IONA

Artix:

Developing Artix Applications

in C++
Version 3.0, October 2005

Making Software Work Together™

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in
this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license
to these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.

IONA, IONA Technologies, the IONA logo, Orbix, Orbix Mainframe, Orbix Connect, Artix,
Artix Mainframe, Artix Mainframe Developer, Mobile Orchestrator, Orbix/E, Orbacus,
Enterprise Integrator, Adaptive Runtime Technology, and Making Software Work Together
are trademarks or registered trademarks of IONA Technologies PLC and/or its subsidiar-
ies.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. CORBA is a trademark or registered trademark of the
Object Management Group, Inc. in the United States and other countries. All other
trademarks that appear herein are the property of their respective owners.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of
any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IONA shall not be liable for errors contained herein, or for incidental or consequential dam-
ages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No
third-party intellectual property right liability is assumed with respect to the use of the information contained
herein. IONA Technologies PLC assumes no responsibility for errors or omissions contained in this publication.
This publication and features described herein are subject to change without notice.

Copyright © 2003-2005 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this publication are covered by the trademarks, service marks, or product
names as designated by the companies that market those products.

Updated: 29-0ct-2005

Contents

List of Tables

Preface
What is Covered in this Book
Who Should Read this Book
Finding Your Way Around the Library
Searching the Artix Library
Online Help
Additional Resources
Document Conventions

Chapter 1 Developing Artix Enabled Clients and Servers
Generating Stub and Skeleton Code
C++ Namespaces
Defining a WSDL Interface
Developing a Server
Developing a Client
Generating a Sample Application from WSDL
Compiling and Linking an Artix Application
Building Artix Stub Libraries on Windows

Chapter 2 Artix Programming Considerations

Bootstrapping Service

How Clients Find Initial References

How Servers Find WSDL Contracts
Operations and Parameters

RPC/Literal Style

Document/Literal Wrapped Style
Exceptions

Built-In Exceptions

User-Defined Exceptions
Memory Management

Managing Parameters

Xi
Xi
Xi
Xi
Xiii
Xiii
xiii
Xiv

CONTENTS

Assignment and Copying
Deallocating
Smart Pointers
Registering Servants
Registering a Static Servant
Registering a Transient Servant
Multi-Threading
Client Threading Issues
Servant Threading Models
Setting the Servant Threading Model
Thread Pool Configuration
Converting with to_string() and from_string()
Locating Services with UDDI
Overriding a HTTP Address in a Client

Chapter 3 Artix References

Introduction to References

The WSDL Publish Plug-In

References to Transient Services

Programming with References
Bank WSDL Contract
Creating References
Resolving References

Chapter 4 Callbacks
Overview of Artix Callbacks
Routing and Callbacks
Callback WSDL Contract
Client Implementation
Server Implementation

Chapter 5 The Artix Locator
Overview of the Locator
Locator WSDL
Registering Endpoints with the Locator
Reading a Reference from the Locator

57
59
60
64
65
72
80
81
83
86
89
92
98
100

103
104
106
113
116
117
126
130

131
132
134
138
141
145

149
150
153
159
161

Chapter 6 Using Sessions in Artix
Introduction to Session Management in Artix
Registering a Server with the Session Manager
Working with Sessions

Chapter 7 Artix Contexts
Introduction to Contexts
Configuration Contexts
Header Contexts
Registering Contexts
Pre-Registered Contexts
Reading and Writing Context Data
Getting a Context Instance
Reading and Writing Basic Types
Reading and Writing User-Defined Types
Reading and Writing Custom Types
Durability of Context Settings
Configuration Context Example
HTTP-Conf Schema
Setting a Configuration Context on the Client Side
Setting a Configuration Context on the Server Side
Header Context Example
Custom SOAP Header Demonstration
SOAP Header Context Schema
Declaring the SOAP Header Explicitly
Client Main Function
Server Main Function
Service Implementation
Header Contexts in Three-Tier Systems

Chapter 8 Artix Data Types
Including and Importing Schema Definitions
Simple Types
Atomic Types
String Type
NormalizedString and Token Types
QName Type
Date and Time Types

CONTENTS

165
166
169
172

179
180
181
184
186
192
196
197
201
203
205
208
209
210
214
217
220
221
223
226
229
234
237
240

243
244
246
247
249
254
259
261

CONTENTS

Decimal Type

Integer Types

Binary Types

Deriving Simple Types by Restriction
List Type

Union Type

Holder Types

Unsupported Simple Types

Complex Types

Sequence Complex Types

Choice Complex Types

All Complex Types

Attributes

Attribute Groups

Nesting Complex Types

Deriving a Complex Type from a Simple Type
Deriving a Complex Type from a Complex Type
Arrays

Model Group Definitions

Wildcarding Types

anyURI Type
anyType Type
any Type

Occurrence Constraints

Element Occurrence Constraints
Sequence Occurrence Constraints
Choice Occurrence Constraints
Any Occurrence Constraints

Nillable Types

Introduction to Nillable Types

Nillable Atomic Types

Nillable User-Defined Types

Nested Atomic Type Nillable Elements
Nested User-Defined Nillable Elements
Nillable Elements of an Array

Substitution Groups
SOAP Arrays

vi

Introduction to SOAP Arrays
Multi-Dimensional Arrays

263
265
268
275
278
280
285
287
288
289
292
296
299
303
306
310
313
323
328
333
334
336
341
349
350
355
359
363
368
369
371
375
378
382
387
390
400
401
405

CONTENTS

Sparse Arrays 408
Partially Transmitted Arrays 411
IT_Vector Template Class 412
Introduction to IT_Vector 413
Summary of IT_Vector Operations 416
Unsupported XML Schema Constructs in Artix 419
Chapter 9 Artix IDL to C++ Mapping 421
Introduction to IDL Mapping 422
IDL Basic Type Mapping 424
IDL Complex Type Mapping 426
IDL Module and Interface Mapping 435
Chapter 10 Reflection 441
Introduction to Reflection 442
The IT_Bus::Var Template Type 445
Reflection API 449
Overview of the Reflection API 450
IT_Reflect::Value<T> 452
IT_Reflect::All 456
IT_Reflect::Sequence 459
IT_Reflect::Choice 462
IT_Reflect::SimpleContent 465
IT_Reflect::ComplexContent 467
IT_Reflect::ElementList 470
IT_Reflect::SimpleTypeList 472
IT_Reflect::Nillable 473
Reflection Example 476
Print an IT_Bus::AnyType 477

Print Atomic and Simple Types 482

Print Sequence, Choice and All Types 488

Print SimpleContent Types 491

Print ComplexContent Types 493

Print Multiple Occurrences 496

Print Nillables 498
Chapter 11 Persistent Maps 501

Introduction to Persistent Maps 502

vii

CONTENTS

Creating a Persistent Map

Inserting, Extracting and Removing Data
Handling Exceptions

Supporting High Availability
Configuration Example

Chapter 12 Transactions in Artix

Appendix A http-conf Context Data Types

Appendix B MQ-Series Context Data Types

Introduction to Transactions
Selecting the Transaction System
Configuring OTS Lite

Configuring OTS Encina
Configuring WS-AT
Transaction API
Transaction Demarcation
Participants and Resources
Transaction Participants
Interposition
Threading
Transaction Propagation
Notification Handlers
Reliable Messaging with MQ Transactions
Client Example

Index

viii

505
508
512
515
518

519
520
525
526
529
533
536
539
542
543
550
552
556
560
562
571

575

585

601

List of Tables

Table 1:
Table 2:
Table 3:
Table 4.
Table 5:
Table 6:
Table 7:
Table 8:
Table 9:

Table 10:
Table 11:
Table 12:
Table 13:
Table 14:
Table 15:
Table 16:
Table 17:
Table 18:
Table 19:
Table 20:
Table 21:
Table 22:
Table 23:
Table 24

Artix Import Libraries for Linking with an Application
Simple Schema Type to Simple Bus Type Mapping
IANA Character Set Names

Description of token and Types Derived from token
Validity Testing Functions for Normalized Strings and Tokens
Member Fields of IT_Bus::DateTime

Member Fields Supported by Other Date and Time Types
Operators Supported by IT_Bus::Decimal

Unlimited Precision Integer Types

Operators Supported by the Integer Types

Schema to Bus Mapping for the Binary Types

List of Artix Holder Types

Nillable Atomic Types

Member Functions Not Defined in IT_Vector
Member Types Defined in IT_Vector<T>

Iterator Member Functions of IT_Vector<T>
Element Access Operations for IT Vector<T>

Stack Operations for IT_Vector<T>

List Operations for IT_Vector<T>

Other Operations for IT_Vector<T>

Artix Mapping of IDL Basic Types to C++

Basic IT_Bus::Var<T> Operations

Non-Atomic Built-In Types Supported by Reflection
Effect of nillable, minOccurs and maxOccurs Settings

24
247
250
254
257
261
262
263
265
265
268
286
371
413
416
417
417
417
418
418
424
446
454
473

LIST OF TABLES

Preface

What is Covered in this Book

This book covers the information needed to develop applications using the
Artix C++ API.

Who Should Read this Book

This guide is intended for Artix C++ programmers. In addition to a
knowledge of C+ +, this guide assumes that the reader is familiar with
WSDL and XML schemas.

If you would like to know more about WSDL concepts, see the Introduction
to WSDL in Learning about Artix.

Finding Your Way Around the Library

The Artix library contains several books that provide assistance for any of the
tasks you are trying to perform. The Artix library is listed here, with a short
description of each book.

If you are new to Artix

You may be interested in reading:

® Release Notes contains release-specific information about Artix.

® |Installation Guide describes the prerequisites for installing Artix and the
procedures for installing Artix on supported systems.

® Getting Started with Artix describes basic Artix and WSDL concepts.

To design and develop Artix solutions
Read one or more of the following:

Xi

http://www.iona.com/support/docs/artix/3.0/release_notes/index.htm
http://www.iona.com/support/docs/artix/3.0/install_guide/index.htm
http://www.iona.com/support/docs/artix/3.0/getting_started/index.htm

PREFACE

Designing Artix Solutions provides detailed information about
describing services in Artix contracts and using Artix services to solve
problems.

Developing Artix Applications in C++ discusses the technical aspects
of programming applications using the C++ API.

Developing Artix Plug-ins with C++ discusses the technical aspects of
implementing plug-ins to the Artix bus using the C++ API.
Developing Artix Applications in Java discusses the technical aspects
of programming applications using the Java API.

Artix for CORBA provides detailed information on using Artix in a
CORBA environment.

Artix for J2EE provides detailed information on using Artix to integrate
with J2EE applications.

Artix Technical Use Cases provides a number of step-by-step examples
of building common Artix solutions.

To configure and manage your Artix solution

Read one or more of the following:

Deploying and Managing Artix Solutions describes how to deploy
Artix-enabled systems, and provides detailed examples for a number of
typical use cases.

Artix Configuration Guide explains how to configure your Artix
environment. It also provides reference information on Artix
configuration variables.

IONA Tivoli Integration Guide explains how to integrate Artix with IBM
Tivoli.

IONA BMC Patrol Integration Guide explains how to integrate Artix
with BMC Patrol.

Artix Security Guide provides detailed information about using the
security features of Artix.

Reference material
In addition to the technical guides, the Artix library includes the following
reference manuals:

Xii

Artix Command Line Reference
Artix C++ API Reference

http://www.iona.com/support/docs/artix/3.0/design/index.htm
http://www.iona.com/support/docs/artix/3.0/prog_guide/index.htm
http://www.iona.com/support/docs/artix/3.0/plugin_guide/index.htm
http://www.iona.com/support/docs/artix/3.0/java_pguide/index.htm
http://www.iona.com/support/docs/artix/3.0/corba_ws/index.htm
http://www.iona.com/support/docs/artix/3.0/j2ee/index.htm
http://www.iona.com/support/docs/artix/3.0/cookbook/index.htm
http://www.iona.com/support/docs/artix/3.0/deploy/index.htm
http://www.iona.com/support/docs/artix/3.0/config_ref/index.htm
http://www.iona.com/support/docs/artix/3.0/tivoli/index.htm
http://www.iona.com/support/docs/artix/3.0/bmc/index.htm
http://www.iona.com/support/docs/artix/3.0/security_guide/index.htm
http://www.iona.com/support/docs/artix/3.0/command_ref/index.htm
http://www.iona.com/support/docs/artix/3.0/cpp_doc/index.html

PREFACE

® Artix Java API Reference

Have you got the latest version?

The latest updates to the Artix documentation can be found at http://
www.iona.com/support/docs.

Compare the version dates on the web page for your product version with
the date printed on the copyright page of the PDF edition of the book you
are reading.

Searching the Artix Library

You can search the online documentation by using the Search box at the top
right of the documentation home page:

http://www.iona.com/support/docs

To search a particular library version, browse to the required index page,
and use the Search box at the top right. For example:

http://www.iona.com/support/docs/artix/3.0/index.xml

You can also search within a particular book. To search within an HTML
version of a book, use the Search box at the top left of the page. To search
within a PDF version of a book, in Adobe Acrobat, select Edit|Find, and
enter your search text.

Online Help

Artix Designer includes comprehensive online help, providing:

® Detailed step-by-step instructions on how to perform important tasks.
® A description of each screen.

® A comprehensive index, and glossary.

® Afull search feature.

® Context-sensitive help.

There are two ways that you can access the online help:

® Click the Help button on the Artix Designer panel, or

® Select Contents from the Help menu

Additional Resources

The IONA Knowledge Base (http://www.iona.com/support/knowledge base/
index.xml) contains helpful articles written by IONA experts about Artix and
other products.

xiii

http://www.iona.com/support/docs/artix/3.0/javadoc/index.html
http://www.iona.com/support/docs
http://www.iona.com/support/docs
http://www.iona.com/support/docs
http://www.iona.com/support/docs/artix/3.0/index.xml
http://www.iona.com/support/knowledge_base/index.xml

PREFACE

Xiv

The IONA Update Center (http://www.iona.com/support/updates/index.xml)
contains the latest releases and patches for IONA products.

If you need help with this or any other IONA product, go to IONA Online
Support (http://www.iona.com/support/index.xml).

Comments, corrections, and suggestions on IONA documentation can be
sent to docs-support@iona.com .

Document Conventions

Typographical conventions

This book uses the following typographical conventions:

Fixed width

Fixed width italic

Italic

Bold

Fixed width (courier font) in normal text represents
portions of code and literal names of items such as
classes, functions, variables, and data structures. For
example, text might refer to the 1T Bus: :AnyType
class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>

Fixed width italic words or characters in code and
commands represent variable values you must
supply, such as arguments to commands or path
names for your particular system. For example:

% cd /users/YourUserName

Italic words in normal text represent emphasis and
introduce new terms.

Bold words in normal text represent graphical user
interface components such as menu commands and
dialog boxes. For example: the User Preferences
dialog.

http://www.iona.com/support/updates/index.xml
http://www.iona.com/support/index.xml
http://www.iona.com/support/index.xml

Keying Conventions

PREFACE

This book uses the following keying conventions:

No prompt

o

When a command’s format is the same for multiple
platforms, the command prompt is not shown.

A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

The notation > represents the MS-DOS or Windows
command prompt.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

Brackets enclose optional items in format and syntax
descriptions.

Braces enclose a list from which you must choose an
item in format and syntax descriptions.

In format and syntax descriptions, a vertical bar
separates items in a list of choices enclosed in {}
(braces).

In graphical user interface descriptions, a vertical bar
separates menu commands (for example, select
File | Open).

XV

PREFACE

Xvi

In this chapter

CHAPTER 1

Developing Artix
Enabled Clients

and Servers

Artix generates stub and skeleton code that provides a
developer with a simple model to develop transport

independent applications.

This chapter discusses the following topics:

Generating Stub and Skeleton Code page 2
C++ Namespaces page 7
Defining a WSDL Interface page 8
Developing a Server page 10
Developing a Client page 14
Generating a Sample Application from WSDL page 19
Compiling and Linking an Artix Application page 24
Building Artix Stub Libraries on Windows page 26

CHAPTER 1 | Developing Artix Enabled Clients and Servers

Generating Stub and Skeleton Code

Overview

Generated files

The Artix development tools include a utility to generate server skeleton and

client stub code from an Artix contract. The generated code has the

following features:

® Artix generated code is compatible with a multitude of transports.

® Artix maps WSDL types to C++ using a proprietary WSDL-to-C++
mapping.

The Artix code generator produces a number of stub files from the Artix
contract. They are named according to the port type name, portTypeName,
specified in the logical portion of the Artix contract. If the contract specifies
more than one port type, code will be generated for each one.

The following stub files are generated:

portTypeName.h defines the superclass from which the client and server are
implemented. It represents the API used by the service defined in the
contract.

PortTypeNameService.h and PortTypeNameService.cxx are the server-side
skeleton code to implement the service defined in the contract.

portTypeNameClient.h and portTypenameClient.cxx are the client-side stubs
for implementing a client to use the service defined by the contract.

PortTypeName_WSd|Types.h and PortTypeName_WSd|Types.CXX define the
complex datatypes defined in the contract (if any).

portTypeName_WsdITypesFactory.h and
portTypeName_WsdITypesFactory.cxx define factory classes for the complex
datatypes defined in the contract (if any).

Generating Stub and Skeleton Code

Generating code from the You can generate code at the command line using the command:
command line

wsdltocpp [options] { WSDL-URL | SCHEMA-URL }
[-e web service name[:port 1ist]] [-b binding name]
[-1i port typel* [-d output-dir] [-n URI=C++namespace]*
[-nexclude URI[=C++namespace]]*
[-ninclude URI[=C++namespace]]*

[-nimport C++namespace] [-impl] [-m {NMAKE |
UNIX}: [executable|library]] [-libv version] [-jp
plugin class] [-f] [-server] [-client] [-sample]
[-plugin[:plugin name]] [-deployable] [-global] [-V]
[-license] [-declspec declspec] [-all]l [-?] [-flags]

[-upper |-lower|-minimal | -mapper class] [-verbose] [-reflect]

You must specify the location of a valid WSDL contract file, wspr_urrz, for
the code generator to work. You can also supply the following optional
parameters:

-i port type Specifies the name of the port type for which the tool
will generate code. The default is to use the first port
type listed in the contract. This switch can appear
multiple times.

-e web service nam Specifies the name of the service for which the tool

[:port list] will generate code. The default is to use the first
service listed in the contract. You can optionally
specify a comma separated list of port names to
activate. The default is to activate all of the service’s
ports.

-b binding name Specifies the name of the binding to use when
generating code. The default is the first binding listed
in the contract.

-d output dir Specifies the directory to which the generated code is
written. The default is the current working directory.

-n Maps an XML namespace to a C++ namespace. The
[URI=] C++namespace C++ stub code generated from the XML namespace,
URI, is put into the specified C++ namespace,
C++namespace. This switch can appear multiple
times.

CHAPTER 1 | Developing Artix Enabled Clients and Servers

-nexclude

Do not generate C++ stub code for the specified XML

URI [=C++namespace] namespace, URI. You can optionally map the XML

-ninclude
URI [=C++namespace]

-nimport
C++namespace

—impl

-m {NMAKE | UNIX}
: [executable |
library]

-libv version

—server

-client

namespace, URI, to a C++ namespace,
C++namespace, in case it is referenced by the rest of
the XML schema/WSDL contract. This switch can
appear multiple times.

Generates C++ stub code for the specified XML
namespace, UrI. You can optionally map the XML
namespace, URI, to a C++ namespace,
C++namespace. This switch can appear multiple
times.

Specifies the C+ + namespace to use for the code
generated from imported schema.

Generates the skeleton code for implementing the
server defined by the contract.

Used in combination with -imp1 to generate a
makefile for the specified platform (xvake for
Windows or untx for UNIX). You can specify that the
generated makefile builds an executable, by
appending :executable, Or a library, by appending
:library. For example, the options, -impl -m
NMAKE : executable, would generate a Windows
makefile to build an executable.

Used in combination with either -m NAME:1ibrary or
-m UNIX:library to specify the version number of the
library built by the makefile. This version number is
for your own convenience, to help you keep track of
your own library versions.

Deprecated—No longer used (was needed to support
routing in earlier versions.

Generates stub code for a server (cannot be combined
with the -client switch).

Generates stub code for a client (cannot be combined
with the -server switch).

—-sample

-plugin
[:plugin name]

—deployable

-global

-v
-license

—declspec declspec

-all

Generating Stub and Skeleton Code

Generates code for a sample implementation of a
client and a server, as follows: client stub code, server
stub code, a client main function and a server main
function.

To generate a complete working sample application,
combine -sample with the -imp1 and the -m switches.

Generates servant registration code as a Bus plug-in.
You can optionally specify the plug-in name by
appending :plugin name to this option. If no plug-in
name is specified, the default name is
<ServiceName><PortTypeName>. 1he service name,
<ServiceName>, is specified by the -e option.

See “Customizing servant registration” on page 21 for
more details.

(Used with -p1ugin.) Generates a deployment
descriptor file, deploy<ServiceName>.xml, which is
needed to deploy a plug-in into the Artix container.

(Used with -p1ugin.) In the generated plug-in code,
instantiate the plug-in using a GlobalBusORBPlugIn
object instead of a BusOrRBP1ugIn object.

A GlobalBusORBPlugIn initializes the plug-in
automatically, as soon as it is constructed (suitable
approach for plug-ins that are linked directly with
application code).

A BusORBPlugIn is not initialized unless the plug-in is
either listed in the orb plugins list or deployed into
an Artix container (suitable approach for dynamically
loading plug-ins).

Displays the version of the tool.
Displays the currently available licenses.

Creates Visual C++ declaration specifiers for
dllexport and dllimport. This option makes it
easier to package Artix stubs in a DLL library. See
“Building Artix Stub Libraries on Windows” on
page 26 for details.

Generate stub code for all of the port types and the
types that they use. This option is useful when
multiple port types are defined in a WSDL contract.

CHAPTER 1 | Developing Artix Enabled Clients and Servers

-?
-flags

-verbose

-reflect

-wrapped

Displays help on using the command line tool.
Displays detailed information about the options.

Send extra diagnostic messages to the console while
wsdltocpp iS running.

Enables reflection on generated data classes. See
“Reflection” on page 441 for details.

When used with document/literal wrapped style,
generates function signatures with wrapped
parameters, instead of unwrapping into separate
parameters. See “Document/Literal Wrapped Style
on page 39 for details.

”

Note: When you generate code from WSDL that has multiple ports,
multiple services, multiple bindings, or multiple port types, without
specifying which port, service, binding, or port type to generate code for,
the WSDL-to-C++ compiler prints a warning to the effect that it is only
generating code for the first one encountered.

C++ Namespaces

C++ Namespaces

Artix namespaces

Solution specific namespaces

Two built-in C++ namespaces widely used by the Artix runtime
infrastructure are: 1T Bus, and 1T wspL. The first namespace is used for the
callable APIs and declarations, and the second is used for the functions that
parse the WSDL at runtime; these are needed only by highly dynamic
applications.

You can optionally instruct the C++ client proxy generator to put the proxy
classes and complex data types into a custom C++ namespace. This is
useful if you plan on using many Web services from a single client
application. Consider the following sample application, where the Groups
service was put into a namespace called Groupi. Also note the use of the
IT Bus namespace for the data types.

#include "GroupBClient.h"
#include "GroupBClientTypes.h"

int main(int argc, char* argvl[])
{
GroupB: :GroupBClient bc; // declare the client proxy class

GroupB: : SOAPStruct ssSend;
ssSend.setvarFloat (IT Bus::Float (5.67));

ssSend.setvarInt (1234);
ssSend.setvarString (IT Bus::String ("Embedded struct string"));

IT Bus::Int intValue = 0;
IT Bus::Float floatValue = IT Bus::Float (0.0);

IT StringPtr pstring (bc.echoStructAsSimpleTypes (ssSend,
intValue, floatVvalue));

CHAPTER 1 | Developing Artix Enabled Clients and Servers

Defining a WSDL Interface

Overview This section defines the Hel1oWor1d port type, which is used as the basis for
the server and client examples appearing in this chapter. The code for the
HelloWorld demonstration is located in the following directory:

ArtixInstallDir/artix/Version/demos/basic/hello world soap http

Restrictions The following restrictions currently apply when defining a WSDL interface
for Artix applications:
® Some simple atomic types are not supported—see “Unsupported
Simple Types” on page 287.

WSDL example Example 1 shows the WSDL for a HelloWorld port type, which defines two
operations, greetMe and sayHi.

Example 1: WSDL Definition of the HelloWorld Port Type

// Ct+
<?xml version="1.0" encoding="UTF-8"7?>
<definitions name="HelloWorldService"
targetNamespace="http://xmlbus.com/HelloWorld"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://xmlbus.com/HelloWorld"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" >
<message name="greetMe">
<part name="stringParam0" type="xsd:string"/>
</message>
<message name="greetMeResponse">
<part name="return" type="xsd:string"/>
</message>
<message name="sayHi"/>
<message name="sayHiResponse">
<part name="return" type="xsd:string"/>
</message>
<portType name="HelloWorldPortType">
<operation name="greetMe">
<input message="tns:greetMe" name="greetMe"/>
<output message="tns:greetMeResponse"

Defining a WSDL Interface

Example 1: WSDL Definition of the HelloWorld Port Type

name="greetMeResponse" />
</operation>
<operation name="sayHi'">
<input message="tns:sayHi" name="sayHi"/>
<output message="tns:sayHiResponse"
name="sayHiResponse" />

</operation>
</portType>
<pbinding ... >
</binding>

<service name="HelloWorldService">

</service>
</definitions>

CHAPTER 1 | Developing Artix Enabled Clients and Servers

Developing a Server

Overview

Generating the server
implementation class

Generated code

Completing the server
implementation

10

The Artix code generator generates server skeleton code and the
implementation shell that serves as the starting point for developing a server
that uses the Artix Bus. This skeleton code hides the transport details from
the application developer, allowing them to focus on business logic.

The Artix code generator utility, wsdltocpp, will generate an implementation
class for your server when passed the -imp1 command flag.

The implementation class code consists of two files:

portTypeNamelmpl.h contains the signatures and data types needed for the
server implementation.

portTypeNamelmpl.cxx contains empty shells for the methods that
implement the operations defined in the contract, as well as an empty
contstructor and destructor for the impl class. This file also contains a
factory class for the server implementation.

You must provide the logic for the operations specified in the contract that
defines the server. To do this you edit the empty methods provided in
PortTypeNameImpl.cxx.The generated Wnp|C|aSS,HelloWorldImpl.cxx,fOf
the contract defined in this chapter would resemble Example 2. The
majority of the code in Example 2 is auto-generated by the WSDL-to-C++
compiler. Only the code portions highlighted in bold (in the bodies of the
greetMe () and sayHi () functions) must be inserted by the programmer.

Example 2: /mplementation of the HelloWorld Port Type in the Server

// Ct+
#include "HelloWorldImpl.h"
#include <it cal/cal.h>

IT USING NAMESPACE STD
using namespace IT Bus;

Writing the server main()

Developing a Server

Example 2: /mplementation of the HelloWorld Port Type in the Server

HelloWorldImpl: :HelloWorldImpl (IT Bus::Bus ptr bus,
IT Bus::Port* port)
: HelloWorldServer (bus, port)

HelloWorldImpl: : ~HelloWorldImpl ()
{
}

void
HelloWorldImpl: :greetMe (
const IT Bus::String & stringParam0,
IT Bus::String & Response
) IT THROW DECL ((IT Bus::Exception))
{
cout << "HelloWorldImpl::greetMe called with message: "
<< stringParam0 << endl;
Response = IT Bus::String("Hello Artix User: ")+stringParam0;

void

HelloWorldImpl: :sayHi (
IT Bus::String & Response

) IT THROW DECL ((IT Bus::Exception))

{
cout << "HelloWorldImpl::sayHi called" << endl;
Response = IT Bus::String("Greetings from the Artix
HelloWorld Server") ;

The server main () handles the initialization of the Artix Bus, the running of
the Artix Bus, and the shutdown of the Artix Bus.

Initializing the Bus
The Bus is initialized using IT Bus::init (). The method has the following
signature:

static Bus& init(int argc,
char* argvl[],
const char* scope = "");

11

CHAPTER 1 | Developing Artix Enabled Clients and Servers

12

The third parameter is optional and is used to identify the configuration
scope used by the Bus for this application.

Example 3 shows an example of initializing the Artix bus in a server. It is

important to retain an instance of the initialized Bus as it is needed to
register your server implementation factories,

Example 3: /nitializing the Artix Bus in a Server main()

// Ct+
IT::Bus var bus = IT Bus::init(argc, argv);

Registering the Servant Objects

To make the HelloWorldImpl servant object accessible to remote clients,
you must register it with the Bus instance. Registration also has the side
effect of activating the associated WSDL service, service name.

Example 4: Registering a Servant Object for HelloWorld

// C++
// demos/servant management/transient servants/server/server.cxx

try {
HelloWorldImpl servant (bus) ;

OName service name ("", "HelloWorldService",
"http://xmlbus.com/HelloWorld") ;

bus->register servant (
servant,
"./hello world.wsdl",
service name,
"HelloWorldPort"

)i

} catch (IT Bus::Exception& e) { ... }

Running the Bus

After the Bus is initialized it is ready to listen for requests and pass them to
the server for processing. To start the Bus, you use IT Bus::run(). Once
the Bus is started, it retains control of the process until it is shut down. The
server's main () will be blocked until run () returns.

Completed server main()

Developing a Server

Shutting the Bus down

Because IT Bus::run() never returns control to the server's main (), you
must kill the server process (for example, using Ctrl-C) to shut down the
server.

Example 5 on page 13 shows how the main () for the server defined by the
HelloWorld contract might look.

Example 5: ConverterServer main()

// Ct++

#include <it bus/bus.h>

#include <it bus/Exception.h>
#include <it bus/fault exception.h>

IT USING NAMESPACE STD
using namespace IT Bus;

int main(int argc, char* argvl[])
{
try {
IT Bus::Bus var bus = IT Bus::init(argc, argv);

HelloWorldImpl servant (bus) ;

QOName service name("", "HelloWorldService",
"http://xmlbus.com/HelloWorld") ;

bus->register servant (
servant,
"./hello world.wsdl",
service name,
"HelloWorldPort"

)i

IT Bus::run();
}
catch (IT Bus::Exceptioné& e)

{
cout << "Error occurred: " << e.message() << endl;
return -1;

return 0;

13

CHAPTER 1 | Developing Artix Enabled Clients and Servers

Developing a Client

Overview

Initializing the Bus

Instantiating the client object

Constructor with no arguments

14

The stub code for a client implementation for the service defined by the
contract is contained in the files PortTypeNameClient.h and
PortTypeNameClient.cxx. You should never make any modifications to the
generated code in these files. You also need to reference the files
PortTypeName.h and PortTypeNameTypes.h in your client code.

To access the operations defined in the port type, the client initializes the
Artix bus, instantiates an object of the generated client proxy class,
PortTypeNameClient, and makes method calls on the object. When the
client is finished, it then shuts down the bus.

Client applications initialize the bus in the same manner as server
applications, by calling 1T Bus::init (). Client applications, however, do
not need to make a call to IT Bus::run().

The generated HelloWorld client proxy object has constructors as shown in
Example 6 on page 14.

Example 6: Generated Client Constructors
HelloWorldClient () ;
HelloWorldClient (const IT Bus::String & wsdl);
HelloWorldClient (const IT Bus::String & wsdl,

const IT_Bus::QName & service_name,

const IT Bus::String & port name);

HelloWorldClient (const IT Bus::Reference & reference);

The first constructor for the client proxy class takes no parameters. When
using this constructor, the client requires that the contract defining its
behavior be located in the same directory as the executable. The client uses
the port and service specified at code generation time using the -t and -b
flags.

Constructor with WSDL URL
argument

Constructor with three arguments

Developing a Client

The second constructor takes one argument that allows you to specify the
URL of the contract defining the client’s behavior. The client uses the port
and service specified at code generation time using the -t and -b flags. This
is useful for situations where the contracts are stored in a central location.

In particular, the wsd1 argument could be a file: URL or a uddi: URL (for
details of how to use UDDI, see “Locating Services with UDDI” on page 98).

The third constructor provides you the most flexibility in determining how
the client connects to its server. It takes three arguments:

wsdl Specifies the URL of the contract defining the client’s
behavior.

service name Specifies the name of the service, defined in the contract
with a <service> tag, to use when connecting to the
server.

port name Specifies the name of the port, defined in the contract
with a <port> tag, to use when connecting to the server.
The port name given must be defined in the specified
<service> tag.

The client code is binding and transport neutral. Hence, the only restriction
in specifying the port to use is that it have the same portType as the
generated proxy. The port details are read in from the WSDL contract file at
runtime. For example, if the contract for the conversion service is modified
to include a service definition like the one shown in Example 7 on page 15,
you could instantiate the client proxy to use either HTTP or Tuxedo.

Example 7: Multiple Ports Defined for HelloWorld

<service name="HelloWorldService2">
<port name="HelloWorldHTTPPort"
binding="tns:HelloWorldBinding">
<soap:address location="http:\\localhost:8081"/>
</port>
<port name="HelloWorldTuxedoPort"
binding="tns:HelloWorldBinding">
<tuxedo:address serviceName="TuxQueue"/>
</port>
</service>

15

CHAPTER 1 | Developing Artix Enabled Clients and Servers

Constructor with a reference
argument

Invoking the operations

Shutting the bus down

Full client code

16

To specify that the proxy client is to connect to the server using the Tuxedo
server TuxQueue, you would instantiate the client using the following
constructor:

HelloWorldClient proxy ("HelloWorld.wsdl", "HelloWorldService2",
"HelloWorldTuxedoPort") ;

The fourth constructor takes one argument representing an Artix reference,

IT Bus::Reference. The Artix reference contains complete service and port
details, including addressing information, enabling the client proxy to open a
connection to a remote service. For a detailed discussion of Artix references,
see “Artix References” on page 103.

To invoke the operations offered by the service, the client calls the methods
of the client proxy object. The generated client proxy class contains one
method for each operation defined in the contract. The generated methods
all return void. Any response messages are passed by reference as a
parameter to the method. For example, the greetMe operation defined in
Example 1 generates a method with the following signature:

void greetMe (
const IT Bus::String & stringParam0,
IT Bus::String & var return

) IT THROW DECL((IT Bus::Exception));

Unlike a server that must shut down the bus from a separate thread, clients
do not typically make a call to 1T Bus::run() and can simply call

IT Bus::shutdown () before the main thread exits. It is advisable to pass
TRUE t0 IT Bus:shutdown () to ensure that the bus is fully shut down before
exiting.

A client developed to access the service defined by the HelloWorldservice
contract will look similar to Example 8.

Example 8: HelloWorld Client
// Ct+

#include <it bus/bus.h>
#include <it bus/Exception.h>

Developing a Client

Example 8: HelloWorld Client
#include <it cal/iostream.h>
#include "HelloWorldClient.h"

IT USING NAMESPACE STD
using namespace IT Bus;

using namespace HW;

int main(int argc, char* argvl[])
{
cout << "HelloWorld Client" << endl;

try

{
IT Bus::init(argc, argv);
HelloWorldClient hw;

String string in;
String string out;

hw.sayHi (string out);

cout << "sayHi method returned: " << string out << endl;

—~—

if (argc > 1)
string in = argv[1];

} else {
string in = "Early Adopter";

}

hw.greetMe (string in, string out);

cout << "greetMe method returned: " << string out << endl;

}
catch (IT Bus::Exception& e)
{
cout << endl << "Caught Unexpected Exception:
<< endl << e.Message()
<< endl;
return -1;

return 0;

17

CHAPTER 1 | Developing Artix Enabled Clients and Servers

18

The code does the following:

1.

The portNameClient.h header includes the definitions for the client
proxy class.

The IT Bus::init () static function initializes the bus.

This line instantiates the proxy class using the no-argument form of the
proxy client constructor. When this client is deployed, a copy of the
contract defining its behavior must be deployed in the same directory.
Invoke the sayHi () operation on the client proxy.

Catch any exceptions thrown by the bus. It is essential to enclose
remote operation invocations within a try/catch block which catches
the exception types derived from IT Bus::Exception.

Generating a Sample Application from WSDL

Generating a Sample Application from WSDL

Overview

Sample WSDL file

Generating the sample application

Generated files

You can use the WSDL-to-C++ compiler to generate a working Web service
application, consisting of a sample client application and a sample server
application. You can then finish the application by editing the default client
and server code. This approach enables you to develop a Web service
application rapidly.

The examples in this section are based on the hello world.wsdl file,
located in the following directory:

ArtixInstallDir/artix/Version/demos/basic/hello world soap http/e
tc

To generate a complete sample application from the hello_world.wsdl file,
including a client and a server, enter the following command:
Windows

> wsdltocpp -sample -impl -m NMAKE:executable -plugin -global
hello world.wsdl

UNIX

% wsdltocpp -sample -impl -m UNIX:executable -plugin -global
hello world.wsdl

The preceding wsdltocpp command generates the following files:

Stub Files

<PortType>.h

<PortType>Client.h
<PortType>Server.h
<PortType>Client.cxx
<PortType>Server.Cxx

<WSDLFileName> wsdlTypesFactory.h
<WSDLFileName> wsdlTypesFactory.cxx

Client Implementation Files
<PortType>ClientSample.cxx

19

CHAPTER 1 | Developing Artix Enabled Clients and Servers

Building the sample application

Customizing the servant
implementation

20

Server Implementation Files

<PortType>Impl.h
<PortType>Impl.cxx
<PortType>ServerSample.cxx
<ServiceName><PortType>PlugIn.cxx

Makefile
Makefile

With the help of the generated makefile, Makefile, you can build the client
and server applications as follows:

Windows

> nmake all

UNIX

% make all

To complete the server implementation, you should edit the
<portType>Impl.h file to fill in the missing operations in the
<PortType>Impl Servant class.

For example, Example 9 shows the generated servant class, GreeterImpl,
that implements the Greeter port type. To complete the sample
implementation, you should insert code after the // User code goes in
here comments (highlighted in bold font in Example 9).

Example 9: Generated Implementation of the Greeter Port Type

// Ct+
#include "GreeterImpl.h"
#include <it cal/cal.h>

GreeterTImpl::GreeterImpl (IT Bus::Bus_ptr bus)
GreeterServer (bus)

{

}

GreeterImpl: :~GreeterImpl ()
{
}

IT Bus::Servant*

Customizing servant registration

Generating a Sample Application from WSDL

Example 9: Generated Implementation of the Greeter Port Type

GreeterImpl::clone () const
{

return new GreeterImpl (get bus());

void
GreeterImpl: :sayHi (
IT Bus::String &theResponse
) IT THROW DECL ((IT Bus::Exception))
{

// User code goes in here

void
GreeterImpl: :greetMe (
const IT_Bus::String &me,
IT Bus::String &theResponse
) IT THROW DECL ((IT Bus::Exception))
{

// User code goes in here

To activate a particular Web service, you must register a servant instance
with the Artix Bus. In a generated application, the servant registration code
appears in the <serviceName><PortType>PlugIn.cxx file, which embeds
the servant registration code in an Artix plug-in.

For example, if you generate a sample application from hello world.wsdl
(passing the -p1lugin and -global flags to wsdltocpp), you obtain the file,
SOAPServiceGreeterPlugln.cxx, Which defines the
GreeterServantBusPlugIn plug-in class. Example 10 is an extract from the
SOAPServiceGreeterPlugIn.cxx file that shows the servant registration
code.

Example 10: Extract from the GreeterServantBusPlugin Class
// C++

GreeterServantBusPlugIn: :GreeterServantBusPlugln (
Bus_ptr bus
) IT THROW DECL ((Exception))

21

CHAPTER 1 | Developing Artix Enabled Clients and Servers

Example 10: Extract from the GreeterServantBusPluglin Class

BusPluglIn (bus),

m_servant (bus) ,

m_service gname ("", "SOAPService",
"http://www.iona.com/hello world soap http")

// complete

GreeterServantBusPlugIn: : ~GreeterServantBusPluglIn ()

{
// complete

void
GreeterServantBusPlugIn: :bus init (
) IT THROW DECL ((Exception))
{
WSDLService* wsdl service =
get bus () ->get service contract (m service gname);
if (wsdl service != 0)
{
get bus () ->register servant (
m_servant,
*wsdl_service
)7
}
else
{
get bus () ->register servant (
m_servant,
"hello world.wsdl",
m service gname
)i

If you want to change the details of servant registration, you can edit the
register servant() calls in the soapServiceGreeterPlugIn.cxx file. For a
detailed discussion of servant registration, see “Registering Servants” on
page 64.

22

Automatic plug-in activation

Generating a Sample Application from WSDL

In order to have any effect, an Artix plug-in must register itself with the Artix
Bus and the Bus must be configured to activate the plug-in. When you
generate a plug-in class using the -plugin and -global flags, however,
registration and activation of the plug-in occur automatically.

For example, the soapPserviceGreeterPlugIn.cxx file includes the following
call to construct a GlobalBusORBP1ugIn Object:

// C++

GlobalBusORBPlugIn bus plugin SOAPServiceGreeter (
"SOAPServiceGreeter",
plugin factory SOAPServiceGreeter

)i

The GlobalBusORBPlugIn is an object that automatically registers and
activates the plug-in (whose name is given by the string,
SOAPServiceGreeter). In contrast to regular plug-in objects, of
BusORBPlugIn type, it is not necessary to activate the plug-in by adding the
plug-in name to the orb plugins list; activation of GlobalBusORBP1ugIn
objects is automatic.

23

CHAPTER 1 | Developing Artix Enabled Clients and Servers

Compiling and Linking an Artix Application

Compiler Requirements

Linker Requirements

An application built using Artix requires a number of IONA-supplied C++
header files in order to compile. The directory containing these include files
must be added to the include path for the compiler, so that when the
compiler processes the generated files, it is able to find the necessary
included infrastructure header files.

The following include path directives should be given to the compiler:

-I"$ (IT_PRODUCT DIR)\artix\$(IT_PRODUCT VER)\include"

A number of Artix libraries are required to link with an application built using
Artix. The following directives should be given to the linker:

-L"$ (IT_PRODUCT DIR)\artix\$ (IT PRODUCT VER)\lib" it bus.lib it afc.lib it art.lib it ifc.lib

Table 1 shows the libraries that are required for linking an Artix application
and their function.

Table 1: Artix Import Libraries for Linking with an Application

Windows Libraries UNIX Libraries Description

it bus.lib libit bus.so The Bus library provides the functionality required to
libit bus.sl access the Artix bus. Required for all applications that use
libit bus.a Artix functionality.

it afc.lib libit afc.so The Artix foundation classes provide Artix specific data
libit afc.sl type extensions such as IT Bus::Float, etc. Required for
libit afc.a all applications that use Artix functionality.

it ifc.lib libit ifc.so The IONA foundation classes provide IONA specific data
libit ifc.sl types and exceptions.
libit ifc.a

it art.lib libit_art.so The ART library provides advanced programming
libit_art.sl functionality that requires access to the Artix
libit art.a infrastructure and the underlying ORB.

24

Runtime Requirements

Compiling and Linking an Artix Application

The following directories need to be in the path, either by copying them into
a location already in the path, or by adding their locations to the path. The
following lists the required libraries and their location in the distribution files
(all paths are relative to the root directory of the distribution):

"$ (IT_PRODUCT DIR)\artix\$ (IT PRODUCT VER)\bin"
and
"$ (IT_PRODUCT DIR)\bin"

On some UNIX platforms you also have to update the seLIB PATH Or
LD LIBRARY PATH variables to include the Artix shared library directory.

25

CHAPTER 1 | Developing Artix Enabled Clients and Servers

Building Artix Stub Libraries on Windows

Overview

Generating stubs with declaration
specifiers

Compiling stubs with declaration
specifiers

26

The Artix WSDL-to-C+ + compiler features an option, -declspec, that
simplifies the process of building Dynamic Linking Libraries (DLLs) on the
Windows platform. The -dec1spec option defines a macro that
automatically inserts export declarations into the stub header files.

To generate Artix stubs with declaration specifiers, use the -dec1spec option
to the WSDL-to-C+ + compiler, as follows:

wsdltocpp -declspec MY DECL SPEC BaseService.wsdl

In this example, the -dec1spec option would add the following preprocessor
macro definition to the top of the generated header files:

#if !defined (MY DECL SPEC)

#if defined (MY DECL SPEC EXPORT)

#define MY DECL SPEC IT DECLSPEC_EXPORT

felse

#define MY DECI, SPEC IT DECLSPEC_IMPORT

#endif

fendif

Where the 1T _DECLSPEC_EXPORT macro is defined as _declspec (dllexport)
and the IT DECLSPEC IMPORT Macro is declspec (dllimport).

Each class in the header file is declared as follows:

class MY DECL SPEC ClassName { ... };

If you are about to package your stubs in a DLL library, compile your C++
stub files, stubFile.cxx, with a command like the following:

cl -DMY DECLSPEC EXPORT ... StubFile.cxx

By setting the My DECLSPEC ExPORT macro on the command line,
_declspec (dllexport) declarations are inserted in front of the public class
declarations in the stub. This ensures that applications will be able to
import the public definitions from the stub DLL.

In this chapter

CHAPTER 2

Artix Programming

Considerations

Several areas must be considered when programming complex

Artix applications.

This chapter discusses the following topics:

Bootstrapping Service page 28
Operations and Parameters page 34
Exceptions page 44
Memory Management page 51
Registering Servants page 64
Multi-Threading page 80
Converting with to_string() and from_string() page 92
Locating Services with UDDI page 98
Overriding a HTTP Address in a Client page 100

27

CHAPTER 2 | Artix Programming Considerations

Bootstrapping Service

Overview

In this section

28

When it comes to deploying applications in a real system, it is typically
inconvenient to hardcode the location of a WSDL contract in the application.
It is more practical to specify the location of basic resources, such as a
WSDL contract, at runtime—for example, by specifying the WSDL contract
URL in configuration or on the command line.

The Artix bootstrapping service simplifies the process of obtaining the
following kinds of basic resource: WSDL contracts and Artix references. The
process is divided into two independent steps:

1. Provide the basic resource—you can provide a WSDL contract or an
Artix reference in several different ways: by configuration, by specifying
the location on the command line, and so on.

2. Retrieve the basic resource—C+ + functions are provided to retrieve
WSDL services and Artix references, based on the qualified name
(QName) of the resource.

This section contains the following subsections:

How Clients Find Initial References page 29

How Servers Find WSDL Contracts page 31

Bootstrapping Service

How Clients Find Initial References

Overview

Example of finding an initial
reference

An Artix reference encapsulates the data required for opening a connection
to an Artix endpoint (essentially, this data is identical to the data contained
in a WSDL service element). Once a client has a reference, it can easily
open a connection to a remote service by passing the reference to a proxy
constructor.

The Artix bootstrapping service provides an API function,
IT Bus::resolve initial references (), for finding initial references
based on the QName of a WSDL service.

Given that the Bus has already loaded and parsed either an Artix reference
(or a WSDL contract) containing a service called soapservice in the
namespace, http://www.iona.com/hello world soap http, you Ccan
initialize a client proxy, proxy, as follows:

Example 11: Finding an Initial Reference Using the Bootstrapping Service

// C++t
IT Bus::QName service gname (

"", "SOAPService", "http://www.iona.com/hello world soap http"
)7

IT Bus::Reference ref;

// Find the initial reference using the bootstrap service
bus->resolve initial reference (

service gname,

ref
)i

// Create a proxy and use it

GreeterClient proxy (ref);
proxy.sayHi () ;

29

CHAPTER 2 | Artix Programming Considerations

Options for bootstrapping
references

30

The bootstrapping service finds initial references from the following sources,
in order of priority:

1.

Colocated service—if the client code that calls

resolve initial reference () is colocated with (that is, in the same
process as) the required service, the resolve initial reference ()
function returns a reference to the colocated service. This assumes that
the client and server code are using the same Bus instance.

References registered using register initial reference ()—Yyou
can register a reference explicitly by calling the

IT Bus::Bus::register initial reference () function on a Bus
instance.

References specified on the command line—you can provide an initial
reference by specifying on the command line the location of a file
containing an Artix reference. For example:

./server -BUSinitial reference ../../etc/hello_ref.xml
References specified in the configuration file—you can provide an
initial reference from the configuration file, either by specifying the
location of an Artix reference file or by specifying the literal value of an
Artix reference.

For more details, see Deploying and Managing Artix Solutions.

Service in @ WSDL contract—the service element in a WSDL contract
contains essentially the same data as an Artix reference. Hence, if a
reference is not specified using one of the other methods, Artix
searches any loaded WSDL contracts to find the specified service.
The sources of WSDL contracts are the same as on the server side. The
mechanism for bootstrapping references is, thus, effectively an
extension of the mechanism for bootstrapping WSDL contracts—see
“Options for bootstrapping WSDL" on page 32.

Bootstrapping Service

How Servers Find WSDL Contracts

Overview

Example of finding a WSDL
contract

You need to locate the requisite WSDL contract before you can register a
servant with the Bus. The effect of registration is to associate an
implementation (represented by a servant object) with a particular WSDL
service. The WSDL service must, therefore, be available from one of the
WSDL contracts provided by the bootstrapping service.

The Artix bootstrapping service provides an API function,
IT Bus::get service contract (), for retrieving WSDL service elements
from a WSDL contract.

Given that the Bus has already loaded and parsed a WSDL contract
containing the service, soarservice, in the namespace,
http://www.iona.com/hello world soap http, you can find the WSDL
service element and register a servant against it as follows:

Example 12: Finding a WSDL Contract Using the Bootstrapping Service

// C++t
IT Bus::QName service gname (

"", "SOAPService", "http://www.iona.com/hello world soap http"
)7

// Find the WSDL contract using the bootstrap service
IT WSDL::WSDLService* wsdl service = bus->get service contract (
service gname

)7

// Register the servant

bus->register servant (
servant,
*wsdl_service

)7

31

CHAPTER 2 | Artix Programming Considerations

Options for bootstrapping WSDL

32

The bootstrapping service finds WSDL contracts from the following sources,
in order of priority:

1.

Contract specified on the command line—you can provide a WSDL
contract by specifying the location of the WSDL contract file on the
command line. For example:

./server -BUSinitial contract ../../etc/hello.wsdl

Contract specified in the configuration file—you can provide a WSDL
contract from the configuration file. For example:

Artix Configuration File

bus:gname alias:hello service =
"{http://www.iona.com/hello world soap http}SOAPService";

bus:initial contract:url:hello service =
"../../etc/hello.wsdl";

This associates a nickname, hello service, with the QName for the
SoAPService service. The bus:initial contract:url:hello service
variable then specifies the location of the WSDL contract containing
this service.

For more details, see Deploying and Managing Artix Solutions.
Contract directory specified on the command line—you can provide a
WSDL contract by specifying a contract directory on the command line.
When the bootstrapping service looks for a particular WSDL service, it
searches all of the WSDL files in the specified directory. For example:
./server -BUSservice contract dir ../../etc/

For more details, see Deploying and Managing Artix Solutions.
Contract directory specified in the configuration file—you can provide
a WSDL contract by specifying a contract directory in the configuration
file. For example:

Artix Configuration File
bus:initial contract dir = [".", "../../etc"];

Bootstrapping Service

5. Stub WSDL shared library—the bootstrapping service can retrieve
WSDL that has been embedded in a shared library.
Currently, this mechanism is not publicly supported. However, it is
used internally by the following Artix services: LocatorService,
SessionManagerService, PeerManager, and ContainerService.

References For more details about how to register servants, see “Registering Servants”
on page 64.

33

CHAPTER 2 | Artix Programming Considerations

Operations and Parameters

Overview This section describes how to declare a WSDL operation and how the
operation and its parameters are mapped to C++ by the Artix
WSDL-to-C+ + compiler.

In this section This section contains the following subsections:
RPC/Literal Style page 35
Document/Literal Wrapped Style page 39

34

Operations and Parameters

RPC/Literal Style

Overview

Parameter direction in WSDL

How to declare WSDL operations
in RPCl/literal style

This subsection describes the RPC/literal style for defining WSDL operations
and parameters. The RPC binding style is distinguished by the fact that it
uses multi-part messages (one part for each parameter).

For example, the request message for an operation with three input
parameters might be defined as follows:

<message name="operationRequest'>
<part name="X" type="X Type"/>
<part name="Y" type="Y Type"/>
<part name="Z" type="Z Type"/>
</message>

WSDL operation parameters can be sent either as input parameters (that is,

in the client-to-server direction or as output parameters (that is, in the

server-to-client direction). Hence, the following kinds of parameter can be

defined:

® jn parameter—declared as an input parameter, but not as an output
parameter.

® out parameter—declared as an output parameter, but not as an input
parameter.

® jnout parameter—declared both as an input and as an output
parameter.

You can declare a WSDL operation in RPC/literal style as follows:

1. Declare a multi-part input message, including all of the in and inout
parameters for the new operation (for example, the testpParams
message in Example 13 on page 36).

2. Declare a multi-part output message, including all of the out and inout
parameters for the operation (for example, the testParamsResponse
message in Example 13 on page 36).

3. Within the scope of <portType>, declare a single operation which
includes a single input message and a single output message.

35

CHAPTER 2 | Artix Programming Considerations

WSDL declaration of testParams Example 13 shows an example of a simple operation, testParams, which
takes two input parameters, inInt and inoutInt, and two output
parameters, inoutInt and outFloat.

Example 13: WSDL Declaration of the testParams Operation

<?xml version="1.0" encoding="UTF-8"7?>
<definitions ...>

<message name="testParams'>
<part name="inInt" type="xsd:int"/>
<part name="inoutInt" type="xsd:int"/>
</message>
<message name='testParamsResponse'>
<part name="inoutInt" type="xsd:int"/>
<part name="outFloat" type="xsd:float"/>
</message>

<portType name="BasePortType">
<operation name="testParams'>
<input message="tns:testParams" name="testParams"/>
<output message="tns:testParamsResponse"
name="testParamsResponse" />
</operation>

</definitions>

C+ + mapping of testParams Example 14 shows how the preceding WSDL testparams operation (from
Example 13 on page 36) maps to C++.

Example 14: C++ Mapping of the testParams Operation

// C++
void testParams (
const IT Bus::Int inInt,
IT Bus::Int & inoutInt,
IT Bus::Float & outFloat
) IT THROW DECL((IT Bus::Exception));

36

Operations and Parameters

Mapped parameters When the testpParams WSDL operation maps to C++, the resulting
testParams () C++ function signature starts with the in and inout
parameters, followed by the out parameters. The parameters are mapped as
follows:
® in parameters—are passed by value and declared const.
® inout parameters—are passed by reference.
® out parameters—are passed by reference.

WSDL declaration of Example 15 shows an example of an operation, testReverseParams, whose
testReverseParams parameters are listed in the opposite order to that of the preceding
testParams operation.

Example 15: WSDL Declaration of the testReverseParams Operation

<?xml version="1.0" encoding="UTF-8"7?>
<definitions ...>

<message name="testReverseParams">
<part name="inoutInt" type="xsd:int"/>
<part name="inInt" type="xsd:int"/>
</message>
<message name="testReverseParamsResponse'">
<part name="outFloat" type="xsd:float"/>
<part name="inoutInt" type="xsd:int"/>
</message>

<portType name="BasePortType">
<operation name="testReverseParams">
<output message="tns:testReverseParamsResponse"
name="testReverseParamsResponse" />
<input message="tns:testReverseParams"
name="testReverseParams" />
</operation>

</definitions>

37

CHAPTER 2 | Artix Programming Considerations

C+ + mapping of
testReverseParams

Order of in, inout and out
parameters

38

Example 16 shows how the preceding WSDL testReverseParams operation
(from Example 15 on page 37) maps to C++.

Example 16: C++ Mapping of the testReverseParams Operation

// C++
void testReverseParams (
IT Bus::Int & inoutInt

const IT Bus::Int inInt,
IT Bus::Float & outFloat,
) IT THROW DECL ((IT Bus::Exception));

In C++, the order of the in and inout parameters in the function signature is
the same as the order of the parts in the input message. The order of the out
parameters in the function signature is the same as the order of the parts in

the output message.

Note: The parameter order is not affected by the relative order of the
input and output elements in the declaration of operation. In the
mapped C+ + signature, the in and inout parameters always appear
before the out parameters.

Operations and Parameters

Document/Literal Wrapped Style

Overview This subsection describes the document/literal wrapped style for defining
WSDL operations and parameters. The document/literal wrapped style is
distinguished by the fact that it uses single-part messages. The single part is
defined as a schema element which contains a sequence of elements, one
for each parameter.

Request message format The request message for an operation with three input parameters might be
defined as follows:

<types>
<schema>
<element name="OperationName'">
<complexType>
<sequence>
<element name="X" type="X_Type"/>
<element name="Y" type="Y Type"/>
<element name="Z" type="Z Type"/>
</sequence>
</complexType>
</element>
</schema>
</types>
<message name="operationRequest">
<part name="parameters" element="OperationName" />
</message>

The request message in document/literal wrapped style must obey the
following conventions:

® The single element that wraps the input parameters must have the
same name as the WSDL operation, operationName.
® The single part must have the name, parameters.

39

CHAPTER 2 | Artix Programming Considerations

Reply message format The reply message for an operation with three output parameters might be
defined as follows:

<types>
<schema>
<element name="OperationNameResult'>
<complexType>
<sequence>
<element name="Z" type="Z Type"/>
<element name="A" type="A_Type"/>
<element name="B" type="B Type"/>
</sequence>
</complexType>
</element>
</schema>
</types>

<message name="operationReply'">
<part name="parameters" element="OperationNameRresult"/>
</message>

The reply message in document/literal wrapped style must obey the

following conventions:

® The single element that wraps the output parameters must have the
fornL OperationNameResult

® The single part must have the name, parameters.

How to declare WSDL operations You can declare a WSDL operation in document/literal wrapped style as
in document/literal wrapped style follows:

1. In the schema section of the WSDL, define an element (the input part
wrapping element) as a sequence type containing elements for each of
the in and inout parameters (for example, the testParams element in
Example 17 on page 41).

2. Inthe schema section of the WSDL, define another element (the output
part wrapping element) as a sequence type containing elements for
each of the inout and out parameters (for example, the
testParamsResult element in Example 17 on page 41).

3. Declare a single-part input message, including all of the in and inout
parameters for the new operation (for example, the testparams
message in Example 17 on page 41).

40

WSDL declaration of testParams
in document/literal wrapped style

Operations and Parameters

4. Declare a single-part output message, including all of the out and inout
parameters for the operation (for example, the testParamsResult
message in Example 17 on page 41).

5. Within the scope of portType, declare a single operation which
includes a single input message and a single output message.

Example 13 shows an example of a simple operation, testParams, which
takes two input parameters, inInt and inoutInt, and two output
parameters, inoutInt and outFloat.

Example 17: testParams Operation in Document/Literal Wrapped Style

<?xml version="1.0" encoding="UTF-8"7?>
<definitions ... >
<wsdl:types>
<schema targetNamespace="..."
xmlns="http://www.w3.0rg/2001/XMLSchema">
<element name="testParams">
<complexType>
<sequence>
<element name="inInt" type="xsd:int"/>
<element name="inoutInt" type="xsd:int"/>
</sequence>
</complexType>
</element>
<element name="testParamsResult">
<complexType>
<sequence>
<element name="inoutInt" type="xsd:int"/>
<element name="outFloat"
type="xsd:float"/>
</sequence>
</complexType>
</element>
</schema>
</wsdl:types>
<message name="testParams'">
<part name="parameters" element="tns:testParams"/>
</message>
<message name="testParamsResult">
<part name="parameters" element="tns:testParamsResult"/>
</message>
<wsdl:portType name="BasePortType">
<wsdl:operation name="testParams">

41

CHAPTER 2 | Artix Programming Considerations

C+ + default mapping of
testParams

42

Example 17: testParams Operation in Document/Literal Wrapped Style

<wsdl:input message="tns:testParams"
name="testParams"/>
<wsdl:output message="tns:testParamsResult"
name="testParamsResult"/>
</wsdl:operation>
</wsdl:portType>

</definitions>

The Artix WSDL-to-C+ + compiler automatically detects when you use
document/literal wrapped style (as long as the WSDL obeys the conventions
described here). If document/literal wrapped style is detected, the
WSDL-to-C++ compiler (by default) unwraps the operation parameters to
generate a normal function signature in C++.

For example, Example 18 shows how the preceding WSDL testParams
operation (from Example 17 on page 41) maps to C++.

Example 18: C++ Mapping of the testParams Operation

// C++
void testParams (
const IT Bus::Int inInt,
IT Bus::Int & inoutlnt,
IT Bus::Float & outFloat
) IT THROW DECL((IT Bus::Exception));

C++ mapping of testParams
using -wrapped flag

Operations and Parameters

If you want to disable the auto-unwrapping feature of the WSDL-to-C+ +
compiler, you can do so by running wsdltocpp With the -wrapped flag. For
example, assuming that the WSDL from Example 17 on page 41 is stored in
the test_params.wsdl file, you can generate C+ + without auto-unwrapping
by entering the following at the command line:

wsdltocpp -wrapped test params.wsdl

Example 19 shows the result of mapping the WSDL testParams operation
to C++ with the -wrapped flag:

Example 19: C++ Mapping Using the -wrapped Flag

// C++

virtual void

testParams (
const testParams ¶meters,
testParamsResult ¶meters 1

) IT THROW DECL((IT Bus::Exception));

43

CHAPTER 2 | Artix Programming Considerations

Exceptions

Overview

In this section

44

Artix provides a variety of built-in exceptions, which can alert users to
problems with network connectivity, parameter marshalling, and so on. In
addition, Artix allows users to define their own exceptions, which can be
propagated across the network by declaring fault exceptions in WSDL.

This section contains the following subsections:

Built-In Exceptions page 45

User-Defined Exceptions page 47

Exceptions

Built-In Exceptions

Overview

Exception types

The Artix libraries and generated code generate exceptions from classes
based on IT Bus::Exception, defined in <it bus/Exception.h>.

IT Bus::Exception provides all Artix built-in exceptions with the following
methods for providing information back to the user:

IT_Bus::Exception::message()
message () returns an informative description of the error which generated
the exception. It has the following signature:

const char* message () const;

Artix defines the following exception types:

IT_Bus::ServiceException is thrown when there is a problem creating a
Service. It is defined in <it bus/service exception.h>.

IT_Bus::10Exception is thrown if there is an error writing a wsdl model to a
stream. It is defined in <it bus/io_exception.h>.

IT_Bus::TransportException is thrown if there is a communication failure. It
is defined in <it bus/transport exception.h>.

IT_Bus::ConnectException is thrown if there is a communication error. This
exception type is a specialization of @ TransportException. It is defined in

<it bus/connect_exception.h>.

IT_Bus::DeserializationException is thrown if there is a problem
unmarshaling data. Deserialization exceptions are propagated back to client
stub code. It is defined in <it bus/deserialization exception.h>.

IT_Bus::SerializationException is thrown if there is a problem marshaling
data. On the server-side if this is thrown as part of a dispatching an
invocation the runtime will catch this and propagate a Fault to the
client-side. On the client side these will get back to the application code. It
is defined in <it bus/serialization exception.h>.

45

CHAPTER 2 | Artix Programming Considerations

IT_Routing::InvalidRouteException is thrown is a route is improperly
defined. It is defined in <it bus/invalid route exception.h>.

46

Exceptions

User-Defined Exceptions

Overview

FaultException class

Declaring a fault in WSDL

Artix supports user-defined exceptions, which propagate from one Artix
application to another. To define a user exception, you must declare the
exception as a fault in WSDL. The WSDL-to-C++ compiler then generates
the stub code that you need to raise and catch the exception.

User exceptions are derived from the IT Bus::FaultException class, which
is defined in <it bus/fault exception.h>. The FaultException class
extends Exception.

Example 20 shows an example of a WSDL fault which can be raised on the
echoInteger operation. The format of the fault message is specified by the
tns:SampleFault Message.

Example 20: Declaration of the SampleFault Fault

<?xml version="1.0" encoding="UTF-8"7?>
<definitions ...>
<types>
<schema targetNamespace="http://soapinterop.org/xsd"
xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
1 <complexType name="SampleFaultData">
<all>
<element name="lowerBound" type="xsd:int"/>
<element name="upperBound" type="xsd:int"/>
</all>
</complexType>
</schema>
</types>
2 <message name="SampleFault">
<part name="exceptionData"
type="xsdl: SampleFaultData" />
</message>

<portType name="BasePortType'">
<operation name="echolnteger">
<input message="tns:echolnteger" name="echolInteger"/>
<output message="tns:echolntegerResponse"

47

CHAPTER 2 | Artix Programming Considerations

Raising a fault exception in a
server

48

Example 20: Dec/aration of the SampleFault Fault

name="echoIntegerResponse" />
<fault message="tns:SampleFault"
name="SampleFault"/>
</operation>
</portType>

</definitions>

The preceding WSDL extract can be explained as follows:

1.

