
Artix TM

Making Software Work TogetherTM

Building Service Oriented
Architectures with Artix

Version 4.2, March 2007

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in
this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license
to these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.
IONA, IONA Technologies, the IONA logos, Orbix, Artix, Making Software Work Together,
Adaptive Runtime Technology, Orbacus, IONA University, and IONA XMLBus are
trademarks or registered trademarks of IONA Technologies PLC and/or its subsidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. CORBA is a trademark or registered trademark of the
Object Management Group, Inc. in the United States and other countries. All other
trademarks that appear herein are the property of their respective owners.
IONA Technologies PLC makes no warranty of any kind to this material including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose. IONA Technologies PLC shall not be liable for
errors contained herein, or for incidental or consequential damages in connection with the furnishing, perform-
ance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publication
and features described herein are subject to change without notice.

Copyright © 2001-2007 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: March 12, 2007

Contents

List of Figures 5

Preface 7
What is Covered in this Book 7
Who Should Read this Book 7
How to Use this Book 7
The Artix Documentation Library 8

Chapter 1 Service Oriented Architecture 9
What is Service Oriented Architecture? 10
What is an ESB? 14
What is a Smart Endpoint? 17

Chapter 2 Artix Enables SOA 21
Overview of Artix 22
Artix in an Endpoint 25

Artix in a Service Provider 26
Artix in a Consumer 30
Artix in an Intermediary 34

Artix Services 37
The Artix Container 38
The Artix Router 40
Security 42
The Artix Locator 43
The Artix Session Manager 46

Chapter 3 Extending Artix 49
Artix for Z/OS 50
Artix Registry/Repository 52
Artix Orchestration 54
Artix Connect 55
Artix AmberPoint Agent 57
 3

CONTENTS
Index 59
4

List of Figures

Figure 1: Billing System SOA with an ESB 15

Figure 2: Distributed Nature of an ESB 18

Figure 3: Artix and the Virtual Bus 23

Figure 4: High-level View of a Service Provider 27

Figure 5: High-level View of a Consumer 31

Figure 6: High-level View of an Intermediary 35

Figure 7: Overview of the Artix Router 40

Figure 8: Overview of the Locator 43

Figure 9: Artix Registry/Repository 52

Figure 10: Artix Connect 56

Figure 11: Artix AmberPoint Agent Service Network 58
 5

LIST OF FIGURES
 6

Preface
What is Covered in this Book
This book discusses the advantages of SOA to integration, what makes a
service oriented architecture (SOA), and how Artix facilitates the deployment
of an enterprise quality SOA. It illuminates the value of a SOA. It shows how
an ESB such as Artix plays a key role in developing a SOA and how Artix, in
particular, provides the features required to build a distributed, robust
collection of services.

The book then goes on to provide a detailed look at the distributed,
extensible architecture of Artix. It discusses how Artix endpoints implement
services. This discussion includes a discussion of how the plug-in
architecture makes it easy to add functionality to an endpoint. It also
provides a detailed discussion of many of the internal components of the
Artix runtime.

Who Should Read this Book
While this book does contain some highly technical discussions, much of
the book is geared toward a novice reader. A basic knowledge of distributed
computing concepts is assumed.

How to Use this Book
This book is organized as follows:

• Chapter 1 provides a general description of service-oriented
architectures and how enterprise service buses make them possible.

• Chapter 2 provides a high-level description of Artix’s architecture and
how Artix implements its ESB features. It looks at how Artix connects
endpoints to a network using its pluggable messaging stack.
 7

PREFACE
• Chapter 3 describes ways of extending Artix’s functionality through the
use of other products in the Artix suite.

The Artix Documentation Library
For information on the organization of the Artix library, the document
conventions used, and where to find additional resources, see Using the
Artix Library.
 8

../library_intro/index.htm
../library_intro/index.htm

CHAPTER 1

Service Oriented
Architecture
Service oriented architecture is an architectural style focused
on reusing existing applications and designing reusability into
new applications. This is accomplished by designing your
systems based on loosely-coupled, coarse grained atomic units
of functionality called services. The key technology used in
building a service oriented architecture is an enterprise service
bus that is built using smart endpoints.

In this chapter This chapter discusses the following topics:

What is Service Oriented Architecture? page 10

What is an ESB? page 14

What is a Smart Endpoint? page 17
 9

CHAPTER 1 | Service Oriented Architecture
What is Service Oriented Architecture?

Overview Service oriented architecture(SOA) is an architectural paradigm
emphasizing the reusability of applications in a distributed environment and
the alignment of software functionality with business processes. In technical
terms SOA means designing applications around a collection of loosely
coupled units of functionality with coarse-grained interfaces that are wired
together using a common messaging protocol. The units of functionality are
exposed by implementation agnostic interfaces that describe the operations
exposed by a unit and what messages the unit accepts.

SOA principles can be applied to integrating existing applications as well as
to building new applications. First you design a coarse-grained,
implementation agnostic facade for the application you wish to integrate.
Then you expose the legacy application to the network through the new
facade using a common data format/wire protocol combination. The legacy
application is now accessible to applications that do not use a proprietary
messaging system.

Services The central concept in SOA is the service. A service is the basic unit of
functionality in SOA. Like an object in object-oriented programming, a
service is an atomic unit of functionality that performs a well-defined and
closely related set of operations. They also do not rely on other services to
perform the operations they perform. Unlike objects, services are defined by
an implementation and language agnostic interface.

A service’s interface should be as coarse-grained as possible and provide
only the information needed to invoke its operations. The interface is defined
as a group of operations. In order to make the interface as coarse-grained as
possible, the number of operations should be kept to a minimum. This will
help ensure that the amount of detail needed to invoke on a service
implementing the interface is kept to a minimum.

