep:http://www.iona.com
/bus/tests:SOAPHTTPService:SOAPHTTPPort="true";

Note: A WS-Addressing 2004 MEP must be used with WS-RM. You can
not use a WS-Addressing 2005 MEP with WS-Reliable Messaging
(WS-RM).

plugins:messaging_port:wsrm_enabled = "true";
132

Web Services Addressing
WSDL port-specific configuration

To enable WS-RM at a specific WSDL port level, specify the WSDL service
QName and also the WSDL port name, for example:

plugins:messaging_port:wsrm_enabled:http://www.iona.com/bus/test
s:SOAPHTTPService:SOAPHTTPPort="true";

Note: To enable WS-RM in the Artix runtime, you must also add the wsrm
plug-in to your orb_plugins list.
133

CHAPTER 2 | Artix Plug-ins
Web Services Chain Service

Overview The Web services chain service refers back to the Artix endpoints configured
in its configuration scope using artix:endpoint:endpoint_list. For each
endpoint that will be part of the chain, you specify a service chain with the
corresponding endpoint_name from the endpoint list.

The Web service chain service, ws_chain, uses the following configuration
variables:

� plugins:chain:endpoint_name:operation_name:service_chain

� plugins:chain:init_on_first_call

� plugins:chain:servant_list

plugins:chain:endpoint_name:operation_name:service_chain

plugins:chain:endpoint_name:operation_name:service_chain specifies
the chain followed by requests made on the operation specified by
opereration_name. The operation must be defined as part of the endpoint
specified by endpoint_name.

Service chains are specified using the following syntax:

Each operation and port entry correspond to an operation and a port in the
endpoint�s Artix contract. The request is passed through each service in the
order specified. The final operation in the list returns the response back to
the endpoint.

["operation1@port1","operation2@port2", ..., "operationN@portN"]
134

Web Services Chain Service
plugins:chain:init_on_first_call

plugins:chain:init_on_first_call specifies whether to instantiate proxy
services when a call is made. Defaults to false. This means that proxies are
instantiated when the chain servant starts.

The chain invokes on other services, and for this reason, must instantiate
proxies. This can be done when the chain servant starts (variable set to
false), or later, when a call is made (variable set to true).

You might not be able to properly instantiate proxies when the servant is
started because the servant to call is not started. For example, this applies
when using the Artix locator or UDDI.

plugins:chain:servant_list

plugins:chain:servant_list specifies a list of services in the Web service
chain. Each name in the list must correspond to a service specified in the
configuration scope. The following simple example shows a list that
contains one service:

bus:qname_alias:my_client =
"{http://www.iona.com/xslt}my_client_service";

bus:initial_contract:url:client = "../../etc/my_transformation.wsdl";

...

plugins:chain:servant_list = ["my_client"];
135

CHAPTER 2 | Artix Plug-ins
Web Services Reliable Messaging

Overview The plugins:wsrm plug-in specifies variables that support
WS-ReliableMessaging (WS-RM). These include:

� plugins:wsrm:acknowledgement_interval

� plugins:wsrm:acknowledgement_uri

� plugins:wsrm:base_retransmission_interval

� plugins:wsrm:delivery_assurance_policy

� plugins:wsrm:disable_exponential_backoff_retransmission_interval

� plugins:wsrm:enable_per_thread_sequence_scope

� plugins:wsrm:max_messages_per_sequence

� plugins:wsrm:max_unacknowledged_messages_threshold

� plugins:wsrm:thread_pool:high_water_mark

� plugins:wsrm:thread_pool:initial_threads

� plugins:wsrm:thread_pool:low_water_mark

� plugins:wsrm:thread_pool:max_queue_size

� plugins:wsrm:thread_pool:stack_size

� plugins:wsrm:use_server_endpoint_for_wsrm_acknowledgement

� plugins:wsrm:use_wsa_replyto_endpoint_for_wsrm_acknowledgement

See also Web Services Addressing.

plugins:wsrm:acknowledgement_interval

plugins:wsrm:acknowledgement_interval specifies the interval at which
the WS-RM destination sends asynchronous acknowledgements. This is in
addition to the synchronous acknowledgements that are sent upon the
receipt of an incoming message. The default value is 3000 milliseconds.

Bus configuration

The following example shows how to set for a specific bus:

plugins:wsrm:acknowledgement_interval = "2500";
136

Web Services Reliable Messaging
WSDL port configuration

The following example shows how to set for a specific WSDL port:

plugins:wsrm:acknowledgement_uri

plugins:wsrm:acknowledgement_uri specifies the endpoint at which the
WS-RM source receives acknowledgements. This is also known as
wsrm:AcksTo. The default value is the WS-A anonymous URI:

Bus configuration

The following example shows how to configure for a specific bus:

WSDL port configuration

The following example shows how to configure for a specific WSDL port:

plugins:wsrm:base_retransmission_interval

plugins:wsrm:base_retransmission_interval specifies the interval at
which a WS-RM source retransmits a message that has not yet been
acknowledged. The default value is 2000 milliseconds.

Bus configuration

The following example shows how to set for a specific bus:

plugins:wsrm:acknowledgement_interva:http://www.iona.com/bus/tes
ts:SOAPHTTPService:SOAPHTTPPort = "2500";

http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous

plugins:wsrm:acknowledgement_uri =
"http://localhost:0/WSASource/DemoAcksTo/";

plugins:wsrm:acknowledgement_uri:http://www.iona.com/bus/tests:
SOAPHTTPService:SOAPHTTPPort =

"http://localhost:0/WSASource/DemoAcksTo/";

plugins:wsrm:base_retransmission_interval = "3000";
137

CHAPTER 2 | Artix Plug-ins
WSDL port configuration

The following example shows how to set for a specific WSDL port:

plugins:wsrm:delivery_assurance_policy

plugins:wsrm:delivery_assurance_policy specifies the message delivery
assurance policy. The available options are:

plugins:wsrm:base_retransmission_interval:http://www.iona.com/bu
s/tests:SOAPHTTPService:SOAPHTTPPort = "3000";

ExactlyOnceInOrder The RM destination delivers the messages to the
application destination exactly once, in
increasing order of RM message ID. The calls to
the application destination are serialized. This is
the default value.

ExactlyOnceConcurrent The RM destination delivers the messages to the
application destination exactly once. Instead of
a serialized message delivery (as in
ExactlyOnceInOrder), messages are delivered
concurrently, so they may not be delivered in
order.

However, for a message with ID n that is being
delivered, all the messages in the range of 1 to n
are received and acknowledged by the RM
destination.

ExactlyOnceReceivedOrderThe RM destination delivers the messages to the
application destination exactly once, as soon as
it is received from the underlying transport.

The RM destination makes no attempt to ensure
that the messages are delivered in order of
message ID, or that all the previous messages
have been received/acknowledged. The benefit
of this policy is that it avoids a context switch
during dispatch in the RM layer, and messages
are not stored in the in-memory undelivered
messages map.
138

Web Services Reliable Messaging
Bus configuration

The following example shows how to set for a specific bus:

WSDL port configuration

The following example shows how to set for a specific WSDL port:

plugins:wsrm:disable_exponential_backoff_retransmission_interval

plugins:wsrm:disable_exponential_backoff_retransmission_interval
determines if successive retransmission attempts for an unacknowledged
message are performed at exponential intervals or not. The default value is
false, which means that they are attempted at exponential intervals.

If the value is true (exponential backoff disabled), the retransmission of
unacknowledged messages is performed at the base retransmission interval.

Bus configuration

The following example shows how to set for a specific bus:

WSDL port configuration

The following example shows how to set for a specific WSDL port:

plugins:wsrm:delivery_assurance_policy =
"ExactlyOnceConcurrent";

plugins:wsrm:delivery_assurance_policy:http://www.iona.com/bus/t
ests:SOAPHTTPService:SOAPHTTPPort = "ExactlyOnceConcurrent";

plugins:wsrm:disable_exponential_backoff_retransmission_interval
= "true";

plugins:wsrm:disable_exponential_backoff_retransmission_interval
:http://www.iona.com/bus/tests:SOAPHTTPService:SOAPHTTPPort =
"true";
139

CHAPTER 2 | Artix Plug-ins
plugins:wsrm:enable_per_thread_sequence_scope

plugins:wsrm:enable_per_thread_sequence_scope specifies whether to
create a separate RM sequence session for each invoking thread. By default,
an RM session is shared by all threads. Enabling this setting creates a
different RM sequence session for each thread, and eliminates the
possibility of indeterminate message ID allocation. All messages sent by a
particular thread are allocated a message ID in increasing order. When the
RM source endpoint is closed, it closes all the open RM sequence sessions.
The default value is false (disabled).

Bus configuration

The following example shows how to set for a specific bus:

WSDL port configuration

The following example shows how to set for a specific WSDL port:

plugins:wsrm:max_messages_per_sequence

plugins:wsrm:max_messages_per_sequence specifies the maximum number
of user messages that are permitted in a WS-RM sequence. The default is
unlimited; this is sufficient is for most situations.

When this attribute is set, the RM endpoint creates a new RM sequence
when the limit is reached and after receiving all the acknowledgements for
the messages previously sent. The new message is then sent using the new
sequence.

Bus configuration

The following example shows how to set for a specific bus

plugins:wsrm:enable_per_thread_sequence_scope = "true";

plugins:wsrm:enable_per_thread_sequence_scope:http://www.iona.co
m/bus/tests:SOAPHTTPService:SOAPHTTPPort = "true";

plugins:wsrm:max_messages_per_sequence = "1";
140

Web Services Reliable Messaging
WSDL port configuration

The following example shows how to set for a specific WSDL port:

plugins:wsrm:max_retransmission_attempts

plugins:wsrm:max_retransmission_attempts specifies the maximum
number of retransmission attempts that the RM source session makes for an
unacknowledged message. If the number of retransmission attempts
reaches this threshold, RM source session sends a
wsrm:SequenceTerminated fault to the peer RM destination session, and
closes the session. Any subsequent attempt to send message on this session
results in an IT_Bus::Exception being thrown. The default value is -1 (no
limit on the number of retransmission attempts).

Bus configuration

The following example shows how to set for a specific bus:

WSDL port configuration

The following example shows how to set for a specific WSDL port:

plugins:wsrm:max_unacknowledged_messages_threshold

plugins:wsrm:max_unacknowledged_messages_threshold specifies the
maximum permissible number of unacknowledged messages at the WS-RM
source. When the WS-RM source reaches this limit, it sends the last
message with a wsrm:AckRequested header indicating that a WS-RM
acknowledgement should be sent by the WS-RM destination as soon as
possible.

plugins:wsrm:max_messages_per_sequence:http://www.iona.com/bus/t
ests:SOAPHTTPService:SOAPHTTPPort = "1";

plugins:wsrm:max_retransmission_attempts = "8";

plugins:wsrm:max_retransmission_attempts:http://www.iona.com/bus
/tests:SOAPHTTPService:SOAPHTTPPort = "8";
141

CHAPTER 2 | Artix Plug-ins
In addition, when the WS-RM source has reached this limit, it does not
accept further messages from the application source. This means that the
caller thread (making the invocation on the proxy) is blocked until the
number of unacknowledged messages drops below the threshold.

The default value is -1 (no limit on number of unacknowledged messages).

Bus configuration

The following example shows how to set for a specific bus:

WSDL port configuration

The following example shows how to set for a specific WSDL port:

plugins:wsrm:thread_pool:high_water_mark

plugins:wsrm:thread_pool:high_water_mark specifies the maximum
number of threads allowed in the WS-RM thread pool. The default is:

plugins:wsrm:thread_pool:initial_threads

plugins:wsrm:thread_pool:initial_threads specifies the number of
initial threads in the WS-RM thread pool. The default is:

plugins:wsrm:thread_pool:low_water_mark

plugins:wsrm:thread_pool:low_water_mark specifies the minimum
number of threads allowed in the WS-RM thread pool. The default is:

plugins:wsrm:max_unacknowledged_messages_threshold = "50";

plugins:wsrm:max_unacknowledged_messages_threshold:http://www.io
na.com/bus/tests:SOAPHTTPService:SOAPHTTPPort = "50";

plugins:wsrm:thread_pool:high_water_mark="-1";

plugins:wsrm:thread_pool:initial_threads="5";

plugins:wsrm:thread_pool:low_water_mark="-1";
142

Web Services Reliable Messaging
plugins:wsrm:thread_pool:max_queue_size

plugins:wsrm:thread_pool:max_queue_size specifies the maximum
number of request items that can be queued on the WS-RM thread work
queue. The default is:

plugins:wsrm:thread_pool:stack_size

plugins:wsrm:thread_pool:stack_size specifies the stack size for each
thread. The stack size is specified in bytes. The default is:

plugins:wsrm:use_server_endpoint_for_wsrm_acknowledgement

plugins:wsrm:use_server_endpoint_for_wsrm_acknowledgement specifies
that the server endpoint, which receives the application request, also
receives acknowledgements for the application response. This option only
applies when a proxy is used to make two-way invocations.

Bus configuration

The following example shows how to configure for a specific Artix bus:

WSDL port configuration

The following example shows how to configure for a specific WSDL port:

plugins:wsrm:thread_pool:max_queue_size="-1";

plugins:wsrm:thread_pool:stack_size="OS-specificDefault
ThreadStackSize";

plugins:wsrm:use_server_endpoint_for_wsrm_acknowledgement =
"true";

plugins:wsrm:use_server_endpoint_for_wsrm_acknowledgement:http:/
/www.iona.com/bus/tests:SOAPHTTPService:SOAPHTTPPort =
"true";
143

CHAPTER 2 | Artix Plug-ins
plugins:wsrm:use_wsa_replyto_endpoint_for_wsrm_acknowledgement

plugins:wsrm:use_wsa_replyto_endpoint_for_wsrm_acknowledgement

specifies that a reply-to endpoint (wsa:replyTo), which receives the
application response, also receives acknowledgements for application
requests. This option only applies when a proxy is used to make two-way
invocations.

Bus configuration

The following example shows how to configure for a specific Artix bus:

WSDL port configuration

The following example shows how to configure for a specific WSDL port:

plugins:wsrm:use_wsa_replyto_endpoint_for_wsrm_acknowledgement =
"true";

plugins:wsrm:use_wsa_replyto_endpoint_for_wsrm_acknowledgement:h
ttp://www.iona.com/bus/tests:SOAPHTTPService:SOAPHTTPPort =
"true";
144

WSDL Publishing Service
WSDL Publishing Service

Overview The WSDL publishing service, wsdl_publish, includes the following
configuration variables:

� plugins:wsdl_publish:hostname

� plugins:wsdl_publish:processor

� plugins:wsdl_publish:publish_port

Although all three variables are optional, it is recommended that you define
plugins:wsdl_publish:publish_port and
plugins:wsdl_publish:hostname in production environments.

See also enable_secure_wsdl_publish.

plugins:wsdl_publish:hostname

plugins:wsdl_publish:hostname specifies how the hostname is
constructed in the wsdl_publish URL. This is the URL that the
wsdl_publish plug-in uses to retrieve WSDL contracts.

By default, the unqualified primary hostname is used. The possible values
are as follows:

canonical Use the fully qualified hostname of the machine in the
URL (for example http://myhost.mydomain.com).

unqualified Use the unqualified local hostname of the machine in
the URL. This does not include the domain name with
the hostname (for example, http://myhost). This is
the default.

ipaddress Use the IP address associated with the machine in
the URL (for example http://10.1.2.3).

SecondaryHostName For multi-homed machines, use the specified literal
string for a secondary hostname in the URL. You can
specify a logical name or a virtual IP address (for
example, http://myhost.mydomain.com or
http://10.1.2.3). Any leading or trailing white
spaces are stripped out.
145

CHAPTER 2 | Artix Plug-ins
plugins:wsdl_publish:processor

plugins:wsdl_publish:processor specifies the type of preprocessing done
before publishing a WSDL contract. The possible values are as follows:

plugins:wsdl_publish:publish_port

plugins:wsdl_publish:publish_port specifies the port on which the
WSDL publishing service can be contacted.

The default value is 0, which specifies that wsdl_publish will use a port
supplied by the operating system at runtime. You can get the wsdl_publish
URL from the bus.

Note: For details of how the address is published in dynamically
generated WSDL contracts, see
policies:at_http:server_address_mode_policy:publish_hostname and
policies:soap:server_address_mode_policy:publish_hostname.

artix Strip out server-side artifacts. This is the default setting.

standard Strip out server side artifacts and IONA proprietary extensors.

none Disable preprocessing.
146

XML File Log Stream
XML File Log Stream

Overview The XML file log stream plug-in, xmlfile_log_stream, enables you to view
logging output in an XML file. It includes the following variables:

� plugins:xmlfile_log_stream:buffer_file

� plugins:xmlfile_log_stream:filename

� plugins:xmlfile_log_stream:filename_date_format

� plugins:xmlfile_log_stream:log_elements

� plugins:xmlfile_log_stream:log_thread_id

� plugins:xmlfile_log_stream:milliseconds_to_log

� plugins:xmlfile_log_stream:rolling_file

� plugins:xmlfile_log_stream:use_pid

plugins:xmlfile_log_stream:buffer_file

plugins:xmlfile_log_stream:buffer_file specifies whether the output
stream is sent to a buffer before it writes to a local log file. To specify this
behavior, set this variable to true:

When set to true, by default, the buffer is output to a file every 1000
milliseconds when there are more than 100 messages logged. This log
interval and number of log elements can also be configured.

plugins:xmlfile_log_stream:filename

plugins:xmlfile_log_stream:filename specifies the filename for your log
file, for example:

If you do not specify a file name, logging is sent to stdout.

plugins:xmlfile_log_stream:buffer_file = "true";

plugins:xmlfile_log_stream:filename = "artix_logfile.xml";
147

CHAPTER 2 | Artix Plug-ins
plugins:xmlfile_log_stream:filename_date_format

plugins:xmlfile_log_stream:filename_date_format specifies the format
of the date in an XML-based rolling log file. The specified date conforms to
the format rules of the ANSI C strftime() function. For example:

On the 31st January 2006, this results in a log file named
my_log_2006_01_31.

plugins:xmlfile_log_stream:log_elements

plugins:xmlfile_log_stream:log_elements specifies the number of log
messages that must be in the buffer before they are output to a log file. The
default is 100 messages.

For example, the following configuration writes the log output to a log file if
there are more than 20 log messages in the buffer.

plugins:xmlfile_log_stream:log_thread_id

plugins:xmlfile_log_stream:log_thread_id specifies whether the thread
ID is logged in the log message or not, for example:

The default is true.

plugins:xmlfile_log_stream:rolling_file="true";
plugins:xmlfile_log_stream:filename="my_log";
plugins:xmlfile_log_stream:filename_date_format="_%Y_%m_%d";

plugins:xmlfile_log_stream:log_elements = "20";

plugins:xmlfile_log_stream:log_thread_id = "true";
148

XML File Log Stream
plugins:xmlfile_log_stream:milliseconds_to_log

plugins:xmlfile_log_stream:milliseconds_to_log specifies how often in
milliseconds that the log buffer is output to a log file. The default is 1000
milliseconds.

For example, the following configuration writes the log output to a log file
every 400 milliseconds.

plugins:xmlfile_log_stream:rolling_file

plugins:xmlfile_log_stream:rolling_file is a boolean which specifies
that the logging plug-in creates a new log file each day to prevent the log file
from growing indefinitely. In this model, the stream appends the current
date to the configured filename. This produces a complete filename, for
example:

A new file begins with the first event of the day and ends at 23:59:59 each
day. The default behavior is true. To disable rolling file behavior, set this
variable to false. For example:

plugins:xmlfile_log_stream:use_pid

plugins:xmlfile_log_stream:use_pid specifies that the logging plug-in
uses a optional process identifier. The default is false. To enable the
process identifier, set this variable to true:

plugins:xmlfile_log_stream:milliseconds_to_log = "400";

/var/adm/artix.log.02172005

plugins:xmlfile_log_stream:rolling_file = "false";

plugins:xmlfile_log_stream:use_pid = "true";
149

CHAPTER 2 | Artix Plug-ins
Custom Plug-ins

Overview When you write a custom plug-in for Artix, using either C++ or JAX-RPC,
you must provide some configuration to the Artix runtime so that Artix can
locate the libraries and initial settings required to properly instantiate the
plug-in. This information is provided in the Artix .cfg file used by your
application. Typically, you would place the information in the global scope
so that more than one of your applications can use the plug-in.

C++ plug-in libraries When writing custom C++ plug-ins, you build your plug-in as a shared
library that the bus loads at runtime. In the .cfg file, you need to provide
the name of the shared library that loads the plug-in. You can do this using
the following configuration variable:

plugins:PluginName:shlib_name

The plug-in name provided must correspond to the plug-in name that is
listed in the orb_plugins list.

Example 3 shows an example of configuring a custom plug-in called
my_filter that is implemented by the shared library my_filter.dll.

Example 3: Custom C++ Plug-in Configuration

plugins:my_filter:shlib_name="my_filter"
...
my_app
{
 orb_plugins=["my_filter" ...];
 ...
}

150

Custom Plug-ins
JAX-RPC plug-in classes JAX-RPC plug-ins are loaded using the plug-in factory that you implemented
for the custom plug-in. In an Artix .cfg file, you must provide that name for
the plug-in factory class. You can do this using the following configuration
variable:

plugins:PluginName:Classname

The plug-in name provided must correspond to the plug-in name listed in
the orb_plugins list. Example 4 shows an example of configuring a custom
plug-in called my_java_filter that has the factory class
myJavaFilterFactory.

Specifying a classloading
environment

If you want a custom plug-in to use an Artix classloader environment,
specify the plugins:PluginName:CE_Name variable. The classloader
environment name is specified as a unique string.

You must also use the ce:CE_Name:FileName variable to specify the location
of the XML file that describes the classloader environment. CE_Name is the
classloader environment name used when configuring the plug-in.

The following example shows the configuration for loading a custom plug-in
using a classloader environment.

For more details, see Developing Artix Applications with JAX-RPC.

Example 4: Custom Java Plug-in Configuration

plugins:my_java_filter:Classname="myJavaFilterFactory"
...
my_app
{
 orb_plugins=[..., "java"];
 java_plugins=["my_java_filter"];
 ...
}

plugins:my_app:CE_Name="my_app_ce";
ce:my_app_ce:FileName="\artix_ces\my_app_ce.xml";
151

../../jaxrpc_pguide/index.html

CHAPTER 2 | Artix Plug-ins
Prerequisite plug-ins In addition to providing a pointer to the plug-in�s implementation, you can
also provide a list of plug-ins that your plug-in requires to be loaded. You
can provide this information using the following configuration variable:

plugins:PluginName:prerequisite_plugins.

The prerequisite plug-ins are specified as a list of plug-in names similar to
that specified in the orb_plugins list. When you provide this list the bus
ensures that the required plug-ins are loaded whenever your plug-in is
loaded.

Example 5 shows configuring some prerequisite plug-ins for a custom
plug-in called my_filter.

The syntax is the same for C++ and JAX-RPC applications.

Example 5: Custom Prerequisite Plug-in Configuration

plugins:my_filter:prerequisite_plugins = ["my_plugin_1",
"my_plugin_2", "my_plugin_3", "my_plugin4"];
152

CHAPTER 3

Artix Security
This appendix describes variables used by the IONA Security
Framework. The Artix security infrastructure is highly
configurable.

