
Building Service Oriented
Infrastructures with Artix

Version 4.1, September 2006

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in
this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license
to these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.
IONA, IONA Technologies, the IONA logos, Orbix, Artix, Making Software Work Together,
Adaptive Runtime Technology, Orbacus, IONA University, and IONA XMLBus are
trademarks or registered trademarks of IONA Technologies PLC and/or its subsidiaries.
Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. CORBA is a trademark or registered trademark of the
Object Management Group, Inc. in the United States and other countries. All other
trademarks that appear herein are the property of their respective owners.
While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of
any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IONA shall not be liable for errors contained herein, or for incidental or consequential
damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No
third-party intellectual property right liability is assumed with respect to the use of the information contained
herein. IONA Technologies PLC assumes no responsibility for errors or omissions contained in this publication.
This publication and features described herein are subject to change without notice.

Copyright © 1999-2006 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this publication are covered by the trademarks, service marks, or product
names as designated by the companies that market those products.

Updated: September 21, 2006

Contents

List of Figures 5

Preface 7
What is Covered in this Book 7
Who Should Read this Book 7
How to Use this Book 7
The Artix Library 8
Getting the Latest Version 11
Searching the Artix Library 11
Artix Online Help 12
Artix Glossary 12
Additional Resources 12
Document Conventions 13

Chapter 1 Service Oriented Architecture 15
What is a Service Oriented Architecture? 16
What is an Enterprise Service Bus? 22
How Does Artix Fit into a SOA Strategy? 27

Chapter 2 Artix�s High-Level Architecture 29
Artix as a Deployed ESB 30
Artix in a Service Endpoint 32
Artix in a Consumer Endpoint 37
Artix in an Intermediary 42

Chapter 3 Services Provided with Artix 47
The Artix Container 48
The Artix Router 50
Security 53
The Artix Locator 55
The Artix Session Manager 58
Reliable Messaging 61
The Artix Transformer 65
 3

CONTENTS
The Artix Chain Builder 68

Index 71
4

List of Figures

Figure 1: Distributed Bank Account Application 17

Figure 2: Separate Billing Systems 19

Figure 3: Billing Systems in SOA 20

Figure 4: Billing System SOA with an ESB 23

Figure 5: Distributed Nature of an ESB 25

Figure 6: Artix and the Virtual Bus 30

Figure 7: High-level View of a Service Endpoint 33

Figure 8: High-level View of a Consumer Endpoint 38

Figure 9: High-level View of an Intermediary 45

Figure 10: Overview of the Artix Container 48

Figure 11: Overview of the Artix Router 50

Figure 12: Overview of the Artix Security Architecture 53

Figure 13: Overview of the Artix Locator 55

Figure 14: Overview of the Artix Session Manager 59

Figure 15: Overview of WS-RM Architecture 62

Figure 16: Overview of the Artix Transformer 66

Figure 17: Overview of the Artix Chain Builder 68
 5

LIST OF FIGURES
 6

Preface
What is Covered in this Book
This book discusses the advantages of SOA to integration, what makes a
service oriented architecture (SOA), and how Artix facilitates the deployment
of an enterprise quality SOA. It illuminates the value of a SOA. It shows how
an ESB such as Artix plays a key role in developing a SOA and how Artix, in
particular, provides the features required to build a distributed, robust
collection of services.

The book then goes on to provide a detailed look at the distributed,
extensible architecture of Artix. It discusses how Artix endpoints implement
services. This discussion includes a discussion of how the plug-in
architecture makes it easy to add functionality to an endpoint. It also
provides a detailed discussion of many of the internal components of the
Artix runtime.

Who Should Read this Book
While this book does contain some highly technical discussions, much of
the book is geared toward a novice reader. A basic knowledge of distributed
computing concepts is assumed.

How to Use this Book
This book is organized as follows:

� Chapter 1 provides a general description of service-oriented
architectures and how enterprise service buses make them possible. It
also discusses how Artix, in particular, fits into this picture.

� Chapter 2 provides a high-level description of Artix�s architecture. It
looks at how Artix connects endpoints to a network using its pluggable
messaging stack.
 7

PREFACE
� Chapter 3 provides a high-level description of how some of the
enterprise features in Artix are implemented. It looks at what
components are used and how they are deployed.

The Artix Library
The Artix documentation library is organized in the following sections:

� Getting Started

� Designing Artix Solutions

� Configuring and Deploying Artix Solutions

� Using Artix Services

� Integrating Artix Solutions

� Integrating with Management Systems

� Reference

� Artix Orchestration

Getting Started

The books in this section provide you with a background for working with
Artix. They describe many of the concepts and technologies used by Artix.
They include:

� Release Notes contains release-specific information about Artix.

� Installation Guide describes the prerequisites for installing Artix and the
procedures for installing Artix on supported systems.

� Getting Started with Artix describes basic Artix and WSDL concepts.

� Using Artix Designer describes how to use Artix Designer to build Artix
solutions.

� Artix Technical Use Cases provides a number of step-by-step examples
of building common Artix solutions.

Designing Artix Solutions

The books in this section go into greater depth about using Artix to solve
real-world problems. They describe how to build service-oriented
architectures with Artix and how Artix uses WSDL to define services:

� Building Service-Oriented Infrastructures with Artix provides an
overview of service-oriented architectures and describes how they can
be implemented using Artix.
 8

../release_notes/index.htm
../install_guide/index.htm
../getting_started/index.htm
../designer/index.htm
../cookbook/index.htm
../soa/index.htm

PREFACE
� Writing Artix Contracts describes the components of an Artix contract.
Special attention is paid to the WSDL extensions used to define
Artix-specific payload formats and transports.

Developing Artix Solutions

The books in this section how to use the Artix APIs to build new services:

� Developing Artix Applications in C++ discusses the technical aspects
of programming applications using the C++ API.

� Developing Advanced Artix Plug-ins in C++ discusses the technical
aspects of implementing advanced plug-ins (for example, interceptors)
using the C++ API.

� Developing Artix Applications in Java discusses the technical aspects
of programming applications using the Java API.

Configuring and Deploying Artix Solutions

This section includes:

� Configuring and Deploying Artix Solutions discusses how to set up your
Artix environment and how configure and deploy Artix services.
 9

../contract/index.htm
../prog_guide/index.htm
../plugin_guide/index.htm
../java_pguide/index.htm
../deploy/index.htm

PREFACE
Using Artix Services

The books in this section describe how to use the services provided with
Artix:

� Artix Router Guide explains how to integrate services using the Artix
router.

� Artix Locator Guide explains how clients can find services using the
Artix locator.

� Artix Session Manager Guide explains how to manage client sessions
using the Artix session manager.

� Artix Transactions Guide, C++ explains how to enable Artix C++
applications to participate in transacted operations.

� Artix Transactions Guide, Java explains how to enable Artix Java
applications to participate in transacted operations.

� Artix Security Guide explains how to use the security features in Artix.

Integrating Artix Solutions

The books in this section describe how to integrate Artix solutions with other
middleware technologies.

� Artix for CORBA provides information on using Artix in a CORBA
environment.

� Artix for J2EE provides information on using Artix to integrate with
J2EE applications.

For details on integrating with Microsoft�s .NET technology, see the
documentation for Artix Connect.

Integrating with Management Systems

The books in this section describe how to integrate Artix solutions with a
range of enterprise and SOA management systems. They include:

� IBM Tivoli Integration Guide explains how to integrate Artix with IBM
Tivoli enterprise management system.

� BMC Patrol Integration Guide explains how to integrate Artix with BMC
Patrol enterprise management system.

� CA-WSDM Integration Guide explains how to integrate Artix the with
CA-WSDM SOA management system.