If the fault is to hold more than one piece of data, you must declare a
complex type for the fault data (in this case, sampleFaultbata holds a
lower bound and an upper bound).

Declare a message for the fault, containing just a single part. The
WSDL specification allows only single-part messages in a fault—
multi-part messages are not allowed.

The fault element must be added to the scope of the operation (or
operations) which can raise this particular type of fault.

Note: There is no limit to the number of fault elements that can be
included in an operation element.

Example 21 shows how to raise the samplerault fault in the server code.
The implementation of echoInteger now checks the input integer to see if it
exceeds the given bounds.

The WSDL maps to C++ as follows:

The WSDL sampleFaultbata type maps to a C++ sampleFaultData
class.

The WSDL sampleFault message maps to a C++
SampleFaultException class. This follows the general pattern that
ExceptionMessage Maps t0 ExceptionMessageException.

Example 21: Raising the SampleFault Fault in the Server

// Ct+
void BaseImpl::echolnteger (const IT Bus::Int

inputInteger, IT Bus::Int& Response)
IT THROW DECL ((IT Bus::Exception))

Catching a fault exception in a
client

Example 21: Raising the SampleFault Fault in the Server

if (
{

}
cout
Resp

inputInteger<0 || 100<inputInteger)

// Create and initialize the SampleFaultData
SampleFaultData ex data;

ex data.setlowerBound (0) ;

ex data.setupperBound (100) ;

// Create and initialize the fault.
SampleFaultException ex;
ex.setexceptionData (ex data);

// Throw the fault exception back to the client.
throw ex;

<< "BaseImpl::echoInteger called" << endl;
onse = inputlInteger;

Exceptions

Example 22 shows how to catch the samplerault fault on the client side.
The client uses the proxy instance, bc, to call the echoInteger operation

remotely.

Example 22: Catching the SampleFault Fault in the Client

// C++

try {
Int
bc.e
if (
{

}
catch (S

{
cout
cout

cout

int out = 0;
choInteger (int in,int out);
int_in != int out)

cout << endl << "echoInteger PASSED" << endl;

ampleFaultException &ex)

<< "Bounds exceeded:" << endl;
<< "lower bound = "

<< ex.getexceptionData () .getlowerBound() << endl;

<< "upper bound = "

<< ex.getexceptionData () .getupperBound() << endl;

49

CHAPTER 2 | Artix Programming Considerations

Example 22: Catching the SampleFault Fault in the Client

catch (IT Bus::FaultException &ex)
{

/* Handle other fault exceptions ... */
}
catch (...)
{

/* Handle all other exceptions ... */

}

50

Memory Management

Memory Management

Overview This section discusses the memory management rules for Artix types,
particularly for generated complex types.

In this section This section contains the following subsections:
Managing Parameters page 52
Assignment and Copying page 57
Deallocating page 59
Smart Pointers page 60

51

CHAPTER 2 | Artix Programming Considerations

Managing Parameters

Overview

Memory management rules

WSDL example

52

This subsection discusses the guidelines for managing the memory for
parameters of complex type. In Artix, memory management of parameters is
relatively straightforward, because the Artix C++ mapping passes
parameters by reference.

Note: If you use pointer types to reference operation parameters, see
“Smart Pointers” on page 60 for advice on memory management.

There are just two important memory management rules to remember when
writing an Artix client or server:

1. The client is responsible for deallocating parameters.

2. If the server needs to keep a copy of parameter data, it must make a
copy of the parameter. In general, parameters are deallocated as soon
as an operation returns.

Example 23 shows an example of a WSDL operation, testSegParams, with
three parameters, inseq, inoutSeq, and outSeq, of sequence type,
xsdl:SequenceType.

Example 23: WSDL Example with in, inout and out Parameters

<?xml version="1.0" encoding="UTF-8"7?>
<definitions ... >
<types>
<schema targetNamespace="http://soapinterop.org/xsd"
xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
<complexType name="SequenceType">
<sequence>
<element name="varFloat" type="xsd:float"/>
<element name="varInt" type="xsd:int"/>
<element name="varString" type="xsd:string"/>
</sequence>
</complexType>

</schema>

Memory Management

Example 23: WSDL Example with in, inout and out Parameters
</types>

<message name="testSeqParams">

<part name="inSeq" type="xsdl:SequenceType"/>
<part name="inoutSeq" type="xsdl:SequenceType"/>
</message>

<message name="testSeqParamsResponse'>
<part name="inoutSeq" type="xsdl:SequenceType"/>
<part name="outSeq" type="xsdl:SequenceType"/>
</message>

<portType name="BasePortType">
<operation name="testSegParams'>
<input message="tns:testSegParams"
name="testSeqParams" />
<output message="tns:testSeqParamsResponse"
name="testSeqgParamsResponse" />
</operation>

</portType>

</definitions>

Client example Example 24 shows how to allocate, initialize, and deallocate parameters
when calling the testSegParams operation.

Example 24: Client Calling the testSeqParams Operation

// C++
try
{

IT Bus::init(argc, argv);
1 BaseClient bc;

2 // Allocate all parameters
SequenceType inSeq, inoutSeq, outSeq;

3 // Initialize in and inout parameters
inSeq.setvarFloat ((IT Bus::Float) 1.234);
inSeq.setvarInt (54321);
inSeq.setvarString ("One, two, three");
inoutSeq.setvarFloat ((IT Bus::Float) 4.321);

53

CHAPTER 2 | Artix Programming Considerations

Example 24: Client Calling the testSeqParams Operation

inoutSeq.setvarInt (12345);
inoutSeq.setvarString ("Four, five, six");

// Call the 'testSegParams' operation
bc.testSegParams (inSeq, inoutSeq, outSeq) ;

4 // End of scope:
// Implicit deallocation of inSeq, inoutSeq, and outSeq.
}
catch (IT Bus::Exceptioné& e)

{
cout << endl << "Caught Unexpected Exception: "
<< endl << e.message ()
<< endl;
return -1;

The preceding client example can be explained as follows:

1. This line creates an instance of the client proxy, be, which is used to
invoke the WSDL operations.

2. You must allocate memory for all kinds of parameter, in, inout, and
out. In this example, the parameters are created on the stack.

3. You initialize only the in and inout parameters. The server will initialize
the out parameters.

4. Itis the responsibility of the client to deallocate all kinds of parameter.
In this example, the parameters are all deallocated at the end of the
current scope, because they have been allocated on the stack.

Server example Example 25 shows how the parameters are used on the server side, in the
C++ implementation of the testseqgpParams operation.

Example 25: Server Calling the testSeqParams Operation

// C++

void

BaseImpl::testSegParams (
const SequenceType & inSeq,
SequenceType & inoutSeq,
SequenceType & outSeq

) IT THROW DECL ((IT Bus::Exception))

54

Memory Management

Example 25: Server Calling the testSeqParams Operation

cout << "BaseImpl::testSegParams called" << endl;

// Print inSeq

cout << "inSeqg.varFloat = " << inSeqg.getvarFloat () << endl;
cout << "inSeq.varInt = " << inSeq.getvarInt () << endl;
cout << "inSeqg.varString = " << inSeq.getvarString() << endl;

// (Optionally) Copy in/inout parameters
//

// Print and change inoutSeq
cout << "inoutSeqg.varFloat ="

<< inoutSeqg.getvarFloat () << endl;
cout << "inoutSeqg.varInt ="

<< inoutSeq.getvarInt () << endl;
cout << "inoutSeqg.varString =

<< inoutSeq.getvarString() << endl;
inoutSeq.setvarFloat (2.0);
inoutSeq.setvarlInt (2) ;
inoutSeq.setvarString ("Two") ;

// Initialize outSeq
outSeq.setvarFloat (3.0) ;
outSeq.setvarInt (3);
outSeq.setvarString ("Three") ;

The preceding server example can be explained as follows:

1.

The server programmer has read-only access to the in parameters (they
are declared const in the operation signature).

If you want to access data from in or inout parameters after the
operation returns, you must copy them (deep copy). It would be an
error to use the & operator to obtain a pointer to the parameter data,
because the Artix server stub deallocates the parameters as soon as
the operation returns.

See “Assignment and Copying” on page 57 for details of how to copy
Artix data types.

You have read/write access to the inout parameters.

55

CHAPTER 2 | Artix Programming Considerations

4. You should initialize each of the out parameters (otherwise they will be
returned with default initial values).

56

Memory Management

Assignment and Copying

Overview

Copy constructor

Assignment operator

The WSDL-to-C++ compiler generates copy constructors and assignment
operators for all complex types.

The WSDL-to-C++ compiler generates a copy constructor for complex
types. For example, the sequenceType type declared in Example 23 on
page 52 has the following copy constructor:

// C++

SequenceType (const SequenceType& copy) ;

This enables you to initialize sequenceType data as follows:

// C++

SequenceType original;
original.setvarFloat (1.23);
original.setvarInt (321);
original.setvarString("One, two, three.");

SequenceType copy 1 (original);
SequenceType copy 2 = original;

The WSDL-to-C++ compiler generates an assignment operator for complex
types. For example, the generated assignment operator enables you to
assign a SequenceType instance as follows:

// C++

SequenceType original;
original.setvarFloat (1.23);
original.setvarInt (321);
original.setvarString("One, two, three.");

SequenceType assign to;

assign to = original;

57

CHAPTER 2 | Artix Programming Considerations

Recursive copying In WSDL, complex types can be nested inside each other to an arbitrary
degree. When such a nested complex type is mapped to C++ by Artix, the
copy constructor and assighment operators are designed to copy the nested
members recursively (deep copy).

58

Memory Management

Deallocating

Using delete

Recursive deallocation

In C++, if you allocate a complex type on the heap (that is, using pointers
and new), you can generally delete the data instance using the delete
operator. It is usually better, however, to use smart pointers in this
context—see “Smart Pointers” on page 60.

The Artix C++ types are designed to support recursive deallocation.

That is, if you have an instance, T, of a complex type which has other
complex types nested inside it, the entire memory for the complex type
including its nested members would be deallocated when you delete T. This
works for complex types nested to an arbitrary degree.

59

CHAPTER 2 | Artix Programming Considerations

Smart Pointers

Overview

What is a smart pointer?

Artix smart pointers

60

To help you avoid memory leaks when using pointers, the WSDL-to-C+ +
compiler generates a smart pointer class, complexTypeptr, for every
generated complex type, complexType. The following aspects of smart
pointers are discussed here:

® What is a smart pointer?

® Artix smart pointers.

® Client example using simple pointers.
® Client example using smart pointers.

A smart pointer class is a C++ class that overloads the * (dereferencing)
and -> (member access) operators, in order to imitate the syntax of an
ordinary C++ pointer.

Artix smart pointers are defined using a template class, IT_autoptr<T>,
which has the same API as the standard auto pointer template,
auto_ptr<T>, from the C++ standard template library. If the standard
library is supported on the platform, IT_autoptr is simply a typedef of
std::auto ptr

For example, the sequenceTypepPtr smart pointer class is defined by the
following generated typedef:

// Ct+
typedef IT AutoPtr<SequenceType> SequenceTypePtr;

The key feature that makes this pointer type smart is that the destructor
always deletes the memory the pointer is pointing at. This feature ensures
that you cannot leak memory when it is referenced by a smart pointer.

Client example using simple
pointers

Memory Management

Example 26 shows how to call the testSeqParams operation using
parameters that are allocated on the heap and referenced by simple

pointers

Example 26: Client Calling testSeqParams Using Simple Pointers

// C++

try
{

}

IT Bus::init(argc, argv);
BaseClient bc;

// Allocate all parameters

SequenceType *inSegP = new SequenceType () ;
SequenceType *inoutSegP = new SequenceType () ;
SequenceType *outSegP = new SequenceType () ;

// Initialize in and inout parameters
inSegP->setvarFloat ((IT Bus::Float) 1.234);
inSegP->setvarInt (54321);
inSegP->setvarString ("One, two, three");
inoutSegP->setvarFloat ((IT Bus::Float) 4.321);
inoutSegP->setvarInt (12345);
inoutSegP->setvarString ("Four, five, six");

// Call the 'testSegParams' operation
bc.testSegParams (*inSegP, *inoutSegP, *outSegP);

// End of scope:
delete inSeqP;
delete inoutSeqgP;
delete outSeqP;

catch (IT Bus::Exception& e)

{

cout << endl << "Caught Unexpected Exception:
<< endl << e.message ()
<< endl;

return -1;

61

CHAPTER 2 | Artix Programming Considerations

Client example using smart
pointers

62

The preceding client example can be explained as follows:
1. The parameters are allocated on the heap.

2. Before you reach the end of the current scope, you must explicitly
delete the parameters or the memory will be leaked.

Example 27 shows how to call the testsegparams operation using
parameters that are allocated on the heap and referenced by smart pointers

Example 27: Client Calling testSeqParams Using Smart Pointers

// C++
try
{
IT Bus::init(argc, argv);

BaseClient bc;

// Allocate all parameters

SequenceTypePtr inSegP (new SequenceType());
SequenceTypePtr inoutSegP (new SequenceType ()) ;
SequenceTypePtr outSegP (new SequenceType()) ;

// Initialize in and inout parameters
inSegP->setvarFloat ((IT Bus::Float) 1.234);
inSegP->setvarInt (54321) ;
inSegP->setvarString ("One, two, three");
inoutSegP->setvarFloat ((IT Bus::Float) 4.321);
inoutSegP->setvarInt (12345) ;
inoutSegP->setvarString ("Four, five, six");

// Call the 'testSegParams' operation
bc.testSegParams (*inSegP, *inoutSegP, *outSegP) ;

// End of scope:
// Parameter data automatically deallocated by smart pointers
}
catch (IT Bus::Exception& e)
{
cout << endl << "Caught Unexpected Exception: "
<< endl << e.message ()
<< endl;
return -1;

Memory Management

The preceding client example can be explained as follows:

1.

The parameters are allocated on the heap, using smart pointers of
SequenceTypePtr type.

In this case, there is no need to deallocate the parameter data
explicitly. The smart pointers, inSeqP, inoutSeqgP, and outSeqgp,
automatically delete the memory they are pointing at when they go out
of scope.

63

CHAPTER 2 | Artix Programming Considerations

Registering Servants

Overview

In this section

64

In order to make a servant accessible to remote clients, you must register

the servant with a Bus instance. The effect of registration is twofold:

® Aservice is activated and begins listening for incoming requests.

® Aservant object is linked to the newly-activated service. Requests
received by the service are then dispatched to the linked servant
object.

This section describes how to register servant objects with the 1T Bus: :Bus;
in particular, describing how to register both static and transient servants.

This section contains the following subsections:

Registering a Static Servant page 65

Registering a Transient Servant page 72

Registering Servants

Registering a Static Servant

Overview

Static servant

static servant

Initially, when a servant object is created, it is associated with a particular
logical contract (that is, WSDL port type), but has no association with any
physical contract (that is, WSDL service). The link between a servant
instance and a physical contract must be established explicitly by
registering the servant.

Figure 1 illustrates the effect of registering a static servant: registration
establishes an association between a servant instance and a part of the
WSDL model that represents a particular WSDL service.

Figure 1: Relationship between a Static Servant and a WSDL Contract

WSDL Contract

<portType>
</portType>
. — logical contract
<binding>

</binding>

<service>
<port>
«—> o — physical contract
</port>

</service>

IT_Bus::Servant IT_WSDL::WSDLService

The defining characteristic of a static servant is that, when registered, it is
associated with a service appearing explicitly in the original WSDL contract.
This implies that a static servant is restricted to using a service from the
fixed collection of services appearing in the WSDL contract.

65

CHAPTER 2 | Artix Programming Considerations

IT_Bus::Bus registration The 1T Bus: :Bus class defines the functions in Example 28 to manage the
functions registration of static servants:

Example 28: The IT_Bus::Bus Static Servant Registration AP/

// C++
void
register servant (
IT Bus::Servant & servant,
IT WSDL::WSDLService & wsdl service,
const IT Bus::String & port name = IT BUS ALL PORTS
) IT THROW DECL ((IT Bus::Exception)) 0;

void
register servant (

IT Bus::Servant & servant,

const IT Bus::String & wsdl location,

const IT Bus::QName & service name,

const IT Bus::String & port name = IT BUS ALL PORTS
) IT THROW DECL((Exception)) = 0;

IT Bus::Service ptr
add service (
IT WSDL::WSDLService & wsdl service
) IT THROW DECL((IT Bus::Exception)) = 0;

IT Bus::Service ptr

add_service (
const IT Bus::String & wsdl location,
const IT Bus::QName & service name

) IT THROW DECL((Exception)) = 0;

virtual IT WSDL::WSDLService*
get service contract (

const QNameé& service_name
) IT THROW DECL ((Exception)) = 0;

IT Bus::Service ptr
get service (

const IT Bus::QName & service name
)i

void
remove service (

const QName & service name
)i

66

IT_Bus::Service registration
function

Activating a static servant

Activate all ports together and
specify the WSDL location

Registering Servants

In addition to the registration functions in 1T _Bus: :Bus, the
IT Bus::Service class also supports a register servant () function. The

IT Bus::Service::register servant() function enables you to activate
ports individually.

Example 29: The IT_Bus::Service register_servant() Function

// C++
void
register servant (
IT Bus::Servant & servant,
const IT Bus::String & port to register
)i

There are several different approaches to activating a static servant,
depending on whether you want to activate ports together or individually
and depending on whether you want to specify the WSDL contract directly
or use the bootstrapping service. The following approaches are supported:

® Activate all ports together and specify the WSDL location.
Activate all ports together and use the bootstrapping service.
Activate ports individually and specify the WSDL location.
Activate ports individually and use the bootstrapping service.

To activate all ports together, registration is a single step process. You add
the service to the Bus and activate all of its ports by calling
IT Bus::Bus::register servant (). For example:

// C++
IT Bus::QName service name("", "BankService",
"http://www.iona.com/bus/demos/bank") ;

bus->register servant (
bank servant,
"bank.wsdl",
service name

)7

67

CHAPTER 2 | Artix Programming Considerations

Activate all ports together and use
the bootstrapping service

Activate ports individually and
specify the WSDL location

68

In this case, all the service’s ports dispatch their invocations to the same
servant object, bank_servant.

Note: If you need to obtain a reference to the resulting IT Bus::Service

inStance,Ca||bus—>get_service(service_name).

To use the bootstrapping service to activate a static servant’s ports, call the
IT Bus::get service contract () function to obtain a pointer to a
pre-existing WSDL service object. For example:

// C++
IT Bus::QName service name("", "BankService",
"http://www.iona.com/bus/demos/bank") ;

IT WSDL::WSDLService* wsdl service = bus->get service contract(
service name

);

bus->register servant (
bank servant,
*wsdl_service

)i

In this case, the WSDL contract containing the required WSDL service must
already be loaded into the Artix Bus. The bootstrapping service provides
several mechanisms for specifying the location of WSDL contracts. For more
details, see “How Servers Find WSDL Contracts” on page 31.

To activate ports individually, registration is a two-step process. First you
add a service to the Bus, then you activate individual ports. For example:

// C++

IT Bus::QName service name ("", "BankService",
"http://www.iona.com/bus/demos/bank") ;

IT Bus::Service var bank service =
bus->add service ("bank.wsdl", service name);

bank service->register servant (corba servant, "CORBAPort");

bank service->register servant (soap servant, "SOAPPort");

Activate ports individually and use
the bootstrapping service

Default threading model

Registering Servants

In this case, each port can be programmed to dispatch invocations to
distinct servant objects. For example, invocations arriving at the corBapPort
port are dispatched to the corba_servant servant instance. Whereas,
invocations arriving at the soapport port are dispatched to the
soap_servant servant instance.

To use the bootstrapping service to activate a static servant’s ports, call the
IT Bus::get service contract () function to obtain a pointer to a
pre-existing WSDL service object. Registration is a two-step process. First
you add a service to the Bus, then you activate individual ports. For
example:

// C++
IT Bus::QName service name("", "BankService",
"http://www.iona.com/bus/demos/bank") ;

IT WSDL: :WSDLService* wsdl_service = bus->get service contract(
service name

)

IT Bus::Service var bank service =

bus->add_service (*wsdl_service) ;
bank service->register servant (corba servant, "CORBAPort");
bank service->register servant (soap servant, "SOAPPort");

In this case, the WSDL contract containing the required WSDL service must
already be loaded into the Artix Bus. The bootstrapping service provides
several mechanisms for specifying the location of WSDL contracts. For more
details, see “How Servers Find WSDL Contracts” on page 31.

The default threading model for a registered servant is multi-threaded. That
is, the servant is liable to have its operations invoked simultaneously by
multiple threads. With this model, it is essential to ensure that your servant
code is reentrant and thread-safe. Alternatively, you can select another
threading model when registering the servant.

See “Servant Threading Models” on page 83 for more information.

69

CHAPTER 2 | Artix Programming Considerations

Static servant example

70

Example 30 shows an example (taken from
demos/servant_management/transient servants) which shows how to
register a servant as a static servant.

Example 30: Registering a Static Servant

// C++
// demos/servant management/transient servants/server/server.cxx

try {
IT Bus::Bus var bus = IT Bus::init(argc, (char **)argv);

BankImpl my bank (bus) ;

QOName service name ("", "BankService",
"http://www.iona.com/bus/demos/bank") ;

bus->register servant (
my bank,
"../wsdl/bank.wsdl",
service name

)i
IT Bus::run();

bus->remove service (service name);
}
catch (IT Bus::Exception& e) { ... }

The preceding code example can be explained as follows:

1. This line creates a servant instance, my bank. At this point, we know
that the servant implements the Bank port type (logical contract), but
there is no association with any WSDL service (physical contract) yet.

2. This IT Bus::QName instance refers to the BankService service from
the WSDL contract. This is the WSDL service that will be associated
with the servant.

3. The register servant () function registers a static servant instance,
taking the following arguments:

. Servant instance.
+ WSDL file location.

¢ Service QName.

Registering Servants

The return value is an IT Bus::Service object, which references the
BankService WSDL service.

Immediately after registration, the service starts to process incoming
invocations in a background thread.

The IT Bus::run() function blocks the main thread of execution,
allowing the registered services to continue processing incoming
invocations in background threads.

The remove service () function is called here to tidy up resources

before the server shuts down. It deactivates the service and joins the
background threads.

71

CHAPTER 2 | Artix Programming Considerations

Registering a Transient Servant

Overview

72

In contrast to a static servant, a transient servant is not limited to using
services that appear explicitly in the WSDL contract. A transient servant

creates a new service every time it is registered by cloning from an existing
service in the WSDL contract. This type of behavior is useful in cases where

you require an unlimited number of services of a particular kind.

For example, consider the WSDL contract for the
demos/servant_management/transient servants demonstration, which
has a Bank port type and an Account port type. If each customer’s bank

account maps to a service, it is clear that you require an unlimited number

of services to represent customer accounts.
Figure 2 illustrates the effect of registering a transient servant: registration

establishes an association between a servant instance and a cloned WSDL

service.

Figure 2: Relationship between a Transient Servant and a WSDL Contract

WSDL Contract

<portType>
</portType>
<binding>
</binding>
<service>
<port>
</port>
</service>

[l

clone service

transient servant

<service>
<port>
> .. physical contract
</port>
/ﬂ </service>

N

IT Bus::Servant IT_WSDL::WSDLService

logical contract

Supported protocols

Transient servant

Reuse of IP ports

IT_Bus::Bus transient registration
functions

Registering Servants

Artix currently supports transient servants for the following transports:
® HTTP.

* CORBA.

¢ Tunnel.

When a transient servant is registered, the following steps are implicitly
performed by the IT Bus::Bus instance (see Figure 2):

1. A new WSDL service is cloned from an existing service in the WSDL

contract. The cloned service has the following characteristics:

+ The cloned service is based on an existing service element that
appears in the WSDL contract.

+ The clone’s service QName is replaced by a dynamically
generated, unique service QName.

+ The clone’s addressing information is replaced such that each
address is unique per-clone and per-port.

2. The transient servant becomes associated with the newly cloned
service.

To avoid over-use of IP ports, cloned services are designed to use the same
IP ports as the original service.

The 1T Bus::Bus class defines the functions in Example 31 to manage the
registration of transient servants.

Example 31: The IT_Bus::Bus Transient Servant Registration AP/

// CH+
IT Bus::Service ptr
register transient servant (
IT Bus::Servant & servant,
IT WSDL::WSDLService & wsdl service,
const IT Bus::String & port name = IT BUS ALL PORTS
) IT THROW DECL ((IT Bus::Exception)) = 0;

IT Bus::Service ptr

register transient servant (
IT_Bus::Servant & servant,

73

CHAPTER 2 | Artix Programming Considerations

Example 31: The IT_Bus::Bus Transient Servant Registration APl

const IT Bus::String & wsdl location,

const IT Bus::QName & service name,

const IT Bus::String & port name = IT BUS ALL PORTS
) IT THROW DECL((Exception)) = 0;

IT Bus::Service ptr
add transient service (
IT WSDL::WSDLService & wsdl service
) IT THROW DECL((IT Bus::Exception)) = 0;

IT Bus::Service ptr

add_transient service (
const IT Bus::String & wsdl location,
const IT Bus::QName & service name

) IT THROW DECL((Exception)) = 0;

virtual IT WSDL::WSDLService*
get service contract (

const QNameé& service_name
) IT THROW DECL ((Exception)) = 0;

IT Bus::Service ptr
get service (
const IT Bus::QName & service name

)i

void
remove service (
const IT Bus::QName & service name

);

IT_Bus::Service registration In addition to the registration functions in 1T Bus::Bus, the

function IT Bus::Service class also supports a register servant () function. The
IT Bus::Service::register servant () function enables you to activate
ports individually.

Example 32: The IT_Bus::Service register_servant() Function

// C+t
void
register servant (
IT Bus::Servant & servant,
const IT Bus::String & port to register

74

Activating a static servant

Activate all ports together and
specify the WSDL location

Registering Servants

Example 32: The IT_Bus::Service register_servant() Function

);

There are several different approaches to activating a static servant,
depending on whether you want to activate ports together or individually
and depending on whether you want to specify the WSDL contract directly
or use the bootstrapping service. The following approaches are supported:
® Activate all ports together and specify the WSDL location.

® Activate all ports together and use the bootstrapping service.

® Activate ports individually and specify the WSDL location.

® Activate ports individually and use the bootstrapping service.

Registration is a single step process. You add the transient service to the
Bus and activate all of its ports by calling
IT Bus::Bus::register transient servant (). For example:

// C++
IT Bus::QName service name("", "AccountService",
"http://www.iona.com/bus/demos/bank") ;

IT Bus::Service var service =
bus->register transient servant (
account_servant,
"bank.wsdl",
service name

);

In this case, all the service’s ports dispatch their invocations to the same
servant object, account servant.

75

CHAPTER 2 | Artix Programming Considerations

Activate all ports together and use To use the bootstrapping service to activate a transient servant’s ports, call
the bootstrapping service the IT Bus::get_service contract () function to obtain a pointer to a
pre-existing WSDL service object. For example:

// C++
IT Bus::QName service name("", "AccountService",
"http://www.iona.com/bus/demos/bank") ;

IT WSDL: :WSDLService* wsdl service = bus->get service contract(
service name

);

IT Bus::Service var service =
bus->register transient servant (
account_servant,
*wsdl_service
)i

In this case, the WSDL contract containing the required WSDL service must
already be loaded into the Artix Bus. The bootstrapping service provides
several mechanisms for specifying the location of WSDL contracts. For more
details, see “How Servers Find WSDL Contracts” on page 31.

Activate ports individually and Registration is a two-step process. First you add a transient service to the
specify the WSDL location Bus (thereby cloning the service), and then you activate individual ports. For
example:
// C++

IT Bus::QName service name ("", "AccountService",
"http://www.iona.com/bus/demos/bank") ;

IT Bus::Service var acc_service =

bus->add transient service ("bank.wsdl", service name);
acc_service->register servant (corba servant, "CORBAPort");
acc_service->register servant (soap servant, "SOAPPort");

In this case, each port can be programmed to dispatch invocations to
distinct servant objects. For example, invocations arriving at the coreaport
port are dispatched to the corba servant servant instance. Whereas,
invocations arriving at the soapport port are dispatched to the
soap_servant Servant instance.

76

Activate ports individually and use
the bootstrapping service

Default threading model

Transient servant example

Registering Servants

To use the bootstrapping service to activate a transient servant’s ports, call
the IT Bus::get service contract () function to obtain a pointer to a
pre-existing WSDL service object. Registration is a two-step process. First
you add a service to the Bus, then you activate individual ports. For
example:

// C++
IT Bus::QName service name("", "AccountService",
"http://www.iona.com/bus/demos/bank") ;

IT WSDL: :WSDLService* wsdl_service = bus->get service contract(
service name

)

IT Bus::Service var acc service =

bus->add transient service (*wsdl_service) ;
acc_service->register servant (corba servant, "CORBAPort");
acc_service->register servant (soap servant, "SOAPPort");

In this case, the WSDL contract containing the required WSDL service must
already be loaded into the Artix Bus. The bootstrapping service provides
several mechanisms for specifying the location of WSDL contracts. For more
details, see “How Servers Find WSDL Contracts” on page 31.

The default threading model for a registered servant is multi-threaded. That
is, the servant is liable to have its operations invoked simultaneously by
multiple threads. With this model, it is essential to ensure that your servant
code is reentrant and thread-safe. Alternatively, you can select another
threading model when registering the servant.

See “Servant Threading Models” on page 83 for more information.

Example 33 shows a sample implementation of the Bank port type’s
create_account operation (taken from
demos/servant_management/transient_servants)VVhiCh shows how to
register a servant as a transient servant.

Example 33: Registering a Transient Servant

// C++

77

CHAPTER 2 | Artix Programming Considerations

Example 33: Registering a Transient Servant

1 const IT Bus::QName AccountImpl::SERVICE NAME ("",
"AccountService", "http://www.iona.com/bus/demos/bank") ;

void
BankImpl::create account (

const IT Bus::String &account name,

IT Bus::Reference &account reference
) IT THROW DECL ((IT Bus::Exception))
{

AccountMap: :iterator account iter = m account map.find(

account name
);
if (account iter == m account map.end())
{
cout << "Creating new account: "

<< account name.c str() << endl;

2 AccountImpl * new account = new AccountImpl (
get bus (), account name, 0
)i
3 Service var service =

get bus() ->register transient servant (
*new_account,
"../wsdl/bank.wsdl",
AccountImpl: :SERVICE NAME

// Now put the details for the account into the map so
// we can retrieve it later.

//

AccountDetails details;

details.m service = service.release();

details.m account = new account;

account _iter = m account map.insert (

AccountMap: :value type (account name, details)
) .first;

account reference =
(*account iter).second.m service->get reference ()

78

Registering Servants

The preceding C++ code can be described as follows:

1.

The AccountImpl::SERVICE NAME constant holds the qualified name of
the Accountservice service from the bank WSDL contract. This is the

WSDL service that will be associated with the servant.

This line creates an AccountImpl servant instance, which implements

the Account port type.

The register transient servant () function registers a transient
servant instance, taking the following arguments:

. Servant instance.
¢ WSDL file location.
+ Service QName.

The return value is an IT Bus::Service object, which references a
WSDL service cloned from Accountservice.

79

CHAPTER 2 | Artix Programming Considerations

Multi-Threading

Overview This section provides an overview of threading in Artix and describes the
issues affecting multi-threaded clients and servers in Artix.

In this section This section contains the following subsections:
Client Threading Issues page 81
Servant Threading Models page 83
Setting the Servant Threading Model page 86
Thread Pool Configuration page 89

80

Multi-Threading

Client Threading Issues

Client threading

Single client proxy in two threads

The runtime library is thread-safe, in that multi-threaded applications may
safely use the library from multiple threads simultaneously.

On the other hand, the client stub code is not inherently thread-safe. A
single client proxy instance should not be shared amongst multiple threads
without serializing access to the instance.

Example 34 below is a correctly written example featuring a single client
proxy instance called from two different threads (assume T1func and T2func
are called from two different threads):

Example 34: Single Client Proxy in Two Threads

#include <it ts/mutex.h>
#include <it ts/locker.h>

#include "BaseClient.h"
#include "BaseClientTypes.h"

BaseClient g bc;
IT Mutex mutexBC;

T1func ()

{
IT Locker<IT Mutex> lock (mutexBC);
g_bc.echoVoid() ;

}

T2func ()

{
IT Locker<IT Mutex> lock (mutexBC) ;
g_bc.echoVoid() ;

81

CHAPTER 2 | Artix Programming Considerations

Two client proxies in two threads

82

Example 35 below is another correctly written sample featuring two client
proxy instances called from two different threads (assume T1func and
T2func are called from two different threads):

Example 35: Two Client Proxies in Two Threads

#include "BaseClient.h"
#include "BaseClientTypes.h"
//nested inside BaseClient.h, may be omitted

T1lfunc ()

{
BaseClient bc;
bc.echovoid() ;

T2func ()

{
BaseClient bc;
bc.echovoid() ;

Multi-Threading

Servant Threading Models

Overview

Default threading model

Multi-threaded

o0

Artix supports a variety of different threading models on the server side. The
threading model that applies to a particular service can be specified by
programming (see “Setting the Servant Threading Model” on page 86). This
subsection provides an overview of each of the servant threading models in
Artix, as follows:

® Multi-threaded

® Serialized

® Per-port

® PerThread

® Perlnvocation

The default threading model is multi-threaded.

The multi-threaded threading model implies that a single instance is
created and shared on multiple threads. The servant object must expect to
be called from multiple threads simultaneously.

Figure 3 shows an outline of the multi-threaded threading model. In this
case, the threads all share the same servant instance.

Figure 3: Outline of the Multi-Threaded Threading Model

Work Queue 1 Thread pool for port 1

o—— Port1 |—»|R1|R2|R3| ... |RN |7
\Servant
Service
Work Queue 2 Thread pool for port 2
o—— Port2 |— | R1 [R2 | R3 | .. | RN [— /

83

CHAPTER 2 | Artix Programming Considerations

The serialized threading model implies that access to the servant is
serialized (implemented using mutex locks). The servant object can be
called from no more than one thread at a time.

Figure 4 shows an outline of the serialized threading model. In this case,
the threads all share the same servant instance, but access is serialized.

Figure 4: Outline of the Serialized Threading Model

Work Queue 1 Thread pool for port 1

—»|R1T|R2|R3| .. |[RN |7
MU\ Servant

Work Queue 2 Thread pool for port 2

—» | R1|[R2|[R3| .. |RN \m

Serialized
o—— Port1
o— Service
o—— Port2
Per-port

The per-port threading model implies that a servant instance is created per
port. Each servant object must expect to be called from multiple threads
simultaneously, because each port has an associated thread pool.

Figure 5 shows an outline of the perport threading model. In this case, the
threads in a thread pool share the same servant instance.

Figure 5: Outline of the Per-Port Threading Model

Work Queue 1 Thread pool for port 1 Servant

o—— Port1

NN —

X R2 RS RN WMO

o— Service

Work Queue 2 Thread pool for port 2

o—— Port2

—|[Ri|R2|R3| .. [RN \/\/W\/\»

84

NSNS

PerThread

Multi-Threading

The perThread threading model implies that a servant instance is created
per thread. This allows the servant objects to use thread-local storage,
resources with thread affinity (like MQ), and reduces synchronization
overhead.

Figure 6 shows an outline of the perThread threading model. An Artix
service can have multiple ports, and each of the ports is served by a work
queue that stores the incoming requests. A pool of threads is reserved for
each port, and each thread in the pool is associated with a distinct servant
instance.

Figure 6: Outline of the PerThread Threading Model

Servant

Work Queue 1 Thread pool for port 1 Q

o—— Port1

0 Service

—» | R1 [R2 | R3 | .. |RN /'m

o—— Port2

Work Queue 2 Thread pool for port 2 O

— |R1|R2[R3| .. |RN \m

Perlnvocation

The perInvocation threading model implies that a servant instance is
created for every invocation. In this case, the servant implementation does
not need to be thread-safe, because a servant can be called from no more
than one thread at a time.

The relationship between threads and servants is similar to the case of the
perThread threading model (see Figure 6 on page 85). There is a difference
in servant lifecycle management, however. Each thread is associated with a
servant for the duration of an operation invocation. At the end of the
invocation, the servant instance is destroyed.

85

CHAPTER 2 | Artix Programming Considerations

Setting the Servant Threading Model

Overview Some of the servant threading models are implemented using wrapper
servant classes, which work by overriding the default behavior of a servant’s
dispatch () function. Exceptions to this pattern are the default
multi-threaded model and the per-port threading model. This section
describes how to program the various servant threading models.

How to set a per-port threading The per-port threading model can be enabled by employing the two-step

model style of servant registration (see “Activating a static servant” on page 67 or
“Activating a static servant” on page 75). For example, you could register
distinct servants, corba_servant and soap_servant, against distinct ports,
CorBAPort and soaPPort, using the following code example:

// C++
IT Bus::QName service name("", "BankService",
"http://www.iona.com/bus/demos/bank") ;

IT Bus::Service var bank service =
bus->add service ("bank.wsdl", service name);

bank service->register servant (corba servant, "CORBAPort");

bank service->register servant (soap servant, "SOAPPort");

Wrapper servants The only wrapper servant function that you need is a constructor.
Example 36 shows the constructors for each of the wrapper servant classes.

Example 36: Constructors for the Wrapper Servant Classes

// Ct++
IT Bus::SerializedServant (IT Bus::Servanté& servant);

IT Bus::PerThreadServant (IT Bus::Servanté& servant);

IT_Bus::PerInvocationServant(IT_Bus::Servant& servant) ;

86

How to set a threading model
using wrapper servants

Step 1—Implement the servant
clone() function (if required)

Step 2—Register the wrapper
servant

Multi-Threading

To register a servant with a serialized, PerThread Of PerInvocation
threading model, perform the following steps:

® Step 1—Implement the servant clone() function (if required).
® Step 2—Register the wrapper servant.

If you intend to use a PerThread Or PerInvocation threading model, you
must implement the cione () function in your servant class. The clone ()
function will be called automatically whenever the threading model
demands a new servant instance. Example 37 shows the default
implementation of the clone () function for the servant class, rPortTypeImpl.

Example 37: Default Implementation of the clone() Function

// C++
IT Bus::Servant*
PortTypelmpl::clone () const
{
return new PortTypelImpl (get bus());
}

To register a wrapper servant, you must pass the original servant object to a
wrapper servant constructor and then pass the wrapper servant to the
register servant () function (or the register transient servant ()
function in the case of transient servants).

For example, Example 38 shows how the main function of the bank server
example can be modified to register the BankImpl servant with a PerThread
threading model.

Example 38: Registering a Servant with a PerThread Threading Model
// C++
try {

IT Bus::Bus var bus = IT Bus::init(argc, (char **)argv);

BankImpl my bank (bus) ;
IT Bus::PerThreadServant per thread bank (my bank) ;

OName service name ("", "BankService",
"http://www.iona.com/bus/demos/bank") ;

87

CHAPTER 2 | Artix Programming Considerations

Example 38: Registering a Servant with a PerThread Threading Model

2 bus->register servant(
per_thread bank,
"../wsdl/bank.wsdl",
service name

)i
IT Bus::run();

bus->remove service (service name);

}
catch (IT Bus::Exception& e) { ... }
The preceding C++ code can be described as follows:

1. In this step, the BankImpl servant is wrapped by a new
IT Bus::PerThreadServant instance.

2. When it comes to registering, you must register the wrapper servant,
per_thread bank, instead of the original servant, my bank.

88

Multi-Threading

Thread Pool Configuration

Thread pool settings

Thread pool configuration levels

The thread pool for each port is controlled by the following parameters
(which can be set in the configuration):

® |nitial threads—the number of threads initially created for each port.
® [Low water mark—the size of the dynamically allocated pool of threads
will not fall below this level.

® High water mark—the size of the dynamically allocated pool of threads
will not rise above this level.

Thread pools are configured by adding to or editing the settings in the
ArtixInstallDir/artix/Version/etc/domains/artix.cfg configuration
file. In the following examples, it is assumed that the Artix application
specifies its configuration scope to be sample config.

Note: You can specify the configuration scope at the command line by
passing the switch -ORBname ConfigScopeName to the Artix executable.
Command-line arguments are normally passed to IT Bus::init ().

Thread pools can be configured at several levels, where the more specific
configuration settings take precedence over the less specific, as follows:

® Global level.
® Service name level.
® Qualified service name level.

89

CHAPTER 2 | Artix Programming Considerations

Global level The variables shown in Example 39 can be used to configure thread pools at
the global level; that is, these settings would apply to all services by default.

Example 39: Thread Pool Settings at the Global Level

Artix configuration file
sample config {

Thread pool settings at global level
thread pool:initial threads = "3";
thread pool:low water mark = "5";
thread pool:high water mark = "10";

}i

The default settings are as follows:

thread pool:initial threads = "2";
thread pool:low water mark = "5";
thread pool:high water mark = "25";

Service name level To configure thread pools at the service name level (that is, overriding the
global settings for a specific service only), set the following configuration
variables:

thread pool:initial threads:ServiceName
thread pool:low water mark:ServiceName
thread pool:high water mark:ServiceName

Where servicename is the name of the particular service to configure, as it
appears in the WSDL <service name="ServiceName"> tag.

For example, the settings in Example 40 show how to configure the thread
pool for a service named SessionManager.

Example 40: Thread Pool Settings at the Service Name Level
Artix configuration file
sample config {

Thread pool settings at Service name level

thread pool:initial threads:SessionManager = "1";
thread pool:low water mark:SessionManager = "5";
thread pool:high water mark:SessionManager = "10";

90

Qualified service name level

Multi-Threading

Occasionally, if the service names from two different namespaces clash, it
might be necessary to identify a service by its fully-qualified service name.
To configure thread pools at the qualified service name level, set the
following configuration variables:

thread pool:initial threads:NamespaceURI:ServiceName

thread pool:low water mark:NamespaceURI:ServiceName

thread pool:high water mark:NamespaceURI:ServiceName

Where NamespaceURT is the namespace URI in which servicenName is
defined.

For example, the settings in Example 41 show how to configure the thread
pool for a service named SessionManager in the http://my.tns1/
namespace URI.

Example 41: Thread Pool Settings at the Qualified Service Name Level
Artix configuration file
sample config {

Thread pool settings at Service name level

thread pool:initial threads:http://my.tnsl/:SessionManager =
lll";

thread pool:low water mark:http://my.tnsl/:SessionManager =
ngn,

thread pool:high water mark:http://my.tnsl/:SessionManager =
"1m;

91

CHAPTER 2 | Artix Programming Considerations

Converting with to_string() and from_string()

Overview

Header files

Library

Demonstration

Example struct

92

This section describes how you can use the << operator, the
IT Bus::to string() function and the IT Bus::from string() function to
convert Artix data types to and from a string format.

The following header files must be included in your source code to access
the string conversion APls:

® <it bus/to string.h>

® <it bus/from string.h>

To use the string conversion functions and operators, link your application
with the following library:

® it bus xml.lib, on Windows platforms,
® libit bus xml[.a][.so], on UNIX platforms.

The following demonstration gives an example of how to use the Artix string
conversion functions, to_string() and from string():

ArtixInstallDir/artix/Version/demos/basic/to_string

Example 42 shows the definition of an XML schema type, simpleStruct,
which is used by the string conversion examples in this section.

Example 42: Schema Definition of a SimpleStruct Type

<?xml version="1.0" encoding="UTF-8"7?>

<schema
targetNamespace="http://schemas.iona.com/tests/type test"
xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:tns="http://schemas.iona.com/tests/type test">

<complexType name="SimpleStruct'">
<sequence>
<element name="varFloat" type="float"/>
<element name="varInt" type="int"/>
<element name="varString" type="string"/>

Converting with to_string() and from_string()

Example 42: Schema Definition of a SimpleStruct Type

</sequence>
<attribute name="varAttrString" type="string"/>
</complexType>
</schema>
operator< <() By including the <it bus/to_string.h> header file and linking with the

it _bus_xml library, you can use the << operator to print out any Artix data
type in a string format (assuming that the stub code for this data type is
already linked with your application).

Example using << The following code example shows how to print a simple struct,
first struct, as a string using the << stream operator:

// Ctt
#include <it bus/to_string.h>

int main (int argc, char** argv)
{
SimpleStruct first struct;
first struct.setvarString ("goodbye") ;
first struct.setvarInt (121);
first struct.setvarFloat (3.14);

cout << endl << "Print using operator<<"
<< endl << first struct << endl;

The preceding code produces the following output:

Print using operator<<

<?xml version='1.0' encoding='utf-8'?><to string
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"><varFloat>3.1400
00105e0</varFloat><varInt>121</varInt><varString>goodbye</var
String></to_string>

In the stringified output, the element name defaults to <to_string>.

93

CHAPTER 2 | Artix Programming Considerations

to_string() Example 43 shows the signature of the 1T Bus::to string() function, as
defined in the <it bus/to string.h> header.

Example 43: Signature of the IT_Bus::to_string() Function

// Ct+
namespace IT Bus
{
String IT BUS_XML API
to string(
const AnyTypeé& data,
const QName& element name=default to string element name
)7

You can convert any Artix data type to a string, IT Bus::String, by passing
it as the first argument in to_string() (IT Bus::AnyType is the base class
for all Artix data types). The resulting string has the following general
format:

<?xml version='1l.0' encoding='utf-8'?>

<ElementName
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

</ElementName>

Where the Elementname has one of the following values:

® |f the second parameter of to string() is defaulted, the ElementName
iS to_string.

® If the second parameter of to_string() is a simple string, say foo, the
ElementName is foo.

® If the second parameter of to string() iS an IT Bus::QName, Say
QName ("", "foo", "http://xml.iona.com/IDD/test"), the
ElementName iS ml: foo, where m1 is the prefix associated with the
http://xml.iona.com/IDD/test namespace URI.

94

Converting with to_string() and from_string()

Example using to_string() The following code example shows how to convert a simple struct,
second_struct, to a string using the to_string() function:

// C++
#include <it bus/to_string.h>

int main(int argc, char** argv)
{
SimpleStruct first struct;
second struct.setvarString("hello");
second struct.setvarInt (2);
second struct.setvarFloat (1.1);

String resulting xml = IT Bus::to_ string(

second struct,

QOName ("", "foo", "http://xml.iona.com/IDD/test")
)i

cout << endl << "Resulting XML String:"
<< endl << resulting xml.c str() << endl;

The preceding code produces the following output:

Resulting XML String:

<?xml version='1l.0' encoding='utf-8'?><ml:foo
xmlns:ml="http://xml.iona.com/IDD/test"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"><varFloat>1.1000
00024e0</varFloat><varInt>2</varInt><varString>hello</varStri
ng></ml: foo>

In the stringified output, the element name is defined as m1: foo.

from_string() Example 44 shows the signature of the 1T Bus::from string() function,
as defined in the <it_bus/from string.h> header.

Example 44: Signature of the IT_Bus::from_string() Function
// C++

namespace IT Bus

{
void IT BUS XML API

95

CHAPTER 2 | Artix Programming Considerations

Example 44: Signature of the IT_Bus::from_string() Function

from string(
const String & data,
AnyType & result,
const QName &
element name=default from string element name

You can initialize an Artix data type from an XML element in string format
using the from string() conversion function. Pass the XML string as the
first argument, data, and the data type to initialize as the second parameter,
result.

Example using from_string() The following code example shows how to convert an XML string,

original xml, to a simple struct, simple struct, using the from string()
function:

// CH++
#include <it bus/from string.h>

int main(int argc, char** argv)
{

String original xml = "<?xml version='1.0'
encoding="'utf-8'?><to string
xmlns:xsi=\"http://www.w3.0rg/2001/XMLSchema-instance\"
xmlns:xsd=\"http://www.w3.0rg/2001/XMLSchema\"><varFloat>1.10
0000024e0</varFloat><varInt>2</varInt><varString>hello</varSt
ring></to_string>";

SimpleStruct simple struct;
IT Bus::from string(original xml, simple struct);

cout << endl << "Output values of SimpleStruct C++ type using
accessor methods."

<< endl << " SimpleStruct populated with the following
values:"
<< endl << " SimpleStruct::varString = " <<
simple struct.getvarString().c str()
<< endl << " SimpleStruct::varInt = " <<

simple struct.getvarlnt ()

96

Converting with to_string() and from_string()

<< endl << " SimpleStruct::varFloat = " <<
simple struct.getvarFloat () << endl;

97

CHAPTER 2 | Artix Programming Considerations

Locating Services with UDDI

Overview

Publishing WSDL to UDDI

UDDI URL format

98

A Universal Description, Discovery and Integration (UDDI) registry is a form
of database that enables you to store and retrieve Web services endpoints. It
is particularly useful as a means of making Web services available on the
Internet. Instead of making your WSDL contract available to clients in the
form of a file, you can publish the WSDL contract to a UDDI registry. Clients
can then query the UDDI registry and retrieve the WSDL contract at
runtime.

You can publish your WSDL contract either to a local UDDI registry or to a
public UDDI registry, such as http://uddi.ibm.com from IBM or
http://uddi.microsoft.com/ from Microsoft. To publish your WSDL
contract, navigate to one of the public UDDI Web sites and follow the
instructions there.

A list of public UDDI registries is available from WSINDEX
(http://www.wsindex.org/UDDI/Registries/index.html).

Artix uses UDDI query strings that take the form of a URL:

uddi : <UDDIRegistryEndpointURL>?<QueryString>

The UDDI URL is built up from the following components:

® UDDIRegistryEndpointURL—the endpoint address of a UDDI registry.
This could either be a local UDDI registry (for example,
http://localhost:9000/services/uddi/inquiry) or a public UDDI
registry on the Internet (for example,
http://uddi.ibm.com/ubr/inquiryapi for IBM’s UDDI registry).

® oueryString—a combination of attributes that is used to query the
UDDI database for the Web service endpoint data. Currently, Artix only
supports the tmodelname attribute. An example of a query string is:

tmodelname=helloworld

Within a query component, the characters ;, /, 2, :, @, & =, +, ,,and $
are reserved.

http://www.wsindex.org/UDDI/Registries/index.html
http://www.wsindex.org/UDDI/Registries/index.html
http://www.wsindex.org/UDDI/Registries/index.html

Initializing a client proxy with
uDDI

// C++

Locating Services with UDDI

Examples of valid UDDI URLs

uddi:http://localhost:9000/services/uddi/inquiry?tmodelname=hello
world
uddi:http://uddi.ibm.com/ubr/inquiryapi?tmodelname=helloworld

To initialize a client proxy with UDDI, pass a valid UDDI URL string to the
proxy constructor. For example, if you have a local UDDI registry,
http://localhost:9000/services/uddi/inquiry, where you have
registered the WSDL contract from the HelloWorid demonstration (this
contract is in
InstallDir/artix/Vérsion/demos/basic/hello_world_soap_http/etch
you can initialize the Greeterclient proxy as follows:

IT Bus::Bus var bus = IT Bus::init(argc, argv);

// Instantiate an instance of the proxy
GreeterClient hw("uddi:http://localhost:9000/services/uddi/inquiry?tmodelname=helloworld") ;

String string out;

// Invoke sayHi operation
hw.sayHi (string out);

Configuration

To configure an Artix client to support UDDI, you must add uddi_proxy to
the application’s orb_plugins list (for the C++ plug-in). For example:

Artix Configuration File

my application scope {
orb plugins = [..., "uddi proxy"];

929

CHAPTER 2 | Artix Programming Considerations

Overriding a HTTP Address in a Client

Overview

HTTP address in a WSDL contract

100

Usually, client applications obtain the HTTP address for a remote Web
service by parsing the port element of a WSDL contract. Sometimes,
however, you might need to specify the HTTP address by programming,
thereby overriding the value from the WSDL port element.

This section describes how to program an Artix client to override the HTTP
address, by setting the sTTP ENDPOINT URL context value.

Example 45 shows how to specify the HTTP address in a WSDL contract for
a SOAP/HTTP service. The location attribute in the soap:address element
specifies that the soapservice service is running on the localhost host and
listening on IP port 9000. By default, clients will use this address,
http://localhost: 9000, to contact the remote soapservice. It is possible,
however, to override this address by programming.

Example 45: HTTP Address Specified in a WSDL Contract

<wsdl:definitions name="HelloWorld"
targetNamespace="http://www.iona.com/hello world soap http"
>
<wsdl:service name="SOAPService">
<wsdl:port binding="tns:Greeter SOAPBinding"
name="SoapPort">
<soap:address location="http://localhost:9000" />
<http-conf:client/>
<http-conf:server/>
</wsdl :port>
</wsdl:service>
</wsdl:definitions>

HTTP_ENDPOINT_URL context

How to override the HTTP address

Overriding a HTTP Address in a Client

You can use the HTTP ENDPOINT URL context to program the HTTP address
that a client uses to contact a Web service, thereby overriding the value
configured in the WSDL contract. The mechanism for setting the
HTTP_ENDPOINT URL value is based on Artix contexts (see “Artix Contexts” on
page 179). The programming steps for overriding the HTTP address are as
follows:
1. Obtain a reference to a request context container (of
IT_Bus::ContextContainertypeX

2. Use the request context container to set the HTTP ENDPOINT URL
context.

3. Create a client proxy and invoke an operation on the proxy.

For the first invocation, Artix takes the address in the
HTTP_ENDPOINT URL context and uses it to establish a connection to the
remote service. Subsequent invocations on the proxy continue to send
requests to the same endpoint address.

4. After the first invocation on the proxy, Artix clears the
HTTP_ENDPOINT URL context. Hence, subsequent client proxies created
in this thread revert to using the HTTP address configured in the WSDL
contract.

Example 46 shows how to override the HTTP address to contact a
SOAPService service running on the host, yourhost, and IP port, 5432.

Example 46: Using HTTP_ENDPOINT _URL to Override a HTTP Address

// Ct++
#include <it bus pdk/context.h>
#include <it bus_pdk/context attrs/context constants.h>

using namespace IT Bus;
using namespace IT ContextAttributes;

ContextRegistry* context registry =
bus->get context registry();

ContextCurrent& context current =
context registry->get current();

ContextContainer* request contexts =

101

CHAPTER 2 | Artix Programming Considerations

102

Example 46: Using HTTP_ENDPOINT _URL to Override a HTTP Address

context current.request contexts();

IT Bus::AnyType* any string = request contexts->get context (
IT ContextAttributes::HTTP_ENDPOINT URL,
true

);

IT Bus::StringHolder* str holder =
dynamic cast<IT Bus::StringHolder*>(any string);

str holder->set ("http://yourhost:5432") ;

// Open a connection to the SOAPService service at yourhost:5432.
GreeterClient hw;
hw.sayHi ("Hello World!") ;

The steps for obtaining a reference to a request context follow a standard
pattern. For full details about how to program with contexts, see “Artix
Contexts” on page 179.

In this chapter

CHAPTER 3

Artix References

An Artix reference represents an endpoint. Because references
can be passed around as parameters, they provide a
convenient and flexible way of identifying and locating specific
services.

This chapter discusses the following topics:

Introduction to References page 104
The WSDL Publish Plug-In page 106
References to Transient Services page 113
Programming with References page 116

103

CHAPTER 3 | Artix References

Introduction to References

Overview An Artix reference is an object that encapsulates endpoint and contract
information for a particular WSDL service. References have the following
features:
® A reference represents a <wsdl:service>.

®* Areference is a built-in type in Artix.

® References can be sent across the wire as parameters of or return

values from operations.

® References are fully self-describing. They contain endpoint and
contract information in an optimized manner.

® References are the building blocks for the Artix Locator and the
Session Manager services, because they enable you to create
directories of Web services.

® References in Artix are protocol and transport neutral.

Note: The on-the-wire format of Artix 3.x references differs from the
on-the-wire format of Artix 2.x references. By default, references generated
by Artix 3.x applications cannot be parsed by Artix 2.x applications. If you
need to enable interoperability between Artix 3.x and Artix 2.x, however,
you can force Artix 3.x applications to generate the old on-the-wire format
by including the following line in your Artix configuration file:

bus:reference 2.1 compat = "true";

Note: The Artix 2.x (and later) reference definition differs from the Artix
1.x reference definition. In Artix 1.x a reference is associated with a WSDL
port, whereas in Artix 2.x a reference is associated with a WSDL service
(which could contain multiple ports). Artix 2.x references are in line with
the way WSDL 2.0 will handle service references.

Note: You cannot use references with rpc-encoded bindings, because
references contain attributes, which are not compatible with rpc-encoding.

104

Contents of an Artix reference

XML representation of a reference

C++ representation of a
reference

Introduction to References

An Artix reference encapsulates the following data:

Service QName—the qualified name of the service with which the

reference is associated.

WSDL location URL—the server's copy of the WSDL contract. In a

reference, the WSDL location URL serves two distinct purposes:

+ Service identification—the service is uniquely identified by the
combination of a WSDL location URL and a service QName.

+ WSDL backup—allows the reference to be fully self-describing.

Note: |If you have loaded the wsdl publish plug-in on the server
side, the WSDL location URL will point at a dynamically updated
copy of the server's WSDL contract. See page 106.

List of ports—an unbounded sequence of port elements, each of which
contains the following data:

¢+ Port name—identifying the WSDL port.

+ Binding QName—the qualified name of the binding with which
the port is associated.

¢+ Properties—a list of opaque properties, which makes the port
element arbitrarily extensible. The properties list is typically used
to hold transport-specific data and qualities of service. For
example, if the port uses a SOAP binding, the properties would
include a soap:address element specifying a host and IP port.

The XML representation of a reference is defined by the following schema:
ArtixInstallDir/artix/Version/schemas/references.xsd

The schema is also available online at:
http://schemas.iona.com/references/references.xsd

The XML representation is used when marshaling or unmarshaling a
reference as a WSDL parameter.

In C++, an Artix reference is represented by an instance of the
IT Bus::Reference Class.

105

http://schemas.iona.com/references/references.xsd

CHAPTER 3 | Artix References

The WSDL Publish Plug-In

Overview

Loading the WSDL publish plug-in

106

It is strongly recommended that you activate the WSDL publish plug-in for
any applications that generate and export Artix references. To use
references, the client must have access to the WSDL contract referred to by
the reference. The simplest way to accomplish this is to use the

wsdl publish plug-in.

By default, a reference’s WSDL location URL would reference a local file on
the server system. This suffers from the following drawbacks:

® C(Clients are not able to access the server's WSDL file, unless they
happen to share the same file system.

®* Endpoint information (the physical contract) might be incomplete,
because the server updates transport properties at runtime.

In both of these cases, the client needs to have a way of obtaining the
dynamically-updated WSDL contract directly from the remote server. The
simplest to achieve this is to configure the server to load the WSDL publish
plug-in. The WSDL publish plug-in automatically opens a HTTP port, from
which clients can download a copy of the server's in-memory WSDL model.

To load the WSDL publish plug-in, edit the artix.cfg configuration file and
add wsdl publish to the orb plugins list in your application’s configuration
scope. For example, if your application’s configuration scope is
demos . server, you might use the following orb plugins list:

Artix Configuration File

demos {
server
{
orb plugins = ["xmlfile log stream", "wsdl publish"];

plugins:wsdl publish:prerequisite plugins = ["at http"];

Generating references without the
WSDL publish plug-in

WSDL model

The WSDL Publish Plug-In

Figure 7 gives an overview of how an Artix reference is generated when the
WSDL publish plug-in is not loaded.

Figure 7: Generating References without the WSDL Publish Plug-In

Artix Server

IT Bus::Bus

Reference
h 4
WSDL WSDL
—————— K Readand parse | ——=
WSDL Model WSDL File

In this case, references generated by the 1T Bus: :Bus object would, by
default, have their WSDL location set to point at the local WSDL file.

The Artix server reads and parses the WSDL file as it starts up, creating a
WSDL model in memory. Because the WSDL model can be updated
dynamically by the server, there may be some significant differences
between the WSDL model and the WSDL file.

When an Artix server starts up, it reads the WSDL files needed by the
registered services—for example, in Figure 7, a single WSDL file is read and
parsed. After parsing, the WSDL definitions exist in memory in the form of a
WSDL model. The WSDL model is an XML parse tree containing all the
WSDL definitions imported into a particular 1T Bus::Bus instance at
runtime. Different 1T Bus: :Bus instances have distinct WSDL models.

The WSDL model is dynamically updated by the Artix server to reflect
changes in the physical contract at runtime. For example, if the server
dynamically allocates an IP port for a particular port on a WSDL service, the
port's addressing information is updated in the WSDL model.

107

CHAPTER 3 | Artix References

Generating references with the
WSDL publish plug-in

Artix Client

When the WSDL publish plug-in is loaded, the Artix server opens a HTTP
port which it uses to publish the in-memory WSDL model. Figure 8 gives an
overview of how an Artix reference is generated when the WSDL publish
plug-in is loaded.

Figure 8: Generating References with the WSDL Publish Plug-In

Artix Server

IT Bus::Bus

Reference l Reference

WSDL publish port WsbL wsDL

» O Read and parse

WSDL Model WSDL File

Specifying the WSDL publish port

108

In this case, references generated by the 1T Bus: :Bus object have their
WSDL location set to the following URL:

http://hostname: WSDLPublishPort/QueryString

Where hostname is the server host, wspr.rublishport is an IP port used
specifically for the purpose of serving up WSDL contracts, and gueryString
is a string that requests a particular WSDL contract (see “Querying the
WSDL publish plug-in” on page 109).

If a client accesses the WSDL location URL, the server will convert the

WSDL model to XML on the fly and return the resulting WSDL contract in a
HTTP message.

If you need to specify the WSDL publish port explicitly, set the
plugins:wsdl publish:publish port variable in the Artix configuration file.

Querying the WSDL publish
plug-in

Using the WSDL publish HTML
menu

The WSDL Publish Plug-In

Assume you configured wsdl publish using the following values on a
system with the IP address 10.1.2.3:

scope
{
plugins:wsdl publish:publish port = 1234;
plugins:wsdl publish:hostname = "ipaddress";
}i

The wsdl_publish base URL will be http://10.1.2.3:1234. Requests on

the following types of URLs will be serviced:

o http://10.1.2.3:1234/get wsdl, http://10.1.2.3:1234/get _wsdl/,
http://10.1.2.3:1234/get_wsdl?, or
http://10.1.2.3:1234/get_wsdl/? will return the HTML Menu. See
“Using the WSDL publish HTML menu” on page 109.

° http://10.1.2.3:1234/get _wsdl?service=name&scope=EncodedUrl
will return the contract for the service specified in the query string.

® http://10.1.2.3:1234/get wsdl?stub=EncodedUrl will return the
contract for IONA specific services.

® http://10.1.2.3:1234/inspection.wsil Will return a WSIL document
containing information about active web services. See “WSIL support”
on page 110.

® http://10.1.2.3:1234/get wsdl/context/filename.wsdl Will return
the specified wsdl contract. The value of context is generated at
runtime.

® http://10.1.2.3:2000/service Or
http://10.1.2.3:2000/service?wsdl Will return the contract for the
specified service. The value of the URL is the same as the one
specified in the WSDL as the soap:address of the service.

If an invalid URL is provided, wsdl _publish will return an HTTP 404 (Not

Found) Error.

The HTML menu provided by wsdl_publish is an HTML page that contains
links to the contracts of all services activated on the current bus associated
with the specified wsdl_publish instance.

109

CHAPTER 3 | Artix References

Assuming an it_container instance is started on port 2000. The HTML
menu available at http://10.1.2.3:1234/get_wsdl will look like:

WSDL Services available

ContainerService (http://ws.iona.com/container)

ContainerService (http://ws.iona.com/container)

WSIL support The WSIL specification, available at
http://www-128.ibm.com/developerworks/library/specification/ws-wsilspec,

provides a standard way of inspecting a web service and getting the
contracts of active web services.

Using the example system above the WSIL document is available from
http://10.1.2.3:2000/inspection.wsil and has the following content:

<?xml version="1.0"7?>

<inspection targetNamespace="http://schemas.xmlsoap.org/ws/2001/10/inspection/"
xmlns="http://schemas.xmlsoap.org/ws/2001/10/inspection/"

xmlns:wsilwsdl="http://schemas.xmlsoap.org/ws/2001/10/inspection/wsdl/">
<service>

<description referencedNamespace="http://schemas.xmlsoap.org/wsdl/"

location="http://10.1.2.3:2000/get wsdl/opt/IONA/artix/3.0/wsdl/container.wsdl">
<wsilwsdl:reference>

<wsilwsdl:referencedService xmlns:nsl="http://ws.iona.com/container">
nsl:ContainerService
</wsilwsdl:referencedService>
</wsilwsdl:reference>
</description>
</service>
<service>

<description referencedNamespace="http://schemas.xmlsoap.org/wsdl/"

location="http://10.1.2.3:2000/services/container/ContainerService?wsdl">
<wsilwsdl:reference>

<wsilwsdl:referencedService xmlns:nsl="http://ws.iona.com/container">
nsl:ContainerService
</wsilwsdl:referencedService>
</wsilwsdl:reference>
</description>
</service>
</inspection>

110

http://www-128.ibm.com/developerworks/library/specification/ws-wsilspec/

Usefulness of the published
WSDL model

The WSDL Publish Plug-In

In most cases, clients do not need to download the published WSDL model

at all. Published WSDL is primarily useful for dynamic clients that try to

invoke an operation on the fly. Because dynamic clients are not compiled

with Artix stub code, the only way they can obtain the logical contract is by

downloading the published WSDL model.