In this appendix This appendix discusses the following topics:

Applying Constraints to Certificates page 155

bus:initial_contract page 157

bus:security page 158

initial_references page 160

password_retrieval_mechanism page 162

plugins:asp page 163

plugins:at_http page 166

plugins:atli2_tls page 171

plugins:csi page 172

plugins:csi page 172

plugins:gsp page 173

plugins:https page 178

plugins:iiop_tls page 179
 153

APPENDIX 3 | Artix Security
plugins:java_server page 183

plugins:login_client page 186

plugins:login_service page 187

plugins:security page 188

plugins:wsdl_publish page 191

plugins:wss page 192

policies page 194

policies:asp page 200

policies:bindings page 203

policies:csi page 205

policies:external_token_issuer page 208

policies:https page 209

policies:iiop_tls page 213

policies:security_server page 223

policies:soap:security page 225

principal_sponsor page 226

principal_sponsor:csi page 230

principal_sponsor:http page 233

principal_sponsor:https page 235

principal_sponsor:wsse page 237
154

Applying Constraints to Certificates
Applying Constraints to Certificates

Certificate constraints policy You can use the CertConstraintsPolicy to apply constraints to peer X.509
certificates by the default CertificateValidatorPolicy. These conditions
are applied to the owner�s distinguished name (DN) on the first certificate
(peer certificate) of the received certificate chain. Distinguished names are
made up of a number of distinct fields, the most common being
Organization Unit (OU) and Common Name (CN).

Configuration variable You can specify a list of constraints to be used by CertConstraintsPolicy
through the policies:iiop_tls:certificate_constraints_policy or
policies:certificate_constraints_policy configuration variables. For
example:

policies:iiop_tls:certificate_constraints_policy =
["CN=Johnny*,OU=[unit1|IT_SSL],O=IONA,C=Ireland,ST=Dublin,L=Ea
rth","CN=Paul*,OU=SSLTEAM,O=IONA,C=Ireland,ST=Dublin,L=Earth",

"CN=TheOmnipotentOne"];

Constraint language These are the special characters and their meanings in the constraint list:

Example This is an example list of constraints:

policies:iiop_tls:certificate_constraints_policy = [
"OU=[unit1|IT_SSL],CN=Steve*,L=Dublin",

"OU=IT_ART*,OU!=IT_ARTtesters,CN=[Jan|Donal],ST=
Boston"];

 * Matches any text. For example:

an* matches ant and anger, but not aunt

[] Grouping symbols.

 | Choice symbol. For example:

OU=[unit1|IT_SSL] signifies that if the OU is unit1
or IT_SSL, the certificate is acceptable.

 =, != Signify equality and inequality respectively.
 155

APPENDIX 3 | Artix Security
This constraint list specifies that a certificate is deemed acceptable if and
only if it satisfies one or more of the constraint patterns:

If
The OU is unit1 or IT_SSL
And
The CN begins with the text Steve
And
The location is Dublin

Then the certificate is acceptable
Else (moving on to the second constraint)
If

The OU begins with the text IT_ART but isn't IT_ARTtesters
And
The common name is either Donal or Jan
And
The State is Boston

Then the certificate is acceptable
Otherwise the certificate is unacceptable.

The language is like a boolean OR, trying the constraints defined in each
line until the certificate satisfies one of the constraints. Only if the certificate
fails all constraints is the certificate deemed invalid.

Note that this setting can be sensitive about white space used within it. For
example, "CN =" might not be recognized, where "CN=" is recognized.

Distinguished names For more information on distinguished names, see the Security Guide.
156

bus:initial_contract
bus:initial_contract
The bus:initial_contract namespace contains the following configuration
variable:

� url:isf_service

� url:login_service

url:isf_service

Specifies the location of the Artix security service�s WSDL contract. This
variable is needed by applications that connect to the Artix security service
through a protocol specified in the physical part of the security service�s
WSDL contract (the alternative would be to connect over IIOP/TLS using a
CORBA object reference).

This variable is used in conjunction with the
policies:asp:use_artix_proxies configuration variable.

url:login_service

Specifies the location of the login service WSDL to the login_client
plug-in. The value of this variable can either be a relative pathname or a
URL. The login_client requires access to the login service WSDL in order
to obtain details of the physical contract (for example, host and IP port).
 157

APPENDIX 3 | Artix Security
bus:security
The variables in the bus:security are intended for use with the
it_container_admin utility, in order to facilitate communication with a
secure Artix container. The bus:security namespace contains the following
configuration variables:

� enable_security

� user_name

� user_password

enable_security

The bus:security:enable_security variable is a boolean variable that
enables a client to send WSS username and password credentials. When
true, the client sends WSS username and password credentials with every
SOAP request message (whether or not the connection is secured by
SSL/TLS); when false, the feature is disabled.

There are essentially two different ways of initializing the WSS username
and password credentials on the client side:

� From the Artix .cfg file�you can set the WSS credentials in the Artix
configuration using the related user_name and user_password
configuration variables. For example:

� From the command line�if you omit the bus:security:user_name
and bus:security:user_password settings from the Artix
configuration, the client program will prompt you for the username and
password credentials as it starts up. For example:

Artix .cfg file
bus:security:enable_security = "true";
bus:security:user_name = "Username";
bus:security:user_password = "Password";

Please enter login :
Please enter password :
158

bus:security
user_name

Initializes a WSS username. This variable is intended for use in conjunction
with the bus:security:enable_security variable as part of the
configuration for the it_container_admin utility.

user_password

Initializes a WSS password. This variable is intended for use in conjunction
with the bus:security:enable_security variable as part of the
configuration for the it_container_admin utility.
 159

APPENDIX 3 | Artix Security
initial_references
The initial_references namespace contains the following configuration
variables:

� IT_SecurityService:reference

� IT_TLS_Toolkit:plugin

IT_SecurityService:reference

This configuration variable specifies the location of the Artix security service.
Clients of the security service need this configuration setting in order to
locate and connect to the security service through the IIOP/TLS protocol.

The most convenient way to initialize this variable is to use a corbaloc URL.
The corbaloc URL typically has the following format:

corbaloc:it_iiops:1.2@Hostname:Port/IT_SecurityService

Where Hostname is the name of the host where the security service is
running and Port is the IP port where the security service is listening for
incoming connections.

If the security service is configured as a cluster, you need to use a
multi-profile corbaloc URL, which lists the addresses of all the services in
the cluster. For example, if you configure a cluster of three services�with
addresses security01:5001, security02:5002, and security03:5003�you
would set the corbaloc URL as follows:

corbaloc:it_iiops:1.2@security01:5001,it_iiops:1.2@security02:500
2,it_iiops:1.2@security03:5003/IT_SecurityService

Note: This variable is not relevant to clients that connect to a
HTTPS-based security service.
160

initial_references
IT_TLS_Toolkit:plugin

This configuration variable enables you to specify the underlying SSL/TLS
toolkit to be used by Artix. It is used in conjunction with the
plugins:baltimore_toolkit:shlib_name,
plugins:schannel_toolkit:shlib_name (Windows only) and
plugins:systemssl_toolkit:shlib_name (z/OS only) configuration
variables to implement SSL/TLS toolkit replaceability.

The default is the Baltimore toolkit.
 161

APPENDIX 3 | Artix Security
password_retrieval_mechanism
The configuration variables in the password_retrieval_mechanism
namespace are intended to be used only by the Artix services. The following
variables are defined in this namespace:

� inherit_from_parent

� use_my_password_as_kdm_password

inherit_from_parent

If an application forks a child process and this variable is set to true, the
child process inherits the parent�s X.509 certificate password through the
environment.

use_my_password_as_kdm_password

This variable should be set to true only in the scope of the KDM plug-in�s
container. From a security perspective it is dangerous to do otherwise as the
password could be left in cleartext within the process.

The KDM is a locator plug-in and so it is natural that it should use the
locator's identity as its identity. However, it requires a password to encrypt
its security information. By default the KDM requests such a password from
the user during locator startup and this is separate from the locator
password. The locator password would be used if this variable is set to
true.

Note: This variable is intended for use only by the standard Artix services.

Note: This variable is intended for use only by the standard Artix services.
162

plugins:asp
plugins:asp
The plugins:asp namespace contains the following variables:

� authentication_cache_size

� authentication_cache_timeout

� authorization_realm

� default_password

� enable_security_service_cert_authentication

� enable_security_service_load_balancing

� security_type

� security_level

authentication_cache_size

The maximum number of credentials stored in the authentication cache. If
this size is exceeded, any new authentication tokens acquired by calling the
Artix security service are not stored in the cache. The cache can shrink
again if some of the cached credentials expire (either because the individual
token expiry time is exceeded or the
plugins:asp:authentication_cache_timeout is exceeded).

A value of -1 (the default) means unlimited size. A value of 0 means disable
the cache. The value must lie within the range -1 to 2^31-1.

Note: This variable does not affect CORBA credentials. For details of how
to configure the CORBA cache, see �plugins:gsp� on page 173.
 163

APPENDIX 3 | Artix Security
authentication_cache_timeout

The time (in seconds) after which a credential expires. Expired credentials
are removed from the cache and must re-authenticate with the Artix security
service on the next call from that user.

A value of -1 means an infinite time-out. A value of 0 means disable the
cache. The value must lie within the range -1 to 2^31-1.

Default is 600 seconds.

authorization_realm

Specifies the Artix authorization realm to which an Artix server belongs. The
value of this variable determines which of a user�s roles are considered
when making an access control decision.

For example, consider a user that belongs to the ejb-developer and
corba-developer roles within the Engineering realm, and to the ordinary
role within the Sales realm. If you set plugins:asp:authorization_realm
to Sales for a particular server, only the ordinary role is considered when
making access control decisions (using the action-role mapping file).

The default is IONAGlobalRealm.

default_password

When the client credentials originate either from a CORBA Principal
(embedded in a SOAP header) or from a certificate subject, the
default_password variable specifies the password to use on the server side.
The plugins:asp:default_password variable is used to get around the
limitation that a PRINCIPAL identity and a CERT_SUBJECT are propagated
without an accompanying password.

The artix_security plug-in uses the received client principal together with
the password specified by plugins:asp:default_password to authenticate
the user through the Artix security service.

Note: This variable does not affect CORBA credentials. For details of how
to configure the CORBA cache, see �plugins:gsp� on page 173.
164

plugins:asp
The default value is the string, default_password.

enable_security_service_cert_authentication

When this parameter is set to true, the client certificate is retrieved from the
TLS connection. If no other credentials are available, the client certificate is
then sent to the Artix security service for authentication.

The client certificate has the lowest precedence for authentication. Hence, if
any other credentials are presented by the client (for example, if the client
sends a WSS username and password), these alternative credentials are
sent to the Artix security service instead of the certificate credentials.

Default is false.

enable_security_service_load_balancing

A boolean variable that enables load balancing over a cluster of security
services. If an application is deployed in a domain that uses security service
clustering, the application should be configured to use client load balancing
(in this context, client means a client of the Artix security service). See also
policies:iiop_tls:load_balancing_mechanism.

Default is false.

security_type

(Obsolete) From Artix 3.0 onwards, this variable is ignored.

security_level

Specifies the level from which security credentials are picked up. The
following options are supported by the artix_security plug-in:

MESSAGE_LEVEL Get security information from the transport header. This
is the default.

REQUEST_LEVEL Get the security information from the message header.
 165

APPENDIX 3 | Artix Security
plugins:at_http
The plugins:at_http configuration variables are provided to facilitate
migration from legacy Artix applications (that is, Artix releases prior to
version 3.0). The plugins:at_http namespace contains variables that are
similar to the variables from the old (pre-version 3.0) plugins:http
namespace. One important change made in 3.0, however, is that an
application�s own certificate must now be provided in PKCS#12 format
(where they were previously supplied in PEM format).

If the variables from the plugins:at_http namespace are used, they take
precedence over the analogous variables from the
principal_sponsor:https and policies:https namespaces.

The plugins:at_http namespace contains the following variables:

� client:client_certificate.

� client:client_private_key_password.

� client:trusted_root_certificates.

� client:use_secure_sockets.

� server:server_certificate.

� server:server_private_key_password.

� server:trusted_root_certificates.

� server:use_secure_sockets.

client:client_certificate

This variable specifies the full path to the PKCS#12-encoded X.509
certificate issued by the certificate authority for the client. For example:

plugins:at_http:client:client_certificate =
"C:\aspen\x509\certs\key.cert.p12"

client:client_private_key_password

This variable specifies the password to decrypt the contents of the
PKCS#12 certificate file specified by client:client_certificate.
166

plugins:at_http
client:trusted_root_certificates

This variable specifies the path to a file containing a concatenated list of CA
certificates in PEM format. The client uses this CA list during the TLS
handshake to verify that the server�s certificate has been signed by a trusted
CA.

client:use_secure_sockets

The effect of the client:use_secure_sockets variable depends on the type
of URL specifying the remote service location:

� https://host:port URL format�the client always attempts to open a
secure connection. That is, the value of
plugins:at_http:client:use_secure_sockets is effectively ignored.

� http://host:port URL format�whether the client attempts to open a
secure connection or not depends on the value of
plugins:at_http:client:use_secure_sockets, as follows:

♦ true�the client attempts to open a secure connection (that is,
HTTPS running over SSL or TLS). If no port is specified in the
http URL, the client uses port 443 for secure HTTPS.

♦ false�the client attempts to open an insecure connection (that
is, plain HTTP).
 167

APPENDIX 3 | Artix Security
If plugins:at_http:client:use_secure_sockets is true and the client
decides to open a secure connection, the at_http plug-in then automatically
loads the https plug-in.

server:server_certificate

This variable specifies the full path to the PKCS#12-encoded X.509
certificate issued by the certificate authority for the server. For example:

plugins:at_http:server:server_certificate =
"c:\aspen\x509\certs\key.cert.p12"

server:server_private_key_password

This variable specifies the password to decrypt the contents of the
PKCS#12 certificate file specified by server:server_certificate.

server:trusted_root_certificates

This variable specifies the path to a file containing a concatenated list of CA
certificates in PEM format. The server uses this CA list during the TLS
handshake to verify that the client�s certificate has been signed by a trusted
CA.

Note: If plugins:at_http:client:use_secure_sockets is true and the
client decides to open a secure connection, Artix uses the following client
secure invocation policies by default:

 policies:client_secure_invocation_policy:requires =
["Confidentiality","Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

 policies:client_secure_invocation_policy:supports =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];

You can optionally override these defaults by setting the client secure
invocation policy explicitly in configuration.
168

plugins:at_http
server:use_secure_sockets

The effect of the server:use_secure_sockets variable depends on the type
of URL advertising the service location:

� https://host:port URL format�the server accepts only secure
connection attempts. That is, the value of
plugins:at_http:server:use_secure_sockets is effectively ignored.

� http://host:port URL format�whether the server accepts secure
connection attempts or not depends on the value of
plugins:at_http:server:use_secure_sockets, as follows:

♦ true�the server accepts secure connection attempts (that is,
HTTPS running over SSL or TLS). If no port is specified in the
http URL, the server uses port 443 for secure HTTPS.

♦ false�the server accepts insecure connection attempts (that is,
plain HTTP).

If plugins:at_http:server:use_secure_sockets is set and the server
accepts a secure connection, the at_http plug-in then automatically loads
the https plug-in.

Note: If plugins:at_http:server:use_secure_sockets is set and the
server accepts a secure connection, Artix uses the following server secure
invocation policies by default:

 policies:target_secure_invocation_policy:requires =
["Confidentiality","Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient"];

 policies:target_secure_invocation_policy:supports =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];

You can optionally override these defaults by setting the target secure
invocation policy explicitly in configuration.
 169

APPENDIX 3 | Artix Security
server:use_secure_sockets:container

The effect of the server:use_secure_sockets:container variable is similar
to the effect of the server:use_secure_sockets variable, except that only
the ContainerService service is affected. Using this variable, it is possible
to enable HTTPS security specifically for the ContainerService service
without affecting the security settings of other services deployed in the
container.
170

plugins:atli2_tls
plugins:atli2_tls
The plugins:atli2_tls namespace contains the following variable:

� use_jsse_tk

use_jsse_tk

(Java only) Specifies whether or not to use the JSSE/JCE architecture with
the CORBA binding. If true, the CORBA binding uses the JSSE/JCE
architecture to implement SSL/TLS security; if false, the CORBA binding
uses the Baltimore SSL/TLS toolkit.

The default is false.
 171

APPENDIX 3 | Artix Security
plugins:csi
The policies:csi namespace includes variables that specify settings for
Common Secure Interoperability version 2 (CSIv2):

� ClassName

� shlib_name

ClassName

ClassName specifies the Java class that implements the csi plugin. The
default setting is:

plugins:csi:ClassName = "com.iona.corba.security.csi.CSIPlugin";

This configuration setting makes it possible for the Artix core to load the
plugin on demand. Internally, the Artix core uses a Java class loader to load
and instantiate the csi class. Plugin loading can be initiated either by
including the csi in the orb_plugins list, or by associating the plugin with
an initial reference.

shlib_name

shlib_name identifies the shared library (or DLL in Windows) containing the
csi plugin implementation.

plugins:csi:shlib_name = "it_csi_prot";

The csi plug-in becomes associated with the it_csi_prot shared library,
where it_csi_prot is the base name of the library. The library base name,
it_csi_prot, is expanded in a platform-dependent manner to obtain the full
name of the library file.
172

plugins:gsp
plugins:gsp
The plugins:gsp namespace includes variables that specify settings for the
Generic Security Plugin (GSP). This provides authorization by checking a
user�s roles against the permissions stored in an action-role mapping file. It
includes the following:

� accept_asserted_authorization_info

� action_role_mapping_file

� assert_authorization_info

� authentication_cache_size

� authentication_cache_timeout

� authorization_realm

� ClassName

� enable_authorization

� enable_gssup_sso

� enable_user_id_logging

� enable_x509_sso

� enforce_secure_comms_to_sso_server

� enable_security_service_cert_authentication

� sso_server_certificate_constraints

� use_client_load_balancing

accept_asserted_authorization_info

If false, SAML authorization data is not read from incoming connections.

Default is true.

Note: In Artix versions 4.0 and earlier, if no SAML authorization data is
received and this variable is true, Artix would raise an exception. In Artix
versions 4.1 and later, if no SAML authorization data is retrieved, Artix
re-authenticates the client credentials with the security service,
irrespective of whether the accept_asserted_authorization_info
variable is true or false.
 173

APPENDIX 3 | Artix Security
action_role_mapping_file

Specifies the action-role mapping file URL. For example:

plugins:gsp:action_role_mapping_file =
"file:///my/action/role/mapping";

assert_authorization_info

If false, SAML authorization data is not sent on outgoing connections.
Default is true.

authentication_cache_size

The maximum number of credentials stored in the authentication cache. If
this size is exceeded the oldest credential in the cache is removed.

A value of -1 (the default) means unlimited size. A value of 0 means disable
the cache.

authentication_cache_timeout

The time (in seconds) after which a credential is considered stale. Stale
credentials are removed from the cache and the server must re-authenticate
with the Artix security service on the next call from that user. The cache
timeout should be configured to be smaller than the timeout set in the
is2.properties file (by default, that setting is
is2.sso.session.timeout=600).

A value of -1 (the default) means an infinite time-out. A value of 0 means
disable the cache.

authorization_realm

authorization_realm specifies the iSF authorization realm to which a
server belongs. The value of this variable determines which of a user's roles
are considered when making an access control decision.
174

plugins:gsp
For example, consider a user that belongs to the ejb-developer and
corba-developer roles within the Engineering realm, and to the ordinary
role within the Sales realm. If you set plugins:gsp:authorization_realm to
Sales for a particular server, only the ordinary role is considered when
making access control decisions (using the action-role mapping file).

ClassName

ClassName specifies the Java class that implements the gsp plugin. This
configuration setting makes it possible for the Artix core to load the plugin
on demand. Internally, the Artix core uses a Java class loader to load and
instantiate the gsp class. Plugin loading can be initiated either by including
the csi in the orb_plugins list, or by associating the plugin with an initial
reference.

enable_authorization

A boolean GSP policy that, when true, enables authorization using
action-role mapping ACLs in server.

Default is true.

enable_gssup_sso

Enables SSO with a username and a password (that is, GSSUP) when set to
true.
 175

APPENDIX 3 | Artix Security
enable_user_id_logging

A boolean variable that enables logging of user IDs on the server side.
Default is false.

Up until the release of Orbix 6.1 SP1, the GSP plug-in would log messages
containing user IDs. For example:

[junit] Fri, 28 May 2004 12:17:22.0000000 [SLEEPY:3284]
(IT_CSI:205) I - User alice authenticated successfully.

In some cases, however, it might not be appropriate to expose user IDs in
the Orbix log. From Orbix 6.2 onward, the default behavior of the GSP
plug-in is changed, so that user IDs are not logged by default. To restore the
pre-Orbix 6.2 behavior and log user IDs, set this variable to true.

enable_x509_sso

Enables certificate-based SSO when set to true.

enforce_secure_comms_to_sso_server

Enforces a secure SSL/TLS link between a client and the login service when
set to true. When this setting is true, the value of the SSL/TLS client secure
invocation policy does not affect the connection between the client and the
login service.

Default is true.

enable_security_service_cert_authentication

A boolean GSP policy that enables X.509 certificate-based authentication
on the server side using the Artix security service.

Default is false.
176

plugins:gsp
sso_server_certificate_constraints

A special certificate constraints policy that applies only to the SSL/TLS
connection between the client and the SSO login server. For details of the
pattern constraint language, see �Applying Constraints to Certificates� on
page 155.

use_client_load_balancing

A boolean variable that enables load balancing over a cluster of security
services. If an application is deployed in a domain that uses security service
clustering, the application should be configured to use client load balancing
(in this context, client means a client of the Artix security service). See also
policies:iiop_tls:load_balancing_mechanism.

Default is true.
 177

APPENDIX 3 | Artix Security
plugins:https
The plugins:https namespace contains the following variable:

� ClassName

ClassName

(Java only) This variable specifies the class name of the https plug-in
implementation. For example:

plugins:https:ClassName = "com.iona.corba.https.HTTPSPlugIn";
178

plugins:iiop_tls
plugins:iiop_tls
The plugins:iiop_tls namespace contains the following variables:

� buffer_pool:recycle_segments

� buffer_pool:segment_preallocation

� buffer_pools:max_incoming_buffers_in_pool

� buffer_pools:max_outgoing_buffers_in_pool

� delay_credential_gathering_until_handshake

� enable_iiop_1_0_client_support

� incoming_connections:hard_limit

� incoming_connections:soft_limit

� outgoing_connections:hard_limit

� outgoing_connections:soft_limit

� tcp_listener:reincarnate_attempts

� tcp_listener:reincarnation_retry_backoff_ratio

� tcp_listener:reincarnation_retry_delay

buffer_pool:recycle_segments

(Java only) When this variable is set, the iiop_tls plug-in reads this
variable�s value instead of the
plugins:iiop:buffer_pool:recycle_segments variable�s value.

buffer_pool:segment_preallocation

(Java only) When this variable is set, the iiop_tls plug-in reads this
variable�s value instead of the
plugins:iiop:buffer_pool:segment_preallocation variable�s value.
 179

APPENDIX 3 | Artix Security
buffer_pools:max_incoming_buffers_in_pool

(C++ only) When this variable is set, the iiop_tls plug-in reads this
variable�s value instead of the
plugins:iiop:buffer_pools:max_incoming_buffers_in_pool variable�s
value.

buffer_pools:max_outgoing_buffers_in_pool

(C++ only) When this variable is set, the iiop_tls plug-in reads this
variable�s value instead of the
plugins:iiop:buffer_pools:max_outgoing_buffers_in_pool variable�s
value.

delay_credential_gathering_until_handshake

(Windows and Schannel only) This client configuration variable provides an
alternative to using the principal_sponsor variables to specify an
application�s own certificate. When this variable is set to true and
principal_sponsor:use_principal_sponsor is set to false, the client
delays sending its certificate to a server. The client will wait until the server
explicitly requests the client to send its credentials during the SSL/TLS
handshake.