� AmberPoint Integration Guide explains how to integrate Artix the with
AmberPoint SOA management system.
 10

../routing/index.htm
../locator_guide/index.htm
../session_mgr/index.htm
../transactions_cxx/index.htm
../transactions_java/index.htm
../security/index.htm
../corba_ws/index.htm
../j2ee/index.htm
../tivoli/index.htm
../bmc/index.htm
../ca_wsdm/index.htm
../amberpoint/index.htm

PREFACE
Reference

These books provide detailed reference information about specific Artix
APIs, WSDL extensions, configuration variables, command-line tools, and
terms. The reference documentation includes:

� Artix Command Line Reference

� Artix Configuration Reference

� Artix WSDL Extension Reference

� Artix Java API Reference

� Artix C++ API Reference

� Artix .NET API Reference

� Artix Glossary

Artix Orchestration

These books describe the Artix support for Business Process Execution
Language (BPEL), which is available as an add-on to Artix. These books
include:

� Artix Orchestration Release Notes

� Artix Orchestration Installation Guide

� Artix Orchestration Administration Console Help.

Getting the Latest Version
The latest updates to the Artix documentation can be found at http://
www.iona.com/support/docs.

Compare the version dates on the web page for your product version with
the date printed on the copyright page of the PDF edition of the book you
are reading.

Searching the Artix Library
You can search the online documentation by using the Search box at the top
right of the documentation home page:

http://www.iona.com/support/docs

To search a particular library version, browse to the required index page,
and use the Search box at the top right, for example:

http://www.iona.com/support/docs/artix/4.0/index.xml
 11

../command_ref/index.htm
../config_ref/index.htm
../wsdl_ref/index.htm
../javadoc/index.html
../cppdoc/index.html
../ndoc/index.html
../glossary/index.htm
../orch_relnotes/index.htm
../orch_install/index.htm
../orch_intro/index.htm
../orch_admin/index.htm
http://www.iona.com/support/docs
http://www.iona.com/support/docs
http://www.iona.com/support/docs
http://www.iona.com/support/docs/artix/4.0/index.xml

PREFACE
You can also search within a particular book. To search within a HTML
version of a book, use the Search box at the top left of the page. To search
within a PDF version of a book, in Adobe Acrobat, select Edit|Find, and
enter your search text.

Artix Online Help
Artix Designer and Artix Orchestration Designer include comprehensive
online help, providing:

� Step-by-step instructions on how to perform important tasks

� A full search feature

� Context-sensitive help for each screen

There are two ways that you can access the online help:

� Select Help|Help Contents from the menu bar. The help appears in
the contents panel of the Eclipse help browser.

� Press F1 for context-sensitive help.

In addition, there are a number of cheat sheets that guide you through the
most important functionality in Artix Designer and Artix Orchestration
Designer. To access these, select Help|Cheat Sheets.

Artix Glossary
The Artix Glossary is a comprehensive reference of Artix terms. It provides
quick definitions of the main Artix components and concepts. All terms are
defined in the context of the development and deployment of Web services
using Artix.

Additional Resources
The IONA Knowledge Base contains helpful articles written by IONA experts
about Artix and other products.

The IONA Update Center contains the latest releases and patches for IONA
products.

If you need help with this or any other IONA product, go to IONA Online
Support.

Comments, corrections, and suggestions on IONA documentation can be
sent to .
 12

http://www.iona.com/support/kb/index.jspa
http://www.iona.com/support/updates/index.xml
http://www.iona.com/support/index.xml
http://www.iona.com/support/index.xml
../glossary/index.htm

PREFACE
Document Conventions
Typographical conventions

This book uses the following typographical conventions:

Fixed width Fixed width (courier font) in normal text represents
portions of code and literal names of items such as
classes, functions, variables, and data structures. For
example, text might refer to the IT_Bus::AnyType
class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>

Fixed width italic Fixed width italic words or characters in code and
commands represent variable values you must
supply, such as arguments to commands or path
names for your particular system. For example:

% cd /users/YourUserName

Italic Italic words in normal text represent emphasis and
introduce new terms.

Bold Bold words in normal text represent graphical user
interface components such as menu commands and
dialog boxes. For example: the User Preferences
dialog.
 13

PREFACE
Keying Conventions

This book uses the following keying conventions:

No prompt When a command�s format is the same for multiple
platforms, the command prompt is not shown.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the MS-DOS or Windows
command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{} Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| In format and syntax descriptions, a vertical bar
separates items in a list of choices enclosed in {}
(braces).

In graphical user interface descriptions, a vertical bar
separates menu commands (for example, select
File|Open).
 14

CHAPTER 1

Service Oriented
Architecture
Service Oriented Architecture is a way of designing solutions
around units of functionality that are implementation agnostic.

Overview A Service Oriented Architecture (SOA) is a loosely-coupled, distributed
architecture in which services make resources available to consumers in a
standardized way. SOA is language and protocol independent. By providing
a way of describing services that is independent of implementation details,
SOA makes it easier to develop and deploy systems that require large
amounts of integration.

A key piece of technology used in enabling service orientation is an
enterprise service bus (ESB). An ESB is the infrastructure that allows
services to interact in a distributed environment. It handles the delivery of
messages between different middleware systems, and provides
management, monitoring, and mediation services such as routing, service
discovery, or transaction processing.

In this chapter This chapter discusses the following topics:

What is a Service Oriented Architecture? page 16

What is an Enterprise Service Bus? page 22

How Does Artix Fit into a SOA Strategy? page 27
 15

CHAPTER 1 | Service Oriented Architecture
What is a Service Oriented Architecture?

Overview Service Oriented Architecture (SOA) is the next logical step in the growth of
software development methodology. It takes the concepts behind
procedure-oriented design and object-oriented design and moves the layer of
abstraction one step further away from the implementation details of a piece
of atomic functionality.

It also builds on the concepts used to create distributed applications such as
CORBA. Specifically, it uses an XML-based grammar for defining abstract
interfaces. The interfaces define the messages passed between service and
consumer using XMLSchema. By using XML-based types, service definitions
make no assumptions about how the service is implemented.

Evolution of reusability in
application design

The fundamental ideas behind service orientation are not new. For as long
as people have been developing software one of the core concepts has been
reusability of functionality. To achieve this, software languages and software
design paradigms have evolved that encourage the compartmentalization of
functionality. Functionality is grouped together into small, reusable units
that can be used independently of the application for which they were
originally intended. This not only makes them reusable, but also increases
the ease with which large applications can be updated because a change to
one unit of functionality does not necessarily require changes to the whole
application.

The first leap forward in the quest for reusability was the move from
line-by-line programming languages like BASIC to procedural languages like
Pascal and C. These procedural languages brought about the
procedure-oriented design paradigm. Software began being designed as
collections of reusable procedures each of which performed discreet pieces
of functionality.

The next leap forward was the arrival of object-oriented programming
languages like C++ and Java. Object-oriented languages, and
object-oriented design, made reusability easier by introducing the concept of
an object as an atomic unit of functionality. In this paradigm, an object
exposes a well-defined interface that can be called on by other objects that
16

What is a Service Oriented Architecture?
need the object�s functionality. Because an object is a self-contained entity
and because its interface is well-defined it is highly reusable across many
applications.

The problems of distributed
application development

As the code used to write applications became more modular and reusable,
applications were being broken up into pieces that were distributed across
many machines. For example, an application that allows bank tellers to
make withdrawals and deposits is broken into a client and a server portion
as shown in Figure 1. The server portion may also be broken up into several
separate parts.

Breaking applications into multiple parts and distributing them across
multiple platforms presented a new set of reusability problems. Early
distributed applications were designed so that all of the parts were tightly
coupled. The messages used to communicate between them were passed
using proprietary formats. Often there were dependencies on specific
networking hardware and protocols. One result of this tight coupling is that
pieces of functionality can not be reused because it is difficult to integrate
these islands of functionality. For example, if a bank had two systems that
needed to do credit checks, each system would need to implement that
functionality because they used different messaging styles or different
networking technologies.

Figure 1: Distributed Bank Account Application
 17

CHAPTER 1 | Service Oriented Architecture
Many attempts have been made to solve the reusability and integration
problems posed by distributed application development. Some solutions
include CORBA, DCOM, MOMs, and large EAI servers. Each of these
solutions got parts of the problem right, but never solved the entire problem.
CORBA and many EAI solutions increased interoperabilty and reusability by
providing abstract, implementation neutral definitions of atomic units of
functionality that could be used as a contract between parts of a distributed
application. MOMs increased interoperabilty by defining the interaction
between parts of a distributed system by the messages that are exchanged.