Whether or not you can use the physical part of the WSDL model depends

on how the corresponding servant is registered on the server side:

® If registered as static, the physical contract is available from the WSDL
model.

® If registered as transient, the physical contract is available only from
the reference, not from the WSDL model. The associated reference
encapsulates a cloned service which is generated at runtime and is not
included in the WSDL model. See “Registering Servants” on page 64.

111

CHAPTER 3 | Artix References

Multiple Bus instances

112

Occasionally, you might need to create an Artix server with more than one
IT Bus::Bus instance. In this case, you should be aware that separate
WSDL models are created for each Bus instance and separate HTTP ports
are also opened to publish the WSDL models—see Figure 9.

Figure 9: WSDL Publish Plug-In and Multiple Bus Instances

Artix Server
IT Bus::Bus
WSDL publish port WSDL
i =
WSDL Model
.
IT Bus::Bus
IT_
WSDL publish port WSDL
i =
WSDL Model
-

References to Transient Services

References to Transient Services

Overview

Creating transient services

transient servant
<service>

<port>

“—> L

</port>

/ﬂ </service>

IT Bus::Servant

Sometimes you need to be able to define an unlimited number of services,
where all of the services are associated with the same port type. For
example, a port type could be defined to represent bank account objects.
Because each service instance is meant to represent a single user’s account,
you would need to define an unlimited number of account services. The
service must, therefore, be defined as a transient service.

A transient service is a dynamically defined service which is created when
you call the IT Bus::Bus::register transient servant () function. For
details, see “Registering a Transient Servant” on page 72.

Figure 10 gives you an overview of the mechanism that Artix employs to
create transient services.

Figure 10: Cloning a Transient Service from a Template Service

WSDL Contract

<portType>

</portType>
o — logical contract
<binding>

</binding>

<service>
<port>

. — template service
</port>

</service>

Clone service

~_

transient service

N

IT_WSDL::WSDLService

113

CHAPTER 3 | Artix References

Template service

Cloning a transient service

Examples of transient services

114

A prerequisite for creating transient services is that you define a template
service in the WSDL contract. A template service is distinguished by having
a port address that is a placeholder (otherwise, the template is like an
ordinary service element).

For example, the placeholder for a HTTP port address is any URL of the
form http://Hostname: Port (Or https://Hostname: Port for a secure
service).

A transient service is created whenever the application registers a servant as

transient, using the register transient service () function.

To create the new transient service, Artix selects the template service whose

service QName and port name match the values specified to

register transient service (). Artix then clones a transient service from

the template, making the following changes:

®* Aunique service QName, obtained by mangling the original template
service name, is generated for the transient service.

® The port address is affected in a transport-dependent manner:

s HTTP transport—the unique service name is appended to the
placeholder URL.

¢+ CORBA and Tunnel transports—the ior: placeholder IOR is
replaced by a unique IOR.

Transient services are currently supported by the HTTP, CORBA and Tunnel
transports. For example, you could define the following kinds of template:

® SOAP template service.
® CORBA template service.

References to Transient Services

SOAP template service Example 47 shows an example of a SOAP service that could be used as a
template for cloning transient SOAP services.

Example 47: Example of a HTTP Template Service

<service name="ServiceName">
<port name="PortName" binding="BindingName">
<soap:address location="http://localhost:0" />

</port>
</service>

The SOAP template service has the following features:

® The serviceName and PortName are the same as the values passed to

the IT Bus::Bus::register transient servant () function in the
application code.

The location attribute of <soap:address> must be initialized with a
placeholder URL, http://Hostname: Port. If the URL has the special
form, http://localhost:0, Artix substitutes the actual host name and
a dynamically allocated IP port.

CORBA template service Example 48 shows an example of a CORBA service that could be used as a
template for cloning transient CORBA services.

Example 48: Example of a CORBA Template Service

<service name="ServiceName">
<port name="PortName" binding="BindingName">
<corba:address location="ior:" />

</port>
</service>

The CORBA template service has the following features:

® The serviceName and PortName are the same as the values passed to

the IT Bus::Bus::register transient servant () function in the
application code.

The location attribute of <corba:address> must be initialized with the
ior: placeholder IOR.

115

CHAPTER 3 | Artix References

Programming with References

Overview This section explains how to program with Artix references, using a simple
bank application as a source of examples. The bank server supports a
create account () operation and a get_account () operation, which return
references to account objects.

To program with references, you need to know how to generate references
on the server side and how to resolve references on the client side.

In this section This section contains the following subsections:
Bank WSDL Contract page 117
Creating References page 126
Resolving References page 130

116

Programming with References

Bank WSDL Contract

Overview

The XML Reference type

The references XML schema

The Bank example

This subsection describes the Bank WSDL contract, which demonstrates a
typical scenario where Artix references would be used.

Artix defines a proprietary XML schema that defines the reference type for
use within WSDL contracts. The reference type is RefPrefix:Reference,
where rRefPrefix is associated with the following namespace URI:

http://schemas.iona.com/references

The definition of the references schema can be found in the following file:
ArtixInstallDir/artix/Version/schemas/references.xsd

The schema is also available online at:
http://schemas.iona.com/references/references.xsd

Figure 11 shows an overview of the Bank example, illustrating how the
Bank service uses references to give a client access to a specific account.

Figure 11: Using Bank to Obtain a Reference to an Account

Client Server
Bank proxy @ get account () Bank servant
O—

Account proxy

®

Account servant
@ get_balance () -
O
@ _______________ Account DB

117

http://schemas.iona.com/references/references.xsd

CHAPTER 3 | Artix References

The Bank WSDL contract

118

1

The preceding Bank example can be explained as follows:

1.

The client calls get_account () on the Bankservice service to obtain a
reference to a particular account, acciame.

The Bankservice creates a reference to the accname account and
returns this reference in the response to get_account ().

The client uses the returned reference to initialize an AccountClient
proxy.

The client invokes operations on the account service through the
AccountClient Proxy.

Example 49 shows the WSDL contract for the Bank example that is
described in this section. There are two port types in this contract, Bank and
Account. For each of the two port types there is a SOAP binding,
BankBinding and AccountBinding.

Example 49: Bank WSDL Contract

<?xml version="1.0" encoding="UTF-8"7?>
<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://www.iona.com/bus/demos/bank"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsdl="http://socapinterop.org/xsd"
xmlns:stub="http://schemas.iona.com/transports/stub"
xmlns:http="http://schemas.iona.com/transports/http"

xmlns:http-conf="http://schemas.iona.com/transports/http/configu

ration"
xmlns: fixed="http://schemas.iona.com/bindings/fixed"

xmlns:iiop="http://schemas.iona.com/transports/iiop tunnel"

xmlns:corba="http://schemas.iona.com/bindings/corba"

xmlns:nsl="http://www.iona.com/corba/typemap/BasePortType.idl
xmlns:references="http://schemas.iona.com/references"
xmlns:mg="http://schemas.iona.com/transports/mg"
xmlns:routing="http://schemas.iona.com/routing"
xmlns:msg="http://schemas.iona.com/port/messaging"
xmlns:bank="http://www.iona.com/bus/demos/bank"
targetNamespace="http://www.iona.com/bus/demos/bank"
name="BaseService" >

<types>

Programming with References

Example 49: Bank WSDL Contract

<xsd:import
schemalocation="../../../../../schemas/references.xsd"
namespace="http://schemas.iona.com/references"/>
<schema elementFormDefault="qualified"
targetNamespace="http://www.iona.com/bus/demos/bank"
xmlns="http://www.w3.0rg/2001/XMLSchema">
<complexType name="AccountNames">
<sequence>
<element maxOccurs="unbounded" minOccurs="0"
name="name" type="xsd:string"/>
</sequence>
</complexType>
</schema>
</types>

<message name="list accounts" />
<message name="list accountsResponse">

<part name="return" type="bank:AccountNames"/>
</message>

<message name='"create account">

<part name="account name" type="xsd:string"/>
</message>
<message name='"create accountResponse'>

<part name="return" type="references:Reference"/>
</message>

<message name="get account">

<part name="account name" type="xsd:string"/>
</message>
<message name="get accountResponse">

<part name="return" type="references:Reference"/>
</message>

<message name="delete account">

<part name="account name" type="xsd:string"/>
</message>
<message name="delete accountResponse" />

<message name="get balance"/>
<message name="get balanceResponse">
<part name="balance" type="xsd:float"/>

</message>

<message name="deposit">

119

CHAPTER 3 | Artix References

Example 49: Bank WSDL Contract

<part name="addition" type="xsd:float"/>
</message>

<message name="depositResponse"/>

<portType name="Bank'>
<operation name="list accounts">
<input name="list accounts"
message="tns:create account"/>
<output name="list accountsResponse"
message="tns:list accountsResponse"/>

</operation>

5 <operation name='"create account'">
<input name='"create account"
message="tns:create account"/>
<output name="create accountResponse"
message="tns:create accountResponse"/>

</operation>

6 <operation name='"get account">
<input name="get account" message="tns:get account"/>
<output name="get accountResponse"
message="tns:get accountResponse"/>
</operation>

<operation name="delete account">
<input name="delete account"
message="tns:delete account"/>
<output name="delete accountResponse"
message="tns:delete accountResponse"/>
</operation>
</portType>

<portType name="Account'>
<operation name="get balance">
<input name="get balance" message="tns:get balance"/>
<output name="get balanceResponse"
message="tns:get balanceResponse"/>
</operation>
<operation name="deposit">
<input name="deposit" message="tns:deposit"/>
<output name="depositResponse"
message="tns:depositResponse" />

120

Programming with References

Example 49: Bank WSDL Contract

</operation>
</portType>

<binding name="BankBinding" type="tns:Bank">
<soap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="list accounts">
<soap:operation
soapAction="http://www.iona.com/bus/demos/bank"
style="rpc"/>
<input>
<soap:body use="literal"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://www.iona.com/bus/demos/bank" />
</input>
<output>
<soap:body use="literal"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://www.iona.com/bus/demos/bank" />
</output>
</operation>
<operation name="create account">
<soap:operation
soapAction="http://www.iona.com/bus/demos/bank" style="rpc"/>
<input>
<soap:body use="literal"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://www.iona.com/bus/demos/bank" />
</input>
<output>
<soap:body use="literal"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://www.iona.com/bus/demos/bank" />
</output>
</operation>
<operation name="get account">
<soap:operation
soapAction="http://www.iona.com/bus/demos/bank" style="rpc"/>
<input>
<soap:body use="literal"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://www.iona.com/bus/demos/bank" />
</input>
<output>

121

CHAPTER 3 | Artix References

122

Example 49: Bank WSDL Contract

<soap:body use="literal"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://www.iona.com/bus/demos/bank" />
</output>
</operation>
<operation name="delete account">
<soap:operation
soapAction="http://www.iona.com/bus/demos/bank" style="rpc"/>
<input>
<soap:body use="literal"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://www.iona.com/bus/demos/bank" />
</input>
<output>
<soap:body use="literal"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://www.iona.com/bus/demos/bank"/>
</output>
</operation>
</binding>

<binding name="AccountBinding" type="tns:Account">
<soap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="get balance">
<soap:operation
soapAction="http://www.iona.com/bus/demos/bank" style="rpc"/>
<input>
<soap:body use="literal"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://www.iona.com/bus/demos/bank"/>
</input>
<output>
<soap:body use="literal"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://www.iona.com/bus/demos/bank" />
</output>
</operation>
<operation name="deposit'">
<soap:operation
soapAction="http://www.iona.com/bus/demos/bank" style="rpc"/>
<input>
<soap:body use="literal"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://www.1iona.com/bus/demos/bank" />

Programming with References

Example 49: Bank WSDL Contract

</input>
<output>
<soap:body use="literal"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://www.iona.com/bus/demos/bank" />
</output>
</operation>
</binding>
<service name="BankService">
<port name="BankPort" binding="tns:BankBinding">
<soap:address
location="http://localhost:0/BankService/BankPort/" />
</port>
</service>
<service name="BankServiceRouter">
<port name="BankPort" binding="tns:BankBinding">
<soap:address

location="http://localhost:0/BankService/BankPort/"/>
</port>

</service>

<service name="AccountService">
<port name="AccountPort" binding="tns:AccountBinding">

<soap:address location="http://localhost:0" />

</port>

</service>

</definitions>

The preceding WSDL contract can be described as follows:

1. The <definitions> tag associates the references prefix with the
http://schemas.iona.com/references hamespace URI. This means
that the reference type is identified as references:Reference.

2. The xsd:import imports the <references:Reference> type definition
from the references schema, references.xsd. You must edit this line if
the references schema is stored at a different location relative to the
bank WSDL file.

Note: Alternatively, you could cut and paste the references schema
directly into the WSDL contract at this point, replacing the
xsd:import element.

123

CHAPTER 3 | Artix References

124

The create_accountResponse message (which is the out parameter of
the create account operation) is defined to be of

references:Reference type.

The get_accountResponse message (which is the out parameter of the
get_account operation) is defined to be of references:Reference
type.

The create account operation defined on the Bank port type is defined
to return a references:Reference type.

The get_account operation defined on the Bank port type is defined to
return a references:Reference type.

The information contained in this <service name="BankService">
element is approximately the same as the information that is held in a
BankService reference, apart from the addressing information in the
soap:address element.

The Bankservice reference generated at runtime replaces the
http://localhost:0/BankService/BankPort/ SOAP address with
http://host _name:IP port/BankService/BankPort/ where
host_name and IP port are substituted with the port address that the
server is actually listening on (dynamic port allocation).

Note: If the IP port in the WSDL contract is non-zero, Artix uses the
specified port instead of performing dynamic port allocation. The
hostname would still be substituted, however.

Programming with References

The information contained in this <service name="AccountService">
element serves as a prototype for generating AccountsService
references.

Because the account objects are registered as transient servants, the
corresponding AccountService references are cloned from the
AccountService service at runtime by altering the following data:

+ The service QName is replaced by a transient service QName,
which consists of Accountservice concatenated with a unique 1D
code.

¢+ The nttp://localhost:0 SOAP address is replaced by
http://host name:IP port/TransientURLSuffix, where
host_name and IP port are set to the port address that the server

is listening on and TransientURLSuffix is a suffix that is unique
for each transient reference.

125

CHAPTER 3 | Artix References

Creating References

Overview

Factory pattern

Creating a reference from a static
servant

126

This subsection describes how to create Artix references, which can be
generated on the server side in order to advertise a service’s addressing
details to clients.

The following topics are discussed in this section:
® Factory pattern.

® Creating a reference from a static servant.

® Creating a reference from a transient servant.
® (Creating a reference from a WSDL contract.

References are usually created in the context of a factory pattern. This
pattern involves at least two kinds of object:

® One type of object, to which the references refer.

® Another type of object, the factory, which generates references to the
first type.

For example, the Bank is a factory that generates references to Accounts.

Example 50 shows how to create a Bankservice reference from a static
servant, BankImpl.

Example 50: Creating a Reference from a Static Servant
// C++
try {
IT Bus::Bus var bus = IT Bus::init(argc, (char **)argv);
IT Bus: :OName service_name (
"" - "BankService", "http://www.iona.com/bus/demos/bank"

)7

BankImpl my bank (bus);

Programming with References

Example 50: Creating a Reference from a Static Servant

bus->register servant (
my bank,
"../wsdl/bank.wsdl",
service name,
"BankPort"

)i

IT Bus::Service var service = bus->get service(service name);

IT Bus::Reference& bank reference = service->get reference();

The preceding C++ code can be described as follows:

1.

This line creates a BankImpl Sservant instance, which implements the
Bank port type.

The register servant () function registers a static servant instance,
taking the following arguments:

. Servant instance.
¢ WSDL file location.
+ Service QName.

+ Port name (optional).

Note: If the port name argument is omitted, all of the service's ports
will be activated.

The return value is an IT Bus::Service object, which references the
original Bankservice WSDL service.

Call 1T Bus::Bus::get service () to get a pointer to the service
object.

The get_reference () function returns an Artix reference for the service
object, service.

127

CHAPTER 3 | Artix References

Creating a reference from a Example 51 gives the implementation of the BankImpl::create account (),
transient servant function which shows how to create an accountservice reference from a
transient servant, AccountImpl.

Example 51: Creating a Reference from a Transient Servant

// Ct++
void
BankImpl::create account (
const IT Bus::String &account name,
IT Bus::Reference &account reference
) IT THROW DECL ((IT Bus::Exception))
{
AccountMap: :iterator account iter = m account map.find(
account name
)7
if (account iter == m account map.end())

{

cout << "Creating new account:
<< account name.c str() << endl;

1 AccountImpl * new account = new AccountImpl (
get bus (), account name, 0
)i
2 Service var service =

get bus()->register transient servant (
*new_account,
"../wsdl/bank.wsdl",
AccountImpl: : SERVICE NAME

// Now put the details for the account into the map so
// we can retrieve it later.

//

AccountDetails details;

details.m service = service.release();

details.m account = new account;

account iter = m account map.insert (

AccountMap: :value type (account name, details)
) .first;

3 account reference
= (*account iter).second.m service->get reference ()

128

Creating a reference from a WSDL
contract

Programming with References

Example 51: Creating a Reference from a Transient Servant

The preceding C++ code can be described as follows:

1. This line creates an AccountImpl servant instance, which implements
the Account port type.

2. The register transient servant () function registers a transient
servant instance, taking the following arguments:

+ Servant instance.

+ WSDL file location.

+ Service QName.

+ Port name (optional).

Note: If the port name argument is omitted, all of the service's ports
will be activated.

The return value is an 1T Bus::Service object, which references a
WSDL service cloned from accountService.

3. The get_reference() function returns an Artix reference for the
account service object.

You can create a reference directly from an IT Bus::wSDLService object,
which is the Artix representation of a parsed wsd1:service element. Call the
IT Bus::Bus::populate endpoint reference () function as follows:

// C++
IT Bus::QName service gname ("", ..., ...);

const WSDLService * wsdl service =
bus->get service contract (service gname);
IT Bus::Reference result;

bus->populate endpoint_ reference (
*wsdl_service,
result

)

129

CHAPTER 3 | Artix References

Resolving References

Overview

Initializing a client proxy with a
reference

Client example

130

To a client, an IT Bus::Reference Object is just an opaque token that can
be used to open a connection to a particular Artix service. The basic usage
pattern on the client side, therefore, is for the client to obtain a reference
from somewhere and then use the reference to initialize a proxy object.

Client proxies include a special constructor to initialize the proxy from an
IT Bus::Reference Object. For example, the AccountClient proxy class
includes the following constructor:

// C++
AccountClient (const IT Bus::Reference&);

The data to initialize the AccountClient object is obtained partly from the
IT Bus::Reference Object (service and port details) and partly from the
WSDL contract (port type and binding details).

Example 52 shows some sample code from a client that obtains a reference
to an Account and then uses this reference to initialize an accountclient
proxy object.

Example 52: Client Using an Account Reference

// Ct+

é;gkClient bankclient;

// 1. Retrieve an account reference from the remote Bank object.
IT Bus::Reference account reference;

bankclient.get account("A. N. Other", account reference) ;

// 2. Resolve the account reference.
AccountClient account (account reference) ;

IT Bus::Float balance;
account.get balance (balance) ;

In this chapter

CHAPTER 4

Callbacks

An Artix callback is an implementation pattern, where a client
implements a WSDL service (thus exhibiting hybrid
client/server behavior). Because the server initially does not
know about the client's service, the client must transmit a
callback reference to the server (that is, register the callback).
The server is then able to call back on the client's service at a
later time.

This chapter discusses the following topics:

Overview of Artix Callbacks page 132
Routing and Callbacks page 134
Callback WSDL Contract page 138
Client Implementation page 141
Server Implementation page 145

131

CHAPTER 4 | Callbacks

Overview of Artix Callbacks

Overview The callback example described in this section is based on Artix callback
demonstration, which is located in the following directory:
ArtixInstallDir/artix/Version/demos/callbacks/basic callback
Callbacks rely, essentially, on Artix references. Using references, the client
can encapsulate the details of its callback service and pass on these details
to the server in a reference parameter. Figure 12 illustrates how this process
works.

Figure 12: Overview of the Callback Demonstration

Artix Client Artix Server

i e

register callback (Ref) » Serverimpl
~ . >

®

ServerSayHi("...")

A

Clientimpl

WSDL WSDL

=
w
=]
-
u}
o
=
w
w)
-
i}
)

132

Callback steps

Threading

Overview of Artix Callbacks

Figure 12 on page 132 shows the callback proceeding according to the

following steps:

1. After the basic initialization steps, including registration of the
ClientImpl Servant and clientService service, the client generates a
reference for the callback service.

The client callback service is activated and capable of receiving
incoming invocations as soon as it is registered.

2. Theclient calls register callback() on the remote server, passing
the reference generated in the previous step.

3. When the server receives the callback reference, it immediately calls
back on the clientImpl servant by invoking serverSayHi ().

Note: In a more realistic application, it is likely that the server would
cache a copy of the callback reference and call back on the client at a
later time, instead of calling back immediately.

By default, both the client and the server allocate a pool of threads to
process incoming requests (see “Multi-Threading” on page 80). Hence, the
client’s callback is called in a pool thread, not in a user thread, and the
callback implementation must be synchronized appropriately.

One of the positive side effects of this policy is that the callback scenario
shown in Figure 12 on page 132 is not subject to deadlock.

Note: In the current example, it is also significant that the client service is
activated as soon as it is registered. Otherwise the code shown in
Example 54 on page 141 would lead to deadlock.

133

CHAPTER 4 | Callbacks

Routing and Callbacks

Overview

134

CORBA Client

Callbacks are fully compatible with Artix routers. Reference that passes
through a router are automatically proxified, if necessary. Proxification
means that the router automatically creates a new route for the references
that pass through it.

Note: Proxification is not necessary, if the transport protocols along the
route are the same. For same protocol routing, proxification is disabled by
default.

For example, consider the callback routing scenario shown in Figure 13. In
this scenario, a SOAP/HTTP Artix server replaces a legacy CORBA server. As
part of a migration strategy, legacy CORBA clients can continue to
communicate with the new server by interposing an Artix router to translate
between the [IOP and SOAP/HTTP protocols.

Figure 13: Overview of a Callback Routing Scenario

RtrCorbgPort

]

register_callback (Ref) V

Callback IDL

Artix Router

SvrSoapPort

Artix Server

callback (Ref) V

Router Contract

register_
» O— oot — 1 » O—
~ Proxification =
= [CORBA Ref|—=>[SOAP Ref | -
ServerSayHi () ServerSayHi () N SOAP Ref
—O 4+——1— —-O0 <« .
A SN A
CltCorbaPort RtrSdapPorT

Target Contract

Contracts

Callback IDL

Target contract

Router contract

Routing and Callbacks

The applications in Figure 13 are associated with three distinct, but related,
contracts as follows:

® (Callback IDL.
® Target contract.
® Router contract.

The CORBA client uses a contract coded in OMG Interface Definition
Language (IDL). This IDL contract defines both the target interface
(implemented by the Artix server) and the callback interface (implemented
by the CORBA client).

In this scenario, the target contract is generated from the callback IDL using
the IDL-to-WSDL compiler. Hence, this WSDL contract contains both the
target interface and the callback interface as WSDL port types.

The target contract also contains a single WSDL service description, which
includes the svrsoapPort port.

The router contract holds details about the CORBA side of the application as

well as the SOAP/HTTP side, including the following information:

® Target WSDL port type.

® (allback WSDL port type.

® CORBA WSDL binding for the target.

® SOAP/HTTP WSDL binding for the target.

® CORBA WSDL service, containing the RtrCorbaPort port.

® SOAP/HTTP WSDL service, containing the svrsoapport port.

® Template SOAP/HTTP WSDL service, needed for generating the
transient endpoint with Rtrsoapport port.

® Route information.

You can generate a router contract using the Artix Designer GUI tool. To

specify the location of the generated router contract, you can set the

plugins:routing:wsdl url configuration variable in the router scope of the
artix.cfg configuration file.

135

CHAPTER 4 | Callbacks

Routes As shown in Figure 13 on page 134, the following routes are created in this
scenario:
® Client-Router-Target route—this route is documented explicitly in the
router contract. The source port, RtrCorbaPort, and the destination
port, svrsoapPort, are described in the router contract.

For example, when the client calls the register callback()
operation, the request travels initially to the RtrcorbaPort on the
router (over IIOP) and then on to the svrsoapport on the target server
(over SOAP/HTTP).

® Target-Router-Client route (callback route)—the reverse route (for
callbacks) is not documented explicitly in the router contract. This
route is constructed at runtime to facilitate routing callback
invocations.

For example, when the Artix server calls the serversayti () callback
operation, the request travels to the rRtrsocappPort on the router (over
SOAP/HTTP) and then on to the cltCorbaport on the client (over
[IOP).

Proxification Proxification refers to the process whereby a reference of a certain type (for
example, a CORBA reference) that passes through the router is
automatically converted to a reference of another type (for example, an Artix
SOAP reference).

The proxification process is of key importance to Artix callbacks. If the router
in Figure 13 on page 134 did not proxify register callback()’s reference
argument, it would be impossible for the server to call back on the client.
The server can communicate only with SOAP/HTTP endpoints, not with 11OP
endpoints.

136

Enabling proxification for same
protocol routing

Routing and Callbacks

In Figure 13 on page 134, the router proxifies the callback reference as
follows:

1.

When the register callback() operation is invoked, the router
recognizes that the reference argument must be converted into a
SOAP/HTTP-format reference.

The router dynamically creates a new service and port, RtrSoapport,
to receive callback requests in SOAP/HTTP format. The new service is
a transient service cloned from a service in the router WSDL contract.
The router looks for a template service that satisfies the following
criteria:

+ Supports the same port type as the original reference.

+ Supports the same type of binding (for example, SOAP or CORBA)
as the target server.

Note: Artix selects the first service in the WSDL contract that
satisfies these criteria. Hence, if more than one service matches the
criteria, you must ensure that the template service precedes the other
services in the contract file.

The router creates a new SOAP/HTTP reference, encapsulating details
of the RtrsoapPort endpoint.

The router forwards the register callback() operation on to the
target server in SOAP format, with the proxified SOAP/HTTP reference
as its argument.

The router dynamically constructs a callback route, with source port,
RtrSoapPort, and destination port, cltCorbaPort.

The router can be used to redirect messages of the same protocol type (for
example, SOAP to SOAP). In this case, you can either enable or disable
proxification by setting the following variable in the router configuration:

plugins:router:use pass_through = "Boolean";

If Boolean is true (the default), proxification is disabled for same-protocol
routing; if false, proxification is enabled for same-protocol routing.

When the router is used as a bridge between different protocols (for example

CORBA to SOAP), proxification is always enabled. It is not possible to
disable proxification in this case.

137

CHAPTER 4 | Callbacks

Callback WSDL Contract

Overview

WSDL contract

138

This subsection describes the WSDL contract that defines the interaction
between the client and the server in the callback demonstration. This WSDL
contract is somewhat unusual in that it defines port types both for the client
and for the server applications.

Example 53 shows the WSDL contract used for the callback demonstration.

Example 53: Example Callback WSDL Contract

<?xml version="1.0" encoding="UTF-8"7?>

<definitions name="callback demo"
targetNamespace="http://www.iona.com/callback"
xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:http-conf="http://schemas.iona.com/transports/http/conf
iguration”
xmlns:references="http://schemas.iona.com/references"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://www.iona.com/callback"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<types>
<xsd:import
namespace="http://schemas.iona.com/references"
schemalLocation="../../../../schemas/references.xsd"/>
<schema targetNamespace="http://www.iona.com/callback"
xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
<element name="register callback.c"
type="references:Reference"/>
</schema>
</types>
<message name="ServerSayHi">
<part name="param" type="xsd:string"/>
</message>
<message name="register callback">
<part element="tns:register callback.c" name="c"/>
</message>

Callback WSDL Contract

Example 53: Example Callback WSDL Contract

<portType name="ClientPortType">
<operation name="ServerSayHi'">
<input message="tns:ServerSayHi" name="ServerSayHi'"/>
</operation>
</portType>

<portType name="ServerPortType'>
<operation name="register callback">
<input message="tns:register callback"
name="register callback"/>
</operation>
</portType>
<service name="ClientService">
<port binding="tns:ClientPortType SOAPBinding"
name="ClientPort">
<soap:address location="http://localhost:0"/>
<http-conf:client/>
<http-conf:server/>
</port>
</service>

<service name="ServerService">
<port binding="tns:ServerPortType SOAPBinding"
name="SOAPPort">
<soap:address location="http://SvrHost:SvrPort"/>
<http-conf:client/>
<http-conf:server/>
</port>
</service>
</definitions>

1. The clientPortType port type is implemented on the client side and
supports a single WSDL operation:

¢+ ServerSayHi operation—takes a single string argument. The
server calls back on this operation after it has received a reference
to the client’s service.

2. The serverPortType port type is implemented on the server side and
supports a single WSDL operation:
¢ register callback operation—takes a single Artix reference

argument, which is used to pass a reference to the client callback
object.

139

CHAPTER 4 | Callbacks

140

The client callback address should be specified as
http://localhost:0, Which acts as a placeholder for the address
generated dynamically at runtime. When the callback servant is
activated, Artix modifies the address, replacing 1ocalhost by the
client’s hostname and replacing 0 by a randomly allocated IP port
number.

Note: Do not add a terminating / character at the end of the
address—for example, http://localhost:0/. Artix does not accept
addresses terminated with a forward slash.

The server's address, http://SvrHost: SvrPort, should be specified
explicitly, where svrHost is the host where the server is running and
svrport is a fixed IP port. In this example, the client obtains the
server's address directly from the WSDL contract file.

Client Implementation

Client Implementation

Overview

Client main function

In a callback scenario, the client plays a hybrid role: part client, part server.
Hence, the implementation of the callback client includes coding steps you
would normally associate with a server, including an implementation of a
servant class. The callback client implementation consists of two main
parts, as follows:

® Client main function.
® Clientlmpl servant class.

Example 54 shows the code for the callback client main function, which
instantiates and registers a clientImpl servant before calling on the remote
server to register the callback.

Example 54: Callback Client Main Function

// Ct+

#include <it bus/bus.h>
#include <it bus/exception.h>
#include <it cal/iostream.h>
#include <it ts/thread.h>

#include "ServerClient.h"
#include "ClientImpl.h"

IT USING NAMESPACE STD

using namespace DemosCallback;
using namespace IT Bus;

int
main (int argc, char* argv([])
{
cout << "Callback Client" << endl;

try

{
cout << "Initializing Bus." << endl;
Bus var bus = IT Bus::init(argc, argv);

141

CHAPTER 4 | Callbacks

Example 54: Callback Client Main Function

1 ClientImpl servant (bus);
cout << "Activating Service on Bus" << endl;
2 QName service gname (
"', "ClientService", "http://www.iona.com/callback"
)i
3 bus->register servant (
servant,

"../../etc/callback.wsdl",
service gname
)7

IT Bus::Service var service =
bus->get service (service gname);

4 IT Bus::Reference & client ref =
service->get reference () ;
ServerClient sc("../../etc/callback.wsdl");
5 sc.register callback(client ref);

cout << "Callback Ready." << endl;
6 while (! ClientImpl::callback received) {
// ... do something useful!
IT CurrentThread::sleep(100); // 100 ms

bus->shutdown (true) ;
cout << "Done." << endl;
}
catch (IT Bus::Exception& e)
{
cout << endl << "Error : Unexpected error occured!"
<< endl << e.message ()
<< endl;
return -1;
}

return 0;

142

Clientlmpl servant class

Client Implementation

The preceding code example can be explained as follows:

1. The clientImpl Servant class implements the clientPortType port
type. The clientImpl instance created on this line is the client
callback object.

2. The service gname specifies the WSDL service to be activated on the
client side. This QName refers to the <service
name="ClientService"> element in Example 53 on page 138.

3. Register the callback servant with the Bus, thereby activating the
ClientService service. From this point on, the clientService service
is active and able to process incoming callback requests in a
background thread.

4. A reference to the callback service is generated by calling
IT Bus::Service::get reference()

5. This line invokes the register callback() operation on the remote
server, passing in the reference to the client callback object. From this
point on, the server could invoke an operation on the callback.

6. The main thread remains in a while loop until a flag,
ClientImpl::callback received, is set to true.

Example 55 shows the implementation of the clientImpl servant class,
which is responsible for receiving the clientImpl::ServersayHi () callback
from the server. The implementation of this servant class is trivial. It follows
the usual pattern for a servant class implementation and the serversayHi ()
function simply prints out its string argument.

Example 55: Clientimpl/ Servant Class Implementation

// Ct++
#include "ClientImpl.h"
#include <it cal/cal.h>

IT USING NAMESPACE STD
using namespace DemosCallback;

ClientImpl::ClientImpl (
IT Bus::Bus ptr bus

) : DemosCallback::ClientServer (bus)

// complete

143

CHAPTER 4 | Callbacks

Example 55: Clientimpl Servant Class Implementation (Continued)

ClientImpl::~ClientImpl ()

{
// Complete

void
ClientImpl: :ServerSayHi (
const IT Bus::String & param
) IT THROW DECL ((IT Bus::Exception))
{
cout <<"ClientImpl::ServerSayHi () called"<<endl;
cout << param <<endl;
cout <<"ClientImpl::ServerSayHi () ended"<<endl;

callback received = true;

144

Server Implementation

Server Implementation

Overview

Server main function

The implementation of the server in this callback example follows the usual
pattern for an Artix server. The server main function instantiates and
registers a servant object. A separate file contains the implementation of the
servant class, serverImpl. The server implementation thus consists of two
main parts, as follows:

® Server main function.
® ServerPortType implementation.

Example 56 shows the code for the server main function, which instantiates
and registers a serverImpl servant. The server then waits for the client to
register a callback using the register callback operation.

Example 56: Server Main Function

// Ct+

#include <it bus/bus.h>

#include <it bus/service.h>

#include <it bus/exception.h>

#include <it bus/fault exception.h>
#include <it bus/file output stream.h>

#include "ServerImpl.h"
IT USING NAMESPACE STD

using namespace IT Bus;
using namespace DemosCallback;

int
main (int argc, char* argv([])
{
try
{
cout << "Initializing Bus." << endl;
IT Bus::Bus var bus = IT Bus::init(argc, argv);

ServerImpl servant (bus);
IT Bus::QName service gname (

145

CHAPTER 4 | Callbacks

Example 56: Server Main Function (Continued)

"', "ServerService", "http://www.iona.com/callback"
)i
3 bus->register servant (
servant,
"../../etc/callback.wsdl",
service gname

)i

cout << "Service Ready." << endl;
4 IT Bus::run();

bus->shutdown (true) ;
cout << "Done." << endl;

}
catch (IT Bus::Exceptioné& e)

{
cout << "Error occurred: " << e.message() << endl;
return -1;

}

return 0;

The preceding code example can be explained as follows:

1. The serverImpl servant class implements the ServerPortType port
type, which supports the register callback operation.

2. The service gname refers to the <service name="ServerService">
element in Example 53 on page 138.

3. Register the servertmpl servant with the Bus, thereby activating the
ServerService Service.

4. Call the blocking 1T Bus::run() function to allow the server
application to process incoming requests.

146

Server Implementation

ServerPortType implementation Example 57 shows the implementation of the serverimpl servant class.
There is just one WSDL operation, register callback(), to implementin
this class.

Example 57: Serverimpl Servant Class Implementation

// Ct++
#include "ServerImpl.h"
#include <it cal/cal.h>

IT USING NAMESPACE STD
using namespace DemosCallback;

ServerImpl::ServerImpl (IT Bus::Bus ptr bus)
DemosCallback: : ServerServer (bus)

// Complete

ServerImpl::~ServerImpl ()
{
// Complete

void
ServerImpl::register callback(
1 const IT Bus::Reference & c
) IT THROW DECL ((IT Bus::Exception))
{
cout << "ServerImpl::register callback(): called"<< endl;
cout << "Calling Back to client" << endl;

try
{
2 ClientClient cc(c);
3 cc.ServerSayHi ("Server says hi to client");
}
catch (IT Bus::Exception& e)
{
cout << "Caught Unexpected Exception: " << e.message () <<
endl;
}
catch (...)
{
cout << "Unknown exception" << endl;

147

CHAPTER 4 | Callbacks

Example 57: Serverimpl Servant Class Implementation

}
cout << "Finished callback to client" << endl;
cout << "ServerImpl::register callback(): returning"<< endl;

}

The preceding code example can be explained as follows:

1. The register callback() function takes a reference argument, which
should be a reference to a callback object.

2. This line creates a client proxy, cc, for the clientPortType port type
and initializes it with the callback reference, c. The reference, c,
encapsulates details of the clientService service.

3. This line invokes the serversayHi () callback on the client.

This example, where the callback is invoked within the body of
register callback(), is a little bit artificial. In a more typical use
case, the server would cache an instance of the callback client proxy
and then call back later, in response to some event that is of interest to
the client.

148

In this chapter

CHAPTER 5

The Artix Locator

The Artix locator is a central repository for storing references
to Artix endpoints. If you set up your Artix servers to register
their endpoints with the locator, you can code your clients to
open server connections by retrieving endpoint references
from the locator.

This chapter discusses the following topics:

Overview of the Locator page 150
Locator WSDL page 153
Registering Endpoints with the Locator page 159
Reading a Reference from the Locator page 161

149

CHAPTER 5 | The Artix Locator

Overview of the Locator

Overview The Artix locator is a service which can optionally be deployed for the

following purposes:

® Repository of endpoint references—endpoint references stored in the
locator enable clients to establish connections to Artix services.

® [oad balancing—if multiple service instances (identified by a WSDL
location and service QName) are registered against a single service
QName, the locator load balances over the different service instances
using a round-robin algorithm.

Figure 14 gives a general overview of the locator architecture.

Figure 14: Artix Locator Overview

Artix Locator
Service QName WSDL location/Service
X/IA
S < YA
X/B
Ports
. . Al O— .
Artix Client Service A| a2 Artix Server X
A3 O—
B1 O—
Service B |
B2 O—
locator_endpoint
plug-in
. A O— .
Service A| Artix Server Y

locator_endpoint
plug-in

150

Locator demonstration

Locator service

Endpoint definition

Registering endpoints

Looking up references

Overview of the Locator

The locator demonstration, which forms the basis of the examples in this
section, is located in the following directory:

ArtixInstallDir/artix/Version/demos/advanced/locator

There are two options for deploying the locator service, as follows:

® Standalone deployment—the locator is deployed as an independent
server process (as shown in Figure 14). This approach is described in
detail in the “Using the Artix Locator” chapter from the Deploying and
Managing Artix Solutions document. Sample source code for such a
standalone locator service is provided in the demos/advanced/locator
demonstration.

® Embedded deployment—the locator is deployed by embedding it
within another Artix server process. This approach is possible because
the locator is implemented as a plug-in, which can be loaded into any
Artix application.

An Artix endpoint is a particular WSDL service (identified by a service
QName) in a particular 1T_Bus: :Bus instance (identified by a WSDL location
URL). Hence, it is possible to have endpoints with the same service type
and service QName, as long as they are registered with different Bus
instances. A WSDL location URL and a service QName together identify an
endpoint.

A server registers its endpoints with the locator in order to make them
accessible to Artix clients. When a server registers an endpoint in the
locator, it creates an entry in the locator that associates a service QName
with an Artix reference for that endpoint.

An Artix client looks up a reference in the locator in order to find an endpoint
associated with a particular service. After retrieving the reference from the
locator, the client can then establish a remote connection to the relevant
server by instantiating a client proxy object. This procedure is independent
of the type of binding or transport protocol.

151

CHAPTER 5 | The Artix Locator

Load balancing with the locator

152

If multiple endpoints are registered against a single service QName in the
locator, the locator will employ a round-robin algorithm to pick one of the
endpoints. Hence, the locator effectively load balances a service over all of
its associated endpoints.

For example, Figure 14 on page 150 shows the service 2 QName with two
endpoints registered against it:

® WSDL location X / Service A

® WSDL location Y / Service A

When the Artix client looks up a reference for service 2, it obtains a
reference to whichever endpoint is next in the sequence.

Locator WSDL

Locator WSDL

Overview The locator WSDL contract, 1ocator.wsdl, defines the public interface of
the locator through which the service can be accessed either locally or
remotely. A copy of the locator WSDL contract is stored in the following
location:

ArtixInstallDir/artix/Version/wsdl/locator.wsdl

This section shows extracts from the locator WSDL that are relevant to
normal user applications. The following aspects of the locator WSDL are
described here:

® Binding and protocol
® WSDL contract
® C++ mapping

Binding and protocol The locator service is normally accessed through the SOAP binding and over
the HTTP protocol.

WSDL contract Example 58 shows an extract from the locator WSDL contract that focuses
on the aspects of the contract relevant to an Artix application programmer.
There is just one WSDL operation, lookup endpoint, that an Artix client
typically needs to call.

Example 58: Extract from the Locator WSDL Contract

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:ref="http://schemas.iona.com/references"
xmlns:1ls="http://ws.iona.com/locator"
targetNamespace="http://ws.iona.com/locator">
<types>
<xs:schema attributeFormDefault="unqualified"
elementFormDefault="unqualified"
targetNamespace="http://schemas.iona.com/references">
<xs:complexType name="ReferencePort">
<xs:sequence>

153

CHAPTER 5 | The Artix Locator

Example 58: Extract from the Locator WSDL Contract

<xs:any maxOccurs="unbounded" minOccurs="0"
namespace="##other"
processContents="1ax"/>
</xs:sequence>
<xs:attribute name="name" type="xs:NCName"
use="required" />
<xs:attribute name="binding" type="xs:QName"
use="required"/>
</xs:complexType>
</xs:schema>
<xs:schema targetNamespace="http://ws.iona.com/locator">
1 <xs:import
namespace="http://schemas.iona.com/references"/>
2 <xs:element name="lookupEndpoint">
<xs:complexType>
<xs:sequence>
<xs:element name="service gname"
type="xs:QName" />
</xs:sequence>
</xs:complexType>
</xs:element>
3 <xs:element name="lookupEndpointResponse">
<xs:complexType>
<xs:sequence>
<xs:element name="service endpoint"
type="ref:Reference"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:complexType
name="EndpointNotExistFaultException">
<xs:sequence>
<xs:element name="error" type="xs:string"/>
</xs:sequence>
</xs:complexType>
4 <xs:element name="EndpointNotExistFault"
type="1s:EndpointNotExistFaultException"/>
</xs:schema>
</types>

<message name="lookupEndpointInput">

<part name="parameters" element="1s:lookupEndpoint"/>
</message>
<message name="lookupEndpointOutput">

154

Locator WSDL

Example 58: Extract from the Locator WSDL Contract

<part name="parameters"
element="1s:lookupEndpointResponse" />
</message>
<message name="endpointNotExistFault">
<part name="parameters"
element="1s:EndpointNotExistFault"/>
</message>

<portType name="LocatorService">

<operation name="lookup endpoint'>
<input message="1s:lookupEndpointInput"/>
<output message="1s:lookupEndpointOutput"/>
<fault name="fault"
message="1s:endpointNotExistFault"/>
</operation>
<operation name="list endpoints">
<input message="ls:listEndpointInput"/>
<output message="1ls:listEndpointOutput"/>
</operation>
</portType>
<binding name="LocatorServiceBinding"
type="1s:LocatorService">

</binding>

<service name="LocatorService">
<port name="LocatorServicePort"

binding="1s:LocatorServiceBinding">
<soap:address
location="http://localhost:0/services/locator/LocatorService"/>

</port>

</service>

</definitions>

The preceding locator WSDL extract can be explained as follows:

1. This line imports the namespace for the references schema. The
references schema itself is embedded in the WSDL contract, just
preceding this schema.

2. The lookupEndpoint type is the input parameter type for the
lookup endpoint operation. It contains just the QName (qualified
name) of a particular WSDL service.

155

CHAPTER 5 | The Artix Locator

C++ mapping

156

The lookupEndpointResponse type is the output parameter type for the
lookup endpoint operation. It contains an Artix reference for the
specified service. If more than one endpoint is registered against a
particular service name, the locator picks one of the endpoints using a
round-robin algorithm.

The EndpointNotExist fault would be thrown if the 1ookup endpoint
operation fails to find an endpoint registered against the requested
service type.

The Locatorservice port type defines the public interface of the Artix
locator service.

The lookup endpoint operation is called by Artix clients to retrieve
endpoint references.

The 1ist_endpoints operation returns a list of all endpoints stored in
the locator.

The SOAP 1ocation attribute specifies the host and IP port for the
locator service. You must edit the 1ocation attribute, specifying a
specific host name and a fixed IP port.

Note: The default location setting, 1ocalhost:0, is not suitable for
deployment. When the port setting is 0, Artix allocates the locator
port dynamically. This would make the locator service unusable,
because the IP port would be different each time it starts up.

Example 59 shows an extract from the C+ + mapping of the
LocatorService port type. This extract shows only the lookup endpoint
WSDL operation—the other WSDL operations in this class are normally not
needed by user applications.

Example 59: C++ Mapping of the LocatorService Port Type

/] C++

#include "LocatorService.h"
#include <it bus/service.h>
#include <it bus/bus.h>
#include <it bus/reference.h>
#include <it bus/types.h>
#include <it bus/operation.h>

Locator WSDL

Example 59: C++ Mapping of the LocatorService Port Type

namespace IT Bus Services
{
namespace IT Locator {
class LocatorServiceClient
: public LocatorService, public IT Bus::ClientProxyBase

public:
LocatorServiceClient (
IT Bus::Bus ptr bus = 0
)i

LocatorServiceClient (
const IT Bus::String & wsdl,
IT Bus::Bus_ptr bus = 0

)7

LocatorServiceClient (
const IT Bus::String & wsdl,
const IT_Bus::QName & service_name,
const IT Bus::String & port name,
IT Bus::Bus ptr bus = 0

)i

LocatorServiceClient (
IT Bus::Reference & reference,
IT Bus::Bus_ptr bus = 0

)i

~LocatorServiceClient () ;

virtual void

lookup_endpoint (
const IT Bus::QName &service gname,
IT Bus::Reference &service endpoint

) IT THROW DECL((IT Bus::Exception)) = 0;

virtual void

list endpoints(
IT Bus::ElementListT<IT Bus Services::IT Locator::endpoint>
&endpoint

) IT THROW DECL((IT Bus::Exception)) = 0;

157

CHAPTER 5 | The Artix Locator

The value returned by 1ist endpoint is an element list of
IT Bus Services::IT Locator::endpoint Objects, which are defined by
the C++ class shown in Example 60.

Example 60: The IT_Bus_Services::IT_Locator::endpoint Class

// Ct+
namespace IT Bus Services {
namespace IT Locator {
class endpoint : public IT Bus::SequenceComplexType
{
public:
static const IT Bus::QName&
get static type();

endpoint () ;
endpoint (const endpoint & copy);

virtual ~endpoint();

IT Bus::String & getnode id();
const IT Bus::String & getnode id() const;

void
setnode id(const IT Bus::String & val);

IT Bus::Reference & getendpoint reference();

const IT Bus::Reference &
getendpoint reference() const;

void
setendpoint reference (const IT Bus::Reference & val);

158

Registering Endpoints with the Locator

Registering Endpoints with the Locator

Overview

Configuring a server to register
endpoints

bus:initial_contract:url:locator
configuration variable

To register a server's endpoints with the locator, you must configure the
server to load a specific set of plug-ins. The server will then, by default,
automatically register every endpoint (that is, service/port combination)
created on the server side. If you need more control over endpoint
registration, Artix provides a filtering feature (see Developing and Managing
Artix Solutions for details).

There is currently no programming API for registering endpoints explicitly.

A server that is to register its endpoints with the locator should be
configured to include the locator endpoint plug-in, as shown in the
following demo. locator.server configuration scope from artix.cfg:

Artix Configuration File

demo {

locator {
server
{
bus:initial_contract:url:locator = "locator.wsdl";
orb plugins = ["xmlfile log stream", ..., "soap",

"at _http", "locator endpoint"];
bi
bi

bi

When running the server, remember to select the appropriate configuration
scope by passing it as the -orBname command-line parameter. For example,
the preceding configuration would be picked up by a MyArtixServer
executable, if the server is launched with the following command:

MyArtixServer -ORBname demo.locator.server

The bus: initial contract:url:locator configuration variable specifies
the location of the locator WSDL file, 1ocator.wsdl.

159

CHAPTER 5 | The Artix Locator

References For more details about configuring a server to register endpoints, see the
following references:

® “Using the Artix Locator” chapter from the Developing and Managing
Artix Solutions document.
® The Artix 1locator demonstration in

artix/Version/demos/advanced/locator.

160

Reading a Reference from the Locator

Reading a Reference from the Locator

Overview After the target server (in this example, the simpleService server) has
started up and registered its endpoints with the locator, an Artix client can
then bootstrap a connection to the target server by reading one of its
endpoint references from the locator. Figure 15 shows an outline of how a
client bootstraps a connection in this way.

Figure 15: Steps to Read a Reference from the Locator

Artix Locator

SOAPHTTPService WSDL location / SOAPHTTPService

@ lookup_endpoint ()

Arti
Artix Client @ Locator proxy Simplesl)érvice

————— Server
_@ SimpleService proxy

SOAPHTTPService

Q—,/ o

@ Invoke operation

locator_endpoint
plug-in

Programming steps The main programming steps needed to read a reference from the locator,
as shown in Figure 15, are as follows:

1. Construct a locator service proxy.
2. Use the locator proxy to invoke the lookup reference operation.

3. Use the reference returned from lookup reference to construct a
SimpleService Proxy.

4. Invoke an operation using the simpleService proxy.

161

CHAPTER 5 | The Artix Locator

Example Example 61 shows an example of the code for an Artix client that retrieves a
reference to a simpleService service from the Artix locator.

Example 61: Example of Reading a Reference from the Locator Service

// Ct++

#include <it bus/bus.h>
#include <it bus/Exception.h>
#include <it cal/iostream.h>

#include "SimpleServiceClient.h"
#include "LocatorServiceClient.h"

IT USING NAMESPACE STD
using namespace IT Bus;

using namespace IT Bus Services::IT Locator;
using namespace SimpleServiceNS;

int
main (int argc, char* argv(])
{

cout << " SimpleService Client" << endl;

try
{
int my argc = 2;
const char * my argv [] = {
"-ORBname",
"demo.locator.client"

bi

1 IT Bus::Bus var bus = IT Bus::init(
my_argc,
(char **)my argv
)7

2 QName ls service name (
"", "LocatorService", "http://ws.iona.com/locator"
)i
3 QOName sh service name (

", "SOAPHTTPService", "http://www.iona.com/bus/tests"
)i

162

Reading a Reference from the Locator

Example 61: Example of Reading a Reference from the Locator Service

// 1. Construct a locator service proxy
IT Bus::Reference locator ref;
bus->resolve initial reference (

1s service name,

locator_ref
)i

LocatorServiceClient locator client (locator ref);

// 2. Invoke on locator
IT Bus::Reference endpoint;
locator client.lookup endpoint (
sh service name,
endpoint

)i

// 3. Construct a new proxy to your target service with
// the result from the locator
SimpleServiceClient sh simple client (endpoint);

// 4. Use your new proxy
String sh my greeting ("SOAPHTTP ENDPOINT GREETING") ;
String result;
sh simple client.say hello(sh my greeting, result);
cout << "say hello method returned: " << result << endl;
}
catch (IT Bus::Exception& e)
{
cout << endl << "Caught Unexpected Exception: "
<< endl << e.Message ()
<< endl;
return -1;
}

return 0;

163

CHAPTER 5 | The Artix Locator

164

The preceding C++ example can be explained as follows:

1.

You should ensure that the client picks up the correct configuration by
passing the appropriate value of the -orBname parameter. In this
example, the -orRBname parameter is hard-coded, but you might prefer
to take this parameter from the command line instead.

This line constructs a qualified name, 1s service name, that identifies
the <service name="LocatorService"> tag from the locator WSDL.
See the listing of the locator WSDL in Example 58 on page 153.

This line constructs a qualified name, sh_service name, that identifies
the soaPHTTPService service from the simpleService WSDL.

Use the Artix resolve initial reference() function to obtain a
reference to the locator service. Artix implicitly finds the locator service
reference using the bootstrapping service.

The Lookup endpoint () operation is invoked on the locator to find an
endpoint of soapHTTPService type (specified in the sh_input
parameter).

Note: If there is more than one WSDL port registered for the
SOAPHTTPService Server, the locator service employs a round-robin
algorithm to choose one of the ports to use as the returned endpoint.

Construct the SimpleServiceClient proxy by passing in the endpoint
reference.

You can now use the simple client proxy to make invocations on the
remote Artix server.

In this chapter

CHAPTER 6

Using Sessions In
Artix

The Artix Session Manager helps you manage service
resources.

Note: The session manager is unavailable in some editions of Artix.
Please check the conditions of your Artix license to see whether your
installation supports the session manager.

This chapter discusses the following topics:

Introduction to Session Management in Artix page 166
Registering a Server with the Session Manager page 169
Working with Sessions page 172

165

CHAPTER 6 | Using Sessions in Artix

Introduction to Session Management in Artix

Overview

166

The Artix session manager is a group of ART plug-ins that work together to
provide you control over the number of concurrent clients accessing a group
of services and how long each client can use the services in the group before
having to check back with the session manager. The two main session
manager plug-ins are:

Session Manager Service Plug-in (session manager service) is the central
service plug-in. It accepts and tracks service registration, hands out session
to clients, and accepts or denies session renewal.

Session Manager Endpoint Plug-in (session_endpoint manager) is the
portion of the session manager that resides in a registered service. It
registers its location with the service plug-in and accepts or rejects client
requests based on the validity of their session headers.

The session manager also has a pluggable policy callback mechanism that
allows you to implement your own session management policies. Artix
session manager includes a simple policy callback plug-in,

sm_simple policy, that provides control over the allowable duration for a
session and the maximum number of concurrent sessions allowed for each

group.

How do the plug-ins interact?

Introduction to Session Management in Artix

Figure 16 shows a diagram of how the session manager plug-ins are
deployed in an Artix System. As you can see the session manager service
plug-in and the policy callback plug-in are both deployed into the same
process. While in this example, they are deployed into a standalone service,
they can be deployed in any Artix process. The session manager service
plug-in and the policy plug-in interact to ensure that the session manager
does not hand out sessions that violate the policies established by the policy

plug-in.

Figure 16: The Session Manager Plug-ins

The endpoint manager plug-ins are deployed into the server processes
which contain session managed services. A process can host two services,
like Service C and Service D in Figure 16, but the process will have only
one endpoint manager. The endpoint manager plug-ins are in constant
communication with the session manager service plug-in to report on

167

CHAPTER 6 | Using Sessions in Artix

What are sessions?

What are groups?

168

endpoint health, to receive information on new sessions that have been
granted to the managed services, and to check on the health of the session
manager service.

The session manager controls access to services by handing out sessions to
clients who request access to the services. A session is a pass that provides
access to the services in a specific group for a specific time.

For example if a client application wants to use the services in the sM Demo
group, it would ask the session manager for a session with the sM_Demo
group. The session manager would then check and see if the sM Demo group
had an available session, and if so it would return a session id and the list of
sM_Demo service references to the client. The session manager would then
notify the endpoint managers in the sM Demo group that a new session had
been issued, the new session’s id, and the duration for which the session is
valid. When the client then makes requests on the services in the sM_Demo
group, it must include the session information as part of the request. The
endpoint manager for the services then check the session information to
ensure it is valid. If it is, the request is accepted. If it is not, the request is
rejected.

If the client wants to continue using the sM Demo services beyond the
duration of its lease, the client will have to ask the session manager to
renew its session before the session expires. Once a client’s session has
expired, it will have to request a new one.

The Artix session manager does not pass out sessions for each individual
service that is registered with it. Instead, services are registered as part of a
group, and sessions are handed out for the group. A group is a collection of
services that are managed as one unit by the session manager. While the
session manager does not specify that the services in a group be related, it
is recommended that the endpoints have some relationship.

A service's group affiliation is controlled by the configuration scope under
which it is run. To change a service’s group, you edit the value for
plugins:session _endpoint manager:default group in the process’
configuration scope. For more information on Artix configuration see
Deploying and Managing Artix Solutions.

Registering a Server with the Session Manager

Registering a Server with the Session Manager

Overview

Configuring the server

Services that wish to be managed by the session manager must register with
a running session manager. To do this the servers instantiating these
services must load the session manager endpoint plug-in and properly
configure themselves. They do not require any special application code.

Once registered with a session manager, the services will only accept
requests containing a valid session header. All clients wishing to access the
services must be written to support session managed services.

Any server hosting services that are to be managed by the session manager
must load the following plug-ins in addition to the transport and payload
plug-ins it requires:

® soap

® at http

® session endpoint manager

session endpoint manager allows the server to register with a running
session manager.

The server’s configuration also needs to set the following configuration
variables:

bus:initial_contract:url:sessionmanager points to the contract describing
the contact information for the session manager that will be managing the

Sservices.

plugins:session_endpoint_manager:default_group specifies the default
group name for the services instantiated by the server.

169

CHAPTER 6 | Using Sessions in Artix

Example 62 shows the configuration scope of a server that hosts services
managed by the session manager.

Example 62: Server Configuration Scope

demos {
session management ({
server {
orb plugins = ["xmlfile log stream", "session endpoint manager"];

This is the WSDL File that the Session Endpoint Manager used to contact the
Session Manager Service.
bus:initial contract:url:sessionmanager = "../../etc/session-manager.wsdl";
plugins:session endpoint manager:default group = "SM Demo";

}i

}i

A server loaded into the demos.session management.server configuration

scope will be managed by the session manager at the location specified in
session-manager.wsdl, its endpoint manager will come up at the address

specified in session-manager.wsdl, and by default all services instantiated
by the server will belong to the session manager group sM_Demo.

For more information on Artix configuration see Deploying and Managing
Artix Solutions.

You also need to configure the port on which the endpoint manager will run.
To do this you modify session-manager.wsdl, provided in the wsdl folder of
your Artix installation, to specify the HTTP address at which the endpoint
manager will be available. Using any text editor, open
session-manager.wsdl and edit the <socap:address> entry for the
SessionEndpointManagerService to specify the proper address.

Example 63 shows a modified session manager contract entry. The
highlighted part has been modified to point to the desired address.

Example 63: Endpoint Manager Address

<service name="SessionEndpointManagerService">
<port name="SessionEndpointManagerPort" binding="sm:SessionEndpointManagerBinding">
<soap:address
location="http://localhost:8080/services/sessionManagement/sessionEndpointManager" />
</port>
</service>

170

Registering a Server with the Session Manager

In the server's configuration scope specify the endpoint manager plug-in to
read the correct Artix contract for the endpoint manager by setting
bus:initial contract:url:sessionmanager to point to the copy of
session-manager.wsdl containing the address for this instance of the
endpoint manager.

Registration Once a properly configured server starts up, it automatically registers with
the session manager specified by the contract pointed to by

bus:initial contract:url:sessionmanager.

171

CHAPTER 6 | Using Sessions in Artix

Working with Sessions

Overview Clients wishing to make requests from session managed services must be
designed explicitly to interact with the Artix session manager and pass
session headers to the session managed services.

Demonstration code The examples in this section are based on the demonstration code located in
the following directory:

ArtixInstallDir/artix/Version/demos/advanced/session management

Implementing a session client There are eight steps a client takes when making requests on a session
managed service. They are:

1. Instantiate a proxy for the session management service.

2. Start a session for the desired service’s group using the session
manager proxy.

Obtain the list of endpoints available in the group.

Create a service proxy from one of the endpoints in the group.
Build a session header to pass to the service.

Invoke requests on the endpoint using the proxy.

Renew the session as needed.

0 N O o kW

End the session using the session manager proxy when finished with
the services.

Instantiating a session manager Before a client can request a session from the session manager, it must

proxy create a proxy to forward requests to the running session manager. To do
this the client creates an instance of sessionManagerclient using the
session manager’s contract name, session-manager.wsdl.

Example 64 shows how to instantiate a session manager proxy.
Example 64: Instantiating a Session Manager Proxy
// C++

SessionManagerClient session mgr;
SessionManagerClient* session mgr ptr = &session_mgr;

172

Working with Sessions

Start a session After instantiating a session manager proxy, a client can then start a session
for the desired service’s group using the session manager's
begin_session () method. begin session() has the following signature:

// C++

virtual void

begin session (
const IT Bus::String &endpoint group,
const IT Bus::ULong preferred renew timeout,
SessionInfo &session_info

) IT THROW DECL ((IT Bus::Exception)) = 0;

The begin_session () function takes the following input parameters:

® endpoint_group—the endpoint group name, which corresponds to the
default group name set in the server's configuration scope as described
in “Configuring the server” on page 169.

® preferred renew timeout—the preferred session duration in seconds.
If the specified duration is less than the value specified by the session
manager's min_session_timeout configuration setting, it will be set to
the configured minimum value. If the specified duration is higher than
the value specified by the session manager's max_session_timeout
configuration setting, it will be set the configured max value.

And the following output parameter:

® session info—a sequence complex type that contains the session id,
session_id, and the actual assigned session duration, renew timeout.

173

CHAPTER 6 | Using Sessions in Artix

Get a list of endpoints in the group

174

Example 65 shows the client code to begin a session for sM Demo.
Example 65: Beginning a Session

/] C++
IT Bus Services::IT SessionManager::SessionId group session;

int
main (int argc, char* argv(])

{

// Begin a session
session mgr.begin session("SM Demo", 20, session_info);
cout << "Begin session invoked" << endl;

// Retrieve the session ID from the response
group session = session info.getsession id();
cout << "Got session!" << endl << endl;

The session manager hands out sessions for a group of services, so in order
to get an individual service upon which to make requests a client needs to
get a list of the services in the session’s group. The session manager proxy’s
get_all endpoints () method returns a list of all endpoints registered to the
specified group. get_all endpoints() has the following signature:

// Ct+

virtual void

get all endpoints (
const SessionId &session id,
EndpointList &endpoints

) IT THROW DECL ((IT Bus::Exception)) = 0;

The get_all endpoints () function takes the following input parameter:

® session id—the session ID for which you are requesting services
(obtained in the previous step).

And the following output parameter:

® endpoints—the list of services available. If the group has no services,
the list will be empty.

Create a proxy for the requested
service

Working with Sessions

Example 66 shows how to get the list of services for a group.
Example 66: Retrieving the List of Services in a Group

//C++
// Get the endpoints for the session.
IT Bus Services::IT SessionManager::EndpointList endpoint list;

// Must provide the session ID
// Without a valid session ID, the session manager will refuse
// the request
session mgr.get all endpoints (
group_session,
endpoint list
)

The client can use any of the services returned by get _all endpoints() to
instantiate a service proxy.

Because the session manager simply returns the services in the order the
services registered with the session manager, the clients are responsible for
circulating through the list or else they will all make requests on only one
service in the group. Also, because the session manager does not force all
members of a group to implement the same interface, you might need to
have your clients check each service to see if it implements the correct
interface by checking the reference’s service name as shown in Example 67.

Example 67: Checking the Service Reference for its Interface

//CH++
IT Bus::Reference& endpoint = endpoint 1ist[0];
if (endpoint.get service name() ==
QName ("", "SOAPService",
"http://www.lona.com/session management")

)

// Instantiate a SOAPService proxy
}

else

{

// do something else

175

CHAPTER 6 | Using Sessions in Artix

Create a session header

176

Example 68 shows the client code for creating a GreetercClient proxy from
an endpoint reference.

Example 68: /nstantiate a Proxy Server

// Ct+
GreeterClient client (endpoint 1ist[0]);

Services that are being managed by the session manager will only accept
requests that include a valid session header. Example 69 shows how to
send the session ID in a header by initializing the sessionIDContext header
context. For more details about the context APl used in this example, see
“Artix Contexts” on page 179.