The operations that make up the interface are defined by the messages
exchanged when the operation is invoked. Messages are typically defined
using XML Schema and do not neccesarily match the argument list of any
implementation of the operation. Ideally, the messages should be
coarse-grained. One way of ensuring this is to design messages so that all of
the data needed is represented as a single XML document.
10

What is Service Oriented Architecture?
Instantiated services are endpoints. When instantiated, endpoints add
information to the service’s interface. The added information includes all of
the details needed to access the service. This includes details about what
kind of messages (SOAP, fixed, tagged, etc.) the endpoint accepts and the
transport over which the endpoint can be accessed.

Service design Interoperability and reusability are two of the reasons for using SOA. The
following guidelines help ensure that services are as interoperable and
reusable as possible:

• A service should perform a specific task.

Services, like objects, are the building blocks of an application. Each
block should perform a discreet task so that it can be reused by many
applications.

Because one of the other goals of using SOA is to make it easier to
align IT assets with business processes, the task performed by a
service should be a business task. For example a service could process
a credit card payment.

• A service should not depend on other services.

A service should, like a toaster, be able to perform its work without any
needing to invoke on other services. This does not mean that you
cannot design a service that is a composite of other services. A
composite service looks and acts like an atomic service to its
consumers.

• A service should be stateless.

Typically when state is shared between two applications there is an
implicit requirement that each application has some knowledge of the
other’s implementation. A service that requires its consumers to have
an understanding of how it is implemented is not loosely coupled and
more difficult to reuse.

• A service uses document style messages.

Document style messages, as opposed to RPC style messages,
promote the use of coarse-grained interfaces. Service interfaces should
be designed to take generic documents as opposed to a specific set of
inputs. For example, a loan approval service should be designed to
accept a document containing all of the possible pieces of information
 11

CHAPTER 1 | Service Oriented Architecture
that could be needed to process a loan request as opposed to the
subset that the current implementation requires. Doing so insulates the
applications accessing the service from changes in its implementation.
Adding a required piece of information to the list of required
parameters does not require you to upgrade all of the applications
access the service because they will already be sending a properly
formed request.

• A service cannot assume that its consumers are operating in the same
environment.

To ensure maximum reusability and maximum interoperability, a
service should not require its consumers to be operating in a particular
environment. For example, a consumer running on a Windows system
in Europe should be able to make requests on a service endpoint
running on a Z-OS system running in the United States. The service
should be completely implementation agnostic.

Reuse and integration Companies have millions of dollars invested in their existing IT systems and
one of the main drivers for adopting a new development model is to get the
most out those existing systems. Another main driver is the desire to break
out of the vendor lock-in. They are looking for a solution that allows them to
reuse what they already have in new ways and ensure that future systems
will have the same, if not more flexibility to be resused.

Reusability is one of the central goals of using SOA. This goes beyond
simply creating new services so that they are reusable and flexible enough to
be recombined into new applications when needed. SOA embraces the idea
that legacy systems also need to be reused and integrated with other
systems to create new applications.

To achieve this reusability, you need to model your existing systems as
services using the tooling provided with a SOA development platform. You
may find that it is hard to model your legacy systems using coarse-grained
interfaces that strictly adhere to SOA principles. This can be overcome using
other features of your SOA infrastructure that can allow you further abstract
the interface from your legacy system’s fine-grained interfaces.

Once a legacy system is wrapped in a service interface, it will be accessible
just like any other service deployed in the SOA infrastructure. Because
consumers will only see the legacy system through the service interface,
12

What is Service Oriented Architecture?
they will not need to be aware of how the functionality is provided. All the
consumer knows is that it sends request messages to an endpoint and reply
messages are returned from the endpoint.

Standards One of the ways that SOA achieves its goals is through the use of
standardized technologies. Chief among these standards is XML. It provides
the underlying grammars that SOA uses as building blocks.

One of the fundamental building blocks used in SOA is Web Service
Definition Language (WSDL). WSDL is an XML based grammar that is used
to define service interfaces. It breaks the definition of a service into its
logical interface and the physical details used to instantiate endpoints. For
more information on WSDL see Writing Artix Contracts.

Another fundamental building block used in SOA is XML Schema. XML
Schema provides the type system used in defining service interfaces. It is
used to define the abstract representation of the messages that define a
service’s operations. These abstract representations can then be mapped
into concrete messages using WSDL.

In addition to WSDL and XML Schema, SOA takes advantage of a number of
other standards that are grouped together into what is know as the WS*
family of specifications. These specifications include:

• WS-AtomicTransactions

• WS-ReliableMessaging

• WS-Addressing

• WS-Security

• WS-Policy

These standards are all maintained by the W3C and provide a common
framework on which SOA builds QoS. They were all designed around the
idea that information would be passed using SOAP/HTTP, but they can be
leveraged by a number of different messaging protocols. They were also
designed so that services could be easily shared and accessed over the
Web. Therefore, they are built to be maximally interoperable.
 13

CHAPTER 1 | Service Oriented Architecture
What is an ESB?

Overview An enterprise service bus (ESB) is the layer of technology that makes SOA
possible. It creates the necessary abstractions by translating the messages
which define services into data that can be manipulated by a physical
process implementing a service. An ESB also provides some QoS to the
services and provides a messaging layer for services to use.

From service to endpoint An ESB takes the concrete details defined in the WSDL contract and uses it
to create an endpoint that implements a service. This information includes
details on how the abstract messages are mapped into data that can be
manipulated and transmitted by the service’s implementation. It also
includes information about the how the service’s implementation is to be
exposed to the physical world. The endpoint is the physical representation
of the abstract service defined in a WSDL contract.

As shown in Figure 1, the ESB sits between the service’s implementation
and any consumers that want to access the service. The ESB handles
functions such as:

• publishing the endpoint’s WSDL contract.

• translating the received messages into data the service’s
implementation can use.

• assuring that consumers have the required credentials to make
requests on the service.

• directing the request to the appropriate implementation of the service.
14

What is an ESB?
• returning the response to the consumer.

Not EAI A brief description of an ESB may trigger nightmares about EAIs. While the
concern is warranted, ESBs have several key differences from past
integration layers including EAIs:

Figure 1: Billing System SOA with an ESB
 15

CHAPTER 1 | Service Oriented Architecture
• ESBs use industry standard WSDL contracts to define the endpoints
they connect.