None of the solutions really solved the problem because they, like
object-oriented programming languages, did not provide a way of breaking
the dependencies that bound all the parts together. CORBA required that all
of the distributed objects be CORBA objects. EAI servers required resource
heavy central hubs and proprietary networking solutions. MOMs required
that all of the parts used a particular messaging infrastructure that often
required specific APIs to be used.

How SOA breaks the dependency
chain

SOA breaks the chains of dependency by borrowing from the best ideas of
all other paradigms. From object-oriented programming, SOA borrows the
idea of atomic units of functionality with a well defined interface. From
CORBA and EAI solutions, SOA borrows the idea of an implementation
neutral interface definition language. From MOM, SOA borrows the idea of
defining applications by they messages they exchange. The result is the
concept of a service.

A service is an atomic unit of functionality defined by a set of message
exchanges that are expressed using an implementation neutral grammar. A
service, unlike an object, is an abstract entity whose implementation details
are left largely ambiguous. The only implementation details spelled out are
the messages the service exchanges. This ambiguity, coupled with the
requirement that the messages be defined by an implementation neutral
grammar make a service highly reusable and easy to integrate into a
complex system.

Using services, you can define applications based on business requirements
and not worry so much about the details of how the functionality is
implemented. This is SOA. For example, you may need a unified application
to generate customer billing for a telecommunications company that
provides VoIP, cellular, and traditional phone services to its customers. The
biggest stumbling block to this is that each department has implemented
18

What is a Service Oriented Architecture?
their billing system using a different technology as shown in Figure 2.
Because none of the technologies were designed to be interoperable and
none of them expose a common interface, building a unified billing client is
a major integration headache. It can be solved using traditional means, but
the solution involves either adding an expensive EAI product in the middle or
developing a custom integration layer.

However, you can define a service that represents the functionality of all
three billing systems as shown in Figure 3. This service only requires one
message exchange: the user sends the customer�s account number and the
service returns the bill. You now have a common interface through which a

Figure 2: Separate Billing Systems
 19

CHAPTER 1 | Service Oriented Architecture
unified billing client can access all three systems. This makes developing
the client much simpler, will not require as much maintenance, and will
make it easier to migrate the billing systems to newer platforms if there is a
business need. This approach is also much easier for a business level
person to understand and express, thereby making it easier for an IT
department to understand the requirements.

Bringing a service into reality The disconnect between SOA and real world applications is that a service is
just an abstraction. It is only an idealized representation of an implemented
set of functionality and that implementation is still bound to the
dependencies of hardware, languages, and networking protocols. Several

Figure 3: Billing Systems in SOA
20

What is a Service Oriented Architecture?
key technologies have emerged to bridge the gap between a service and the
implemented functionality that it represents. Among these are XML and
HTTP.

XML is the language that allows SOA to exist. It provides the grammar used
to describe services, it provides the type system used to describe the data
passed by services, and it provides the most common format used to
package the messages used by services.

Web Service Definition Language (WSDL) is an XML grammar standardized
by W3C to describe services. Using WSDL you define all of the abstract
portions of a service including the elements that make up the messages
exchanged by the service. You then map the abstract messages exchanged
by the service to a concrete payload format that is used on a network. You
also define a physical endpoint by which the service can be accessed.

XMLSchema is the default type system for defining the messages used by a
service. Because XMLSchema is a standardized XML grammar it is platform
neutral and does not make any assumptions about how the messages are
going to be processed. It also allows for the creation of complex messages
that are built up from reusable pieces.

Simple Object Access Protocol (SOAP) is an XML-based message protocol
standardized by the W3C. It defines an XML envelope for wrapping
messages and a data model for encoding information in an XML document.
SOAP is the most common, but not the only, concrete message format used
by services. Because it is XML based, SOAP is platform independent. In
addition, it is widely used.

Hypertext Transfer Protocol (HTTP) is the most common network protocol
used in SOA. This is largely due to the fact that it is nearly ubiquitous. HTTP
is the protocol used to connect the World Wide Web and is based on an
entirely open set of standards. Its ubiquity and openness make it a perfect
backbone for connecting distributed services.
 21

CHAPTER 1 | Service Oriented Architecture
What is an Enterprise Service Bus?

Overview An enterprise service bus (ESB) is the layer of technology that makes SOA
possible. It creates the necessary abstractions by translating the messages
which define services into data that can be manipulated by a physical
process implementing a service. An ESB also provides some QoS to the
services and provides a messaging layer for services to use. Essentially, an
ESB is the yarn that weaves a SOA together.

From service to endpoint An ESB takes the concrete details defined in the WSDL contract and uses it
to create an accessible endpoint for the service. This information includes
details on how the abstract messages are mapped into data that can be
manipulated and transmitted by the service�s implementation. It also
includes information about the how the service�s implementation is to be
exposed to the physical world. The endpoint is the physical representation
of the abstract service defined in a WSDL contract.

As shown in Figure 4, the ESB sits between the service�s implementation
and any consumers that want to access the service. The ESB handles
functions such as:

� publishing the endpoint�s WSDL contract.

� translating the received messages into data the service�s
implementation can use.

� assuring that consumers have the required credentials to make
requests on the service.

� directing the request to the appropriate implementation of the service.
22

What is an Enterprise Service Bus?
� returning the response to the consumer.

Not EAI A brief description of an ESB may trigger nightmares about EAIs. While the
concern is warranted, ESBs have several key differences from past
integration layers:

Figure 4: Billing System SOA with an ESB
 23

CHAPTER 1 | Service Oriented Architecture
� ESBs use industry standard WSDL contracts to define the endpoints
they connect.

� ESBs use XML as a native type system.

� ESBs are distributed in nature.

� ESBs do not require the use of proprietary infrastructure.

� ESBs do not require the use of proprietary adapters.

� ESBs implement QoS based on industry standard interfaces.

The use of standardized WSDL for the interface definition language and the
use of XML as a native type system make an ESB future safe and flexible. As
discussed in the previous section, both are platform and implementation
neutral which avoids vendor lock-in.

Strength in pieces The most significant differentiator between ESBs and legacy EAI systems is
an ESB�s distributed nature. EAI systems were designed as a hub-and-spoke
system. ESBs, on the other hand, are designed to be as distributed as the
components they are integrating. As shown in Figure 5, an ESB distributes
the work of data translation, routing, and other QoS tasks to the endpoints
themselves. Because the endpoints are only responsible for translating
messages that are directed to them, they can be more efficient. It also
means that they can adapt to new connectivity requirements without
24

What is an Enterprise Service Bus?
effecting other endpoints. The fact that routing, security, and other QoS are
also distributed means that you can choose not to deploy them if they are
not needed.

The distributed nature of an ESB also means that you are not forced to drop
all of your existing infrastructure in one big bang. You can start with a very
targeted project such as service enabling a single system so that it can
interact with a new AJAX based interface. As you become more comfortable
with the technology, or as requirements demand, you can add services
without disrupting the services already deployed. As you do so, you may not
even need to change any of your existing implementations because the
ESB�s translation capabilities allow you to plug-in legacy implementations.

Figure 5: Distributed Nature of an ESB
 25

CHAPTER 1 | Service Oriented Architecture
The WS standards ESBs offer a number of QoS such as transactionality, security, routing, and
reliable messaging. To ensure maximum interoperabilty between
implementations, ESBs base much of their QoS on a set of standards that
include:

� WS-Addressing

� WS-Atomic Transactions

� WS-Coordination

� WS-Security

� WS-Reliable Messaging

These standards are all maintained by the W3C and provide a common
framework on which ESBs build QoS. They were all designed around the
idea that information would be passed using SOAP/HTTP. They were also
designed so that services could be easily shared and accessed over the
Web. Therefore they, and ESBs that implement them are built to be
maximally interoperable.
26

How Does Artix Fit into a SOA Strategy?
How Does Artix Fit into a SOA Strategy?

Overview Artix is IONA�s ESB implementation. As such, it provides a highly distributed
and easily extensible solution for implementing a SOA. Built on IONA�s
patented ART core, Artix comes with a number of plug-ins that support a
wide range of enterprise messaging platforms and provides several
enterprise QoS such as transactions and security.