Example 69: /nitialize the sessionIDContext Header Context

// Ct+

using namespace session management;

using namespace IT Bus;

using namespace IT Bus Services::IT SessionManager;

const QName DEMO SESSION ID CONTEXT NAME (
"wn p
"sessionIDContext",
"http://ws.iona.com/sessionmanager"
)i

// The session name and session group must be added to each

// request Without valid entries, the session endpoint manager
// will reject the request

ContextRegistry* registry = bus->get context registry();
ContextCurrent& current = registry->get current();
ContextContainer* request contexts = current.request contexts();

AnyType* attr = request contexts->get context (
DEMO SESSION ID CONTEXT NAME,
true

)i

if (0 == attr)
{
cerr << endl << "Error : Unable to access Session Context"
<< endl;
return -1;

Make requests on service proxy

Renewing a session

Working with Sessions

Example 69: Initialize the session/DContext Header Context

SessionId* session attr = dynamic cast<SessionId*> (attr);

if (0 == session attr)
{
cerr << endl << "Error : Unable to cast Session Context"
<< endl;
return -1;
}
session attr->setname (group session.getname()) ;
session attr->setendpoint group (
group_ session.getendpoint group ()
)i

Once the session information is added to the proxy’s port information, the
client can invoke operations on the endpoint as it would a non-managed
service. If the endpoint rejects the request because the client’s session is not
valid, an exception is raised.

If a client is going to use a session for a longer than the duration the session
was granted, the client will need to renew its session or the session will
timeout. A session is renewed using the session manager proxy’'s

renew session () method. renew session() has the following signature:

// Ctt
virtual void
renew_session (
const SessionInfo &session info,
IT Bus::ULong &renew timeout
) IT THROW DECL ((IT_Bus::Exception)) = 0;

The renew session () function takes the following input parameter:

® session_info—a Sequence complex type that contains the session id,
session id, and the preferred session duration, renew timeout.

And the following output parameter
® renew timeout—the actual assigned session duration, in seconds.

If the renewal is unsuccessful, an
IT Bus Services::renewSessionFaultException iS raised.

177

CHAPTER 6 | Using Sessions in Artix

End the session When a client is finished with a session managed service, it should explicitly
end its session. This will ensure that the session will be freed up
immediately. A session is ended using the session manager proxy’s
end session () method. end session() has the following signature:

// C+t
virtual void
end session (
const SessionId &session_id
) IT THROW DECL((IT Bus::Exception)) = 0;

Example 70 shows how to end a session.
Example 70: Ending a Session

//CH+
cout << "Ending session" << endl;
session mgr.end session(group session) ;

178

In this chapter

CHAPTER 7

Artix Contexts

Artix contexts are used for the following purposes: to configure
Artix transports, bindings and interceptors; and to send extra
data in request headers or reply headers.

This chapter discusses the following topics:

Introduction to Contexts page 180
Pre-Registered Contexts page 192
Reading and Writing Context Data page 196
Configuration Context Example page 209
Header Context Example page 220
Header Contexts in Three-Tier Systems page 240

179

CHAPTER 7 | Artix Contexts

Introduction to Contexts

Overview This section provides a conceptual overview of Artix contexts, including a
brief look at the programming interface required for using contexts with
different binding types.

In this section This section contains the following subsections:
Configuration Contexts page 181
Header Contexts page 184
Reading and Writing Basic Types page 201
Registering Contexts page 186

180

Introduction to Contexts

Configuration Contexts

Overview Artix configuration contexts provide a general purpose mechanism for
configuring Artix transports, bindings and interceptors. Contexts enable you
to configure both client-side settings (request contexts) and server-side
settings (reply contexts).

Currently, configuration contexts are used mainly to configure WSDL port
extensors (transport configuration). For example, Figure 17 gives an
overview of the context mechanism for configuring WSDL port exensors.

Thread X
ContextCurrent
for Thread X
request_contexts () reply contexts()
ContextContainer | | Context A Context B ContextConltamer r4 | Context C Context D
for Requests for Replies
Client-side configuration Server-side configuration
Artix Transport Plug-In
Figure 17: Overview of Configuration Contexts
Thread affinity Context data is held in thread-specific storage, so that different threads can

have different configurations. The root object for obtaining thread-specific
data is the IT Bus::ContextCurrent object.

181

CHAPTER 7 | Artix Contexts

Request contexts

Reply contexts

Schema-based API

Schemas for configuration
contexts

182

Request contexts are used to read or modify the client-side properties of
transports, bindings or interceptors.

By calling the IT Bus::ContextCurrent::request contexts () function,
you can obtain a copy of an IT Bus::ContextContainer object, which
contains references to all of the request contexts.

Reply contexts are used to read or modify the server-side properties of
transports, bindings or interceptors.

By calling the IT Bus::ContextCurrent::reply contexts () function, you
can obtain a copy of an IT Bus::ContextContainer object, which contains
references to all of the reply contexts.

In general, Artix lets you configure a WSDL port either by setting the port
extensor attributes in the WSDL contract or by programming. The Artix
configuration context mechanism unifies the two approaches by basing both
the WSDL port extensors and the programming APl on an XML schema, as
follows:

® WSDL contract—the schema defines WSDL port extensor elements
that can be initialized in the WSDL contract.

® By programming—the schema types are mapped to C++ using the
WSDL-to-C++ compiler and then used as context data types.

Note: For convenience, Artix pre-compiles the schemas to C++ and
makes the resulting stub code available in a library.

The following Artix schemas define data types that are used as configuration

contexts:

® http-conf.xsd—defines the <http-conf:client> and
<http-conf:server> WSDL port extensors that configure the HTTP
transport.

® mg.xsd—defines the <mg:client> and <mg:server> WSDL port
extensors that configure the MQ-Series transport.

4 i18n-context.xsd—defines the <i18n-context:client> and
<il8n-context:server> WSDL extensors that configure
internationalization.

Introduction to Contexts

bus-security.xsd—defines the <bus-security:security> WSDL port
extensor that configure Artix security.

corba.xsd—enables you to define the CORBA Principal value
programmatically.

Configuration context API The following appendices provide more details on the configuration context

programming interface:
[]

“http-conf Context Data Types” on page 575
“MQ-Series Context Data Types” on page 585

183

CHAPTER 7 | Artix Contexts

Header Contexts

Overview Artix header contexts provide a general purpose mechanism for embedding
data in message headers. Currently, you can embed context data in the
following types of protocol header:

® SOAP
® CORBA
SOAP When you register a context as a SOAP context (using the appropriate form

of the CcontextRegistry: :register context () function), the corresponding
context data will be embedded in a SOAP header, as shown in Figure 18.

Context Data

SOAP Context

SOAP Message SOAP Header

Figure 18: Inserting Context Data into a SOAP Header

The context data is sent in an Artix-specific SOAP header.

184

CORBA

Introduction to Contexts

When you register a context as a CORBA context (using the appropriate form
of the CcontextRegistry: :register context () function), the corresponding
context data will be embedded within a CORBA header as a GIOP service
context—see Figure 19.

Context Data

' GIOP Service Context ‘

GIOP Message GIOP Header

Figure 19: Inserting Context Data into a GIOP Service Context

In CORBA, the message formats are defined by the General Inter-ORB
Protocol (GIOP) specification. In particular, the GIOP request and reply
message formats allow you to include arbitrary header data in GIOP service
contexts. Artix creates one GIOP service context for each Artix context. The
type of GIOP service context is identified by an |IOP context ID, which you
specify when registering the Artix context.

185

CHAPTER 7 | Artix Contexts

Registering Contexts

Overview

Getting a context registry instance

186

Figure 20 shows an overview of what happens when you register a context
data type with the context registry object.

IT Bus::ContextRegistry
register_ context () register_context ()
Context Factory Context Factory
A B

Figure 20: Registering Context Types with a Context Container

You register a context type by calling a register context () function on a
context registry instance, passing the context name and context type as
arguments. The main effect of registering a context type is that the context
container adds a type factory reference to an internal table. This type factory
reference enables the context container to create context data instances
whenever they are needed.

Note: This pre-supposes that the application is linked with the context
schema stub code (for example, ContextSchema_wsleypeFactory.cxx),
which creates static instances of the relevant type factories.

To get a reference to a context registry instance, you call the
IT Bus::get context registry() function, shown in Example 71.

Example 71: The /T Bus::get _context_registry() Function

// Ct+
namespace IT Bus {
class IT BUS API Bus
{
public:
virtual ContextRegistry*
get context registry() = 0;

Registering a configuration
context

Registering a serializable
configuration context

Introduction to Contexts

Example 71:The IT Bus::get_context registry() Function

}i
}i

In practice, you do not need to register a configuration context unless you
are implementing your own Artix plug-in. All of the standard Artix
configuration contexts are pre-registered (see “Pre-Registered Contexts” on
page 192).

You can register the following kinds of configuration context:

® Registering a serializable configuration context

® Registering a non-serializable configuration context

A serializable configuration context is a data type that inherits from the

IT Bus::AnyType base class. Example 72 shows the signature of the
register context () functioninthe IT Bus::ContextRegistry class, which
is used to register a serializable configuration context.

Example 72: The register_context() Function for Serializable Configuration
Contexts

// CH+
namespace IT Bus
{
class IT BUS API ContextRegistry
{
public:
enum ContextType {
TYPE,
ELEMENT
}

virtual Boolean

register context (
const QNameé& context name,
const QNameé& context type,
ContextType type = TYPE,
Boolean is header = false

) = 0;

bi

187

CHAPTER 7 | Artix Contexts

Registering a non-serializable
configuration context

188

The preceding IT_Bus::ContextRegistry::register_context()funCﬁOﬂ
takes the following arguments:

context name—the context name identifies the registered context. The

context names for the pre-registered configuration contexts are given in

“Pre-Registered Contexts” on page 192.

context_type—the qualified name of the context data type or element.

which can be either of the following:

+ The name of a schema type (that is, any type derived from
xsd:anyType),Or

¢ The name of a schema element.

type—a flag that indicates whether the context type parameter is the
name of a schema type (indicated by

IT Bus::ContextRegistry::TYPE) or the name of a schema element
(indicated by IT Bus::ContextRegistry: :ELEMENT).

is_header—for registering configuration contexts, this flag should not
be supplied (defaults to false).

A non-serializable configuration context can be any C++ type (that is, not
necessarily inheriting from IT Bus::AnyType). Example 73 shows the
signature of the register context data() function in the

IT Bus::ContextRegistry class, which is used to register a non-serializable
configuration context.

Example 73: The register_context_data() Function for Non-Serializable
Configuration Contexts

// C++
namespace IT Bus

{

class IT BUS API ContextRegistry
{
public:
virtual Boolean
register context data(
const QName& context name
) = 07

Registering header contexts

Registering a SOAP header
context

Introduction to Contexts

The preceding IT Bus::ContextRegistry::register context data()
function takes the following argument:

® context name—the context name of a non-serializable context.

You can register the following kinds of header context:
® Registering a SOAP header context
® Registering a CORBA header context

Example 74 shows the signature of the register context () function in the
IT Bus::ContextRegistry class, which is used to register a header context
data type for the SOAP protocol.

Example 74: The register_context() Function for SOAP Contexts

// C++
namespace IT Bus {
class IT BUS API ContextRegistry
{
public:
virtual Boolean
register context (
const QName& context name,
const QName& context type,
const QName& message name,
const Stringé& part name
) = 0;

)
}i

The IT BUS::ContextRegistry::register context () function takes the

following arguments:

® context name—the context name identifies the registered context. A
context name is needed, because a context type could be registered
more than once (for example, if the same context type was used with
different protocols).

® context type—the qualified name of the context data type. It can be
any schema type (that is, any type derived from xsd:anyType).

189

CHAPTER 7 | Artix Contexts

® nmessage name—this value corresponds to the message attribute in a
soap:header element. Currently, the message name is ignored, but it
should not clash with any existing message names.

® part name—this value corresponds to the part attribute in a
soap:header element. Currently, the part name is ignored.

Registering a CORBA header Example 75 shows the signature of the register context () function in the
context IT Bus::ContextRegistry class, which is used to register a context data
type with the CORBA context container.

Example 75: The register_context() Function for CORBA Contexts

// C++
namespace IT Bus {
class IT BUS API ContextRegistry
{
public:
virtual Boolean
register context (

const QNameé& context name,
const QName& context type
const unsigned long context id,

) = 0;

}i
}i

The IT Bus::ContextRegistry::register context () function takes the

following arguments:

® context name—the context name identifies the registered context. A
context name is needed, because a context type could be registered
more than once (for example, if the same context type was used with
different protocols).

® context type—the qualified name of the context data type. It can be
any schema type (that is, any type derived from xsd:anyType).

190

Introduction to Contexts

context_id—an ID that tags the GIOP service context containing the
Artix context. In CORBA, the context_id corresponds to a service
context ID of Top: :serviceld type. For details of GIOP service
contexts, consult the OMG CORBA specification.

Note: Care should be exercised to avoid clashing with standard IDs
allocated by the OMG, which are reserved for use either by the OMG
itself or by particular ORB vendors. In particular, IDs in the range O—
4095 are reserved for use by the OMG.

191

CHAPTER 7 | Artix Contexts

Pre-Registered Contexts

Overview

Schema directory

Header files

Library

Headers and types for the
pre-registered contexts

192

This section provides a list of names and header files for the pre-registered
configuration contexts.

The schemas for the Artix configuration contexts are located in the following
directory:

ArtixInstallDir/artix/Version/schemas

The header files for the Artix configuration contexts are located in the
following directory:

ArtixInstallDir/artix/Version/include/it _bus pdk/context attrs

To gain access to the context stubs, you should link with the following
library:

Windows
ArtixInstallDir/artix/Version/lib/it context attribute.lib

UNIX

ArtixInstallDir/artix/Version/lib/it context attribute.so
ArtixInstallDir/artix/Version/lib/it context attribute.sl

The following list gives the context name, data type and header file for each
of the pre-registered contexts. The name of each context is a C++ constant
of IT Bus::QName type, defined in the IT Contextattributes namespace
(for example, IT ContextAttributes::HTTP CLIENT OUTGOING CONTEXTS).
You can pass the context name as a parameter to the
IT Bus::ContextContainer::get context () function to obtain a pointer to
the context data.
IT ContextAttributes::HTTP CLIENT OUTGOING CONTEXTS
This context enables you to specify HTTP context data for inclusion
with the next outgoing client request.

For this QName, get context () returns the following data type:

IT ContextAttributes::clientType

Pre-Registered Contexts

To use this context, include the following header file:

it bus_pdk/context attrs/http conf xsdTypes.h

IT ContextAttributes::HTTP CLIENT INCOMING CONTEXTS
This context enables you to read context data received with the last
HTTP reply on the client side.
For this QName, get context () returns the following data type:
IT ContextAttributes::clientType
To use this context, include the following header file:

it bus_pdk/context attrs/http conf xsdTypes.h

IT ContextAttributes::HTTP SERVER OUTGOING CONTEXTS
This context enables you to specify HTTP context data for inclusion
with the server’s reply.
For this QName, get context () returns the following data type:
IT ContextAttributes::serverType
To use this context, include the following header file:

it bus_pdk/context attrs/http conf xsdTypes.h

IT ContextAttributes::HTTP SERVER INCOMING CONTEXTS
This context enables you to read context data received with the current
HTTP request on the server side.
For this QName, get context () returns the following data type:
IT ContextAttributes::serverType
To use this context, include the following header file:

it bus_pdk/context attrs/http conf xsdTypes.h

IT ContextAttributes::CORBA CONTEXT ATTRIBUTES
This context can be used to access and modify the CORBA Principal.
For this QName, get context () returns the following data type:

IT ContextAttributes::CORBAAttributesType
To use this context, include the following header file:

it bus_pdk/context attrs/corba xsdTypes.h

IT ContextAttributes::SECURITY SERVER CONTEXT
This context can be used to modify Bus security settings both on the
client side and on the server side.

193

CHAPTER 7 | Artix Contexts

For this QName, get context () returns the following data type:

IT ContextAttributes::BusSecurity
To use this context, include the following header file:

it _bus pdk/context attrs/bus_security xsdTypes.h

IT ContextAttributes::MQ CONNECTION ATTRIBUTES
For this QName, get context () returns the following data type:

IT ContextAttributes::MQConnectionAttributesType
To use this context, include the following header file:

it bus pdk/context attrs/mq xsdTypes.h

IT ContextAttributes::MQ OUTGOING MESSAGE ATTRIBUTES
For this QName, get context () returns the following data type:

IT ContextAttributes::MQOMessageAttributesType
To use this context, include the following header file:

it bus pdk/context attrs/mq xsdTypes.h

IT ContextAttributes::MQ INCOMING MESSAGE ATTRIBUTES
For this QName, get context () returns the following data type:

IT ContextAttributes::MQMessageAttributesType
To use this context, include the following header file:

it _bus _pdk/context attrs/mq xsdTypes.h

IT ContextAttributes::PRINCIPAL CONTEXT ATTRIBUTE
Calling get_context () returns the Principal as an
IT Bus::StringHolder instance.
No header file is required to use this context.

IT_ContextAttributes::Il8N_INTERCEPTOR_SERVER_QNAME
For this QName, get context () returns the following data type:

IT ContextAttributes::ServerConfiguration

To use this context, include the following header file:

it bus pdk/context attrs/il8n_context xsdTypes.h

IT ContextAttributes::I18N_INTERCEPTOR CLIENT ONAME
For this QName, get context () returns the following data type:

IT ContextAttributes::ClientConfiguration
To use this context, include the following header file:

it bus pdk/context attrs/il8n context xsdTypes.h

194

Pre-Registered Contexts

IT ContextAttributes::HTTP_ENDPOINT URL
Calling get_context () returns the HTTP endpoint URL as an
IT Bus::StringHolder instance.
No header file is required to use this context.
IT ContextAttributes::SERVER OPERATION CONTEXT
This context is a non-serializable context that can be used to get a
reference to an IT Bus::ServerOperation object during an invocation
on the server side. In other words, you can access this context type
from the body of a servant function.
For this QName, get context () returns the following data type:
IT Bus::ServerOperationContext
To use this context, include the following header files:

it _bus_pdk/context attrs/context types.h
it bus/operation.h

195

CHAPTER 7 | Artix Contexts

Reading and Writing Context Data

Overview You can read and write a variety of different kinds of context data: basic
types, user-defined types, and instances of arbitrary C++ classes (custom
types). This section describes how to access and modify the various kinds of
context data.

In this section This section contains the following subsections:
Getting a Context Instance page 197
Reading and Writing Basic Types page 201
Reading and Writing User-Defined Types page 203
Reading and Writing Custom Types page 205
Durability of Context Settings page 208

196

Reading and Writing Context Data

Getting a Context Instance

Overview Figure 21 shows an overview of how context data instances are accessed for
writing and reading in an Artix application.

Thread X

ContextCurrent
for Thread X

request_contexts () reply contexts()

ContextContainer
for Replies

ContextContainer

Context A Context B
for Requests

Context C Context D

R S

R S

set/get context data

set/get context data

Figure 21: Overview of Context Data in a Multi-Threaded Application

Getting a ContextCurrent instance To get a reference to a context registry instance, call the
IT Bus::ContextRegistry::get current () function, as defined in
Example 76.

Example 76: Getting a ContextCurrent Instance

// Ctt

namespace IT Bus

{
class IT BUS_API ContextRegistry
{

virtual ContextCurrenté& get current() = 0;

}i

197

CHAPTER 7 | Artix Contexts

ContextCurrent class

Context containers

198

A context current is an object that holds references to thread-specific
context data. In particular, an IT Bus::ContextCurrent instance provides
access to request contexts (through an IT Bus::ContextContainer object)
and reply contexts (through an IT Bus::ContextContainer object).

Example 77 shows the declaration of the IT Bus::ContextCurrent class,
which defines two functions: request contexts (), which returns a
reference to the request context container, and reply contexts (), which
returns a reference to the reply context container.

Example 77:The IT_Bus::ContextCurrent Class

// Ct++
namespace IT Bus
{
class IT BUS API ContextCurrent
{
public:

virtual ContextContainer*
request contexts() = 0;

virtual ContextContainer*
reply contexts() = 0;
bi

A context container is an object that holds a collection of contexts

associated with a particular thread. There are two kinds of context
container:

Request context container—contains the following kinds of context:
+ Configuration contexts for the client-side settings,

+ Header contexts to send in outgoing request messages,

. Header contexts received from incoming request messages.
Reply context container—contains the following kinds of contexts:

+ Configuration contexts for the server-side settings,

+ Header contexts to send in outgoing reply messages,

. Header contexts received from incoming reply messages.

ContextContainer class

Reading and Writing Context Data

Example 78: The IT_Bus::ContextContainer Class

namespace IT Bus

class IT BUS API ContextContainer

public:
// Get a serializable context
virtual AnyType*
get context (
const QNameé& context name,

bool create if not found = false

) = 0;

virtual const AnyType*
get context (

const QName& context name
) const = 0;

// Add a serializable context
virtual Boolean
add_context (
const QName& context name,
AnyTypeé& context
) = 0;

// Get a non-serializable context.
virtual Context*

get_context data(const QName& context name)

virtual const Context*

get_context data(const QName& context name) const

// Add a non-serializable context.
virtual Boolean
add context (
const QNameé& context name,
Contexté& context
) = 0;

Example 78 shows the declaration of the 1T Bus: :ContextContainer class,
which defines member functions for getting and setting context objects.

0;

199

CHAPTER 7 | Artix Contexts

Accessing and modifying
serializable contexts

Accessing and modifying
non-serializable contexts

200

Example 78: The IT_Bus::ContextContainer Class

// Miscellaneous context functions
virtual bool
contains (const QName& context name) = 0;

virtual Boolean
remove context (const QName& context name) = 0;

The contextContainer class defines the following member functions for
accessing and modifying serializable contexts:

get_context ()—returns a pointer to the context with the specified

context name, context name, Which must have been previously

registered with the context registry. The returned reference can be used

either to read to or write from a context. The create if not_found flag

has the following effect:

. If false and the context is not found, the returned pointer value is
NULL.

. If true and the context is not found, the return value points at a
newly created context instance.

add_context ()—is a convenience function that lets you set a context

from an existing context instance. The context must have been

previously registered with the context registry.

The contextContainer class defines the following member functions for
accessing and modifying non-serializable contexts:

get context data ()—treturns a pointer to the context with the
specified context name, context name, which must have been
previously registered with the context registry. The returned reference
can be used either to read to or write from a context.

add_context ()—is a convenience function that lets you set a context
from an existing context instance. The context parameter must be
defined as an IT Bus::ContextT<DataType> type, which is used to
wrap an instance of pataType.

Reading and Writing Context Data

Reading and Writing Basic Types

Overview

Registering a context for strings

To insert and extract a basic type, BasicType, you must use its
corresponding BasicTypeHolder type. For example, to insert an

IT Bus::String type into a context, you must first insert the string into an
IT Bus::StringHolder object. This approach is necessary because the
get_context () and add context () functions expect context data to be a
type that derives from IT Bus::aAnyType.

For a complete list of Holder types, see “Holder Types” on page 285.

For example, to register a configuration context that holds string data, you
could use code like the following:

// C++
const IT Bus::QName test ctx name (

"", "TestString", "http://www.iona.com/test/context"
)i

reg->register context (

test ctx name,

IT Bus::StringHolder () .get type ()
}i

Where reg is a context registry (of IT Bus::ContextRegistry type). The
IT Bus::StringHolder () constructor creates a temporary instance of a
StringHolder object, which you can use to get the QName of the
StringHolder type.

201

CHAPTER 7 | Artix Contexts

Inserting a basic type into a The following example shows how to insert an IT Bus::StringHolder
context instance into the test_ctx name request context.
// C++
IT Bus::AnyType* any string = request contexts->get context (
test ctx name, // The name of the string context.
true // The create if not found flag

)i

IT Bus::StringHolder* str holder =
dynamic cast<IT Bus::StringHolder*>(any string) ;

str holder->set ("Hello World!");

Extracting a basic type from a The following example shows how to extract the IT Bus::StringHolder
context instance from the test ctx name request context.
// C++
IT Bus::AnyType* any string = request contexts->get context (
test ctx name // The name of the string context.

)i

IT Bus::StringHolder* str holder =
dynamic cast<IT Bus::StringHolder*>(any string) ;

IT Bus::String str = str holder->get();

202

Reading and Writing Context Data

Reading and Writing User-Defined Types

Overview

Generating stubs from a context
schema

You can define a dedicated user-defined schema type to hold the context
data. You could include the context type definition directly in the
application’s WSDL contract; however, it is usually more convenient to
define the context type in a separate XML schema file.

For example, to define a complex context data type, contextpataType, in

the namespace, ContextDataUR!, you could define a context schema
following the outline shown in Example 79.

Example 79: Outline of a Context Schema

<?xml version="1.0" encoding="UTF-8"7?>

<xs:schema
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="ContextDataURI"
elementFormDefault="qualified"
attributeFormDefault="unqualified">

<xs:complexType name="ContextDataType">
</xs:complexType>

</xs:schema>

To generate C++ stubs from a context schema file, contextSchema.xsd,
enter the following command at the command line:

wsdltocpp ContextSchema.xsd

The WSDL-to-C++ compiler generates the following C+ + stub files:

ContextSchema wsdlTypes.h
ContextSchema wsdlTypesFactory.h
ContextSchema wsdlTypes.cxx
ContextSchema wsdlTypesFactory.cxx

203

CHAPTER 7 | Artix Contexts

Registering a context for a
user-defined type

Inserting a user-defined type into
a context

Extracting a user-defined type
from a context

204

For example, to register a configuration context that holds an instance of
the contextpataType type, you could use code like the following:

// C+t
const IT Bus::QName userdata ctx name (
""", "TestUserData", "http://www.iona.com/test/context"
)i
const IT Bus::QName userdata ctx type(
"", "ContextDataType", "ContextDataURI"
)i

reg->register context (
userdata ctx name,
userdata ctx type
}i

Where reg is a context registry (of IT Bus::ContextRegistry type).

The following example shows how to insert a contextbataType instance into
the userdata_ctx_name request context.

// C++

IT Bus::AnyType* any userdata = request contexts-—>get context (
userdata ctx name, // The name of the UserData context.
true // The create if not found flag

)i

ContextDataType* ctx data =
dynamic cast<ContextDataType*>(any userdata) ;
ctx data->set... () // Initialize the context data.

The following example shows how to extract the contextpataType instance
from the userdata ctx name request context.

// Ct++
IT Bus::AnyType* any userdata = request contexts->get context (
userdata ctx name // The name of the UserData context.

)i

ContextDataType* ctx data =
dynamic cast<ContextDataType*>(any userdata);
cout << ctx data->get...() // Initialize the context data.

Reading and Writing Context Data

Reading and Writing Custom Types

Overview Sometimes it is necessary to store a custom data type in a context—that is,
a data type that does not inherit from 1T Bus::aAnyType. Using a
non-serializable context, you can store instances of any class in a context.

Note: Non-serializable contexts are not streamable, however. You can
only set and get this kind of context locally, from within the same process.

ContextT template The contextT<T> template class is used to hold a reference to an arbitrary
C++ type. The contextT<T> type is needed to wrap T instances before they
can be added to a context container.

Example 80: The ContextT Template Class

// C++
namespace IT Bus {
template<class T>
class ContextT : public Context
{
public:
ContextT (T& context) : m context (context)
{
// complete
}

T& get data() {
return m context;

}

private:
T& m context;
)i
}i

205

CHAPTER 7 | Artix Contexts

Inserting a custom type into a
context

Extracting a custom type from a
context

206

Given a user-defined type, customClass, and a registered custom context
name, custoM CTx NaME, the following example shows how to use the
ContextT<> template to store a customClass instance in a request context
container.

// C++
using namespace IT Bus;

typedef ContextT<CustomClass> CustomClassContext;
CustomClass data;

CustomClassContext ctx(data);
request contexts->add context (CUSTOM CTX NAME, ctx);

The following example shows how to extract a customClass instance from
the request context container. The code that extracts the context must be
colocated with the code that inserts it (in other words, this type of context
cannot be sent in a header).

// C++
using namespace IT Bus;

typedef ContextT<CustomClass> CustomClassContext;

Context * ctx =
request_contexts->get context data (CUSTOM CTX NAME) ;

CustomClassContext* custom ctx =
dynamic_cast<CustomClassContext*>(result ctx);

CustomClass& custom = custom ctx->get data();

Accessing the server operation
context

Reading and Writing Context Data

For a practical application of non-serializable contexts, consider Example 81
which shows you how to access an IT Bus::ServerOperation instance in
the context of an invocation on the server side (in other words, this code
could appear in the body of a servant function).

Example 81: Accessing the Server Operation Context

// Ct++

#include <it bus pdk/context.h>

#include <it bus pdk/context attrs/context constants.h>
#include <it bus/operation.h>

using namespace IT Bus;
using namespace IT ContextAttributes;

ContextRegistry* context registry =
bus->get context registry();

// Obtain a reference to the ContextCurrent.
ContextCurrent& context current =
context registry->get current();

// Obtain a pointer to the RequestContextContainer.
ContextContainer* context container =
context current.request contexts();

ServerOperation * operation = 0;
// Users can now access context derived from Context class.
Context* context data =

context container->get context data (SERVER OPERATION CONTEXT) ;
// Need to cast to appropriate context type.
ServerOperationContext* operation =

dynamic_cast<ServerOperationContext*>(context data);

// ServerOperation is wrapped in a template ContextT class.
ServerOperation& server op = operation->get data();

207

CHAPTER 7 | Artix Contexts

Durability of Context Settings

Overview

Client side durability

Server side durability

208

When you set a context value using either get context () Of add context (),
the context value is not valid indefinitely. The general rule is that a context
value is valid only for the duration of an invocation. There are two cases two
consider, as follows:

® Client side durability

® Server side durability

On the client side, the general rule is that a context value affects only the
next invocation in the current thread. At the end of the invocation, Artix
clears the context value. Hence, it is generally necessary to reset the context
value before the making the next invocation.

An exception to this rule is demonstrated by the context types derived from
the http-conf schema (HTTP CLIENT OUTGOING CONTEXTS and

HTTP CLIENT INCOMING CONTEXTS). These context values are valid over
multiple invocations from the current thread.

On the server side, the general rule is that context values are set at the start
of an operation invocation (when the server receives a request message) and
cleared at the end of the invocation. Context values are thus available to the
servant code only for the duration of the invocation.

An exception to this rule is the value of an endpoint URL, which can be
modified outside of an invocation context by calling the setUrL () function
on a server configuration context. For details of how to do this, see “Setting
a Configuration Context on the Server Side” on page 217.

Configuration Context Example

Configuration Context Example

Overview

In this section

This section shows how to modify the settings in a configuration context,
using the http-conf schema as an example. The http-conf:clientType
context type enables you to modify the client port settings on a HTTP port
and the http-conf:serverType context type enables you to modify server
endpoint settings.

This section contains the following subsections:

HTTP-Conf Schema page 210
Setting a Configuration Context on the Client Side page 214
Setting a Configuration Context on the Server Side page 217

209

CHAPTER 7 | Artix Contexts

HTTP-Conf Schema

Overview

http-conf schema file

http-conf:clientType XML
definition

210

This subsection provides an overview of the http-conf schema, which
provides the definitions of the http-conf configuration context types. Using
the nttp-conf schema, you can configure the properties of a HTTP port
either in a WSDL contract or by programming. The C++ mapping of the
http-conf contexts are already generated for you—all that you need to do is
include the relevant header file in your code and link with the relevant
library.

The http-conf schema defines WSDL extension elements for configuring a
HTTP port in Artix. The http-conf schema is defined in the following file:

ArtixInstallDir/artix/Version/schemas/http-conf.xsd

Example 82 gives an extract from the http-conf schema, showing part of
the definition of the http-conf:clientType complex type.

Example 82: Definition of the http-conf:clientType Type

<xs:schema
targetNamespace="http://schemas.iona.com/transports/http/conf
iguration”
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:http-conf="http://schemas.iona.com/transports/http/conf
iguration”
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
elementFormDefault="qualified"
attributeFormDefault="unqualified">

<xs:import namespace="http://schemas.xmlsoap.org/wsdl/"/>

<xs:complexType name="clientType">
<xs:complexContent>
<xs:extension base="wsdl:tExtensibilityElement">
<xs:attribute name="SendTimeout"
type="http-conf:timeIntervalType"
use="optional" default="30000"/>

<xs:attribute name="ReceiveTimeout"
type="http-conf:timeIntervalType"
use="optional"

Configuration Context Example

Example 82: Definition of the http-conf:clientType Type

default="30000"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>

</xs:schema>

http-conf timeout attributes The http-conf:clientType type defines two timeout attributes, as follows:

® sendTimeout—i(in milliseconds) the maximum amount of time a client

will spend attempting to contact a remote server.
® ReceiveTimeout—I(in milliseconds) for synchronous calls, the

maximum amount of time a client will wait for a server response.

http-conf:clientType C+ + The http-conf:clientType port type maps to the

mapping IT ContextAttributes::clientType C++ class, as shown in Example 83.
The sendTimeout and ReceiveTimeout attributes each map to get and set
functions. Because these are optional attributes, the get functions return a
pointer. A NULL return value indicates that the attribute is not set.

Example 83: C++ Mapping of http-conf:clientType Type
// C++

namespace IT ContextAttributes
{
class clientType
: public IT tExtensibilityElementData,
public virtual IT Bus::ComplexContentComplexType

public:

IT Bus::Int * getSendTimeout () ;

const IT Bus::Int * getSendTimeout () const;
void setSendTimeout (const IT Bus::Int * val);
void setSendTimeout (const IT Bus::Int & val);

IT Bus::Int * getReceiveTimeout () ;

const IT Bus::Int * getReceiveTimeout () const;
void setReceiveTimeout (const IT Bus::Int * val);

211

CHAPTER 7 | Artix Contexts

Example 83: C++ Mapping of http-conf:clientType Type

void setReceiveTimeout (const IT Bus::Int & val);

bi

http-conf:serverType C+ + The http-conf:serverType port type maps to the
mapping IT ContextAttributes::serverType C++ class, as shown in Example 84.

In this example, we are only interested in the functions for setting and
getting the endpoint URL, setURL () and getURL (). Using these functions,
you can examine or modify the host and IP port where the server listens for
incoming client connections.

Example 84: C++ Mapping of the http-conf:serverType Type
// Ct+
namespace IT ContextAttributes {
class IT CONTEXT ATTRIBUTE API serverType
: public IT tExtensibilityElementData,
public virtual IT Bus::ComplexContentComplexType
public:
IT Bus::String * getURL();
const IT Bus::String * getURL() const;

void setURL(const IT Bus::String * val);
void setURL(const IT Bus::String & val);

212

Header and library files

Pre-registered context type names

Configuration Context Example

One of the pre-requisites for programmatically modifying the http-conf port
configuration is to include the following header file in your C++ code:

it _bus pdk/context attrs/http conf xsdTypes.h
You must also link your client application with the following library file:

Windows
ArtixInstallDir/artix/Version/lib/it context attribute.lib

UNIX

ArtixInstallDir/artix/Version/lib/it context attribute.so
ArtixInstallDir/artix/Version/lib/it context attribute.sl
ArtixInstallDir/artix/Version/lib/it_context attribute.a

The nttp-conf:clientType context type for outgoing data is pre-registered
with the context registry under the following QName constant:

IT ContextAttributes::HTTP CLIENT OUTGOING CONTEXTS

The nttp-conf:serverType context type for outgoing data is pre-registered
with the context registry under the following QName constant:

IT ContextAttributes::HTTP_SERVER OUTGOING CONTEXTS

213

CHAPTER 7 | Artix Contexts

Setting a Configuration Context on the Client Side

Overview This subsection describes how to set attributes on the
http-conf:clientType context (corresponds to the attributes settable on
the <http-conf:client> WSDL port extensor). The http-conf:clientType
context configures client-side attributes on the HTTP transport plug-in.

Client main function Example 85 shows sample code from a client main function, which shows
how to initialize http-conf:clientType context data in the current thread.

Example 85: Client Main Function Setting a Configuration Context
// Ct+

#include <it bus/bus.h>

#include <it bus/exception.h>

#include <it cal/iostream.h>

// Include header files related to the soap context

#include <it bus pdk/context.h>
2 #include <it bus pdk/context attrs/http conf xsdIypes.h>

[y

IT USING NAMESPACE STD

using namespace IT ContextAttributes;
using namespace IT Bus;

int
main (int argc, char* argvl[])
{

try

{

IT Bus::Bus var bus = IT Bus::init(argc, argv);

3 ContextRegistry* context registry =
bus->get context registry();

// Obtain a reference to the ContextCurrent
4 ContextCurrent& context current =

context registry->get current();

// Obtain a pointer to the Request ContextContainer
5 ContextContainer* context container =

214

Configuration Context Example

Example 85: Client Main Function Setting a Configuration Context

context current.request contexts();

// Obtain a reference to the context

AnyType* info context container->get context (
IT ContextAttributes::HTTP CLIENT OUTGOING CONTEXTS,
true

)i

// Cast the context into a clientType object
clientType* http client config =
dynamic cast<clientType*> (info);

// Modify the Send/Receive timeouts
http client config->setSendTimeout (2000);
http client config->setReceiveTimeout (600000) ;

}
catch (IT Bus::Exception& e)
{
cout << endl << "Error : Unexpected error occured!"
<< endl << e.message ()
<< endl;
return -1;
}

return 0;

The preceding code example can be explained as follows:

1.

The it bus pdk/context.h header file contains the declarations of the
following classes:

. IT Bus::ContextRegistry
. IT Bus::ContextContainer
. IT Bus::ContextCurrent

The http conf xsdTypes.h header declares the context data types
generated from the http-conf schema.

Obtain a reference to the IT Bus::ContextRegistry object, which is
used to register contexts with the Bus.

Call IT Bus::ContextRegistry::get current() to obtain a reference
to the IT Bus::ContextCurrent object. The current object provides
access to all context objects associated with the current thread.

215

CHAPTER 7 | Artix Contexts

216

Call IT Bus: :ContextContainer: :request contexts () to obtain an
IT Bus::ContextContainer Object that contains all of the contexts for
requests originating from the current thread.

The IT Bus::ContextContainer::get context () function is called
with its second parameter set to true, indicating that a context with
that name should be created if none already exists.

The IT Bus::AnyType class is the base type for all complex types in
Artix. In this case, you can cast the anyType instance, info, to its
derived type, clientType.

You can now modify the send and receive timeouts on the client port
using setSendTimeout () and setReceiveTimeout (). These timeouts
will be applied to any subsequent calls issuing from the current thread.

Configuration Context Example

Setting a Configuration Context on the Server Side

Overview

Server main function

[y

This subsection describes how to set attributes on the
http-conf:serverType context (corresponds to the attributes settable on
the <http-conf:server> WSDL port extensor). The http-conf:serverType
context configures server-side attributes on the HTTP transport plug-in.

Example 86 shows sample code from a server main function, which shows
how to initialize http-conf:serverType configuration context data.

Example 86: Client Main Function Setting a Configuration Context

// C++

#include <it bus/bus.h>
#include <it bus/exception.h>
#include <it cal/iostream.h>

// Include header files related to the soap context
#include <it bus pdk/context.h>
#include <it bus pdk/context attrs/http conf xsdTypes.h>

IT USING NAMESPACE STD

using namespace IT ContextAttributes;
using namespace IT Bus;

int
main (int argc, char* argv([])
{

try

{

IT Bus::Bus var bus = IT Bus::init(argc, argv);

IT Bus::QName service name (

nwn
’

"SOAPService",
"http://www.iona.com/hello world soap http"
)i

ContextRegistry* context registry =
bus->get context registry();

217

CHAPTER 7 | Artix Contexts

Example 86: Client Main Function Setting a Configuration Context

5 ContextContainer * context container =
context registry->get configuration context(
service name,
"SoapPort",
true
);

// Obtain a reference to the context

6 AnyType* info = context container->get context (
IT ContextAttributes::HTTP SERVER OUTGOING CONTEXTS,
true

)7

// Cast the context into a serverType object
7 serverType* http server config =
dynamic cast<serverType*> (info);

// Modify the endpoint URL
8 http server config->setURL ("http://localhost:63278");

GreeterImpl servant (bus) ;
bus->register servant (
servant,
"../../etc/hello world.wsdl",
service name
)i
}
catch (IT Bus::Exceptioné& e)

{

cout << endl << "Error : Unexpected error occured!"
<< endl << e.message ()
<< endl;

return -1;

}

return 0;

The preceding code example can be explained as follows:

1. The it bus pdk/context.h header file contains the declarations of the
following classes:
. IT Bus::ContextRegistry
. IT Bus::ContextContainer

* IT Bus::ContextCurrent

218

Configuration Context Example

The http conf xsdTypes.h header declares the context data types
generated from the http-conf schema.

This service name is the QName of the SOAP service featured in the
hello world soap_ http demonstration (in
demos/basic/hello world soap http).

Obtain a reference to the IT Bus::ContextRegistry object, which is
used to register contexts with the Bus.

The IT Bus::ContextContainer object returned by

get configuration context () holds configuration data that is used
exclusively by the specified endpoint (that is, the soapport port in the
SOAPService Service).

Note: Currently, the contextContainer object returned by
get configuration context () can be used only to set an endpoint
URL on the server side.

The IT Bus::ContextContainer::get context () function is called
with its second parameter set to true, indicating that a context with
that name should be created if none already exists.

The IT Bus::AnyType class is the base type for all complex types in
Artix. In this case, you can cast the anyType instance, info, to its
derived type, serverType.

You can now modify the URL used by the soaprort port by calling the
setURL () function.

219

CHAPTER 7 | Artix Contexts

Header Context Example

Overview This section provides a detailed discussion of the custom SOAP header
demonstration, which shows you how to propagate context data in a SOAP
header.

In this section This section contains the following subsections:

Custom SOAP Header Demonstration page 221
SOAP Header Context Schema page 223
Declaring the SOAP Header Explicitly page 226
Client Main Function page 229
Server Main Function page 234
Service Implementation page 237

220

Header Context Example

Custom SOAP Header Demonstration

Overview The examples in this section are based on the custom SOAP header
demonstration, which is located in the following Artix directory:
ArtixInstallDir/artix/Version/demos/advanced/custom soap header
Figure 22 shows an overview of the custom SOAP header demonstration,

showing how the client piggybacks context data along with an invocation
request that is invoked on the sayHi operation.

Artix Client Artix Server
@ Register context @ Register context
@ Initialize context data @
. sayHi () » Serverlmpl
| |Context |
v ®
e

: :

]]

HelloWorld WSDL WSDL SOAPHeaderInfo WSDL WSDL HelloWorld
Contract Schema Contract
~ e ~ e
WSDL File XSD File XSD File WSDL File

Figure 22: Overview of the Custom SOAP Header Demonstration

221

CHAPTER 7 | Artix Contexts

Transmission of context data

HelloWorld WSDL contract

SOAPHeaderInfo schema

222

As illustrated in Figure 22, SOAP context data is transmitted as follows:

1.

2.
3.
4

The client registers the context type, soaPHeaderInfo, with the Bus.
The client initializes the context data instance.
The client invokes the sayHi () operation on the server.

As the server starts up, it registers the soapHeaderInfo context type
with the Bus.

When the sayHi () operation request arrives on the server side, the

sayHi () operation implementation extracts the context data from the
request.

The HelloWorld WSDL contract defines the contract implemented by the
server in this demonstration. In particular, the HelloWorld contract defines
the Greeter port type containing the sayni WSDL operation.

The soaPHeaderInfo schema (in the
demos/advanced/custom soap header/etc/contextTypes.xsd file) defines
the custom data type used as the context data type. This schema is specific
to the custom SOAP header demonstration.

Header Context Example

SOAP Header Context Schema

Overview This subsection describes how to define an XML schema for a context type.
In this example, the soaPHeaderInfo type is declared in an XML schema.
The soaPHeaderInfo type is then used by the custom SOAP header
demonstration to send custom data in a SOAP header.

SOAPHeaderInfo XML declaration Example 87 shows the schema for the soaPHeaderInfo type, which is
defined specifically for the custom SOAP header demonstration to carry
some sample data in a SOAP header. Note that Example 87 is a pure
schema declaration, not a WSDL declaration.

Example 87: XML Schema for the SOAPHeaderInfo Context Type

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://schemas.iona.com/types/context"
elementFormDefault="qualified"
attributeFormDefault="unqualified">
<xs:complexType name="SOAPHeaderInfo'>
<xs:annotation>
<xs:documentation>
Content to be added to a SOAP header
</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="originator" type="xs:string"/>
<xs:element name="message" type="xs:string"/>
</xs:sequence>
</xs:complexType>
</xs:schema>

The soaPHeaderInfo complex type defines two member elements, as
follows:

® originator—holds an arbitrary client identifier.
® nessage—holds an arbitrary example message.

223

CHAPTER 7 | Artix Contexts

Target namespace

Compiling the SOAPHeaderInfo
schema

SOAPHeaderInfo C++ mapping

224

You can use any target namespace for a context schema (as long as it does
not clash with an existing namespace). This demonstration uses the
following target namespace:

http://schemas.iona.com/types/context

To compile the soaPHeaderInfo schema, invoke the wsdltocpp compiler
utility at the command line, as follows:

wsdltocpp contextTypes.xsd

Where contextTypes.xsd is a file containing the XML schema from
Example 87. This command generates the following C++ stub files:

contextTypes xsdTypes.h
contextTypes xsdTypesFactory.h
contextTypes xsdTypes.cxx
contextTypes xsdTypesFactory.cxx

Example 88 shows how the schema from Example 87 on page 223 maps
to C++, to give the soap interceptor::SoaPHeaderInfo C++ class.

Example 88: C++ Mapping of the SOAPHeaderInfo Context Type

// C++

namespace soap_interceptor

{

class SOAPHeaderInfo : public IT Bus::SequenceComplexType
{
public:
static const IT Bus::QName type name;

SOAPHeaderInfo() ;
SOAPHeaderInfo (const SOAPHeaderInfo & copy) ;
virtual ~SOAPHeaderInfo () ;

IT Bus::String & getoriginator() ;
const IT Bus::String & getoriginator() const;
void setoriginator (const IT Bus::String & val);

IT Bus::String & getmessage () ;
const IT Bus::String & getmessage() const;
void setmessage (const IT Bus::String & val);

Header Context Example

Example 88: C++ Mapping of the SOAPHeaderInfo Context Type

}i

225

CHAPTER 7 | Artix Contexts

Declaring the SOAP Header Explicitly

Overview There are two different approaches you can take with SOAP headers:

* Implicit SOAP header—(the approach taken in Example 87 on
page 223) in this case, you need only declare the schema type that
holds the header data. By registering the type as a SOAP header
context, you enable an Artix application to send and receive SOAP
headers of this type.

® Explicit SOAP header—in this case, you must modify the original
WSDL contract and explicitly declare which operations can send and
receive the header. This approach might be useful for certain
interoperability scenarios.

This subsection briefly describes how to implement the second approach,
explicitly declaring the SOAP header.

Note: The implicit approach is also consistent with the SOAP
specification, which does not require you to declare SOAP headers
explicitly in WSDL.

Demonstration code The code for this demonstration is located in the following directory:

ArtixInstallDir/artix/Version/demos/advanced/soap header binding

SOAP header declaration Example 89 shows how to declare a SOAP header, of SOAPHeaderData
type, explicitly in a WSDL contract.

Example 89: SOAP Header Declared in the WSDL Contract

<?xml version="1.0" encoding="UTF-8"?>

<definitions name="HelloWorld"
targetNamespace="http://www.iona.com/soap header"
xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:http-conf="http://schemas.iona.com/transports/http/configu
ration"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://www.iona.com/soap header"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

226

Header Context Example

Example 89: SOAP Header Declared in the WSDL Contract

<types>
<schema targetNamespace="http://www.iona.com/soap header"
xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
<element name="responseType" type="xsd:string"/>
<element name="requestType" type="xsd:string"/>
<complexType name="SOAPHeaderData">
<sequence>
<element name="originator" type="xsd:string"/>
<element name="message" type="xsd:string"/>
</sequence>
</complexType>
<element name="SOAPHeaderInfo"
type="tns:SOAPHeaderData" />
</schema>
</types>

<message name="sayHiRequest"/>
<message name="sayHiResponse'">

<part element="tns:responseType" name="theResponse"/>
</message>

<message name="header message">
<part element="tns:SOAPHeaderInfo" name="header_info"/>
</message>
<portType name="Greeter">
<operation name="sayHi'">
<input message="tns:sayHiRequest"
name="sayHiRequest"/>
<output message="tns:sayHiResponse"
name="sayHiResponse" />
</operation>

</portType>

<binding name="Greeter SOAPBinding" type="tns:Greeter">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="sayHi'">
<soap:operation soapAction="" style="document"/>
<input name="sayHiRequest">
<soap:body use="literal"/>
<soap:header message="tns:header message"
part="header info"
use="literal"/>

227

CHAPTER 7 | Artix Contexts

228

Example 89: SOAP Header Declared in the WSDL Contract

</input>
<output name="sayHiResponse'">
<soap:body use="literal"/>
<soap:header message="tns:header message"
part="header info"
use="literal"/>
</output>
</operation>

</binding>

</definitions>

The preceding WSDL contract can be explained as follows:

1.

This example declares a header of type soapHeaderbata (this example
is different from the header type declared in Example 87 on
page 223). The soAPHeaderData type contains two string fields,

originator and message.

You must declare an element to contain the header data. In this case,
the header is transmitted as <soaPHeaderInfo> ...
</SOAPHeaderInfo>.

You must declare a message element for the header. In this case, the
message QName is tns:header message and the part name is
header info. These correspond to the values that would be passed to
the last two arguments of the

IT Bus::ContextRegistry::register context () function.

In the scope of the binding element, you should declare which
operations include the soapHeaderData header, as shown. The
soap:header element references the message QName,
tns:header message, and the part name, header info.

Header Context Example

Client Main Function

Overview

Client main function

This subsection discusses the client for the custom SOAP header
demonstration. This client is designed to send a custom header, of
SOAPHeaderInfo type, every time it invokes an operation on the Greeter port
type.

To enable the sending of context data, the client performs two fundamental

tasks, as follows:

1. Register a context type with the SOAP container—registering the
context type is a prerequisite for sending context data in a request. By
registering the context type with the Bus, you give the Bus instance the
capability to marshal and unmarshal context data of that type.

2. Initialize the context data in the SOAP current object—before
invoking any operations, the client obtains an instance of the header
context data from a SOAP current object. After initializing the header
context data, any operations invoked from the current thread will
include the header context data.

Example 90 shows sample code from the client main function, which shows
how to register a context type and initialize header context data for the
current thread.

Example 90: Client Main Function Setting a SOAP Context

// C++
// GreeterClientSample.cxx File

#include <it bus/bus.h>
#include <it bus/exception.h>
#include <it cal/iostream.h>

// Include header files related to the soap context
#include <it bus pdk/context.h>

// Include header files representing the soap header content

#include "contextTypes xsdTypes.h"
#include "contextTypes xsdTypesFactory.h"

229

CHAPTER 7 | Artix Contexts

230

Example 90: Client Main Function Setting a SOAP Context
#include "GreeterClient.h"
IT USING NAMESPACE STD

using namespace soap interceptor;
using namespace IT Bus;

int
main (int argc, char* argvl[])
{
try
{
IT Bus::Bus var bus = IT Bus::init(argc, argv);
GreeterClient client;

ContextRegistry* context registry =
bus->get context registry();

// Create QName objects needed to define a context
const QName principal ctx name (

wn
’

"SOAPHeaderInfo",
);
const QName principal ctx type (
“"I
"SOAPHeaderInfo",
"http://schemas.iona.com/types/context"
)i
const QName principal message_name (
"soap header",
"header content",
"http://schemas.iona.com/custom header"
)i

const String principal part name ("header info");

// Register the context with the ContextRegistry
context registry->register context (
principal ctx name,
principal ctx type,
principal message name,
principal part name

10

11

12

13

Header Context Example

Example 90: Client Main Function Setting a SOAP Context

}

// Obtain a reference to the ContextCurrent
ContextCurrenté& context current =
context registry->get current();

// Obtain a pointer to the RequestContextContainer
ContextContainer* context container =
context current.request contexts();

// Obtain a reference to the context

AnyType* info = context container->get context (
principal ctx name,
true

)i

// Cast the context into a SOAPHeaderInfo object
SOAPHeaderInfo* header info =
dynamic cast<SOAPHeaderInfo*> (info);

// Create the content to be added to the header
const String originator ("IONA Technologies");
const String message ("Artix is Powerful!");

// Add the header content
header info->setoriginator (originator);
header info->setmessage (message) ;

// Invoke the Web service business methods
String theResponse;

client.sayHi (theResponse) ;
cout << "sayHi response: " << theResponse << endl;

catch (IT Bus::Exception& e)

{

}

cout << endl << "Error : Unexpected error occured!"
<< endl << e.message ()
<< endl;

return -1;

return 0;

231

CHAPTER 7 | Artix Contexts

232

The preceding code example can be explained as follows:

1.

The it bus pdk/context.h header file contains the declarations of the
following classes:

. IT Bus::ContextRegistry
. IT Bus::ContextContainer
. IT Bus::ContextCurrent

The contextTypes xsdTypes.h local header file contains the
declaration of the soarHeaderInfo class, which has been generated
from the context schema (see Example 87 on page 223).

Obtain a reference to the IT Bus::ContextRegistry object, which is
used to register contexts with the Bus.

The QName with local name, soaPHeaderInfo, is a context name that
identifies the context uniquely. Although the context name is specified
as a QName, it does not refer to an XML element. You can choose any
unique QName as the context name.

The QName with namespace URI,
http://schemas.iona.com/types/context, and local part,
SOAPHeaderInfo, identifies the context type from Example 87 on
page 223.

The QName with namespace URI,
http://schemas.iona.com/custom header, and local part,

header content, corresponds to the message attribute of a
soap:header element. The value is currently ignored (but should not
clash with any existing message QNames).

The neader_info string value identifies the part of the SOAP header
that holds the context data. It corresponds to the part attribute of a
soap:header element. The value is currently ignored.

The call t0 register context () tells the Artix Bus that the
SOAPHeaderInfo type will be used to send context data in SOAP
headers. After you have registered the context, the Bus is prepared to
marshal the context data (if any) into a SOAP header.

Call IT Bus::ContextRegistry::get current () to obtain a reference
to the IT Bus::ContextCurrent object. The current object provides
access to all context objects associated with the current thread.

10.

11.

12.

13.

Header Context Example

Call IT Bus: :ContextContainer: :request contexts() to obtain an
IT Bus::ContextContainer object that contains all of the contexts for
requests originating from the current thread.

The IT Bus::ContextContainer::get context () function is called
with its second parameter set to true, indicating that a context with
that name should be created if none already exists.

The IT Bus::AnyType class is the base type for all complex types in
Artix. In this case, you can cast the anyType instance, info, to its
derived type, soaPHeaderInfo.

By setting the originator and message elements of this
SOAPHeaderInfo Object, you are effectively fixing the context data for
all operations invoked from this thread.

When you invoke the sayHi () operation, the context data is included
in the SOAP header. From this point on, any WSDL operation invoked
from the current thread will include the soaPHeaderInfo context data
in its SOAP header.

233

CHAPTER 7 | Artix Contexts

Server Main Function

Overview

Server main function

234

This subsection discusses the main function for the server in the custom
SOAP header demonstration. In addition to the usual boilerplate code for an
Artix server (that is, registering a servant and calling 1T Bus::run()), this
server also registers a context type with the Bus.

By registering a context type with the Bus, you give the Bus instance the
capability to unmarshal context data of that type. This unmarshalling
capability is then exploited in the implementation of the sayHi () operation
(see Example 92 on page 237).

Example 91 shows sample code from the server main function, which
registers the soapHeaderInfo context type and then creates and registers a
GreeterImpl Servant object.

Example 91: Server Main Function Registering a SOAP Context

// Ct+

#include <it bus/bus.h>

#include <it bus/exception.h>
#include <it bus/fault exception.h>
#include <it cal/iostream.h>

#include <it bus pdk/context.h>
#include "GreeterImpl.h"
IT USING NAMESPACE STD

using namespace soap interceptor;
using namespace IT Bus;

int
main (int argc, char* argv(])
{

try

{

IT Bus::Bus var bus = IT Bus::init(argc, argv);

ContextRegistry* context registry =
bus->get context registry();

Header Context Example

Example 91: Server Main Function Registering a SOAP Context

const QName principal ctx name (

nwn
’

"SOAPHeaderInfo",
)i
const QName principal ctx type (
""I
"SOAPHeaderInfo",
"http://schemas.iona.com/types/context"
)i
const QName principal message name (
"soap header",
"header content",
"http://schemas.iona.com/custom header"
)i

const String principal part name ("header info");

context registry->register context (
principal ctx name,
principal ctx type,
principal message name,
principal part name

);
GreeterImpl servant (bus) ;

IT Bus::QName service name("", "SOAPService",
"http://www.iona.com/custom soap interceptor");

bus->register servant (
servant,
"../../etc/hello world.wsdl",
service name

)i

IT Bus::run();

}

catch (IT Bus::Exception& e)

{
cout << "Error occurred: " << e.message() << endl;
return -1;

}

return 0;

235

CHAPTER 7 | Artix Contexts

236

The preceding code example can be explained as follows:

1.

The it bus pdk/context.h header file contains the declarations of the
following classes:

. IT Bus::ContextRegistry
. IT Bus::ContextContainer
. IT Bus::ContextCurrent

Obtain a reference to the IT Bus::ContextRegistry object, which is
used to register contexts with the Bus.

The QName with local name, soaPHeaderInfo, is a context name that
identifies the context uniquely. Although the context name is specified
as a QName, it does not refer to an XML element. You can choose any
unique QName as the context name.

The QName with namespace URI,
http://schemas.iona.com/types/context, and local part,
SOAPHeaderInfo, identifies the context type from Example 87 on
page 223.

The QName with namespace URI,
http://schemas.iona.com/custom header, and local part,

header content, corresponds to the message attribute of a
soap:header element. The value is currently ignored (but should not
clash with any existing message QNames).

The header_info string value identifies the part of the SOAP header
that holds the context data. It corresponds to the part attribute of a
<soap:header> attribute. The value is currently ignored.

The call to register context () tells the Artix Bus that the
SoAPHeaderInfo type will be used to send context data in SOAP
headers. After you have registered the context, the Bus is prepared to
marshal the context data (if any) into a SOAP header.

Header Context Example

Service Implementation

Overview

Implementation of the sayHi
operation

This subsection discusses the implementation of the Greeter port type,
which maps to the Greetertmpl servant class in C++.

In the custom SOAP header demonstration, the GreeterImpl::sayHi ()
operation is modified to peek at the context data accompanying the
invocation. To access the context data, you need to get access to a context
current object, which encapsulates all of the context data received from the
client.

Example 92 shows the implementation of the sayHi () operation from the
GreeterTImpl Servant class. The sayHi () operation implementation uses the
context API to access the context data received from the client.

Example 92: sayHi Operation Accessing a SOAP Context

// C++
void
GreeterImpl: :sayHi (
IT Bus::String &theResponse
) IT THROW DECL ((IT Bus::Exception))
{

cout << "sayHi invoked" << endl;
theResponse = "Hello from Artix";

// Obtain a pointer to the bus
Bus_var bus = Bus::create reference();

ContextRegistry* context registry =
bus->get context registry();

// Create QName objects needed to define a context
const QName principal ctx name (

wn
’

"SOAPHeaderInfo",

wn

237

CHAPTER 7 | Artix Contexts

238

Example 92: sayHi Operation Accessing a SOAP Context

// Obtain a reference to the ContextCurrent
ContextCurrent& context current =
context registry->get current();

// Obtain a pointer to the RequestContextContainer
ContextContainer* context container =
context current.request contexts();

// Obtain a reference to the context

AnyType* info = context container->get context (
principal ctx name

)i

// Cast the context into a SOAPHeaderInfo object
SOAPHeaderInfo* header info =
dynamic cast<SOAPHeaderInfo*> (info);

// Extract the application specific SOAP header information
Stringé& originator = header info->getoriginator();
String& message = header info->getmessage();

cout << "SOAP Header originator = " << originator.c str() <<
endl;
cout << "SOAP Header message = " << message.c_str() << endl;

The preceding code example can be explained as follows:

1.

The IT_Bus::ContextRegistry(ﬂﬂeCL context_registry,provmes
access to all of the objects associated with contexts.

The QName with local name, soaPHeaderInfo, is the name of the

context to be extracted from the incoming request message.

Call IT Bus::ContextRegistry::get current () to obtain the

IT Bus::ContextCurrent object for the current thread.

Call IT Bus::ContextCurrent::request contexts () to obtain the

IT Bus::ContextContainer object containing all of the incoming
request contexts.

Note: This is the same object that is used on the client side to hold
all of the outgoing request contexts.

Header Context Example

To retrieve a specific context from the request context container, pass
the context’s name into the

IT Bus::ContextContainer::get context () function.

The IT Bus::AnyType class is the base type for all types in Artix. In
this example, you can cast the anyType instance, info, to its derived
type, soaPHeaderInfo.

You can now access the context data by calling the accessors for the
originator and message elements, getoriginator () and

getmessage ().

239

CHAPTER 7 | Artix Contexts

Header Contexts in Three-Tier Systems

Overview This section considers how Artix header contexts are propagated in a
three-tier system. The Artix context model makes no distinction between
incoming request contexts and outgoing request contexts. Similarly, Artix
makes no distinction between incoming reply contexts and outgoing reply
contexts. An implicit consequence of this model is that request contexts and
reply contexts are automatically propagated across multiple application
tiers.

Request context propagation Figure 23 shows an example of a three-tier system where a request context
is propagated automatically from tier to tier.

Artix Client Mid-Tier Server Target Server
firstCall("...") /—\ secondCall("...") O
@ [[Context | % | [Context |
v v
-]
Request context Request context Request context

Figure 23: Propagation of a Request Context in a Three-Tier System

240

Header Contexts in Three-Tier Systems

Context propagation steps In Figure 23, the request context is propagated through the three-tier
system as follows:

1.

In the Artix client, a header context is added to the request context
container. When the client makes an invocation, firstcall (), on the
mid-tier, the context is inserted into the request message header.
When the request arrives at the mid-tier, it is automatically marshalled
into a request context. The context data is now accessible using the
request context container object.

If the mid-tier makes a follow-on invocation, secondcall (), the Artix
runtime inserts the received request context into the outgoing request
message. Hence, the client’s request context is automatically
forwarded on to the next tier.

When the request arrives at the target, it is automatically marshalled
into a request context. The client context data is now accessible
through the request context container object.

241

CHAPTER 7 | Artix Contexts

242

In this chapter

CHAPTER 8

Artix Data Types

This chapter presents the XML schema data types supported
by Artix and describes how these data types map to C+ +.

This chapter discusses the following topics:

Including and Importing Schema Definitions page 244
Simple Types page 246
Complex Types page 288
Wildcarding Types page 333
Occurrence Constraints page 349
Nillable Types page 368
Substitution Groups page 390
SOAP Arrays page 400
IT_Vector Template Class page 412
Unsupported XML Schema Constructs in Artix page 419

243

CHAPTER 8 | Artix Data Types

Including and Importing Schema Definitions

Overview

xsd:include syntax

xsd:import syntax

244

Artix supports the including and importing of schema definitions, using the

<include/> and <import/> schema tags. These tags enable you to insert

definitions from external files or resources into the scope of a schema

element. The essential difference including and importing is this:

® Including brings in definitions that belong to the same target
namespace as the enclosing schema element, whereas

® Importing brings in definitions that belong to a different target
namespace from the enclosing schema element.

The include directive has the following syntax:

<include

schemaLocation = "anyURI"
/>
The referenced schema, given by anyurz, must either belong to the same
target namespace as the enclosing schema or not belong to any target
namespace at all. If the referenced schema does not belong to any target
namespace, it is automatically adopted into the enclosing schema’s
namespace when it is included.

The import directive has the following syntax:

<import
namespace = "namespaceAnyURI"
schemaLocation = "schemaAnyURI"
/>

The imported definitions must belong to the namespaceanyUrT target
namespace. If namespaceanyURT is blank or remains unspecified, the
imported schema definitions are unqualified.

Including and Importing Schema Definitions

Example Example 93 shows an example of an XML schema that includes another
XML schema.

Example 93: Example of a Schema that Includes Another Schema

<definitions
targetNamespace="http://schemas.iona.com/tests/schema parser"
xmlns:tns="http://schemas.iona.com/tests/schema parser"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns="http://schemas.xmlsoap.org/wsdl/">

<types>
<schema
targetNamespace="http://schemas.iona.com/tests/schema parser"
xmlns="http://www.w3.0rg/2001/XMLSchema">

<include schemalocation="included.xsd"/>

<complexType name="IncludingSequence">
<sequence>
<element
name="includedSeq"
type="tns:IncludedSequence" />

</sequence>
</complexType>
</schema>
</types>
LoooP

Example 94 shows the contents of the included schema file, included.xsd.
Example 94: Example of an Included Schema
<schema

targetNamespace="http://schemas.iona.com/tests/schema parser"
xmlns="http://www.w3.0rg/2001/XMLSchema">

<!-- Included type definitions -->
<complexType name="IncludedSequence">
<sequence>

<element name="varInt" type="int"/>
<element name="varString" type="string"/>
</sequence>
</complexType>
</schema>

245

CHAPTER 8 | Artix Data Types

Simple Types

Overview This section describes the WSDL-to-C++ mapping for simple types. Simple
types are defined within an XML schema and they are subject to the
restriction that they cannot contain elements and they cannot carry any

attributes.
In this section This section contains the following subsections:
Atomic Types page 247
String Type page 249
NormalizedString and Token Types page 254
QName Type page 259
Date and Time Types page 261
Decimal Type page 263
Integer Types page 265
Binary Types page 268
Deriving Simple Types by Restriction page 275
List Type page 278
Union Type page 280
Holder Types page 285
Unsupported Simple Types page 287

246

Simple Types

Atomic Types

Overview

Table of atomic types

For unambiguous, portable type resolution, a number of data types are
defined in the Artix foundation classes, specified in it bus/types.h.