• ESBs use XML as a native type system.

• ESBs are deployed in a distubuted manner.

• ESBs do not require the use of proprietary infrastructure.

• ESBs do not require the use of proprietary adapters.

• ESBs implement QoS based on industry standard interfaces.

The use of standardized WSDL for the interface definition language and the
use of XML as a native type system make an ESB future-proof and flexible.
As discussed in the previous section, both are platform and implementation
neutral which avoids vendor lock-in.
16

What is a Smart Endpoint?
What is a Smart Endpoint?

Overview The most significant differentiator between ESBs and legacy EAI systems is
an ESB’s distributed nature. EAI systems were designed as a hub-and-spoke
system. ESBs, on the other hand, are intended to be as distributed as the
components they are integrating. In Artix this is accomplished by
implementing the ESB as a series of smart endpoints.

A smart endpoint is an endpoint that is capable of performing a number of
the features of an ESB. Smart endpoints make an ESB distributed by moving
its functionality out of a centralized server and putting that functionality
where it is needed.

Distributing the ESB As shown in Figure 2, an ESB distributes the work of data translation,
routing, and other QoS tasks to the endpoints themselves. Because the
endpoints are only responsible for translating messages that are directed to
them, they can be more efficient. It also means that they can adapt to new
 17

CHAPTER 1 | Service Oriented Architecture
connectivity requirements without effecting other endpoints. The fact that
routing, security, and other QoS are also distributed means that you can
choose not to deploy them if they are not needed.

The distributed nature of an ESB also means that you are not forced to drop
all of your existing infrastructure in one big bang. You can start with a very
targeted project such as service enabling a single system so that it can
interact with a new AJAX based interface. As you become more comfortable
with the technology, or as requirements demand, you can add services
without disrupting the services already deployed. As you do so, you may not
even need to change any of your existing implementations because the
ESB’s translation capabilities allow you to plug-in legacy implementations.

Figure 2: Distributed Nature of an ESB
18

What is a Smart Endpoint?
ESB functionality The major responsibilities of the ESB that are assumed by smart endpoints
include:

• translation of requests and responses into usable data.

• publication of a service’s WSDL.

• interactions with the transports.

• message reliability.

• transactions.

The rest of the ESB’s responsibilities are distributed across several discreet
services that are also exposed as individual smart endpoints.

Benefits Smart endpoints provide several benefits. These include:

• the flexibility to rapidly change your messaging infrastructure without
reimplementing functionality.

• the ability to scale the number of endpoints implementing a service to
meet demand.

• the ability to incrementally deploy services into your infrastructure
without disrupting your existing systems.

• the flexibility to spread the load across your existing hardware as you
need.

Legacy endpoints It may seem impossible to expose a legacy application as a smart endpoint
without reimplementing it. While it is true that legacy systems tend to be
tied to a fixed messaging system, you can use a smart endpoint to expose
the legacy system’s functionality. This is done by using a smart endpoint to
intercept requests directed at the legacy system. The endpoint will then
translate the request into the appropriate format for the legacy application
and pass the request over the appropriate transport.

Your legacy application will appear to be a smart endpoint to the rest of your
infrastructure. This makes it easier to reuse the functionality of the legacy
application. It also makes it easier to replace the legacy application with
new technology when the time comes.
 19

CHAPTER 1 | Service Oriented Architecture
20

CHAPTER 2

Artix Enables SOA
Artix is a fully distributed ESB. It is built around the concept
that all of the endpoints in your SOA are smart. Artix
accomplishes this by building the ESB functionality into the
runtime libraries that are loaded by deployed endpoints. Artix
also provides a number of services that provide features such
as location independence, security, and routing.

In this chapter This chapter discusses the following topics:

Overview of Artix page 22

Artix in an Endpoint page 25

Artix Services page 37
 21

CHAPTER 2 | Artix Enables SOA
Overview of Artix

Overview Artix provides the following functionality:

• data and transport abstraction.

• message routing.

• security.

• transactions.

• reliable messaging.

• location resolution.

• high availability.

• design time tooling.

In addition, Artix can be supplemented to include robust orchestration tools,
a registry/repository solution, mainframe connectivity, and .NET
interoperability.

This functionality is provided in a fully distributed and pluggable manner
using IONA’s ART runtime. Artix’s architecture makes it easy to build up a
robust SOA incrementally. It also makes your SOA agile enough to adapt to
fluctuation IT requirements.

ESB architecture Because Artix is an enterprise service bus, it is easy to picture it as a pipe, or
wire, that transports data between endpoints. While there are a number of
ESB implementations that are architected like a data pipe, Artix is
architected as a set of caps that allow the endpoints to connect to a number
of different pipes. In essence, it turns what ever messaging infrastructure
you have deployed into a virtual ESB.

As shown in Figure 3, the Artix runtime components are embedded into the
endpoints deployed as part of your SOA. Artix enabled endpoints are smart
and are capable of handling all of the data and transport abstraction needed
to connect to the network, regardless of the messaging infrastructure in use.
22

Overview of Artix
Because of the pluggable nature of the Artix runtime components, the
endpoints only load the pieces of the runtime needed to connect to the
specified messaging infrastructure.

Because the endpoints do the work of negotiating the transport and
message format details independent of each other, the ESB functionality is
distributed across your entire deployment. The endpoints also have some of
the logic needed for transaction management, security, and location
resolution embedded into them.

Features like routing, transaction management, security, location resolution,
and high-availability use components that are also deployed as smart
endpoints. They can be spread across resources as needed.

Figure 3: Artix and the Virtual Bus
 23

CHAPTER 2 | Artix Enables SOA
The Artix bus Artix does have a bus, but it is internal. The bus coordinates the passage of
data from the user implemented business logic to the networking system.
Internally, Artix consists of the bus and a number of objects that take the
data that the business logic manipulates and transforms it into a message
that is sent on the network. There are also a number of objects that Artix
uses to provide other features such as security and session management.