How Artix is different Many ESB solutions are merely souped up versions of the same technology
that an ESB was intended to supplant. While they look like an ESB from the
outside, they are really just an old fashion messaging system with some
adapters thrown into the mix. They are not truly distributed and they do not
help you avoid vendor lock-in. In order to use most of the features offered by
these ESBs, you must make the particular ESB the backbone of your entire
enterprise. Much of the QoS, routing, and translation logic is bundled into
the messaging system. In essence they sell you a bunch of adapters that let
you connect your systems into their plumbing.

Artix, on the other hand, gives you a bunch of adapters that lets you connect
your applications into any plumbing. It does this by offering a truly
distributed ESB solution. Instead of relying on a particular messaging
system to provide the QoS, routing, and translation functionality, Artix
moves all of the functionality to discreet endpoints. If an application needs
to connect with a system that uses WebSphere MQ, the application can load
the required connector and talk directly to the WebSphere MQ system. If a
legacy system needs to be exposed as a Web service, you can place an
endpoint on the system that can route and translate messages for it.

Extensibility Because Artix is an extensible ESB, it has several distinct advantages:

� You can deploy services as it makes business sense because you can
add endpoints without effecting your entire organization.

� You can chose deploy only the features you need.

� If you need to add features to an endpoint, you can do so without
touching all of the deployed endpoints.

� It can easily adapt to changes in the messaging infrastructure used in
an enterprise.
 27

CHAPTER 1 | Service Oriented Architecture
� Because Artix is built using a IONA�s patented ART architecture, it is
easy to write plug-ins that extend Artix�s capabilities.

Middleware support Artix integrates with the following middleware platforms:

� CORBA

� WebSphere MQ

� Tibco/Rendezvous

� Tuxedo

� Web services

� J2EE

� .Net

QoS Artix provides the following qualities of service:

� Reliable messaging based on WS-ReliableMessaging

� Security including support for WS-Security headers

� Transactions based on WS-AtomicTransactions

� High availability

� Load balancing

� Location services

� Leasing
28

CHAPTER 2

Artix�s High-Level
Architecture
Artix connects applications to a networking infrastructure
through a combination of pluggable layers.

In this chapter This chapter discusses the following topics:

Artix as a Deployed ESB page 30

Artix in a Service Endpoint page 32

Artix in a Consumer Endpoint page 37

Artix in an Intermediary page 42
 29

CHAPTER 2 | Artix�s High-Level Architecture
Artix as a Deployed ESB

Overview Because Artix is an enterprise service bus it is easy to imagine Artix as a
piece of plumbing that passes messages around your enterprise like a USB
cable. While some ESBs are implemented in a way that makes them
resemble a USB cable, Artix is more like set of caps that turn any existing
networking or messaging system into a virtual bus. As shown in Figure 6,
Artix lives in the endpoints that you want to connect to your system. It uses
the network to do the message delivery and shields the endpoints from the
details.

Figure 6: Artix and the Virtual Bus
30

Artix as a Deployed ESB
Artix ensures that the addressing information and formats are compatible
with the network infrastructure onto which the messages are placed. The
network then ensures that the messages are delivered to the proper
endpoints. Because Artix uses the existing network infrastructure to deliver
messages, Artix can capitalize on any QoS offered by the network. For
example, Artix can use the reliable messaging mechanisms offered by a JMS
queue to ensure that messages are delivered.

Endpoints Artix can be used to implement three types of endpoints in a SOA:

� Services are endpoints that implement the operations defined in a
service contract. They are similar to servers.

� Consumers are endpoints that make requests on services. They are
similar to clients.

� Intermediaries are endpoints that processes messages in a
value-added way, such as converting them from one data format to
another, or routing them to another service. An intermediary has
characteristics of both a service and a consumer.

The Artix bus Artix does have a bus, but it is internal. The Artix bus coordinates the
passage of data from the user implemented business logic to the networking
system. Internally, Artix consists of the bus and a number of objects that
take the data that the business logic manipulates and transforms it into a
message that is sent on the network. There are also a number of objects that
Artix uses to provide other features such as security and session
management.

The bus is capable of coordinating and managing the messages for multiple
services or service consumers. It is also responsible for loading and
unloading the plug-in used by Artix. The details of how the bus coordinates
messages for each type of endpoint and what components are loaded are
discussed in the remaining sections of this chapter.
 31

CHAPTER 2 | Artix�s High-Level Architecture
Artix in a Service Endpoint

Overview A service endpoint is an endpoint that implements the business logic
defined in a WSDL document. Using skeleton code produced by running a
WSDL document through the Artix code generators, you can create a service
endpoint that uses Artix to connect to the network. Artix can load any
components needed to provide the desired features.

For example, you could build a service endpoint to process on-line payments
from your customers. The contract may specify a service that has two
operations: veiw_recent and make_payment. Each operation takes the
customer�s account number and some additional information. Because it is
going to be accessed over the Web, the contract specifies that it uses
SOAP/HTTPS. Using this information, Artix can generate skeleton code for
the service implementation and load the proper components when the
service endpoint is deployed.

What makes up a service endpoint As shown in Figure 7, a service endpoint built with Artix has the following
pieces:

� a service implementation

� a binding

� a transport

Request messages are received by the transport. Once the message is
received, Artix passes the message along the messaging chain to the
binding. The binding unmarshalls the data into objects that are passed on to
the service implementation. The service implementation processes the
message according to the business logic it implements. If a response is
generated the bus passes it back down the messaging chain so the transport
can place it back onto the network.

In addition, a service endpoint can have any number of request-level and
message-level interceptors that provide added functionality to the endpoint.
These interceptors, which are independent of the contract defining the
endpoint, have access to requests before the service implementation. They
32

Artix in a Service Endpoint
also have access to the response after the service implementation generates
it. They can be used to perform functions such as encryption, validation, or
header processing.

Service implementation The service implementation is in Artix can be created using either C++ or
Java and is based on code generated from the logical portion of the service
endpoint�s contract. Artix loads the object that contains the logic for the
service and creates a servant that wraps the implementation so that it can
be managed by Artix.

Figure 7: High-level View of a Service Endpoint
 33

CHAPTER 2 | Artix�s High-Level Architecture
The implementation does not have direct access to the request messages. It
receives messages from Artix as parameters to the operations specified in
the contract from which it was generated. Similarly, it returns any responses
to the bus as a return value. The marshalling of the data is handled by the
binding plug-in. For example, the make_payment() method in the on-line
billing endpoint might take two parameters: a string containing the account
number and a float containing the amount of the payment. It would return a
boolean value depending on the success or failure of the action. It has no
knowledge of how the messages are packaged.

Exceptions thrown in the implementation object are also passed to the
messaging chain. The lower layers of the messaging chain will handle the
exception as a fault message. How the exception is returned to the
consumer depends on how the service is defined in the contract. For
example, services that use CORBA will use the CORBA exception
mechanism for reporting remote exceptions and services the use
SOAP/HTTP will respond with a SOAP fault containing information about
the exception.

Request-level interceptors Request-level interceptors sit between the binding and the service
implementation. They have access to the message data when it is in
between the bits received off of the wire and the objects manipulated by the
service implementation, so they can access the header values of the
message. For example, the WS-Security specification requires that a SOAP
header holding the security token be included with all requests. A
request-level handler could remove this header and authorize the consumer
before the request is passed to the implementation.

Request-level interceptors can also inspect and change the parameters of
the operation that fulfils the request. So, if the payment being passed to
make_payment() is specified in Euros and the service endpoint process
values in US dollars, a request-level handler can do the conversion before
the data is passed to the implementation. Return values can also be
inspected and changed.

Request-level interceptors are developed as plug-ins and are loaded based
on information in the Artix configuration file. They are executed in the
sequential order specified in the configuration file. For instance, if the
configuration file specifies that the request level interceptors are called in
34

Artix in a Service Endpoint
the order a b c that is the order they will be called when a request is
received. When a response is sent down the chain, the interceptors will be
called in the order c b a.