The atomic types are:

Table 2: Simple Schema Type to Simple Bus Type Mapping
Schema Type Bus Type

xsd:boolean IT Bus::Boolean
xsd:byte IT Bus::Byte
xsd:unsignedByte IT Bus::UByte
xsd:short IT Bus::Short
xsd:unsignedShort IT Bus::UShort
xsd:int IT Bus::Int
xsd:unsignedInt IT Bus::UInt
xsd:long IT Bus::Long
xsd:unsignedLong IT Bus::ULong
xsd:float IT Bus::Float
xsd:double IT Bus::Double
xsd:string IT Bus::String
xsd:normalizedString IT Bus::NormalizedString
xsd:token IT Bus::Token
xsd:language IT Bus::Language
xsd: NMTOKEN IT Bus::NMToken
xsd :NMTOKENS IT Bus::NMTokens

247

CHAPTER 8 | Artix Data Types

248

Table 2: Simple Schema Type to Simple Bus Type Mapping
Schema Type Bus Type

xsd:Name IT_Bus::Name
xsd:NCName IT Bus::NCName
xsd:ID IT Bus::ID
xsd:QName IT Bus::QName (SOAP only)
xsd:dateTime IT Bus::DateTime
xsd:date IT Bus::Date
xsd:time IT Bus::Time
xsd:gDay IT Bus::GDay
xsd:gMonth IT Bus::GMonth
xsd:gMonthDay IT Bus::GMonthDay
xsd:gYear IT Bus::GYear
xsd:gYearMonth IT Bus::GYearMonth
xsd:decimal IT Bus::Decimal
xsd:integer IT Bus::Integer
xsd:positiveInteger IT Bus::Positivelnteger
xsd:negativeInteger IT Bus::Negativelnteger
xsd:nonPositiveInteger IT Bus::NonPositivelnteger
xsd:nonNegativelInteger IT Bus::NonNegativelnteger
xsd:base64Binary IT Bus::BinaryBuffer
xsd:hexBinary IT Bus::BinaryBuffer

Simple Types

String Type

Overview The xsd:string type maps to IT Bus::String, which is typedef'ed in
it bus/ustring.h 10 IT Bus::IT UString class. For a full definition of
IT Bus::String, S€€ it bus/ustring.h.

IT_Bus::String class The IT Bus::String class is modelled on the standard ANSI string class.
Hence, the IT Bus::String class overloads the + and += operators for
concatenation, the [] operator for indexing characters, and the ==, !=, >, <,

>=, <= operators for comparisons.

String iterator class The corresponding string iterator class is IT Bus::String::iterator.

C++ example The following C++ example shows how to perform some basic string
manipulation with IT Bus::String:

// C++
IT Bus::String s = "A C++ ANSI string."
s += " And here is some string concatenation."

// Now convert to a C style string.
// (Note: s retains ownership of the memory)
const char *p = s.c_str();

Internationalization The 1T Bus::String class supports the use of international characters.
When using international characters, you should configure your Artix
application to use a particular code set by editing the Artix domain
configuration file, artix.cfg. The configuration details depend on the type
of Artix binding, as follows:

® SOAP binding—set the plugins:soap:encoding configuration variable.

® CORBA bhinding—set the plugins:codeset:char:ncs,
plugins:codeset:char:ccs, plugins:codeset:wchar:ncs, and
plugins:codeset:wchar:ccs configuration variables.

For more details about configuring internationalization, see the “Using Artix

with International Codesets” chapter of the Deploying and Managing Artix
Solutions document.

249

CHAPTER 8 | Artix Data Types

Encoding arguments

250

Some of the IT Bus::string functions take an optional string argument,
encoding, that lets you specify a character set encoding for the string.

The encoding argument must be a standard IANA character set name. For
example, Table 3 shows some of commonly used IANA character set
names:

Table 3: /ANA Character Set Names

IANA Name Description

US-ASCII 7-bit ASCII for US English.

ISO-8859-1 Western European languages.

UTF-8 Byte oriented transformation of Unicode.

UTF-16 Double-byte oriented transformation of 4-byte
Unicode.

Shift_JIS Japanese DOS & Windows.

EUC-JP Japanese adaptation of generic EUC scheme, used in
UNIX.

EUC-CN Chinese adaptation of generic EUC scheme, used in
UNIX.

I1SO-2022-JP Japanese adaptation of generic ISO 2022 encoding
scheme.

ISO-2022-CN Chinese adaptation of generic ISO 2022 encoding
scheme.

BIG5S Big Five is a character set developed by a consortium
of five companies in Taiwan in 1984.

Artix supports all of the character sets defined in International Components
for Unicode (ICU) 2.6. For a full listing of supported character sets, see
http://www-124.ibm.com/icu/index.html (part of the IBM open source
project http://oss.software.ibm.com).

http://oss.software.ibm.com
http://www-124.ibm.com/icu/index.html

Simple Types

Constructors The IT Bus::String class defines a default constructor and non-default
constructors to initialize a string using narrow and wide characters, as
follows:

® Narrow character constructors.
® 16-bit character constructor.
® wechar_t character constructor.

Narrow character constructors Example 95 shows three different constructors that can be used to initialize
an IT Ustring with a narrow character string.

Example 95: Narrow Character Constructors

IT UString(
const char* str,
size t n = npos,
const char* encoding = 0,

IT ExceptionHandler& eh = IT EXCEPTION HANDLER
)7

IT UString(
size t n,
char @y
const char* encoding = 0,

IT ExceptionHandler& eh = IT EXCEPTION HANDLER
)7

IT UString(
const IT Strings& S,
size t pos = 0,
size t n = npos,
const char* encoding = 0,

IT ExceptionHandler& eh = IT EXCEPTION HANDLER
)i

The constructor signatures are similar to the standard ANSI string
constructors, except for the additional encoding argument. A null encoding
argument, encoding=0, implies the constructor uses the local character set.

251

CHAPTER 8 | Artix Data Types

16-bit character constructor Example 96 shows the constructor that can be used to initialize an
IT Ustring with an array of 16-bit characters (represented by unsigned
short*).

Example 96: 16-Bit Character Constructor

IT UString(
const unsigned short* sb,
const IT Stringé& encoding,
size t n = npos,

IT ExceptionHandler& eh = IT EXCEPTION_ HANDLER

wchar_t character constructor Example 97 shows the constructor that can be used to initialize an
IT Ustring with an array of wchar t characters.

Example 97:wchar_t Character Constructor

IT UString(
const wchar t* wb,
size t n = npos,

IT ExceptionHandler& eh = IT EXCEPTION HANDLER
)i

String conversion functions The member functions shown in Example 98 are used to convert an
IT Bus::String to an ordinary C-style string, a UTF-16 format string and a
wchar_t format string:

Example 98: String Conversion Functions
// C++
const char* c str(
const char* encoding = 0
) const; // has NUL character at end

const unsigned short* utfl6 str() const;

const wchar t* wchar t str() const;

252

String conversion examples

Reference

Simple Types

If you want to copy the return value from a string conversion function, you
also need to know the dimension of the relevant array. For this, you can use
the IT Bus::String::length() function:

// C++
size t length() const;

The IT Bus::String::length() function returns the number of underlying
characters in a string, irrespective of how many bytes it takes to represent
each character. Hence, the size of the array required to hold a copy of a
converted string equals 1ength () +1 (an extra array element is required for
the nutL character).

Example 99 shows you how to convert and copy a string, s, into a C-style
string, a UTF-16 format string and a wchar_t format string.

Example 99: String Conversion Examples

// C++

// Copy 's' into a plain 'char *' string:
char *s copy = new char[s.length()+1];
strcpy (s copy, s.c str());

// Copy 's' into a UTF-16 string:
unsigned short* utflé copy = new unsigned short[s.length()+1];
const unsigned short* utfl6 p = s.utfl6 str();
for (i=0; i<s.length()+1; i++) {
utfl6 copy[i] = utflé p[i];
}

// Copy 's' into a wchar t string:
wchar t* wchar t copy = new wchar t[s.length()+1];
const wchar t* wchar t p = s.wchar t str();

for (i=0; i<s.length()+1; i++) {
wchar t copy[i] = wchar t pl[i];

For more details about C++ ANSI strings, see The C++ Programming
Language, third edition, by Bjarne Stroustrup.

For more details about internationalization in Artix, see the “Using Artix with
International Codesets” chapter of the Deploying and Managing Artix
Solutions document.

253

CHAPTER 8 | Artix Data Types

NormalizedString and Token Types

Overview This subsection describes the syntax and C++ mapping for the
xsd:normalizedString type, the xsd:token type, and all of the types
deriving from xsd:token.

normalizedString type A normalized string is a string that does not contain the return (0xop), line
feed (0x0a) or tab (0x09) characters. Spaces (0x20) are allowed, however.

token types The token type and the types derived from token are described in Table 4.

Table 4: Description of token and Types Derived from token

XML Schema Sample Value Description of Value
Type
xsd:token Only single spaces; no Like an xsd:normalizedString type, except that there can
leading or trailing! be no sequences of two or more spaces (0x20) and no

leading or trailing spaces.

xsd:language en-US Any language identification tag as specified in RFC 3066
(http://www.ietf.org/rfc/rfc3066.txt).

xsd : NMTOKEN NoSpacesAllowed Like an xsd:token type, except that spaces (0x20) are
disallowed (see “Formal definitions” on page 255).

xsd : NMTOKENS Tok01l Tok02 Tok03 A list of xsd:NMTOKEN items, using the space character as a
delimiter.
xsd:Name RestrictFirstChar Like an xsd:token type, except that the first character is

restricted to be one of Letter, * 7, or 7 :7 (see “Formal
definitions” on page 255).

xsd:NCName NoColonsAllowed Like an xsd:Name type, except that colons, 7 :7, are
disallowed (a non-colonized name). See “Formal
definitions” on page 255.

This type is useful for constructing identifiers that use the
colon, 7 :7, as a delimiter. For example, the NCName type is
used both for the prefix and the local part of an xsd:oName.

254

http://www.ietf.org/rfc/rfc3066.txt

Simple Types

Table 4: Description of token and Types Derived from token

XML Schema Sample Value Description of Value
Type
xsd:ID Like an xsd:NCName type.

The xsd: 1D type is a legacy from early XML specifications,
where it can provide a unique ID for an XML element. The
element can then be cross-referenced using the ID value.

Formal definitions

The Name, NCName, NMTOKEN, and NMTOKENS types are formally defined as
follows:

[11] NameChar ti= Letter | Digit | '.' | '="'" | ' " | ':'
| CombiningChar | Extender

[2] Name gg= (Letter | ' ' | ':") (NameChar)*

[3] Names g8= Name (#x20 Name) *

[4] NMTOKEN 8 8= (NameChar) +

[5] NMTOKENS = NMTOKEN (#x20 NMTOKEN) *

[6] NCNameChar ::= Letter | Digit ['.' | '=' | ' "'
CombiningChar | Extender

[7] NCName ::= (Letter | '_'") (NCNameChar)*

The Name, NMTOKEN, and NMTOKENS types are defined in the Extensible
Markup Language (XML) 1.0 (Second Edition) document
(http://www.w3.0rg/TR/2000/WD-xml-2e-20000814). The NCName type is
defined in the Namespaces in XML document
(http://www.w3.0rg/TR/1999/REC-xmlI-names-19990114/).

The terms, combiningChar and Extender, are defined in the Unicode
Character Database (http://www.unicode.org/Public/UNIDATA/UCD.html).
A combining character is a character that combines with a preceding base
character—for example, accents, diacritics, Hebrew points, Arab vowel
signs and Indic matras. An extender is a character that extends the value or
shape of a preceding alphabetic character—for example, the Catalan middle
dot.

255

http://www.w3.org/TR/2000/WD-xml-2e-20000814
http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://www.unicode.org/Public/UNIDATA/UCD.html

CHAPTER 8 | Artix Data Types

C+ + mapping for all token types
except xsd:NMTOKENS

256

The token type and its derived types map to C++ as shown in Table 2 on
page 247. All of the token types, except for IT Bus::NMTokens, provide two
constructors:

® A no-argument constructor, and

® A constructor that takes a const IT Bus::Strings argument.

For setting and getting a token value, the following functions are provided
(inherited ﬂ0n1IT_Bus::Normalizedstringﬁ

// C++
const String&
get value() const IT THROW DECL(());

void
set value (const Stringé& value)
IT THROW DECL ((IT Bus::Exception));

Validity testing functions

Simple Types

In addition to the functions inherited from IT Bus::NormalizedString, each
of the derived token types has a validity testing function, as shown in
Table 5.

Table 5: Validity Testing Functions for Normalized Strings and Tokens

XML Schema Type

Validity Testing Function

xsd:normalizedString

static bool
IT Bus::NormalizedString::is valid normalized string(
const String& value

xsd:token

static bool
IT Bus::Token::is valid token(const Stringé& value)

xsd:language

static bool
IT Bus::Language::is valid language (const Stringé& value)

xsd: NMTOKEN

static bool
IT Bus::NMToken::is valid nmtoken (const Stringé& value)

xsd:Name static bool
IT Bus::Name::is valid name (const String& value)
xsd :NCName static bool
IT Bus::NCName:is valid ncname (const Stringé& value)
xsd:ID static bool
IT Bus::ID::is valid id(const String& value)
C++ mapping of NMTOKENS The xsd:NMTOKENS type maps to the C++ class, IT Bus: :NMTokens. The

IT Bus::NMTokens class inherits from

SimpleTypesListT<IT Bus::NMToken>, Which in turn inherits from

IT Vector<IT Bus::NMToken>.

The IT Bus::NMTokens type is thus effectively a vector, where the element
type is IT Bus::NMToken. YOu can use the indexing operator, [1, to access
individual elements and, in addition, the simpleTypesList base class
provides set_size() and get size () functions.

For more details about 1T vector<T> types, see “IT_Vector Template Class”
on page 412.

257

CHAPTER 8 | Artix Data Types

C++ example The following example shows how to initialize an xsd:token instance in
C++.

// C++

// Test and set an xsd:token value.
IT Bus::String tok string = "0123 A token with spaces";
IT Bus::Token tok;

if (IT Bus::Token::is valid token (tok string)) {

tok.set value (tok string);
}

258

Simple Types

QName Type

Overview

QName constructor

QName member functions

xsd:QName Maps to IT Bus::OName. A qualified name, or QName, is the
unique name of a tag appearing in an XML document, consisting of a
namespace URI and a local part.

Note: In Artix 1.2.1, the mapping from xsd:QName t0 IT Bus::QOName iS
supported only for the SOAP binding.

The usual way to construct an IT Bus::QName Object is by calling the
following constructor:

// C++

QOName : : QName (
const String & namespace prefix,
const String & local part,
const String & namespace uri

)
Because the namespace prefix is relatively unimportant, you can leave it
blank. For example, to create a QName for the soap:address element:

// C++

IT Bus::QName soap address = new IT Bus::QName (
""I
"address",
"http://schemas.xmlsoap.org/wsdl/soap"

)7

The 1T Bus::QName class has the following public member functions:

const IT Bus::String &
get namespace prefix() const;

const IT Bus::String &
get local part() const;

const IT Bus::String &
get namespace uri() const;

const IT Bus::String get raw name() const;
const IT Bus::String to string() const;

259

CHAPTER 8 | Artix Data Types

QName equality

260

bool has unresolved prefix() const;
size t get hash code() const;

The == operator can be used to test for equality of IT Bus: :OName Objects.

QNames are tested for equality as follows:

1. Assuming that a namespace URI is defined for the QNames, the
QNames are equal if their namespace URIs match and the local part of
their element names match.

2. If one of the QNames lacks a namespace URI (empty string), the

QNames are equal if their namespace prefixes match and the local part
of their element names match.

Simple Types

Date and Time Types

Overview

xsd:dateTime Maps to IT Bus::DateTime, Which is declared in

<it_bus/date_time.h>. DateTime has the following fields:

Table 6: Member Fields of IT_Bus::DateTime
Field Datatype Accessor Methods
4 digit year short short getYear ()
void setYear (short wYear)
2 digit month short short getMonth ()
void setMonth (short wMonth)
2 digit day short short getDay ()
void setDay (short wDay)
hours in military short short getHour ()
time void setHour (short wHour)
minutes short short getMinute ()
void setMinute (short wMinute)
seconds short short getSecond ()
void setSecond (short wSecond)
milliseconds short short getMilliseconds ()
void setMilliseconds (short wMilliseconds)
local time zone flag void setLocalTimeZone ()
bool haveUTCTimeZoneOffset () const
hour offset from short void setUTCTimeZoneOffset (
GMT short hour offset,
) short minute offset)
minute offset from short void getUTCTimeZoneOffset (
GMT short & hour offset,
short & minute offset)

261

CHAPTER 8 | Artix Data Types

IT_Bus::DateTime constructor

Other date and time types

The default constructor takes no parameters, initializing the year, month,
and day fields to 1 and the other fields to O. An alternative constructor is
provided, which accepts all of the individual date/time fields, as follows:

IT DateTime (short wYear, short wMonth, short wDay,
short wHour = 0, short wMinute = 0,
short wSecond = 0, short wMilliseconds = 0)

Artix supports a variety of other date and time types, as shown in Table 7.

Each of these types—for example, xsd:time and xsd:day—support a subset
of the fields from xsd:dateTime. Table 7 shows which fields are supported

for each date and time type; the accessors for each field are given by

Table 6.

Table 7: Member Fields Supported by Other Date and Time Types

Date/Time Type C++ Class Supported Fields

xsd:date IT Bus::Date year, month, day,

local time zone flag, hour and minute offset from GMT.
xsd:time IT Bus::Time hours, minutes, seconds, milliseconds,

local time zone flag, hour and minute offset from GMT.
xsd:gDay IT Bus::GDay day,

local time zone flag, hour and minute offset from GMT.
xsd:gMonth IT Bus::GMonth month,

local time zone flag, hour and minute offset from GMT.
xsd:gMonthDay IT Bus::GMonthDay month, day,

local time zone flag, hour and minute offset from GMT.
xsd:gYear IT Bus::GYear year,

local time zone flag, hour and minute offset from GMT.
xsd:gYearMonth IT Bus::GYearMonth year, month,

local time zone flag, hour and minute offset from GMT.

262

Simple Types

Decimal Type

Overview xsd:decimal maps to IT Bus::Decimal, which is implemented by the IONA
foundation class IT Fixedpoint, defined in <it dsa/fixed point.h>.
IT FixedPoint provides full fixed point decimal calculation logic using the
standard C+ + operators.

Note: Although the XML schema specifies that xsd:decimal has
unlimited precision, the 1T Fixedpoint type can have at most 31 digit
precision.

IT_Bus::Decimal operators The IT Bus::Decimal type supports a full complement of arithmetical
operators. See Table 8 for a list of supported operators.

Table 8: Operators Supported by IT_Bus::Decimal

Description Operators
Arithmetical operators o %/, -
Assignment operators = = = s/
Comparison operators ==, !=, >, <, >=, <=
IT_Bus::Decimal member The following member functions are supported by IT Bus::Decimal:

functions /) CH+

IT Bus::Decimal round(unsigned short scale) const;

IT Bus::Decimal truncate(unsigned short scale) const;
unsigned short number of digits() const;

unsigned short scale() const;

IT Bool is negative() const;

int compare (const IT FixedPointé& val) const;

IT Bus::Decimal::DigitIterator left most digit() const;
IT Bus::Decimal::DigitIterator past right most digit() const;

263

CHAPTER 8 | Artix Data Types

IT_Bus::Decimal::Digitlterator

C++ example

264

The IT Bus::Decimal::DigitIterator type is an ANSI-style iterator class
that iterates over all the digits in a fixed point decimal instance.

The following C++ example shows how to perform some elementary
arithmetic using the IT Bus::Decimal type.

// C+t
IT Bus::Decimal dl = "123.456";
IT Bus::Decimal d2 = "87654.321";

IT Bus::Decimal d3 = dl1+d2;
d3 *= di;
if (d3 > 100000) {

cout << "d3 = " << d3;

Simple Types

Integer Types

Overview

Maximum precision

Integer operators

The XML schema defines the following unlimited precision integer types, as

shown in Table 9.

Table 9: Unlimited Precision Integer Types

XML Schema Type

C++ Type

xsd:integer

IT Bus::Integer

xsd:positivelnteger

IT Bus::Positivelnteger

xsd:negativelnteger

IT Bus::Negativelnteger

xsd:nonPositiveInteger

IT Bus::NonPositivelnteger

xsd:nonNegativelInteger

IT Bus::NonNegativelnteger

In C++, IT Bus::Integer Serves as the base class for

IT Bus::Positivelnteger, IT Bus::Negativelnteger,

IT_Bus::NonPositiveInteger,and IT_Bus::NegativeInteger.The|eXwa|
representation of an integer is a decimal integer with optional sign (+ or -)

and optional leading zeroes.

In practice the precision of the integer types in Artix is not unlimited,
because their internal representation uses IT Fixedpoint, which is limited

to 31-digits.

The integer types supports a full complement of arithmetical operators. See
Table 10 for a list of supported operators.

Table 10: Operators Supported by the Integer Types

Description

Operators

Arithmetical operators

o % /1 4, -

Assignment operators

=, +=, -=, *=, /=

Comparison operators

=, =, >, <, >=, <=

265

CHAPTER 8 | Artix Data Types

Constructors

Integer member functions

266

The Artix integer classes define constructors for the following built-in integer
types: short, unsigned short, int, unsigned int, long, unsigned long,
and decimal.

Alternatively, you can initialize an Artix integer from a string, using either of
the following string types: char* and IT Bus::String.

The following member functions are supported by the integer types:

// CH++
// Get value as a Decimal type
const IT Bus::Decimalé& get value() const IT THROW DECL(());

// Set value as a Decimal type.
// Passing a true value for the ’truncate’ parameter causes the
// constructor to truncate ’‘value’ at the decimal point.
void set value(
const IT Bus::Decimalé& value,
bool truncate = false
) IT THROW DECL((IT Bus::Exception));

// Return true if integer value is less than zero
IT Bus::IT Bool is negative() const;

// Return true if integer value is greater than zero
IT Bus::IT Bool is positive() const;

// Return true if integer value is greater than or equal to zero
IT Bus::IT Bool is non negative() const;

// Return true if integer value is less than or equal to zero
IT Bus::IT Bool is non positive() const;

// Return true if the decimal ’'value’ has no fractional part
static bool is valid integer (const IT Bus::Decimal& value) const;

// Return 1, if this instance is greater than ’other’.
// Return 0, if this instance is equal to 'other’.

// Return -1, if this instance is smaller than ’other’.
int compare (const Integer& other) const;

// Convert to IT Bus::String
const IT Bus::String to string() const;

C++ example

Mixed arithmetic

Simple Types

The following C++ example shows how to perform some elementary
arithmetic using the IT Bus::Integer type.

// Ct+
IT Bus::Integer il = "321";
IT Bus::Integer 12 = "87654";

IT Bus::Integer i3 = il + 1i2;
i3 *= il;
if (13 > 100000) {
cout << "i3 = " << i3.to string() << endl;

You can mix different integer types in an arithmetic expression, but the
result is always of IT Bus::Integer type. For example, you could mix the
IT_Bus::Positivelnteger‘and IT_Bus::Negativelntegertypesin an
arithmetic expression as follows:

// C++
IT Bus::Positivelnteger pl (+100), p2(+200);

IT Bus::NegativeInteger nl (-500);

IT Bus::Integer = (pl + nl) * p2;

267

CHAPTER 8 | Artix Data Types

Binary Types

Overview

Encoding

IT_Bus::Base64Binary and
IT_Bus::HexBinary classes

268

There are two WSDL binary types, which map to C++ as shown in
Table 11:

Table 11: Schema to Bus Mapping for the Binary Types

Schema Type Bus Type
xsd:base64Binary IT Bus::Base64Binary
xsd:hexBinary IT Bus::HexBinary

The only difference between HexBinary and Base64Binary is the way they

are encoded for transmission. The Base64Binary encoding is more compact

because it uses a larger set of symbols in the encoding. The encodings can

be compared as follows:

® HexBinary—the hex encoding uses a set of 16 symbols [0-9a-fA-F],
ignoring case, and each character can encode 4 bits. Hence, two
characters represent 1 byte (8 bits).

® Base64Binary—the base 64 encoding uses a set of 64 symbols and
each character can encode 6 bits. Hence, four characters represent 3
bytes (24 bits).

Both the IT Bus::Base64Binary and the IT Bus::HexBinary Classes expose
the following member functions to access the buffer value, as follows:

// C++
virtual const BinaryBuffer &
get buffer () const;

virtual BinaryBuffer &
get buffer();

The first form of get buffer () returns a read-only reference to the binary
buffer. The second form of get _buffer () returns a modifiable reference to
the binary buffer.

IT_Bus::BinaryBuffer class

Allocating and deallocating binary
buffers

Simple Types

You can perform buffer manipulation by invoking the member functions of

the IT Bus::BinaryBuffer class. A binary buffer instance is a contiguous

data buffer that encapsulates the following information:

® Null-terminated string—internally, a binary buffer is represented as a
null-terminated string (C style string). The terminating nuLL character
is not counted in the buffer size.

® Borrowing flag—internally, the binary buffer keeps track of whether it
owns the buffer memory (in which case the binary buffer is responsible
for deleting it) or whether the binary buffer merely borrows the buffer
memory (in which case the binary buffer is not responsible for deleting
it).

Example 100 shows the signatures of the binary buffer functions for
allocating and deallocating binary buffers.

Example 100:Functions for Allocating and Deallocating Binary Buffers

// C++
BinaryBuffer ()

BinaryBuffer (IT Bus::String rhs);

BinaryBuffer (const char * data, long size = -1);
virtual ~BinaryBuffer();

void allocate(long size);

void resize (long size);

void clear () ;

The preceding binary buffer functions can be described as follows:

® BinaryBuffer constructors—you can construct a binary buffer either
by passing in an IT Bus::String instance or a pointer to a const
char *. In both cases, the binary buffer makes its own copy of the
data.

® BinaryBuffer destructor—if the borrowing flag is false, the destructor
deletes the memory for the buffer data.

269

CHAPTER 8 | Artix Data Types

Assigning and copying binary
buffers

270

® allocate() function—allocates a new buffer of the specified size.

® resize() function—an optimized allocation function that attempts to
reuse the existing buffer, if possible. This function throws an
IT Bus::Exception, if it is called on a borrowed buffer.

® clear () function—resets the binary buffer to an empty buffer. If the
buffer data is not borrowed, it deletes the old memory.

Example 101 shows the signatures of the binary buffer functions for
assigning and copying binary buffers.

Example 101:Functions for Assigning and Copying Binary Buffers

// C++

// Copying assignments

void operator=(const BinaryBuffer& rhs);
void operator=(IT Bus::String rhs);
void operator=(const char* rhs);

BinaryBufferé& assign(const String & rhs, size t n);
BinaryBuffer& assign(const char* rhs, size t n);

void copy(const char* p, long size = -1);

// Non-copying assignments
void attach (BinaryBuffer& attach buffer);

void attach external (char* p, long size, bool borrow = true);

void borrow (const BinaryBuffers& borrow buffer);
void borrow(const char* borrow data, long size = -1);

The copying assignment functions can be described as follows:

® operator=() operator—you can assign another BinaryBuffer
instance, an IT Bus::String instance, or a const char * stringto a
binary buffer using operator=1(). In each of these cases, the binary
buffer makes its own copy of the data and sets the borrowing flag to
false

® assign() function—similar to operator=(), except that you can
specify the size of the string to copy. If the specified size, n, is less than
the actual size of the string, the copied string is truncated to include
only the first n characters.

Accessing binary buffer data

Simple Types

® copy() function—the same as the assign () function, except that
copy () returns the void type, instead of BinaryBuffers.

The non-copying assignment functions can be described as follows:

® attach() function—sets this binary buffer's data pointer to point at the
data in the attach buffer binary buffer, taking ownership of the data
if possible (in other words, this binary buffer's borrowing flag is set
equal to the attach buffer’s borrowing flag). The attach buffer
binary buffer is cleared.

® attach external() function—sets the binary buffer's data pointer
equal to the char * argument, p, but does not attempt to take
ownership of the data by default. However, if you explicitly specify the
borrow argument to be false, the binary buffer does take ownership of
the data.

® porrow() function—sets this binary buffer's data pointer to point at the
data in the borrow buffer binary buffer (or borrow data string, as the
case may be), but does not take ownership of the data (in other words,
this binary buffer's borrowing flag is set to true in all cases).

Example 102 shows the signatures of the binary buffer functions for
accessing binary buffer data.

Example 102:Functions for Accessing Binary Buffer Data

// C++
char operator[] (long lIndex) ;

char* at (long lIndex);

char* get pointer();

const char* get const pointer () const;
long get size() const;

IT String get it string() const;

String get string() const;

271

CHAPTER 8 | Artix Data Types

Searching and comparing binary
buffers

272

The preceding binary buffer functions can be described as follows:

® operator[] () operator—accesses the character at position 1Tndex.
The index must lie in the range [0, get size ()], where the last
accessible character is the terminating nuLL character. If the index is
out of range, an IT Bus::Exception is thrown.

® at() function—similar to operator(] (), except that a pointer to char
is returned.

® get pointer () function—returns a pointer to the first character of the
buffer for reading and writing (equivalent to at (0)).

® get const pointer () function—returns a pointer to the first character
of the buffer, for read-only operations.

® get size() function—returns the size of the buffer (not including the
terminating NnuLL character).

® get it string() function—converts the buffer data to an 1T string
type.

® get_string() function—converts the buffer data to an
IT Bus::String type.

Example 103 shows the signatures of the binary buffer functions for
searching and comparing binary buffers.

Example 103:Functions for Searching and Comparing Binary Buffers

// C++
char* instr(char ¢, long lIndex = 0);

String substr(long lIndex, long size = -1) const;

long find(const char* s, long lIndex = 0) const;

long find binary buffer (longé& dwFindIdx, long dwFindMaxIdx,
BinaryBuffer& vvPacketTerminator) const;

bool operator==(const BinaryBuffer & rhs) const;

The preceding binary buffer functions can be described as follows:

® instr() function—returns a pointer to the first occurrence of the
character, ¢, in the buffer, where the search begins at the specified
index value, 1Index.

Concatenating binary buffers

Simple Types

substr () function—returns a sub-string from the buffer, starting at the
index, 1Index, and continuing for size characters (the defaulted size
value, -1, selects up to the end of the buffer)

find () function—returns the position of the first occurrence of the
string, s, inside the buffer. The 1Index parameter can be used to
specify the point in the buffer from which the search begins.

find binary buffer () function—returns the position of the first
occurrence of the vvpacketTerminator buffer within the specified
buffer sub-range, [dwFindIdx, dwFindMaxIdx]. Atthe end of the
search, the awrindIdx parameter is equal to the found position.
operator==() operator—comparison is true, if the compared buffers
are of the same length and have identical contents; otherwise, false.

Example 104 shows the signatures of the binary buffer functions for
concatenating binary buffers.

Example 104:Functions for Concatenating Binary Buffers

// C++
char* concat (const char* szThisString, long size = -1);

The preceding binary buffer function can be described as follows:

concat () function—adds the string, szThisstring, to the end of the
buffer. You can specify the size parameter to limit the number of
characters from szThisstring that are concatenated (the default is to
concatenate the whole string).

273

CHAPTER 8 | Artix Data Types

C++ example

274

Consider a port type that defines an echoHexBinary operation. The
echoHexBinary operation takes an IT Bus::HexBinary type as anin
parameter and then echoes this value in the response. Example 105 shows
how a server might implement the echorexBinary operation.

Example 105:C++ Implementation of an echoHexBinary Operation

// C++
using namespace IT Bus;

void BaselImpl::echoHexBinary (
const IT Bus::HexBinaryInParam & inputHexBinary,
IT Bus::HexBinaryOutParam& Response

IT THROW DECL ((IT Bus::Exception))

// Copy the input buffer to the output buffer.
Response.get buffer () = inputHexBinary.get buffer();

Note: The IT Bus::HexBinaryInParam and IT Bus::HexBinaryOutParam
types are both essentially equivalent to IT Bus::HexBinary. These extra
types help the compiler to distinguish between in parameters and out
parameters. They are only used in operation signatures.

Likewise, the IT Bus::Base64BinaryInParam and

IT Bus::Base64BinaryOutpParam types are both essentially equivalent to
IT Bus::Base64Binary.

Simple Types

Deriving Simple Types by Restriction

Overview

Unchecked facets

Checked facets

C++ mapping

Artix currently has limited support for the derivation of simple types by
restriction. You can define a restricted simple type using any of the standard
facets, but in most cases the restrictions are not checked at runtime.

The following facets can be used, but are not checked at runtime:
® length

® minlLength

® maxLength
pattern
enumeration
whiteSpace
maxInclusive
maxExclusive
minInclusive
minExclusive
® totalDigits

fractionDigits

The following facets are supported and checked at runtime:

° enumeration

In general, a restricted simple type, RestrictedType, Obtained by restriction
from a base type, BaseType, maps to a C+ + class, RestrictedType, With
the following public member functions:

// C++
const IT Bus::QName & get type() const;

void set value (const BaseType & value);
BaseType get value() const;

275

CHAPTER 8 | Artix Data Types

Restriction with an enumeration
facet

WSDL example of enumeration
facet

276

Artix supports the restriction of simple types using the enumeration facet.
The base simple type can be any simple type except xsd:boolean.

When an enumeration type is mapped to C++, the C++ implementation of
the type ensures that instances of this type can only be set to one of the
enumerated values. If set value() is called with an illegal value, it throws
an IT Bus::Exception exception.

Example 106 shows an example of a colorEnum type, which is defined by
restriction from the xsd:string type using the enumeration facet. When
defined in this way, the colorEnum restricted type is only allowed to take on
one of the string values RED, GREEN, Or BLUE.

Example 106:WSDL Example of Derivation with the Enumeration Facet

<?xml version="1.0" encoding="UTF-8"?>
<definitions ... >
<types>
<schema ... >
<simpleType name="ColorEnum">
<restriction base="xsd:string">
<enumeration value="RED"/>
<enumeration value="GREEN"/>
<enumeration value="BLUE"/>
</restriction>
</simpleType>

</definitions>

Simple Types

C++ mapping of enumeration The WSDL-to-C++ compiler maps the colorEnum restricted type to the

facet ColorEnum C++ class, as shown in Example 107. The only values that can
legally be set using the set value() member function are the strings rRep,
GREEN, Of BLUE.

Example 107:C++ Mapping of ColorEnum Restricted Type

/1 Ci
class ColorEnum : public IT Bus::AnySimpleType
{

public:
ColorEnum () ;
ColorEnum(const IT Bus::String & value);

ColorEnum& operator= (const ColorEnum& assign);
IT Bus::Boolean operator== (const ColorEnumé& copy);
virtual const IT Bus::QName & get type() const;

void set value (const IT Bus::String & value);
IT Bus::String get value() const;

277

CHAPTER 8 | Artix Data Types

List Type

Overview

Defining list types with the
itemType attribute

278

The xsd:1ist schema type is a simple type that enables you to define
space-separated lists. For example, if the numberList element is defined to
be a list of floating point numbers, an instance of a numberList element
could look like the following:

<numberList>1.234 2.345 5.432 1001</numberList>

XML schema supports two distinct ways of defining a list type, as follows:
® Defining list types with the itemType attribute.

® Defining list types by derivation.

The first way to define a list type is by specifying the list item type using the
itemType attribute. For example, you could define the list type,
StringListType, as a list of xsd:string items, with the following syntax:

<simpleType name="StringListType'">
<list itemType="xsd:string"/>
</simpleType>

<element name="stringList" type="StringListType"/>

An instance of a stringList element, which is defined to be of
StringListType type, could look like the following:

<stringList>wool cotton linen</stringList>

Simple Types

Defining list types by derivation The second way to define a list type is to use simple derivation. For
example, you could define the list type, IntListType, as a list of xsd:int
items, with the following syntax:

<simpleType name="IntListType">
<list>
<simpleType>
<restriction base="xsd:int"/>
</simpleType>
</list>
</simpleType>

<element name="intList" type="IntListType"/>

An instance of an intList element, which is defined to be of IntListType
type, could look like the following:

<intList>1 2 3 5 8 13 21 34 55</intList>

C++ mapping In C++, lists are represented by an 1T vector<T> template type. Hence,
C++ list classes support the operator], to access individual items, and
the get_size () function, to get the length of the list.

For example, the stringListType type defined previously would map to the
StringListType C++ class, which inherits from
IT Vector<IT Bus::String>

Example Given an instance of stringListType type, you could print out its contents
as follows:
// C++
StringListType s list = ... // Initialize list

for (int i=0; i < s list.get size(); i++)
{
cout << s list[i] << endl;

279

CHAPTER 8 | Artix Data Types

Union Type

Overview

Defining union types with the
memberTypes attribute

280

The xsd:union schema type enables you to define an element whose type
can be any of the simple types listed in the union definition. In general, the
syntax for defining a union, UnionType, is as follows:

<simpleType name="UnionType">

<union memberTypes="Type0l Typel2 ...">
<simpleType> ... </simpleType>
<simpleType> ... </simpleType>
</union>
</simpleType>

Where Type01, Type02, and so on are the names of simple types that the
union could contain. The simpleType elements appearing within the union
element define anonymous simple types (defined by derivation) that the
union could contain.

XML schema supports the following ways of defining a union type:

® Defining union types with the memberTypes attribute.
® Defining union types by derivation.

The first way to define a union type is by specifying the list of allowable
member types using the memberTypes attribute. For example, you could
define a UnionofIntAndFloat union type to contain either an xsd:int or an
xsd:float, as follows:

<xsd:simpleType name="UnionOfIntAndFloat">
<xsd:union memberTypes="xsd:int xsd:float"/>

</xsd:simpleType>

<xsd:element name="ul" type="UnionOfIntAndFloat"/>

Some sample instances of the u2 element could look like the following:

500
1.234e06

Simple Types

Defining union types by derivation The second way to define a union type is by adding one or more anonymous
simpleType elements to the union body. For example, you could define the
UnionByDerivation type to contain either a member derived from a
xsd:string or a member derived from an xsd:int, as follows:

<xsd:simpleType name="UnionByDerivation">
<xsd:union>
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<enumeration value="Bill"/>
<enumeration value="Ben"/>
</xsd:restriction>
</xsd:simpleType>
<xsd:simpleType>
<xsd:restriction base="xsd:int">
<maxInclusive value="1000"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:union>
</xsd:simpleType>

<xsd:element name="u2" type="UnionByDerivation"/>
Some sample instances of the u2 element could look like the following:

<u2>Bill</u2>
<u2>999</u2>

WSDL example Example 108 shows an example of a union type, union2, which can contain
either a unioni type or an enumerated string.

Example 108:Definition of a Union Type in WSDL

// C++
<xsd:simpleType name="Unionl">

<xsd:union memberTypes="xsd:int xsd:float"/>
</xsd:simpleType>

<xsd:simpleType name="Union2">
<xsd:union memberTypes="tns:Unionl">
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<enumeration value="Tweedledum"/>

281

CHAPTER 8 | Artix Data Types

Example 108:Definition of a Union Type in WSDL (Continued)

<enumeration value="Tweedledee"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:union>
</xsd:simpleType>

C++ mapping The WSDL-to-C+ + compiler maps the preceding WSDL (Example 108 on
page 281) to the Union2 C++ class. An outline of this class is shown in
Example 109.

Example 109:Mapping of Union2 to C++

// Ct+
class Union2 : public IT Bus::SimpleTypeUnion
{

public:

Union2 () ;
Union2 (const Union2 & copy);
virtual ~Union2();

//
virtual const IT Bus::QName & get type() const;
Union2 & operator=(const Union2 & rhs);

IT Bus::Boolean
operator==(const Union2 & rhs) const IT THROW DECL(())

IT Bus::Boolean
operator!=(const Union2 & rhs) const IT THROW DECL(());

enum Union2Discriminator

{
var Unionl enum,
var_string enum,
Union2 MAXLONG=-1

} m discriminator;

Union2Discriminator

get discriminator() const IT THROW DECL(())
{

282

C++ example

Simple Types

Example 109:Mapping of Union2 to C++ (Continued)

bi

return m discriminator;

IT Bus::UInt
get discriminator as uint() const IT THROW DECL(())
{

return m discriminator;

Unionl & getUnionl () ;

const Unionl & getUnionl () const;

void setUnionl (const Unionl & val);
Union2String & getstring();

const Union2String & getstring() const;

void setstring(const Union2String & val);
//

The C++ mapping defines a pair of accessor and modifier functions,
getMemberType () and setMemberType (), for each union member type,
MemberType. The name of the accessor and modifier functions are
determined as follows:

If the union member is an atomic type (for example, int or string),
the functions are defined as getatomicType () and setAtomicType ()
(for example, getint () and setint()).

If the union member is a user-defined type, UserType, the functions are
defined as getUserType () and setUserType().

If the union member is defined by derivation (that is, using a
simpleType element in the scope of the <union> tag), the accessor and
modifier functions are named after the base type, BaseType, t0 yield
getBaseType()and setBaseType ().

Consider a port type that defines an echounion operation. The echounion
operation takes a union2 type as an in parameter and then echoes this
value in the response. Example 110 shows how a client could use a proxy
instance, bc, to invoke the echounion operation.

283

CHAPTER 8 | Artix Data Types

284

Example 110:Printing a Union2 Type Returned from an Operation

// C++
Union2 uIn, uOut;

// Initialize uln with the value "Tweedledum"
uln.setstring ("Tweedledum") ;

try {

bc.echoUnion (uIn, ulut);

switch (uOut.get discriminator()) {
case Union2::var Unionl enum :
switch (uOut.getUnionl ().get discriminator()) {
case Unionl::var int enum :
cout << "Result = (int) "

<< uOut.getUnionl () .getint () << endl;
case Unionl::var float enum :

cout << "Result = (float) "
<< uOut.getUnionl () .getfloat () << endl;
break;
}
break;
case Union2::var string enum :
cout << "Result = (string) "
<< uOut.getstring() .get value().c str() << endl;
break;

}

} catch (IT Bus::FaultException &ex)

{

// Handle exception (not shown)

Simple Types

Holder Types

Overview

Holder type member functions

Example

There are some general-purpose functions in Artix (for example, some
functions in the context API) that take parameters of IT Bus: :AnyType type,
which allows you to pass any Artix data type. You can pass most Artix data
types directly to such functions, because the data types derive from the
AnyType class. However, not all Artix data types derive from anyType. Some
types, such as IT Bus::Int and IT Bus::Short, are simply typedefs of
C++ built-in types. Other simple types—for example, IT Bus::String and
IT Bus::QName—also do not inherit from anyType.

To facilitate the passing of simple types, Artix defines Holder types. For
example, the IT Bus::StringHolder type can hold an IT Bus::String
instance. In contrast to the original simpie type, the simpleHolder type
derives from IT Bus::AnyType. Accessor and modifier functions are used to
insert and extract the simple type from the simpleHolder type.

A holder type, for data of type T, supports the following accessor and
modifier member functions:

// C++
const T& get() const;

T& get ()7

void set (const T& data);

The following example shows how to use the IT Bus::StringHolder type to
set the HTTP ENDPOINT URL context value.

// C++

IT Bus::AnyType* any string = request contexts->get context (
IT ContextAttributes::HTTP _ENDPOINT URL,
true

);

IT Bus::StringHolder* str holder =
dynamic cast<IT Bus::StringHolder*>(any string);

str_holder->set ("http://localhost:1234");

285

CHAPTER 8 | Artix Data Types

List of holder types

286

Table 12 shows the list of Holder types provided by Artix.

Table 12: List of Artix Holder Types

Built-In Type Holder Type
IT Bus::Boolean IT Bus::BooleanHolder
IT Bus::Byte IT Bus::ByteHolder
IT Bus::Short IT Bus::ShortHolder
IT Bus::Int IT Bus::IntHolder
IT Bus::Long IT Bus::LongHolder
IT Bus::String IT Bus::StringHolder
IT Bus::Float IT Bus::FloatHolder
IT Bus::Double IT Bus::DoubleHolder
IT Bus::UByte IT Bus::UByteHolder
IT Bus::UShort IT Bus::UShortHolder
IT Bus::UInt IT Bus::UIntHolder
IT Bus::ULong IT Bus::ULongHolder
IT Bus::Decimal IT Bus::DecimalHolder
IT Bus::QName IT Bus::QNameHolder
IT Bus::DateTime IT Bus::DateTimeHolder
IT Bus::HexBinary IT Bus::HexBinaryHolder
IT Bus::Base64Binary IT Bus::Base64BinaryHolder

Simple Types

Unsupported Simple Types

List of unsupported simple types

The following WSDL simple types are currently not supported by the

WSDL-to-C++ compiler:
Atomic Simple Types

xsd:
xsd:
xsd:
xsd:
xsd:
xsd:

duration
ENTITY
ENTITIES
NOTATION
IDREF
IDREFS

287

CHAPTER 8 | Artix Data Types

Complex Types

Overview

In this section

288

This section describes the WSDL-to-C++ mapping for complex types.
Complex types are defined within an XML schema. In contrast to simple
types, complex types can contain elements and carry attributes.

This section contains the following subsections:

Sequence Complex Types page 289
Choice Complex Types page 292
All Complex Types page 296
Attributes page 299
Attribute Groups page 303
Nesting Complex Types page 306
Deriving a Complex Type from a Simple Type page 310
Deriving a Complex Type from a Complex Type page 313
Arrays page 323
Model Group Definitions page 328

Complex Types

Sequence Complex Types

Overview

Occurrence constraints

WSDL example

XML schema sequence complex types are mapped to a generated C++
class, which inherits from IT Bus::SequenceComplexType. The mapped
C++ class is defined in the generated prortTypeNameTypes.h and
PortTypeNameTypes.Ccxx files.

The WSDL-to-C++ mapping defines accessor and modifier functions for
each element in the sequence complex type.

Occurrence constraints, which are specified using the minoccurs and
maxOccurs attributes, are supported for sequence complex types. See
“Sequence Occurrence Constraints” on page 355.

Example 111 shows an example of a sequence, SequenceType, with three
elements.

Example 111:Definition of a Sequence Complex Type in WSDL

<schema targetNamespace="http://soapinterop.org/xsd"
xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
<complexType name='"SequenceType'>
<sequence>
<element name="varFloat" type="xsd:float"/>
<element name="varInt" type="xsd:int"/>
<element name="varString" type="xsd:string"/>
</sequence>
</complexType>

</schema>

289

CHAPTER 8 | Artix Data Types

C++ mapping The WSDL-to-C+ + compiler maps the preceding WSDL (Example 111) to
the sequenceType C++ class. An outline of this class is shown in
Example 112.

Example 112:Mapping of SequenceType to C++

// C++
class SequenceType : public IT Bus::SequenceComplexType
{
public:
SequenceType () ;
SequenceType (const SequenceType& copy) ;
virtual ~SequenceType () ;

virtual const IT Bus::QName & get type() const;
SequenceType& operator= (const SequenceTypeé& assign);

const IT Bus::Float & getvarFloat () const;

IT Bus::Float & getvarFloat () ;

void setvarFloat (const IT Bus::Float & val);
const IT Bus::Int & getvarInt() const;

IT Bus::Int & getvarInt();

void setvarInt (const IT Bus::Int & val);

const IT Bus::String & getvarString() const;

IT Bus::String & getvarString () ;
void setvarString (const IT Bus::String &
val) ;

private:

bi

Each ElementName element declared in the sequence complex type is
mapped to a pair of accessor/modifier functions, getElementName () and

setElementName ().

290

C++ example

Complex Types

Consider a port type that defines an echosequence operation. The
echoSequence operation takes a sequenceType type as an in parameter and
then echoes this value in the response. Example 113 shows how a client
could use a proxy instance, bc, to invoke the echoSequence operation.

Example 113:Client Invoking an echoSequence Operation

// C++

SequenceType seqgln, segResult;

seqgln.setvarFloat (3.14159) ;

segln.setvarInt (54321);

segIn.setvarString ("You can use a string constant here.");

try {
bc.echoSequence (seqIn, segResult);

if ((seqgResult.getvarInt () != seqgln.getvarInt()) ||
(segResult.getvarFloat () != seglIn.getvarFloat()) ||
(segResult.getvarString () .compare (segqln.getvarString()) !=
0))
{
cout << endl << "echoSequence FAILED" << endl;
return;
}
} catch (IT Bus::FaultException &ex)
{
cout << "Caught Unexpected FaultException" << endl;
cout << ex.get description().c str() << endl;

291

CHAPTER 8 | Artix Data Types

Choice Complex Types

Overview

Occurrence constraints

WSDL example

292

XML schema choice complex types are mapped to a generated C++ class,
which inherits from IT Bus::ChoiceComplexType. The mapped C++ class
is defined in the generated PortTypeNameTypes.h and
PortTypeNameTypes.cxxf”es

The WSDL-to-C+ + mapping defines accessor and modifier functions for
each element in the choice complex type. The choice complex type is
effectively equivalent to a C++ union, so only one of the elements is
accessible at a time. The C++ implementation defines a discriminator,
which tells you which of the elements is currently selected.

Occurrence constraints, which are specified using the minoccurs and
maxOccurs attributes, are supported for choice complex types. See “Choice
Occurrence Constraints” on page 359.

Example 114 shows an example of a choice complex type, ChoiceType,
with three elements.

Example 114:Definition of a Choice Complex Type in WSDL

<schema targetNamespace="http://soapinterop.org/xsd"
xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
<complexType name="ChoiceType'>
<choice>
<element name="varFloat" type="xsd:float"/>
<element name="varInt" type="xsd:int"/>
<element name="varString" type="xsd:string"/>
</choice>
</complexType>

</schema>

C++ mapping

Complex Types

The WSDL-to-C++ compiler maps the preceding WSDL (Example 114) to
the sequenceType C+ + class. An outline of this class is shown in
Example 115.

Example 115:Mapping of ChoiceType to C++

// C++
class ChoiceType : public IT Bus::ChoiceComplexType
{
public:
ChoiceType () ;
ChoiceType (const ChoiceType& copy) ;
virtual ~ChoiceType () ;

virtual const IT Bus::QName & get type() const ;

ChoiceTypes& operator= (const ChoiceType& assign);

const IT Bus::Float getvarFloat () const;
void setvarFloat (const IT Bus::Floaté& val);

const IT Bus::Int getvarInt() const;
void setvarInt (const IT Bus::Int& val);

const IT Bus::Stringé& getvarString() const;
void setvarString(const IT Bus::Stringé& val);

ChoiceTypeDiscriminator get discriminator() const
{

return m discriminator;

IT Bus::UInt get discriminator as uint() const
{

return m discriminator;

293

CHAPTER 8 | Artix Data Types

Example 115:Mapping of ChoiceType to C++

enum ChoiceTypeDiscriminator
{
varFloat enum,
varInt enum,
varString enum,
ChoiceType MAXLONG=-1L
} m discriminator;

private:
}i

Each Elementname element declared in the sequence complex type is
mapped to a pair of accessor/modifier functions, getElementName () and
setElementName () .

The member functions have the following effects:

® setElementName ()—Select the ElementName element, setting the
discriminator to the Elementname label and initializing the value of
ElementName

® getElementName ()—get the value of the ElementName element. You
should always check the discriminator before calling the
getElementName () accessor. |f ElementName is not currently selected,
the value returned by getElementname () is undefined.

® get discriminator ()—returns the value of the discriminator.

C++ example Consider a port type that defines an echochoice operation. The echoChoice
operation takes a choiceType type as an in parameter and then echoes this
value in the response. Example 116 shows how a client could use a proxy
instance, bc, to invoke the echoChoice operation.

Example 116:Client Invoking an echoChoice Operation

// C++

ChoiceType cIn, cResult;

// Initialize and select the ChoiceType::varString label.

cIn.setvarString ("You can use a string constant here.");

try {

294

Complex Types

Example 116:Client Invoking an echoChoice Operation

bc.echoChoice (cIn, cResult);

bool fail = IT TRUE;

if (cIn.get discriminator ()==cResult.get discriminator()) {
switch (cIn.get discriminator()) {
case ChoiceType::varFloat enum:
fail =(cIn.getvarFloat () !=cResult.getvarFloat());
break;
case ChoiceType::varInt_ enum:
fail =(cIn.getvarInt () !=cResult.getvarInt());
break;
case ChoiceType::varString enum:
fail =
(cIn.getvarString () !=cResult.getvarString());
break;
}
}
if (fail) {
cout << endl << "echoChoice FAILED" << endl;
return;

}
} catch (IT Bus::FaultException &ex)

{
cout << "Caught Unexpected FaultException" << endl;
cout << ex.get description().c str() << endl;

295

CHAPTER 8 | Artix Data Types

All Complex Types

Overview

Occurrence constraints

WSDL example

296

XML schema all complex types are mapped to a generated C++ class,
which inherits from IT Bus::AllComplexType. The mapped C++ class is
defined in the generated portTypeNameTypes.h and PortTypeNameTypes . cxx
files.

The WSDL-to-C+ + mapping defines accessor and modifier functions for
each element in the all complex type. With an all complex type, the order in
which the elements are transmitted is immaterial.

Note: An all complex type can only be declared as the outermost group of
a complex type. Hence, you cannot nest an a11 model group, <all>,
directly inside other model groups, <all>, <sequence>, Of <choice>. YoOU
may, however, define an a11 complex type and then declare an element of
that type within the scope of another model group.

Occurrence constraints are supported for the elements of XML schema all
complex types.

Example 117 shows an example of an all complex type, a11Type, with three
elements.

Example 117:Definition of an All Complex Type in WSDL

<schema targetNamespace="http://soapinterop.org/xsd"
xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
<complexType name="AllType'">
<all>
<element name="varFloat" type="xsd:float"/>
<element name="varInt" type="xsd:int"/>
<element name="varString" type="xsd:string"/>
</all>
</complexType>

</schema>

C++ mapping

Complex Types

The WSDL-to-C++ compiler maps the preceding WSDL (Example 117) to
the a11Type C+ + class. An outline of this class is shown in Example 118.

Example 118:Mapping of AllType to C++

// C++
class AllType : public IT Bus::AllComplexType
{
public:
AllType () ;
AllType (const AllType& copy) ;
virtual ~AllType();

virtual const IT Bus::QName & get type() const;

AllTypeé& operator= (const AllType& assign);

const IT Bus::Float & getvarFloat() const;

IT Bus::Float & getvarFloat();

void setvarFloat (const IT Bus::Float & val);

const IT Bus::Int & getvarInt() const;

IT Bus::Int & getvarInt();

void setvarInt (const IT Bus::Int & val);

const IT Bus::String & getvarString() const;

IT Bus::String & getvarString();

void setvarString(const IT Bus::String & val);
private:

bi

Each Elementname element declared in the sequence complex type is
mapped to a pair of accessor/modifier functions, getElementName () and
setElementName() .

297

CHAPTER 8 | Artix Data Types

C++ example Consider a port type that defines an echoal11 operation. The echoall
operation takes an a11Type type as an in parameter and then echoes this
value in the response. Example 119 shows how a client could use a proxy
instance, bc, to invoke the echoall operation.

Example 119:Client Invoking an echoAll Operation

// C++

AllType allIn, allResult;

allIn.setvarFloat (3.14159);

allIn.setvarInt (54321);

allIn.setvarString("You can use a string constant here.");

try {
bc.echoAll (allIn, allResult);

if ((allResult.getvarInt() != allln.getvarInt()) ||
(allResult.getvarFloat () != allIn.getvarFloat()) ||

(allResult.getvarString () .compare (allIn.getvarString()) !=
0))

{

cout << endl << "echoAll FAILED" << endl;
return;

}

} catch (IT Bus::FaultException &ex)

{
cout << "Caught Unexpected FaultException" << endl;
cout << ex.get description().c str() << endl;

298

Complex Types

Attributes

Overview

Attribute use

On-the-wire optimization

C++ mapping overview

Artix supports the use of <attribute> declarations within the scope of a
<complexType> definition. For example, you can include attributes in the
definitions of an all complex type, sequence complex type, and choice
complex type. The declaration of an attribute in a complex type has the
following syntax:

<attribute name="AttrName" type="AttrType"
use="[optional | required|prohibited]"/>

When declaring an attribute, the use can have one of the following values:
® optional—(default) the attribute can either be set or unset.

® required—the attribute must be set.

® prohibited—the attribute must be unset (cannot be used).

Artix optimizes the transmission of attributes by distinguishing between set
and unset attributes. Only set attributes are transmitted (on bindings that
support this optimization).

Note: The CORBA binding does not support this optimization.

There are two different styles of C4++ mapping for attributes, depending on

the use value in the attribute declaration:

® Qptional attributes—if an attribute is declared with use="optional"
(or if the use setting is omitted altogether), the generated
getAttribute() function returns a pointer, instead of a reference, to
the attribute value. This enables you to test whether the attribute is set
or not by testing the pointer for nilness (whether it equals 0).

® Required attributes—if an attribute is declared with use="required",
the generated getattribute() function returns a reference to the
attribute value.

299

CHAPTER 8 | Artix Data Types

Optional attribute example

C++ mapping for an optional
attribute

300

Example 120 shows how to define a sequence type with a single optional
attribute, prop, of xsd:string type (attributes are optional by default).

Example 120:Definition of a Sequence Type with an Optional Attribute

<complexType name="SequenceType">
<sequence>
<element name="varFloat" type="xsd:float"/>
<element name="varInt" type="xsd:int"/>
<element name="varString" type="xsd:string"/>
</sequence>
<attribute name="prop" type="xsd:string"/>
</complexType>

Example 121 shows an outline of the C++ SequenceType class generated
from Example 120, which defines accessor and modifier functions for the
optional prop attribute.

Example 121:Mapping an Optional Attribute to C++

// C++
class SequenceType : public IT Bus::SequenceComplexType

{
public:
SequenceType () ;

const IT Bus::String * getprop() const;
IT Bus::String * getprop();

void setprop(const IT Bus::String * val);
void setprop(const IT Bus::String & val);
i

The preceding C++ mapping can be explained as follows:
1. If the attribute is set, returns a pointer to its value; if not, returns o.
2. Ifval '= o, sets the attribute to *va1 (makes a copy); if val == 0,

unsets the attribute.

3. Sets the attribute to va1 (makes a copy). This is a convenience function
that enables you to set the attribute without using a pointer.

Complex Types

Required attribute example Example 122 shows how to define a sequence type with a single required
attribute, prop, of xsd:string type.

Example 122:Definition of a Sequence Type with a Required Attribute

<complexType name="SequenceType'">
<sequence>
<element name="varFloat" type="xsd:float"/>
<element name="varInt" type="xsd:int"/>
<element name="varString" type="xsd:string"/>

</sequence>
<attribute name="prop" type="xsd:string" use="required"/>
</complexType>
C++ mapping for a required Example 123 shows an outline of the C++ SequenceType class generated
attribute from Example 122 on page 301, which defines accessor and modifier

functions for the required prop attribute.
Example 123:Mapping a Required Attribute to C++

// C++
class SequenceType : public IT Bus::SequenceComplexType

{
public:
SequenceType () ;

const IT Bus::String & getprop() const;
IT Bus::String & getprop():;

void setprop(const IT Bus::String & val);
i

In this case, the getprop () accessor function returns a reference to a string
(that is, 1T Bus::Strings), rather than a pointer to a string.

301

CHAPTER 8 | Artix Data Types

Limitations The following attribute types are not supported:
® xsd:IDREFS
® xsd:ENTITY
® xsd:ENTITIES
® xsd:NOTATION
® xsd:NMTOKEN

® xsd:NMTOKENS

302

Complex Types

Attribute Groups

Overview

Simple attribute groups

An attribute group, which is defined using the attributeGroup element, is a
convenient shortcut that enables you to reference a group of attributes in
user-defined complex types. The attributeGroup element is used in two
distinct ways: for defining an attribute group and for referencing an existing
attribute group.

To define a new attribute group (which should be done within the scope of a
schema element), use the following syntax:

<attributeGroup
name="AttrGroup NCName">
<attribute ... > ... </attribute>
<attributeGroup ref="..." ... > ... </attributeGroup>
</attributeGroup>

To reference an existing attribute from within a complex type definition, use
the following syntax:

<attributeGroup ref="AttrGroup OName" />

Note: Attribute groups are currently supported only by the SOAP binding.

Example 124 shows how to define an attribute group, pimattrGroup, which
contains three attributes, 1ength, breadth, and height, and is referenced by
the complex type, Package.

Example 124:Example of Defining a Simple Attribute Group

<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:tns="http://schemas.iona.com/attr example"
targetNamespace="http://schemas.iona.com/attr example">

<attributeGroup name="DimAttrGroup">
<attribute name="length" type="xsd:int"/>
<attribute name="breadth" type="xsd:int"/>
<attribute name="height" type="xsd:int"/>
</attributeGroup

303

CHAPTER 8 | Artix Data Types

Example 124:Example of Defining a Simple Attribute Group

<complexType name="Package'">

<sequence> ... </sequence>
<attributeGroup ref="tns:DimAttrGroup" />
</complexType>
</schema>

The preceding pPackage type defined in Example 124 on page 303 is exactly
equivalent to the package type defined in Example 125. In other words,
referencing an attribute group has essentially the same effect as defining the
attributes directly within the type.

Example 125:Equivalent Type Using Attributes instead of Attribute Group

<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:tns="http://schemas.iona.com/attr example"
targetNamespace="http://schemas.iona.com/attr example'">

<complexType name="Package">
<sequence> ... </sequence>
<attribute name="length" type="xsd:int"/>
<attribute name="breadth" type="xsd:int"/>
<attribute name="height" type="xsd:int"/>
</complexType>

</schema>

Nested attribute groups It is also possible to nest attribute groups by referencing an attribute group
within another attribute group definition. Example 126 shows how to define
an attribute group, pimandcolor, which recursively references another
attribute group, pimattrGroup.

Example 126:Example of Defining a Nested Attribute Group
<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"

xmlns:tns="http://schemas.iona.com/attr example"
targetNamespace="http://schemas.iona.com/attr example">

304

Complex Types

Example 126:Example of Defining a Nested Attribute Group

<attributeGroup name="DimAttrGroup">
<attribute name="length" type="xsd:int"/>
<attribute name="breadth" type="xsd:int"/>
<attribute name="height" type="xsd:int"/>
</attributeGroup

<attributeGroup name="DimAndColor">
<attributeGroup ref="tns:DimAttrGroup"/>
<attribute name="Color" type="xsd:string"/>
</attributeGroup>

</schema>

C++ mapping The C++ mapping for a type that references an attribute group is precisely
the same as if the attributes were defined directly within the type. In other
words, all of the attribute groups are recursively unwrapped and the
attributes are inserted directly into the type definition. The type is then
mapped to C++ according to the usual mapping rules.

For details of the C++ mapping of attributes, see “Attributes” on page 299.

305

CHAPTER 8 | Artix Data Types

Nesting Complex Types

Overview

Avoiding anonymous types

WSDL example

306

It is possible to nest complex types within each other. When mapped to
C++, the nested complex types map to a nested hierarchy of classes,
where each instance of a nested type is stored in a member variable of its
containing class.

In general, it is a good idea to name types that are nested inside other types,
instead of using anonymous types. This results in simpler code when the
types are mapped to C+ +.

For an example of the recommended style of declaration, with a named
nested type, see Example 127.

Example 127 shows an example of a nested complex type, which features a
choice complex type, NestedChoiceType, nested inside a sequence complex
type, seq0fChoiceType.

Example 127:Definition of Nested Complex Type

<schema targetNamespace="http://soapinterop.org/xsd"
xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
<complexType name="NestedChoiceType'">
<choice>
<element name="varFloat" type="xsd:float"/>
<element name="varInt" type="xsd:int"/>
</choice>
</complexType>
<complexType name="SeqOfChoiceType'">
<sequence>
<element name="varString" type="xsd:string"/>
<element name="varChoice" type="xsdl:NestedChoiceType"/>
</sequence>
</complexType>

</schema>

C++ mapping of
NestedChoiceType

C++ mapping of

SeqOfChoiceType

Complex Types

The XML schema choice complex type, NestedChoiceType, IS @ Simple
choice complex type, which is mapped to C+ + in the standard way.
Example 128 shows an outline of the generated C+ + NestedChoiceType
class.