The bus is capable of coordinating and managing the messages for multiple
services or service consumers. It is also responsible for loading and
unloading the plug-in used by Artix. The details of how the bus coordinates
messages for each type of endpoint and what components are loaded are
discussed in the remaining sections of this chapter.

Capitalizing on the existing
infrastructure

Artix ensures that the addressing information and formats are compatible
with the network infrastructure onto which the messages are placed. The
network then ensures that the messages are delivered to the proper
endpoints. Because Artix uses the existing network infrastructure to deliver
messages, it can capitalize on any QoS offered by the network. For example,
Artix can use the reliable messaging mechanisms offered by a JMS queue to
ensure that messages are delivered.
24

Artix in an Endpoint
Artix in an Endpoint
Artix can be used to implement three types of endpoints in a SOA:

• Service providers are endpoints that implement the operations defined
in a service contract. They are similar to servers.

• Consumers are endpoints that make requests on services. They are
similar to clients.

• Intermediaries are endpoints that processes messages in a
value-added way, such as converting them from one data format to
another, or routing them to another service. An intermediary has
characteristics of both a service provider and a consumer.

In this section This section discusses the following topics:

Artix in a Service Provider page 26

Artix in a Consumer page 30

Artix in an Intermediary page 34
 25

CHAPTER 2 | Artix Enables SOA
Artix in a Service Provider

Overview A service provider is an endpoint that implements the business logic defined
in a WSDL document. Using skeleton code produced by running a WSDL
document through the Artix code generators, you can create a service
endpoint that uses Artix to connect to the network. Artix can load any
components needed to provide the desired features.

What makes up a service endpoint As shown in Figure 4, a service provider built with Artix has the following
pieces:

• a service implementation

• a binding layer

• a transport layer

In addition, a service provider can have any number of request-level and
message-level interceptors that provide added functionality. These
interceptors, which are independent of the service provider’s contract, have
access to requests before the service implementation. They also have access
26

Artix in an Endpoint
to the response after the service implementation generates it. They can be
used to perform functions such as encryption, validation, or header
processing.

Service implementation The service implementation is in Artix can be created using either C++ or
Java and is based on code generated from the logical portion of the service
endpoint’s contract. Artix loads the object that contains the logic for the
service and creates a servant that wraps the implementation so that it can
be managed by the Artix runtime.

The implementation does not have direct access to the request messages. It
receives messages from the Artix runtime as parameters to the operations
specified in the contract from which it was generated. Similarly, it returns
any responses to the bus as a return value. The marshalling of the data is
handled by the binding plug-in. The service implementation has no
knowledge of how the messages are packaged.

Figure 4: High-level View of a Service Provider
 27

CHAPTER 2 | Artix Enables SOA
Exceptions thrown in the implementation object are also passed to the
messaging chain. The lower layers of the messaging chain will handle the
exception as a fault message. How the exception is returned to the
consumer depends on how the service is defined in the contract. For
example, services that use CORBA will use the CORBA exception
mechanism for reporting remote exceptions and services the use
SOAP/HTTP will respond with a SOAP fault containing information about
the exception.

Request-level interceptors Request-level interceptors sit between the binding and the service
implementation. They have access to the message data when it is in
between the bits received off of the wire and the objects manipulated by the
service implementation, so they can access the header values of the
message. For example, the WS-Security specification requires that a SOAP
header holding the security token be included with all requests. A
request-level handler could remove this header and authorize the consumer
before the request is passed to the implementation.

Request-level interceptors can also inspect and change the parameters of
the operation that fulfils the request. For example, if a payment being
passed to a make_payment() operation is specified in Euros and the service
endpoint process values in US dollars, a request-level handler can do the
conversion before the data is passed to the implementation. Return values
can also be inspected and changed.

Exceptions thrown in request-level handlers cause the message to be
immediately dispatched to the binding. They are labeled as fault messages.
Requests will not be passed onto the service implementation.

Binding The binding is responsible for converting messages between the binary types
used by the service implementation and the data format used on the wire.
The mapping is determined by the WSDL binding element. Artix will load
the appropriate binding based on the binding elements in the contract
defining the endpoint.

Exceptions thrown in the binding are sent back down the messaging chain
as a fault message. Requests will not be passed to the request-level
interceptors.
28

Artix in an Endpoint
Message-level interceptors Message-level interceptors sit between the binding and the transport. When
a request comes in, message-level interceptors have access to the binary
stream holding the message pulled off the wire. At this point, they can
perform actions such as decompression or decryption. When a response is
being returned, interceptors have access to the binary stream holding the
newly packaged message. At this point they can perform actions such as
compression or encryption.

Exceptions in message-level handlers result in unpredictable behavior. It is
recommended that your code does not throw exceptions at this level.

Transport The transport is responsible for pulling requests off of the network and
placing responses back on the network. The transport to be loaded and their
configuration are determined by the WSDL port elements included in the
contract defining the endpoint.
 29

CHAPTER 2 | Artix Enables SOA
Artix in a Consumer

Overview A consumer is an endpoint that makes requests on a service provider. Using
stub code produced by running a contract through the Artix code generators,
you can create a consumer that uses Artix to load a service proxy for the
service defined by the contract and connect to one of the service providers
implementing that service. The bus can also load any components needed
to provide the features you desire.

What makes up a consumer As shown in Figure 5, a consumer built with Artix has the following pieces:

• the consumer implementation

• a service proxy

• a binding

• a transport

In addition, a consumer endpoint can have any number of request-level and
message-level interceptors that provide added functionality to the endpoint.
These interceptors, which are independent of the WSDL document defining
30

Artix in an Endpoint
the service’s interface, have access to requests after the service proxy. They
also have access to the response before the service proxy. They can be used
to perform functions such as encryption, validation, or header processing.

Consumer implementation The consumer implementation provides the business logic for the consumer.
It can be developed using either C++ of Java. As part of the consumer
implementation you need to instantiate and register service proxies for any
service endpoint upon which the consumer will make requests.