This configuration variable can be used in conjunction with the
plugins:schannel:prompt_with_credential_choice configuration variable.

enable_iiop_1_0_client_support

This variable enables client-side interoperability of Artix SSL/TLS
applications with legacy IIOP 1.0 SSL/TLS servers, which do not support
IIOP 1.1.
180

plugins:iiop_tls
The default value is false. When set to true, Artix SSL/TLS searches secure
target IIOP 1.0 object references for legacy IIOP 1.0 SSL/TLS tagged
component data, and attempts to connect on the specified port.

incoming_connections:hard_limit

Specifies the maximum number of incoming (server-side) connections
permitted to IIOP. IIOP does not accept new connections above this limit.
Defaults to -1 (disabled).

When this variable is set, the iiop_tls plug-in reads this variable�s value
instead of the plugins:iiop:incoming_connections:hard_limit variable�s
value.

Please see the chapter on ACM in the CORBA Programmer�s Guide for
further details.

incoming_connections:soft_limit

Specifies the number of connections at which IIOP should begin closing
incoming (server-side) connections. Defaults to -1 (disabled).

When this variable is set, the iiop_tls plug-in reads this variable�s value
instead of the plugins:iiop:incoming_connections:soft_limit variable�s
value.

Please see the chapter on ACM in the CORBA Programmer�s Guide for
further details.

outgoing_connections:hard_limit

When this variable is set, the iiop_tls plug-in reads this variable�s value
instead of the plugins:iiop:outgoing_connections:hard_limit variable�s
value.

Note: This variable will not be necessary for most users.
 181

APPENDIX 3 | Artix Security
outgoing_connections:soft_limit

When this variable is set, the iiop_tls plug-in reads this variable�s value
instead of the plugins:iiop:outgoing_connections:soft_limit variable�s
value.

tcp_listener:reincarnate_attempts

(Windows only)

plugins:iiop_tls:tcp_listener:reincarnate_attempts specifies the
number of times that a Listener recreates its listener socket after recieving a
SocketException.

Sometimes a network error may occur, which results in a listening socket
being closed. On Windows, you can configure the listener to attempt a
reincarnation, which enables new connections to be established. This
variable only affects Java and C++ applications on Windows. Defaults to 0
(no attempts).

tcp_listener:reincarnation_retry_backoff_ratio

(Windows only)
plugins:iiop_tls:tcp_listener:reincarnation_retry_delay specifies a
delay between reincarnation attempts. Data type is long. Defaults to 0 (no
delay).

tcp_listener:reincarnation_retry_delay

(Windows only)
plugins:iiop_tls:tcp_listener:reincarnation_retry_backoff_ratiosp
ecifies the degree to which delays between retries increase from one retry to
the next. Datatype is long. Defaults to 1.
182

plugins:java_server
plugins:java_server
In the context of Artix security, the variables in the plugins:java_server
namespace are used only to configure the Artix security service. To deploy
the security service, Artix exploits IONA�s generic server (which is a feature
originally developed for Orbix). The Artix security service is deployed into the
following container hierarchy:

� Generic server�a simple container, originally developed for the Orbix
product, which enables you to deploy CORBA services implemented in
C++.

� Java server plug-in�a JNI-based adapter that plugs into the generic
server, enabling you to deploy CORBA services implemented in Java.

� JVM created by the Java server plug-in�once it is loaded, the Java
server plug-in creates a JVM instance to host a Java program.

� Artix security service Java code�you instruct the Java server plug-in
to load the security service core (which is implemented in Java) by
specifying the appropriate class to the plugins:java_server:class
variable.

In addition to the configuration variables described in this section, you must
also include the following setting in your configuration:

generic_server_plugin = "java_server";

Which instructs the generic server to load the Java server plug-in.

The plugins:java_server namespace contains the following variables:

� class

� classpath

� jni_verbose

� shlib_name

� system_properties

� X_options
 183

APPENDIX 3 | Artix Security
class

In the context of the Artix security service, this variable specifies the entry
point to the core security service (the core security service is a pure Java
program). There are two possible values:

� com.iona.jbus.security.services.SecurityServer�creates an
Artix bus instance that takes its configuration from the bus sub-scope
of the current configuration scope. This entry point is suitable for a
security service that is accessed through a WSDL contract (for
example, a HTTPS-based security service).

� com.iona.corba.security.services.SecurityServer�a
CORBA-based implementation of the security service, which does not
create an Artix bus instance. This entry point is suitable for running an
IIOP/TLS-based security service.

classpath

Specifies the CLASSPATH for the JVM instance created by the Java server
plug-in. For the Artix security service, this CLASSPATH must point at the JAR
file containing the implementation of the security service. For example:

The Java server plug-in ignores the contents of the CLASSPATH environment
variable.

jni_verbose

A boolean variable that instructs the JVM to output JNI-level diagnostics,
which can be helpful for troubleshooting. When true, the JVM-generated
diagnostic messages are sent to the Artix logging stream; when false, the
diagnostic messages are suppressed.

plugins:java_server:classpath =
"C:\artix_40/lib/artix/security_service/4.0/security_service-
rt.jar";
184

plugins:java_server
shlib_name

Specifies the abbreviated name of the shared library that implements the
java_server plug-in. This variable must always be set as follows:

system_properties

Specifies a list of Java system properties to the JVM created by the Java
server plug-in. For example, the Artix security service requires the following
Java system property settings:

Where each item in the list specifies a Java system property, as follows:

<PropertyName>=<PropertyValue>

X_options

Specifies a list of non-standard, -X, options to the JVM created by the Java
server plug-in. In contrast to the way these options are specified to the java
command-line tool, you must omit the -X prefix in the X_options list.

For example:

To find out more about the non-standard JVM options, type java -X -help
at the command line (using Sun�s implementation of the JVM).

plugins:java_server:shlib_name = "it_java_server";

plugins:java_server:system_properties =
["org.omg.CORBA.ORBClass=com.iona.corba.art.artimpl.ORBImpl",
"org.omg.CORBA.ORBSingletonClass=com.iona.corba.art.artimpl.O
RBSingleton",
"is2.properties=%{INSTALL_DIR}/%{PRODUCT_NAME}/%{PRODUCT_VERS
ION}/demos/security/full_security/etc/is2.properties.FILE",
"java.endorsed.dirs=%{INSTALL_DIR}/%{PRODUCT_NAME}/%{PRODUCT_
VERSION}/lib/endorsed"];

plugins:java_server:X_options = ["rs"];
 185

APPENDIX 3 | Artix Security
plugins:login_client
The plugins:login_client namespace contains the following variables:

� wsdl_url

wsdl_url

(Deprecated) Use bus:initial_contract:url:login_service instead.
186

plugins:login_service
plugins:login_service
The plugins:login_service namespace contains the following variables:

� wsdl_url

wsdl_url

Specifies the location of the login service WSDL to the login_service
plug-in. The value of this variable can either be a relative pathname or an
URL. The login_service requires access to the login service WSDL in order
to obtain details of the physical contract (for example, host and IP port).
 187

APPENDIX 3 | Artix Security
plugins:security
The plugins:security namespace contains the following variable:

� direct_persistence

� iiop_tls:addr_list

� iiop_tls:host

� iiop_tls:port

� log4j_to_local_log_stream

� share_credentials_across_orbs

direct_persistence

A boolean variable that specifies whether or not the security service runs on
a fixed IP port (for an IIOP/TLS-based security service). You must always set
this variable to true in the security service�s configuration scope, because
the security service must run on a fixed port.

iiop_tls:addr_list

When the security service is configured as a cluster, you must use this
variable to list the addresses of all of the security services in the cluster.

The first entry, not prefixed by a + sign, must specify the address of the
current security service instance. The remaining entries, prefixed by a + sign,
must specify the addresses of the other services in the cluster (the + sign
indicates that an entry affects only the contents of the generated IOR, not
the security service�s listening port).

For example, to configure the first instance of a cluster consisting of three
security service instances�with addresses security01:5001,
security02:5002, and security03:5003�you would initialize the address
list as follows:

plugins:security:iiop_tls:addr_list = ["security01:5001",
"+security02:5002", "+security03:5003"];
188

plugins:security
iiop_tls:host

Specifies the hostname where the security service is running. This hostname
will be embedded in the security service�s IOR (for an IIOP/TLS-based
security service).

iiop_tls:port

Specifies the fixed IP port where the security service listens for incoming
connections. This IP port also gets embedded in the security service�s IOR
(for an IIOP/TLS-based security service).

log4j_to_local_log_stream

Redirects the Artix security service�s log4j output to the local log stream. In
the Artix security service�s configuration scope, you can set the
plugins:security:log4j_to_local_log_stream variable to one of the
following values:

� true�the security service log4j output is sent to the local log stream.
This requires that the local_log_stream plug-in is present in the
orb_plugins list.

� false�(default) the log4j output is controlled by the
log4j.properties file (whose location is specified in the
is2.properties file).

When redirecting log4j messages to the local log stream, you can control the
log4j logging level using Artix event log filters. You can specify Artix event
log filters with the following setting in the Artix .cfg file:

event_log:filters = ["IT_SECURITY=LoggingLevels"];

The IT_SECURITY tag configures the logging levels for the Artix security
service (which includes the redirected log4j stream). log4j has five logging
levels: DEBUG, INFO, WARN, ERROR, and FATAL. To select a particular log4j
logging level (for example, WARN), replace LoggingLevels by that logging
level plus all of the higher logging levels (for example, WARN+ERROR+FATAL).
 189

APPENDIX 3 | Artix Security
For example, you can configure the Artix security service to send log4j
logging to the local log stream, as follows:

share_credentials_across_orbs

Enables own security credentials to be shared across ORBs. Normally, when
you specify an own SSL/TLS credential (using the principal sponsor or the
principal authenticator), the credential is available only to the ORB that
created it. By setting the
plugins:security:share_credentials_across_orbs variable to true,
however, the own SSL/TLS credentials created by one ORB are
automatically made available to any other ORBs that are configured to share
credentials.

See also principal_sponsor:csi:use_existing_credentials for details of
how to enable sharing of CSI credentials.

Default is false.

Artix .cfg file
security_service
{
 orb_plugins = ["local_log_stream", "iiop_profile", "giop",

"iiop_tls"];
 plugins:security:log4j_to_local_log_stream = "true";

 # Log all log4j messages at level WARN and above
 event_log:filters = ["IT_SECURITY=WARN+ERROR+FATAL"];
 ...
};
190

plugins:wsdl_publish
plugins:wsdl_publish
The plugins:wsdl_publish namespace contains the following variables:

� enable_secure_wsdl_publish

enable_secure_wsdl_publish

A boolean variable that enables certain security features of the WSDL
publishing service that are required whenever the WSDL publishing service
is configured to use the HTTPS protocol. Set this variable to true, if the
WSDL publishing service is configured to use HTTPS; otherwise, set it to
false.

Default is false.

For example, to configure the WSDL publishing service to use HTTPS, you
should include the following in your program�s configuration scope:

The plugins:at_http:server:use_secure_sockets setting is needed to
enable HTTPS for the WSDL publishing service.

Artix .cfg file
secure_server
{
 orb_plugins = [... , "wsdl_publish", "at_http", "https"];

 plugins:wsdl_publish:publish_port = "2222";
 plugins:wsdl_publish:enable_secure_wsdl_publish = "true";
 plugins:at_http:server:use_secure_sockets = "true";

 # Other HTTPS-related settings
 ...
};

Note: You must set both
plugins:wsdl_publish:enable_secure_wsdl_publish and
plugins:at_http:server:use_secure_sockets to true, when enabling
HTTPS for the WSDL publish plug-in.
 191

APPENDIX 3 | Artix Security
plugins:wss
The plugins:wss namespace defines variables that are needed to configure
the Artix partial message protection feature. Partial message protection is a
WS-Security feature that enables you to apply cryptographic operations at
the SOAP 1.1 binding level, including encrypting and signing a message�s
SOAP body. The variables belonging to this namespace are as follows:

� classname

� keyretrieval:keystore:file

� keyretrieval:keystore:provider

� keyretrieval:keystore:storepass

� keyretrieval:keystore:storetype

� protection_policy:location

classname

Specifies the name of the Java class that implements the WSS plug-in. This
variable must be set to the value
com.iona.jbus.security.wss.plugin.BusPlugInFactory.

keyretrieval:keystore:file

Specifies the location of a Java keystore file. This must be a filename or file
pathname, not a URL.

keyretrieval:keystore:provider

Specifies the name of the Java keystore provider (optional). Using the Java
cryptographic extension (JCE) package from Sun, it is possible to provide a
custom implementation of the Java keystore. If your Java keystore is based
on a custom provider, use this variable to set the provider name.

Default is to use the default provider provided by the Java virtual machine.
192

plugins:wss
keyretrieval:keystore:storepass

Specifies the password to access the Java keystore. This variable is used in
conjunction with plugins:wss:keyretrieval:keystore:file to associate a
Java keystore with the WSS plug-in.

For example:

keyretrieval:keystore:storetype

Specifies the type of the Java keystore (optional). Using the Java
cryptographic extension (JCE) package from Sun, it is possible to provide a
custom implementation of the Java keystore. If your Java keystore is based
on a custom provider, use this variable to set the keystore type.

Default is jks.

protection_policy:location

Specifies the location of a policy configuration file that governs the behavior
of the partial message protection feature. The policy configuration file is an
XML file that conforms to the protection-policy.xsd XML schema (located
in ArtixInstallDir/cxx_java/schemas).

Artix .cfg file
plugins:wss:keyretrieval:keystore:file="Keystore.jks";
plugins:wss:keyretrieval:keystore:storepass="StorePassword";
plugins:wss:keyretrieval:keystore:provider="";
plugins:wss:keyretrieval:keystore:storetype="";
 193

APPENDIX 3 | Artix Security
policies
The policies namespace defines the default CORBA policies for an ORB.
Many of these policies can also be set programmatically from within an
application. SSL/TLS-specific variables in the policies namespace include:

� allow_unauthenticated_clients_policy

� certificate_constraints_policy

� client_secure_invocation_policy:requires

� client_secure_invocation_policy:supports

� max_chain_length_policy

� mechanism_policy:accept_v2_hellos

� mechanism_policy:ciphersuites

� mechanism_policy:protocol_version

� target_secure_invocation_policy:requires

� target_secure_invocation_policy:supports

� trusted_ca_list_policy

allow_unauthenticated_clients_policy

A generic variable that sets this policy both for iiop_tls and https. To set
this policy specifically for the IIOP/TLS protocol, set the
policies:iiop_tls:allow_unauthenticated_clients_policy variable,
which takes precedence.

A boolean variable that specifies whether a server will allow a client to
establish a secure connection without sending a certificate. Default is false.

This configuration variable is applicable only in the special case where the
target secure invocation policy is set to require NoProtection (a semi-secure
server).
194

policies
certificate_constraints_policy

A generic variable that sets this policy both for iiop_tls and https. To set
this policy specifically for the IIOP/TLS protocol, set the
policies:iiop_tls:certificate_constraints_policy variable, which
takes precedence.

A list of constraints applied to peer certificates�see �Applying Constraints
to Certificates� on page 155. If a peer certificate fails to match any of the
constraints, the certificate validation step will fail.

The policy can also be set programmatically using the
IT_TLS_API::CertConstraintsPolicy CORBA policy. Default is no
constraints.

client_secure_invocation_policy:requires

A generic variable that sets this policy both for iiop_tls and https. To set
this policy specifically for the IIOP/TLS protocol, set the
policies:iiop_tls:client_secure_invocation_policy:requires
variable, which takes precedence.

Specifies the minimum level of security required by a client. The value of
this variable is specified as a list of association options�see the Artix
Security Guide for more details about association options.

In accordance with CORBA security, this policy cannot be downgraded
programmatically by the application.
 195

APPENDIX 3 | Artix Security
client_secure_invocation_policy:supports

A generic variable that sets this policy both for iiop_tls and https. To set
this policy specifically for the IIOP/TLS protocol, set the
policies:iiop_tls:client_secure_invocation_policy:supports
variable, which takes precedence.

Specifies the initial maximum level of security supported by a client. The
value of this variable is specified as a list of association options�see the
Artix Security Guide for more details about association options.

This policy can be upgraded programmatically using either the QOP or the
EstablishTrust policies.

max_chain_length_policy

A generic variable that sets this policy both for iiop_tls and https. To set
this policy specifically for the IIOP/TLS protocol, set the
policies:iiop_tls:max_chain_length_policy variable, which takes
precedence.

max_chain_length_policy specifies the maximum certificate chain length
that an ORB will accept. The policy can also be set programmatically using
the IT_TLS_API::MaxChainLengthPolicy CORBA policy. Default is 2.

mechanism_policy:accept_v2_hellos

A generic variable that sets this policy both for iiop_tls and https. To set
this policy for a specific protocol, set
policies:iiop_tls:mechanism_policy:accept_v2_hellos or
policies:https:mechanism_policy:accept_v2_hellos respectively for
IIOP/TLS or HTTPS.

The accept_v2_hellos policy is a special setting that facilitates
interoperability with an Artix application deployed on the z/OS platform.
When true, the Artix application accepts V2 client hellos, but continues the

Note: The max_chain_length_policy is not currently supported on the
z/OS platform.
196

policies
handshake using either the SSL_V3 or TLS_V1 protocol. When false, the
Artix application throws an error, if it receives a V2 client hello. The default
is false.

For example:

policies:mechanism_policy:accept_v2_hellos = "true";

mechanism_policy:ciphersuites

A generic variable that sets this policy both for iiop_tls and https. To set
this policy for a specific protocol, set
policies:iiop_tls:mechanism_policy:ciphersuites or
policies:https:mechanism_policy:ciphersuites respectively for IIOP/TLS
or HTTPS.

mechanism_policy:ciphersuites specifies a list of cipher suites for the
default mechanism policy. One or more of the cipher suites shown in
Table 5 can be specified in this list.

If you do not specify the list of cipher suites explicitly, all of the null
encryption ciphers are disabled and all of the non-export strength ciphers
are supported by default.

Table 5: Mechanism Policy Cipher Suites

Null Encryption, Integrity
and Authentication Ciphers

Standard Ciphers

RSA_WITH_NULL_MD5 RSA_EXPORT_WITH_RC4_40_MD5

RSA_WITH_NULL_SHA RSA_WITH_RC4_128_MD5

RSA_WITH_RC4_128_SHA

RSA_EXPORT_WITH_DES40_CBC_SHA

RSA_WITH_DES_CBC_SHA

RSA_WITH_3DES_EDE_CBC_SHA
 197

APPENDIX 3 | Artix Security
mechanism_policy:protocol_version

A generic variable that sets this policy both for iiop_tls and https. To set
this policy for a specific protocol, set
policies:iiop_tls:mechanism_policy:protocol_version or
policies:https:mechanism_policy:protocol_version respectively for
IIOP/TLS or HTTPS.

mechanism_policy:protocol_version specifies the list of protocol versions
used by a security capsule (ORB instance). The list can include one or more
of the values SSL_V3 and TLS_V1. For example:

target_secure_invocation_policy:requires

A generic variable that sets this policy both for iiop_tls and https. To set
this policy specifically for the IIOP/TLS protocol, set the
policies:iiop_tls:target_secure_invocation_policy:requires
variable, which takes precedence.

target_secure_invocation_policy:requires specifies the minimum level
of security required by a server. The value of this variable is specified as a
list of association options.

target_secure_invocation_policy:supports

A generic variable that sets this policy both for iiop_tls and https. To set
this policy specifically for the IIOP/TLS protocol, set the
policies:iiop_tls:target_secure_invocation_policy:supports
variable, which takes precedence.

supports specifies the maximum level of security supported by a server. The
value of this variable is specified as a list of association options. This policy
can be upgraded programmatically using either the QOP or the
EstablishTrust policies.

policies:mechanism_policy:protocol_version=["TLS_V1", "SSL_V3"];

Note: In accordance with CORBA security, this policy cannot be
downgraded programmatically by the application.
198

policies
trusted_ca_list_policy

A generic variable that sets this policy both for iiop_tls and https. To set
this policy for a specific protocol, set
policies:iiop_tls:trusted_ca_list_policy or
policies:https:trusted_ca_list_policy respectively for IIOP/TLS or
HTTPS.

trusted_ca_list_policy specifies a list of filenames, each of which
contains a concatenated list of CA certificates in PEM format. The aggregate
of the CAs in all of the listed files is the set of trusted CAs.

For example, you might specify two files containing CA lists as follows:

The purpose of having more than one file containing a CA list is for
administrative convenience. It enables you to group CAs into different lists
and to select a particular set of CAs for a security domain by choosing the
appropriate CA lists.

policies:trusted_ca_list_policy =
["install_dir/asp/version/etc/tls/x509/ca/ca_list1.pem",
"install_dir/asp/version/etc/tls/x509/ca/ca_list_extra.pem"];
 199

APPENDIX 3 | Artix Security
policies:asp
The policies:asp namespace contains the following variables:

� enable_authorization

� enable_security

� enable_sso

� load_balancing_policy

� use_artix_proxies

enable_authorization

A boolean variable that specifies whether Artix should enable authorization
using the Artix Security Framework. Default is true.

enable_security

A boolean variable that specifies whether Artix should enable security using
the Artix Security Framework. When this variable is set to false, all security
features that depend on the artix_security plug-in (that is, authentication
and authorization using the Artix security service) are disabled. Default is
true.

enable_sso

This configuration variable is obsolete and has no effect.

Note: From Artix 4.0 onwards, the default value of
policies:asp:enable_authorization is true. For versions of Artix prior to
4.0, the default value of policies:asp:enable_authorization is false.

Note: From Artix 4.0 onwards, the default value of
policies:asp:enable_security is true. For versions of Artix prior to 4.0,
the default value of policies:asp:enable_security is false.
200

policies:asp
load_balancing_policy

When client load balancing is enabled, this variable specifies how often the
Artix security plug-in reconnects to a node in the security service cluster.
There are two possible values for this policy:

� per-server�(the default) after selecting a particular security service
from the cluster, the client remains connected to that security service
instance for the rest of the session.

� per-request�for each new request, the Artix security plug-in selects
and connects to a new security service node (in accordance with the
algorithm specified by
policies:iiop_tls:load_balancing_mechanism).

This policy is used in conjunction with the
plugins:asp:enable_security_service_load_balancing and
policies:iiop_tls:load_balancing_mechanism configuration variables.

Default is per-server.

use_artix_proxies

A boolean variable that specifies whether a client of the Artix security service
connects to the security service through a WSDL contract or through a
CORBA object reference. The policies:asp:use_artix_proxies variable
can have the following values:

� true�connect to the security service through a WSDL contract. The
location of the security service WSDL contract can be specified using
the bus:initial_contract:url:isf_service configuration variable.