Example 128:Mapping of NestedChoiceType to C++
// C++
class NestedChoiceType : public IT Bus::ChoiceComplexType
{
public:
NestedChoiceType () ;
NestedChoiceType (const NestedChoiceType& copy);
virtual ~NestedChoiceType () ;
virtual const IT Bus::QName & get type() const ;

NestedChoiceType& operator= (const NestedChoiceType& assign);

const IT Bus::Float getvarFloat() const;
void setvarFloat (const IT Bus::Floaté& val);

const IT Bus::Int getvarInt() const;
void setvarInt (const IT Bus::Int& val);

IT Bus::UInt get discriminator() const;
private:

bi

The XML schema sequence complex type, SeqofChoiceType, has the
NestedChoiceType nested inside it. Example 129 shows an outline of the
generated C++ seqofChoiceType class, which shows how the nested
complex type is mapped within a sequence complex type.

Example 129:Mapping of SeqOfChoiceType to C+ +
// C++

class SeqOfChoiceType : public IT Bus::SequenceComplexType
{

307

CHAPTER 8 | Artix Data Types

Example 129:Mapping of SeqOfChoiceType to C+ +

public:
SeqOfChoiceType () ;
SeqOfChoiceType (const SeqOfChoiceType& copy) ;
virtual ~SeqgOfChoiceType () ;

virtual const IT Bus::QName & get type() const;
SeqOfChoiceType& operator= (const SeqOfChoiceTypeé& assign);
const IT Bus::String & getvarString() const;
IT Bus::String & getvarString();
void setvarString(const IT Bus::String & val);
const NestedChoiceType & getvarChoice() const;
NestedChoiceType & getvarChoice() ;
void setvarChoice (const NestedChoiceType & val) ;

private:

bi

The nested type, NestedChoiceType, can be accessed and modified using
the getvarChoice () and setvarChoice () functions respectively.

C++ example Consider a port type that defines an echoseqofChoice operation. The
echoSeqOfChoice operation takes a SeqofChoiceType type as an in
parameter and then echoes this value in the response. Example 119 shows
how a client could use a proxy instance, bc, to invoke the echoseqofChoice
operation.

Example 130:Client Invoking an echoSeqOfChoice Operation

// C++
NestedChoiceType nested;
nested.setvarFloat (3.14159) ;

SeqOfChoiceType seqln, segResult;
seqgln.setvarChoice (nested) ;
segln.setvarString("You can use a string constant here.");
try {
bc.echoSeqOfChoice (segqln, segResult);

308

Complex Types

Example 130:Client Invoking an echoSeqOfChoice Operation

if(

(segqResult.getvarString () .compare (segln.getvarString()) != 0)

|l

(seqgResult.getvarChoice () .get discriminator ()
!=seqIn.getvarChoice () .get discriminator()))

cout << endl << "echoSegOfChoice FAILED" << endl;
return;
}
} catch (IT Bus::FaultException &ex)

{
cout << "Caught Unexpected FaultException" << endl;
cout << ex.get description().c str() << endl;

309

CHAPTER 8 | Artix Data Types

Deriving a Complex Type from a Simple Type

Overview Artix supports derivation of a complex type from a simple type, for which the
following kinds of derivation are supported:

® Derivation by restriction.
® Derivation by extension.
A simple type has, by definition, neither sub-elements nor attributes. Hence,

one of the main reasons for deriving a complex type from a simple type is to
add attributes to the simple type (derivation by extension).

Derivation by restriction Example 131 shows an example of a complex type, orderNumber, derived
by restriction from the xsd:decimal simple type. The new type is restricted
to have values less than 1,000,000.

Example 131:Deriving a Complex Type from a Simple Type by Restriction

<xsd:complexType name="orderNumber">
<xsd:simpleContent>
<xsd:restriction base="xsd:decimal'>
<xsd:maxExclusive value="1000000"/>
</xsd:restriction>
</xsd:simpleContent>
</xsd:complexType>

The <simpleContent> tag indicates that the new type does not contain any
sub-elements and the <restriction> tag defines the derivation by
restriction from xsd:decimal.

310

Complex Types

Derivation by extension Example 132 shows an example of a complex type, internationalPrice,
derived by extension from the xsd:decimal simple type. The new type is
extended to include a currency attribute.

Example 132:Deriving a Complex Type from a Simple Type by Extension

<xsd:complexType name="internationalPrice">
<xsd:simpleContent>
<xsd:extension base="xsd:decimal'">
<xsd:attribute name="currency" type="xsd:string"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>

The <simpleContent> tag indicates that the new type does not contain any
sub-elements and the <extension> tag defines the derivation by extension
from xsd:decimal.

C++ mapping Example 133 shows an outline of the C++ internationalPrice class
generated from Example 132 on page 311.

Example 133:Mapping the internationalPrice Type to C++

// C++
class internationalPrice : public
IT Bus::SimpleContentComplexType

public:
internationalPrice () ;
internationalPrice (const internationalPrice& copy) ;
virtual ~internationalPrice();

virtual const IT Bus::QName & get type() const;

internationalPrice& operator= (const internationalPriceé&
assign);

const IT Bus::String & getcurrency() const;

IT Bus::String & getcurrency();
void setcurrency(const IT Bus::String & val);

311

CHAPTER 8 | Artix Data Types

312

Example 133:Mapping the internationalPrice Type to C++

const IT Bus::Decimal & get simpleTypeValue() const;
IT Bus::Decimal & get simpleTypeValue () ;
void set simpleTypeValue (const IT Bus::Decimal & val);

bi

The value of the currency attribute, which is added by extension, can be
accessed and modified using the getcurrency () and setcurrency ()
member functions. The simple type value (that is, the value enclosed
between the <internationalPrice> and </internationalPrice> tags) can
be accessed and modified by the get simpleTypevalue () and
set_simpleTypevalue () member functions.

Complex Types

Deriving a Complex Type from a Complex Type

Overview

Allowed inheritance relationships

Artix supports derivation of a complex type from a complex type, for which
the following kinds of derivation are possible:

® Derivation by restriction.

® Derivation by extension.

This subsection describes the C++ mapping for complex types derived from

complex types and, in particular, describes the coding pattern for calling a
function either with base type arguments or with derived type arguments.

Figure 24 shows the inheritance relationships allowed between complex
types. As well as inheriting between the same kind of complex type
(sequence from sequence, choice from choice, and all from all), derivation
by extension also supports cross-inheritance. For example, a sequence can
derive from a choice, a choice from an all, an all from a choice, and so on.

Sequence Choice All

Sequence Choice All

Figure 24: Allowed Inheritance Relationships for Complex Types

313

CHAPTER 8 | Artix Data Types

Derivation by restriction Example 134 shows an example of deriving a sequence from a sequence by
restriction. In this example, Restrictedstruct is derived from
simpleStruct by restriction. The standard tag used to declare inheritance by
restriction is <restriction base="BaseComplexType"/>

Example 134:Example of Deriving a Sequence by Restriction

// C++
<complexType name="SimpleStruct">
<sequence>
<element name="varFloat" type="float"/>
<element name="varInt" type="int"/>
<element name="varString" type="string"/>
</sequence>
<attribute name="varAttrString" type="string"/>
</complexType>

1 <complexType name="RestrictedStruct">

<complexContent>
2 <restriction base="tns:SimpleStruct">
3 <sequence>

<element name="varFloat" type="float"/>
<element name="varInt" type="int"/>
4 <element name="varString" type="string"
fixed="Restricted" />
</sequence>
</restriction>
</complexContent>
</complexType>

The preceding type definition can be explained as follows:

1. This <complexType> tag introduces the definition of the derived
sequence type, RestrictedStruct.

2. The <restriction> tag indicates that this type derives by restriction
from the simplestruct type.

3. Elements that appear in the simplestruct base type must be
duplicated here, if they are to be included in the derived type, but they
can also have extra restrictions imposed on them.

4. The varstring element is restricted here to have the fixed value,

Restricted.

314

Derivation by extension

A WN

Complex Types

Example 135 shows an example of deriving a sequence from a sequence by
extension. In this example, DerivedStruct BaseStruct is derived from
Ssimplestruct by extension. The standard tag used to declare inheritance by
extension is <extension base="BaseComplexType"/>

Example 135:Example of Deriving a Sequence by Extension

<complexType name="SimpleStruct'">
<sequence>
<element name="varFloat" type="float"/>
<element name="varInt" type="int"/>
<element name="varString" type="string"/>
</sequence>
<attribute name="varAttrString" type="string"/>
</complexType>

<complexType name="DerivedStruct BaseStruct">
<complexContent mixed="false">
<extension base="tns:SimpleStruct'">
<sequence>
<element name="varStringExt" type="string"/>
<element name="varFloatExt" type="float"/>
</sequence>
<attribute name="attrStringl" type="string"/>
</extension>
</complexContent>
</complexType>

The preceding type definition can be explained as follows:

1. This <complexType> tag introduces the definition of the derived
sequence type, DerivedStruct BaseStruct.

2. The <complexContent> tag indicates that what follows is a declaration
of contained tags. The mixed="false" setting indicates that the type
can contain only tags, not text.

3. The <extension> tag indicates that this type derives by extension from
the simplestruct type.

4. The <sequence> tag defines extra type members that are specific to the
derived type, DerivedStruct BaseStruct.

5. You can also declare attributes specific to the derived type.

315

CHAPTER 8 | Artix Data Types

C+ + mapping for derivation by
restriction

C+ + mapping for derivation by
extension

316

The C++ mapping for derivation by restriction is essentially the same as the
C++ mapping for derivation by extension.

In the case of derivation by restriction, however, Artix does not enforce all of
the restrictions at runtime. To ensure interoperability, therefore, your service
should enforce the restrictions declared in the WSDL contract.

The sequence types defined in Example 135 on page 315, simpleStruct
and DerivedStruct BaseStruct, map to C++ as shown in Example 136.

Example 136:C++ Mapping of a Derived Sequence Type

// Ct+
class SimpleStruct : public IT Bus::SequenceComplexType
{
public:
static const IT Bus::QName type name;

SimpleStruct () ;

IT Bus::AnyType &
operator=(const IT Bus::AnyType & rhs);

SimpleStruct &
operator=(const SimpleStruct & rhs);

const SimpleStruct * get derived() const;
virtual IT Bus::AnyType::Kind get kind() const;
virtual const IT Bus::QName & get type() const;

IT Bus::Float getvarFloat() ;
const IT Bus::Float getvarFloat() const;
void setvarFloat(const IT Bus::Float val);

IT Bus::Int getvarInt() ;
const IT Bus::Int getvarInt() const;
void setvarInt(const IT Bus::Int val);

IT Bus::String & getvarString() ;
const IT Bus::String & getvarString() const;
void setvarString(const IT Bus::String & val);

IT Bus::String & getvarAttrString() ;
const IT Bus::String & getvarAttrString() const;
void setvarAttrString(const IT Bus::String & val);

Complex Types

Example 136:C++ Mapping of a Derived Sequence Type

private:
bi

typedef IT AutoPtr<SimpleStruct> SimpleStructPtr;

class IT TEST WSDL API DerivedStruct BaseStruct : public
SimpleStruct , public virtual
IT Bus::ComplexContentComplexType

public:
static const IT Bus::QName type name;

DerivedStruct BaseStruct();
DerivedStruct BaseStruct (const DerivedStruct BaseStruct &

copy) ;
virtual ~DerivedStruct BaseStruct();

IT Bus::String & getvarStringExt () ;
const IT Bus::String & getvarStringExt() const;
void setvarStringExt(const IT Bus::String & val);

IT Bus::Float getvarFloatExt () ;
const IT Bus::Float getvarFloatExt () const;
void setvarFloatExt(const IT Bus::Float val);

IT Bus::String & getattrStringl () ;

const IT Bus::String & getattrStringl() const;

void setattrStringl (const IT Bus::String & val);
private:

bi

The C++ DerivedStruct BaseStruct class derives directly from the C++
SimpleStruct class. Hence, all of the accessors and modifiers declared in
the base class, simplestruct, are also available to the derived class,

DerivedStruct BaseStruct

317

CHAPTER 8 | Artix Data Types

Using a base type as a holder

Holder type functions

Polymorphism

318

The simplestruct type declared in Example 136 on page 316 is really a

dual-purpose type. That is, a simplestruct instance can be used in one of

the following different ways:

® Asasimplestruct data type (base type)—member data is accessed
by invoking getElementName () and setElementName () functions
directly on the simplestruct instance.

® As a holder type (derived type holder)—in this usage pattern, the
Simplestruct instance is used to hold a reference to a more derived
type (for example, DerivedStruct BaseStruct).

If you are using simplestruct as a holder type, the following member

functions are relevant:

b SimpleStruct (const SimpleStruct & copy)—the simpleStruct copy

constructor is used to initialize the reference held by the simplestruct

holder object. The type passed to the copy constructor can be any type

derived from sSimpleStruct.

SimpleStruct & operator=(const SimpleStruct & rhs)—

alternatively, if you already have a simplestruct object, you can

change the reference held by making an assignment to the

SimpleStruct holder.

® const SimpleStruct * get derived() const—if you want to access
the derived type held by a simplestruct holder object, call the
get_derived () member function and then dynamically cast the return
value to the appropriate type.

b const IT Bus::QName & get type() const—call get type() to get
the QName of the derived type held by a simplestruct holder object.

When a WSDL operation is defined to take arguments of a base class type
(for example, simplestruct), it is also possible to send and receive
arguments of a type derived from that base class (for example,

DerivedStruct_BaseStruct).
For reasons of backward compatibility, however, the C++ code required for

calling an operation with derived type arguments is different from the C++
code required for calling an operation with base type arguments.

Complex Types

Sample WSDL operation For example, consider the definition of the following WSDL operation,

test_SimpleStruct, that takes an in argument of simplestruct type and
returns an out argument of simplestruct type.

Example 137:The test_SimpleStruct Operation with Base Type Arguments

<message name="test SimpleStruct">

<part name="x" element="tns:SimpleStruct x"/>
</message>
<message name="test SimpleStruct response'">

<part name="return" element="tns:SimpleStruct return"/>
</message>

<operation name="test SimpleStruct">
<input name="test SimpleStruct"
message="tns:test SimpleStruct"/>
<output name="test SimpleStruct response"

message="tns:test SimpleStruct response"/>
</operation>

The preceding test_simplestruct WSDL operation maps to the following
C++ function (in the TypeTestClient client proxy class).

// C++

virtual void

test SimpleStruct (
const SimpleStruct &x,
SimpleStruct & return,

) IT THROW DECL ((IT Bus::Exception));

To call the preceding test_simplestruct () function in C++, use one of the

following programming patterns, depending on the type of arguments
passed:

® Base or derived type arguments

® Base type arguments only (for legacy code)

319

CHAPTER 8 | Artix Data Types

Base or derived type arguments

320

Example 138 shows you how to call the test_Simplestruct () function
with derived type arguments (of DerivedStruct Basestruct type).
Generally, this coding pattern can be used to pass either base type or
derived type arguments.

Example 138:Calling test_SimpleStruct() with Derived Type Arguments

// C++
DerivedStruct BaseStruct x;

// Base members

x.setvarFloat ((IT Bus::Float) 3.14);
x.setvarInt ((IT Bus::Int) 42);
x.setvarString ((IT Bus::String) "BaseStruct-x");
x.setvarAttrString ((IT Bus::String) "BaseStructAttr-x");
// Derived members

x.setvarFloatExt ((IT Bus::Float) -3.14f);
x.setvarStringExt ((IT Bus::String) "DerivedStruct-x");
x.setattrStringl ((IT Bus::String) "DerivedAttr-x");

SimpleStruct x holder (x);
SimpleStruct ret holder;

proxy->test SimpleStruct(x holder, ret holder);

const DerivedStruct BaseStruct* ret derived

= dynamic cast<const DerivedStruct BaseStruct*>(
ret holder.get derived()
)i

// Use ret derived type value...

The preceding C++ code can be explained as follows:

1.

The in parameter, x, of the test_Simplestruct () function is declared
to be of derived type, DerivedStruct BaseStruct

Both the base members and the derived members of the in parameter,
x, are initialized here.

The derived type, x, is wrapped by a base type instance, x_holder. In
this case, the simplestruct object, x_holder, is used purely as a
holder type; x_holder does not directly represent a SimpleStruct type
argument.

Base type arguments only (for
legacy code)

Complex Types

4. The return type, ret_holder, is declared to be of simplestruct type.
Here also, ret_holder is treated as a holder type.

5. Call the remote test Simplestruct () function, passing in the two
holder instances, x_holder and ret holder.

6. To obtain a pointer to the derived type return value, call
SimpleStruct::get_derived(). This function returns a pointer to the
derived type contained in the ret_holder object. You can then cast the
returned pointer to the appropriate type using the dynamic cast<>
operator.

If necessary, you can call the simplestruct::get type () function to
discover the QName of the returned type before attempting to cast the
return value.

Example 139 shows you how to call the test_simplestruct () function
with base type arguments (of simplestruct type). This coding pattern is
supported for reasons of backward compatibility.

Example 139:Calling test_SimpleStruct() with Base Type Arguments

// C++
SimpleStruct x;

// Base members

x.setvarFloat ((IT Bus::Float) 3.14);
x.setvarInt ((IT Bus::Int) 42);
x.setvarString ((IT Bus::String) "BaseStruct-x");
x.setvarAttrString ((IT Bus::String) "BaseStructAttr-x");

SimpleStruct ret;
proxy->test SimpleStruct (x, ret);
// Use ret value...

cout << ret.getvarFloat();

The preceding C++ code can be explained as follows:

1. The in parameter, x, of the test simplestruct () function is declared
to be of base type, simpleStruct.

2. The members of the simpleStruct in parameter, %, are initialized.

321

CHAPTER 8 | Artix Data Types

3. Thereturn value, ret, of the test_simplestruct () function is declared
to be of base type, simplestruct.

Note: The return value must be allocated before calling the
test_SimpleStruct () function.

4. This line calls the remote test_simplestruct () function with in
parameter, %, and return parameter, ret.

Note: In this example, it is assumed that the return value is of base
type, simplestruct. In general, however, the return type might be of
derived type (see “Base or derived type arguments” on page 320).

322

Complex Types

Arrays

Overview

Array definition syntax

Mapping to IT_Bus::ArrayT

This subsection describes how to define and use basic Artix array types. In
addition to these basic array types, Artix also supports SOAP arrays, which
are discussed in “SOAP Arrays” on page 400.

An array is a sequence complex type that satisfies the following special
conditions:

® The sequence complex type schema defines a single element only.

® The element definition has a maxoccurs attribute with a value greater
than 1.

Note: All elements implicitly have minoccurs=1 and maxOccurs=1, unless
specified otherwise.

Hence, an Artix array definition has the following general syntax:

<complexType name="ArrayName'">
<sequence>
<element name="ElemName" type="ElemType"
minOccurs="LowerBound" maxOccurs="UpperBound" />
</sequence>
</complexType>

The E1emType specifies the type of the array elements and the number of
elements in the array can be anywhere in the range LowerBound to
UpperBound,

When a sequence complex type declaration satisfies the special conditions
to be an array, it is mapped to C++ differently from a regular sequence
complex type. Instead of mapping to IT Bus: :SequenceComplexType, the
array maps to the IT Bus::ArrayT<ElementType>template type. Effectively,
the C++ array template class can be treated like a vector.

For example, the mapped C++ array class supports the size () member
function and individual elements can be accessed using the [1 operator.

323

CHAPTER 8 | Artix Data Types

WSDL array example Example 140 shows how to define a one-dimensional string array,
ArrayOfString, Whose size can lie anywhere in the range 0 to unbounded.

Example 140:Definition of an Array of Strings

<?xml version="1.0" encoding="UTF-8"7?>

<definitions ... >
<types>
<schema ... >
<complexType name="ArrayOfString">
<sequence>
<element name="varString" type="xsd:string"
minOccurs="0" maxOccurs="unbounded" />
</sequence>
</complexType>
</definitions>
C++ mapping Example 141 shows how the Arrayofstring string array (from

Example 140 on page 324) maps to C++.
Example 141:Mapping of ArrayOfString to C++

// C++
class ArrayOfString : public IT Bus::ArrayT<IT Bus::String>
{
public:
ArrayOfString() ;
ArrayOfString (size t dimension0);
ArrayOfString (const ArrayOfString& copy) ;
virtual ~ArrayOfString();

virtual const IT Bus::QName & get type() const;

ArrayOfStringé& operator= (const IT Vector<IT Bus::String>&
assign);

const IT Bus::ElementListT<IT Bus::String> & getvarString()
const;

IT Bus::ElementListT<IT Bus::String> & getvarString();

324

C++ example

Multi-dimensional arrays

Complex Types

Example 141:Mapping of ArrayOfString to C++

void setvarString(const IT Bus::ElementListT<IT Bus::String>
& val);

bi

typedef IT AutoPtr<ArrayOfString> ArrayOfStringPtr;

Notice that the C++ array class provides accessor functions,
getvarString () and setvarString (), just like any other sequence complex
type with occurrence constraints (see “Sequence Occurrence Constraints” on
page 355). The accessor functions are superfluous, however, because the
array’s elements are more easily accessed by invoking vector operations
directly on the Arrayofstring class.

Example 142 shows an example of how to allocate and initialize an
ArrayOfString instance, by treating it like a vector (for a complete list of
vector operations, see “Summary of IT_Vector Operations” on page 416).

Example 142:C++ Example for a One-Dimensional Array
// C++

// Array of String
ArrayOfString a(4);

al[0] = "One";
a[l] = "Two";
al[2] = "Three";
a[3] = "Four";

You can define multi-dimensional arrays by nesting array definitions (see
“Nesting Complex Types” on page 306 for a discussion of nested types).
Example 143 shows an example of how to define a two-dimensional string
array, ArrayOfArrayOfString.

Example 143:Definition of a Multi-Dimensional String Array
<?xml version="1.0" encoding="UTF-8"7?>
<definitions ... >

<types>
<schema ... >

325

CHAPTER 8 | Artix Data Types

Example 143:Definition of a Multi-Dimensional String Array

<complexType name="ArrayOfString">
<sequence>
<element name="varString" type='"xsd:string"
minOccurs="0" maxOccurs="unbounded"/>
</sequence>
</complexType>
<complexType name="ArrayOfArrayOfString">
<sequence>
<element name="nestArray"
type="xsdl :ArrayOfString"
minOccurs="0" maxOccurs="unbounded" />
</sequence>

</complexType>

</definitions>

Both the nested array type, ArrayofarrayofsString, and the sub-array type,
ArrayOfString, must conform to the standard array definition syntax.
Multi-dimensional arrays can be nested to an arbitrary degree, but each
sub-array must be a named type (that is, anonymous nested array types are
not supported).

C++ example for Example 144 shows an example of how to allocate and initialize a
multidimensional array multi-dimensional array, of ArrayofArrayofString type.

Example 144:C++ Example for a Multi-Dimensional Array
// C++
// Array of array of String

ArrayOfArrayOfString a2 (2);

for (int 1 = 0 ; 1 < a2.size(); it++) {
a2[i] .set size(2);

a2[0][0] = "ZeroZero";
a2[0][1] = "ZeroOne";
az[1]1[0] = "OneZero";
a2[1]1[1] = "OneOne";

326

Automatic conversion to
IT_Vector

References

Complex Types

The set_size () function enables you to set the dimension of each sub-array
individually. If you choose different sizes for the sub-arrays, you can create
a2 as a ragged two-dimensional array.

In general, a multi-dimensional array can automatically convert to a vector
of IT vector<SubArray> type, where subarray is the array element type.

Example 145 shows how an instance, a2, of arrayofArrayOfString type
converts to an instance of IT vector<aArrayofString> type by assignment.

Example 145:Converting a Multi-Dimensional Array to IT_Vector Type

// Array of array of String
ArrayOfArrayOfString a2 (2);

for (int 1 = 0 ; 1 < a2.size(); i++) {
a2[i].set size(2);

}

// Obtain reference to the underlying IT Vector type
IT Vector<ArrayOfString>& v_a2 = a2;

cout << v_a2[0][0] << " " < v az2[0][1] << " "
<< v a2[1][0] << " " << v a2([1][1] << endl;
cout << "v a2.size() = " << v _a2.size() << endl;

For more details about vector types see:
® The “IT_Vector Template Class” on page 412.

® The section on C++ ANSI vectors in The C++ Programming
Language, third edition, by Bjarne Stroustrup.

327

CHAPTER 8 | Artix Data Types

Model Group Definitions

Overview A model group definition is a convenient shortcut that enables you to
reference a group of elements from a user-defined complex type.
® To define a new model group (which should be done within the scope
of a schema element), use the following syntax:

<group
name="Group NCName">
[<sequence> | <choice>]

[</sequence> | </choice>]
</group>
® To reference an existing model group from within a complex type
definition or from within another model group definition, use the
following syntax:

<group ref="Group OName"/>

Note: Model groups are currently supported only by the SOAP binding.

Group of sequence Example 146 shows how to define a model group, passengerName, which
contains a sequence of elements.

Example 146:Mode! Group Definition Containing a Sequence

<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:tns="http://schemas.iona.com/group"
targetNamespace="http://schemas.iona.com/group">

<group name="PassengerName'>
<sedquence>
<element name="FirstName" type="xsd:string"/>
<element name="SecondName" type="xsd:string"/>
</sequence>
</group>

</schema>

328

Group of choice

Complex Types

When the preceding XSD schema is mapped to C+ +, the passengerName
model group is mapped to its own C++ class, PassengerName, as shown in
Example 147.

Example 147:PassengerName Model Group Mapping to C++

// C++
class PassengerName : public IT Bus::SequenceComplexType
{

public:

PassengerName () ;
PassengerName (const PassengerName & copy) ;
virtual ~PassengerName () ;

IT Bus::String & getFirstName () ;

const IT Bus::String & getFirstName () const;
void setFirstName (const IT Bus::String & val);
IT Bus::String & getSecondName () ;

const IT Bus::String & getSecondName () const;
void setSecondName (const IT Bus::String & val);

private:

bi

Example 148 shows how to define a model group, passengerin, which
contains a choice of elements.

Example 148:Mode! Group Definition Containing a Choice

<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:tns="http://schemas.iona.com/group"
targetNamespace="http://schemas.iona.com/group">

<group name="PassengerID">
<choice>
<element name="PassportNo" type="xsd:integer"/>
<element name="IDCardNo" type="xsd:integer"/>
</choice>
</group>

</schema>

329

CHAPTER 8 | Artix Data Types

Recursive group references

330

When the preceding XSD schema is mapped to C+ +, the passengerID
model group is mapped to a C+ + class, PassengerID, in just the same way
as a regular choice complex type (see, for example, “Choice Complex Types”
on page 292).

Example 149 shows how to define a model group, Hop, Which recursively
references another model group definition, PassengerName.

Example 149:Model Group Definition with Recursive Reference

<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:tns="http://schemas.iona.com/group"
targetNamespace="http://schemas.iona.com/group">

<group name="PassengerName">
<sequence>
<element name="FirstName" type="xsd:string"/>
<element name="SecondName" type="xsd:string"/>
</sequence>
</group>

<group name="Hop'">
<sequence>
<group ref="tns:PassengerName"/>
<element name="origin" type="xsd:string"/>
<element name="destination" type="xsd:string"/>
</sequence>
</group>

</schema>

When the preceding XSD schema is mapped to C++, the Hop model group
maps to a C++ class, Hop, like a regular sequence complex type. In
particular, the recursive reference to another model group,
tns:PassengerName, iS mapped to a pair of accessor and modifier functions,
getPassengerName () and setPassengerName (), as shown in Example 150.

Example 150:Hop Model Group Mapping to C++

// C++
class Hop : public IT Bus::SequenceComplexType
{

public:

Complex Types

Example 150:Hop Model Group Mapping to C++

Hop () 7
Hop (const Hop & copy) ;
virtual ~Hop();

PassengerName & getPassengerName () ;
const PassengerName & getPassengerName () const;
void setPassengerName (const PassengerName & val);

IT Bus::String & getorigin() ;

const IT Bus::String & getorigin() const;

void setorigin(const IT Bus::String & val);

IT Bus::String & getdestination();

const IT Bus::String & getdestination() const;
void setdestination(const IT Bus::String & val);

private:

bi

Repeated group references Example 151 shows how to define a model group, TwoHops, which
references the Hop model group twice.

Example 151:Mode/ Group Definition with Repeated References

<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:tns="http://schemas.iona.com/group"
targetNamespace="http://schemas.iona.com/group">

<group name="TwoHops">
<sequence>
<group ref="tns:Hop"/>
<group ref="tns:Hop"/>
</sequence>
</group>

</schema>

331

CHAPTER 8 | Artix Data Types

When the preceding XSD schema is mapped to C+ +, the TwoHops model
group maps to a C++ class, TwoHops, as shown in Example 152.

Example 152:TwoHops Model Group Mapping to C+ +

// Ct+
class TwoHops : public IT Bus::SequenceComplexType

{
public:

TwoHops () ;
TwoHops (const TwoHops & copy) ;
virtual ~TwoHops () ;

Hop & getHop() ;
const Hop & getHop() const;
void setHop (const Hop & val);

Hop & getHop 1();
const Hop & getHop 1() const;
void setHop 1(const Hop & val);

private:
i

Two sets of accessors and modifiers are generated: the first model group
reference maps to the functions, getHop () and setHop () ; the second model
group reference maps to the functions, getHop 1() and setHop 1 ().

In general, an N+1th repetition of a model group reference would generate a
pair of functions, getHop N() and setHop N().

332

Wildcarding Types

Wildcarding Types

Overview

In this section

The XML schema wildcarding types enable you to define XML types with

loosely defined characteristics. The following features of an XML element

can be wildcarded:

® URI wildcard, xsd:anyuri—matches any URI. For example, you could
specify xsd:anyURI as the type of an attribute that can be initialized
with a URI.

® (Contents wildcard, xsd:anyType—matches any XML type for the
element contents. For example, you can specify type="xsd:anyType"
in an element definition to indicate that the element contents may be
of any type.

® Element wildcard, xsd:any—matches any XML element. For example,
you could use an element wildcard to define a complex type containing
an arbitrary element or elements.

This section contains the following subsections:

anyURI Type page 334
anyType Type page 336
any Type page 341

333

CHAPTER 8 | Artix Data Types

anyURI Type

Overview You can specify the xsd:anyURT type for any data that is intended to be used
as a URI.
anyURI syntax The xsd:anyURI type can be used to define an attribute that holds a URI

value or an element that contains a URI value.

To define an attribute with a URI value, use the following syntax:
<attribute name="AttrName" type="xsd:anyURI"/>

To define an element with URI content, use the following syntax.

<element name="ElemName" type="xsd:anyURI"/>

C++ mapping Example 153 shows the most important member functions from the
IT Bus::AnyURI class, which is the C++ mapping of xsd:anyURI.

Example 153:The IT_Bus::AnyURI Class

// C++
namespace IT Bus
{
class IT AFC API AnyURI : public AnySimpleType
{
public:

AnyURI () IT THROW DECL(()) 7
AnyURI (
const String & uri
) IT THROW DECL((IT Bus::Exception));

void set uri (
const String & uri
) IT THROW DECL((IT Bus::Exception));
const String& get uri() const IT THROW DECL(());

static bool is valid uri (

const String & uri
) IT THROW DECL(());

334

Wildcarding Types

Example 153:The /T _Bus::AnyURI Class

bool operator==(const AnyURI& lhs, const AnyURI& rhs) const;
bool operator!=(const AnyURI& lhs, const AnyURI& rhs) const;

bi

If you attempt to set the URI to an invalid value, using either the anyUrT
constructor or the set_uri () function, a system exception is thrown.

WSDL example Example 154 shows an example of a WSDL type, DocReference, that
includes an attribute of xsd:anyURT type.

Example 154:Definition of an Attribute Using an anyUR|
<schema targetNamespace="..."
xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<complexType name="DocReference'>

<attribute name="doc type" type="xsd:string"/>

<attribute name="location" type="xsd:anyURI"/>
</complexType>

</schema>

C++ example The following example code shows how to create an instance of the
DocReference type defined in the preceding Example 154. The location
attribute is initialized with a URI value.

// C++
DocReference dr;

dr.setdoc type ("PDE") ;
dr.setlocation (
new IT Bus::AnyURI ("http://www.iona.com/docs/dummy.pdf")

);

335

CHAPTER 8 | Artix Data Types

anyType Type

Overview In an XML schema, the xsd:anyType is the base type from which other
simple and complex types are derived. Hence, an element declared to be of
xsd:anyType type can contain any XML type.

Note: The xsd:anyType is currently supported only by the CORBA, SOAP
and XML bindings. Certain bindings—for example, Fixed, Tagged, TibMsg,
and FML—do not support the use of xsd:anyType because they lack a
corresponding construct.

Prerequisite for using anyType A prerequisite for using the xsd:anyType is that your application must be
built with the wspLFi leName wsdlTypesFactory.cxx source file. This file is
generated automatically by the WSDL-to-C++ compiler utility.

anyType syntax To declare an xsd:anyType element, use the following syntax:
<element name="ElementName" [type="xsd:anyType"]>

The attribute setting, type="xsd:anyType", is optional. If the type attribute
is missing, the XML schema assumes that the element is of xsd:anyType by
default.

C++ mapping The WSDL-to-C++ compiler maps the xsd:anyType type to the
IT Bus::AnyHolder class in C++.

The IT Bus::AnyHolder class provides member functions to insert and
extract data values, as follows:

® Inserting and extracting atomic types.
® Inserting and extracting user-defined types.

Note: It is currently not possible to nest an IT Bus::AnyHolder instance
directly inside another IT Bus::AnyHolder instance.

336

Inserting and extracting atomic
types

Inserting and extracting
user-defined types

Wildcarding Types

To insert and extract atomic types to and from an IT Bus::AnyHolder, Use
the member functions of the following form:

void set AtomicTypeFunc(const AtomicTypeNames) ;
AtomicTypeName& get AtomicTypeFunc();
const AtomicTypeName& get AtomicTypeFunc();

For a complete list of the functions for the basic atomic types, see
“AnyHolder API” on page 339.

For example, you can insert and extract an xsd:short integer to and from an
IT Bus::AnyHolder as follows:

// C++

// Insert an xsd:short value into an xsd:anyType.
IT Bus::AnyHolder aH;

aH.set short (1234);

// Extract an xsd:short value from an xsd:anyType.
IT Bus::Short sh = aH.get short();

To insert and extract user-defined types from an IT Bus::AnyHolder, USe
the following functions:

void set _any type (const IT Bus::AnyType &);
IT Bus::AnyType& get _any type();
const IT Bus::AnyType& get any type();

Note that all user-defined types inherit from IT Bus::AnyType. There are no
type-specific insertion or extraction functions generated for user-defined
types.

Memory management for these functions is handled as follows:

® The set_any type() function copies the inserted data.
® The get any type() functions do not copy the return value, rather
they return either a writable (non-const) or read-only (const) reference

to the data inside the 1T Bus::AnyHolder.

337

CHAPTER 8 | Artix Data Types

Accessing the type information

338

For example, given a user-defined sequence type, SequenceType (see the
declaration in Example 111 on page 289), you can insert a SequenceType
instance into an IT Bus::AnyHolder as follows:

// C++

// Create an instance of SequenceType type.
SequenceType seq;

seq.setvarFloat (3.14) ;

seq.setvarInt (1234) ;

seq.setvarString ("This is a sample SequenceType.");

// Insert the SequenceType value into an xsd:anyType.
IT Bus::AnyHolder aH;
aH.set any type (seq);

To extract the sequenceType instance from the IT Bus::AnyHolder, you
need to perform a C++ dynamic cast:

// C++

// Extract the SequenceType value from the IT Bus::AnyHolder.
IT Bus::AnyType& base extract = aH.get any type();

// Cast the extracted value to the appropriate type:
SequenceType& seq extract
= dynamic_cast<SequenceTypeé&> (base extract);

You can find out what type of data is contained in an IT Bus::AnyHolder
instance by calling the following member function:

const IT Bus::QName & get type() const;

Type information is set whenever an IT Bus::AnyHolder instance is
initialized. For example, if you initialize an IT Bus: :AnyHolder by calling
set_boolean (), the type is set to be xsd:boolean. If you call

set_any type () with an argument of sequenceType, the type would be set
10 xsdl:SequenceType.

Note: Because the XML representation of xsd:anyType is not
self-describing, some type information could be lost when an anyType is
sent across the wire. In the case of a CORBA binding, however, there is no
loss of type information, because CORBA anys are fully self-describing.

Wildcarding Types

AnyHolder API

Example 155 shows the public API from the IT Bus::AnyHolder class,

including all of the function for inserting and extracting data values.

Example 155:The IT_Bus::AnyHolder Class

// C++

namespace IT Bus

{

class IT BUS API AnyHolder :

{

public:

public AnyType

AnyHolder () ;
virtual ~AnyHolder() ;

virtual const QName & get type() const ;

//Set Methods

void
void
void
void
void
void
void
void
void
void
void
void
void

void

set boolean (const IT Bus::Boolean &);
set byte(const IT Bus::Byte &);

set short (const IT Bus::Short &);

set int(const IT Bus::Int &);

set long(const IT Bus::Long &);

set string(const IT Bus::String &);
set float (const IT Bus::Float &);

set double(const IT Bus::Double &);
set ubyte (const IT Bus::UByte &);

set ushort (const IT Bus::UShort &);
set uint (const IT Bus::UInt &);

set ulong (const IT Bus::ULong &);

set decimal (const IT Bus::Decimal &);

set any type (const AnyType&);

//GET METHODS

IT Bus::Boolean & get boolean();
IT Bus::Byte & get byte();

IT Bus::Short & get short();
IT Bus::Int & get int();

IT Bus::Long & get long();

IT Bus::String & get string();
IT Bus::Float & get float();
IT Bus::Double & get double();
IT Bus::UByte & get ubyte() ;
IT Bus::UShort & set ushort();
IT Bus::UInt & get uint();

IT Bus::ULong & set ulong();

339

CHAPTER 8 | Artix Data Types

340

Example 155:The IT_Bus::AnyHolder Class

bi

IT Bus::Decimal & get decimal();

AnyType& get any type();

//CONST GET METHODS

const
const
const
const
const
const
const
const
const
const
const
const
const

const

IT Bus:
IT Bus:
IT Bus:
IT Bus:
IT Bus:
IT Bus:
IT Bus:
IT Bus:
IT Bus:
IT Bus:
IT Bus:
IT Bus:
IT Bus:

:Boolean & get boolean() const;
:Byte & get byte() const;
:Short & get short() const;
:Int & get int() const;

:Long & get long() const;
:String & get string() const;
:Float & get float() const;
:Double & get double() const;
:UByte & get ubyte() const;
:UShort & get ushort() const;
:UInt & get uint() const;
:ULong & get ulong() const;
:Decimal & get decimal () const;

AnyType& get any type() const;

Wildcarding Types

any Type

Overview

any syntax

Occurrence constraints

Target namespace

Namespace constraint

In an XML schema, the xsd:any is a wildcard element that matches any
element (or multiple elements, if occurrence constraints are set), subject to
certain constraints.

To declare an xsd:any element, use the following syntax:

<xsd:any
minOccurs="LowerBound"
maxOccurs="UpperBound"
namespace="NamespaceList"
processContents=" (lax | skip | strict)" />

You can use occurrence constraints to specify how many elements can be

matched by the xsd:any element wildcard:

® minOccurs specifies the minimum number of elements to match
(default 1).

® maxOccurs Specifies the maximum number of elements to match
(default 1).

For more details about implementing anys with occurrence constraints, see
“Any Occurrence Constraints” on page 363.

An xsd:any element is implicitly associated with a particular target
namespace (specified by the targetNamespace attribute in one of the
elements enclosing the <xsd:any> definition).

You can use a namespace constraint to restrict the matching elements to
belong to a particular namespace or namespaces. The following values can
be specified in the namespace attribute:

##any (Default) Matches elements in any namespace,
including unqualified elements.

##local Matches an unqualified element (no namespace
prefix appearing in the element name).

##targetNamespace Matches elements in the current targetNamespace.

341

CHAPTER 8 | Artix Data Types

Process contents

WSDL any example

342

##other Matches elements in any namespace apart from
the current targetNamespace.

Namespace Matches elements in the literal Namespace.

List of namespaces A space-separated list of namespaces. The list can
include literal namespaces, ##targetNamespace, Of
##local.

The processContents attribute is an instruction to the XML parser indicating
how strictly it should check the syntax of the matched elements. Sometimes
it can be useful to disable syntax checking, because the XML schema for the
matched elements might not be readily available. The processContents
attribute can have one of the following values:

strict (Default) A schema definition for the element type
must be available and the element must conform
to this definition.

lax The parser checks only those parts of the element
for which a schema definition is available.

skip No checking is done against a schema; the
element must simply be well-formed XML.

Example 156 shows the definition of a complex type, sequenceany, which
can contain a single element tag from the local schema. That is, the <any>
tag is constrained to match only the tags belonging to the local namespace.

Example 156:Definition of a Sequence with an Any Element
<schema targetNamespace="..."
xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<complexType name="SequenceAny">

<sequence>

<any namespace="##local"
processContents="skip"/>

</sequence>

</complexType>

</schema>

Wildcarding Types

C++ mapping The XML sequenceany type defined in Example 156 on page 342 maps to
the C++ sequenceany class shown in Example 157. The most important
functions in sequenceany are the getany () and setany () members, which
access or modify the any element in the sequence.

Example 157:C++ Mapping of a Sequence with an Any Element

/1 Ci
class SequenceAny : public IT Bus::SequenceComplexType
{

public:

SequenceAny () ;
SequenceAny (const SequenceAny & copy) ;
virtual ~SequenceAny () ;

IT Bus::AnyType & copy(const IT Bus::AnyType & rhs);
SequenceAny & operator=(const SequenceAny & rhs);

IT Bus::Any & getany() ;
const IT Bus::Any & getany() const;
void setany(const IT Bus::Any & val);

Example XML element Example 158 shows the definition of a sample foo element, which can be
inserted in place of an any element.

Example 158:Definition of fooType Type and foo Element

// C++

<?xml version="1.0" encoding="UTF-8"7?>

<xs:schema
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://schemas.iona.com/test"
xmlns:tns="http://schemas.iona.com/test"
elementFormDefault="qualified"
attributeFormDefault="unqualified">

343

CHAPTER 8 | Artix Data Types

Example 158:Definition of fooType Type and foo Element

<xs:complexType name="fooType">
<xs:simpleContent>
<xs:extension base="xs:string"/>
</xs:simpleContent>
<xs:attribute name="bar" type="xs:string"/>
</xs: complexType>
<xs:element name="foo" type="tns:fooType"/>
</xs:schema>

C++ example There are two alternative approaches to initializing an 1T _Bus::any value.

The first approach to initializing 1T Bus: :Any is to call the set_any type ()
function, as shown in the following example:

// Ct+

fooType foo element;

foo element.setvalue ("Hello World!");

foo element.setbar ("bar attribute value");

IT Bus::QName
elementgname("","foo","http://schemas.iona.com/test");

SequenceAny seq any;
seq_any.getany () .set any type(foo element, element name);

The second approach to initializing 1T _Bus::any is to call the
set_string data() function, as shown in the following example:

// C++
SequenceAny seq_any;
seq_any.getany () .set string data(
"<foo bar=\"bar attribute value\">Hello World!</foo>"
)i

344

Wildcarding Types

Any API Example 159 shows the public API from the IT Bus::any class.
Example 159:The IT_Bus::Any Class

// C++
namespace IT Bus
{

typedef IT Vector<String> NamespaceConstraints;

class IT AFC API Any : public AnyType
{
public :
Any () 7

Any (const char* process contents,
const NamespaceConstraints& namespace constraints,
const char* any namespace

)i

// Set the any element’s attributes.
void set process contents (const String& pc);
void set namespace constraints(
const NamespaceConstraints& ns
)i
void set any namespace (const Stringé& ns);

// Get the any element’s attributes.
Stringé& get process contents() const;
const NamespaceConstraintsé&

get namespace constraints() const;
Stringé& get any namespace () const;

// Set the any’s contents.
void set boolean (

const Booleané& value,

const QName& element name
)i
void set byte(

const Byte& value,

const QNameé& element name
)i
void set short(

const Shorté& value,

const QNameé& element name
)i
void set int(

345

CHAPTER 8 | Artix Data Types

Example 159:The IT_Bus::Any Class

const Inté& value,

const QName& element name
):
void set long(

const Longé& value,

const QNameé& element name
)i
void set string(

const String& value,

const QName& element name
)i
void set float(

const Floaté& value,

const QName& element name
):
void set double (

const Double& value,

const QName& element name
)i
void set ubyte (

const UByte& value,

const QName& element name
)
void set ushort (

const UShort& wvalue,

const QName& element name
):
void set uint (

const UInté& value,

const QNameé& element name
)i
void set_ulong(

const ULongé& value,

const QName& element name
)i
void set decimal (

const Decimal& value,

const QNameé& element name

):

void set any type (

const AnyType& value,

const QName& element name
)i

346

Accessing namespace constraints

Wildcarding Types

Example 159:The IT_Bus::Any Class

bi

// Get the type of the any’s contents.
// (returns QName::EMPTY ONAME if empty)
const QName& get type () const;

// Get the any’s contents.
OName get element name () const;

Boolean get boolean() const;
Byte get byte() const;
Short get short () const;
Int get _int () const;
Long get_long() const;
String get string() const;

Float get float () const;
Double get double() const;
UByte get ubyte () const;
UShort get ushort() const;

UInt get_uint () const;
ULong get ulong() const;
Decimal get decimal () const;

const AnyType* get any type() const;

// Set the any’s contents as an XML string
// (the element name parameter defaults to the
// element name in the XML string) .
void set_string data(
const Strings& value,
const QONameé&

);

// Get the any’s contents as an XML string.
String get string data() const;

// Validation functions.
virtual bool validate contents() const;
virtual bool validate namespace () const;

element name = QName::EMPTY ONAME

The following 1T Bus::any member functions are relevant to namespace
constraints:

// C++

347

CHAPTER 8 | Artix Data Types

Accessing process contents

348

const IT Bus::Stringé& get any namespace () const;

const IT Bus::NamespaceConstraintss
get namespace constraints() const;

Given an IT Bus::Any instance, sampleAny, you can access its namespace
constraints as follows:

// C++
sampleAny = ... ; // Initialize IT Bus::Any
cout << "any’s target namespace = "

<< sampleAny.get any namespace () << endl;

const IT Bus::NamespaceConstraintsé& constraints =
sampleAny.get namespace constraints();

cout << "any’s namespace constraints =" << endl;

for (size t k; k < constraints.size(); k++) {
cout << "\t" << constraints[k] << endl;

The following IT Bus::Any member function returns the processContents
attribute value:

const IT Bus::Stringé& get process contents() const;

This function returns one of the following strings: 1ax, skip, Or strict.

Occurrence Constraints

Occurrence Constraints

Overview Certain XML schema tags—for example, <element>, <sequence>, <choice>
and <any>—can be declared to occur multiple times using occurrence
constraints. The occurrence constraints are specified by assigning integer
values (or the special value unbounded) to the minoccurs and maxOccurs

attributes.
In this section This section contains the following subsections:
Element Occurrence Constraints page 350
Sequence Occurrence Constraints page 355
Choice Occurrence Constraints page 359
Any Occurrence Constraints page 363

349

CHAPTER 8 | Artix Data Types

Element Occurrence Constraints

Overview

Limitations

Element lists

350

You define occurrence constraints on a schema element by setting the
minOccurs and maxOccurs attributes for the element. Hence, the definition
of an element with occurrence constraints in an XML schema element has
the following form:

<element name="ElemName" type="ElemType" minOccurs="LowerBound"
maxOccurs="UpperBound" />

Note: When a sequence schema contains a single element definition and
this element defines occurrence constraints, it is treated as an array. See
“Arrays” on page 323.

In the current version of Artix, element occurrence constraints can be used
only within the following complex types:

® all complex types
® sequence complex types

Element occurrence constraints are not supported within the scope of the
following:

® choice complex types

Lists of elements appearing within a sequence complex type are represented
in C++ by the IT Bus::ElementListT template, which inherits from
1T Vector (see “IT_Vector Template Class” on page 412).

In addition to the standard member functions and operators defined by
IT Vector, the element list types support the following member functions:

// C++
size t get min occurs() const;
void set min occurs(size t min occurs)

size t get max occurs() const;
void set max occurs(size t max occurs)

void set size(size t new size);

Element list constructor

Occurrence Constraints

size t get size() const;

const QName & get item name() const;
void set item name (const QName& item name)

The following constructor can be used to create a new ElementListT
instance:

ElementListT (

const size t min occurs = 0,

const size_t max occurs = 1,

const size t list size = 0,

const QName& item name = QName::EMPTY ONAME
)i

It is recommended that you call only the form of constructor with defaulted
arguments (the element list size can be specified subsequently by calling
set_size()). For example, a new element list of integers could be created
as follows:

IT Bus::ElementListT<IT Bus::Int> int elist;

int elist.set size(100);

When the element list is subsequently passed as a parameter or return
value, the stub code takes responsibility for filling in the correct values of

min_occurs, max_occurs, and item name

351

CHAPTER 8 | Artix Data Types

WSDL example Example 160 shows the definition of a sequence type, sequenceType, which
contains a list of integer elements followed by a list of string elements.

Example 160:Sequence Type with Element Occurrence Constraints

<?xml version="1.0" encoding="UTF-8"7?>
<definitions ... >
<types>
<schema ... >
<complexType name="SequenceType'>
<sequence>
<element name="varInt" type="xsd:int"
minOccurs="1" maxOccurs="100"/>
<element name="varString" type="xsd:string"
minOccurs="0" maxOccurs="unbounded"/>
</sequence>
</complexType>

</definitions>

C++ mapping Example 161 shows an outline of the C++ sequenceType class generated
from Example 160 on page 352, which defines accessor and modifier
functions for the varint and varstring elements.

Example 161:Mapping of SequenceType to C++
// C++
class SequenceType : public IT Bus::SequenceComplexType
{
public:

virtual const IT Bus::QName &
get type() const;

SequenceType& operator= (const SequenceType& assign);
const IT Bus::ElementListT<IT Bus::Int> & getvarInt() const;
IT Bus::ElementListT<IT Bus::Int> & getvarInt();

void setvarInt(const IT Bus::ElementListT<IT Bus::Int> & val);

352

Occurrence Constraints

Example 161:Mapping of SequenceType to C++

const IT Bus::ElementListT<IT Bus::String> & getvarString()
const;

IT Bus::ElementListT<IT Bus::String> & getvarString();

void setvarString(const IT Bus::ElementListT<IT Bus::String> &
val) ;

private:

}i

C++ example The following code fragment shows how to allocate and initialize an
instance of sequenceType type containing two varint elements and two
varString elements:

// C++
SequenceType seq;

seq.getvarInt () .set size(2);
seqg.getvarInt () [0] = 10;
seqg.getvarInt () [1] = 20;
seq.getvarString () .set size(2);
) [0] = "Zero";
) [1] = "One";

seqg.getvarString (
seqg.getvarString (

Note how the set_size () function and [1 operator are invoked directly on
the member vectors, which are accessed by getvarint () and
getvarString () respectively. This is more efficient than creating a vector
and passing it to setvarInt () Ofr setvarString(), because it avoids
creating unnecessary temporary vectors.

353

CHAPTER 8 | Artix Data Types

References

354

Alternatively, you could assign the member vectors, seq.getvarint () and
seq.getvarString (), to references of ElementListT type and manipulate
the references, v1 and v2, instead. This is shown in the following code
example:

// C++
SequenceType seq;

// Make a shallow copy of the vectors
IT Bus::ElementListT<IT Bus::Int>& vl seq.getvarInt () ;
IT Bus::ElementListT<IT Bus::String>& v2 = seq.getvarString();

vl.push back(10);
vl.push back(20) ;
v2.push back("Zero") ;
v2.push back ("One") ;

In this example, the vectors are initialized using the push back () stack
operation (adds an element to the end of the vector).

For more details about vector types see:

® The “IT_Vector Template Class” on page 412.

® The section on C++ ANSI vectors in The C++ Programming
Language, third edition, by Bjarne Stroustrup.

Occurrence Constraints

Sequence Occurrence Constraints

Overview A sequence type can also be defined with occurrence constraints, in which
case it is defined with the following syntax:

<sequence
minOccurs="LowerBound"
maxOccurs="UpperBound">

</sequence>

Note: A sequence with occurrence constraints is currently supported only
by the SOAP binding.

WSDL example Example 162 shows the definition of a sequence type, cultureInfo, with
sequence occurrence constraints. The sequence overall can be repeated 0 to
2 times. The Name element within the sequence can also be repeated a
variable number of times, from O to 1 times.

Example 162:Sequence Occurrence Constraints

<?xml version="1.0" encoding="UTF-8"?>
<definitions ... >
<types>
<schema ... >
<complexType name="CultureInfo'">
<sequence minOccurs="0" maxoccurs="2">
<element minOccurs="0" maxOccurs="1" name="Name"
type="string"/>
<element minOccurs="1" maxOccurs="1" name="Lcid"

type="int"/>
</sequence>
<attribute name="varAttrib" type="string"/>
</complexType>
</definitions>

355

CHAPTER 8 | Artix Data Types

C++ mapping Example 163 shows an outline of the C++ cultureInfo class generated
from Example 162 on page 355, which defines accessor and modifier
functions for the Name and 1.cid elements.

Example 163:Mapping Culturelnfo to C++

1Y S
class CultureInfo : public IT Bus::SequenceComplexType
{
public:
static const IT Bus::QName& get static type();

CultureInfo() ;
CulturelInfo (const CultureInfo & copy);
virtual ~CultureInfo();

virtual const IT Bus::QName & get type() const;

size t get min occurs() const;
size t get max occurs() const;

void set size(size t new size);
size t get size() const;

IT Bus::ElementListT<IT Bus::String> &
getName (size t seq index = 0);

const IT Bus::ElementListT<IT Bus::String> &
getName (size t seq index = 0) const;

void
setName (
const IT Vector<IT Bus::String> & val,
size t seq index = 0
)7
IT Bus::Int getLcid(size t seq index = 0);
const IT Bus::Int getLcid(size t seq index = 0) const;
void setLcid(const IT Bus::Int val, size t seq index = 0);
IT Bus::Stringé& getvarAttrib () const;

const IT Bus::Stringé& getvarAttrib();
void setvarAttrib(const IT Bus::String& val);

356

Member functions

Backward compatibility

Occurrence Constraints

Example 163:Mapping Cultureinfo to C++

bi

The occurrence constraints on the sequence element can be accessed by
calling the get min occurs() and the get max occurs() member
functions.

The number of occurrences of the sequence element can be modified and
accessed by calling the set_size () function and the get_size () function,
respectively. The default size is 0; hence, you always need to call
set_size () to pre-allocate the sequence element occurrences.

The functions for getting and setting member elements—for example,
getName (), setName (), getLcid (), and getLcid ()—take an extra final
parameter, seq_index, that specifies which occurrence is being accessed or
modified (the parameter defaults to 0).

The functions for accessing and modifying an attribute—for example,
getvarAttrib() and setvarattrib ()—do not take a seq_index parameter.
Attributes are always single valued.

The mapping to C++ of a sequence type with multiple occurrences is
designed to be backward compatible with the default case (minoccurs="1",

maxOccurs="1").

For example, it doesn’t matter whether the cultureInfo type is defined with
minOccurs="1", maxOccurs="1" or some other value of occurrence
constraints; in both cases, the cultureinfo XML type maps to a
CultureInfo C++ class. In the signatures of the element
accessors/modifiers, the sequence index defaults to 0, which is compatible
with the default (single occurrence) case.

Note: With non-default occurrence constraints, however, it is necessary
to add a line of code to allocate occurrences using set size (), because in
this case the default size is o.

357

CHAPTER 8 | Artix Data Types

C++ example The following code fragment shows how to allocate and initialize a
CultureInfo type containing two sequence occurrences, each of which
contains one Name element and one Lcid element:

// Ct+
CultureInfo seqg;

// Pre-allocate 2 <sequence> occurrences.
seq.set_size(2);

// First <sequence> occurrence
seq.getName (0) .set _size(1);

seq.getName (0) [0] = "First <sequence> occurrence";
seq.setLcid (123, 0);

// Second <sequence> occurrence
seq.getName (1) .set size(1);

seqg.getName (1) [0] = "Second <sequence> occurrence";
seq.setLcid (234, 1);

// Set attribute
seq.setvarAttrib ("Valid for all <sequence> occurrences.");

Notice that the attribute, varattrib, is valid for all occurrences of the
sequence element. Hence, there is no need for a sequence index in the call
10 setvarAttrib()

358

Occurrence Constraints

Choice Occurrence Constraints

Overview

WSDL example

A choice type can also be defined with occurrence constraints, in which
case it is defined with the following syntax:

<choice
minOccurs="LowerBound"
maxOccurs="UpperBound">

</choice>

Note: A choice with occurrence constraints is currently supported only by
the SOAP binding.

Example 164 shows the definition of a choice type, clubEvent, with choice
occurrence constraints. The choice type overall can be repeated O to
unbounded times.

Example 164:Choice Occurrence Constraints

<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://schemas.iona.com/choice example">

<complexType name="ClubEvent'">
<choice minOccurs="0" maxOccurs="unbounded">

<element name="MemberName" t ="xsd:string" />
<element name="GuestName" type="xsd:string"/>
</choice>
</complexType>

</schema>

359

CHAPTER 8 | Artix Data Types

C++ mapping Example 165 shows an outline of the C++ clubEvent class generated from
Example 164 on page 359, which defines accessor and modifier functions
for the MemberName and GuestName elements.

Example 165:Mapping ClubEvent to C+ +

1Y S
class ClubEvent : public IT Bus::ChoiceComplexType
{
public:
static const IT Bus::QName& get static type();

ClubEvent () ;
ClubEvent (const ClubEvent & copy) ;

ClubEvent (size t size);

virtual ~ClubEvent () ;

size t get min occurs() const { ... }
size t get max occurs() const { ... }

size t get size() const { ... }
void set size(size t new size) { ... }

IT ClubEventChoice::IT ClubEventChoiceDiscriminator
get discriminator(size t index) const { ... }

IT Bus::Ulnt
get discriminator as uint(size t index) const { ... }

IT ClubEventChoice::IT ClubEventChoiceDiscriminator
get discriminator() const { ... }

IT Bus::Ulnt
get discriminator as uint() const { ... }

IT Bus::String &
getMemberName (size t seq index = 0);

const IT Bus::String &
getMemberName (size t seq index = 0) const;

360

Member functions

Occurrence Constraints

Example 165:Mapping ClubEvent to C+ +

void

setMemberName (
const IT_Bus::String & val,
size t seq index = 0

)i

IT Bus::String &
getGuestName (size t seq index

I
o
~.

const IT Bus::String &
getGuestName (size t seq _index = 0) const;

void

setGuestName (
const IT_Bus::String & val,
size t seq index = 0

)i

private:

bi

The occurrence constraints on the choice element can be accessed by
calling the get min occurs() and the get max occurs() member
functions.

The number of occurrences of the choice element can be modified and
accessed by calling the set_size () function and the get_size () function,
respectively. The default size is 0; hence, you always need to call
set_size () to pre-allocate the choice element occurrences.

To access the discriminator value—using get discriminator() or
get discriminator as uint ()—Yyou must supply an index parameter to
select the relevant occurrence of the choice data.

361

CHAPTER 8 | Artix Data Types

Backward compatibility

C++ example

362

The functions for getting and setting member elements—for example,
getMemberName(),setMemberName(),getGuestName(),and

setGuestName () —take an extra final parameter, seq_index, that specifies
which occurrence is being accessed or modified (the parameter defaults to
0).

Note: For any attributes are defined on the choice type, the attribute
accessors and modifiers do not take a seq_index parameter. Attributes are
always single valued.

The mapping to C++ of a choice type with multiple occurrences is designed
to be backward compatible with the default case (minoccurs="1",

maxOccurs="1").

For example, it doesn’'t matter whether the ciubEvent type is defined with
minOccurs="1", maxOccurs="1" or some other value of occurrence
constraints; in all cases, the clubEvent XML type maps to a ClubEvent
C++ class. In the signatures of the element accessors/modifiers, the
sequence index defaults to 0, which is compatible with the default (single
occurrence) case.

Note: With non-default occurrence constraints, however, it is necessary
to add a line of code to allocate occurrences using set_size (), because in
this case the default size is 0.

The following code fragment shows how to allocate and initialize a
ClubEvent type containing two choice occurrences:

// C++
ClubEvent list;

// Pre-allocate 2 <choice> occurrences.
list.set size(2);

// First <choice> occurrence
list.setMemberName ("Fred Flintstone", 0);

// Second <choice> occurrence
list.setGuestName ("Wilma Flintstone", 1);

Occurrence Constraints

Any Occurrence Constraints

Overview An xsd:any element can also be defined with occurrence constraints, in
which case it is defined with the following syntax:

<xsd:any
minOccurs="LowerBound"
maxOccurs="UpperBound"
namespace="NamespaceList"
processContents=" (lax | skip | strict)" />

WSDL example Example 166 shows the definition of a complex type, sequenceanyList,
which is a sequence containing multiple occurrences of an <xsd:any> tag.
The <any> tag is constrained to match only the tags belonging to the local
namespace.

Example 166:Definition of a Multiply-Occurring Any Element

<schema targetNamespace="..."
xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<complexType name='"SequenceAnyList'">
<sequence>
<any namespace="##local"
minOccurs="1" maxOccurs="unbounded"
processContents="skip"/>
</sequence>
</complexType>

</schema>

363

CHAPTER 8 | Artix Data Types

C++ mapping

The IT_Bus::AnyList type

364

The XML sequenceanyList type defined in Example 166 on page 363 maps
to the C++ sequenceanyList class shown in Example 167. Because the
SequenceAnyList type allows multiple occurrences, the getany () member
function returns IT Bus::AnyList instead of IT Bus::any, and the
setany () function takes an IT vector<IT Bus::Any>type argument instead
of an IT Bus::Any argument.

Example 167:C++ Mapping of a Multiply-Occurring Any Element

1Y Cir
class SequenceAnyList : public IT Bus::SequenceComplexType
{

public:

SequenceAnyList () ;
SequenceAnyList (const SequenceAnyList & copy) ;
virtual ~SequenceAnyList();

IT Bus::AnyList & getany() ;
const IT Bus::AnyList & getany() const;
void setany(const IT Vector<IT Bus::Any> & val);

The IT Bus::AnyList class has IT Vector<IT Bus::Any> as one of its base
classes. Hence, the 1T Bus::AnyList class is effectively a vector of

IT Bus::Any objects. As with any IT vector type, IT Bus::AnyList
supports a size () function, which gives the number of elements in the list,
and a subscripting operator[], which accesses individual elements in the
list.

For full details of the 1T vector<T> template, see “IT_Vector Template
Class” on page 412.

C++ example

IT_Bus::AnyList class

Occurrence Constraints

The following example shows how initialize the sequenceanyList type with
a list of three foo elements (for the schema definition of <foo>, see
Example 158 on page 343).

// C++
SequenceAnylList seq_any;
IT Bus::AnyList& any list = seq any.getany();
any list.set size(3);
any 1list[0].set string data(
"<foo bar=\"first bar\">Hello World!</foo>"
)7
any list[1l].set string data(
"<foo bar=\"second bar\">Hello World Again!</foo>"
)7
any list[2].set string data(
"<foo bar=\"third bar\">Hello World Yet Again!</foo>"
)7

Example 168 shows the public API for the 1T Bus::AnyList class.
Typically, you would rarely need to use any of the constructors in this class,
because an anyList object is usually obtained by calling the getany ()
function on an enclosing type.

Example 168:The IT_Bus::AnyList Class

// Ct+
class IT AFC APT AnyList :
public TypelistT<Any>
{
public:
AnyList (
const size t min occurs,
const size t max occurs,
const size t list size = 0
)i

AnyList (
const Any & elem,
const size t min occurs,
const size t max occurs,
const size t list size = 0

365

CHAPTER 8 | Artix Data Types

Example 168:The IT_Bus::AnyList Class

AnyList (
const size t min occurs,
const size t max occurs,

const char* process contents,
const NamespaceConstraints& namespace constraints,
const char* any_ tns

)i

AnyList (

const size t min occurs,
const size t max occurs,
const size t list size,

const char* process contents,
const NamespaceConstraints& namespace constraints,
const char* any_ tns

)i

AnyList (

const Any & elem,
const size t min occurs,
const size t max occurs,

const char* process contents,
const NamespaceConstraints& namespace constraints,
const char* any_ tns

)i

AnyList (

const Any & elem,

const size t min occurs,
const size t max occurs,
const size t list size,

const char* process_contents,
const NamespaceConstraintsé& namespace constraints,
const char* any tns

)i

virtual ~AnyList() {}

const String& get process contents() const;

const NamespaceConstraints& get namespace constraints ()
const;

const String& get any namespace () const;

void set process contents(const String &);
void set namespace constraints (const NamespaceConstraintsé);

366

Occurrence Constraints

Example 168:The IT_Bus::AnyList Class

void set any namespace (const String &);

virtual Kind get kind() const;
virtual const QName & get type() const;

virtual AnyTypeé& copy (const AnyType & rhs);

virtual void set size(size t new size);

367

CHAPTER 8 | Artix Data Types

Nillable Types

Overview This section describes how to define and use nillable types; that is, XML
elements defined with xsd:nillable="true".