Exceptions thrown in request-level handlers cause the message to be
immediately dispatched to the binding. They are labeled as fault messages.
Requests will not be passed onto the service implementation.

Binding The binding is responsible for converting messages between the binary types
used by the service implementation and the data format used on the wire.
The mapping is determined by the WSDL binding element. Artix will load
the appropriate binding based on the binding elements in the contract
defining the endpoint. For example, your on-line billing service endpoint
would load the SOAP binding.

Because the binding is not loaded by Artix until the service endpoint is
deployed, you can change the payload format used by the service endpoint
without changing the service implementation. For example, if you wanted to
expose the service endpoint to a COBOL application you could edit the
WSDL document to include a fixed record length binding and redeploy the
endpoint. Artix will then load the binding used to process fixed record length
data.

Exceptions thrown in the binding are sent back down the messaging chain
as a fault message. Requests will not be passed to the request-level
interceptors.

Message-level interceptors Message-level interceptors sit between the binding and the transport. When
a request comes in, message-level interceptors have access to the binary
stream holding the message pulled off the wire. At this point, they can
perform actions such as decompression or decryption. When a response is
being returned, interceptors have access to the binary stream holding the
newly packaged message. At this point they can perform actions such as
compression or encryption.

Like request-level interceptors, message-level interceptors are developed as
plug-ins and are deployed based on information in the Artix configuration
file. They are also called in the order specified in the configuration.

Exceptions in message-level handlers result in unpredictable behavior. It is
recommended that your code does not throw exceptions at this level.
 35

CHAPTER 2 | Artix�s High-Level Architecture
Transport The transport is responsible for pulling requests off of the network and
placing responses back on the network. The transport to be loaded and their
configuration are determined by the WSDL port elements included in the
contract defining the endpoint. For example, your on-line billing service
endpoint would load the HTTPS transport.

Because the transport is not loaded until the service endpoint is deployed,
you can change the transport used by the service endpoint without making
any change to the service implementation. For example, if you decided that
your on-line billing service needed to be accessible to systems that used
CORBA or Tibco Rendezvous, you could simply edit the service endpoint�s
contract and redeploy it. Artix will then load the transports needed for the
new connections.
36

Artix in a Consumer Endpoint
Artix in a Consumer Endpoint

Overview A consumer endpoint is an endpoint that makes requests on a service
endpoint. Using stub code produced by running a contract through the Artix
code generators, you can create a consumer endpoint that uses Artix to load
a service proxy for the service defined by the contract and connect to one of
the endpoints implementing that service. The bus can also load any
components needed to provide the features you desire.

For example, you could build a consumer endpoint to access an on-line
payment service. The contract defining the payment service may specify two
operations: veiw_recent and make_payment. Each operation takes the
customer�s account number and some additional information. The contract
specifies that the service uses SOAP/HTTPS for communicating with
consumers. Using this information, Artix will generate stub code for the
service and load the proper components when the consumer endpoint is
deployed.

What makes up a consumer
endpoint

As shown in Figure 8, a consumer endpoint using Artix has the following
pieces:

� the consumer implementation

� a service proxy

� a binding

� a transport

Requests are generated by the service proxy when it is invoked by the
consumer implementation. The request is then passed to the binding where
it is marshalled into the data format specified in the service�s contract. From
the binding, the request is passed to the transport where it placed onto the
wire. If a response is expected, the transport waits until the response
arrives. When the response arrives, the transport passes it back up the
messaging chain to the binding where it is unmarshalled. The binding
passes the unmarshalled data to the service proxy and the service proxy
passes it back to the consumer implementaiton.

In addition, a consumer endpoint can have any number of request-level and
message-level interceptors that provide added functionality to the endpoint.
These interceptors, which are independent of the a WSDL document, have
 37

CHAPTER 2 | Artix�s High-Level Architecture
access to requests after the service proxy. They also have access to the
response before the service proxy. They can be used to perform functions
such as encryption, validation, or header processing.

Figure 8: High-level View of a Consumer Endpoint
38

Artix in a Consumer Endpoint
Consumer implementation The consumer implementation provides the business logic for the consumer.
It can be developed using either C++ of Java. As part of the consumer
implementation you need to instantiate and register service proxies for any
service endpoint upon which the consumer will make requests. For
example, the on-line payment consumer will need to instantiate and register
a proxy for the on-line payment service endpoint upon which it will
ultimately make requests.

Service proxy The service proxy is a stub generated from the logical portion of a contract
defining the service upon which the consumer endpoint will make requests.
It allows a consumer endpoint to invoke the operations offered by the
service.

When instantiated, a service proxy provides a connection to the a service
endpoint that implements the service defined in the contract from which it
was generated. As part of their instantiation, service proxies are registered
with Artix so that the invocations made on the service proxy can be properly
delivered to the proper service endpoint.

Request-level interceptors Request-level interceptors sit between the service proxy and the binding.
They have access to the parameters of the invoked operation. They can
inspect the parameters and take action based on their values. They can also
alter the value of any of the parameters. For example, when
make_payment() is invoked a request-level interceptor could be used to
check the user�s bank account balance to ensure they have the funds to
make the payment specified. If there are not enough funds, the interceptor
could change the amount of the payment to a value that the user can afford.

While they can change the values of the operation�s parameters,
request-level handlers cannot add or remove parameters to the operation.
For example, you could not use a request-level interceptor to split a single
parameter that contains the user�s full name into two parameters: one for
the first name and one for the last name.

Request-level handlers also have access to the message headers that are
included with the message. When requests are made, they can add a SOAP
header to the message. For example, you could write a request-level handler
to add a WS-Security header to all out-going requests. When a response is
received, request-level handlers can inspect the message headers before the
 39

CHAPTER 2 | Artix�s High-Level Architecture
message is passed back into the consumer implementation. For example, a
request-level handler could check a message header to validate the data
returned in response to view_recent().

Request-level interceptors are developed as plug-ins and are loaded based
on information in the Artix configuration file. They are executed in the
sequential order specified in the configuration file. For instance, if the
configuration file specifies that the request-level interceptors are called in
the order a b c, that is the order they will be called when a request is
passed down the message chain. When a response comes up the chain, the
interceptors will be called in the order c b a.

Exceptions generated in a request-level interceptor are immediately returned
to the consumer implementation. If the exception is thrown while processing
a request, the request is not sent. The client implementation is responsible
for properly handling the exception.

Binding The binding is responsible for converting messages between the binary types
used by the client implementation and the data format used on the wire.
The mapping is determined by the WSDL binding element. Artix loads the
appropriate bindings based on the binding elements in the contract defining
the service to which the client is making requests. For example, Artix would
load the SOAP binding for the on-line payment consumer.

Because the binding is not loaded until the consumer endpoint is deployed,
you can change the payload format used by the endpoint without changing
any of the endpoint�s code. For example, if your on-line billing service
endpoint is an application that uses Tuxedo�s FML buffers you could edit the
contract to include an FML binding and redeploy the consumer endpoint.
The bus will then load the FML binding.

Exceptions in the binding are sent back up the messaging chain as a fault
message. Requests will not be passed to the message-level interceptors.

Message-level interceptors Message-level interceptors sit between the binding and the transport. When
a request is made, they have access to the binary data stream that contains
the newly packaged message before it is placed onto the wire. At this point
they can perform actions such as compression or encryption of the outgoing
request. When a response is received, the interceptors have access to the
binary stream that represents the message pulled off of the wire. At this
point, they can perform operations such as decompress the data or decrypt
it.
40

Artix in a Consumer Endpoint
Like request-level interceptors, message level-interceptors are developed as
plug-ins and are deployed based on information in the Artix configuration
file. They are also called in the order specified in the configuration.

Message level interceptors return exceptions directly to the consumer
implementation. If the exception is thrown wile processing a request, the
request is not sent. If the exception is thrown when processing a response,
the message is not passed to the rest of the messaging chain.

Transport The transport is responsible for placing requests on the network and pulling
responses back off of the network. The transports and their configuration are
determined by the WSDL port elements in the contract defining the service
endpoint on which the consumer endpoint is invoking. For example, the bus
would load the HTTPS transport for the on-line billing consumer endpoint.