� false�connect to the security service through a CORBA object
reference. The object reference is specified by the
initial_references:IT_SecurityService:reference configuration
variable.

Note: The process of re-establishing a secure connection with every
new request imposes a significant performance overhead. Therefore,
the per-request policy value is not recommended for most
deployments.
 201

APPENDIX 3 | Artix Security
Default is false.
202

policies:bindings
policies:bindings
The policies:bindings namespace contains the following variables:

� corba:gssup_propagation

� corba:token_propagation

� soap:gssup_propagation

� soap:token_propagation

corba:gssup_propagation

A boolean variable that can be used in a SOAP-to-CORBA router to enable
the transfer of incoming SOAP credentials into outgoing CORBA credentials.

The CORBA binding extracts the username and password credentials from
incoming SOAP/HTTP invocations and inserts them into an outgoing GSSUP
credentials object, to be transmitted using CSI authentication over transport.
The domain name in the outgoing GSSUP credentials is set to a blank
string. Default is false.

corba:token_propagation

A boolean variable that can be used in a SOAP-to-CORBA router to enable
the transfer of an SSO token from an incoming SOAP request into an
outgoing CORBA request.

The CORBA binding extracts the SSO token from incoming SOAP/HTTP
invocations and inserts the token into an outgoing IIOP request, to be
transmitted using CSI identity assertion.

soap:gssup_propagation

A boolean variable that can be used in a CORBA-to-SOAP router to enable
the transfer of incoming CORBA credentials into outgoing SOAP credentials.
 203

APPENDIX 3 | Artix Security
The SOAP binding extracts the username and password from incoming IIOP
invocations (where the credentials are embedded in a GIOP service context
and encoded according to the CSI and GSSUP standards), and inserts them
into an outgoing SOAP header, encoded using the WSS standard.

Default is false.

soap:token_propagation

A boolean variable that can be used in a CORBA-to-SOAP router to enable
the transfer of an SSO token from an incoming CORBA request into an
outgoing SOAP request.

The SOAP binding extracts the SSO token from an incoming IIOP request
and inserts the token into the header of an outgoing SOAP/HTTP request.
204

policies:csi
policies:csi
The policies:csi namespace includes variables that specify settings for
Common Secure Interoperability version 2 (CSIv2):

� attribute_service:backward_trust:enabled

� attribute_service:client_supports

� attribute_service:target_supports

� auth_over_transport:authentication_service

� auth_over_transport:client_supports

� auth_over_transport:server_domain_name

� auth_over_transport:target_requires

� auth_over_transport:target_supports

attribute_service:backward_trust:enabled

(Obsolete)

attribute_service:client_supports

attribute_service:client_supports is a client-side policy that specifies
the association options supported by the CSIv2 attribute service (principal
propagation). The only assocation option that can be specified is
IdentityAssertion. This policy is normally specified in an intermediate
server so that it propagates CSIv2 identity tokens to a target server. For
example:

policies:csi:attribute_service:client_supports =
["IdentityAssertion"];
 205

APPENDIX 3 | Artix Security
attribute_service:target_supports

attribute_service:target_supports is a server-side policy that specifies
the association options supported by the CSIv2 attribute service (principal
propagation). The only assocation option that can be specified is
IdentityAssertion. For example:

policies:csi:attribute_service:target_supports =
["IdentityAssertion"];

auth_over_transport:authentication_service

(Java CSI plug-in only) The name of a Java class that implements the
IT_CSI::AuthenticateGSSUPCredentials IDL interface. The authentication
service is implemented as a callback object that plugs into the CSIv2
framework on the server side. By replacing this class with a custom
implementation, you could potentially implement a new security technology
domain for CSIv2.

By default, if no value for this variable is specified, the Java CSI plug-in uses
a default authentication object that always returns false when the
authenticate() operation is called.

auth_over_transport:client_supports

auth_over_transport:client_supports is a client-side policy that specifies
the association options supported by CSIv2 authorization over transport.
The only assocation option that can be specified is
EstablishTrustInClient. For example:

policies:csi:auth_over_transport:client_supports =
["EstablishTrustInClient"];
206

policies:csi
auth_over_transport:server_domain_name

The iSF security domain (CSIv2 authentication domain) to which this server
application belongs. The iSF security domains are administered within an
overall security technology domain.

The value of the server_domain_name variable will be embedded in the IORs
generated by the server. A CSIv2 client about to open a connection to this
server would check that the domain name in its own CSIv2 credentials
matches the domain name embedded in the IOR.

auth_over_transport:target_requires

auth_over_transport:target_requires is a server-side policy that
specifies the association options required for CSIv2 authorization over
transport. The only assocation option that can be specified is
EstablishTrustInClient. For example:

policies:csi:auth_over_transport:target_requires =
["EstablishTrustInClient"];

auth_over_transport:target_supports

auth_over_transport:target_supports is a server-side policy that
specifies the association options supported by CSIv2 authorization over
transport. The only assocation option that can be specified is
EstablishTrustInClient. For example:

policies:csi:auth_over_transport:target_supports =
["EstablishTrustInClient"];
 207

APPENDIX 3 | Artix Security
policies:external_token_issuer
The policies:external_token_issuer namespace contains the following
variables:

� client_certificate_constraints

client_certificate_constraints

To facilitate interoperability with Artix on the mainframe, the Artix security
service can be configured to issue security tokens based on a username only
(no password required). This feature is known as the external token issuer.
Because this feature could potentially open a security hole in the Artix
security service, the external token issuer is made available only to those
applications that present a certificate matching the constraints specified in
policies:external_token_issuer:client_certificate_constraints. For
details of how to specify certificate constraints, see �Applying Constraints to
Certificates� on page 155.

For example, by inserting the following setting into the security service�s
configuration scope in the Artix .cfg file, you would effectively disable the
external token issuer (recommended for deployments that do not need to
interoperate with the mainframe).

This configuration variable must be set in the security server�s configuration
scope, otherwise the security server will not start.

DISABLE the security service�s external token issuer.
Note: The empty list matches no certificates.
#
policies:external_token_issuer:client_certificate_constraints =

[];
208

policies:https
policies:https
The policies:https namespace contains variables used to configure the
https plugin. It includes the following variables:

� buffer:prealloc_shared

� buffer:prealloc_size

� mechanism_policy:accept_v2_hellos

� mechanism_policy:ciphersuites

� mechanism_policy:protocol_version

� trace_requests:enabled

� trusted_ca_list_policy

buffer:prealloc_shared

policies:https:buffer:prealloc_shared specifies whether the HTTPS
pre-allocation buffer is shared among threads. Defaults to false. This
means that each thread pre-allocates its own buffer on the first invocation
for that thread.

If this variable is set to true, the buffer is shared among threads:

This means that the same buffer pre-allocation is shared among all threads.
Therefore, your application must ensure that multiple invocations are not
active at the same time.

See also buffer:prealloc_size.

policies:https:buffer:prealloc_shared = "true";
 209

APPENDIX 3 | Artix Security
buffer:prealloc_size

policies:https:buffer:prealloc_size specifies the pre-allocated size of
the buffer in bytes. The default value is 0, which means there is no
pre-allocation.

When this variable is set, Artix pre-allocates chunks of the specified buffer
size to avoid repeated allocations and deallocations. Each thread
(dispatcher or reply consumer) performs this pre-allocation on the first
message. Then repeated invocations on the same thread reuse this buffer.
For example, the following setting specifies a 2 MB buffer:

User applications should work out their worst case load in advance, and set
this variable to an appropriate value. This allocation can be reused by each
subsequent request/reply on the dispatcher/consumer thread. When the
Artix bus is shut down, the buffer allocation is freed.

mechanism_policy:accept_v2_hellos

This HTTPS-specific policy overides the generic
policies:mechanism_policy:accept_v2_hellos policy.

The accept_v2_hellos policy is a special setting that facilitates HTTPS
interoperability with certain Web browsers. Many Web browsers send SSL
V2 client hellos, because they do not know what SSL version the server
supports.

When true, the Artix server accepts V2 client hellos, but continues the
handshake using either the SSL_V3 or TLS_V1 protocol. When false, the
Artix server throws an error, if it receives a V2 client hello. The default is
true.

For example:

policies:https:mechanism_policy:accept_v2_hellos = "true";

policies:https:buffer:prealloc_size = "2097152";

Note: This default value is deliberately different from the
policies:iiop_tls:mechanism_policy:accept_v2_hellos default value.
210

policies:https
mechanism_policy:ciphersuites

Specifies a list of cipher suites for the default mechanism policy. One or
more of the following cipher suites can be specified in this list:

If you do not specify the list of cipher suites explicitly, all of the null
encryption ciphers are disabled and all of the non-export strength ciphers
are supported by default.

mechanism_policy:protocol_version

This HTTPS-specific policy overides the generic
policies:mechanism_policy:protocol_version policy.

Specifies the list of protocol versions used by a security capsule (ORB
instance). Can include one or more of the following values:

TLS_V1
SSL_V3

The default setting is SSL_V3 and TLS_V1.

For example:

policies:https:mechanism_policy:protocol_version = ["TLS_V1",
"SSL_V3"];

Table 6: Mechanism Policy Cipher Suites

Null Encryption, Integrity
and Authentication Ciphers

Standard Ciphers

RSA_WITH_NULL_MD5 RSA_EXPORT_WITH_RC4_40_MD5

RSA_WITH_NULL_SHA RSA_WITH_RC4_128_MD5

RSA_WITH_RC4_128_SHA

RSA_EXPORT_WITH_DES40_CBC_SHA

RSA_WITH_DES_CBC_SHA

RSA_WITH_3DES_EDE_CBC_SHA
 211

APPENDIX 3 | Artix Security
trace_requests:enabled

Specifies whether to enable HTTPS-specific trace logging. The default is
false. To enable HTTPS tracing, set this variable as follows:

This setting outputs INFO level messages that show full HTTP buffers
(headers and body) as they go to and from the wire.

You must also set log filtering as follows to pick up the additional HTTPS
messages, and then resend the logs:

For example, you could enable HTTPS trace logging to verify that
authentication headers are written to the wire correctly.

Similarly, to enable HTTP-specific trace logging, use the following setting:

trusted_ca_list_policy

Contains a list of filenames (or a single filename), each of which contains a
concatenated list of CA certificates in PEM format. The aggregate of the CAs
in all of the listed files is the set of trusted CAs.

For example, you might specify two files containing CA lists as follows:

policies:trusted_ca_list_policy =
["ASPInstallDir/asp/6.0/etc/tls/x509/ca/ca_list1.pem",
"ASPInstallDir/asp/6.0/etc/tls/x509/ca/ca_list_extra.pem"];

The purpose of having more than one file containing a CA list is for
administrative convenience. It enables you to group CAs into different lists
and to select a particular set of CAs for a security domain by choosing the
appropriate CA lists.

policies:https:trace_requests:enabled="true";

event_log:filters = ["*=*"];

policies:http:trace_requests:enabled="true";
212

policies:iiop_tls
policies:iiop_tls
The policies:iiop_tls namespace contains variables used to set
IIOP-related policies for a secure environment. These setting affect the
iiop_tls plugin. It contains the following variables:

� allow_unauthenticated_clients_policy

� buffer_sizes_policy:default_buffer_size

� buffer_sizes_policy:max_buffer_size

� certificate_constraints_policy

� client_secure_invocation_policy:requires

� client_secure_invocation_policy:supports

� client_version_policy

� connection_attempts

� connection_retry_delay

� load_balancing_mechanism

� max_chain_length_policy

� mechanism_policy:accept_v2_hellos

� mechanism_policy:ciphersuites

� mechanism_policy:protocol_version

� server_address_mode_policy:local_domain

� server_address_mode_policy:local_hostname

� server_address_mode_policy:port_range

� server_address_mode_policy:publish_hostname

� server_version_policy

� target_secure_invocation_policy:requires

� target_secure_invocation_policy:supports

� tcp_options_policy:no_delay

� tcp_options_policy:recv_buffer_size

� tcp_options_policy:send_buffer_size

� trusted_ca_list_policy
 213

APPENDIX 3 | Artix Security
allow_unauthenticated_clients_policy

A boolean variable that specifies whether a server will allow a client to
establish a secure connection without sending a certificate. Default is false.

This configuration variable is applicable only in the special case where the
target secure invocation policy is set to require NoProtection (a semi-secure
server).

buffer_sizes_policy:default_buffer_size

When this policy is set, the iiop_tls plug-in reads this policy�s value
instead of the policies:iiop:buffer_sizes_policy:default_buffer_size
policy�s value.

buffer_sizes_policy:default_buffer_size specifies, in bytes, the initial
size of the buffers allocated by IIOP. Defaults to 16000. This value must be
greater than 80 bytes, and must be evenly divisible by 8.

buffer_sizes_policy:max_buffer_size

When this policy is set, the iiop_tls plug-in reads this policy�s value
instead of the policies:iiop:buffer_sizes_policy:max_buffer_size
policy�s value.

buffer_sizes_policy:max_buffer_size specifies the maximum buffer size
permitted by IIOP, in kilobytes. Defaults to 512. A value of -1 indicates
unlimited size. If not unlimited, this value must be greater than 80.

certificate_constraints_policy

A list of constraints applied to peer certificates�see the discussion of
certificate constraints in the Artix security guide for the syntax of the pattern
constraint language. If a peer certificate fails to match any of the
constraints, the certificate validation step will fail.

The policy can also be set programmatically using the
IT_TLS_API::CertConstraintsPolicy CORBA policy. Default is no
constraints.
214

policies:iiop_tls
client_secure_invocation_policy:requires

Specifies the minimum level of security required by a client. The value of
this variable is specified as a list of association options�see the Artix
Security Guide for more details about association options.

In accordance with CORBA security, this policy cannot be downgraded
programmatically by the application.

client_secure_invocation_policy:supports

Specifies the initial maximum level of security supported by a client. The
value of this variable is specified as a list of association options�see the
Artix Security Guide for more details about association options.

This policy can be upgraded programmatically using either the QOP or the
EstablishTrust policies.

client_version_policy

client_version_policy specifies the highest IIOP version used by clients. A
client uses the version of IIOP specified by this variable, or the version
specified in the IOR profile, whichever is lower. Valid values for this variable
are: 1.0, 1.1, and 1.2.

For example, the following file-based configuration entry sets the server IIOP
version to 1.1.

The following itadmin command set this variable:

connection_attempts

connection_attempts specifies the number of connection attempts used
when creating a connected socket using a Java application. Defaults to 5.

policies:iiop:server_version_policy="1.1";

itadmin variable modify -type string -value "1.1"
policies:iiop:server_version_policy
 215

APPENDIX 3 | Artix Security
connection_retry_delay

connection_retry_delay specifies the delay, in seconds, between
connection attempts when using a Java application. Defaults to 2.

load_balancing_mechanism

Specifies the load balancing mechanism for the client of a security service
cluster (see also plugins:gsp:use_client_load_balancing and
plugins:asp:enable_security_service_load_balancing). In this context,
a client can also be an Artix server. This policy only affects connections
made using IORs that contain multiple addresses. The iiop_tls plug-in
load balances over the addresses embedded in the IOR.

The following mechanisms are supported:

� random�choose one of the addresses embedded in the IOR at random
(this is the default).

� sequential�choose the first address embedded in the IOR, moving
on to the next address in the list only if the previous address could not
be reached.

max_chain_length_policy

This policy overides policies:max_chain_length_policy for the iiop_tls
plugin.

The maximum certificate chain length that an ORB will accept.

The policy can also be set programmatically using the
IT_TLS_API::MaxChainLengthPolicy CORBA policy. Default is 2.

mechanism_policy:accept_v2_hellos

This IIOP/TLS-specific policy overides the generic
policies:mechanism_policy:accept_v2_hellos policy.

Note: The max_chain_length_policy is not currently supported on the
z/OS platform.
216

policies:iiop_tls
The accept_v2_hellos policy is a special setting that facilitates
interoperability with an Artix application deployed on the z/OS platform.
Artix security on the z/OS platform is based on IBM�s System/SSL toolkit,
which implements SSL version 3, but does so by using SSL version 2 hellos
as part of the handshake. This form of handshake causes interoperability
problems, because applications on other platforms identify the handshake
as an SSL version 2 handshake. The misidentification of the SSL protocol
version can be avoided by setting the accept_v2_hellos policy to true in
the non-z/OS application (this bug also affects some old versions of
Microsoft Internet Explorer).

When true, the Artix application accepts V2 client hellos, but continues the
handshake using either the SSL_V3 or TLS_V1 protocol. When false, the
Artix application throws an error, if it receives a V2 client hello. The default
is false.

For example:

policies:iiop_tls:mechanism_policy:accept_v2_hellos = "true";

mechanism_policy:ciphersuites

This policy overides policies:mechanism_policy:ciphersuites for the
iiop_tls plugin.

Specifies a list of cipher suites for the default mechanism policy. One or
more of the following cipher suites can be specified in this list:

Note: This default value is deliberately different from the
policies:https:mechanism_policy:accept_v2_hellos default value.

Table 7: Mechanism Policy Cipher Suites

Null Encryption, Integrity
and Authentication Ciphers

Standard Ciphers

RSA_WITH_NULL_MD5 RSA_EXPORT_WITH_RC4_40_MD5

RSA_WITH_NULL_SHA RSA_WITH_RC4_128_MD5

RSA_WITH_RC4_128_SHA

RSA_EXPORT_WITH_DES40_CBC_SHA
 217

APPENDIX 3 | Artix Security
If you do not specify the list of cipher suites explicitly, all of the null
encryption ciphers are disabled and all of the non-export strength ciphers
are supported by default.

mechanism_policy:protocol_version

This IIOP/TLS-specific policy overides the generic
policies:mechanism_policy:protocol_version policy.

Specifies the list of protocol versions used by a security capsule (ORB
instance). Can include one or more of the following values:

TLS_V1
SSL_V3
SSL_V2V3 (Deprecated)

The default setting is SSL_V3 and TLS_V1.

For example:

policies:iiop_tls:mechanism_policy:protocol_version = ["TLS_V1",
"SSL_V3"];

The SSL_V2V3 value is now deprecated. It was previously used to facilitate
interoperability with Artix applications deployed on the z/OS platform. If you
have any legacy configuration that uses SSL_V2V3, you should replace it with
the following combination of settings:

policies:iiop_tls:mechanism_policy:protocol_version = ["SSL_V3",
"TLS_V1"];

policies:iiop_tls:mechanism_policy:accept_v2_hellos = "true";

server_address_mode_policy:local_domain

(Java only) When this policy is set, the iiop_tls plug-in reads this policy�s
value instead of the
policies:iiop:server_address_mode_policy:local_domain policy�s value.

RSA_WITH_DES_CBC_SHA

RSA_WITH_3DES_EDE_CBC_SHA

Table 7: Mechanism Policy Cipher Suites

Null Encryption, Integrity
and Authentication Ciphers

Standard Ciphers
218

policies:iiop_tls
server_address_mode_policy:local_hostname

(Java only) When this policy is set, the iiop_tls plug-in reads this policy�s
value instead of the
policies:iiop:server_address_mode_policy:local_hostname policy�s
value.

server_address_mode_policy:local_hostname specifies the hostname
advertised by the locator daemon, and listened on by server-side IIOP.

Some machines have multiple hostnames or IP addresses (for example,
those using multiple DNS aliases or multiple network cards). These
machines are often termed multi-homed hosts. The local_hostname
variable supports these type of machines by enabling you to explicitly
specify the host that servers listen on and publish in their IORs.

For example, if you have a machine with two network addresses
(207.45.52.34 and 207.45.52.35), you can explicitly set this variable to
either address:

By default, the local_hostname variable is unspecified. Servers use the
default hostname configured for the machine with the Orbix configuration
tool.

server_address_mode_policy:port_range

(Java only) When this policy is set, the iiop_tls plug-in reads this policy�s
value instead of the
policies:iiop:server_address_mode_policy:port_range policy�s value.

server_address_mode_policy:port_range specifies the range of ports that
a server uses when there is no well-known addressing policy specified for
the port.

policies:iiop:server_address_mode_policy:local_hostname =
"207.45.52.34";
 219

APPENDIX 3 | Artix Security
server_address_mode_policy:publish_hostname

When this policy is set, the iiop_tls plug-in reads this policy�s value
instead of the
policies:iiop:server_address_mode_policy:publish_hostname policy�s
value.

server_address_mode-policy:publish_hostname specifes whether IIOP
exports hostnames or IP addresses in published profiles. Defaults to false
(exports IP addresses, and does not export hostnames). To use hostnames
in object references, set this variable to true, as in the following file-based
configuration entry:

The following itadmin command is equivalent:

server_version_policy

When this policy is set, the iiop_tls plug-in reads this policy�s value
instead of the policies:iiop:server_version_policy policy�s value.

server_version_policy specifies the GIOP version published in IIOP
profiles. This variable takes a value of either 1.1 or 1.2. Artix servers do not
publish IIOP 1.0 profiles. The default value is 1.2.

target_secure_invocation_policy:requires

This policy overides
policies:target_secure_invocation_policy:requires for the iiop_tls
plugin.

Specifies the minimum level of security required by a server. The value of
this variable is specified as a list of association options�see the Artix
Security Guide for more details about association options.

In accordance with CORBA security, this policy cannot be downgraded
programmatically by the application.

policies:iiop:server_address_mode_policy:publish_hostname=true

itadmin variable create -type bool -value true
policies:iiop:server_address_mode_policy:publish_hostname
220

policies:iiop_tls
target_secure_invocation_policy:supports

This policy overides
policies:target_secure_invocation_policy:supports for the iiop_tls
plugin.

Specifies the maximum level of security supported by a server. The value of
this variable is specified as a list of association options�see the Artix
Security Guide for more details about association options.

This policy can be upgraded programmatically using either the QOP or the
EstablishTrust policies.

tcp_options_policy:no_delay

When this policy is set, the iiop_tls plug-in reads this policy�s value
instead of the policies:iiop:tcp_options_policy:no_delay policy�s
value.

tcp_options_policy:no_delay specifies whether the TCP_NODELAY option
should be set on connections. Defaults to false.
 221

APPENDIX 3 | Artix Security
tcp_options_policy:recv_buffer_size

When this policy is set, the iiop_tls plug-in reads this policy�s value
instead of the policies:iiop:tcp_options_policy:recv_buffer_size
policy�s value.

tcp_options_policy:recv_buffer_size specifies the size of the TCP
receive buffer. This variable can only be set to 0, which coresponds to using
the default size defined by the operating system.

tcp_options_policy:send_buffer_size

When this policy is set, the iiop_tls plug-in reads this policy�s value
instead of the policies:iiop:tcp_options_policy:send_buffer_size
policy�s value.

tcp_options_policy:send_buffer_size specifies the size of the TCP send
buffer. This variable can only be set to 0, which coresponds to using the
default size defined by the operating system.

trusted_ca_list_policy

This policy overides the policies:trusted_ca_list_policy for the
iiop_tls plugin.

Contains a list of filenames (or a single filename), each of which contains a
concatenated list of CA certificates in PEM format. The aggregate of the CAs
in all of the listed files is the set of trusted CAs.