Service proxy The service proxy is a stub generated from the logical portion of a contract
defining the service upon which the consumer will make requests. It allows
a consumer to invoke the operations offered by a service provider.

Figure 5: High-level View of a Consumer
 31

CHAPTER 2 | Artix Enables SOA
When instantiated, a service proxy provides a connection to a service
provider that implements the service defined in the contract from which it
was generated. As part of their instantiation, service proxies are registered
with Artix so that the invocations made on the service proxy can be properly
delivered to the desired service provider.

Request-level interceptors Request-level interceptors sit between the service proxy and the binding.
They have access to the parameters of the invoked operation. They can
inspect the parameters and take action based on their values. They can also
alter the value of any of the parameters.

While they can change the values of the operation’s parameters,
request-level handlers cannot add or remove parameters to the operation.
For example, you could not use a request-level interceptor to split a single
parameter that contains the user’s full name into two parameters: one for
the first name and one for the last name.

Request-level handlers also have access to the message headers that are
included with the message. When requests are made, they can add a SOAP
header to the message. For example, you could write a request-level handler
to add a WS-Security header to all out-going requests. When a response is
received, request-level handlers can inspect the message headers before the
message is passed back into the consumer implementation.

Exceptions generated in a request-level interceptor are immediately returned
to the consumer implementation. If the exception is thrown while processing
a request, the request is not sent. The consumer implementation is
responsible for properly handling the exception.

Binding he binding is responsible for converting messages between the binary types
used by the consumer implementation and the data format used on the
wire. The mapping is determined by the WSDL binding element. Artix loads
the appropriate bindings based on the binding elements in the contract
defining the service to which the client is making requests.

Exceptions in the binding are sent back up the messaging chain as a fault
message. Requests will not be passed to the message-level interceptors.

Message-level interceptors Message-level interceptors sit between the binding and the transport. When
a request is made, they have access to the binary data stream that contains
the newly packaged message before it is placed onto the wire. At this point
32

Artix in an Endpoint
they can perform actions such as compression or encryption of the outgoing
request. When a response is received, the interceptors have access to the
binary stream that represents the message pulled off of the wire. At this
point, they can perform operations such as decompress the data or decrypt
it.

Message level interceptors return exceptions directly to the consumer
implementation. If the exception is thrown wile processing a request, the
request is not sent. If the exception is thrown when processing a response,
the message is not passed to the rest of the messaging chain.

Transport The transport is responsible for placing requests on the network and pulling
responses back off of the network. The transports and their configuration are
determined by the WSDL port elements in the contract defining the service
endpoint on which the consumer endpoint is invoking.
 33

CHAPTER 2 | Artix Enables SOA
Artix in an Intermediary

Overview An intermediary is a special case of a service provider. It is a service
provider whose primary function is intercept messages, perform some
value-added processing, and possibly pass the message on to its intended
destination. Intermediaries have some of the characteristics of a service
provider and some of the characteristics of a consumer. They are typically
defined by a contract defining all of the interfaces required by the
intermediary and that has been extended to contain the rules for how the
intermediary is to process messages. Using the extended contract, you can
generate skeleton code and stub code for the endpoints with which the
intermediary will interact. Alternatively, intermediaries can use generic
interfaces that are created at runtime based on the information provided in
the contract. Artix will use the information in the contract to load the
components needed to connect the intermediary to the network.

Artix uses an intermediary to service-enable legacy systems by performing
transport and binding switching. Other uses of intermediaries are message
routing and message transformation. For more information about the
intermediaries provided with Artix see “The Artix Router” on page 40.

What makes up an intermediary As shown in Figure 6, an intermediary built using Artix has the following
pieces:

• a service-side transport

• a service-side binding

• a service implementation

• a service proxy

• a consumer-side binding

• a consumer-side transport
34

Artix in an Endpoint
In addition, an intermediary can have any number of request-level and
message-level interceptors that provide added functionality to the endpoint.
These interceptors can be used to perform functions such as encryption,
validation, or header processing.

Service-side messaging chain An intermediary's service-side messaging chain functions identically to the
messaging chain of a service provider. It is made up of a transport,
message-level handlers, a binding, and request-level handlers. The binding

Figure 6: High-level View of an Intermediary
 35

CHAPTER 2 | Artix Enables SOA
and transport are specified by the part of the intermediary's contract that
defines the service(s) that the intermediary can interact with. The handlers
in the chain are specified in the intermediary's configuration.

For more information see “Artix in a Service Provider” on page 26.

Service implementation An intermediary's service implementation determines the functionality of the
intermediary. For example, it may inspect the account number of a payee
and use it to route the request to a regional payment center.

The only requirement for an intermediary's service implementation is that it
continues the invocation chain for the messages it receives. For example, if
the intermediary is placed in front of a teller service, the intermediary must
pass along all incoming requests to an instance of the teller service for
which the request was intended.

Service proxies An intermediary has a service proxy for any service to which it must pass
messages. In some cases this may be a single service, but an intermediary
can also pass messages along to a number of services. For example, the
Artix router can redirect a message to any number of services.

Consumer-side messaging chain An intermediary's consumer-side messaging chain functions identically to
the messaging chain of a consumer. It is made up of request-level handlers,
a binding, message-level handlers, and a transport. The binding and
transport are specified by the part of the intermediary's contract that defines
the service(s) that the intermediary can interact with. The handlers in the
chain are specified in the intermediary's configuration.

For more information see “Artix in a Consumer” on page 30.
36

Artix Services
Artix Services

Overview Features such as location idendence, message routing, and security require
functionality that cannot be built into a smart endpoint. To address this Artix
provides a number of service providers that you deploy into your SOA.

In this section This section discusses the following topics:

The Artix Container page 38

The Artix Router page 40

Security page 42

The Artix Locator page 43

The Artix Session Manager page 46
 37

CHAPTER 2 | Artix Enables SOA
The Artix Container

Overview One of the key features of SOA is that its endpoints are highly dynamic. The
Artix container provides a number of features that make Artix enabled
endpoints more dynamic including:

• remote deployment

• suspension of an endpoint

• automatic reloading of an endpoint

• dynamic endpoint configuration

• monitoring of endpoint performance metrics

The container does this by hosting a light-weight administrative service
along side the endpoints hosted in the container.