Because the transport is not loaded until the consumer endpoint is
deployed, you can change the transport by simply editing the contract used
to define the service endpoint. For example, if you decided that the on-line
billing service endpoints were to moved to a WebSphere MQ server, you
would simply edit the endpoint�s contract and redeploy it. The bus will then
load the transport needed to connect to WebSphere MQ.
 41

CHAPTER 2 | Artix�s High-Level Architecture
Artix in an Intermediary

Overview An intermediary is a special case of a service endpoint. It is a service
endpoint whose primary function is intercept messages, perform some
value-added processing, and possibly pass the message on to its intended
destination. Intermediaries have some of the characteristics of a service
endpoint and some of the characteristics of a consumer endpoint. They are
typically defined by a contract defining all of the interfaces required by the
intermediary and that has been extended to contain the rules for how the
intermediary is to process messages. Using the extended contract, you can
generate skeleton code and stub code for the endpoints with which the
intermediary will interact. Alternatively, intermediaries can use generic
interfaces that are created at runtime based on the information provided in
the contract. Artix will use the information in the contract to load the
components needed to connect the intermediary to the network.

For example, you could build an intermediary that collected statistics about
how long it took a service endpoint to process requests, the average
payment amount, how many times a particular operation was invoked, or
how many requests are processed by all of the service endpoints on your
network. Artix uses an intermediary to service-enable legacy systems by
performing transport and binding switching. Other uses of intermediaries are
message routing and message transformation. For more information about
the intermediaries provided with Artix see �The Artix Router� on page 50
and �The Artix Transformer� on page 65.

What makes up an intermediary As shown in Figure 9, an intermediary built using Artix has the following
pieces:

� a service-side transport

� a service-side binding

� a service implementation

� a service proxy

� a consumer-side binding

� a consumer-side transport
42

Artix in an Intermediary
Requests are picked up from the network by the service-side transport. Artix
passes the request up the service-side message chain to the service
implementation. The service implementation performs any message
processing that is required. The service implementation invokes a service
proxy if it is appropriate. The request is then passed through the
consumer-side messaging chain to the network. When the response arrives,
the consumer-side transport passes it back up the consumer-side messaging
chain to the service implementation. The service implementation performs
any message processing that is required and then passes the response to
Artix. Artix passes the response down the service-side messaging chain to
the network.
 43

CHAPTER 2 | Artix�s High-Level Architecture
In addition, an intermediary can have any number of request-level and
message-level interceptors that provide added functionality to the endpoint.
These interceptors can be used to perform functions such as encryption,
validation, or header processing.
44

Artix in an Intermediary
Figure 9: High-level View of an Intermediary
 45

CHAPTER 2 | Artix�s High-Level Architecture
Service-side messaging chain An intermediary's service-side messaging chain functions identically to the
messaging chain of a service endpoint. It is made up of a transport,
message-level handlers, a binding, and request-level handlers. The binding
and transport are specified by the part of the intermediary's contract that
defines the service(s) that the intermediary can interact with. The handlers
in the chain are specified in the intermediary's configuration.

For more information see �Artix in a Service Endpoint� on page 32.

Service implementation An intermediary's service implementation determines the functionality of the
intermediary. For example, it may inspect the account number of a payee
and use it to route the request to a regional payment center.

The only requirement for an intermediary's service implementation is that it
continues the invocation chain for the messages it receives. For example, if
the intermediary is placed in front of a teller service, the intermediary must
pass along all incoming requests to an instance of the teller service for
which the request was intended.

Service proxies An intermediary has a service proxy for any service to which it must pass
messages. In some cases this may be a single service, but an intermediary
can also pass messages along to a number of services. For example, the
Artix router can redirect a message to any number of services.

Consumer-side messaging chain An intermediary's consumer-side messaging chain functions identically to
the messaging chain of a consumer endpoint. It is made up of request-level
handlers, a binding, message-level handlers, and a transport. The binding
and transport are specified by the part of the intermediary's contract that
defines the service(s) that the intermediary can interact with. The handlers
in the chain are specified in the intermediary's configuration.

For more information see �Artix in a Consumer Endpoint� on page 37.
46

CHAPTER 3

Services Provided
with Artix
Artix provides a number of services that add value and
reliability to a SOA.

In this chapter This chapter discusses the following topics:

The Artix Container page 48

The Artix Router page 50

Security page 53

The Artix Locator page 55

The Artix Session Manager page 58

Reliable Messaging page 61

The Artix Transformer page 65

The Artix Chain Builder page 68
 47

CHAPTER 3 | Services Provided with Artix
The Artix Container

Overview One of the key features of SOA is that its endpoints are highly dynamic. The
Artix container provides a number of features that make Artix enabled
endpoints more dynamic including:

� remote deployment

� suspension of an endpoint

� automatic reloading of an endpoint

� dynamic endpoint configuration

� monitoring of endpoint performance metrics

The container does this by hosting a light-weight administrative service
along side the endpoints hosted in the container as shown in Figure 10.

Container server The container server is a light weight process that can host a number of
Artix enabled endpoints. It instantiates service implementation objects,
loads the bindings and transports specified in the contracts of the endpoints

Figure 10: Overview of the Artix Container
48

The Artix Container
the container is hosting, and exposes the endpoints to the network. The
container coordinates the flow of messages so that messages are delivered
to the appropriate service implementations.

In addition to the endpoints you deploy into a container, Artix containers
always load an instance of the container administrative service.

Administrative service The container�s administrative service allows you to manage the endpoints
deployed in a container. Like all services in SOA, the administrative service
is defined by a contract. By default the administrative service is exposed as
a SOAP/HTTP endpoint and can be accessed by any consumer endpoint
that instantiates an administrative service proxy. You can alter the
networking properties of an administrative service endpoint such that it uses
any of the binding/transport combinations supported by Artix.

The administrative service provides the following operations:

� List all endpoints deployed in the container

� Stop a running endpoint

� Start a dormant endpoint

� Remove an endpoint

� Deploy a new endpoint

� Get a reference to an endpoint

� Get the contract for an endpoint

� Get the URL to an endpoint's contract document

� Retrieve performance metrics for an endpoint

� Shut down the container
 49

CHAPTER 3 | Services Provided with Artix
The Artix Router

Overview The Artix router is an intermediary whose primary role is to redirect
messages based on rules defined in its contract. As shown in Figure 11, an
Artix router has a service-side interface that receives requests from
consumer endpoints. It also has one or more consumer-side service proxies
that forward the request to service implementations on the backend of the
router.

The service-side messaging chain and consumer-side messaging chain are
defined by separate parts of the router�s contract. They do not necessarily
share a common binding or transport.

Features A router provides a number of features:

� message routing

� payload format translation

� transport switching

Figure 11: Overview of the Artix Router
50

The Artix Router
� load balancing

� message broadcasting

� endpoint fail-over

Service-side The service-side of a router looks like a service endpoint to the other
endpoints on your network. It is responsible for receiving requests from
consumers that make requests on the service or services behind the router.
Its interface and messaging chain is determined by a service definition in the
router�s contract.

For example, a router could be used to direct messages from a .Net client
that uses SOAP/HTTP to a backend service that is implemented using
SOAP/JMS. The router would load the HTTP transport and the SOAP
binding on the service-side. This way the router makes the backend service
look like a SOAP/HTTP endpoint.

Consumer-side The consumer-side of a router looks like a consumer endpoint to the rest of
the endpoints on your network. It consists of one or more service proxies
and their associated message chains and is responsible for forwarding
requests to the services on the backend of the router. The proxies, and their
messaging chains, are defined in the router�s contract. However, they are
not instantiated until they are needed by the router. So, if one of the
destinations in the router�s contract never receives a message, no
consumer-side artifacts will be created for it.