For example, you might specify two files containing CA lists as follows:

policies:trusted_ca_list_policy =
["ASPInstallDir/asp/6.0/etc/tls/x509/ca/ca_list1.pem",
"ASPInstallDir/asp/6.0/etc/tls/x509/ca/ca_list_extra.pem"];

The purpose of having more than one file containing a CA list is for
administrative convenience. It enables you to group CAs into different lists
and to select a particular set of CAs for a security domain by choosing the
appropriate CA lists.
222

policies:security_server
policies:security_server
The policies:security_server namespace contains the following
variables:

� client_certificate_constraints

client_certificate_constraints

Restricts access to the Artix security server, allowing only clients that match
the specified certificate constraints to open a connection to the security
service. For details of how to specify certificate constraints, see �Applying
Constraints to Certificates� on page 155.

For example, by inserting the following setting into the security service�s
configuration scope in the Artix .cfg file, you can allow access by clients
presenting the administrator.p12 and iona_utilities.p12 certificates
(demonstration certificates).

The effect of setting this configuration variable is slightly different to the
effect of setting policies:iiop_tls:certificate_constraints_policy.
Whereas policies:iiop_tls:certificate_constraints_policy affects all
services deployed in the current process, the
policies:security_server:client_certificate_constraints variable
affects only the Artix security service. This distinction is significant when the
login server is deployed into the same process as the security server. In this
case, you would typically want to configure the login server such that it does
not require clients to present an X.509 certificate (this is the default), while
the security server does require clients to present an X.509 certificate.

Allow access by demonstration client certificates.
WARNING: These settings are NOT secure and must be customized
before deploying in a real system.
#
policies:security_server:client_certificate_constraints =

["C=US,ST=Massachusetts,O=ABigBank*,CN=Orbix2000 IONA
Services (demo cert), OU=Demonstration Section -- no warranty
--", "C=US,ST=Massachusetts,O=ABigBank*,CN=Abigbank Accounts
Server*", "C=US,ST=Massachusetts,O=ABigBank*,CN=Iona
utilities - demo purposes"];
 223

APPENDIX 3 | Artix Security
This configuration variable must be set in the security server�s configuration
scope, otherwise the security server will not start.
224

policies:soap:security
policies:soap:security
The policies:soap:security namespace contains just a single
configuration variable, as follows:

� enforce_must_understand

enforce_must_understand

Specifies whether the Artix runtime enforces the semantics required by the
mustUnderstand attribute, which appears in the WS-Security SOAP header.

The semantics are as follows: when the mustUnderstand attribute is set to
1, the message receiver must process all of the security elements contained
in the corresponding wsse:Security header element. If the receiving
program is unable to process the wsse:Security element completely, the
message should be rejected.

You can disable this behavior by setting the
policies:soap:security:enforce_must_understand variable to false.

Default is true.

The mustUnderstand attribute appears as follows in a SOAP 1.1 header:

<S11:Envelope>
 <S11:Header>
 ...
 <wsse:Security S11:actor="..." S11:mustUnderstand="...">
 ...
 </wsse:Security>
 ...
 </S11:Header>
 ...
</S11:Envelope>
 225

APPENDIX 3 | Artix Security
principal_sponsor
The principal_sponsor namespace stores configuration information to be
used when obtaining credentials. the CORBA binding provides an
implementation of a principal sponsor that creates credentials for
applications automatically.

Use of the PrincipalSponsor is disabled by default and can only be enabled
through configuration.

The PrincipalSponsor represents an entry point into the secure system. It
must be activated and authenticate the user, before any application-specific
logic executes. This allows unmodified, security-unaware applications to
have Credentials established transparently, prior to making invocations.

In this section The following variables are in this namespace:

� use_principal_sponsor

� auth_method_id

� auth_method_data

� callback_handler:ClassName

� login_attempts

use_principal_sponsor

use_principal_sponsor specifies whether an attempt is made to obtain
credentials automatically. Defaults to false. If set to true, the following
principal_sponsor variables must contain data in order for anything to
actually happen.
226

principal_sponsor
auth_method_id

auth_method_id specifies the authentication method to be used. The
following authentication methods are available:

For example, you can select the pkcs12_file authentication method as
follows:

auth_method_data

auth_method_data is a string array containing information to be interpreted
by the authentication method represented by the auth_method_id.

For the pkcs12_file authentication method, the following authentication
data can be provided in auth_method_data:

For example, to configure an application on Windows to use a certificate,
bob.p12, whose private key is encrypted with the bobpass password, set the
auth_method_data as follows:

The following points apply to Java implementations:

� If the file specified by filename= is not found, it is searched for on the
classpath.

pkcs12_file The authentication method uses a PKCS#12 file.

principal_sponsor:auth_method_id = "pkcs12_file";

filename A PKCS#12 file that contains a certificate chain and
private key�required.

password A password for the private key�optional.

It is bad practice to supply the password from
configuration for deployed systems. If the password is not
supplied, the user is prompted for it.

password_file The name of a file containing the password for the private
key�optional.

This option is not recommended for deployed systems.

principal_sponsor:auth_method_data =
["filename=c:\users\bob\bob.p12", "password=bobpass"];
 227

APPENDIX 3 | Artix Security
� The file specified by filename= can be supplied with a URL instead of
an absolute file location.

� The mechanism for prompting for the password if the password is
supplied through password= can be replaced with a custom
mechanism, as demonstrated by the login demo.
228

principal_sponsor
� There are two extra configuration variables available as part of the
principal_sponsor namespace, namely
principal_sponsor:callback_handler and
principal_sponsor:login_attempts. These are described below.

� These Java-specific features are available subject to change in future
releases; any changes that can arise probably come from customer
feedback on this area.

callback_handler:ClassName

callback_handler:ClassName specifies the class name of an interface that
implements the interface com.iona.corba.tls.auth.CallbackHandler. This
variable is only used for Java clients.

login_attempts

login_attempts specifies how many times a user is prompted for
authentication data (usually a password). It applies for both internal and
custom CallbackHandlers; if a CallbackHandler is supplied, it is invoked
upon up to login_attempts times as long as the PrincipalAuthenticator
returns SecAuthFailure. This variable is only used by Java clients.
 229

APPENDIX 3 | Artix Security
principal_sponsor:csi
The principal_sponsor:csi namespace stores configuration information to
be used when obtaining CSI (Common Secure Interoperability) credentials.
It includes the following:

� use_existing_credentials

� use_principal_sponsor

� auth_method_data

� auth_method_id

use_existing_credentials

A boolean value that specifies whether ORBs that share credentials can also
share CSI credentials. If true, any CSI credentials loaded by one
credential-sharing ORB can be used by other credential-sharing ORBs
loaded after it; if false, CSI credentials are not shared.

This variable has no effect, unless the
plugins:security:share_credentials_across_orbs variable is also true.

Default is false.

use_principal_sponsor

use_principal_sponsor is a boolean value that switches the CSI principal
sponsor on or off.

If set to true, the CSI principal sponsor is enabled; if false, the CSI
principal sponsor is disabled and the remaining principal_sponsor:csi
variables are ignored. Defaults to false.
230

principal_sponsor:csi
auth_method_data

auth_method_data is a string array containing information to be interpreted
by the authentication method represented by the auth_method_id.

For the GSSUPMech authentication method, the following authentication
data can be provided in auth_method_data:

If any of the preceding data are omitted, the user is prompted to enter
authentication data when the application starts up.

For example, to log on to a CSIv2 application as the administrator user in
the US-SantaClara domain:

principal_sponsor:csi:auth_method_data =
["username=administrator", "domain=US-SantaClara"];

username The username for CSIv2 authorization. This is optional.
Authentication of CSIv2 usernames and passwords is
performed on the server side. The administration of
usernames depends on the particular security mechanism
that is plugged into the server side see
auth_over_transport:authentication_service.

password The password associated with username. This is optional. It is
bad practice to supply the password from configuration for
deployed systems. If the password is not supplied, the user is
prompted for it.

domain The CSIv2 authentication domain in which the
username/password pair is authenticated.

When the client is about to open a new connection, this
domain name is compared with the domain name embedded
in the relevant IOR (see
policies:csi:auth_over_transport:server_domain_name).
The domain names must match.

Note: If domain is an empty string, it matches any target
domain. That is, an empty domain string is equivalent to a
wildcard.
 231

APPENDIX 3 | Artix Security
When the application is started, the user is prompted for the administrator
password.

auth_method_id

auth_method_id specifies a string that selects the authentication method to
be used by the CSI application. The following authentication method is
available:

For example, you can select the GSSUPMech authentication method as
follows:

principal_sponsor:csi:auth_method_id = "GSSUPMech";

Note: It is currently not possible to customize the login prompt associated
with the CSIv2 principal sponsor. As an alternative, you could implement
your own login GUI by programming and pass the user input directly to the
principal authenticator.

GSSUPMech The Generic Security Service Username/Password
(GSSUP) mechanism.
232

principal_sponsor:http
principal_sponsor:http
The principal_sponsor:http namespace provides configuration variables
that enable you to specify the HTTP Basic Authentication username and
password credentials.

The principal sponsor is disabled by default.

For example, to configure a HTTP client to use the credentials
test_username and test_password, configure the HTTP principal sponsor
as follows:

In this section The following variables are in this namespace:

� use_principal_sponsor

� auth_method_id

� auth_method_data

use_principal_sponsor

use_principal_sponsor is used to enable or disable the HTTP principal
sponsor. Defaults to false. If set to true, the following
principal_sponsor:http variables must be set:

� auth_method_id

� auth_method_data

Note: Once the HTTP principal sponsor is enabled, the HTTP header
containing the username and password is always included in outgoing
messages. For example, it is not possible to omit the HTTP Basic
Authentication credentials while talking to security unaware services. It is
possible, however, to program the application to set the username and
password values equal to empty strings.

principal_sponsor:http:use_principal_sponsor = "true";
principal_sponsor:http:auth_method_id = "USERNAME_PASSWORD";
principal_sponsor:http:auth_method_data =

["username=test_username", "password=test_password"];
 233

APPENDIX 3 | Artix Security
auth_method_id

auth_method_id specifies the authentication method to be used. The
following authentication methods are available:

For example, you can select the USERNAME_PASSWORD authentication method
as follows:

auth_method_data

auth_method_data is a string array containing information to be interpreted
by the authentication method represented by the auth_method_id.

For the USERNAME_PASSWORD authentication method, the following
authentication data can be provided in auth_method_data:

The username field is required, and you can include either a password field
or a password_file field to specify the password.

For example, to configure an application with the username,
test_username, whose password is stored in the wsse_password_file.txt
file, set the auth_method_data as follows:

USERNAME_PASSWORD The authentication method reads the HTTP Basic
Authentication username and password from the
auth_method_data variable.

principal_sponsor:http:auth_method_id = "USERNAME_PASSWORD";

username The HTTP Basic Authentication username�required.

password The HTTP Basic Authentication password.

It is bad practice to supply the password from
configuration for deployed systems. If the password is not
supplied, the user is prompted for it.

password_file The name of a file containing the HTTP Basic
Authentication password.

principal_sponsor:http:auth_method_data =
["username=test_username",
"password_file=wsse_password_file.txt"];
234

principal_sponsor:https
principal_sponsor:https
The principal_sponsor:https namespace provides configuration variables
that enable you to specify the own credentials used with the HTTPS
transport.

The HTTPS principal sponsor is disabled by default.

In this section The following variables are in this namespace:

� use_principal_sponsor

� auth_method_id

� auth_method_data

use_principal_sponsor

use_principal_sponsor specifies whether an attempt is made to obtain
credentials automatically. Defaults to false. If set to true, the following
principal_sponsor:https variables must contain data in order for anything
to actually happen:

� auth_method_id

� auth_method_data
 235

APPENDIX 3 | Artix Security
auth_method_id

auth_method_id specifies the authentication method to be used. The
following authentication methods are available:

For example, you can select the pkcs12_file authentication method as
follows:

auth_method_data

auth_method_data is a string array containing information to be interpreted
by the authentication method represented by the auth_method_id.

For the pkcs12_file authentication method, the following authentication
data can be provided in auth_method_data:

For example, to configure an application on Windows to use a certificate,
bob.p12, whose private key is encrypted with the bobpass password, set the
auth_method_data as follows:

pkcs12_file The authentication method uses a PKCS#12 file

principal_sponsor:https:auth_method_id = "pkcs12_file";

filename A PKCS#12 file that contains a certificate chain and
private key�required.

password A password for the private key.

It is bad practice to supply the password from
configuration for deployed systems. If the password is not
supplied, the user is prompted for it.

password_file The name of a file containing the password for the private
key.

This option is not recommended for deployed systems.

principal_sponsor:https:auth_method_data =
["filename=c:\users\bob\bob.p12", "password=bobpass"];
236

principal_sponsor:wsse
principal_sponsor:wsse
The principal_sponsor:wsse namespace provides configuration variables
that enable you to specify the WSS username and password credentials sent
in a SOAP header.

The principal sponsor is disabled by default.

For example, to configure a SOAP client to use the credentials
test_username and test_password, configure the WSS principal sponsor as
follows:

If you use a SOAP 1.2 binding, you must also include the following
configuration in the client and in the server:

Note: Once the WSS principal sponsor is enabled, the SOAP header
containing the WSS username and password is always included in
outgoing messages. For example, it is not possible to omit the WSS
username/password header while talking to security unaware services. It is
possible, however, to program the application to set the username and
password values equal to empty strings.

principal_sponsor:wsse:use_principal_sponsor = "true";
principal_sponsor:wsse:auth_method_id = "USERNAME_PASSWORD";
principal_sponsor:wsse:auth_method_data =

["username=test_username", "password=test_password"];

Artix .cfg file
...
orb_plugins = ["xmlfile_log_stream", "artix_security", ...];

plugins:artix_security:shlib_name = "it_security_plugin";
binding:artix:server_request_interceptor_list =

"principal_context+security";
binding:artix:client_request_interceptor_list =

"security+principal_context";
 237

APPENDIX 3 | Artix Security
In this section The following variables are in this namespace:

� use_principal_sponsor

� auth_method_id

� auth_method_data

use_principal_sponsor

use_principal_sponsor is used to enable or disable the WSS principal
sponsor. Defaults to false. If set to true, the following
principal_sponsor:wsse variables must be set:

� auth_method_id

� auth_method_data

auth_method_id

auth_method_id specifies the authentication method to be used. The
following authentication methods are available:

For example, you can select the USERNAME_PASSWORD authentication method
as follows:

auth_method_data

auth_method_data is a string array containing information to be interpreted
by the authentication method represented by the auth_method_id.

For the USERNAME_PASSWORD authentication method, the following
authentication data can be provided in auth_method_data:

USERNAME_PASSWORD The authentication method reads the WSS
username and password from the
auth_method_data variable.

principal_sponsor:wsse:auth_method_id = "USERNAME_PASSWORD";

username The WSS username�required.
238

principal_sponsor:wsse
The username field is required, and you can include either a password field
or a password_file field to specify the password.

For example, to configure an application with the WSS username,
test_username, whose password is stored in the wsse_password_file.txt
file, set the auth_method_data as follows:

password The WSS password.

It is bad practice to supply the password from
configuration for deployed systems. If the password is not
supplied, the user is prompted for it.

password_file The name of a file containing the WSS password.

principal_sponsor:wsse:auth_method_data =
["username=test_username",
"password_file=wsse_password_file.txt"];
 239

APPENDIX 3 | Artix Security
240

CHAPTER 4

CORBA
When using the CORBA transport, Artix behaves like an Orbix
C++ application. This means that you can specify the Orbix
configuration variables that apply to the CORBA-based
plug-ins used by Artix.

In this chapter The following CORBA-based variables are discussed in this chapter:

Note: The variables described in this chapter apply when Artix is using
the CORBA transport.

plugins:codeset page 243

plugins:giop page 246

plugins:giop_snoop page 247

plugins:http and https page 249

plugins:iiop page 253

plugins:naming page 258

plugins:ots page 260

plugins:ots_lite page 263

plugins:ots_encina page 265

plugins:poa page 271
241

CHAPTER 4 | CORBA

poa:FQPN page 272

Core Policies page 274

CORBA Timeout Policies page 276

IONA Timeout Policies page 277

policies:giop page 278

policies:giop:interop_policy page 280

policies:http page 282

policies:iiop page 284

policies:invocation_retry page 289
242

plugins:codeset
plugins:codeset
The variables in this namespace specify the codesets used by the CORBA
portion of Artix. This is useful when internationalizing your environment.
This namespace includes the following variables:

� char:ncs

� char:ccs

� wchar:ncs

� wchar:ccs

� always_use_default

char:ncs

char:ncs specifies the native codeset to use for narrow characters. The
default setting is determined as follows:

Table 8: Defaults for the native narrow codeset

Platform/Locale Language Setting

non-MVS, Latin-1 locale C++ ISO-8859-1

MVS C++ EBCDIC

ISO-8859-1/Cp-1292/US-ASCII
locale

Java ISO-8859-1

Shift_JS locale Java UTF-8

EUC-JP locale Java UTF-8

other Java UTF-8
243

CHAPTER 4 | CORBA
char:ccs

char:ccs specifies the list of conversion codesets supported for narrow
characters. The default setting is determined as follows:

wchar:ncs

wchar:ncs specifies the native codesets supported for wide characters. The
default setting is determined as follows:

Table 9: Defaults for the narrow conversion codesets

Platform/Locale Language Setting

non-MVS, Latin-1 locale C++

MVS C++ IOS-8859-1

ISO-8859-1/Cp-1292/US-ASCII
locale

Java UTF-8

Shift_JIS locale Java Shift_JIS, euc_JP,
ISO-8859-1

EUC-JP locale Java euc_JP, Shift_JIS,
ISO-8859-1

other Java file encoding,
ISO-8859-1

Table 10: Defaults for the wide native codesets

Platform/Locale Language Setting

non-MVS, Latin-1 locale C++ UCS-2, UCS-4

MVS C++ UCS-2, UCS-4

ISO-8859-1/Cp-1292/US-ASCII
locale

Java UTF-16

Shift_JIS locale Java UTF-16
244

plugins:codeset
wchar:ccs

wchar:ccs specifies the list of conversion codesets supported for wide
characters. The default setting is determined as follows:

always_use_default

always_use_default specifies that hardcoded default values will be used
and any codeset variables will be ignored if they are in the same
configuration scope or higher.

EUC-JP locale Java UTF-16

other Java UTF-16

Table 10: Defaults for the wide native codesets

Platform/Locale Language Setting

Table 11: Defaults for the narrow conversion codesets

Platform/Locale Language Setting

non-MVS, Latin-1 locale C++ UTF-16

MVS C++ UTF-16

ISO-8859-1/Cp-1292/US-ASCII
locale

Java UCS-2

Shift_JIS locale Java UCS-2,
Shift_JIS,euc_JP

EUC-JP locale Java UCS-2, euc_JP,
Shift_JIS

other Java file encoding, UCS-2
245

CHAPTER 4 | CORBA
plugins:giop
This namespace contains the plugins:giop:message_server_binding_list
configuration variable, which is one of the variables used to configure
bidirectional GIOP. This feature allows callbacks to be made using a
connection opened by the client, instead of requiring the server to open a
new connection for the callback.

message_server_binding_list

plugins:giop:message_server_binding_list specifies a list message
inceptors that are used for bidirectional GIOP. On the client-side, the
plugins:giop:message_server_binding_list must be configured to
indicate that an existing outgoing message interceptor chain may be re-used
for an incoming server binding, similarly by including an entry for
BiDir_GIOP, for example:

plugins:giop:message_server_binding_list=["BiDir_GIOP","GIOP"];

Further information For details of all the steps involved in setting bidirectional GIOP, see the
Orbix Administrator�s Guide.
246

plugins:giop_snoop
plugins:giop_snoop
The variables in this namespace configure settings for the GIOP Snoop tool.
This tool intercepts and displays GIOP message content. Its primary roles
are as a protocol-level monitor and a debug aid.

The GIOP Snoop plug-in implements message-level interceptors that can
participate in client and/or server side bindings over any GIOP-based
transport.

The variables in the giop_snoop namespace include the following:

� filename

� rolling_file

� verbosity

filename

plugins:giop_snoop:filename specifies a file for GIOP Snoop output. By
default, output is directed to standard error (stderr). This variable has the
following format:

A month/day/year time stamp is included in the output filename with the
following general format:

rolling_file

plugins:giop_snoop:rolling_file prevents the GIOP Snoop output file
from growing indefinitely. This setting specifies to open and then close the
output file for each snoop message trace, instead of holding the output files
open. This enables administrators to control the size and content of output
files. This setting is enabled with:

plugins:giop_snoop:filename = "<some-file-path>";

<filename>.MMDDYYYY

plugins:giop_snoop:rolling_file = "true";
247

CHAPTER 4 | CORBA
verbosity

plugins:giop_snoop:verbosity is used to control the verbosity levels of the
GIOP Snoop output. For example:

GIOP Snoop verbosity levels are as follows:

plugins:giop_snoop:verbosity = "1";

1 LOW

2 MEDIUM

3 HIGH

4 VERY HIGH
248

plugins:http and https
plugins:http and https
The variables in this namespace configure both the HTTP and HTTPS
transports. This namespace contains the following variables:

� connection:max_unsent_data

� incoming_connections:hard_limit

� incoming_connections:soft_limit

� ip:send_buffer_size

� ip:receive_buffer_size

� ip:reuse_addr

� outgoing_connections:hard_limit

� outgoing_connections:soft_limit

� pool:max_threads

� pool:min_threads

� tcp_connection:keep_alive

� tcp_connection:no_delay

� tcp_connection:linger_on_close

� tcp_listener:reincarnate_attempts

connection:max_unsent_data

connection:max_unsent_data specifies, in bytes, the upper limit for the
amount of unsent data associated with an individual connection. Defaults to
512Kb.

incoming_connections:hard_limit

incoming_connections:hard_limit specifies the maximum number of
incoming (server-side) connections permitted to HTTP. HTTP does not
accept new connections above this limit. Defaults to -1 (disabled).
249

CHAPTER 4 | CORBA
incoming_connections:soft_limit

incoming_connections:soft_limit sets the number of connections at
which HTTP begins closing incoming (server-side) connections. Defaults to
-1 (disabled).

ip:send_buffer_size

ip:send_buffer_size specifies the SO_SNDBUF socket options to control how
the IP stack adjusts the size of the output buffer. Defaults to 0, meaning the
that buffer size is static.

ip:receive_buffer_size

ip:receive_buffer_size specifies the SO_RCVBUF socket options to control
how the IP stack adjusts the size of the input buffer. Defaults to 0, meaning
the that buffer size is static.

ip:reuse_addr

ip:reuse_addr specifies whether a process can be launched on an already
used port. The default on Windows is false. An exception indicating that
the address is already in use will be thrown.