Container server The container server is a light weight process that can host a number of
Artix enabled endpoints. It instantiates service implementation objects,
loads the bindings and transports specified in the contracts of the endpoints
the container is hosting, and exposes the endpoints to the network. The
container coordinates the flow of messages so that messages are delivered
to the appropriate service implementations.

In addition to the endpoints you deploy into a container, Artix containers
always load an instance of the container administrative service.

Administrative service The container’s administrative service allows you to manage the endpoints
deployed in a container. Like all services in SOA, the administrative service
is defined by a contract. By default the administrative service is exposed as
a SOAP/HTTP endpoint and can be accessed by any consumer endpoint
that instantiates an administrative service proxy. You can alter the
networking properties of an administrative service endpoint such that it uses
any of the binding/transport combinations supported by Artix.

The administrative service provides the following operations:

• List all endpoints deployed in the container

• Stop a running endpoint

• Start a dormant endpoint

• Remove an endpoint
38

Artix Services
• Deploy a new endpoint

• Get a reference to an endpoint

• Get the contract for an endpoint

• Get the URL to an endpoint's contract document

• Retrieve performance metrics for an endpoint

• Shut down the container
 39

CHAPTER 2 | Artix Enables SOA
The Artix Router

Overview The router is an intermediary whose primary role is to redirect messages
based on rules defined in its contract. As shown in Figure 7, a router has a
service-side interface that receives requests from consumer endpoints. It
also has one or more consumer-side service proxies that forward the request
to service implementations on the backend of the router.

The service-side messaging chain and consumer-side messaging chain are
defined by separate parts of the router’s contract. They do not necessarily
share a common binding or transport.

Features A router provides a number of features:

• message routing

• payload format translation

• transport switching

• load balancing

• message broadcasting

Figure 7: Overview of the Artix Router
40

Artix Services
• service provider fail-over

Service-side The service-side of a router looks like a service provider to the other
endpoints on your network. It is responsible for receiving requests from
consumers that make requests on the service provider, or service providers,
behind the router. Its interface and messaging chain is determined by a
service definition in the router’s contract.

Consumer-side The consumer-side of a router looks like a consumer to the rest of the
endpoints on your network. It consists of one or more service proxies and
their associated message chains and is responsible for forwarding requests
to the service providers on the backend of the router. The proxies, and their
messaging chains, are defined in the router’s contract. However, they are
not instantiated until they are needed by the router. So, if one of the
destinations in the router’s contract never receives a message, no
consumer-side artifacts will be created for it.

The consumer-side proxies can all have a different combination of bindings
and transports in its messaging chains. They also can have a different
combination from the service-side of the router.

More information For more information about the router see Artix Router Guide.
 41

../router/index.htm

CHAPTER 2 | Artix Enables SOA
Security

Overview Artix’s security architecture is designed to be easily deployable and easily
connected to any existing security infrastructure already in use. It consists of
two main components:

• the Artix security plug-in

• the Artix security service

Security plug-in The Artix security plug-in is deployed into the message chain of any service
provider that uses the Artix security service. It checks incoming requests for
security credentials. Before allowing the request to be forwarded to the
service implementation, it checks with the Artix security server to validate
the user and ensure that they are authorized to access the service. The
security plug-in uses mutually authenticated and encrypted channel to
communicate with the security service.

For optimization, the security plug-in has a token cache that holds on to
authorization tokens from the security server. Before sending the credentials
to the security server, the plug-in will check its cache for a valid token that
matches the credentials from the request. If a valid token is stored in the
plug-in’s cache, the plug-in will use it. If not, it will request one from the
security service.

Security service The Artix security service provides the authentication and authorization
functionality for Artix service providerss. It is designed to use pluggable
adapters that connect to a variety of credential datastores. For example, if
you are already using LDAP on your systems, the Artix security server can
leverage that data to perform it’s functions.

The Artix security server has the following enterprise features:

• high-availability through clustering

• token federation

More information For more information about Artix security see the Artix Security Guide.
42

../security/index.htm

Artix Services
The Artix Locator

Overview The locator is a lightweight registry of deployed service endpoints. Service
endpoints register with a locator instance and consumer endpoints can use
a locator instance to get references to an endpoint that implements a given
service. It uses WS-Addressing compliant endpoint references to provide
addressing information to consumers.

As shown in Figure 8, the locator consists of three components:

• the locator service

• the locator endpoint plug-in

• the locator client plug-in

Features The locator has the following features:

• look up of references to deployed service endpoints

• load balancing among endpoints that implement the same service

• high availability

Figure 8: Overview of the Locator
 43

CHAPTER 2 | Artix Enables SOA
Locator service The locator service, like all services, is defined by a WSDL document. Artix
contains a service implementation using skeleton code generated from this
contract. You can deploy an instance of the locator service into an Artix
container to create a locator service provider that can respond to the
following types of requests:

• service registration

• service deregistration

• service endpoint look-up

• service endpoint query

The contract supplied with Artix defines a locator service endpoint using
SOAP/HTTP. You should not modify this because the peer manager that is
used to interact with the locator cannot work with other transports.

Because the locator service is defined by a standard contract and deployed
as a SOAP/HTTP endpoint, it can be used by any endpoint in your SOA that
communicates using SOAP/HTTP. For instance if you have .Net clients that
want to use the locator to find service instances, it is not a problem. You
could also register Axis based services with an instance of the Artix locator
service. All a non-Artix client needs to do is generate a service proxy for
making requests against the locator service.

Locator endpoint plug-in The locator endpoint plug-in is loaded into the process space of an Artix
service provider that wants to register with an instance of the locator. The
plug-in is responsible for registering the service with a locator instance when
the service provider starts up. It is also responsible for loading a peer
manager that is responsible for monitoring the health of the locator instance
with which it is registered. If the associated locator instance goes down, the
peer manager reregisters the service provider when it returns. If the service
provider goes down, the locator instance unregisters it.