In this section This section contains the following subsections:
Introduction to Nillable Types page 369
Nillable Atomic Types page 371
Nillable User-Defined Types page 375
Nested Atomic Type Nillable Elements page 378
Nested User-Defined Nillable Elements page 382
Nillable Elements of an Array page 387

368

Nillable Types

Introduction to Nillable Types

Overview

Nillable syntax

On-the-wire format

C++ API for nillable types

An element in an XML schema may be declared as nillable by setting the
nillable attribute equal to true. This is useful in cases where you would
like to have the option of transmitting no value for a type (for example, if you
would like to define an operation with optional parameters).

To declare an element as nillable, use the following syntax:
<element name="ElementName" type="ElementType" nillable="true"/>

The nillable="true" setting indicates that this as a nillable element. If the
nillable attribute is missing, the default is value is false.

On the wire, a nil value for an ElementName element is represented by the
following XML fragment:

<ElementName xsi:nil="true"></ElementName>

Where the xsi: prefix represents the XML schema instance namespace,
http://www.w3.0rg/2001/XMLSchema-instance.

Example 169 shows the public member functions of the
IT Bus::NillablevalueBase Class, which provides the C++ API for nillable
types.

Example 169:C++ API for Nillable Types

// C++
namespace IT Bus
{
template <class T>
class NillableValueBase : public Nillable
{
public:
virtual ~NillableValueBase () ;
virtual AnyType& operator=(const AnyTypeé& other);

virtual Boolean is nil() const;
virtual void set nil();

virtual const T&

369

CHAPTER 8 | Artix Data Types

Example 169:C++ AP for Nillable Types

get () const IT THROW DECL ((NoDataException));

virtual T&
get () IT_ THROW DECL ((NoDataException));

// Set the data value, make is nil() false.
virtual void set (const T& data);

// data != 0 ==> set the data value, make is nil() false.
// data == 0 ==> make is nil() true.

virtual void set (const T *data);

// Reset to nil, makes is nil() true.
virtual void reset();

protected:

bi

370

Nillable Types

Nillable Atomic Types

Overview

Table of nillable atomic types

This subsection describes how to define and use XML schema nillable
atomic types. In C++, every atomic type, AtomicTypeName, has a nillable
counterpart, AtomicTypeNameNillable. For example, IT Bus::Short has
IT Bus::ShortNillable as its nillable counterpart.

You can modify or access the value of an atomic nillable type, T, using the
T.set () and T.get () member functions, respectively. For full details of the
API for nillable types see “C++ API for nillable types” on page 369.

Table 13 shows how the XML schema atomic types map to C++ when the

xsd:nillable flag is set to true.

Table 13: Nillable Atomic Types

Schema Type

Nillable C+ + Type

xsd:anyType

Not supported as nillable

xsd:boolean

IT Bus::BooleanNillable

xsd:byte IT Bus::ByteNillable
xsd:unsignedByte IT Bus::UByteNillable
xsd:short IT Bus::ShortNillable
xsd:unsignedShort IT Bus::UShortNillable
xsd:int IT Bus::IntNillable
xsd:unsignedInt IT Bus::UIntNillable
xsd:long IT Bus::LongNillable
xsd:unsignedLong IT Bus::ULongNillable
xsd:float IT Bus::FloatNillable
xsd:double IT Bus::DoubleNillable
xsd:string IT Bus::StringNillable
xsd:QName IT Bus::QNameNillable

371

CHAPTER 8 | Artix Data Types

WSDL example

372

Table 13: Nillable Atomic Types

Schema Type

Nillable C+ + Type

xsd:dateTime IT Bus::DateTimeNillable

xsd:date IT Bus::DateNillable

xsd:time IT Bus::TimeNillable

xsd:gDay IT Bus::GDayNillable

xsd:gMonth IT Bus::GMonthNillable
xsd:gMonthDay IT Bus::GMonthDayNillable
xsd:gYear IT Bus::GYearNillable
xsd:gYearMonth IT Bus::GYearMonthNillable
xsd:decimal IT Bus::DecimalNillable
xsd:integer IT Bus::IntegerNillable
xsd:positiveInteger IT Bus::PositivelIntegerNillable
xsd:negativeInteger IT Bus::NegativelntegerNillable
xsd:nonPositiveInteger IT Bus::NonPositivelIntegerNillable
xsd:nonNegativeInteger IT Bus::NonNegativelntegerNillable
xsd:base64Binary IT Bus::BinaryBufferNillable
xsd:hexBinary IT Bus::BinaryBufferNillable

Example 170 defines four elements, test_string x, test short y,
test_int return, and test_float z, of nillable atomic type. This example
shows how to use the nillable atomic types as the parameters of an
operation, send_receive nil part

Example 170:WSDL Example Showing Some Nillable Atomic Types

<?xml version="1.0" encoding="UTF-8"7?>

<definitions name="BaseService"
targetNamespace="http://soapinterop.org/"

Nillable Types

Example 170:WSDL Example Showing Some Nillable Atomic Types

xmlns:tns="http://soapinterop.org/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsdl="http://soapinterop.org/xsd">
<types>
<schema targetNamespace="http://soapinterop.org/xsd"
xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

<element name="test string x" nillable="true"
type="xsd:string"/>

<element name="test short y" nillable="true"
type="xsd:short" />

<element name="test int return" nillable="true"
type="xsd:int"/>

<element name="test float z" nillable="true"
type="xsd: float" />

</schema>
</types>

<message name="NilPartRequest'">
<part name="x" element="xsdl:test string x"/>
<part name="y" element="xsdl:test short y"/>
</message>
<message name="NilPartResponse">
<part name="return" element="xsdl:test int return"/>
<part name="y" element="xsdl:test short y"/>
<part name="z" element="xsdl:test float z"/>
</message>

<portType name="BasePortType">
<operation name="send receive nil part">
<input name="doclit nil part request"
message="tns:NilPartRequest"/>
<output name="doclit nil part response"
message="tns:NilPartResponse"/>
</operation>
</portType>

373

CHAPTER 8 | Artix Data Types

C++ example

374

Example 171 shows how to use nillable atomic types,
IT Bus::StringNillable, IT Bus::ShortNillable, IT Bus::IntNillable,
and IT Bus::FloatNillable, in a simple C++ example.

Example 171:Using Nillable Atomic Types as Operation Parameters

// C++

IT Bus::StringNillable x("String for sending");

IT Bus::ShortNillable y(321);
IT Bus::IntNillable var return;
IT Bus::FloatNillable z;

try {

// bc is a client proxy for the BasePortType port type.

bc.send receive nil part(x, y,
}
catch (IT Bus::FaultException &ex)
// ... deal with the exception
}

var_return, z);

{

(not shown)

if (! y.is nil()) { cout << "y = " << y.get() << endl; }
if (! z.is nil()) { cout << "z =" << z.get() << endl; }
if (! var return.is nil()) {

cout << "var return = " << var return.get() << endl;

}

The value of a nillable atomic type, T, can be initialized using either a
constructor, T (), or the T.set () member function.

Before attempting to read the value of a nillable atomic type using T.get (),
you should check that the value is non-nil using the T.is nil() member

function.

Nillable Types

Nillable User-Defined Types

Overview

WSDL example

This subsection describes how to define and use nillable user-defined types.
In C++, every user-defined type, UserTypeName, has a nillable counterpart,
UserTypeNameNillable.

You can modify or access the value of a user-defined nillable type, T, using
the T.set () and T.get () member functions, respectively. For full details of
the API for nillable types see “C++ API for nillable types” on page 369.

Example 172 shows the definition of an XML schema a11 complex type,
named soapstruct. This is a complex type with ordinary (that is,
non-nillable) member elements.

Example 172:WSDL Example of an All Complex Type

<?xml version="1.0" encoding="UTF-8"7?>
<definitions name="BaseService"

targetNamespace="http://soapinterop.org/"

xmlns:tns="http://soapinterop.org/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsdl="http://soapinterop.org/xsd">
<types>
<schema targetNamespace="http://soapinterop.org/xsd"
xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
<complexType name="SOAPStruct'>
<all>
<element name="varFloat" type="xsd:float"/>
<element name="varInt" type="xsd:int"/>
<element name="varString" type="xsd:string"/>
</all>
</complexType>
</schema>
</types>

375

CHAPTER 8 | Artix Data Types

C++ mapping Example 173 shows how the soapstruct type maps to C++. In addition to
the regular mapping, which produces the C++ soapstruct and
soaPstructPtr classes, the WSDL-to-C++ compiler also generates a
nillable type, soapstructNillable, and an associated smart pointer type,
SOAPStructNillablePtr.

Example 173:C++ Mapping of the SOAPStruct All Complex Type

// C++

namespace INTEROP

{
class SOAPStruct : public IT Bus::AllComplexType { ... }
typedef IT AutoPtr<SOAPStruct> SOAPStructPtr;

typedef IT Bus::NillableValue<SOAPStruct>
SOAPStructNillable;

typedef IT Bus::NillablePtr<SOAPStruct>
SOAPStructNillablePtr;

The API for the soaPstructNillable type is defined in “C++ API for
nillable types” on page 369.

C++ example The following C++ example shows how to initialize an instance of
SOAPStructNillable type, s nillable. The nillable type is created in two
steps: first of all, a soapstruct instance, s, is initialized; then the
soaPstruct instance is used to initialize a soaPstructNillable instance.

// C++

// Initialize a SOAPStruct instance.
INTEROP: : SOAPStruct s;

s.setvarFloat (3.14);

s.setvarInt (1234);

s.setvarString ("Hello world!");

// Initialize a SOAPStructNillable instance.

INTEROP: : SOAPStructNillable s nillable;
s nillable.set (s);

376

Nillable Types

The next C++ example shows how to access the contents of the
SOAPStructNillable type. Note that before attempting to access the value
of the soapstructNillable using get (), you should check that the value is
not nil using is nil ().

// C++
if (! s _nillable.is nil()) {
cout << "varFloat = " << s nillable.get () .getvarFloat ()
<< endl;
cout << "varInt = " << s nillable.get() .getvarInt ()
<< endl;
cout << "varString = " << s nillable.get () .getvarString()
<< endl;

377

CHAPTER 8 | Artix Data Types

Nested Atomic Type Nillable Elements

Overview

WSDL example

378

This subsection describes how to define and use complex types (except
arrays) that have some nillable member elements. That is, the type as a
whole is not nillable, although some of its elements are.

The WSDL-to-C++ compiler treats a type with nillable elements as a
special case. If a member element, ElementName, is defined with
xsd:nillable equal to true, the element’'s C++ modifiers and accessors
are then primarily pointer based.

For example, given that a member element EiementName is of AtomicType
type, the accessors and modifier would have the following signatures:
const AtomicType * getElementName () const;

AtomicType * getElementName () ;
void setElementName (const AtomicType * val);

And an additional convenience function that allows you to set an element
value using pass-by-reference:

void setElementName (const AtomicType & val);

Note: Arrays with nillable elements are treated differently—see “Nillable
Elements of an Array” on page 387.

Example 174 defines a sequence complex type, Nil soapstruct, which has
some nillable elements, varint, varFloat, and varString.

Example 174:WSDL Example of a Sequence Type with Nillable Elements

<?xml version="1.0" encoding="UTF-8"7?>
<definitions name="BaseService"
targetNamespace="http://soapinterop.org/"

xmlns:tns="http://soapinterop.org/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsdl="http://soapinterop.org/xsd">
<types>
<schema targetNamespace="http://soapinterop.org/xsd"
xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

C++ mapping

Nillable Types

Example 174:WSDL Example of a Sequence Type with Nillable Elements

<complexType name="Nil SOAPStruct">
<sequence>
<element name="varInt" nillable="true"
type="xsd:int"/>
<element name="varFloat" nillable="true"
type="xsd: float"/>
<element name="varString" nillable="true"
type="xsd:string" />
</sequence>
</complexType>
</schema>
</types>

Example 175 shows how the Ni1l soapstruct Sequence complex type is
mapped to C++. Note how the accessors for the nillable member elements,
getElementName (), return a pointer instead of a value; and how the
modifiers for the nillable member elements, setElementName (), take either
a pointer argument or a reference argument. For example, the getvarInt ()
function returns a pointer to an IT Bus::Int rather an IT Bus::Int value.

Example 175:C++ Mapping of the Nil_SOAPStruct Sequence Type

// C++
namespace INTEROP {
class Nil SOAPStruct : public IT Bus::SequenceComplexType
{
public:
Nil SOAPStruct () ;
Nil SOAPStruct (const Nil SOAPStructé& copy);
virtual ~Nil SOAPStruct () ;

const IT Bus::Int * getvarInt() const;
IT Bus::Int * getvarInt();

void setvarInt(const IT Bus::Int * val);
void setvarlInt(const IT Bus::Int & val);

const IT Bus::Float * getvarFloat() const;
IT Bus::Float * getvarFloat() ;

void setvarFloat(const IT Bus::Float * val);
void setvarFloat(const IT Bus::Float & val);

379

CHAPTER 8 | Artix Data Types

Example 175:C++ Mapping of the Nil_SOAPStruct Sequence Type

const IT Bus::String * getvarString() const;

IT Bus::String * getvarString() ;

void setvarString(const IT Bus::String * val);

void setvarString(const IT Bus::String & val);

virtual const IT Bus::QName & get type() const;
i

typedef IT AutoPtr<Nil SOAPStruct> Nil SOAPStructPtr;

typedef IT Bus::NillableValue<Nil SOAPStruct,
&Nil SOAPStructQName> Nil SOAPStructNillable;

typedef IT Bus::NillablePtr<Nil SOAPStruct,
&Nil SOAPStructQName> Nil SOAPStructNillablePtr;

C++ example The following C++ example shows how to create and initialize a
Nil soapstruct instance. Notice, for example, how the setvarint (const
IT Bus::Inte&) convenience function allows you to pass the integer
argument as a reference, i, instead of a pointer.

// C++
Nil SOAPStruct nil_s;

IT Bus::Float f = 3.14;
IT Bus::Int i = 1234;
IT Bus::String s = "A non-nil string.";

nil s.setvarInt(i);
nil s.setvarFloat (f);
nil s.setvarString(s);

380

Nillable Types

The next C++ example shows how to read the nillable elements of the
Nil soapstruct instance. Note how the elements are checked for nilness by
comparing the result of calling getElementName () with 0.

// C++
if (nil_s.getvarInt() != 0) {
cout << "varInt = " << *nil s.getvarInt() << endl;
}
if (nil s.getvarFloat() != 0) {
cout << "varFloat = " << *nil s.getvarFloat() << endl;
}
if (nil s.getvarString() != 0) {
cout << "varString = " << *nil s.getvarString() << endl;

}

381

CHAPTER 8 | Artix Data Types

Nested User-Defined Nillable Elements

Overview This subsection describes how to define and use complex types that have
nillable member elements of user-defined type.

The WSDL-to-C+ + compiler treats user-defined nillable elements as a
special case. As with nillable elements of atomic type, if a member element
of user-defined type, ElementName, is defined with xsd:nillable equal to
true, the element’s C++ modifiers and accessors are then primarily pointer
based.

For example, given that a member element EiementName is of UserType
type, the accessors and modifier would have the following signatures:

const UserType * getElementName() const;

UserType * getElementName () ;
void setElementName (const UserType * val);
void setElementName (const UserType & val);

Note: Arrays with nillable elements are treated differently—see “Nillable
Elements of an Array” on page 387.

WSDL example Example 176 defines a sequence complex type, Nil NestedSOAPStruct,
which includes a nillable element of soapstruct type, varsoar.

Example 176:WSDL Example of a Nillable All Type inside a Sequence
Type

<?xml version="1.0" encoding="UTF-8"?>

<definitions name="BaseService"
targetNamespace="http://soapinterop.org/"
xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:tns="http://soapinterop.org/"

xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"

xmlns:xsdl="http://soapinterop.org/xsd">

<types>

<schema targetNamespace="http://soapinterop.org/xsd"
xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
<complexType name="SOAPStruct">
<all>

382

Nillable Types

Example 176:WSDL Example of a Nillable All Type inside a Sequence
Type (Continued)

<element name="varFloat" type="xsd:float"/>
<element name="varInt" type="xsd:int"/>
<element name="varString" type="xsd:string"/>
</all>
</complexType>

<complexType name="Nil NestedSOAPStruct">
<sequence>
<element name="varInt" nillable="true"
type="xsd:int"/>
<element name="varSOAP" nillable="true"
type="xsdl: SOAPStruct"/>
</sequence>
</complexType>
</schema>
</types>

C++ mapping Example 177 shows how the Nil NestedsoapStruct sequence complex
type is mapped to C++. Note how the getvarsoapr() functions return a
pointer to a soapstruct rather than a soapstruct value.

Example 177:C++ Mapping of the Nil_NestedSOAPStruct Type

// C++
class Nil NestedSOAPStruct : public IT Bus::SequenceComplexType
{
public:
Nil NestedSOAPStruct();
Nil NestedSOAPStruct (const Nil NestedSOAPStructé& copy) ;
virtual ~Nil NestedSOAPStruct () ;

const IT Bus::Int * getvarInt() const;
IT Bus::Int * getvarInt() ;

void setvarInt(const IT Bus::Int * val);
void setvarInt(const IT Bus::Int & val);

const SOAPStruct * getvarSOAP() const;
SOAPStruct * getvarSOAP() ;

void setvarSOAP (const SOAPStruct * val);
void setvarSOAP (const SOAPStruct & val);

383

CHAPTER 8 | Artix Data Types

Example 177:C++ Mapping of the Nil_NestedSOAPStruct Type

virtual const IT Bus::QName & get type() const;

bi

NillablePtr types To help you manage the memory associated with nillable elements of
user-defined type, UserType, the WSDL-to-C+ + utility generates a nillable
smart pointer type, UserTypeNillablePtr. The NillablePtr template types
are similar to the std::auto ptr<> template types from the Standard
Template Library—see “Smart Pointers” on page 60.

For example, the following extract from the generated
WSDLFileName wsdlTypes.h header file defines a soapstructNillablebtr
type, which is used to represent soapstruct nillable pointers:

// C++
typedef IT Bus::NillablePtr<SOAPStruct, &SOAPStructQName>
SOAPStructNillablePtr;

Example 178 shows the API for the nillablePtr template class. A
NillablePtr instance can be initialized using either a Nillableptr ()
constructor, a set () member function, or an operator=() assignment
operator. The is nil () member function tests the pointer for nilness.

Example 178:The NillablePtr Template Class

// C++
namespace IT Bus
{
/**
* Template implementation of Nillable as an auto ptr.
* T is the C++ type of data, TYPE is the data type gname.
=
template <class T, const QName* TYPE>
class NillablePtr : public Nillable, public IT AutoPtr<T>
{
public:
NillablePtr () ;
NillablePtr (const NillablePtré& other) ;
NillablePtr (T* data) ;
virtual ~NillablePtr () ;

384

Nillable Types

Example 178:The NillablePtr Template Class (Continued)
void set(const T* data);
virtual Boolean is nil() const;
virtual const QName& get type() const;

}i

C++ example The following C++ example shows how to create and initialize a
Nil NestedSoapstruct instance. Notice how the argument to setvarsoap ()
is passed as a pointer, snillable struct.

// C++

// Construct a smart nillable pointer.

// The SOAPStruct memory is owned by the smart nillable pointer.
SOAPStruct nillable struct;

nillable struct.setvarFloat (3.14);

nillable struct.setvarInt (4321);

nillable struct.setvarString("Nillable struct element.");

// Construct a nested struct.

Nil NestedSOAPStruct outer struct;
IT Bus::Int k = 4321

outer struct.setvarInt (&k);

// MEMORY MANAGEMENT: The argument to setvarSOAP is deep copied.
outer struct.setvarSOAP (&nillable struct);

385

CHAPTER 8 | Artix Data Types

The next C++ example shows how to read the nillable elements of the
Nil NestedsoapStruct instance. Note how the varsoap element is checked
for nilness by calling is nil ().

// Ct+
IT Bus::Int * int p = outer struct.getvarInt();

// MEMORY MANAGEMENT: outer struct owns the return value.
SOAPStruct * nillable struct p = outer struct.getvarSOAP();

if (int p != 0) {
cout << "varInt = " << *int p << endl;

if (!nillable struct p.is nil()) {
cout << "varSOAP = " << *nillable struct p << endl;

386

Nillable Types

Nillable Elements of an Array

Overview This subsection describes how to define and use array complex types with
nillable array elements. To define an array with nillable elements, add a
nillable="true" setting to the array element declaration.

An array with nillable elements has the following general syntax:

<complexType name="ArrayName'">
<sequence>
<element name="ElemName" type="ElemType" nillable="true"
minOccurs="LowerBound" maxOccurs="UpperBound"/>
</sequence>
</complexType>

The E1emType specifies the type of the array elements and the number of
elements in the array can be anywhere in the range LowerBound to
UpperBound.

WSDL example Example 179 shows defines an array complex type, Nil soaPArray (the
name indicates that the type is used in a SOAP example, not that it is
defined using SOAP array syntax) which has nillable array elements, item.

Example 179:WSDL Example of an Array with Nillable Elements

<?xml version="1.0" encoding="UTF-8"7?>
<definitions name="BaseService"
targetNamespace="http://soapinterop.org/"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/socap/"
xmlns:tns="http://soapinterop.org/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsdl="http://soapinterop.org/xsd">
<types>
<schema targetNamespace="http://soapinterop.org/xsd"
xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

387

CHAPTER 8 | Artix Data Types

Example 179:WSDL Example of an Array with Nillable Elements

<complexType name="Nil SOAPArray">
<sequence>
<element name="item" nillable="true"
type="xsd:short" minOccurs="10"
maxOccurs="10"/>
</sequence>
</complexType>
</schema>
</types>

C++ mapping Example 180 shows how the Nil soaparray array complex type is mapped
to C++. Note that the array elements are of IT Bus::ShortNillable type.

Example 180:C++ Mapping of the Nil_SOAPArray Array Type

// Ct++
namespace INTEROP {
class Nil SOAPArray
: public IT Bus::ArrayT<IT Bus::ShortNillable,
&Nil SOAPArray item gname, 10, 10>
{
public:
Nil SOAPArray();
Nil SOAPArray (const Nil SOAPArrayé& copy) ;
Nil SOAPArray(size t dimensions[]);
Nil SOAPArray(size t dimensionO);
virtual ~Nil SOAPArray();

const IT Bus::ElementListT<IT Bus::ShortNillable> &
getitem() const;

IT Bus::ElementListT<IT Bus::ShortNillable> &
getitem() ;

void
setitem(const IT Vector<IT Bus::ShortNillable> & val);

virtual const IT_Bus::QName &
get type() const;

388

Nillable Types

Example 180:C+ + Mapping of the Nil_SOAPArray Array Type (Continued)

typedef IT AutoPtr<Nil SOAPArray> Nil SOAPArrayPtr;

typedef IT Bus::NillableValue<Nil SOAPArray,
&Nil SOAPArrayQName> Nil SOAPArrayNillable;

typedef IT Bus::NillablePtr<Nil SOAPArray,
&Nil SOAPArrayQName> Nil SOAPArrayNillablePtr;
i

C++ example The following C++ example shows how to create and initialize a
Nil SOAPArray instance. Because each array element is of
IT Bus::ShortNillable type, the array elements must be initialized using
the set () member function. Any elements not explicitly initialized are nil by
default.

// C++

Nil SOAPArray nil s (10);

nil s[0].set (10);

nil s[1].set (20);

nil s[2].set(30);

nil s[3].set (40);

nil s[4].set (50);

// The remaining five element values are left as nil.

The next C++ example shows how to access the nillable array elements.
You should check each of the array elements for nilness using the is nil()
member function before attempting to read an array element value.

// C++
for (size t 1=0; i<10; i++) {
if (! nil s[i].is nil()) {

cout << "Nil SOAPArray[" << i << "] ="
<< nil s[i].get() << endl;

389

CHAPTER 8 | Artix Data Types

Substitution Groups

Overview

Defining a substitution group

390

The XML syntax for defining a substitution group enables you to define a
relationship between XML elements, which is analogous to the inheritance
relationship between XML data types.

For example, Figure 25 shows an inheritance tree of data types next to a
parallel inheritance tree of elements. The type inheritance tree consists of a
base type, BuildingType, and two derived (by extension) types, HouseType
and ApartmentBlockType. The element inheritance tree consists of a head
element, building, and two substitute elements, house and

apartmentBlock.
BuildingType <building>
A A
i i
extends i | substitutes
i S :
i i
[[
1 i
! !
HouseType ApartmentBlockType <house> <apartmentBlock>

Figure 25: Relationship Between Elements in a Substitution Group

Note: Substitution groups are currently supported only by the SOAP
binding.

You can define an XML substitution group as follows:
1.

Define a head element (for example, xsd1:building) directly within a
<schema> scope. The head element plays a role analogous to that of a
base type in an inheritance tree—other elements can be defined to
substitute the head element.

Define one or more substitute elements (for example, xsd1 :house and
xsdl:apartmentBlock) directly within a <schema> scope, setting the
substitutionGroup attribute to the head element’s QName—for
example:

<element name="house" type="xsdl:HouseType"
substitutionGroup="xsdl:building" />

Substitution Groups

A substitute element plays a role analogous to that of a sub-type in an
inheritance tree—the substitute element can be used in place of the
head element.

Note: A substitute element must be of the same type as or be
derived from the head element type.

3. Define a complex type (for example, a sequence group, all group, or
choice group) that includes a reference to the head element. To define
an element reference, use the ref attribute.

For example, the following pPropertyType type includes a reference to
the building head element. In this case, the element with the ref
attribute is called a substitutable element.

<complexType name="PropertyType">
<sequence>
<element ref="xsdl:building"/>
<element name="site" type="xsdl:SiteType"/>
</sequence>
</complexType>

Note: Currently, Artix does not support substitutable elements in an
<all> complex type.

XSD example Example 181 shows the definition of a sequence group, PropertyType, that
includes a single substitutable element, xsd1:building.

Example 181:Sequence Type Containing a Substitutable Element

<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsdl="http://schemas.iona.com/realestate"
targetNamespace="http://schemas.iona.com/realestate">

<!-- Type definitions -->

<complexType name="BuildingType">
<sequence>
<element name="squareMeters" type="xsd:int"/>
</sequence>
</complexType>

391

CHAPTER 8 | Artix Data Types

Example 181:Sequence Type Containing a Substitutable Element

<complexType name="HouseType'">
<complexContent>
<extension base="xsdl:BuildingType">
<sequence>
<element name="houseKind" type="xsd:string"/>
</sequence>
</extension>
</complexContent>
</complexType>

<complexType name="ApartmentBlockType'">
<complexContent>
<extension base="xsdl:BuildingType">
<sequence>
<element name="nApartments" type="xsd:int"/>
</sequence>
</extension>
</complexContent>
</complexType>

<!-- Global Elements -->
<element name="building" type="xsdl:BuildingType"/>

<element name="house"
type="xsdl:HouseType"
substitutionGroup="building"
final="#all"/>

<element name="apartmentBlock"
type="xsdl:ApartmentBlockType"
substitutionGroup="building"
final="#all"/>

<!-- More Types —-—>

<complexType name="SiteType">
<sequence>
<element name="squareMeters" type="xsd:int"/>
</sequence>
</complexType>

<complexType name="PropertyType">
<sequence>

392

Substitution Groups

Example 181:Sequence Type Containing a Substitutable Element

<element ref="xsdl:building"/>

<element name="site" type="xsdl:SiteType"/>
</sequence>
</complexType>

</schema>

The substitution group consists of the following elements:

® The head element, xsdi:building, and

® The substitute elements, xsdl:house and xsdl:apartmentBlock.

Substitutable element appearing Example 182 shows how the pPropertyType Sequence group from
in a sequence group Example 181 on page 391 maps to C++.

Example 182:C++ Mapping of PropertyType Sequence Type
// C++

namespace COM IONA SCHEMAS REALESTATE
{
class PropertyType
: public IT Bus::SequenceComplexType,
public IT Bus::ComplexTypeWithSubstitution

public:

enum buildingDiscriminator

{
building_enum,
house_enum,
apartmentBlock enum,
building MAXLONG=-1

} var buildingDiscriminator;

buildingDiscriminator get buildingDiscriminator() const

{

return var buildingDiscriminator;

IT Bus::UInt get buildingDiscriminator as uint() const

{

393

CHAPTER 8 | Artix Data Types

394

Example 182:C++ Mapping of PropertyType Sequence Type

return var buildingDiscriminator;

BuildingType & getbuilding() ;
const BuildingType & getbuilding() const;
void setbuilding (const BuildingType & val);

HouseType & gethouse () ;
const HouseType & gethouse () const;
void sethouse (const HouseType & val);

ApartmentBlockType & getapartmentBlock () ;
const ApartmentBlockType & getapartmentBlock() const;
void setapartmentBlock (const ApartmentBlockType & val);

SiteType & getsite();
const SiteType & getsite() const;

void setsite(const SiteType & val);

private:

For each substitutable element appearing in a sequence group, the
WSDL-to-C+ + compiler generates the following enumeration type and
discriminator functions:

enum HeadElementDiscriminator {
} var HeadElementDiscriminator;
HeadElementDiscriminator get HeadElementDiscriminator () ;

IT Bus::UInt get HeadElementDiscriminator ();

Substitutable element appearing
in a choice group

Substitution Groups

Where HeadElement is the local part of the head element QName. The value
returned by get HeadElementDiscriminator () tells you what kind of
element is currently stored as the substitutable element. You must check the
discriminator value prior to calling getElementName () for an element
belonging to the HeadElement substitution group.

You can include a substitutable element in a choice group. The choice group
mapping is, however, different from the sequence group mapping. Because
a choice group already includes a discriminator when mapped to C+ +, the
substitution group enumerations are simply absorbed into the existing
choice enumeration.

For example, Example 183 redefines PropertyChoiceType as a choice
group that contains a single substitutable element, xsdi1:building.

Example 183:Choice Type Containing a Substitutable Element

<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsdl="http://schemas.iona.com/realestate"
targetNamespace="http://schemas.iona.com/realestate">

<complexType name="PropertyChoiceType">
<choice>
<element ref="xsdl:building"/>
<element name="site" type="xsdl:SiteType"/>
</choice>
</complexType>

</schema>

The PropertyChoiceType choice group defined in the preceding
Example 183 maps to the C++ PropertyChoiceType class shown in
Example 184.

Example 184:C++ Mapping of the PropertyChoiceType Choice Group

// Ctt
namespace COM IONA SCHEMAS REALESTATE

{
class PropertyChoiceType : public IT Bus::ChoiceComplexType

{

395

CHAPTER 8 | Artix Data Types

396

Example 184:C++ Mapping of the PropertyChoiceType Choice Group

public:

enum PropertyChoiceTypeDiscriminator
{

building enum,

house_enum,

apartmentBlock enum,

site enum,

PropertyChoiceType MAXLONG=-1
} m discriminator;

PropertyChoiceTypeDiscriminator get discriminator() const

{

return m discriminator;

IT Bus::UInt get discriminator as uint() const
{

return m discriminator;

// Get and Set functions (not shown)

private:

bi

For the PropertyChoiceType choice group, the WSDL-to-C++ compiler
generates a single enumeration type, PropertyChoiceTypeDiscriminator,
and discriminator functions, get discriminator () and

get discriminator as_uint().

In general, when mapping a choice group, the alternatives for all of the

substitutable elements and all of the regular elements in the choice group
are consolidated into a single enumeration type.

Substitution Groups

Substitutable element with You can add occurrence constraints to a substitutable element. For example,
occurrence constraints the MmultiPropertyType defined in Example 185 contains an unbounded
number of building elements.

Example 185:Substitutable Element with Occurrence Constraints

<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsdl="http://schemas.iona.com/realestate"
targetNamespace="http://schemas.iona.com/realestate">

<complexType name="MultiPropertyType">
<sequence>
<element ref="xsdl:building"
minOccurs="1" maxOccurs="unbounded" />
<element name="site" type="xsdl:SiteType"/>
</sequence>
</complexType>

<element name="MultiProperty"
type="xsdl:MultiPropertyType"/>

</schema>

The array of substitutable elements appearing in MultiPropertyType need
not be all of one type; they can be mixed. For example, the following would
be a valid instance of <MultiProperty>:

<MultiProperty>
<house> ... </house>
<apartmentBlock> ... </apartmentBlock>
<house> ... </house>
<apartmentBlock> ... </apartmentBlock>

<site> ... </site>
</MultiProperty>

The discriminator returned from get buildingDiscriminator() is
interpreted as follows:

® MultiPropertyType::house enum

397

CHAPTER 8 | Artix Data Types

Abstract head element

398

An array consisting exclusively of house elements. Use the gethouse ()
function to obtain the element list, of

IT Bus::ElementListT<HouseType> type.

MultiPropertyType: :apartmentBlock enum

An array consists exclusively of apartmentBlock elements. Use the
getapartmentBlock () function to obtain the element list, of

IT Bus::ElementListT<ApartmentBlockType> type.
MultiPropertyType::building enum

A mixed array. Use the getbuilding () function to obtain the element
list, of IT Bus::ElementListT<BuildingType> type. To determine the
actual type of each array element, attempt to downcast to one of the
types in the substitution group (HouseType Or ApartmentBlockType).

For more details about element lists, see “Element Occurrence Constraints”
on page 350.

You can define the head element to be abstract. An abstract head element
is analogous to an abstract base class—that is, it cannot be used directly,
but serves only as a basis for defining substitute elements. You can make a
head element abstract by setting the abstract attribute to true in the
element definition.

For example, the xsd1:building head element from Example 181 on
page 391 can be declared abstract as follows:

<element name="building" type="xsdl:BuildingType"
abstract="true"/>

When this modified version of the XML schema is compiled into C+ +, the
generated PropertyType class omits the getbuilding () and setbuilding ()
functions. The PropertyType: :building_enum value is also omitted from
the buildingDiscriminator enumeration type. In other words, the only
elements you can use for the substitutable element in the pPropertyType are
the house Or apartmentBlock elements.

Substitution Groups

Note: An exception to this mapping rule occurs when a substitution
element is defined with occurrence constraints. For example, if building
is declared abstract, the MultiPropertyType would include the
getbuilding () and setbuilding() functions when mapped to C++.
These functions are needed to access and modify mixed arrays. It is still
forbidden to include building elements directly in the array, however.

399

CHAPTER 8 | Artix Data Types

SOAP Arrays

Overview

In this section

400

In addition to the basic array types described in “Arrays” on page 323, Artix
also provides support for SOAP arrays. SOAP arrays have a relatively rich
feature set, including support for sparse arrays and partially transmitted
arrays. Consequently, Artix implements a distinct C++ mapping specifically
for SOAP arrays, which is different from the C++ mapping described in the
“Arrays” section.

This section contains the following subsections:

Introduction to SOAP Arrays page 401
Multi-Dimensional Arrays page 405
Sparse Arrays page 408
Partially Transmitted Arrays page 411

SOAP Arrays

Introduction to SOAP Arrays

Overview

Syntax

This section describes the syntax for defining SOAP arrays in WSDL and
discusses how to program a simple one-dimensional array of strings. The
following topics are discussed:

® Syntax

® C++ mapping

® Definition of a one-dimensional SOAP array
® Sample encoding

® C++ example

In general, SOAP array types are defined by deriving from the
SOAP-ENC:Array base type (deriving by restriction). The type definition must
conform to the following syntax:

<complexType name="<SOAPArrayType>">
<complexContent>
<restriction base="SOAP-ENC:Array">
<attribute ref="SOAP-ENC:arrayType"
wsdl:arrayType="<ElementType><ArrayBounds>"/>
</restriction>
</complexContent>
</complexType>

Where <soararrayType> is the name of the newly-defined array type,
<ElementType> Specifies the type of the array elements (for example,
xsd:int, xsd:string, Or a user type), and <arrayBounds> specifies the
dimensions of the array (for example, 11, (,1, [,,1, [,111, [,,11],
[,10111, and so on). The soap-ENC namespace prefix maps to the
http://schemas.xmlsoap.org/soap/encoding/ hamespace URI and the
wsdl namespace prefix maps to the http://schemas.xmlsoap.org/wsdl/
namespace URI.

Note: In the current version of Artix, the preceding syntax is the only case
where derivation from a complex type is supported. Definition of a SOAP
array is treated as a special case.

401

CHAPTER 8 | Artix Data Types

C++ mapping A given soaPArrayType array maps to a C++ class of the same name,
which inherits from the IT Bus: :SoapEncArrayT<> template class. The
SOAPArrayType C++ class overloads the [] operator to provide access to
the array elements. The size of the array is returned by the get extents ()
member function.

Definition of a one-dimensional Example 186 shows how to define a one-dimensional array of strings,

SOAP array ArrayOfSOAPString, as @ SOAP array. The wsdl:arrayType attribute
specifies the type of the array elements, xsd:string, and the number of
dimensions, [] implying one dimension.

Example 186:Definition of the ArrayOfSOAPString SOAP Array

<definitions name="BaseService"
targetNamespace="http://soapinterop.org/"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://soapinterop.org/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsdl="http://soapinterop.org/xsd">
<types>
<schema targetNamespace="http://soapinterop.org/xsd"

xmlns="http://www.w3.0rg/2001/XMLSchema"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

<complexType name="ArrayOfSOAPString">

<complexContent>
<restriction base="SOAP-ENC:Array'">
<attribute ref="SOAP-ENC:arrayType"
wsdl:arrayType="xsd:string[]"/>
</restriction>
</complexContent>
</complexType>

</definitions>

402

Sample encoding

C++ example

=

SOAP Arrays

Example 187 shows the encoding of a sample ArrayofSoaPstring instance,
which is how the array instance might look when transmitted as part of a
WSDL operation.

Example 187:Sample Encoding of ArrayOfSOAPString

<ArrayOfSOAPString SOAP-ENC:arrayType="xsd:string[2]">
<item>Hello</item>
<item>world!</item>

</ArrayOfSOAPString>

The preceding WSDL fragment can be explained as follows:

1. The element type and the array size are specified by the
SOAP-ENC:arrayType attribute. Because Arrayofsoapstring has been
derived by restriction, soaP-ENC:arrayType can only have values of the
form xsd: string[ArraySize].

2. The XML elements that delimit the individual array values, for example
item, can have an arbitrary name. These element names are not
significant.

Example 188 shows a C++ example of how to allocate and initialize an
ArrayOfSOAPString instance with four elements.

Example 188:C++ Example of Initializing an ArrayOfSOAPString Instance

// C++
// Allocate SOAP array of String
const size t extents[] = {4};

ArrayOfSOAPString a str(extents);

a str[0] = "Hello";
a str[l] = "to";
a str[2] = "the";
a str([3] = "world!";

403

CHAPTER 8 | Artix Data Types

The preceding C++ example can be explained as follows:

1. To specify the array’s size, you pass a list of extents (of size t[] type)
to the arrayofsoapstring constructor. This style of constructor has the
advantage that it is easily extended to the case of multi-dimensional
arrays—see “Multi-Dimensional Arrays” on page 405.

2. The overloaded [] operator provides read/write access to individual
array elements.

Note: Be sure to initialize every element in the array, unless you want to
create a sparse array (see “Sparse Arrays” on page 408). There are no
default element values. Uninitialized elements are flagged as empty.

404

SOAP Arrays

Multi-Dimensional Arrays

Overview

Definition of multi-dimensional
SOAP array

The syntax for SOAP arrays allows you to define the dimensions of a

multi-dimensional array using two slightly different syntaxes:

® Acomma-separated list between square brackets, for example [, 1 and
[rr]

® Multiple square brackets, for example (111 and [11]1]

Artix makes no distinction between the two styles of array definition. In both

cases, the array is flattened for transmission and the C++ mapping is the
same.

Example 189 shows how to define a two-dimensional array of integers,
Array20fInt, as a SOAP array. The wsdl:arrayType attribute specifies the
type of the array elements, xsd:int, and the number of dimensions, [,]
implying an array of two dimensions.

Example 189:Definition of the Array20fint SOAP Array

<definitions ... >
<types>
<schema ... >
<complexType name="Array20fInt">
<complexContent>
<restriction base="SOAP-ENC:Array'">
<attribute ref="SOAP-ENC:arrayType"
wsdl:arrayType="xsd:int[,]"/>
</restriction>
</complexContent>
</complexType>
</definitions>

405

CHAPTER 8 | Artix Data Types

Sample encoding of
multi-dimensional SOAP array

C++ example of a
multi-dimensional SOAP array

406

Example 190 shows the encoding of a sample Array20fint instance, which
is how the array instance might look when transmitted as part of a WSDL
operation.

Example 190:Sample Encoding of an Array20fInt SOAP Array

<Array20fInt SOAP-ENC:arrayType="xsd:int[2,3]">
<i>1</1i>
<i>2</i>
<i>3</1i>
<i>4</i>
<i>5</i>
<i>6</1i>
</Array20fInt>

The dimensions of this array instance are specified as [2, 3], giving a total
of six elements. Notice that the encoded array is effectively flat, because no
distinction is made between rows and columns of the two-dimensional
array.

Given an array instance with dimensions, [I_Max, J Max], a particular
position in the array, [i,71, corresponds with the i*J Max+j element of the
flattened array. In other words, the right most index of [i,5,...,k] is the
fastest changing as you iterate over the elements of a flattened array.

Example 191 shows a C++ example of how to allocate and initialize an
Array20fInt instance with dimensions, [2, 3].

Example 191:/nitializing an Array20fInt SOAP Array

// C++
const size t extents2[] = {2, 3};
Array20fInt a2 soap (extents2);

size t position(2];

size t 1 max = a2 soap.get extents() [0];
size t j max = a2 soap.get extents() [1];
for (size t i=0; i<i max; i++) {

position[0] = i;
for (size t j=0; j<j_max; j++) {
position[l] = j;
a2_soap[position] = (IT Bus::Int) (it+l)*(j+1);

SOAP Arrays

Example 191:/nitializing an Array20fInt SOAP Array
}

The preceding C++ example can be explained as follows:

1. The dimensions of this array instance are specified to be (2, 3] by
initializing an array of extents, of size t[] type, and passing this array
to the Array20fint constructor.

2. The dimensions of the a2_soap array can be retrieved by calling the
get_extents () function, which returns an extents array that converts
to size t[] type.

3. The operator [] is overloaded on array20fInt to accept an argument
of size t[] type, which contains a list of indices specifying a
particular array element.

407

CHAPTER 8 | Artix Data Types

Sparse Arrays

Overview

Sample encoding

408

Sparse arrays are fully supported in Artix. Every SOAP array instance stores
an array of status flags, one flag for each array element. The status of each
array element is initially empty, flipping to non-empty the first time an array
element is accessed or initialized.

Note: Sparse arrays are not optimized for minimization of storage space.
Hence, a sparse array with dimensions (1000, 10001 would always allocate
storage for one million elements, irrespective of how many elements in the
array are actually non-empty.

WARNING: Sparse arrays have been deprecated in the SOAP 1.2
specification. Hence, it is better to avoid using sparse arrays if possible.

Example 192 shows the encoding of a sparse Array20fint instance, which
is how the array instance might look when transmitted as part of a WSDL
operation.

Example 192:Sample Encoding of a Sparse Array20fint SOAP Array

<Array20fInt SOAP-ENC:arrayType="xsd:int[10,10]">
<item SOAP-ENC:position="[3,0]">30</item>
<item SOAP-ENC:position="[2,1]">21</item>
<item SOAP-ENC:position="[1,2]">12</item>
<item SOAP-ENC:position="[0,3]">3</item>
</Array20fInt>

’

The array instance is defined to have the dimensions [10,10]. Out of a
maximum 100 elements, only four, that is (3,01, 12,11, [1,2], and [0, 3],
are transmitted. When transmitting an array as a sparse array, the
SOAP-ENC:position attribute enables you to specify the indices of each
transmitted array element.

SOAP Arrays

Initializing a sparse array Example 193 shows an example of how to initialize a sparse array of
Array20fInt type.

Example 193:/nitializing a Sparse Array20fint SOAP Array
// C++
const size t extents2[] = {10, 10};

Array20fInt a2 soap (extents2);

size t position[2];

position[0] = 3;
position[l] = 0;
a2 soap[position] = 30;
position[0] = 2;
position[l] = 1;
a2 soap[position] = 21;
position[0] = 1;
position[l] = 2;
a2 _soap[position] = 12;
position[0] = 0;
position[l] = 3;
a2 soap[position] = 3;

This example does not differ much from the case of initializing an ordinary
non-sparse array (compare, for example, Example 191 on page 406). The
only significant difference is that the majority of array elements are not
initialized, hence they are flagged as empty by default.

Note: The state of an array element flips from empty to non-empty the
first time it is accessed using the [] operator. Hence, attempting to read
the value of an uninitialized array element can have the unintended side
effect of flipping the array element status.

409

CHAPTER 8 | Artix Data Types

Reading a sparse array Example 194 shows an example of how to read a sparse array of
Array20fInt type.

Example 194:Reading a Sparse Array20fint SOAP Array
// C++

size t p2[2];
1 size t i max = a2 out.get extents() [0];
size t j max = a2 out.get extents() [1];
for (size t i=0; i<i max; i++) {
p2[0] = i;
for (size t j=0; j<j max; j++) {
p2[1] = J;
2 if (!a2 out.is empty(p2)) {
cout << "a[" << i << "][" K J<K "] ="
<< a2 _out[p2] << endl;

}

The preceding C++ example can be explained as follows:

1. Theget extents() function returns the full dimensions of the array (as
a size t[] array), irrespective of the actual number of non-empty
elements in the sparse array.

2. Before attempting to read the value of an element in the sparse array,
you should call the is_empty () function to check whether the
particular array element exists or not.

If you were to access all the elements of the array, irrespective of their
status, the empty array elements would all flip to the non-empty state.
Hence, you would lose the information about which elements were
transmitted in the sparse array.

410

SOAP Arrays

Partially Transmitted Arrays

Overview

Sample encoding

A partially transmitted array is essentially a special case of a sparse array,
where the transmitted array elements form one or more contiguous blocks
within the array. The start index and end index of each block can have any
value.

The difference between a partially transmitted array and a sparse array is
significant only at the level of encoding. From the Artix programmer’s
perspective, there is no significant distinction between partially transmitted
arrays and sparse arrays.

Example 195 shows the encoding of a partially transmitted
ArrayOfSOAPString instance.

Example 195:Sample Encoding of a Partially Transmitted
ArrayOfSOAPString Array

<ArrayOfSOAPString SOAP-ENC:arrayType="xsd:string[10]"
SOAP-ENC:offset="1[2]">
<item>The third element</item>
<item>The fourth element</item>
<item SOAP-ENC:position="[6]">The seventh element</item>
<item>The eighth element</item>
</ArrayOfSOAPString>

In this example, only the third, fourth, seventh, and eighth elements of a
ten-element string array are actually transmitted. The soaP-ENC:offset
attribute is used to specify the index of the first transmitted array element.
The default value of soaP-ENC:offset is [0]. The SOAP-ENC:position
attribute specifies the start of a new block within the array. If an item
element does not have a position attribute, it is assumed to represent the
next element in the array.

411

CHAPTER 8 | Artix Data Types

IT Vector Template Class

Overview The 1T vector template class is an implementation of std: :vector. Hence,
the functionality provided by 1T vector should be familiar from the C+ +
Standard Template Library.

In this section This section contains the following subsections:
Introduction to IT_Vector page 413
Summary of IT_Vector Operations page 416

412

IT_Vector Template Class

Introduction to IT_Vector

Overview

Differences between IT_Vector
and std::vector

This section provides a brief introduction to programming with the
IT vector template type, which is modelled on the std: :vector template
type from the C++ Standard Template Library (STL).

Although 1T vector is modelled closely on the STL vector type,
std: :vector, there are some differences. In particular, IT vector does not
provide the following types:

IT Vector<T>::allocator type

Where T is the vector's element type. Hence, the 1T vector type does not
support an allocator type optional final argument in its constructors.

The 1T vector type does not support the following operations:
1=, <
The member functions listed in Table 14 are not defined in IT vector.

Table 14: Member Functions Not Defined in IT Vector

Function Type of Operation
at () Element access (with range check)
clear () List operation
assign () Assignment
resize ()

Size and capacity
max size()

Although clear () is not defined, you can easily get the same effect for a
vector, v, by calling erase () as follows:

v.erase (v.begin(), v.end());

This has the effect of erasing all the elements in v, leaving an array of size 0.

413

CHAPTER 8 | Artix Data Types

Basic usage of IT_Vector

Iterators

414

The size () member function and the indexing operator (] is all that you
need to perform basic manipulation of vectors. Example 196 shows how to
use these basic vector operations to initialize an integer vector with the first
one hundred integer squares.

Example 196:Using Basic IT Vector Operations to Initialize a Vector

// C++
// Allocate a vector with 100 elements
IT Vector<IT Bus::Int> v (100);

for (size t k=0; k < v.size(); k+t+) {
v[k] = (IT Bus::Int) k*k;
}

Instead of indexing vector elements using the operator [], you can use a
vector iterator. A vector iterator, of IT vector<T>::iterator type, gives you
pointer-style access to a vector's elements. The following operations are
supported by IT Vector<T>::iterator:

4, -, K, =, ==, 1=

1 1 1

An iterator instance remembers its current position within the element list.
The iterator can advance to the next element using ++, step back to the
previous element using --, and access the current element using *.

The 1T vector template also provides a reverse iterator, of

IT Vector<T>::reverse iterator type. The reverse iterator differs from the
regular iterator in that it starts at the end of the element list and traverses
the list backwards. That is the meanings of ++ and -- are reversed.

IT_Vector Template Class

Example using iterators Example 196 on page 414 can be written in a more idiomatic style using
vector iterators, as shown in Example 197.

Example 197:Using lterators to Initialize a Vector

// C++
// Allocate a vector with 100 elements
IT Vector<IT Bus::Int> v (100);

IT Vector<IT Bus::Int>::iterator p = v.begin();
IT Bus k int = 0;

while (p != v.end())
{
*p = k int*k int;
++p; B B
++k_int;

415

CHAPTER 8 | Artix Data Types

Summary of IT_Vector Operations

Overview This section provides a brief summary of the types and operations supported
by the 1T vector template type. Note that the set of supported types and
operations differs slightly from std: :vector. They are described in the
following categories:

® Member types

® |terators

® Element access
® Stack operations
® List operations

® Other operations

Member types Table 15 lists the member types defined in IT vector<r>.

Table 15: Member Types Defined in IT Vector<T>

Member Type Description
value type Type of element.
size type Type of subscripts.
difference type Type of difference between iterators.
iterator Behaves like value type*.
const_iterator Behaves like const value type*.
reverse iterator Iterates in reverse, like value type*.
const_reverse iterator Iterates in reverse, like const

value type*.

reference Behaves like value_ types.
const_reference Behaves like const value types.

416

Iterators

Element access

Stack operations

IT_Vector Template Class

Table 16 lists the 1T_vector member functions returning iterators.

Table 16: /terator Member Functions of IT_Vector<T>

Iterator Member Description
Function
begin () Points to first element.
end () Points to last element.
rbegin () Points to first element of reverse sequence.
rend () Points to last element of reverse sequence.

Table 17 lists the 1T _vector element access operations.

Table 17: Element Access Operations for IT_Vector<T>

Element Access Description
Operation
[1 Subscripting, unchecked access.
front () First element.
back () Last element.

Table 18 lists the 1T_vector stack operations.

Table 18: Stack Operations for IT_Vector<T>

Stack Operation Description
push_back () Add to end.
pop_back () Remove last element.

417

CHAPTER 8 | Artix Data Types

List operations

Other operations

418

Table 19 lists the 1T_vector list operations.

Table 19: List Operations for IT_Vector<T>

List Operations

Description

insert (p, x)

Add x before p.

insert (p,n, x)

Add n copies of x before p.

insert (first, last)

Add elements from [first:last[before p.

erase (p)

Remove element at p.

erase (first, last)

Erase [first:last[.

Table 20 lists the other operations supported by IT vector.

Table 20: Other Operations for IT _Vector<T>

Operation Description
size() Number of elements.
empty () Is the container empty?
capacity () Space allocated.
reserve () Reserve space for future expansion.
swap () Swap all the elements between two vectors.
= Test vectors for equality (member-wise).

Unsupported XML Schema Constructs in Artix

Unsupported XML Schema Constructs in Artix

Overview The following XML schema constructs are currently not supported in Artix:

Built-in types:

*

*

Xs:

Xs:

XS

Xs:

Xs:

XS

Xs:

xs:duration
xs :NOTATION
xs:IDREF
Xs:IDREFS
xs:ENTITY
xs:ENTITIES
redefine

notation

:simpleType

All facets except for enumeration.
final attribute.

:complexType

mixed, final, block, and abstract attributes.

simpleContent/restriction.

complexContent/restriction.
element

final, block, fixed, default and abstract attributes.
attribute

global attributes.

ref attribute.

form attribute.

:group

minOccurs, maxOccurs On local groups.

all inside a group.

ranyAttribute

anySimpleType

419

CHAPTER 8 | Artix Data Types

xs:unique
xs:key
xs:keyref
xs:selector
® xs:field

® id attribute on schema constructs, wherever it is applicable.

420

In this chapter

CHAPTER 9

Artix IDL to C+ +
Mapping

This chapter describes how Artix maps IDL to C++; that is,
the mapping that arises by converting IDL to WSDL (using the
IDL-to-WSDL compiler) and then WSDL to C++ (using the
WSDL-to-C++ compiler).

This chapter discusses the following topics:

Introduction to IDL Mapping page 422
IDL Basic Type Mapping page 424
IDL Complex Type Mapping page 426
IDL Module and Interface Mapping page 435

421

CHAPTER 9 | Artix IDL to C++ Mapping

Introduction to IDL Mapping

Overview This chapter gives an overview of the Artix IDL-to-C++ mapping. Mapping

IDL to C++ in Artix is performed as a two step process, as follows:

1. Map the IDL to WSDL using the Artix IDL compiler. For example, you
could map a file, sampleIDL.id1, to a WSDL contract,
SampleIDL.wsdl, using the following command:

idl -wsdl SampleIDL.idl

2. Map the generated WSDL contract to C+ + using the WSDL-to-C++
compiler. For example, you could generate C++ stub code from the
SampleIDL.wsdl file using the following command:
wsdltocpp SampleIDL.wsdl

For a detailed discussion of these command-line utilities, see the Artix

User’s Guide.

Alternative C+ + mappings If you are already familiar with CORBA technology, you will know that there
is an existing standard for mapping IDL to C+ + directly, which is defined by
the Object Management Group (OMG). Hence, two alternatives exist for
mapping IDL to C++, as follows:
® Artix IDL-to-C++ mapping—this is a two stage mapping, consisting of
IDL-to-WSDL and WSDL-to-C++. It is an IONA-proprietary mapping.

® CORBA IDL-to-C++ mapping—as specified in the OMG C+ +
Language Mapping document (http://www.omg.org). This mapping is
used, for example, by the IONA’s Orbix.

422

http://www.omg.org/technology/documents/idl2x_spec_catalog.htm
http://www.omg.org/technology/documents/idl2x_spec_catalog.htm

Introduction to IDL Mapping

These alternative approaches are illustrated in Figure 26.

Figure 26: Artix and CORBA Alternatives for IDL to C++ Mapping

Artix
Artix | |
IDL-to-WSDL WSDL | WSDL-to-C++ Cit !
Contract Stubs
IDL File
CORBA
IDL-to-C++ CORES
C++
Stubs

The advantage of using the Artix IDL-to-C++ mapping in an application is
that it removes the CORBA dependency from your source code. For
example, a server that implements an IDL interface using the Artix
IDL-to-C+ + mapping can also interoperate with other Web service
protocols, such as SOAP over HTTP.

Unsupported IDL types The following IDL types are not supported by the Artix C++ mapping:

° wchar.

® wstring.

° long double.

® Value types.

®* Boxed values.

® Local interfaces.

® Abstract interfaces.

® forward-declared interfaces.

423

CHAPTER 9 | Artix IDL to C++ Mapping

IDL Basic Type Mapping

Overview Table 21 shows how IDL basic types are mapped to WSDL and then to
C++.
Table 21: Artix Mapping of IDL Basic Types to C++
IDL Type WSDL Schema Type C++ Type
any xsd:anyType IT Bus::AnyHolder
boolean xsd:boolean IT Bus::Boolean
char xsd:byte IT Bus::Byte
string xsd:string IT Bus::String
wchar xsd:string IT Bus::String
wstring xsd:string IT Bus::String
short xsd:short IT Bus::Short
long xsd:int IT Bus::Int
long long xsd:long IT Bus::Long
unsigned short xsd:unsignedShort IT Bus::UShort
unsigned long xsd:unsignedInt IT Bus::UInt
unsigned long long xsd:unsignedLong IT Bus::ULong
float xsd:float IT Bus::Float
double xsd:double IT Bus::Double
long double Not supported Not supported
octet xsd:unsignedByte IT Bus::UByte
fixed xsd:decimal IT Bus::Decimal
Object references:Reference IT Bus::Reference

424

Mapping for string

IDL Basic Type Mapping

The IDL-to-WSDL mapping for strings is ambiguous, because the string,
wchar, and wstring IDL types all map to the same type, xsd:string. This
ambiguity can be resolved, however, because the generated WSDL records
the original IDL type in the CORBA binding description (that is, within the
scope of the <wsdl:binding> </wsdl:binding> tags). Hence, whenever an
xsd:string is sent over a CORBA binding, it is automatically converted
back to the original IDL type (string, wchar, Of wstring).

425

CHAPTER 9 | Artix IDL to C++ Mapping

IDL Complex Type Mapping

Overview

enum type

426

This section describes how the following IDL data types are mapped to
WSDL and then to C++:

® enum type.

® struct type.

® union type.

® sequence types.

® array types.

® exception types.

® typedef of a simple type.
® typedef of a complex type.

Consider the following definition of an IDL enum type, SampleTypes: : Shape:

// IDL
module SampleTypes {
enum Shape { Square, Circle, Triangle };

bi

The IDL-to-WSDL compiler maps the sampleTypes: : Shape enum to a WSDL
restricted simple type, sampleTypes.Shape, as follows:

<xsd:simpleType name="SampleTypes.Shape">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="Square"/>
<xsd:enumeration value="Circle"/>
<xsd:enumeration value="Triangle"/>
</xsd:restriction>
</xsd:simpleType>

IDL Complex Type Mapping

The WSDL-to-C++ compiler maps the sampleTypes.Shape type to a C++
class, sampleTypes Shape, as follows:

class SampleTypes Shape : public IT Bus::AnySimpleType
{
public:
SampleTypes_Shape () ;
SampleTypes Shape (const IT Bus::String & value);

void set value(const IT Bus::String & value);
const IT Bus::String & get value() const;
bi

The value of the enumeration type can be accessed and modified using the
get value() and set value() member functions.
Programming with the Enumeration Type

For details of how to use the enumeration type in C++, see “Deriving
Simple Types by Restriction” on page 275.

union type Consider the following definition of an IDL union type, SampleTypes: :Poly:

// IDL
module SampleTypes {
union Poly switch (short) {
case 1: short theShort;
case 2: string theString;
bi

}i

The IDL-to-WSDL compiler maps the sampleTypes::Poly union to an XML
schema choice complex type, sampleTypes.Poly, as follows:

<xsd:complexType name="SampleTypes.Poly">
<xsd:choice>
<xsd:element name="theShort" type="xsd:short"/>
<xsd:element name="theString" type="xsd:string"/>
</xsd:choice>
</xsd:complexType>

427

CHAPTER 9 | Artix IDL to C++ Mapping

The WSDL-to-C+ + compiler maps the sampleTypes.Poly type to a C++
class, sampleTypes Poly, as follows:

// C++

class SampleTypes Poly : public IT Bus::ChoiceComplexType
{
public:

const IT Bus::Short gettheShort () const;
void settheShort (const IT Bus::Shorté& val);

const IT Bus::Stringé& gettheString() const;
void settheString(const IT Bus::String& val);

enum PolyDiscriminator
{
theShort,
theString,
Poly MAXLONG=-1L
} m discriminator;

PolyDiscriminator get discriminator() const { ... }
IT Bus::UInt get discriminator as uint() const { ... }

bi

The value of the union can be modified and accessed using the
getUnionMember () and setUnionMember () pairs of functions. The union
discriminator can be accessed through the get discriminator() and
get_discriminator as_uint () functions.

Programming with the Union Type

For details of how to use the union type in C++, see “Choice Complex
Types” on page 292.

428

IDL Complex Type Mapping

struct type Consider the following definition of an IDL struct type,
SampleTypes: :SampleStruct:

// IDL
module SampleTypes {
struct SampleStruct {
string theString;
long thelong;
bi

bi

The IDL-to-WSDL compiler maps the sampleTypes: :SampleStruct struct to
an XML schema sequence complex type, SampleTypes.SampleStruct, as
follows:

<xsd:complexType name="SampleTypes.SampleStruct">
<xsd:sequence>
<xsd:element name="theString" type="xsd:string"/>
<xsd:element name="theLong" type="xsd:int"/>
</xsd:sequence>
</xsd:complexType>

The WSDL-to-C+ + compiler maps the sampleTypes.Samplestruct type to
aC++ daSS,SampleTypes_SampleStruct,anO”OMB:

class SampleTypes SampleStruct : public
IT Bus::SequenceComplexType

public:
SampleTypes SampleStruct () ;
SampleTypes SampleStruct (const SampleTypes SampleStructé
copy) ;

const IT Bus::String & gettheString() const;
IT Bus::String & gettheString();
void settheString(const IT Bus::String & val);

const IT Bus::Int & gettheLong() const;

IT Bus::Int & gettheLong();
void setthelong(const IT Bus::Int & val);

429

CHAPTER 9 | Artix IDL to C++ Mapping

The members of the struct can be accessed and modified using the
getStructMember () and setStructMember () pahs of functions.
Programming with the Struct Type

For details of how to use the struct type in C++, see “Sequence Complex
Types” on page 289.

sequence types Consider the following definition of an IDL sequence type,
SampleTypes: :SeqOfStruct:

// IDL
module SampleTypes {
typedef sequence< SampleStruct > SeqOfStruct;

}i

The IDL-to-WSDL compiler maps the sampleTypes: : SeqofStruct sequence
to a WSDL sequence type with occurrence constraints,
SampleTypes.SeqOfStruct, as follows:

<xsd:complexType name="SampleTypes.SeqOfStruct">
<xsd:sequence>
<xsd:element name="item"
type="xsdl:SampleTypes.SampleStruct"
minOccurs="0" maxOccurs="unbounded" />
</xsd:sequence>
</xsd:complexType>

The WSDL-to-C+ + compiler maps the sampleTypes.Seqofstruct type to a
C++ daSS,SampleTypes_SerfStruct,anO”OWS:

class SampleTypes SeqOfStruct : public
IT Bus::ArrayT<SampleTypes SampleStruct,
&SampleTypes SeqOfStruct item gname, 0, -1>
public:

bi

The sampleTypes_seqofstruct class is an Artix C++ array type (based on
the 1T _vector template). Hence, the array class has an API similar to the
std: :vector type from the C++ Standard Template Library.

430

IDL Complex Type Mapping

Programming with Sequence Types

For details of how to use sequence types in C++, see “Arrays” on page 323
and “IT_Vector Template Class” on page 412.

Note: IDL bounded sequences map in a similar way to normal IDL
sequences, except that the IT Bus::ArrayT base class uses the bounds
specified in the IDL.

array types Consider the following definition of an IDL union type,
SampleTypes: :ArrOfStruct:

// IDL
module SampleTypes {
typedef SampleStruct ArrOfStruct[10];

bi

The IDL-to-WSDL compiler maps the sampleTypes: :Arrofstruct array to a
WSDL sequence type with occurrence constraints,
SampleTypes.ArrOfStruct, as follows:

<xsd:complexType name="SampleTypes.ArrOfStruct">
<xsd:sequence>
<xsd:element name="item"
type="xsdl:SampleTypes.SampleStruct"
minOccurs="10" maxOccurs="10"/>
</xsd:sequence>
</xsd:complexType>

The WSDL-to-C++ compiler maps the sampleTypes.Arrofstruct type to a
C++ class, sampleTypes ArrOfstruct, as follows:

class SampleTypes ArrOfStruct : public
IT Bus::ArrayT<SampleTypes SampleStruct,
&SampleTypes ArrOfStruct item gname, 10, 10>

431

CHAPTER 9 | Artix IDL to C++ Mapping

exception types

432

The sampleTypes Arrofstruct class is an Artix C++ array type (based on
the 1T _vector template). The array class has an API similar to the

std: :vector type from the C+ + Standard Template Library, except that the
size of the vector is restricted to the specified array length, 10.