The default on UNIX is true. This allows a process to listen on the same
port.

outgoing_connections:hard_limit

outgoing_connections:hard_limit sets the maximum number of outgoing
(client-side) connections permitted to HTTP. HTTP does not allow new
outgoing connections above this limit. Defaults to -1 (disabled).
250

plugins:http and https
outgoing_connections:soft_limit

outgoing_connections:soft_limit specifies the number of connections at
which HTTP begins closing outgoing (client-side) connections. Defaults to -1
(disabled).

pool:max_threads

pool:max_threads specifies the maximum number of threads reserved from
the WorkQueue to support tasks working on behalf of the ATLI transport.
Defaults to 5.

pool:min_threads

pool:min_threads specifies the minimum number of threads reserved from
the WorkQueue to support tasks working on behalf of the ATLI transport.
Defualts to 1.

tcp_connection:keep_alive

tcp_connection:keep_alive specifies the setting of SO_KEEPALIVE on
sockets used to maintain HTTP connections. If set to TRUE, the socket will
send a keepalive probe to the remote host if the conneciton has been idle
for a preset period of time. The remote system, if it is still running, will send
an ACK response. Defaults to TRUE.

tcp_connection:no_delay

tcp_connection:no_deplay specifies if TCP_NODELAY is set on the sockets
used to maintain HTTP connections. If set to false, small data packets are
collected and sent as a group. The algorithm used allows for no more than a
0.2 msec delay between collected packets. Defaults to TRUE.
251

CHAPTER 4 | CORBA
tcp_connection:linger_on_close

tcp_connection:linger_on_close specifies the setting of SO_LINGER on all
TCP connections. This is used to ensure that TCP buffers are cleared when a
socket is closed. This variable specifies the number of seconds to linger,
using a value of type long. The default is -1, which means that the
SO_LINGER socket option is not set.

tcp_listener:reincarnate_attempts

tcp_listnener:reincarnate_attempts specifies the number of times that a
Listener recreate its listener socket after recieving a SocketException. This
configuration varaible only effects Java applications. Defaults to 1.
252

plugins:iiop
plugins:iiop
The variables in this namespace configure active connection management,
IIOP buffer management. For more information about active connection
management, see the Orbix Administrator�s Guide.

This namespace contains the following variables:

� connection:max_unsent_data

� incoming_connections:hard_limit

� incoming_connections:soft_limit

� ip:send_buffer_size

� ip:receive_buffer_size

� ip:reuse_addr

� outgoing_connections:hard_limit

� outgoing_connections:soft_limit

� pool:max_threads

� pool:min_threads

� tcp_connection:keep_alive

� tcp_connection:no_delay

� tcp_connection:linger_on_close

� tcp_listener:reincarnate_attempts

� tcp_listener:reincarnation_retry_backoff_ratio

� tcp_listener:reincarnation_retry_delay

connection:max_unsent_data

plugins:iiop:connection:max_unsent_data specifies the upper limit for
the amount of unsent data associated with an individual connection.
Defaults to 512k.
253

CHAPTER 4 | CORBA
incoming_connections:hard_limit

plugins:iiop:incoming_connections:hard_limit specifies the maximum
number of incoming (server-side) connections permitted to IIOP. IIOP does
not accept new connections above this limit. Defaults to -1 (disabled).

incoming_connections:soft_limit

plugins:iiop:incoming_connections:soft_limit sets the number of
connections at which IIOP begins closing incoming (server-side)
connections. Defaults to -1 (disabled).

ip:send_buffer_size

plugins:iiop:ip:send_buffer_size specifies the SO_SNDBUF socket options
to control how the IP stack adjusts the size of the output buffer. Defaults to
0, meaning the that buffer size is static.

ip:receive_buffer_size

plugins:iiop:ip:receive_buffer_size specifies the SO_RCVBUF socket
options to control how the IP stack adjusts the size of the input buffer.
Defaults to 0, meaning the that buffer size is static.

ip:reuse_addr

plugins:iiop:ip:reuse_addr specifies whether a process can be launched
on an already used port. The default on Windows is false. An exception
indicating that the address is already in use will be thrown.

The default on UNIX is true. This allows a process to listen on the same
port.
254

plugins:iiop
outgoing_connections:hard_limit

plugins:iiop:outgoing_connections:hard_limit sets the maximum
number of outgoing (client-side) connections permitted to IIOP. IIOP does
not allow new outgoing connections above this limit. Defaults to -1
(disabled).

outgoing_connections:soft_limit

plugins:iiop:outgoing_connections:soft_limit specifies the number of
connections at which IIOP begins closing outgoing (client-side) connections.
Defaults to -1 (disabled).

pool:max_threads

plugins:iiop:pool:max_threads specifies the maximum number of threads
reserved from the WorkQueue to support tasks working on behalf of the ATLI
transport. Defaults to 5.

pool:min_threads

plugins:iiop:pool:min_threads specifies the minimum number of threads
reserved from the WorkQueue to support tasks working on behalf of the ATLI
transport. Defualts to 1.

tcp_connection:keep_alive

plugins:iiop:tcp_connection:keep_alive specifies the setting of
SO_KEEPALIVE on sockets used to maintain IIOP connections. If set to TRUE,
the socket will send a keepalive probe to the remote host if the conneciton
has been idle for a preset period of time. The remote system, if it is still
running, will send an ACK response. Defaults to TRUE.
255

CHAPTER 4 | CORBA
tcp_connection:no_delay

plugins:iiop:tcp_connection:no_deplay specifies if TCP_NODELAY is set
on the sockets used to maintain IIOP connections. If set to false, small data
packets are collected and sent as a group. The algorithm used allows for no
more than a 0.2 msec delay between collected packets. Defaults to TRUE.

tcp_connection:linger_on_close

plugins:iiop:tcp_connection:linger_on_close specifies the setting of
SO_LINGER on all TCP connections. This is used to ensure that TCP buffers
are cleared when a socket is closed. This variable specifies the number of
seconds to linger, using a value of type long. The default is -1, which
means that the SO_LINGER socket option is not set.

tcp_listener:reincarnate_attempts

(C++/Windows only)

plugins:iiop:tcp_listener:reincarnate_attempts specifies the number
of attempts that are made to reincarnate a listener before giving up, logging
a fatal error, and shutting down the ORB. Datatype is long. Defaults to 0 (no
attempts).

Sometimes an network error may occur, which results in a listening socket
being closed. On Windows, you can configure the listener to attempt a
reincarnation. This enables new connections to be established.

tcp_listener:reincarnation_retry_backoff_ratio

(C++/Windows only)
plugins:iiop:tcp_listener:reincarnation_retry_delay specifies a delay
between reincarnation attempts. Data type is long. Defaults to 0 (no delay).
256

plugins:iiop
tcp_listener:reincarnation_retry_delay

(C++/Windows only)
plugins:iiop:tcp_listener:reincarnation_retry_backoff_ratio

specifies the degree to which delays between retries increase from one retry
to the next. Datatype is long. Defaults to 1.
257

CHAPTER 4 | CORBA
plugins:naming
The variables in this namespace configure the naming service plugin. The
naming service allows you to associate abstract names with CORBA objects,
enabling clients to locate your objects.

This namespace contains the following variables:

� destructive_methods_allowed

� direct_persistence

� iiop:port

� lb_default_initial_load

� lb_default_load_timeout

� nt_service_dependencies

destructive_methods_allowed

destructive_methods_allowed specifies if users can make destructive calls,
such as destroy(), on naming service elements. The default value is true,
meaning the destructive methods are allowed.

direct_persistence

direct_persistence specifies if the service runs using direct or indirect
persistence. The default value is false, meaning indirect persistence.

iiop:port

iiop:port specifies the port that the service listens on when running using
direct persistence.
258

plugins:naming
lb_default_initial_load

lb_default_initial_load specifies the default initial load value for a
member of an active object group. The load value is valid for a period of
time specified by the timeout assigned to that member. Defaults to 0.0. For
more information, see the Orbix Administrator�s Guide.

lb_default_load_timeout

lb_default_load_timeout specifies the default load timeout value for a
member of an active object group. The default value of -1 indicates no
timeout. This means that the load value does not expire. For more
information, see the Orbix Administrator�s Guide.

nt_service_dependencies

nt_service_dependencies specifies the naming service�s dependencies on
other NT services. The dependencies are listed in the following format:

This variable only has meaning if the naming service is installed as an NT
service.

IT ORB-name domain-name
259

CHAPTER 4 | CORBA
plugins:ots
The variables in this namespace configure the object transaction service
(OTS) generic plugin. The generic OTS plugin contains client and server side
transaction interceptors and the implementation of
CosTransactions::Current. For details of this plugin, refer to the CORBA
OTS Guide.

The plugins:ots namespace contains the following variables:

� default_ots_policy

� default_transaction_policy

� default_transaction_timeout

� interposition_style

� jit_transactions

� ots_v11_policy

� propagate_separate_tid_optimization

� rollback_only_on_system_ex

� support_ots_v11

� transaction_factory_name

default_ots_policy

default_ots_policy specifies the default OTSPolicy value used when
creating a POA. Set to one of the following values:

requires
forbids
adapts

If no value is specified, no OTSPolicy is set for new POAs.

default_transaction_policy

default_transaction_policy specifies the default TransactionPolicy
value used when creating a POA.

Set to one of the following values:
260

plugins:ots
� requires corresponds to a TransactionPolicy value of
Requires_shared.

� allows corresponds to a TransactionPolicy value of Allows_shared.

If no value is specified, no TransactionPolicy is set for new POAs.

default_transaction_timeout

default_transaction_timeout specifies the default timeout, in seconds, of
a transaction created using CosTransactions::Current. A value of zero or
less specifies no timeout. Defaults to 30 seconds.

interposition_style

interposition_style specifies the style of interposition used when a
transaction first visits a server. Set to one of the following values:

� standard: A new subordinator transaction is created locally and a
resource is registered with the superior coordinator. This subordinate
transaction is then made available through the Current object.

� proxy: (default) A locally constrained proxy for the imported
transaction is created and made available though the Current object.

Proxy interposition is more efficient, but if you need to further propagate the
transaction explicitly (using the Control object), standard interposition must
be specified.

jit_transactions

jit_transactions is a boolean which determines whether to use
just-in-time transaction creation. If set to true, transactions created using
Current::begin() are not actually created until necessary. This can be
used in conjunction with an OTSPolicy value of SERVER_SIDE to delay
creation of a transaction until an invocation is received in a server. Defaults
to false.
261

CHAPTER 4 | CORBA
ots_v11_policy

ots_v11_policy specifies the effective OTSPolicy value applied to objects
determined to support CosTransactions::TransactionalObject, if
support_ots_v11 is set to true.

Set to one of the following values:

� adapts
� requires

propagate_separate_tid_optimization

propagate_separate_tid_optimization specifies whether an optimization
is applied to transaction propagation when using C++ applications. Must
be set for both the sender and receiver to take affect. Defaults to true.

rollback_only_on_system_ex

rollback_only_on_system_ex specifies whether to mark a transaction for
rollback if an invocation on a transactional object results in a system
exception being raised. Defaults to true.

support_ots_v11

support_ots_v11 specifies whether there is support for the OMG OTS v1.1
CosTransactions::TransactionalObject interface. This option can be used
in conjunction with ots_v11_policy. When this option is enabled, the OTS
interceptors might need to use remote _is_a() calls to determine the type of
an interface. Defaults to false.

transaction_factory_name

transaction_factory_name specifies the initial reference for the transaction
factory. This option must match the corresponding entry in the configuration
scope of your transaction service implementation. Defaults to
TransactionFactory.
262

plugins:ots_lite
plugins:ots_lite
The variables in this namespace configure the Lite implementation of the
object transaction service. The ots_lite plugin contains an implementation
of CosTransacitons::TransactionFactory which is optimized for use in a
single resource system. For details, see the CORBA Programmer�s Guide.

This namespace contains the following variables:

� orb_name

� otid_format_id

� superior_ping_timeout

� transaction_factory_name

� transaction_timeout_period

� use_internal_orb

orb_name

orb_name specifies the ORB name used for the plugin�s internal ORB when
use_internal_orb is set to true. The ORB name determines where the
ORB obtains its configuration information and is useful when the application
ORB configuration needs to be different from that of the internal ORB.
Defaults to the ORB name of the application ORB.

otid_format_id

otid_format_id specifies the value of the formatID field of a transaction�s
identifier (CosTransactions::otid_t). Defaults to 0x494f4e41.

superior_ping_timeout

superior_ping_timeout specifies, in seconds, the timeout between queries
of the transaction state, when standard interposition is being used to
recreate a foreign transaction. The interposed resource periodically queries
the recovery coordinator, to ensure that the transaction is still alive when the
timeout of the superior transaction has expired. Defaults to 30.
263

CHAPTER 4 | CORBA
transaction_factory_name

transaction_factory_name specifies the initial reference for the transaction
factory. This option must match the corresponding entry in the configuration
scope of your generic OTS plugin to allow it to successfully resolve a
transaction factory. Defaults to TransactionFactory.

transaction_timeout_period

transaction_timeout_period specifies the time, in milliseconds, of which
all transaction timeouts are multiples. A low value increases accuracy of
transaction timeouts, but increases overhead. This value is added to all
transaction timeouts. To disable all timeouts, set to 0 or a negative value.
Defaults to 1000.

use_internal_orb

use_internal_orb specifies whether the ots_lite plugin creates an internal
ORB for its own use. By default, ots_lite creates POAs in the application�s
ORB. This option is useful if you want to isolate the transaction service from
your application ORB. Defaults to false.
264

plugins:ots_encina
plugins:ots_encina
The plugins:ots_encina namespace stores configuration variables for the
Encina OTS plugin. The ots_encina plugin contains an implementation of
IDL interface CosTransactions::TransactionFactory that supports the
recoverable 2PC protocol. For details, see the CORBA OTS Guide.

This namespace contains the following variables:

� agent_ior_file

� allow_registration_after_rollback_only

� backup_restart_file

� direct_persistence

� direct_persistence

� global_namespace_poa

� iiop:port

� initial_disk

� initial_disk_size

� log_threshold

� log_check_interval

� max_resource_failures

� namespace_poa

� orb_name

� otid_format_id

� resource_retry_timeout

� restart_file

� trace_comp

� trace_file

� trace_on

� transaction_factory_name

� transaction_factory_ns_name

� transaction_timeout_period

� use_internal_orb

� use_raw_disk
265

CHAPTER 4 | CORBA
agent_ior_file

agent_ior_file specifies the file path where the management agent
object�s IOR is written. Defaults to an empty string.

allow_registration_after_rollback_only

allow_registration_after_rollback_only (C++ only) specifies whether
registration of resource objects is permitted after a transaction is marked for
rollback.

� true specifies that resource objects can be registered after a
transaction is marked for rollback.

� false (default) specifies that resource objects cannot be registered
once a transaction is marked for rollback.

This has no effect on the outcome of the transaction.

backup_restart_file

backup_restart_file specifies the path for the backup restart file used by
the Encina OTS to locate its transaction logs. If unspecified, the backup
restart file is the name of the primary restart file�set with restart_file�
with a .bak suffix. Defaults to an empty string.

direct_persistence

direct_persistence specifies whether the transaction factory object can
use explicit addressing�for example, a fixed port. If set to true, the
addressing information is picked up from plugins:ots_encina. For
example, to use a fixed port, set plugins_ots_encina:iiop:port. Defaults
to false.
266

plugins:ots_encina
global_namespace_poa

global_namespace_poa specifies the top-level transient POA used as a
namespace for OTS implementations. Defaults to iOTS.

iiop:port

iiop:port specifies the port that the service listens on when using direct
persistence.

initial_disk

initial_disk specifies the path for the initial file used by the Encina OTS
for its transaction logs. Defaults to an empty string.

initial_disk_size

initial_disk_size specifies the size of the initial file used by the Encina
OTS for its transaction logs. Defaults to 2.

log_threshold

log_threshold specifies the percentage of transaction log space, which,
when exceeded, results in a management event. Must be between 0 and
100. Defaults to 90.

log_check_interval

log_check_interval specifies the time, in seconds, between checks for
transaction log growth. Defaults to 60.
267

CHAPTER 4 | CORBA
max_resource_failures

max_resource_failures specifies the maximum number of failed
invocations on CosTransaction::Resource objects to record. Defaults to 5.

namespace_poa

namespace_poa specifies the transient POA used as a namespace. This is
useful when there are multiple instances of the plugin being used; each
instance must use a different namespace POA to distinguish itself. Defaults
to Encina.

orb_name

orb_name specifies the ORB name used for the plugin�s internal ORB when
use_internal_orb is set to true. The ORB name determines where the
ORB obtains its configuration information, and is useful when the
application ORB configuration needs to be different from that of the internal
ORB. Defaults to the ORB name of the application ORB.

otid_format_id

otis_format_id specifies the value of the formatID field of a transaction�s
identifier (CosTransactions::otid_t). Defaults to 0x494f4e41.

resource_retry_timeout

resource_retry_timeout specifies the time, in seconds, between retrying a
failed invocation on a resource object. A negative value means the default is
used. Defaults to 5.

restart_file

restart_file specifies the path for the restart file used by the Encina OTS
to locate its transaction logs. Defaults to an empty string.
268

plugins:ots_encina
trace_comp

trace_comp sets the Encina trace levels for the component comp, where comp
is one of the following:

bde
log
restart
tran
tranLog_log
tranLog_tran
util
vol

Set this variable to a bracket-enclosed list that includes one or more of the
following string values:

� event: interesting events.

� entry: entry to a function.

� param: parameters to a function.

� internal_entry: entry to internal functions.

� internal_param: parameters to internal functions.

� global.

Defaults to [].

trace_file

trace_file specifies the file to which Encina level tracing is written when
enabled via trace_on. If not set or set to an empty string, Encina level
transactions are written to standard error. Defaults to an empty string.

trace_on

trace_on specifies whether Encina level tracing is enabled. If set to true,
the information that is output is determined from the trace levels (see
trace_comp). Defaults to false.
269

CHAPTER 4 | CORBA
transaction_factory_name

transaction_factory_name specifies the initial reference for the transaction
factory. This option must match the corresponding entry in the configuration
scope of your generic OTS plugin to allow it to successfully resolve a
transaction factory. Defaults to TransactionFactory.

transaction_factory_ns_name

transaction_factory_ns_name specifies the name used to publish the
transaction factory reference in the naming service. Defaults to an empty
string.

transaction_timeout_period

transaction_timeout_period specifies the time, in milliseconds, of which
all transaction timeouts are multiples. A low value increases accuracy of
transaction timeouts, but increases overhead. This value multiplied to all
transaction timeouts. To disable all timeouts, set to 0 or a negative value.
Defaults to 1000.

use_internal_orb

use_internal_orb specifies whether the ots_encina plugin creates an
internal ORB for its own use. By default the ots_encina plugin creates
POA�s in the application�s ORB. This option is useful if you want to isolate
the transaction service from your application ORB. Defaults to false.

use_raw_disk

use_raw_disk specifies whether the path specified by initial_disk is of a
raw disk (true) or a file (false). If set to false and the file does not exist,
the Encina OTS plugin tries to create the file with the size specified in
initial_disk_size. Defaults to false.
270

plugins:poa
plugins:poa
This namespace contains variables to configure the CORBA POA plug-in. It
contains the following variables:

� root_name

root_name

root_name specifies the name of the root POA, which is added to all
fully-qualified POA names generated by that POA. If this variable is not set,
the POA treats the root as an anonymous root, effectively acting as the root
of the location domain.

271

CHAPTER 4 | CORBA
poa:FQPN
The poa namespace includes variables that allow you to use direct
persistence and well-known addressing for POAs (Portable Object
Adaptors). These variables specify the policy for individual POAs by
specifying the fully qualified POA name for each POA. They take the form:

For example to set the well-known address for a POA whose fully qualified
POA name is helloworld you would set the variable
poa:helloworld:well_known_address.

The following variables are in this namespace:

� direct_persistent

� well_known_address

direct_persistent

direct_persistent specifies if a POA runs using direct persistence. If this is
set to true the POA generates IORs using the well-known address that is
specified in the well_known_address varaible. Defaults to false. For an
example of how this works, see well_known_address.

well_known_address

well_known_address specifies the address used to generate IORs for the
associated POA when that POA�s direct_persistent varaible is set to true.

For example, to run your server using direct persistence, and well known
addressing, add the following to your configuration:

poa:FQPN:Variable

poa:helloworld:direct_persistent = "true";
poa:helloworld:well_known_address = "helloworld_port";
helloworld_port:iiop:port = "9202";
272

poa:FQPN
This corresponds to the following WSDL:

Using these configuration variables, all object references created by the
helloworld POA will now be direct persistent containing the well known
IIOP address of port 9202.

If your POA name is different, the configuration variables must be modified.
The scheme used is the following:

FQPN is the fully qualified POA name. This introduces the restriction that
your POA name can only contain printable characters, and may not contain
white space.

Address_Prefix is the string that gets passed to the well-known addressing
POA policy. Specify the actual port used using the
Address_Prefix:iiop:port variable. You can also use iiop_tls instead of
iiop.

<service name="CorbaService">
 <port binding="corbatm:CorbaBinding" name="CorbaPort">
 <corba:address location="file:../../hello_world_service.ior"/>
 <corba:policy poaname="helloworld"/>
 </port>
</service>

poa:FQPN:direct_persistent=BOOL;
poa:FQPN:well_known_address=Address_Prefix;
Address_Prefix:iiop:port=LONG;
273

CHAPTER 4 | CORBA
Core Policies
Configuration variables for core policies include:

� non_tx_target_policy

� rebind_policy

� routing_policy_max

� routing_policy_min

� sync_scope_policy

� work_queue_policy

non_tx_target_policy

non_tx_target_policy specifies the default NonTxTargetPolicy value for
use when a non-transactional object is invoked within a transaction. Set to
one of the following values:

rebind_policy

rebind_policy specifies the default value for RebindPolicy. Can be one of
the following:

TRANSPARENT(default)

NO_REBIND

NO_RECONNECT

routing_policy_max

routing_policy_max specifies the default maximum value for
RoutingPolicy. You can set this to one of the following:

ROUTE_NONE(default)

ROUTE_FORWARD

ROUTE_STORE_AND_FORWARD

permit Maps to the NonTxTargetPolicy value PERMIT.

prevent Maps to the NonTxTargetPolicy value PREVENT.(default)
274

Core Policies
routing_policy_min

routing_policy_min specifies the default minimum value for
RoutingPolicy. You can set this to one of the following:

ROUTE_NONE(default)

ROUTE_FORWARD

ROUTE_STORE_AND_FORWARD

sync_scope_policy

sync_scope_policy specifies the default value for SyncScopePolicy. You
can set this to one of the following:

SYNC_NONE

SYNC_WITH_TRANSPORT(default)

SYNC_WITH_SERVER

SYNC_WITH_TARGET

work_queue_policy

work_queue_policy specifies the default WorkQueue to use for dispatching
GIOP Requests and LocateRequests when the WorkQueuePolicy is not
effective. You can set this variable to a string that is resolved using
ORB.resolve_initial_references().

For example, to dispatch requests on the internal multi-threaded work
queue, this variable should be set to IT_MultipleThreadWorkQueue.
Defaults to IT_DirectDispatchWorkQueue. For more information about
WorkQueue policies, see the CORBA Programmer�s Guide.
275

CHAPTER 4 | CORBA
CORBA Timeout Policies
Artix supports standard CORBA timeout policies, to enable clients to abort
invocations. IONA also provides proprietary policies, which enable more
fine-grained control. Configuration variables for standard CORBA timeout
policies include:

� relative_request_timeout

� relative_roundtrip_timeout

relative_request_timeout

relative_request_timeout specifies how much time, in milliseconds, is
allowed to deliver a request. Request delivery is considered complete when
the last fragment of the GIOP request is sent over the wire to the target
object. There is no default value.

The timeout period includes any delay in establishing a binding. This policy
type is useful to a client that only needs to limit request delivery time.

relative_roundtrip_timeout

relative_roundtrip_timeout specifies how much time, in milliseconds, is
allowed to deliver a request and its reply. There is no default value.