Locator client plug-in The locator client plug-in is loaded into the process space of an Artix
consumer that wants to use the locator to get addressing information when
creating a service proxy. When it is loaded, a consumer will automatically
perform look-ups on a locator instance without creating a service proxy for
the locator. The plug-in has its own locator service proxy that is used by the
Artix initial reference resolving mechanism. The plug-in does not, however,
support service provider queries.
44

Artix Services
More information For more information on the locator see the Artix Locator Guide.
 45

../locator/index.htm

CHAPTER 2 | Artix Enables SOA
The Artix Session Manager

Overview The session manager is a versatile service that provides the following
features:

• Limiting the amount of time a consumer endpoint can access a service
endpoint

• Limiting the number of concurrent consumer connections to a service
endpoint

• Stateful service endpoints

Components The session manager is implemented in a modular fashion. It consists of the
following components:

• the session manager service

• a policy plug-in that is collocated with each instance of the service

• an endpoint manager plug-in that is collocated with all managed
service providers

• a session token interceptor that sits in the messaging chain of all
managed service providers

Session manager service The session manager service is defined by a WSDL document and is
implemented by a library shipped with Artix. You deploy instances of the
session manager service implementation into an Artix container to create
session manager service providers. These service providers can be accessed
by any consumer that can instantiate a proxy for the session manager
service and communicate using SOAP/HTTP.

In general, consumers will request lists of registered service groups from the
session manager. The consumer will then invoke on the session manager to
request a session for one of the returned service groups. In addition,
consumers can request extensions to their sessions and request that a
session be ended. The other session manager components also have specific
operations that they invoke on the session manager service to provide the
service-side functionality.
46

Artix Services
Policy plug-in The session policy plug-in is deployed into the same process space as a
session manager service instance. It is responsible for defining rules about
the duration of sessions, rules about the number of concurrent sessions
allowed per group, and other rules about how sessions are granted. Before
the session manager grants a session to a consumer, it checks with the
policy plug-in.

Artix includes with a default policy plug-in called sm_simple_policy. This
plug-in uses information from the Artix configuration file to determine length
of sessions and the maximum number of concurrent sessions allowed. If you
need more detailed session rules, you can write your own policy plug-in.

Endpoint manager The endpoint manager plug-in is loaded into the process space of an Artix
service providers that wants to register with a session manager instance.
The endpoint managers are in constant communication with the session
manager instance to report on the endpoint’s health, to receive information
on new sessions that have been granted to the managed service providers,
and to check on the health of the session manager instance.

Session token interceptor The session token interceptor is placed in a service provider's messaging
chain when it is configured to use managed sessions. It looks for the session
token that is attached to a request. If no session token is found, the
interceptor rejects the request. If the session token is found, the token is
sent to the endpoint manager for verification. If the session token is invalid,
the interceptor rejects the request. If the session is valid, the request is
passed up the message chain.

More information For more information on the session manager see the Artix Session Manager
Guide.
 47

../session_mgr/index.htm
../session_mgr/index.htm

CHAPTER 2 | Artix Enables SOA
48

CHAPTER 3

Extending Artix
In addition to Artix, you can add several packages from the
Artix suite that extend its functionality. These packages offer
features like mainframe connectivity, orchestration, .Net
integration, and repository functionality.

In this chapter This chapter discusses the following topics:

Artix for Z/OS page 50

Artix Registry/Repository page 52

Artix Orchestration page 54

Artix Connect page 55

Artix AmberPoint Agent page 57
 49

CHAPTER 3 | Extending Artix
Artix for Z/OS

Overview Artix for z/OS enables you to design, create, and deploy a variety of
enterprise integration solutions for the mainframe. These solutions include
exposure of existing mainframe applications to the network as Web services
and CORBA objects, and development of new z/OS-based Web service
applications from WSDL definitions. An application can be exposed as a
Web service and a CORBA object that can accept client requests via SOAP
over HTTP/HTTPS, SOAP over WebSphere MQ, or IIOP over TCP/IP. Thus
Artix for z/OS enables you to transform basic mainframe applications into
true multi-protocol applications that are accessible throughout the entire
enterprise.

Artix for z/OS therefore provides a very powerful mechanism for the rapid
integration of distributed network components, allowing mainframe
components to participate fully in the business flow, in a variety of ways.

Usage Modes The four main categories of integration solution that Artix for z/OS supports
can be summarized as follows:

• Exposure of existing z/OS applications as Web services and CORBA
objects

Existing CICS COBOL, IMS COBOL, BMS-based CICS, or MFS-based
IMS applications can be exposed as Web services and CORBA objects
in a non-intrusive manner, without the need for code changes.
Distributed clients can use SOAP over HTTP/HTTPS, SOAP over
WebSphere MQ, or IIOP over TCP/IP to communicate with them.

• Exposure of existing DB2 SQL statements as Web services

DB2 SQL statements and stored procedures can be deployed to z/OS
and exposed as Web services. Distributed clients can use SOAP over
HTTP/HTTPS or SOAP over WebSphere MQ to invoke them.

• Development of new z/OS-based Web service applications from WSDL

The following types of new application can be developed from WSDL:

♦ CICS or IMS-based COBOL or PL/I Web services that can be
invoked using SOAP over HTTP/HTTPS or SOAP over WebSphere
MQ.
50

Artix for Z/OS
♦ z/OS-based COBOL or PL/I Web service clients that can be started
in CICS, IMS, or batch, and use SOAP over HTTP/HTTPS to
invoke distributed Web services.

• Development of new z/OS-based Artix CORBA clients from IDL

New z/OS-based COBOL or PL/I Artix CORBA clients can be developed
from IDL. They can be started in CICS or IMS and use IIOP to invoke
distributed CORBA objects.
 51

CHAPTER 3 | Extending Artix
Artix Registry/Repository

Overview Artix Registry/Repository enables service reuse in distributed SOA
environments throughout the entire SOA service lifecycle, including design,
development, packaging, deployment and management. The Registry
provides a phone book-style listing of all available services. The Repository
manages service metadata to discover, configure, provision and validate
services according to enterprise policies.