The consumer-side proxies can all have a different combination of bindings
and transports in its messaging chains. They also can have a different
combination from the service-side of the router. For example, if you wanted
to build an AJAX client that needed to make requests on two backend
servers, you could deploy a router that presents a consolidated service
facade. The router�s service-side interface would look like a SOAP/HTTP
service endpoint that offered all of the operations of both backend services.
Its consumer-side, however, would consist of two consumer endpoints that
pass the requests along to the appropriate backend server. For example, if
one server is a CORBA server that offers a buildRobosnake operation and
the other server was a Tuxedo based server that offers a buildRobopenguin
operation, the router�s consumer-side would consist of one CORBA
consumer endpoint and one Tuxedo consumer endpoint.
 51

CHAPTER 3 | Services Provided with Artix
More information For more information about the Artix container see Configuring and
Deploying Artix Solutions.
52

../deploy/index.htm
../deploy/index.htm

Security
Security

Overview Artix�s security architecture is designed to be easily deployable and easily
connected to any existing security infrastructure already in use. As shown in
Figure 14, it consists of two main components:

� the Artix security plug-in

� the Artix security server

The security plug-in is responsible for getting the credentials from incoming
messages to a service endpoint and sending them to the security server. The
security server takes the credentials performs authentication and
authorization using user data stored in a credential datastore.

Security plug-in The Artix security plug-in is deployed into the message chain of any service
endpoint that uses the Artix security service. It checks incoming requests for
security credentials. Before allowing the request to be forwarded to the

Figure 12: Overview of the Artix Security Architecture
 53

CHAPTER 3 | Services Provided with Artix
service implementation, it checks with the Artix security server to validate
the user and ensure that they are authorized to access the service. The
security plug-in uses mutually authenticated and encrypted channel to
communicate with the security service.

For optimization, the security plug-in has a token cache that holds on to
authorization tokens from the security server. Before sending the credentials
to the security server, the plug-in will check its cache for a valid token that
matches the credentials from the request. If a valid token is stored in the
plug-in�s cache, the plug-in will use it. If not, it will request one from the
security service.

Security server The Artix security server is a standalone server that provides the
authentication and authorization functionality for Artix service endpoints. It
is designed to use pluggable adapters that connect to a variety of credential
datastores. For example, if you are already using LDAP on your systems, the
Artix security server can leverage that data to perform it�s functions.

To ensure that the Artix security server has the following enterprise features:

� high-availability through clustering

� token federation

More information For more information about Artix security see the Artix Security Guide.
54

../security/index.htm

The Artix Locator
The Artix Locator

Overview The Artix locator is a lightweight registry of deployed service endpoints.
Service endpoints register with a locator instance and consumer endpoints
can use a locator instance to get references to an endpoint that implements
a given service. It uses WS-Addressing compliant endpoint references to
provide addressing information to consumers.

As shown in Figure 13, the locator consists of three components:

� The locator service is deployed into your network as a service endpoint.

� The locator endpoint plug-in is deployed with Artix service endpoints
that want to register with a locator instance.

� The locator client plug-in is deployed with Artix consumer endpoints
that want to use the locator service to get the addressing information.

Figure 13: Overview of the Artix Locator
 55

CHAPTER 3 | Services Provided with Artix
Features The locator has the following features:

� provides references to deployed service endpoints

� load balancing among endpoints that implement the same service

� highly available

Locator service The locator service is defined by a contract. Artix contains a service
implementation using skeleton code generated from this contract. You can
deploy an instance of the locator service into an Artix container to create a
locator service endpoint that can respond to the following types of requests:

� service registration

� service deregistration

� service endpoint look-up

� service endpoint query

The contract supplied with Artix defines a locator service endpoint using
SOAP/HTTP. You should not modify this because the peer manager that is
used to interact with the locator cannot work with other transports.

Because the locator service is defined by a standard contract and deployed
as a SOAP/HTTP endpoint, it can be used by any endpoint in your SOA that
communicates using SOAP/HTTP. For instance if you have .Net clients that
want to use the locator to find service instances, it is not a problem. You
could also register Axis based services with an instance of the Artix locator
service. All a non-Artix client needs to do is generate a service proxy for
making requests against the locator service.

Locator endpoint plug-in The locator endpoint plug-in is loaded into the process space of an Artix
service endpoint that wants to register with an instance of the locator. The
plug-in is responsible for registering the service with a locator instance when
the service endpoint starts up. It is also responsible for loading a peer
manager that is responsible for monitoring the health of the locator service
endpoint with which it is registered. If the associated locator service
endpoint goes down, the peer manager reregisters the service endpoint
when it returns. If the service endpoint goes down, the locator instance
unregisters it.
56

The Artix Locator
Locator client plug-in The locator client plug-in is loaded into the process space of an Artix
consumer endpoint that wants to use the locator to get addressing
information when creating a service proxy. When it is loaded, a consumer
endpoint can automatically perform look-ups on a locator service endpoint
without creating a service proxy for the locator. The plug-in has its own
locator service proxy that is used by the Artix initial reference resolving
mechanism. The plug-in does not, however, support service endpoint
queries.

To use the locator service�s service endpoint query mechanism or to access
the locator service from a non-Artix consumer endpoint, you can create a
service proxy for the locator service. Using the proxy, consumer endpoints
can access all of the features of the locator service regardless of the platform
used to implement them.

More information For more information on the Artix locator see the Artix Locator Guide.
 57

../locator/index.htm

CHAPTER 3 | Services Provided with Artix
The Artix Session Manager

Overview The Artix session manager is a versatile service that provides the following
features:

� Limiting the amount of time a consumer endpoint can access a service
endpoint

� Limiting the number of concurrent consumer connections to a service
endpoint

� Stateful service endpoints

Components As shown in Figure 14, the session manager is implemented in a modular
fashion. It consists of the following components:

� the session manager service implementation

� a policy plug-in that is collocated with the service implementation

� an endpoint manager plug-in that is collocated with all managed
endpoints
58

The Artix Session Manager
� a session token interceptor that sits in the messaging chain of all
managed endpoints

Session manager service The session manager service is defined by a WSDL document and is
implemented by a library shipped with Artix. You deploy instances of the
session manager service implementation into an Artix container to create
session manager service endpoints. These endpoints can be accessed by
any consumer endpoints that can instantiate a proxy for the session
manager service and communicate using SOAP/HTTP.

In general, consumers will request lists of registered service groups from the
session manager. The consumer will then invoke on the session manager to
request a session for one of the returned service groups. In addition,
consumers can request extensions to their sessions and request that a

Figure 14: Overview of the Artix Session Manager
 59

CHAPTER 3 | Services Provided with Artix
session be ended. The other session manager components also have specific
operations that they invoke on the session manager service to provide the
service-side functionality.

Policy plug-in The session policy plug-in is deployed into the same process space as the
session manager service endpoint. It is responsible for defining rules about
the duration of sessions, rules about the number of concurrent sessions
allowed per group, and other rules about how sessions are granted. Before
the session manager grants a session to a consumer, it checks with the
policy plug-in.

Artix comes with a default policy plug-in called sm_simple_policy. This
plug-in uses information from the Artix configuration file to determine length
of sessions and the maximum number of concurrent sessions allowed. If you
need more detailed session rules, you can write your own policy plug-in.

Endpoint manager The endpoint manager plug-in is loaded into the process space of an Artix
service endpoints that wants to register with a session manager service
endpoint. The endpoint managers are in constant communication with the
session manager service endpoint to report on the endpoint�s health, to
receive information on new sessions that have been granted to the managed
service endpoints, and to check on the health of the session manager
service endpoint.

Session token interceptor The session token interceptor is placed in a service endpoint's messaging
chain when it is configured to use managed sessions. It looks for the session
token that is attached to a request. If no session token is found, the
interceptor rejects the request. If the session token is found, the token is
sent to the endpoint manager for verification. If the session token is invalid,
the interceptor rejects the request. If the session is valid, the request is
passed up the message chain.

More information For more information on the Artix session manager see the Artix Session
Manager Guide.
60

../session_mgr/index.htm
../session_mgr/index.htm

Reliable Messaging
Reliable Messaging

Overview When being used in conjunction with a reliable transport, Artix uses the
transport to provide reliable message delivery. Artix can also use the local
transaction mechanism in JMS to ensure that messages are received
without error.