The timeout countdown starts with the request invocation, and includes:

� Marshalling in/inout parameters.

� Any delay in transparently establishing a binding.

If the request times out before the client receives the last fragment of reply
data, the request is cancelled using a GIOP CancelRequest message and all
received reply data is discarded.

For more information about standard CORBA timeout policies, see the
CORBA Programmer�s Guide.
276

IONA Timeout Policies
IONA Timeout Policies
This section lists configuration variables for the IONA-specific timeout
policies, which enable more fine-grained control than the standard CORBA
policies. IONA-specific variables in the policies namespace include:

� relative_binding_exclusive_request_timeout

� relative_binding_exclusive_roundtrip_timeout

� relative_connection_creation_timeout

relative_binding_exclusive_request_timeout

relative_binding_exclusive_request_timeout specifies how much time,
in milliseconds, is allowed to deliver a request, exclusive of binding
attempts. The countdown begins immediately after a binding is obtained for
the invocation. There is no default value.

relative_binding_exclusive_roundtrip_timeout

relative_binding_exclusive_roundtrip_timeout specifies how much
time, in milliseconds, is allowed to deliver a request and receive its reply,
exclusive of binding attempts. There is no default value.

relative_connection_creation_timeout

relative_connection_creation_timeout specifies how much time, in
milliseconds, is allowed to resolve each address in an IOR, within each
binding iteration. Default is 8 seconds.

An IOR can have several TAG_INTERNET_IOP (IIOP transport) profiles, each
with one or more addresses, while each address can resolve via DNS to
multiple IP addresses. Furthermore, each IOR can specify multiple
transports, each with its own set of profiles.

This variable applies to each IP address within an IOR. Each attempt to
resolve an IP address is regarded as a separate attempt to create a
connection.
277

CHAPTER 4 | CORBA
policies:giop
The variables in this namespace set policies that control the behavior of
bidirectional GIOP. This feature allows callbacks to be made using a
connection opened by the client, instead of requiring the server to open a
new connection for the callback. The policies:giop namespace includes
the following variables:

� �bidirectional_accept_policy�.

� �bidirectional_export_policy�.

� �bidirectional_gen3_accept_policy�.

� �bidirectional_offer_policy�.

bidirectional_accept_policy

bidirectional_accept_policy specifies the behavior of the accept policy
used in bidirectional GIOP. On the server side, the
BiDirPolicy::BiDirAcceptPolicy for the callback invocation must be set
to ALLOW. You can set this in configuration as follows:

policies:giop:bidirectional_accept_policy="ALLOW";

This accepts the client's bidirectional offer, and uses an incoming
connection for an outgoing request, as long the policies effective for the
invocation are compatible with the connection.

bidirectional_export_policy

bidirectional_export_policy specifies the behavior of the export policy
used in birdirectional GIOP. A POA used to activate a client-side callback
object must have an effective BiDirPolicy::BiDirExportPolicy set to
BiDirPolicy::ALLOW. You can set this in configuration as follows:

policies:giop:bidirectional_export_policy="ALLOW";

Alternatively, you can do this programmatically by including this policy in
the list passed to POA::create_POA().
278

policies:giop
bidirectional_gen3_accept_policy

bidirectional_gen3_accept_policy specifies whether interoperability with
Orbix 3.x is enabled. Set this variable to ALLOW to enable interoperability
with Orbix 3.x:

policies:giop:bidirectional_gen3_accept_policy="ALLOW";

This allows an Orbix 6.x server to invoke on an Orbix 3.x callback reference
in a bidirectional fashion.

bidirectional_offer_policy

bidirectional_offer_policy specifies the behavior of the offer policy used
in bidirectional GIOP. A bidirectional offer is triggered for an outgoing
connection by setting the effective BiDirPolicy::BiDirOfferPolicy to
ALLOW for an invocation. You can set this in configuration as follows:

policies:giop:bidirectional_offer_policy="ALLOW";

Further information For more information on all the steps involved in setting bidirectional GIOP,
see the Orbix Administrator�s Guide.
279

CHAPTER 4 | CORBA

;
policies:giop:interop_policy
The policies:giop:interop_policy child namespace contains variables
used to configure interoperability with previous versions of IONA products. It
contains the following variables:

� allow_value_types_in_1_1

� enable_principal_service_context

� ignore_message_not_consumed

� negotiate_transmission_codeset

� send_locate_request

� send_principal

allow_value_types_in_1_1

allow_value_types_in_1_1 relaxes GIOP 1.1 complaince to allow
valuetypes to be passed by Java ORBs using GIOP 1.1. This functionality
can be important when interoperating with older ORBs that do not support
GIOP 1.2. To relax GIOP 1.1 compliance, set this variable to true.

enable_principal_service_context

enable_principal_service_context specifies whether to permit a
prinicipal user identifier to be sent in the service context of CORBA requests.
This is used to supply an ORB on the mainframe with a user against which
basic authorization can take place.

Typically, on the mid-tier, you may want to set the principal to a user that
can be authorized on the mainframe. This can be performed on a
per-request basis in a portable interceptor. See the CORBA Programmer�s
Guide for how to write portable interceptors.

To enable principal service contexts, set this variable to true:

policies:giop:interop_policy:enable_principal_service_context="true"
280

policies:giop:interop_policy
ignore_message_not_consumed

ignore_message_not_consumed specifies whether to raise MARSHAL
exceptions when interoperating with ORBs that set message size incorrectly,
or with earlier versions of Artix if it sends piggyback data. The default value
is false.

The MARSHAL exception is set with one of the following minor codes:

� REQUEST_MESSAGE_NOT_CONSUMED
� REPLY_MESSAGE_NOT_CONSUMED

negotiate_transmission_codeset

negotiate_transmisission_codeset specifies whether to enable codeset
negotiation for wide characters used by some third-party ORBs, previous
versions of Orbix, and OrbixWeb. Defaults to true.

If this variable is set to true, native and conversion codesets for char and
wchar are advertised in IOP::TAG_CODE_SETS tagged components in
published IORs. The transmission codesets are negotiated by clients and
transmitted using an IOP::CodeSets service context.

If the variable is false, negotiation does not occur and Artix uses
transmission codesets of UTF-16 and IS0-Latin-1 for wchar and char types,
respectively. Defaults to true.

send_locate_request

send_locate_request specifies whether GIOP sends LocateRequest
messages before sending initial Request messages. Required for
interoperability with Orbix 3.0. Defaults to true.

send_principal

send_principal specifies whether GIOP sends Principal information
containing the current user name in GIOP 1.0 and GIOP 1.1 requests.
Required for interoperability with Orbix 3.0 and Orbix for OS/390. Defaults
to false.
281

CHAPTER 4 | CORBA
policies:http
This namespace contains variables used to set HTTP-related policies. It
contains the following variables:

� buffer_sizes_policy:default_buffer_size

� buffer_sizes_policy:max_buffer_size

� keep-alive:enabled

� server_address_mode_policy:port_range

buffer_sizes_policy:default_buffer_size

buffer_sizes_policy:default_buffer_size specifies, in bytes, the initial
size of the buffers allocated by HTTP. Defaults to 4096. This value must be
greater than 80 bytes, and must be evenly divisible by 8.

buffer_sizes_policy:max_buffer_size

buffer_sizes_policy:max_buffer_size specifies, in bytes, the maximum
buffer size permitted by HTTP. Defaults to -1 which indicates unlimited
size. If not unlimited, this value must be greater than 80.

keep-alive:enabled

keep-alive:enabled specifies if the server uses persistent connections in
response to an incomming Connection:keep-alive header. If set to true,
the server honors the connection setting from the client. If set to false, the
server always ignores the connection setting from the client.
282

policies:http
If no connection setting is sent from the client and this variable is set to
true, the server responds with Connection:close for HTTP 1.0 requests
and Connection:keep-alive for HTTP 1.1 requests. Defaults to false.

server_address_mode_policy:port_range

server_address_mode_policy:port_range specifies the range of ports that
a server uses when there is no well-known addressing policy specified for
the port.

Note: Setting this variable to true does not prevent the server from
ultimately choosing to ignore the keep-alive setting for other reasons. For
example, if an explicit per client service limit is reached, the server
responds with a Connection:close, regardless of this variable setting.
283

CHAPTER 4 | CORBA
policies:iiop
The policies:iiop namespace contains variables used to set IIOP-related
policies. It contains the following variables:

� client_address_mode_policy:local_hostname

� client_address_mode_policy:port_range

� client_version_policy

� buffer_sizes_policy:default_buffer_size

� buffer_sizes_policy:max_buffer_size

� server_address_mode_policy:local_hostname

� server_address_mode_policy:port_range

� server_address_mode_policy:publish_hostname

� server_version_policy

� tcp_options_policy:no_delay

� tcp_options_policy:recv_buffer_size

� tcp_options_policy:send_buffer_size

client_address_mode_policy:local_hostname

client_address_mode_policy:local_hostname specifies the host name
that is used by the client.

This variable enables support for multi-homed client hosts. These are client
machines with multiple host names or IP addresses (for example, those
using multiple DNS aliases or multiple network interface cards). The
local_hostname variable enables you to explicitly specify the host name
that the client listens on.
284

policies:iiop
For example, if you have a client machine with two network addresses
(207.45.52.34 and 207.45.52.35), you can explicitly set this variable to
either address:

By default, the local_hostname variable is unspecified, and the client uses
the 0.0.0.0 wildcard address. In this case, the network interface card used
is determined by the operating system.

client_address_mode_policy:port_range

(C++ only) client_address_mode_policy:port_range specifies the range
of ports that a client uses when there is no well-known addressing policy
specified for the port. Specified values take the format of
from_port:to_port, for example:

client_version_policy

client_version_policy specifies the highest GIOP version used by clients.
A client uses the version of GIOP specified by this variable, or the version
specified in the IOR profile, whichever is lower. Valid values for this variable
are: 1.0, 1.1, and 1.2.

For example, the following file-based configuration entry sets the server IIOP
version to 1.1.

The following itadmin command set this variable:

policies:iiop:client_address_mode_policy:local_hostname =
"207.45.52.34";

policies:iiop:client_address_mode_policy:port_range="4003:4008"

policies:iiop:server_version_policy="1.1";

itadmin variable modify -type string -value "1.1"
policies:iiop:server_version_policy
285

CHAPTER 4 | CORBA
buffer_sizes_policy:default_buffer_size

buffer_sizes_policy:default_buffer_size specifies, in bytes, the initial
size of the buffers allocated by IIOP. Defaults to 16000. This value must be
greater than 80 bytes, and must be evenly divisible by 8.

buffer_sizes_policy:max_buffer_size

buffer_sizes_policy:max_buffer_size specifies the maximum buffer size
permitted by IIOP, in kilobytes. Defaults to -1, which indicates unlimited
size. If not unlimited, this value must be greater than 80.

server_address_mode_policy:local_hostname

server_address_mode_policy:local_hostname specifies the server host
name that is advertised by the locator daemon, and listened on by
server-side IIOP.

This variable enables support for multi-homed server hosts. These are
server machines with multiple host names or IP addresses (for example,
those using multiple DNS aliases or multiple network interface cards). The
local_hostname variable enables you to explicitly specify the host name
that the server listens on and publishes in its IORs.

For example, if you have a machine with two network addresses
(207.45.52.34 and 207.45.52.35), you can explicitly set this variable to
either address:

By default, the local_hostname variable is unspecified. Servers use the
default hostname configured for the machine with the Orbix configuration
tool.

policies:iiop:server_address_mode_policy:local_hostname =
"207.45.52.34";
286

policies:iiop
server_address_mode_policy:port_range

server_address_mode_policy:port_range specifies the range of ports that
a server uses when there is no well-known addressing policy specified for
the port. Specified values take the format of from_port:to_port, for
example:

server_address_mode_policy:publish_hostname

server_address_mode-policy:publish_hostname specifes whether IIOP
exports hostnames or IP addresses in published profiles. Defaults to false
(exports IP addresses, and does not export hostnames). To use hostnames
in object references, set this variable to true, as in the following file-based
configuration entry:

The following itadmin command is equivalent:

server_version_policy

server_version_policy specifies the GIOP version published in IIOP
profiles. This variable takes a value of either 1.1 or 1.2. Artix servers do not
publish IIOP 1.0 profiles. The default value is 1.2.

tcp_options_policy:no_delay

tcp_options_policy:no_delay specifies whether the TCP_NODELAY option
should be set on connections. Defaults to false.

policies:iiop:server_address_mode_policy:port_range="4003:4008"

policies:iiop:server_address_mode_policy:publish_hostname=true

itadmin variable create -type bool -value true
policies:iiop:server_address_mode_policy:publish_hostname
287

CHAPTER 4 | CORBA
tcp_options_policy:recv_buffer_size

tcp_options_policy:recv_buffer_size specifies the size of the TCP
receive buffer. This variable can only be set to 0, which coresponds to using
the default size defined by the operating system.

tcp_options_policy:send_buffer_size

tcp_options_policy:send_buffer_size specifies the size of the TCP send
buffer. This variable can only be set to 0, which coresponds to using the
default size defined by the operating system.
288

policies:invocation_retry
policies:invocation_retry
The policies:invocation_retry namespace contains variables that
determine how a CORBA ORB reinvokes or rebinds requests that raise the
following exceptions:

� TRANSIENT with a completion status of COMPLETED_NO (triggers
transparent reinvocations).

� COMM_FAILURE with a completion status of COMPLETED_NO (triggers
transparent rebinding).

This namespace contains the following variables:

� backoff_ratio

� initial_retry_delay

� max_forwards

� max_rebinds

� max_retries

backoff_ratio

backoff_ratio specifies the degree to which delays between invocation
retries increase from one retry to the next. Defaults to 2.

initial_retry_delay

initial_retry_delay specifies the amount of time, in milliseconds,
between the first and second retries. Defaults to 100.

max_forwards

max_forwards specifies the number of forward tries allowed for an
invocation. Defaults to 20. To specify unlimited forward tries, set to -1.

Note: The delay between the initial invocation and first retry is always 0.
289

CHAPTER 4 | CORBA
max_rebinds

max_rebinds specifies the number of transparent rebinds attempted on
receipt of a COMM_FAILURE exception. Defaults to 5.

max_retries

max_retries specifies the number of transparent reinvocations attempted
on receipt of a TRANSIENT exception. Defaults to 5.

For more information about proprietary IONA timeout policies, see the
CORBA Programmer�s Guide.

Note: This setting is valid only if the effective RebindPolicy is
TRANSPARENT; otherwise, no rebinding occurs. For more information, see
�rebind_policy� on page 274.
290

Index

A
active connection management

HTTP 249
IIOP 254

agent_ior_file 266
allow_registration_after_rollback_only 266
ANSI C strftime() function 99, 148
artix:endpoint 125
artix:endpoint:endpoint_list 125, 134
artix:endpoint:endpoint_name:wsdl_location 126
artix:endpoint:endpoint_name:wsdl_port 126
artix:interceptors:message_snoop:enabled 42
artix:interceptors:message_snoop:log_level 43
asynchronous acknowledgement 136
at_http 12

B
backoff_ratio, reinvoking 289
backup_restart_file 266
Baltimore toolkit

selecting for C++ applications 161
Berkeley DB 80
BiDirPolicy::ALLOW 278
BiDirPolicy::BiDirAcceptPolicy 278
BiDirPolicy::BiDirExportPolicy 278
BiDirPolicy::BiDirOfferPolicy 279
binding:artix:client_message_interceptor_list 20, 27
binding:artix:client_request_interceptor_list 21, 27
binding:artix:server_message_interceptor_list 21,

27
binding:artix:server_request_interceptor_list 21, 27
binding:client_binding_list 18
binding:server_binding_list 19
binding policies

transparent retries 290
bus.transactions().begin_transaction() 70
bus:initial_contract:url 32
bus:initial_contract:url:container 33
bus:initial_contract:url:locator 33
bus:initial_contract:url:login_service 34
bus:initial_contract:url:peermanager 33
bus:initial_contract:url:sessionendpointmanager 34
bus:initial_contract:url:sessionmanager 33

bus:initial_contract:url:uddi_inquire 34
bus:initial_contract:url:uddi_publish 34
bus:initial_contract_dir 35
bus:initial_references:url:container 40
bus:initial_references:url:locator 36
bus:initial_references:url:login_service 39
bus:initial_references:url:peermanager 37
bus:initial_references:url:sessionendpointmanager 3

8
bus:initial_references:url:sessionmanager 37
bus:initial_references:url:uddi_inquire 38
bus:initial_references:url:uddi_publish 39
bus:non_compliant_epr_format 63
bus:qname_alias:container 60
bus:qname_alias:locator 61
bus:qname_alias:login_service 62
bus:qname_alias:peermanager 61
bus:qname_alias:sessionendpointmanager 61
bus:qname_alias:sessionmanager 61
bus:qname_alias:uddi_inquire 62
bus:qname_alias:uddi_publish 62
bus:reference_2.1_compat 65
-BUSCONFIG_ 51
bus_loader 13
bus_response_monitor 14

C
canonical 51, 58, 69, 145
ce:ce_name:FileName 151
CertConstraintsPolicy 155
CertConstraintsPolicy policy 155
certificate_constraints_policy variable 155
Certificates

constraints 155
certificates

CertConstraintsPolicy policy 155
constraint language 155

checkpoint 80
ClientProxyBase() 59
ClientTransport 48
client_version_policy

IIOP 215, 284
colocation 16, 23
291

INDEX
colocation interceptor 23
concurrent_transaction_map_size 260
configuration updates 73
connection_attempts 215
constraint language 155
Constraints

for certificates 155
container 41
ContainerService.url 36
coordination service 70
CORBA router by-pass 115
create_transaction_mbeans 266
custom plug-ins 150

D
DB checkpoint 80
debugging 41
default_buffer_size 282, 286
default_ots_policy 260
default_transaction_policy 260
default_transaction_timeout 261
delivery assurance policies 138
direct_persistence 266

naming service 258
OTS Encina 266

duplicate masters 79
Dynamic 117
dynamic proxies 117

E
EndpointName 63
endpoint reference formats 63
Enterprise Java Beans 12
ERROR 29
event_log:filters 28, 56, 212
event_log:filters:bus:pre_filter 30
event_log:log_service_names:active 30, 31
event_log:log_service_names:services 31
ExactlyOnceConcurrent 138
ExactlyOnceInOrder 138
ExactlyOnceReceivedOrder 138

F
factory class 151
FATAL_ERROR 29
filename 98, 147
fixed 13
fml 13

FTP daemon 88
FTP LIST command 89

G
G2 13
GenericHandlerFactory 26
GIOP

interoperability policies 280
policies 280

giop 12
global_namespace_poa 267

H
handler:HandlerNameclassname 26
HandlerFactory 26
handler type 73
hard_limit

HTTP 249, 250
IIOP 254, 255

high_water_mark 46
HTTP 48
HTTP plug-in configuration

hard connection limit
client 250
server 249

soft connection limit
client 251
server 250

HTTP policies
buffer sizes

maximum 282
ports 283

https 12

I
ignore_message_not_consumed 281
iiop 12
IIOP plug-in configuration

hard connection limit
client 255
server 254

soft connection limit
client 255
server 254

IIOP plugin configuration 253
IIOP policies 209, 213, 284

buffer sizes 286
default 286
292

INDEX
maximum 286
client version 215, 284
connection attempts 215
export hostnames 57, 220, 284, 287
export IP addresses 57, 220, 284, 287
GIOP version in profiles 220, 287
server hostname 219, 286
TCP options

delay connections 221, 287
receive buffer size 222, 288

IIOP policy
ports 57, 219, 287

iiop_profile 12
INFO_ALL 29
INFO_HIGH 29
INFO_LOW 29
INFO_MEDIUM 29
initial_disk 267
initial_disk_size 267
initialization 77
initial references

Encina transaction factory 270
OTS lite transaction factory 264
OTS transaction factory 262

initial_threads 45
interceptor

colocation 23
interceptors 18

client request-level 18
interoperability configuration 280

code set negotiation 281
GIOP 1.1 support 280
incompatible message format 281
LocateRequest messages 281
Principal data 281

interposition_style 261
invocation policies 289

forwarding limit 289
initial retry delay 289
retry delay 289
retry maximum 290

ip:receive_buffer_size 250, 254
ip:send_buffer_size 250, 254
ipaddress 52, 58, 69, 145
IT_Bus::Exception 141
it_container_admin 36

J
java 12

Java API for XML-Based Remote Procedure Call 7
Java API for XML-Based Web Services 7
Java Message Service 91
Java Platform Debugging Architecture 41
java plug-in 11
Java plug-ins

loading 11
java_plugins 11, 12
java_uddi_proxy 12
JAX-RPC 7
JAX-WS 7
JCE architecture

enabling 171
jit_transactions 261
jms

temporary queues 93
JMS transport 48
JMS transport plug-in 11
JMX Remote 96
JMXServiceURL 96
JPDA 41
jvm_options 41

L
lb_default_initial_load 259
lb_default_load_timeout 259
local_hostname 57, 219, 286
local_log_stream plugin configuration 98
locator_client 14
locator_endpoint 14, 108
log4j 102
log_check_interval 267
logging

service-based 31
logging configuration

set filters for subsystems 28
logstream configuration

output stream 98
output to local file 98, 147
output to rolling file 99, 148

log_threshold 267

M
max_buffer_size 282, 286
max_forwards

reinvoking 289
max_queue_size 47
max_rebinds 290
293

INDEX
max_resource_failures 268
max_retries 290
MBeans 95
MEP 131
Message Exchange Pattern 131
message part element 127
message snoop 42
MESSAGING_PORT_DRIVEN 48, 49
mq 12
MQ transactions 12
multi-homed 145
multi-homed hosts

clients 54, 284
servers 286

multi-homed hosts, configure support for 219
MULTI_INSTANCE 49
MULTI_THREADED 48

N
namespace

artix:endpoint 125
binding 18
event_log 28
plugins:artix:db 78
plugins:bus 70
plugins:bus_management 95
plugins:ca_wsdm_observer 72
plugins:chain 134
plugins:codeset 243
plugins:container 77
plugins:csi 172
plugins:event 246
plugins:file_security_domain 258
plugins:ftp 87
plugins:gsp 173
plugins:ha_conf 75
plugins:http 249
plugins:https 249
plugins:iiop 253
plugins:jms 91
plugins:local_log_stream 98
plugins:locator 103
plugins:locator_endpoint 106
plugins:messaging_port 130
plugins:ots_mgmt 271
plugins:peer_manager 109
plugins:poa 271
plugins:routing 113
plugins:service_lifecycle 117

plugins:session_endpoint_manager 121
plugins:session_manager_service 120
plugins:sm_simple_policy 122
plugins:soap 123
plugins:tuxedo 129
plugins:wsdl_publish 146
plugins:wsrm 136
plugins:xmlfile_log_stream 147
poa:fqpn 272
policies 194, 274, 276, 277
policies:csi 205
policies:http 282
policies:https 209
policies:iiop 284
policies:iiop_tls 212
policies:shmiop 290
principal_sponsor:csi 230
principle_sponsor 226, 233, 235, 237

namespace_poa 268
naming service configuration 258

default initial load value 259
default load value timeout 259
NT service dependencies 259

negotiate_transmission_codeset 281
no_delay 221, 287
non_tx_target_policy 274
nterceptor_factory:InterceptorFactoryName:plugin 2