Key Features Some of the key features of Artix Registry/Repository are:

• Capture and discovery of service metadata.

You can store service contracts, provider and consumer
implementations, and policies in a central location. From the central
repository, these artifacts can be shared through out your organization.

• Policy based configuration.

Configuration is done through a common policy structure. Because
policies are more straightforward than standard runtime configurations,
configuration becomes less error prone and more aligned to business
goals. Policies can also be built into composites that enforce a group of
related configuration requirements.

Figure 9: Artix Registry/Repository
52

Artix Registry/Repository
• Service packaging and provisioning

Service providers and service consumers can be packaged and
configured from remote locations for later deployment. Based on the
specified deployment platform and location details, the tooling will
generate the needed configuration and ensure that the proper
implementation artifacts are packaged.
 53

CHAPTER 3 | Extending Artix
Artix Orchestration

Overview Artix Orchestration provides a comprehensive environment for designing,
building, testing and deploying workflows and Business Process Execution
Language (BPEL) service orchestrations. Based on the Eclipse visual
framework, Artix Orchestration provides a full complement of BPEL 1.1
constructs with which to build service compositions. Simply drag constructs
from the BPEL Tools palette and drop them onto the diagramming canvas.
As service orchestrations are created in Artix Orchestration's diagramming
view, code view can be used to examine the BPEL process definition.

Features Artix Orchestration adds the following features to Artix:

• a BPEL engine server

• a Web-based administration console for the BPEL engine server

• a persistent storage option for the BPEL engine server

• an Eclipse-based orchestration editor
54

Artix Connect
Artix Connect

Overview Artix Connect is a custom .NET remoting channel. It provides a high
performance bridge that enables .NET clients to connect to existing legacy
systems, such as the IP Multimedia Subsystem (IMS) in the
telecommunications industry or complex business processes that run on the
mainframe.

What Artix adds to .NET The default Microsoft .NET remoting channel only supports SOAP over
HTTP and SOAP over TCP/IP. The Artix remoting channel, however, uses
the Artix runtime to provide support for all of the transports and protocols
that Artix supports, as well as quality of services such as security. This
includes the ability to mix and match transport protocols and bindings
(marshalling schemes) to enable .NET clients and servers to communicate
with other technologies such as J2EE, WebSphere MQ (MQSeries), Tibco,
and mainframes using native formats or SOAP over native transports.

In addition, the Artix remoting channel can be customized using Artix APIs.
This is analogous to using custom sinks and formatters in .NET remoting.

Graphical overview Figure 10 provides a conceptual overview of how Artix Connect facilitates
the integration of .NET clients and the middleware platforms supported by
Artix.
 55

CHAPTER 3 | Extending Artix
Figure 10: Artix Connect
56

Artix AmberPoint Agent
Artix AmberPoint Agent

Overview The Artix AmberPoint Agent is an Artix plug-in that enables Artix endpoints
to be discovered and monitored by AmberPoint. This is the recommended
approach to integrating Artix services with AmberPoint.

The Artix AmberPoint Agent can be deployed with Artix endpoints that use
SOAP over HTTP to enable reporting of performance metrics back to
AmberPoint.

Features The Artix AmberPoint Agent enables the use of the following AmberPoint
features:

• Dynamic discovery of Artix clients and services using SOAP over HTTP.

• Monitoring of Artix client and service invocations, and reporting them
back to AmberPoint.

• Mapping Qualities of Service to customer Service Level Agreements
(SLAs).

• Monitoring of Artix invocation flow dependencies, which enables
AmberPoint to draw Web service dependency diagrams.

• Centralized logging and performance statistics.
 57

CHAPTER 3 | Extending Artix
Graphical overview of the Agent Figure 11 shows the Artix AmberPoint Agent deployed in a service network
with multiple service consumers and service endpoints.

This loosely-coupled architecture has the following benefits:

• Because the Artix AmberPoint Agent is collocated and embedded in
the service endpoint, there are no additional network hops, so
performance is maximized.

• There is no risk of a single point of failure, so reliability and scalability
are also improved.

• Because the client is aware of the back-end service endpoint, the use
of callbacks is supported.

• An Artix AmberPoint Agent can be embedded into an Artix router.This
enables it to dynamically discover and monitor the Artix service
providers and consumers that the router creates and manages.

Figure 11: Artix AmberPoint Agent Service Network
58

Index

C
consumer 25, 30
container 38

E
endpoint 14

consumer 30
intermediary 34
service provider 26

endpoint manager plug-in 47
enterprise service bus 14
ESB 14

I
intermediary 25, 34

L
locator 43
locator client plug-in 44
locator endpoint plug-in 44
locator service 44

P
plug-in

endpoint manager 47
locator client 44

locator endpoint 44
security 42
session policy 47

R
router 40

S
security plug-in 42
security server 42
service 10
service consumer 30
service oriented architecture 10
service provider 25, 26
session manager 46
session policy plug-in 47
smart endpoint 17
SOA 10

W
Web Service Definition Language 13
WSDL 13

X
XML Schema 13
 59

INDEX
60

	List of Figures
	Preface
	What is Covered in this Book
	Who Should Read this Book
	How to Use this Book
	The Artix Documentation Library

	Service Oriented Architecture
	What is Service Oriented Architecture?
	What is an ESB?
	What is a Smart Endpoint?

	Artix Enables SOA
	Overview of Artix
	Artix in an Endpoint
	Artix in a Service Provider
	Artix in a Consumer
	Artix in an Intermediary

	Artix Services
	The Artix Container
	The Artix Router
	Security
	The Artix Locator
	The Artix Session Manager

	Extending Artix
	Artix for Z/OS
	Artix Registry/Repository
	Artix Orchestration
	Artix Connect
	Artix AmberPoint Agent

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