Not all transports, however, have built-in reliable messaging capabilities. To
provide reliable messaging across all transports, Artix includes an
implementation of WS-RelaibleMessaging (WS-RM) specification. WS-RM
defines a mechanism by which messages are transmitted in sequence and
both the sender and the receiver use SOAP headers to communicate about
the status of the messages that have been transmitted. Message are stored
for retransmission until the receiver confirms that it has been received.

Note: Using Artix�s WS-RM implementation requires that endpoints use
SOAP as their payload format.
 61

CHAPTER 3 | Services Provided with Artix
Components As shown in Figure 15, WS-RM is implemented by components that sit in
the messaging chain just before the SOAP binding. In addition to the
messaging components, the WS-RM implementation uses an in-memory
datastore to hold messages until their successful transmission has been
confirmed.

To use reliable messaging, both endpoints in a request/response sequence
must be configured to load the WS-RM components. This information is not
part of the contract used to define an endpoint. It is placed in the
configuration for each endpoint.

Figure 15: Overview of WS-RM Architecture
62

Reliable Messaging
WS-RM sequences The WS-ReliableMessaging specification defines the notion of reliable
message sequences. Each message sent to between sender and receiver are
part of a numbered sequence that are tracked using a SOAP header. Using
the sequence numbers the receiver can track which messages it has
received and, if needed, request that a message be retransmitted.

In Artix, sequences span the lifetime of a service proxy. When a service
proxy is created a new message sequence is created and it is terminated
when the proxy is destroyed. So, if a proxy makes 50 requests against a
service endpoint, the sequence will consist of 50 messages. You can also
configure a maximum number of messages in a sequence.

Outgoing messages When a message, either a request or a response, is passed down the
messaging chain, the WS-RM message component intercepts the message
before it gets to the SOAP binding. Before the message is passed down the
rest of the messaging chain, the WS-RM component makes a copy of the
message and stores it in memory. The component then attaches a WS-RM
header to the message that contains the sequence number of the message.
It then passes it down the message chain.

When the recipient confirms that the message arrived, the WS-RM
messaging component discards the message. If, after a configured interval,
the recipient has not confirmed receipt of a message, the WS-RM messaging
component will retransmit the message. This process continues until the
recipient confirms receipt of the message.

Incoming messages The WS-RM messaging component inspects all messages that are received
from the network. If it intercepts a message informing it that a message is
being sent using WS-RM, it checks its sequence number and informs the
sender that it has received the message. Using the sequence number, the
component then determines if the message should be passed to the
implementation code or stored for later.

The WS-RM component uses the ExactlyOnceInOrder policy to determine
when a message is passed to the implementation code. This means that
only one copy of each message is passed to the implementation code and
they are delivered in the order that they were sent. For example, if a
consumer makes six requests on a service endpoint the message sequence
will consist of six messages numbered 1 through 6. If the receiver gets
message 4 before it gets messages 2 and 3, it will store message 4 and wait
 63

CHAPTER 3 | Services Provided with Artix
for messages 2 and 3. Once it has message 2, it will pass it to the service
implementation. If message 3 has already arrived, the WS-RM component
will then pass it along. If not, the component will continue to store message
4 until it arrives. When message 3 arrives, the component will pass it to the
service implementation. The plug-in will then pass message 4 along and
remove it from the message store.

More information For more information on using Artix�s reliable messaging capabilities see:

� Configuring and Deploying Artix Solutions.

� http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-ReliableMes
saging.pdf
64

../deploy/index.htm
http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-ReliableMessaging.pdf
http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-ReliableMessaging.pdf

The Artix Transformer
The Artix Transformer

Overview The Artix transformer is an XSLT service. It transforms request messages
based on directions from an XSLT script and returns the results as the
response message. As shown in Figure 16, it consists of a transformer
service implementation that when deployed into an Artix container becomes
a service endpoint.
 65

CHAPTER 3 | Services Provided with Artix
Transformer service contract The transformer service is a dynamic service. Unlike other services in SOA,
it does not have a fixed contract that defines it. Instead, the transformer
service configures its interface based on a contract supplied by the user
when the service is deployed. Contract defining an instance of the
transformer service should have one logical operation for each type of

Figure 16: Overview of the Artix Transformer
66

The Artix Transformer
transformation the service can perform. Each operation�s input message
should define the XMLSchema used to define the XML data that the
transformer service will manipulate. Each operations� output message
should define the XMLSchema defining the results of the XSLT script
executed when the operation is invoked.

Transformer service processing Internally, the transformer service receives messages from the messaging
layer as XML documents that are constructed using the XMLSchema
definitions from the WSDL document. It then uses the XLAN XSLT engine to
process the XML document based on an XSLT script. The results of the
XLAN engine are placed back onto the messaging chain as the service�s
response.

More information For more information on the Artix transformer see Understanding Artix
Contracts and Configuring and Deploying Artix Solutions.
 67

../index.htm
../contracts/index.htm
../contracts/index.htm

CHAPTER 3 | Services Provided with Artix
The Artix Chain Builder

Overview The Artix chain builder is an intermediary that allows you to create
composite services by linking together two or more services. As shown in
Figure 17, the chain builder has a service-side interface that is defined by a
contract that defines the input and output of the composite operations it
provides. The chain builder�s consumer-side consists of one service proxy for
each of the backend services it links together to form the composite service.

Composite contract A deployed chain builder uses a composite contract to create its service-side
interface and consumer-side proxies. The service-side interface is defined by
a logical interface that contains at least one operation. The logical

Figure 17: Overview of the Artix Chain Builder
68

The Artix Chain Builder
operation�s input message must correspond to the input message of one of
the logical operations defined for the first service in the chain. The logical
operation�s output message must correspond to the output message of one
of the logical operations defined for the last service in the chain. In addition
to the logical interface, the composite contract must also contain the
information required to expose the composite service as an endpoint.

To deploy the service proxies needed by the consumer-side of the chain
builder, the composite contract needs to contain endpoint definitions for
each service that will be used in the chain.

Chain service Using directions entered into an Artix configuration file, the chain builder
directs the request through the chain. The request received by the chain
builder is forwarded to the first service in the chain. The response from the
first service is forwarded to the second service in the chain. The response
from the 2nd service is forwarded to the next service in the chain. This
process is repeated until the last service in the chain is reached. The chain
builder returns the response from the last service in the chain to the
consumer endpoint that made the request.

More information For more information on the Artix chain builder see Configuring and
Deploying Artix Solutions.
 69

../deploy/index.htm
../deploy/index.htm

CHAPTER 3 | Services Provided with Artix
70

Index

C
chain builder 68
consumer 31, 37
container 48

E
endpoint 22

consumer 37
intermediary 42
service 32
types 31

endpoint manager plug-in 60
enterprise service bus 22
ESB 22

H
HTTP 21
Hypertext Transfer Protocol 21

I
intermediary 31, 42

L
locator 55
locator client plug-in 57
locator endpoint plug-in 56
locator service 56

P
plug-in

endpoint manager 60
locator client 57

locator endpoint 56
security 53
session policy 60

R
router 50

S
security plug-in 53
security server 54
service 18, 31, 32
service consumer 31, 37
service oriented architecture 15
session manager 58
session policy plug-in 60
Simple Object Access Protocol 21
SOA 15
SOAP 21

T
transformer 65

W
Web Service Definition Language 21
WSDL 21
WS-RelaibleMessaging 61
WS-RM 61

X
XLAN 67
XMLSchema 21
XSLT 65
 71

INDEX
72

	List of Figures
	Preface
	What is Covered in this Book
	Who Should Read this Book
	How to Use this Book
	The Artix Library
	Getting the Latest Version
	Searching the Artix Library
	Artix Online Help
	Artix Glossary
	Additional Resources
	Document Conventions

	Service Oriented Architecture
	What is a Service Oriented Architecture?
	What is an Enterprise Service Bus?
	How Does Artix Fit into a SOA Strategy?

	Artix’s High-Level Architecture
	Artix as a Deployed ESB
	Artix in a Service Endpoint
	Artix in a Consumer Endpoint
	Artix in an Intermediary

	Services Provided with Artix
	The Artix Container
	The Artix Router
	Security
	The Artix Locator
	The Artix Session Manager
	Reliable Messaging
	The Artix Transformer
	The Artix Chain Builder

	Index