4
nt_service_dependencies 259

O
orb_name

OTS Encina 268
OTS Lite 263

orb_plugins 10
otid_format_id

OTS Encina 268
OTS Lite 263

ots 14
OTS configuration 260

default timeout 261
hash table size 260
initial reference for factory 262
initial reference for transaction factory 262
interposition style 261
JIT transaction creation 261
optimize transaction propagation 262
OTSPolicy default value 260
roll back transactions 262
294

INDEX
TransactionPolicy default 260
transaction timeout default 261

OTS Encina 70
OTS Encina configuration 265

backup restart file 266
direct persistence 266
initial log file 267
internal ORB usage 270
log file growth checks 267
log file size 267
log file threshold 267
logging configuration 269
log resource failures 268
management agent IOR 266
ORB name 268
OTS management object creation 266
POA namespace 268
raw disk usage 270
registration after rollback 266
restart file 268
retry timeout 268
transaction factory initial reference 270
transaction factory name 270
transaction ID 268
transaction timeout 270

OTS Lite 70
ots_lite 14
OTS Lite configuration 263

internal ORB 264
ORB name 263
transaction ID 263
transaction timeout 264

ots_tx_provider 70
ots_v11_policy 262

P
part element 127
performance logging 110
ping failure 108
plug-in 10
plug-in factory class 151
plugins 95

at_http 12
bus_loader 13
bus_response_monitor 14
corba 13
fixed 13
fml 13
G2 13

giop 12
https 12
iiop 12
iiop_profile 12
java 12
java_plugins 12
locator_client 14
locator_endpoint 14
log4j_log_stream 102
mq 12
rmi 12
routing 14
service_lifecycle 15
service_locator 14
session_endpoint_manager 15
session_manager_service 14
sm_simple_policy 15
soap 13
tagged 13
tibrv 12, 13
tunnel 12
tuxedo 12
uddi_proxy 15
ws_chain 15
ws_coloc 16
wsdl_publish 16
ws_orb 13
wsrm 16
wsrm_db 16
xmlfile_log_stream 16
xslt 16

plugins:ap_nano_agent:hostname_address:local_hos
tname 69

plugins:ap_nano_agent:hostname_address:publish_
hostname 69

plugins:artix:db
home 82

plugins:artix:db:allow_minority_master 79
plugins:artix:db:checkpoint_period 80
plugins:artix:db:db_open_retry_attempts 79, 80
plugins:artix:db:download_files 81
plugins:artix:db:election_timeout 81
plugins:artix:db:env_name 81
plugins:artix:db:error_file 81
plugins:artix:db:iiop:port 82
plugins:artix:db:inter_db_open_sleep_period 82
plugins:artix:db:max_buffered_msgs 82
plugins:artix:db:max_msg_buffer_size 83
plugins:artix:db:max_ping_retries 83
295

INDEX
plugins:artix:db:ping_lifetime 83
plugins:artix:db:ping_retry_interval 84
plugins:artix:db:priority 84
plugins:artix:db:replace_when_forwarding 84
plugins:artix:db:replica_name 84
plugins:artix:db:replicas 85
plugins:artix:db:roundtrip_timeout 85
plugins:artix:db:sync_retry_attempts 86
plugins:artix:db:use_shutdown_hook 86
plugins:artix:db:verbose_logging 86
plugins:asp:security_level 165
plugins:bus:default_tx_provider:plugin 70
plugins:bus:register_client_context 70
plugins:bus_management:connector:enabled 96
plugins:bus_management:connector:port 96
plugins:bus_management:connector:registry:require

d 96
plugins:bus_management:connector:url:file 97
plugins:bus_management:connector:url:publish 97
plugins:bus_management:enabled 95
plugins:bus_management:http_adaptor:enabled 97
plugins:bus_management:http_adaptor:port 97
plugins:bus_response_monitor:type 110
plugins:ca_wsdm_observer:auto_register 72
plugins:ca_wsdm_observer:config_poll_time 73, 78
plugins:ca_wsdm_observer:handler_type 73
plugins:ca_wsdm_observer:max_queue_size 74
plugins:ca_wsdm_observer:min_queue_size 74
plugins:ca_wsdm_observer:report_wait_time 74
plugins:chain:endpoint_name:operation_name:servic

e_chain 134
plugins:chain:init_on_first_call 135
plugins:chain:servant_list 135
plugins:codeset:always_use_default 245
plugins:codeset:char:ccs 244
plugins:codeset:char:ncs 243
plugins:codeset:wchar:ncs 244
plugins:codesets:wchar:ccs 245
plugins:container:deployfolder 77
plugins:container:deployfolder:readonly 77
plugins:csi:ClassName 172
plugins:csi:shlib_name 172
plugins:file_security_domain 258
plugins:ftp:policy:client:filenameFactory 87
plugins:ftp:policy:client:replyFileLifecycle 88
plugins:ftp:policy:connection:connectMode 88
plugins:ftp:policy:connection:connectTimeout 88
plugins:ftp:policy:connection:receive:Timeout 88
plugins:ftp:policy:connection:scanInterval 89

plugins:ftp:policy:connection:useFilenameMaskOnSc
an 89

plugins:ftp:policy:credentials:name 89
plugins:ftp:policy:credentials:password 90
plugins:ftp:policy:server:filenameFactory 90
plugins:ftp:policy:server:requestFileLifecycle 90
plugins:giop:message_server_binding_list 246
plugins:giop_snoop:filename 247
plugins:giop_snoop:rolling_file 247
plugins:giop_snoop:verbosity 248
plugins:gsp:authorization_realm 174
plugins:gsp:ClassName 175
plugins:ha_conf:random:selection 75
plugins:ha_conf:strategy 75
plugins:http:connection

max_unsent_data 249
plugins:http:incoming_connections:hard_limit 249
plugins:http:incoming_connections:soft_limit 250
plugins:http:ip:reuse_addr 250
plugins:http:outgoing_connections:soft_limit 250,

251
plugins:http:tcp_connection:keep_alive 251
plugins:http:tcp_connection:linger_on_close 252
plugins:http:tcp_connection:no_delay 251
plugins:http:tcp_listener:reincarnate_attempts 252
plugins:iiop:connection

max_unsent_data 253
plugins:iiop:incoming_connections:hard_limit 254
plugins:iiop:incoming_connections:soft_limit 254
plugins:iiop:ip:receive_buffer_size 254
plugins:iiop:ip:reuse_addr 254
plugins:iiop:ip:send_buffer_size 254
plugins:iiop:outgoing_connections:hard_limit 255
plugins:iiop:outgoing_connections:soft_limit 255
plugins:iiop:pool:max_threads 255
plugins:iiop:pool:min_threads 255
plugins:iiop:tcp_connection:keep_alive 255
plugins:iiop:tcp_connection:linger_on_close 256
plugins:iiop:tcp_connection:no_delay 256
plugins:iiop:tcp_connection:no_deplay 256
plugins:iiop:tcp_connection�inger_on_close 256
plugins:iiop:tcp_listener:reincarnate_attempts 182,

256
plugins:iiop:tcp_listener:reincarnation_retry_backoff_

ratio 182, 256, 257
plugins:iiop:tcp_listener:reincarnation_retry_delay 1

82, 256, 257
plugins:iiop_tls:hfs_keyring_file_password 216
plugins:iiop_tls:tcp_listener:reincarnation_retry_back
296

INDEX
off_ratio 182
plugins:iiop_tls:tcp_listener:reincarnation_retry_dela

y 182
plugins:it_response_time_collector:filename 110
plugins:it_response_time_collector:server-id 110,

111
plugins:jms:policies:binding_establishment:backoff_r

atio 92
plugins:jms:policies:binding_establishment:initial_ite

ration_delay 92
plugins:jms:policies:binding_establishment:max_bin

ding_iterations 93
plugins:jms:pooled_session_high_water_mark 93
plugins:jms:pooled_session_low_water_mark 94
plugins:local_log_stream:buffer_file 98
plugins:local_log_stream:filename 99
plugins:local_log_stream:filename_date_format 99
plugins:local_log_stream:log_elements 99, 148
plugins:local_log_stream:log_thread_id 100
plugins:local_log_stream:milliseconds_to_log 100,

149
plugins:local_log_stream:precision_logging 100
plugins:local_log_stream:rolling_file 101, 149
plugins:locator:peer_timeout 103
plugins:locator:persist_data 103
plugins:locator:selection_method 104
plugins:locator:service_group 104
plugins:locator:wsdl_port 105
plugins:locator_endpoint:exclude_endpoints 106
plugins:locator_endpoint:include_endpoints 107
plugins:log4j_log_stream:use_stderr 102
plugins:messaging_port:base_replyto_url 130
plugins:messaging_port:supports_wsa_mep 131,

132
plugins:messaging_port:wsrm_enabled 132
plugins:naming:destructive_methods_allowed 258
plugins:naming:direct_persitence 258
plugins:naming:iiop:port 258
plugins:notify_log 260
plugins:ots_encina:iiop:port 267
plugins:peer_manager:ping_on_failure 108
plugins:peer_manager:timeout_delta 109
plugins:plugin_name:CE_Name 151
plugins:PluginName:prerequisite_plugins 152
plugins:PluginName:shlib_name 150
plugins:poa:ClassName 271
plugins:poa:root_name 271
plugins:rmi:registry_port 112
plugins:rmi:start_registry 112

plugins:routing:proxy_cache_size 113
plugins:routing:reference_cache_size 114
plugins:routing:use_bypass 115
plugins:routing:use_pass_through 116
plugins:routing:wrapped 116
plugins:routing:wsdl_url 114
plugins:service_lifecycle:evict_static_services 117
plugins:service_lifecycle:long_lived_services 118
plugins:service_lifecycle:max_cache_size 118
plugins:session_endpoint_manager:default_group 1

21
plugins:session_endpoint_manager:header_validatio

n 121
plugins:session_endpoint_manager:peer_timout 12

1
plugins:session_manager_service:peer_timeout 120
plugins:sm_simple_policy:max_concurrent_sessions

122
plugins:sm_simple_policy:max_session_timeout 12

2
plugins:sm_simple_policy:min_session_timeout 122
plugins:soap:encoding 123
plugins:soap:validating 123
plugins:soap:write_xsi_type 124
plugins:tuxedo:server 129
plugins:wsdl_publish:hostname 145
plugins:wsdl_publish:processor 146
plugins:wsdl_publish:publish_port 146
plugins:wsrm:acknowledgement_interval 136
plugins:wsrm:acknowledgement_uri 137
plugins:wsrm:base_retransmission_interval 137
plugins:wsrm:delivery_assurance_policy 138, 139
plugins:wsrm:disable_exponential_backoff_retransmi

ssion_interval 139
plugins:wsrm:enable_per_thread_sequence_scope 1

40
plugins:wsrm:max_messages_per_sequence 140
plugins:wsrm:max_retransmission_attempts 141
plugins:wsrm:max_unacknowledged_messages_thre

shold 141
plugins:wsrm:thread_pool:high_water_mark 142
plugins:wsrm:thread_pool:initial_threads 142
plugins:wsrm:thread_pool:low_water_mark 142
plugins:wsrm:thread_pool:max_queue_size 143
plugins:wsrm:thread_pool:stack_size 143
plugins:wsrm:use_wsa_replyto_endpoint_for_wsrm_

acknowledgement 144
plugins:xmlfile_log_stream:buffer_file 147
plugins:xmlfile_log_stream:filename 147
297

INDEX
plugins:xmlfile_log_stream:filename_date_format 1
48

plugins:xmlfile_log_stream:log_thread_id 148
plugins:xslt:endpoint_name:operation_map 126
plugins:xslt:endpoint_name:trace_filter 127
plugins:xslt:endpoint_name:use_element_name 127
plugins:xslt:servant_list 128
POA

plugin class name 271
root name 271

POA::create_POA() 278
poa:fqpn:direct_persistent 272
poa:fqpn:well_known_address 272
polices:max_chain_length_policy 196
policies

CertConstraintsPolicy 155
policies:allow_unauthenticated_clients_policy 194
policies:at_http:client:proxy_server 51
policies:at_http:server_address_mode_policy:local_h

ostname 52
policies:at_http:server_address_mode_policy:publish

_hostname 51, 52
policies:bus:resolved_endpoint:max_retries 59
policies:certificate_constraints_policy 195
policies:csi:attribute_service:client_supports 205
policies:csi:attribute_service:target_supports 206
policies:csi:auth_over_transpor:target_supports 207
policies:csi:auth_over_transport:client_supports 20

6
policies:csi:auth_over_transport:target_requires 207
policies:giop:bidirectional_accept_policy 278
policies:giop:bidirectional_export_policy 278
policies:giop:bidirectional_gen3_accept_policy 279
policies:giop:bidirectional_offer_policy 279
policies:giop:interop:allow_value_types_in_1_1 280
policies:giop:interop:ignore_message_not_consumed

281
policies:giop:interop:negotiate_transmission_codeset

281
policies:giop:interop:send_locate_request 281
policies:giop:interop:send_principal 281
policies:giop:interop_policy:enable_principal_service

_context 280
policies:http:buffer:prealloc_shared 53
policies:http:buffer:prealloc_size 53
policies:http:buffer_sizes_policy:max_buffer_size 28

2
policies:http:client_address_mode_policy:local_host

name 54

policies:http:keep-alive:enabled 282
policies:http:server_address_mode_policy:local_host

name 54
policies:http:server_address_mode_policy:port_range

55, 283
policies:http:trace_requests:enabled 56
policies:https:buffer:prealloc_shared 209
policies:https:buffer:prealloc_size 210
policies:https:mechanism_policy:ciphersuites 211
policies:https:mechanism_policy:protocol_version 2

11
policies:https:trace_requests:enabled 56, 212
policies:https:trusted_ca_list_policy 212
policies:iiop:buffer_sizes_policy:default_buffer_size

286
policies:iiop:buffer_sizes_policy:max_buffer_size 28

6
policies:iiop:client_address_mode_policy:local_hostn

ame 56, 285
policies:iiop:client_address_mode_policy:port_range

285
policies:iiop:client_version_policy 284
policies:iiop:server_address_mode_policy:local_host

name 57, 286
policies:iiop:server_address_mode_policy:port_range

57, 287
policies:iiop:server_address_mode_policy:publish_ho

stname 57, 284, 287
policies:iiop:server_version_policy 287
policies:iiop:tcp_options:send_buffer_size 288
policies:iiop:tcp_options_policy:no_delay 287
policies:iiop:tcp_options_policy:recv_buffer_size 28

8
policies:iiop_tls:allow_unauthenticated_clients_polic

y 214
policies:iiop_tls:certificate_constraints_policy 214
policies:iiop_tls:client_secure_invocation_policy:requ

ires 215
policies:iiop_tls:client_secure_invocation_policy:sup

ports 215
policies:iiop_tls:client_version_policy 215
policies:iiop_tls:connection_attempts 215
policies:iiop_tls:connection_retry_delay 216
policies:iiop_tls:max_chain_length_policy 216
policies:iiop_tls:mechanism_policy:ciphersuites 217
policies:iiop_tls:mechanism_policy:protocol_version

218
policies:iiop_tls:server_address_mode_policy:local_h

ostname 219
298

INDEX
policies:iiop_tls:server_address_mode_policy:port_ra
nge 219

policies:iiop_tls:server_address_mode_policy:publish
_hostname 220

policies:iiop_tls:server_version_policy 220
policies:iiop_tls:target_secure_invocation_policy:req

uires 220
policies:iiop_tls:target_secure_invocation_policy:sup

ports 221
policies:iiop_tls:tcp_options:send_buffer_size 222
policies:iiop_tls:tcp_options_policy:no_delay 221
policies:iiop_tls:tcp_options_policy:recv_buffer_size

222
policies:iiop_tls:trusted_ca_list_policy 222
policies:invocation_retry:backoff_ratio 289
policies:invocation_retry:initial_retry_delay 289
policies:invocation_retry:max_forwards 289
policies:invocation_retry:max_rebinds 290
policies:invocation_retry:max_retries 290
policies:mechanism_policy:ciphersuites 197
policies:mechanism_policy:protocol_version 198
policies:non_tx_target_policy 274
policies:rebind_policy 274
policies:relative_binding_exclusive_request_timeout

277
policies:relative_binding_exclusive_roundtrip_timeou

t 277
policies:relative_connection_creation_timeout 277
policies:relative_request_timeout 276
policies:relative_roundtrip_timeout 276
policies:routing_policy_max 274
policies:routing_policy_min 275
policies:shmiop 290
policies:soap

erver_address_mode_policy:local_hostname 58
policies:soap:server_address_mode_policy:local_hos

tname 58
policies:soap:server_address_mode_policy:publish_h

ostname 58, 59
policies:sync_scope_policy 275
policies:target_secure_invocation_policy:requires 19

8
policies:target_secure_invocation_policy:supports 1

98
policies:trusted_ca_list_policy 199
policies:work_queue_policy 275
policy:messaging_transport:client_concurrency 48
policy:messaging_transport:max_threads 49
policy:messaging_transport:min_threads 49

pool:java_max_threads 255
pool:max_threads 251, 255
pool:min_threads 251, 255
prerequisite plug-ins 152
principal_sponsor:csi:auth_method_data 231
principal_sponsor:csi:use_principal_sponsor 230
principal_sponsor Namespace Variables 226, 233,

235, 237
principle_sponsor:auth_method_data 227, 234,

236, 238
principle_sponsor:auth_method_id 227, 234, 236,

238
principle_sponsor:callback_handler:ClassName 229
principle_sponsor:login_attempts 229
principle_sponsor:use_principle_sponsor 226, 233,

235, 238
propagate_separate_tid_optimization 262
proprietary endpoint reference 63
proxies 117
proxification 113
proxy interposition 261
publish_hostname 57, 220, 287

R
read/write folder 77
read-only folder 77
rebind_policy 274
recv_buffer_size 222, 288
refernce formats 63
relative_binding_exclusive_request_timeout 277
relative_binding_exclusive_roundtrip_timeout 277
relative_connection_creation_timeout 277
relative_request_timeout 276
relative_roundtrip_timeout 276
Remote Method Invocation 12
replicas, minimum number 79
reply-to endpoint 130
request_forwarder 14
request-level interceptor 23
resolve_initial_references() 59
resource_retry_timeout 268
restart_file 268
rmi 12
RMI Connector 96
rollback_only_on_system_ex 262
rolling_file 99, 148
router 117
router proxification 113
routing 14
299

INDEX
routing plug-in 113
routing_policy_max 274
routing_policy_min 275

S
Schannel toolkit

selecting for C++ applications 161
schema validation 123
secondary hostname 145
send_locate_request 281
send_principal 281
server ID, configuring 111
server_version_policy

IIOP 220, 287
service:owns_workqueue 48
service group, groups of services 104
service_lifecycle 15
service_locator 14, 103, 108
session_endpoint_manager 15, 108, 121
session_manager_service 14, 108, 120
share_variables_with_internal_orb 17
Sleepycat 80
sm_simple_policy 15, 122
soap 13, 123
SocketException 252
soft_limit

HTTP 250, 251
IIOP 254, 255

SO_KEEPALIVE 251, 255
SO_LINGER 252, 256
SSL/TLS

selecting a toolkit, C++ 161
standard interposition 261
strftime() 99, 148
superior_ping_timeout 263
support_ots_v11 262
sync_scope_policy 275

T
tagged 13
TCP_NODELAY 251, 256
TCP policies

delay connections 221, 287
receive buffer size 222, 288

temporary queues 93
thread_pool:high_water_mark 46
thread_pool:initial_threads 45
thread_pool:low_water_mark 46

thread_pool:max_queue_size 47
thread_pool:stack_size 47
thread pool policies 45

initial number of threads 45
maximum threads 46
request queue limit 47

Tibco transport 48
tibrv 12, 13
timeout policies 276
toolkit replaceability

enabling JCE architecture 171
selecting the toolkit, C++ 161

trace_file 269
trace_on 269
transaction configuration 70
transaction factory, initial reference 262
transaction_factory_name

OTS 262
OTS Encina 270
OTS Lite 264

transaction_factory_ns_name 270
TransactionPolicy, configure default value 260
transactions

handle non-transactional objects 274
transaction_timeout_period

OTS Encina 270
OTS Lite 264

tunnel 12
tuxedo 12

U
uddi_proxy 15
unqualified 51, 58, 69, 145
use_internal_orb 264, 270
use_jsse_tk configuration variable 171
use_raw_disk 270

V
validation 123

W
WARNING 29
work_queue_policy 275
WS-Addressing 130
WS-Addressing 2004 131
WS-Addressing 2005 132
WS-AtomicTransaction 70
wsat_protocol 15
300

INDEX
wsat_tx_provider 70
wsaw:ServiceName 63
ws_chain 15, 134
ws_coloc 16, 23
WS-Coordination 70
ws_coordination_service 15
wsdl:service 63
WSDLBindingSchema 63
WSDLPort 48
wsdl_publish 16, 145
ws_orb 13

WS-ReliableMessages 130, 136
wsrm 16

SequenceTerminated 141
wsrm:AckRequested 141
wsrm:AcksTo 137
wsrm_db 16

X
xmlfile_log_stream 16, 147
xslt 16, 125
301

INDEX
302

	Preface
	What is Covered in this Book
	Who Should Read this Book
	How to Use this Book
	The Artix Documentation Library

	Artix Runtime
	ORB Plug-ins
	Binding Lists
	Event Log
	Initial Contracts
	Initial References
	JVM Options
	Message Snoop
	Multi-threading
	Policies
	QName Aliases
	Reference Compatibility

	Artix Plug-ins
	AmberPoint
	Bus
	CA WSDM Observer
	Client-Side High Availability
	Container
	Database Environment
	FTP
	JMS
	JMX
	Local Log Stream
	Log4J Log Stream
	Locator Service
	Locator Endpoint Manager
	Peer Manager
	Performance Logging
	Remote Method Invocation
	Routing
	Service Lifecycle
	Session Manager
	Session Endpoint Manager
	Session Manager Simple Policy
	SOAP
	Transformer Service
	Tuxedo
	Web Services Addressing
	Web Services Chain Service
	Web Services Reliable Messaging
	WSDL Publishing Service
	XML File Log Stream
	Custom Plug-ins

	Artix Security
	Applying Constraints to Certificates
	bus:initial_contract
	bus:security
	initial_references
	password_retrieval_mechanism
	plugins:asp
	plugins:at_http
	plugins:atli2_tls
	plugins:csi
	plugins:gsp
	plugins:https
	plugins:iiop_tls
	plugins:java_server
	plugins:login_client
	plugins:login_service
	plugins:security
	plugins:wsdl_publish
	plugins:wss
	policies
	policies:asp
	policies:bindings
	policies:csi
	policies:external_token_issuer
	policies:https
	policies:iiop_tls
	policies:security_server
	policies:soap:security
	principal_sponsor
	principal_sponsor:csi
	principal_sponsor:http
	principal_sponsor:https
	principal_sponsor:wsse

	CORBA
	plugins:codeset
	plugins:giop
	plugins:giop_snoop
	plugins:http and https
	plugins:iiop
	plugins:naming
	plugins:ots
	plugins:ots_lite
	plugins:ots_encina
	plugins:poa
	poa:FQPN
	Core Policies
	CORBA Timeout Policies
	IONA Timeout Policies
	policies:giop
	policies:giop:interop_policy
	policies:http
	policies:iiop
	policies:invocation_retry

	Index