Programming with Array Types

For details of how to use array types in C++, see “Arrays” on page 323 and
“IT_Vector Template Class” on page 412.

Consider the following definition of an IDL exception type,

SampleTypes: :GenericException:

// IDL
module SampleTypes {
exception GenericExc {
string reason;

bi

bi

The IDL-to-WSDL compiler maps the sampleTypes: :GenericExc exception
to a WSDL sequence type, sampleTypes.GenericExc, and to a WSDL fault
message, exception.SampleTypes.GenericExc, as follows:

<xsd:complexType name="SampleTypes.GenericExc">
<xsd:sequence>
<xsd:element name="reason" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>

<xsd:element name="SampleTypes.GenericExc"
type="xsdl:SampleTypes.GenericExc" />

<message name="_exception.SampleTypes.GenericExc">
<part name="exception"
element="xsdl:SampleTypes.GenericExc" />
</message>

IDL Complex Type Mapping

The WSDL-to-C++ compiler maps the sampleTypes.GenericExc and
_exception.SampleTypes.GenericExc types to C++ classes
SampleTypes GenericExc and _exception SampleTypes GenericExc, as
follows:

// C++
class SampleTypes GenericExc : public
IT Bus::SequenceComplexType

public:
SampleTypes GenericExc() ;

const IT Bus::String & getreason() const;
IT Bus::String & getreason();
void setreason(const IT Bus::String & val);

bi

class exception SampleTypes GenericExcException : public
IT Bus::UserFaultException

public:
_exception SampleTypes GenericExcException();

const SampleTypes GenericExc & getexception() const;
SampleTypes GenericExc & getexception () ;
void setexception (const SampleTypes GenericExc & val);

}i

Programming with Exceptions in Artix

For an example of how to initialize, throw and catch a WSDL fault
exception, see “User-Defined Exceptions” on page 47.

typedef of a simple type Consider the following IDL typedef that defines an alias of a f1oat,
SampleTypes: :FloatAlias:

// IDL
module SampleTypes {
typedef float FloatAlias;

bi

The IDL-to-WSDL compiler maps the sampleTypes: :FloatAlias typedef
directory to the type, xsd: float.

433

CHAPTER 9 | Artix IDL to C++ Mapping

typedef of a complex type

434

The WSDL-to-C+ + compiler then maps the xsd: float type directly to the
IT Bus::Float C++ type. Hence, no C++ typedef is generated for the
float type.

Consider the following IDL typedef that defines an alias of a struct,
SampleTypes: :SampleStructAlias:

// IDL
module SampleTypes {
typedef SampleStruct SampleStructAlias;

bi

The IDL-to-WSDL compiler maps the sampleTypes: :SampleStructAlias
typedef directly to the plain, unaliased sampleTypes.SampleStruct type.

The WSDL-to-C+ + compiler then maps the sampleTypes.SampleStruct
WSDL type directly to the sampleTypes: : Samplestruct C++ type. Hence,
no C++ typedef is generated for this struct type. Instead of a typedef, the
C++ mapping uses the original, unaliased type.

Note: The typedef of an IDL sequence or an IDL array is treated as a
special case, with a specific C++ class being generated to represent the
sequence or array type.

IDL Module and Interface Mapping

IDL Module and Interface Mapping

Overview

Module mapping

Interface mapping

This section describes the Artix C++ mapping for the following IDL
constructs:

® Module mapping.

® |nterface mapping.

® Object reference mapping.
® Operation mapping.

® Attribute mapping.

An IDL identifier appearing within the scope of an IDL module,
ModuleName: : Identifier, maps to a C++ identifier of the form
ModuleName Identifier. Thatis, the IDL scoping operator, ::, maps to an
underscore, , in C++.

Although IDL modules do not map to namespaces under the Artix C++
mapping, it is possible nevertheless to put generated C++ code into a
namespace using the -n switch to the WSDL-to-C+ + compiler (see
“Generating Stub and Skeleton Code” on page 2). For example, if you pass a
namespace, TEST, to the WSDL-to-C++ -n switch, the

ModuleName: : Identifier |IDL identifier would map to

TEST: :ModuleName Identifier.

An IDL interface, InterfaceName, maps to a C++ class of the same name,
InterfaceName. If the interface is defined in the scope of a module, that is
ModuleName: : InterfaceName, the interface maps to the

ModuleName InterfaceName C++ class.

If an IDL data type, Typename, is defined within the scope of an IDL
interface, that is ModuleName: : InterfaceName: : TypeName, the type maps to
the ModuleName InterfaceName TypeName C++ class.

435

CHAPTER 9 | Artix IDL to C++ Mapping

Object reference mapping

436

When an IDL interface is used as an operation parameter or return type, it is
mapped to the IT Bus::Reference C++ type.

For example, consider an operation, get_foo (), that returns a reference to a
Foo interface as follows:

// IDL
interface Foo {};

interface Bar {
Foo get foo();
}i

The get_foo () IDL operation then maps to the following C++ function:

// C+t
void get foo(
IT Bus::Reference & var return
) IT THROW DECL((IT Bus::Exception));

Note that this mapping is very different from the OMG IDL-to-C+ +
mapping. In the Artix mapping, the get foo () operation does not return a
pointer to a Foo proxy object. Instead, you must construct the Foo proxy
object in a separate step, by passing the IT Bus::Reference object into the
FooClient constructor.

See “Artix References” on page 103 for more details.

IDL Module and Interface Mapping

Operation mapping Example 198 shows two IDL operations defined within the
SampleTypes: :Foo interface. The first operation is a regular IDL operation,
test_op(), and the second operation is a oneway operation,

test oneway().
Example 198:Example IDL Operations

// IDL
module SampleTypes {

interface Foo {

SampleStruct test op(
in SampleStruct in struct,
inout SampleStruct inout struct,
out SampleStruct out struct

) raises (GenericExc);

oneway void test oneway(in string in str);
}i
}i

The operations from the preceding IDL, Example 198 on page 437, map to
C++ as shown in Example 199,

Example 199:Mapping IDL Operations to C++

// C++
class SampleTypes Foo
{

public:

1 virtual void test op(
const TEST::SampleTypes SampleStruct & in struct,
TEST: : SampleTypes SampleStruct & inout struct,
TEST: : SampleTypes SampleStruct & var return,
TEST: : SampleTypes SampleStruct & out struct

) IT THROW DECL((IT Bus::Exception)) = 0;
2 virtual void test oneway (
const IT Bus::String & in str
) IT THROW DECL ((IT Bus::Exception)) = 0;

bi

437

CHAPTER 9 | Artix IDL to C++ Mapping

The preceding C+ + operation signatures can be explained as follows:

1. The C++ mapping of an IDL operation always has the return type
void. If a return value is defined in IDL, it is mapped as an out
parameter, var return.

The order of parameters in the C++ function signature, test op(), is

determined as follows:

+ First, the in and inout parameters appear in the same order as in
IDL, ignoring the out parameters.

+ Next, the return value appears as the parameter, var return
(with the same semantics as an out parameter).

. Finally, the out parameters appear in the same order as in IDL,
ignoring the in and inout parameters.

2. The C++ mapping of an IDL oneway operation is straightforward,

because a oneway operation can have only in parameters and a void
return type.

Attribute mapping Example 200 shows two IDL attributes defined within the
sampleTypes: :Foo interface. The first attribute is readable and writable,
str_attr, and the second attribute is readonly, struct attr.

Example 200:Example IDL Attributes

// IDL
module SampleTypes {

interface Foo {
attribute string str_attr;
readonly attribute SampleStruct struct attr;

}i
bi

438

IDL Module and Interface Mapping

The attributes from the preceding IDL, Example 200 on page 438, map to
C++ as shown in Example 201,

Example 201:Mapping IDL Attributes to C++

// C++
class SampleTypes Foo
{

public:

virtual void get str attr(
IT Bus::String & var_ return

) IT THROW DECL((IT_Bus::Exception)) = 0;
virtual void set str attr(

const IT Bus::String & arg
) IT THROW DECL((IT Bus::Exception)) = 0;

virtual void get struct attr(
TEST: : SampleTypes SampleStruct & var return
) IT THROW DECL((IT_Bus::Exception)) = 0;
}i

The preceding C++ attribute signatures can be explained as follows:

1. Anormal IDL attribute, aAttributeName, maps to a pair of accessor and
modifier functions in C++, get AttributeName(),
_set AttributeName().

2. An IDL readonly attribute, attributenName, maps to a single accessor
function in C++, get AttributeName().

439

CHAPTER 9 | Artix IDL to C++ Mapping

440

In this chapter

CHAPTER 10

Reflection

Artix provides a reflection APl which, analogously to Java
reflection, enables you to unravel the structure of an Artix data
type without having advance knowledge of it.

This chapter discusses the following topics:

Introduction to Reflection page 442
The IT_Bus::Var Template Type page 445
Reflection API page 449
Reflection Example page 476

441

CHAPTER 10 | Reflection

Introduction to Reflection

Overview

C++ reflection class

Enabling reflection on generated
classes

Converting a user-defined type to
a Reflection

442

Artix reflection provides you with a way of representing Artix data types such
that they are self-describing. Using the reflection API, you can employ
recursive descent parsing to process any data type (whether built-in or
user-defined), without knowing about the data type in advance.

The Artix reflection API is useful in those cases where you need to write
general-purpose code to process Artix data types. If you are familiar with
Java or CORBA, you probably recognize that Artix reflection offers
functionality similar to that of Java reflection and CORBA DynamicAny.

In C++, reflection objects are represented by the IT Reflect::Reflection
base class and all of the classes derived from it—see “Overview of the
Reflection API” on page 450 for more details.

To enable reflection support on the C++ classes generated from XML
schema types, you must pass the -reflect flag to the wsdltocpp utility.

To convert any XML schema type to an IT Bus::Reflection instance, call
one of the following IT Bus::AnyType::get reflection() functions

// C++
IT Reflect::Reflection* get reflection()
IT THROW DECL ((IT Reflect::ReflectException)) ;

const IT Reflect::Reflection* get reflection() const
IT THROW DECL ((IT Reflect::ReflectException)) ;

User-defined types always inherit from IT Bus::AnyType and therefore also
support the get_reflection () function.

Converting a built-in type to a
Reflection

Converting a Reflection to an
AnyType

Type descriptions

Introduction to Reflection

To convert a built-in type (such as IT Bus::Int) to an IT Bus::Reflection
instance, construct an IT Reflect::valueRef<T> object (which inherits
from IT Bus::Reflection). For example, you can convert an integer,

IT Bus::Int, to a reflection object as follows:

// Ct+
IT Bus::Int i = ...;
IT Reflect::ValueRef<IT Bus::Int> reflect i(&i);

To convert an IT Bus::Reflection instance to an XML schema type
(represented by the IT Bus::anyType base type), call one of the following
IT Reflect::Reflection::get reflected() functions:

// C++
const IT Bus::AnyType& get reflected() const
IT THROW DECL ((ReflectException));

IT Bus::AnyType& get_reflected()
IT THROW DECL ((ReflectException));

Currently, the Artix reflection APl does not provide any data type that
completely encapsulates an XML type description. However, some type
information is implied in the structure of a Reflection object. In particular,
Reflection Objects support the get type kind() function, which has the
following signature:
// C++
IT Bus::AnyType::Kind get type kind() const

IT THROW DECL ((ReflectException));

The IT Bus::AnyType::Kind type is an enumeration, defined as follows:
Example 202:Definition of the IT_Bus::AnyType::Kind Enumeration

// C++
namespace IT Bus {
class AnyType {
public:
enum Kind
{
NONE, // BAnyType::get kind() will never return this.
BUILT IN, // built-in type

443

CHAPTER 10 | Reflection

Parsing reflection objects

444

Example 202:Definition of the IT_Bus::AnyType::Kind Enumeration

SIMPLE, // simpleType restriction
SEQUENCE,

ALL,

CHOICE,

SIMPLE CONTENT,

ELEMENT LIST,

SOAP_ENC_ARRAY,

COMPLEX CONTENT,

NILLABLE,

ANY HOLDER,

ANY, // anyType restriction.
ANY LIST,

SIMPLE TYPE LIST,

SIMPLE TYPE UNION,

TYPE LIST,

The Artix reflection API is designed to let you parse the C+ + representation
of XML data types. Starting with an instance of a user-defined type in C++,
you can convert this instance into an IT Bus::Reflection instance (by
calling get_reflection ()) and use recursive descent parsing to process the
returned reflection instance.

For example, you could use this functionality to print out the contents of an
arbitrary Artix data type (see “Reflection Example” on page 476) or to
convert an Artix data type into another data format.

The IT_Bus::Var Template Type

The IT _Bus::Var Template Type

Overview

Reference counted objects

The 1T _Bus::var<T>template class is a smart pointer type that can be used
to manage memory for reflection objects. Because functions in the reflection
API generally return pointers to objects (which the caller is responsible for
deleting), you have to exercise some care in order to avoid memory leaks.

The simplest way to manage memory for a reflection type, 7, is to use the
IT Bus::Var<T>smart pointer type to reference the objects of type . The
IT Bus::Var<T> type uses reference counting to manage the memory.

Objects referenced by 1T Bus::var<T> must be reference counted. A
reference counted object is an instance of a class that derives from
IT Bus::RefCountedBase, having the following properties:

® The initial reference count is 1.

® The reference count is incremented by calling _add ref ().

® The reference count is decremented by calling remove ref ().
® When the reference count reaches zero, the object is deleted.

Figure 27 illustrates how the reference count is affected by the add ref ()
and remove ref () functions.

Figure 27: Reference Counted Object

Reference 1
counted object \
_remove_ref () @

445

CHAPTER 10 | Reflection

Var template class

Assigning a plain pointer to a Var

446

Table 22 shows the basic operations supported by the 1T Bus::var<T>

template class.

Table 22: Basic IT_Bus::Var<T> Operations

Operation

Description

The assignment operator distinguishes between the
following kinds of assignment:

® Assigning a plain pointer to a Var.
® Assigning a Var to a Var.

Dereferences the Var (returning the referenced object).

->

Accesses the members of the referenced object.

T* get ()

Returns a plain pointer to the referenced object. The
reference count is unchanged.

T* release()

Returns a plain pointer to the referenced object and
gives up ownership of the object (the Var resets to
null). The reference count is unchanged.

When a plain pointer is assigned to a Var, the Var type takes ownership of
one reference count unit and leaves the reference count unchanged. For
example, suppose that Foo is a reference counted class (that is, Foo inherits
from IT Bus::RefCountedBase). The following example shows what
happens when a plain pointer to Foo, plain p, is assigned to a Var type, fv.

// C++

#include <it bus/var.h>

{

Foo* plain p = new Foo(); // Initially, ref count = 1

// Assign the plain pointer, plain p, to the Var, f v
IT Bus::Var<Foo> f v = plain p; // Ref count = 1

// £ v automatically decreases ref count to 0 at end of scope

The IT_Bus::Var Template Type

There is no need to delete the p1ain p pointer explicitly. The £ v destructor
automatically reduces the reference count by 1 when it comes to the end of
the current scope, resulting in the destruction of the original Foo object.

Figure 28 shows the state of the variables in the preceding example just
after the assignment to the Var, £ v.

Figure 28: After Assigning a Plain Pointer to a Var

plain_p

fiv

Note: You should never attempt to delete a reference counted object

directly. To ensure clean-up, you can either assign the reference counted
object to a Var or call _remove ref().

Assigning a Var to a Var When a Var is assigned to a Var, the reference count is increased by one.

For example, suppose that roo is a reference counted class (that is, Foo
inherits from IT Bus::RefCountedBase). The following example shows what
happens when a Var pointer, £1_v, is copied twice, into £2_v and £3_v.

// Ct++
#include <it bus/var.h>

{
IT Bus::Var<Foo> fl v = new Foo(); // Initially,

ref count =
1
IT Bus::Var<Foo> f2 v = fl v; // Ref count = 2
IT Bus::Var<Foo> f3 v = fl v; // Ref count = 3

// Vars automatically decrease ref count to 0 at end of scope

}

The use of Var types ensures that the original Foo object is deleted at the
end of the current scope (because the reference count goes to 0).

447

CHAPTER 10 | Reflection

Figure 29 shows the state of the variables in the preceding example just
after the assignment to the Var, £3 v.

Figure 29: A Reference Counted Object Referenced by Three Vars

fl v

\
£2 v —>
pC

f3_v

Casting from a plain pointer to a To cast a plain pointer to a Var, use the standard C++ cast operators:

Var dynamic_cast<T>, static_cast<T>, and const cast<T>.
Casting from a Var to a Var To cast a Var to a Var, Artix provides the following casting operators:
// C++

IT Bus::dynamic cast var<T>()
IT Bus::static cast var<T>()
IT Bus::const cast var<T>()

These operate analogously to the standard C++ cast operators,

dynamic _cast<T>, static cast<T>, and const cast<T>, with the additional
side effect that the reference count increases by one (the casting operators
call _add ref () on the referenced object).

Examples of casting For some examples of using the IT Bus::dynamic cast var<T> operator,
see “Reflection Example” on page 476.

448

Reflection API

Reflection API

Overview

In this section

This section briefly describes the Artix reflection API. The header files for the

classes described in this section are located in

ArtixInstallDir/artix/Version/include/it bus/reflect.

This section contains the following subsections:

Overview of the Reflection API page 450
IT_Reflect::Value<T> page 452
IT_Reflect::All page 456
IT_Reflect::Sequence page 459
IT_Reflect::Choice page 462
IT_Reflect::SimpleContent page 465
IT_Reflect::ComplexContent page 467
IT_Reflect::ElementList page 470
IT_Reflect::SimpleTypeList page 472
IT_Reflect::Nillable page 473

449

CHAPTER 10 | Reflection

Overview of the Reflection API

Artix provides a collection of reflection classes to parse the contents of XML

Overview
schema data objects. Figure 30 gives an overview of the inheritance
hierarchy for this C+ + reflection API.

Figure 30: Reflection API Inheritance Hierarchy
IT_Reflect::Reflection
<
+get_type_name()
+get_type_kind()
+get_reflected()

IT_Reflect::SimpleType IT_Refilect::ComplexType IT_Reflect::ElementLis| IT_Reflect::Nillabl
+get_attribute_count() +get_list_ max_occurs() +get_is_nil()
+get_attribute_name() +get_list_min_occurs() +set_is_nil()
+get_attribute_value() +get list_size() +get value()

+set_list_size() +use_value()
+get_element()
+use_element()
IT_Refilect::BuiltinType IT_Reflect::DerivedSimpleType IT_Reflect::ModelGrouy IT_Reflect::SimpleConten IT_Reflect::ComplexConte
+get_value_kind() +get_base() +get_element_count() +get_value() +get_base()
+use_base() +get_element_name() +use_value() +use_base()
+get_element() +get_extension()
+use_element() +use_extension()
N
IT_Reflect::Value<T} IT_Reflect::All IT_Reflect::Choice
+get_value() +get_current_element()
+set_value() +set_no_element()
+get value_kind()

IT_Reflect::Sequencs

450

Base classes

Leaf classes

Reflection API

The following classes in Figure 30 on page 450 are used as base classes:

IT Reflect:

IT Reflect:

IT Reflect:

IT Reflect:

IT Reflect:

:Reflection

:SimpleType

:BuiltInType

:ComplexType

:ModelGroup

Base class for all reflection classes.

Base class for all built-in and restricted
simple types.

Base class for all built-in types.

Base class for all complex types (types
with attributes) except complexContent.

Base(ﬂassforxsd:all,xsd:sequenceand
xsd:choice types.

The following classes in Figure 30 on page 450 are the leaf classes for the
reflection API:

IT Reflect::

IT Reflect:

IT Reflect:

IT Reflect:

IT Reflect:

IT Reflect:

IT Reflect:

IT Reflect:

IT Reflect:

Value<T>

:All

:Sequence

:Choice

:SimpleContent

:ComplexContent

:ElementList

:Nillable

Template class for built-in types.

:DerivedSimpleType Reflection class for restricted simple

types.
Reflection class for the xsd:al1 type.

Reflection class for the xsd:sequence
type.
Reflection class for the xsd:choice type.

Reflection class for xsd: simpleContent
types.

Reflection daSSfOFxsd:complexContent
types.

Reflection class representing an element
declared with non-default minoccurs or
non-default maxoccurs properties.

Reflection class representing an element
declared with nillable="true".

451

CHAPTER 10 | Reflection

IT_Reflect::Value<T>

Overview

Sample schema

IT_Reflect::Value<T> template
class

452

The IT Reflect::Value<T>template class is used to represent built-in
types.

This subsection discusses the following topics:
® Sample schema

® IT_Reflect::Value<T> template class

® IT_Reflect::Value<T> member functions
® Example

Example 203 shows an example of schema element defined to be of simple
type, xsd:string.

Example 203:Simple Type Example Element

<schema targetNamespace="http://schemas.iona.com/example"
xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:tns="http://schemas.iona.com/example">
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<element name="string elem" type="xsd:string"/>
</schema>

The IT Reflect::value<T>template class can be used to define a reflection
class for each of the standard built-in schema types. For example, you
would declare IT Reflect::Value<IT Bus::Boolean> t0 hold an
xsd:boolean, IT Reflect::Value<IT Bus::Short>t0 hold an xsd:short,
and IT Reflect::Value<IT Bus::String>t0 hold an xsd:string.

IT_Reflect::Value<T> member
functions

Reflection API

Example 204 shows the IT Reflect::value<T> member functions, which
enable you to read and modify the value of a simple type using the
get_value() and set value() functions.

Example 204:/T_Reflect::Value<T> Member Functions

// C++

// Member functions defined in IT Reflect::Value<T>
const T& get value() const IT THROW DECL(());

T& get value() IT THROW DECL(());
void set value (const T& value) IT THROW DECL(());

IT Reflect::BuiltInType::ValueKind
get value kind() const IT THROW DECL(());

// Member functions inherited from IT Reflect::BuiltInType
IT Reflect::BuiltInType::ValueKind
get value kind() const IT THROW DECL(()) = 0;

void copy(const IT Reflect::BuiltInType* other)
IT THROW DECL((IT Reflect::ReflectException));

IT Bus::Boolean equals(const IT Reflect::BuiltInType* other)
const IT THROW DECL(()) ;

// Member functions inherited from IT Reflect::Reflection
const IT Bus::QName&

get _type name() const IT THROW DECL(());

IT Bus::AnyType::Kind
get type kind() const IT THROW DECL(());

const IT Bus::AnyType&
get reflected() const IT THROW DECL(());

IT Bus::AnyType&
get reflected() IT THROW DECL(());

IT Bus::AnyType*
clone () const IT THROW DECL ((ReflectException));

453

CHAPTER 10 | Reflection

Identifying a built-in type

Atomic built-in types

Other built-in types

The IT Reflect::BuiltInType class (base class of IT Reflect::Value<T>)
supports two functions that return type information, as follows:

//CH++
IT Bus::AnyType::Kind
get type kind() const IT THROW DECL(());

IT Reflect::BuiltInType::ValueKind
get value kind() const IT THROW DECL(()) = O;

When parsing a reflection object containing a built-in type, you can use the
preceding functions as follows:

get_type_kind()

This function returns the value, Burrt 1N, for all built-in types. Hence, it
can be used to determine that the reflection object is a built-in type, but it
does not identify exactly which kind of built-in type.

get_value_kind()

This function tells you the precise kind of built-in type. For example, it
returns FrLoart, if the reflection object is of xsd: float type, or ANY HOLDER, if
the reflection object is of xsd:anyType type.

For a complete list of supported atomic types, see Table 2 on page 247.

For the list of supported non-atomic types, see Table 23.

Table 23: Non-Atomic Built-In Types Supported by Reflection

Value Kind Schema Type C++ Type
ANYURI xsd:anyURT IT Bus::AnyURI
ANY xsd:any IT Bus::Any
ANY LIST xsd:any (multiply occurring) IT Bus::AnyList
ANY HOLDER xsd:anyType IT Bus::AnyHolder
REFERENCE references:Reference IT Bus::Reference

454

Reflection API

Example You can access and modify an xsd:string basic type as follows:

// Ctt
IT Reflect::Value<IT Bus::String>& v_str = //

// Read the string value.
cout << "Element string value = " << v_str.get value() << endl;

// Change the string value.
v_str.set value("New string value here.");

455

CHAPTER 10 | Reflection

IT_Reflect::All

Overview

Sample schema

IT_Reflect::All member functions

456

The 1T Reflect::all reflection class represents the xsd:a11 type. This
class supports functions to access an unordered group of elements and
functions to access and modify attributes.

This subsection discusses the following topics:
® Sample schema
® IT_Reflect::All member functions

Example 205 shows a sample schema for an xsd:al1 type.
Example 205:A// Type Example Schema

<schema targetNamespace="http://schemas.iona.com/example"
xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:tns="http://schemas.iona.com/example">
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<complexType name="SimpleAll">
<all>
<element name="varFloat" type="float"/>
<element name="varInt" type="int"/>
<element name="varString" type="string"/>
</all>
<attribute name="varAttrString" type="string"/>
</complexType>
</schema>

Example 206 shows the 1T Reflect::a11 member functions, which enable
you to access and modify the contents and attributes of an xsd:all type.

Example 206:/T_Reflect::All Member Functions

// Ct++

// Member functions inherited from IT Reflect::ModelGroup
const IT Bus::QName& get element name(size t i) const

IT THROW DECL(());

size t get element count() const IT THROW DECL(());

Reflection API

Example 206:/T_Reflect::All Member Functions

IT Bus::QName get element name (size t i) const
IT THROW DECL ((ReflectException));

const IT Reflect::Reflection*
get element (size t i) const IT THROW DECL ((ReflectException));

const IT Reflect::Reflection*
get _element (const IT Bus::QName& element name) const
IT THROW DECL ((ReflectException));

IT Reflect::Reflection*
use element (size t i) IT THROW DECL ((ReflectException));

IT Reflect::Reflection*
use_element (

const IT Bus::QName& element name
) IT THROW DECL ((ReflectException));

// Member functions inherited from IT Reflect::ComplexType
const IT Bus::QName& get attribute name (size t i) const
IT THROW DECL(())

size t get attribute count() const IT THROW DECL(());

const IT Reflect::Reflection*
get attribute value(size t i) const
IT THROW DECL ((ReflectException));

const IT Reflect::Reflection*
get_attribute value(const IT Bus::QName& name) const
IT THROW DECL ((ReflectException));

IT Reflect::Reflection*
use attribute value(size t i) IT THROW DECL ((ReflectException));

IT Reflect::Reflection*
use attribute value (const IT Bus::QName& name)
IT THROW DECL ((ReflectException));
// Member functions inherited from IT Reflect::Reflection
const IT Bus::QName&
get type name() const IT THROW DECL(());

IT Bus::AnyType::Kind
get type kind() const IT THROW DECL(());

457

CHAPTER 10 | Reflection

Example 206:/T_Reflect::All Member Functions

const IT Bus::AnyTypeé&
get_reflected() const IT THROW DECL(());

IT Bus::AnyTypeé&
get_reflected() IT THROW DECL(());

IT Bus::AnyType*
clone () const IT THROW DECL((ReflectException));

458

Reflection API

IT_Reflect::Sequence

Overview

Sample schema

The IT Reflect::Sequence reflection class represents the xsd:sequence
type. This class supports functions to access an ordered group of elements
and functions to access and modify attributes.

This subsection discusses the following topics:
® Sample schema
® IT_Reflect::Sequence member functions

Example 207 shows a sample schema for an xsd:sequence type.
Example 207:Sequence Type Example Schema

<schema targetNamespace="http://schemas.iona.com/example"
xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:tns="http://schemas.iona.com/example">
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<complexType name="SimpleStruct'">
<sequence>
<element name="varFloat" type="float"/>
<element name="varInt" type="int"/>
<element name="varString" type="string"/>
</sequence>
<attribute name="varAttrString" type="string"/>
</complexType>
</schema>

459

CHAPTER 10 | Reflection

IT_Reflect::Sequence member
functions

460

Example 208 shows the IT Reflect::Sequence member functions, which
enable you to access and modify the contents and attributes of an
xsd:sequence type.

Example 208:/T_Reflect::Sequence Member Functions

1Y S

// Member functions defined in IT Reflect::Sequence

IT Reflect::Reflection& get element at (size t index)
IT THROW DECL ((ReflectException));

const IT Reflect::Reflection& get element at(size t index) const
IT THROW DECL ((ReflectException));

// Member functions inherited from IT Reflect::ModelGroup
const IT Bus::QName& get element name(size t i) const
IT THROW DECL(());

size t get element count() const IT THROW DECL(());

IT Bus::QName get element name(size t i) const
IT THROW DECL ((ReflectException));

const IT Reflect::Reflection*
get element (size t i) const IT THROW DECL ((ReflectException)) ;

const IT Reflect::Reflection*
get_element (const IT Bus::QName& element name) const
IT THROW DECL ((ReflectException));

IT Reflect::Reflection*
use element (size t i) IT THROW DECL ((ReflectException));

IT Reflect::Reflection*
use element (

const IT Bus::QName& element name
) IT THROW DECL ((ReflectException));

// Member functions inherited from IT Reflect::ComplexType
const IT Bus::QName& get attribute name(size t i) const
IT THROW DECL(());

size t get attribute count() const IT THROW DECL(());

const IT Reflect::Reflection*

Reflection API

Example 208:/T_Reflect::Sequence Member Functions

get attribute value(size t i) const
IT THROW DECL ((ReflectException));

const IT Reflect::Reflection*
get attribute value (const IT Bus::QName& name) const
IT THROW DECL((ReflectException));

IT Reflect::Reflection*
use attribute value(size t i) IT THROW DECL ((ReflectException));

IT Reflect::Reflection*
use attribute value (const IT Bus::QName& name)
IT THROW DECL ((ReflectException));

// Member functions inherited from IT Reflect::Reflection
const IT Bus::QName&

get _type name() const IT THROW DECL(());

IT Bus::AnyType::Kind
get type kind() const IT THROW DECL(());

const IT Bus::AnyType&
get reflected() const IT THROW DECL(());

IT Bus::AnyType&
get reflected() IT THROW DECL(());

IT Bus::AnyType*
clone () const IT THROW DECL ((ReflectException));

461

CHAPTER 10 | Reflection

IT_Reflect::Choice

Overview

Sample schema

IT_Reflect::Choice member
functions

462

The IT Reflect::Choice reflection class represents the xsd:choice type.
This class supports functions to access the choice element and functions to
access and modify attributes.

This subsection discusses the following topics:
® Sample schema
® IT_Reflect::Choice member functions

Example 209 shows a sample schema for an xsd:choice type.
Example 209:Choice Type Example Schema

<schema targetNamespace="http://schemas.iona.com/example"
xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:tns="http://schemas.iona.com/example">
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<complexType name="SimpleChoice">
<choice>
<element name="varFloat" type="float"/>
<element name="varInt" type="int"/>
<element name="varString" type="string"/>
</choice>
</complexType>
</schema>

Example 210 shows the IT Reflect::Choice member functions, which
enable you to access and modify the contents and attributes of an
xsd:choice type.

Example 210:/T_Reflect::Choice Member Functions

// C++

// Member functions defined in IT Reflect::Choice
IT Bus::QName

get _element name () const IT THROW DECL(());

// Member functions inherited from IT Reflect::ModelGroup

Reflection API

Example 210:/T_Reflect::Choice Member Functions

const IT Bus::QName& get element name(size t i) const
IT THROW DECL(());

size t get element count () const IT THROW DECL(());

IT Bus::QName get element name (size t 1) const
IT THROW DECL ((ReflectException));

const IT Reflect::Reflection*
get element (size t i) const IT THROW DECL ((ReflectException));

const IT Reflect::Reflection*
get element (const IT Bus::QName& element name) const
IT THROW DECL ((ReflectException));

IT Reflect::Reflection*
use element (size t i) IT THROW DECL ((ReflectException));

IT Reflect::Reflection*
use_element (

const IT Bus::QName& element name
) IT THROW DECL ((ReflectException));

// Member functions inherited from IT Reflect::ComplexType
const IT Bus::QName& get attribute name (size t i) const
IT THROW DECL(()) ;

size t get attribute count() const IT THROW DECL(());
const IT Reflect::Reflection*
get attribute value(size t i) const
IT THROW DECL ((ReflectException));
const IT Reflect::Reflection*
get attribute value (const IT Bus::QName& name) const

IT THROW DECL ((ReflectException));

IT Reflect::Reflection*
use attribute value(size t i) IT THROW DECL ((ReflectException));

IT Reflect::Reflection*
use attribute value (const IT Bus::QName& name)

IT THROW DECL ((ReflectException));

// Member functions inherited from IT Reflect::Reflection

463

CHAPTER 10 | Reflection

Example 210:/T_Reflect::Choice Member Functions

const IT Bus::QName&
get_type name() const IT THROW DECL(());

IT Bus::AnyType::Kind
get type kind() const IT THROW DECL(())

const IT Bus::AnyTypeé&
get_reflected() const IT THROW DECL(());

IT Bus::AnyTypeé&
get_reflected() IT THROW DECL(());

IT Bus::AnyType*
clone () const IT THROW DECL((ReflectException));

464

Reflection API

IT_Reflect::SimpleContent

Overview

Sample schema

IT_Reflect::SimpleContent
member functions

The IT Reflect::SimpleContent reflection class represents types defined
using the <xsd:simpleContent> tag. This class supports functions to access
the type’s value and functions to access and modify attributes. Simple
content types can be derived either by restriction or by extension from
existing simple types (see “Deriving a Complex Type from a Simple Type” on
page 310 for more details).

This subsection discusses the following topics:
® Sample schema
® IT_Reflect::SimpleContent member functions

Example 211 shows a sample schema for an xsd:simpleContent type.
Example 211:SimpleContent Type Example Schema

<schema targetNamespace="http://schemas.iona.com/example"
xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:tns="http://schemas.iona.com/example">
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<complexType name="Document'>
<simpleContent>
<extension base="string">
<attribute name="ID" type="string"/>
</extension>
</simpleContent>
</complexType>
</schema>

Example 212 shows the IT Reflect::SimpleContent member functions,
which enable you to access and modify the contents and attributes of an
xsd:simpleContent type.

465

CHAPTER 10 | Reflection

Example 212:/T_Reflect::SimpleContent Member Functions

// C++

// Member functions defined in IT Reflect::SimpleContent
IT Reflect::Reflection*

use value() IT THROW DECL(());

const IT Reflect::Reflection*
get value() const IT THROW DECL(());

// Member functions inherited from IT Reflect::ComplexType
const IT Bus::QName& get attribute name(size t i) const
IT THROW DECL(());

size t get attribute count() const IT THROW DECL(());

const IT Reflect::Reflection*
get attribute value(size t i) const
IT THROW DECL ((ReflectException));

const IT Reflect::Reflection*
get attribute value(const IT Bus::QName& name) const
IT THROW DECL ((ReflectException));

IT Reflect::Reflection*
use attribute value(size t i) IT THROW DECL ((ReflectException));

IT Reflect::Reflection*
use attribute value(const IT Bus::QName& name)
IT THROW DECL ((ReflectException));

// Member functions inherited from IT Reflect::Reflection
const IT Bus::QName&

get_type name () const IT THROW DECL(());

IT Bus::AnyType::Kind
get_type kind() const IT THROW DECL(());

const IT Bus::AnyTypeé&
get_reflected() const IT THROW DECL(());

IT Bus::AnyTypeé&
get_reflected() IT THROW DECL(());

IT Bus::AnyType*
clone () const IT THROW DECL((ReflectException));

466

Reflection API

IT_Reflect::ComplexContent

Overview

Sample schema

The IT Reflect::ComplexContent reflection class represents types defined
using the <xsd:complexContent> tag. This class supports functions to
access the type’s base contents and derived contents, as well as functions to
access and modify attributes. Complex content types can be derived by
extension from existing types (see “Deriving a Complex Type from a Complex
Type” on page 313 for more details).

This subsection discusses the following topics:
® Sample schema
® IT_Reflect::ComplexContent member functions

Example 213 shows a sample schema for an xsd:complexContent type.
Example 213:ComplexContent Type Example Schema

<schema targetNamespace="http://schemas.iona.com/example"
xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:tns="http://schemas.iona.com/example">
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<complexContent mixed="false">
<extension base="tns:SimpleStruct">
<sequence>
<element name="varStringExt" type="string"/>
<element name="varFloatExt" type="float"/>
</sequence>
<attribute name="attrStringl" type="string"/>
</extension>
</complexContent>
</schema>

467

CHAPTER 10 | Reflection

IT_Reflect::ComplexContent Example 214 shows the IT Reflect::SimpleContent member functions,
member functions which enable you to access and modify the contents and attributes of an
xsd:complexContent type

Example 214:/T_Reflect::ComplexContent Member Functions

1Y S

// Member functions defined in IT Reflect::ComplexContent
const IT Reflect::Reflection*

get base() const IT THROW DECL((IT Reflect::ReflectException));

IT Reflect::Reflection*
use base () IT_THROW DECL((IT Reflect::ReflectException));

const IT Reflect::Reflection* get extension() const
IT THROW DECL ((IT_Reflect::ReflectException));

IT Reflect::Reflection*
use extension() IT THROW DECL ((IT Reflect::ReflectException)) ;

// Member functions inherited from IT Reflect::ComplexType
const IT Bus::QName& get attribute name(size t i) const
IT THROW DECL(());

size t get attribute count() const IT THROW DECL(());

const IT Reflect::Reflection*
get attribute value(size t i) const
IT THROW DECL ((ReflectException));

const IT Reflect::Reflection*
get attribute value(const IT Bus::QName& name) const
IT THROW DECL ((ReflectException));

IT Reflect::Reflection*
use attribute value(size t i) IT THROW DECL ((ReflectException));

IT Reflect::Reflection*
use attribute value(const IT Bus::QName& name)
IT THROW DECL ((ReflectException));

// Member functions inherited from IT Reflect::Reflection

const IT Bus::QName&
get type name() const IT THROW DECL(());

468

Reflection API

Example 214:/T_Reflect::ComplexContent Member Functions

IT Bus::AnyType::Kind
get type kind() const IT THROW DECL(());

const IT Bus::AnyType&
get reflected() const IT THROW DECL(());

IT Bus::AnyType&
get reflected() IT THROW DECL(());

IT Bus::AnyType*
clone () const IT THROW DECL ((ReflectException));

Testing for an extension If the complex content data type does not have an extension part, the
get_extension() and use_extension () functions return O (NULL pointer).

469

CHAPTER 10 | Reflection

IT_Reflect::ElementList

Overview

Sample schema

IT_Reflect::ElementList member
functions

470

The IT Reflect::ElementList reflection class represents an element
declared with non-default minoccurs or non-default maxoccurs properties.
Specifically, if you call a reflection function that accesses an element, there
are two possible return values from that function, depending on the values
of minOccurs and maxOccurs:

minOccurs="1" maxOccurs="1" Returns the element directly.

All other values Returns IT Reflect::ElementList.

It makes no difference whether minoccurs and maxoccurs are set explicitly
or get their values by default.

This subsection discusses the following topics:
® Sample schema
® |T_Reflect::ElementList member functions

Example 215 shows a sample schema for an Artix array, which is
represented as an element list.

Example 215:Artix Array Type Example Schema

<schema targetNamespace="http://schemas.iona.com/example"
xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:tns="http://schemas.iona.com/example">
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<complexType name="ArrayOfString">
<sequence>
<element name="varString" type="xsd:string"
minOccurs="0" maxOccurs="unbounded" />
</sequence>
</complexType>
</schema>

Example 216 shows the IT Reflect::ElementList member functions,
which enable you to access and modify the contents of an Artix array type.

Reflection API

Example 216:/T_Reflect::ElementList Member Functions

// C++
// Menber functions defined in IT Reflect::ElementList
size t get list max occurs() const IT THROW DECL(());

size t get list min occurs() const IT THROW DECL(());
size t get list size() const IT THROW DECL(());

void set list size(size t size)
IT THROW DECL ((ReflectException));

const IT Reflect::Reflection*
get element (size t index) const
IT THROW DECL ((ReflectException));

IT Reflect::Reflection*
use element (size t index) IT THROW DECL ((ReflectException));

// Member functions defined in IT Reflect::Reflection
const IT Bus::QName&

get type name() const IT THROW DECL(());

IT Bus::AnyType::Kind
get type kind() const IT THROW DECL(());

const IT Bus::AnyType&
get reflected() const IT THROW DECL(());

IT Bus::AnyType&
get reflected() IT THROW DECL(());

IT Bus::AnyType*
clone () const IT THROW DECL ((ReflectException));

471

CHAPTER 10 | Reflection

IT_Reflect::SimpleTypeList

Overview

472

The IT Reflect::SimpleTypeList class is fairly similar to the

IT Reflect::ElementList class, except that the values in the list are
restricted to be of IT Bus::SimpleType type. The elements of an

IT Reflect::SimpleTypeList instance are accessed using the following
functions:

Example 217:get_item() and use_item() Functions from SimpleTypeList

// C++
const IT Bus::SimpleType*
get item(
size t index
) const IT THROW DECL((IT Reflect::ReflectException)) = 0;

IT Bus::SimpleType*
use item(
size t index
) IT THROW DECL((IT Reflect::ReflectException)) = 0;

Reflection API

IT_Reflect::Nillable

Overview

The IT Reflect::Nillable reflection class represents an element declared
with nillable="true". Specifically, if you call a reflection function that
accesses an element, the return values from that function, depend on the
value of nillable and on the values of minOccurs and maxOccurs, as

follows:

Table 24: Effect of nillable, minOccurs and maxQOccurs Settings

nillable

minOccurs/maxOccurs

Return Value

nillable="false"

minOccurs="1" maxOccurs="1"

Returns the element directly.

nillable="false"

All other values

Returns IT Reflect::ElementList.

nillable="true"

minOccurs="1" maxOccurs="1"

Returns IT Reflect::Nillable containing an
element directly.

nillable="true"

All other values

Returns an IT Reflect::ElementList containing
a list of IT Reflect::Nillables.

It makes no difference whether minoccurs and maxoccurs are set explicitly
or get their values by default.

This subsection discusses the following topics:

® Sample schema

® IT_Reflect::Nillable member functions

473

CHAPTER 10 | Reflection

Sample schema Example 218 shows a sample schema for a sequence type with nillable
elements.

Example 218:Sequence Type with Nillable Elements Example Schema

<schema targetNamespace="http://schemas.iona.com/example"
xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:tns="http://schemas.iona.com/example">
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<complexType name="StructWithNillables">
<sequence>

<element name="varFloat" nillable="true"
type="£float"/>

<element name="varInt" nillable="true" type="int"/>

<element name="varString" nillable="true"
type="string"/>

<element name="varStruct" nillable="true"
type="tns:SimpleStruct"/>

</sequence>
</complexType>
</schema>
IT_Reflect::Nillable member Example 219 shows the IT Reflect::Nillable member functions, which
functions enable you to access and modify the contents of a nillable type.

Example 219:/T_Reflect::Nillable Member Functions

// C++
// Member functions defined in IT Reflect::Nillable
IT Bus::Boolean get is nil() const IT THROW DECL(());

void set is nil() IT THROW DECL(());

const IT Reflect::Reflection*
get value() const IT THROW DECL ((IT Reflect::ReflectException));

IT Reflect::Reflection*
use value() IT THROW DECL ((ReflectException));

// Member functions defined in IT Reflect::Reflection

const IT Bus::QName&
get_type name() const IT THROW DECL(());

474

Reflection API

Example 219:/T_Reflect::Nillable Member Functions

IT Bus::AnyType::Kind
get type kind() const IT THROW DECL(());

const IT Bus::AnyType&
get reflected() const IT THROW DECL(());

IT Bus::AnyType&
get reflected() IT THROW DECL(());

IT Bus::AnyType*
clone () const IT THROW DECL ((ReflectException));

475

CHAPTER 10 | Reflection

Reflection Example

Overview As an example of Artix reflection, this section describes a program that is
capable of printing the contents of any Artix data type (including built-in and
user-defined types). The code examples in this section are taken from the
print random demonstration.

In this section This section contains the following subsections:
Print an IT_Bus::AnyType page 477
Print Atomic and Simple Types page 482
Print Sequence, Choice and All Types page 488
Print SimpleContent Types page 491
Print ComplexContent Types page 493
Print Multiple Occurrences page 496
Print Nillables page 498

476

Reflection Example

Print an IT_Bus::AnyType

Overview

Code extract

This subsection describes the main print () function for the printer class,
which has the following signature:

void Printer::print (const IT Bus::AnyType& any);

This function enables you to print out any XML type in Artix, including
built-in types and user-defined types (for built-in types, you have to insert
the data into an 1T Bus::AnyHolder instance before calling print ()). All
user-defined types and the IT Bus::AnyHolder type derive from

IT Bus::AnyType.

The print (const IT Bus::AnyTypes) function immediately calls

IT Bus::AnyType::get reflection() to convert the anyType to an

IT Reflect::Reflection instance. Parsing and printing of the Reflection
instance is then performed by the print (const IT Reflect::Reflection*)
function.

Example 220 shows a code extract from the printer class, which shows
the top-level functions for printing an IT Bus: :AnyType instance using the
Artix Reflection API.

Example 220:Code Example for Printing an IT_Bus::AnyType Instance

// Ct++

#include "printer.h"

#include <it bus/any type.h>

#include <it bus/reflect/complex content.h>
#include <it bus/reflect/complex type.h>
#include <it bus/reflect/element list.h>
#include <it bus/reflect/choice.h>

#include <it bus/reflect/nillable.h>
#include <it bus/reflect/reflection.h>
#include <it bus/reflect/simple content.h>
#include <it bus/reflect/simple type.h>
#include <it bus/reflect/derived simple type.h>
#include <it bus/reflect/built in type.h>
#include <it bus/reflect/value.h>

#include <it cal/iostream.h>

IT USING NAMESPACE STD;

using namespace IT Bus;

477

CHAPTER 10 | Reflection

Example 220:Code Example for Printing an IT_Bus::AnyType Instance

1 class Indenter
{
public:
Indenter (Printer* p) : m p(p) { m p—>indent(); }
~Indenter () { m p—>outdent(); }
private:
Printer* m p;

bi

IT ostream&
Printer::start line()
{
for (int 1 = 0; i < m indent; ++i)
{
cout << " W
}

return cout;

void
Printer: :indent ()
{

m_indent++;

void
Printer: :outdent ()
{

m_indent--;

void
2 Printer::print(
const AnyTypeé& any,
int indent

3 Var<const IT Reflect::Reflection>
reflection (any.get reflection());
Printer printer;
printer.m indent = indent;

4 printer.print (reflection.get());

478

Printer: :Printer ()

m_indent (0),
m in list (IT FALSE)

Printer: :~Printer ()

void
Printer: :print(

const IT Reflect::Reflection* reflection

assert (reflection != 0);

switch (reflection->get type kind())

{
case AnyType: :BUILT IN:

Reflection Example

Example 220:Code Example for Printing an IT_Bus::AnyType Instance

print (IT_DYNAMIC CAST (const IT Reflect::BuiltInType*,

reflection));
break;
case AnyType: :SIMPLE:
print (IT DYNAMIC CAST (const

IT Reflect::DerivedSimpleType*, reflection));

break;
case AnyType: :SEQUENCE:
case AnyType::ALL:
print (IT_DYNAMIC CAST (const
reflection));
break;
case AnyType: :CHOICE:
print (IT DYNAMIC CAST (const
reflection));
break;
case AnyType: :SIMPLE CONTENT:
print (IT _DYNAMIC CAST (const
reflection));
break;
case AnyType::ELEMENT LIST:
print (IT_DYNAMIC CAST (const
reflection));
break;

case AnyType: :COMPLEX CONTENT:

IT Reflect:

IT Reflect:

IT Reflect:

IT Reflect:

:ModelGroup¥*,

:Choice¥*,

:SimpleContent™,

:ElementList*,

479

CHAPTER 10 | Reflection

480

Example 220:Code Example for Printing an IT_Bus::AnyType Instance

print (IT DYNAMIC CAST (const IT Reflect::ComplexContent¥*,
reflection));
break;
case AnyType::NILLABLE:
print (IT DYNAMIC CAST (const IT Reflect::Nillable*,
reflection));
break;

default:
String message (
"<Unsupported type:
"+reflection->get type name () .to string()+">");
throw Exception (message) ;

}

The preceding extract from the printer class implementation can be
explained as follows:

1.

The Indenter class, together with the printer::start line(),
Printer::indent (), and Printer::outdent () functions, are used by
the Printer class to produce the output in a neatly indented format.

The Printer::print(const IT Bus::AnyTypes) function is a static
member function that prints XML schema data types that inherit from
xsd:anyType (effectively, any XML type). This print () function is the
most important function exposed by the printer class and you can use
it to print any XML type, irrespective of whether stub code for the type
is available or not.

The IT Bus::AnyType instance, any, is converted to an

IT Reflect::Reflection instance by calling get reflection(). The
IT Bus::Var<T>template type is just a reference counting smart
pointer type. See “The IT_Bus::Var Template Type” on page 445 for
more details.

The reflection.get () call returns a pointer of

const IT Reflect::Reflection* type, which can then be passed as
the argument to Printer: :print (const IT Reflect::Reflection*).

Reflection Example

The printer: :print (const IT Reflect::Reflection¥*) function is
the root print function for printing reflection instances. This print
function recursively iterates over the contents of the reflection instance,
printing all of its data.

The switch statement determines structure of the reflection object,
based on its type. The IT Reflect::Reflection::get type kind()
function returns an enumeration of IT Bus::AnyType: :Kind type.
Cast the IT Reflection::Reflection object to the appropriate type,
based on its kind. The IT DYNAMIC CAST (A,B) preprocessor macro is
equivalent to a conventional C++ dynamic_cast<T> operator.

481

CHAPTER 10 | Reflection

Print Atomic and Simple Types

Overview

Code extract

482

This subsection describes the print () functions for printing XML simple
types. These functions have the following signatures:

void Printer::print (const IT Reflect::BuiltInType*);
void Printer::print(const IT Reflect::DerivedSimpleType¥*) ;

The IT Reflect::SimpleType class is the base class for all simple types
and the following classes derive from simpleType:

® IT Reflect::BuiltInType—the base class for the

IT Reflect::Value<T> types that reflect an XML built-in type. For
example, the IT Reflect::value<IT Bus::Int> reflection type derives
from BuiltInType.

IT Reflect::DerivedSimpleType—the class that reflects simple types
derived by restriction from built-in types.

This example makes extensive use of C++ templates to simplify the
processing of all the different XML built-in types.

Example 221 shows a code extract from the printer class, which shows
the functions for printing XML atomic and simple types using the Artix
Reflection API.

Example 221:Code Example for Printing Atomic and Simple Types

// C++
template <class T>
void
print atom(
const T& value
)
{
cout << value << endl;

}

template <>
void
print atom(
const QNameé& value
)
{

Reflection Example

Example 221:Code Example for Printing Atomic and Simple Types

cout << value.to string() << endl;

/** A template to print value reflections values. */
template <class T>
struct PrintValue
{
static void
print value (
const IT Reflect::SimpleType* data,
Printer& printer

if (printer.is in list())
{
printer.start line();
}
const IT Reflect::Value<T>* value =
IT DYNAMIC CAST (const IT Reflect::Value<T>*, data);
assert (value != 0);
print atom(value->get value());

bi

void
Printer::print(
const IT Reflect::DerivedSimpleType* data

assert (data != 0);

Var<const IT Reflect::SimpleType> base (data->get base());
print (base.get());

return;

void
Printer: :print (
const IT Reflect::BuiltInType* data

assert (data != 0);
switch (data->get value kind())
{

483

CHAPTER 10 | Reflection

Example 221:Code Example for Printing Atomic and Simple Types

cout << value.to string() << endl;

/** A template to print value reflections values. */
template <class T>
struct PrintValue
{
static void
3 print value (
const IT Reflect::SimpleType* data,
Printer& printer

if (printer.is in list())
{

printer.start line();

}

4 const IT Reflect::Value<T>* value =
IT DYNAMIC CAST (const IT Reflect::Value<T>*, data);
assert (value != 0);

print atom(value->get value());

bi

void
5 Printer::print(
const IT Reflect::DerivedSimpleType* data

assert (data != 0);

6 Var<const IT Reflect::SimpleType> base (data->get base());
print (base.get());
return;

void
7 Printer::print(
const IT Reflect::BuiltInType* data

assert (data != 0);
8 switch (data->get value kind())
{

484

Reflection Example

Example 221:Code Example for Printing Atomic and Simple Types

case IT Reflect::BuiltInType::BOOLEAN:
PrintValue<Boolean>: :print value(data, *this);
return;

case IT Reflect::BuiltInType: :FLOAT:
PrintValue<Float>::print value (data, *this);
return;

case IT Reflect::BuiltInType: :DOUBLE:
PrintValue<Double>::print value (data, *this);
return;

case IT Reflect::BuiltInType::INT:
PrintValue<Int>::print value (data, *this);
return;

case IT Reflect::BuiltInType: :LONG:
PrintValue<Long>::print value(data, *this);
return;

case IT Reflect::BuiltInType: :SHORT:
PrintValue<Short>::print value (data, *this);
return;

case IT Reflect::BuiltInType::UINT:
PrintValue<UInt>::print value(data, *this);
return;

case IT Reflect::BuiltInType: :ULONG:
PrintValue<ULong>: :print value (data, *this);
return;

case IT Reflect::BuiltInType: :USHORT:
PrintValue<UShort>::print value (data, *this);
return;

case IT Reflect::BuiltInType: :BYTE:
PrintValue<Byte>::print value(data, *this);
return;

case IT Reflect::BuiltInType::UBYTE:
PrintValue<UByte>::print value (data, *this);
return;

case IT Reflect::BuiltInType: :STRING:
PrintValue<String>::print value (data, *this);
return;

case IT Reflect::BuiltInType: :DECIMAL:
PrintValue<Decimal>::print value(data, *this);
return;

case IT Reflect::BuiltInType: :QNAME:
PrintValue<QName>: :print value (data, *this);
return;

// Other types not implemented in this demo
case IT Reflect::BuiltInType::HEXBINARY:

485

CHAPTER 10 | Reflection

Example 221:Code Example for Printing Atomic and Simple Types

case IT Reflect::BuiltInType::BASE64BINARY:
case IT Reflect::BuiltInType: :DATE:
case IT Reflect::BuiltInType::TIME:
case IT Reflect::BuiltInType::ANYURI:
case IT Reflect::BuiltInType::ID:
case IT Reflect::BuiltInType::DATETIME:
case IT Reflect::BuiltInType::ANY:
case IT Reflect::BuiltInType::ANY LIST:
case IT Reflect::BuiltInType::ANY HOLDER:
case IT Reflect::BuiltInType::REFERENCE:
default:

start line() << "not implemented:" <<

data->get type name () .to string()
<< endl;
}

The preceding extract from the printer class implementation can be

explained as follows:

1. The print atom<T>() function template is a template for printing out
most simple types, such as IT Bus::Boolean, IT Bus::Int, and so on.

2. The print atom<IT Bus::QName> function is a specialization of the
print_atom<> template for printing qualified names, of
IT Bus::QName type

3. The printvalue<l>::print value() function template is a simple
wrapper function that combines a dynamic type cast with a call to
print_atomic<T>().

4. The IT DYNAMIC CAST(A,B) preprocessor macro is equivalent to a
conventional C++ dynamic_cast<T> operator.

5. The printer::print (const IT Reflect::DerivedSimpleType*)
function prints derived simple types. See “Deriving Simple Types by
Restriction” on page 275 for details of a simple type derived by
restriction.

6. This line accesses the value of the derived simple type by calling the
IT_Bus::DerivedSimpleType::get_base()funCﬁOﬂ.

7. The printer::print (const IT Reflect::BuiltInType*) function
prints out all of the XML built-in types.

486

Reflection Example

The IT Reflect::BuiltInType::get value kind() function returns
an enumeration of IT Reflect::BuiltInType::ValueKind type.

The built-in types can be printed using the appropriate form of the
PrintvValue</>::print value() template function.

487

CHAPTER 10 | Reflection

Print Sequence, Choice and All Types

Overview This subsection describes the print () functions for printing XML sequence,
choice and all types (collectively known as the model group types in the
XML syntax).

The print () function for sequence and all types has the following signature:
void Printer::print(const IT Reflect::ModelGroup*) ;
The print () function for choice types has the following signature:

void Printer::print(const IT Reflect::Choice*);

Code extract for sequence and all Example 222 shows a code extract from the printer class, which shows
the functions for printing XML sequence and all types using the Artix
Reflection API.

Example 222:Code Example for Printing Sequence and All Types

// C++
void
1 Printer::print(
const IT Reflect::ModelGroup* data

assert (data != 0);
cout << endl;
start line();
2 switch (data->get type kind())
{
case AnyType: :SEQUENCE: cout << "Sequence "; break;
case AnyType::ALL: cout << "All "; break;
default: assert(0);
}
3 cout << data->get type name().to string() << ": " << endl;
4 print attributes(data);
start line() << "Value" << endl;
Indenter indent (this);

5 for (int i = 0; i < data->get element count(); ++i)
{
6 Var<const IT Reflect::Reflection>
element (data->get element (i));
7 start line() << data->get element name (i).to string() <<

n. w.
. ’

488

Reflection Example

Example 222:Code Example for Printing Sequence and All Types

Indenter indent (this);
print (element.get ());

}

The preceding extract from the printer class implementation can be

explained as follows:

1. The printer::print (const IT Reflect::ModelGroup*) function
prints reflection instances that represent sequence or all types.

2. The IT Reflect::Reflection::get type kind() function returns an
enumeration of IT Bus: :AnyType: :Kind type.

3. The IT Reflect::Reflection::get type name () function returns the
QName of the current type. The IT Bus::QName type is converted to a
string using the to_string () function.

4. The attributes for this instance are printed out by calling the
Printer::print attributes(const IT Reflect::ComplexType*)
function. See “Print ComplexContent Types” on page 493 for a
description of this function.

5. Iterate over all the elements in the sequence or all.

The var<const IT Reflect::Reflection> type is used to construct a
reference counted smart pointer to an element instance, element. See
“The IT_Bus::Var Template Type” on page 445 for details.

7. The get element name() function returns a QName, which is
converted to a string using the to_string() function.

8. This line passes the element object to the generic reflection print
function, Printer::print(const IT Reflect::Reflection¥*).

489

CHAPTER 10 | Reflection

Code extract for choice Example 223 shows a code extract from the printer class, which shows
the function for printing XML choice types using the Artix Reflection API.

Example 223:Code Example for Printing Choice Types

// Ct++
void
1 Printer::print(
const IT Reflect::Choice* data

assert (data != 0);
cout << endl;
2 start line() << "Choice "

<< data->get type name().to string() << endl;
Indenter indent (this);
print attributes(data);
start line() << "Value:" << endl;
Indenter indent2 (this);
3 int 1 = data->get current element();
if (1 = -1)
{
Var<const IT Reflect::Reflection>
element (data->get element (i));
start line() << data->get element name (i) .to string()
<« Wg Wp
Indenter indent3 (this);
4 print (element.get()) ;

The preceding extract from the printer class implementation can be
explained as follows:

1. The printer::print(const IT Reflect::Choice*) function prints
reflection instances that represent choice types.

2. The IT Reflect::Reflection::get type name() function returns the
QName of the current type.

3. The IT Reflect::Choice::get current element () function returns
the index of the current element (or -1 if no element is selected).

4. The get () function converts the 1T Bus::var<T> smart pointer into a
plain pointer—see “The IT_Bus::Var Template Type” on page 445. In
this case, the returned pointer is of IT Reflect::Reflection* type.

490

Reflection Example

Print SimpleContent Types

Overview This subsection describes the print () function for printing XML simple
content types (defined using the <xsd:simpleContent> tag). The simple
content print () function has the following signature:
void Printer::print (const IT Reflect::SimpleContent¥);

A simple content type is an XML schema complex type that can have
attributes, but contains no sub-elements.

Code extract Example 224 shows a code extract from the printer class, which shows
the function for printing XML schema xsd:simpleContent types using the
Artix reflection API.

Example 224:Code Example for Printing SimpleContent Types

// C++
void
1 Printer::print(
const IT Reflect::SimpleContent* data
)
{
assert (data != 0);
cout << endl;
start line() << "simpleContentComplexType "

<< data->get type name().to string() << ": " <<
endl;
2 print attributes(data);
start line() << "Value: " << endl;
Indenter indent (this);
3 Var<const IT Reflect::SimpleType> value (data->get value());

print (value.get());

491

CHAPTER 10 | Reflection

The preceding extract from the printer class implementation can be

explained as follows:

1. The printer::print(const IT Reflect::SimpleContent*) function
prints reflection instances that represent simple content types (that is,
complex types that can have attributes, but no subelements).

2. The attributes for this instance are printed out by calling the
Printer::print attributes(const IT Reflect::ComplexType*)
function. See “Print ComplexContent Types” on page 493 for a
description of this function.

3. Thevar<const IT Reflect::SimpleType> type is a reference counting
smart pointer. The value variable references the contents of the
SimpleContents type.

492

Reflection Example

Print ComplexContent Types

Overview

Code extract

This subsection describes the print () function for printing XML complex
content types (defined using the <xsd:complexContent> tag). The complex
content print () function has the following signature:

void Printer::print (const IT Reflect::ComplexContent*);

A complex content type can have attributes, can contain sub-elements and
can be used to define complex types that derive from other complex types
(see “Deriving a Complex Type from a Complex Type” on page 313).

Example 225 shows a code extract from the printer class, which shows
the functions for printing XML schema xsd:complexContent types using the
Artix reflection API.

Example 225:Code Example for Printing ComplexContent Types

// Ctt
void
Printer: :print (
const IT Reflect::ComplexContent* data

assert (data != 0);
cout << endl;
start line() << "complexContentComplexType "
<< data->get type name() .to string() << ": "

<< endl;
Var<const IT Reflect::Reflection> base (data->get base());
start line() << "Base part: " << endl;

{
Indenter indent (this);
print (base.get ());
}
Var<const IT Reflect::Reflection>
extension (data->get extension());
if (extension.get())
{
start line() << "Extension part: " << endl;
Indenter indent (this);
print (extension.get());

493

CHAPTER 10 | Reflection

Example 225:Code Example for Printing ComplexContent Types

void
5 Printer::print attributes (
const IT Reflect::ComplexType* data
)
{

assert (data != 0);
start line() << "Attributes: " << endl;
Indenter indent (this);
6 for (size t 1 = 0; i < data—->get attribute count(); ++i)
{
7 Var<const IT Reflect::Reflection> value (

data->get attribute value(
data->get attribute name (i)

)
)i
start line() << data->get attribute name (i) .to_string()

<"t ="

if (value.get() == 0)
{

cout << "<missing>" << endl;

}

else

{
print (value.get());

}

assert (data != 0);

The preceding extract from the printer class implementation can be

explained as follows:

1. The printer::print (const IT Reflect::ComplexContent*) function
prints XML schema xsd: complexContent types (that is, complex types
that can have attributes and subelements).

2. The IT Reflect::Reflection::get type name () function returns the
QName of the current complex content type.

494

Reflection Example

Construct a var<const IT Reflect::Reflection> smart pointer type
to reference the base contents of the xsd:complexContent type. The
base contents will be non-empty, if the xsd:complexContent type is
defined by derivation—see “Deriving a Complex Type from a Complex
Type” on page 313 for details.

Construct a var<const IT Reflect::Reflection> smart pointer type
to reference the extended (that is, derived) contents of the
xsd:complexContent type.

The Printer: :print attributes(const IT Reflect::ComplexType*)
function prints out the list of attributes for any complex type.

Iterate over all of the attributes associated with this element.

If an attribute is defined with use="optional” in the XML schema, for
example:

<attribute name="AttrName" type="AttrType" use="optional"/>
Then the value returned from the get_attribute value() function
could be a NULL pointer (that is, 0), if the attribute is not set.

495

CHAPTER 10 | Reflection

Print Multiple Occurrences

Overview

Code extract

496

This subsection describes the print () function for printing element lists
(objects of IT Reflect::ElementList type). The print () function for a
multiply-occurring element has the following signature:

void Printer::print (const IT Reflect::ElementList*);

An IT Reflect::ElementList object is used to represent elements defined
with non-default values of minoccurs and maxoccurs (that is, any values
apart from minOccus=1 and maxOccurs=1). Calling a get_element () function
can return an IT Reflect::ElementList object instead of a single element,
if the element is multiply occurring.

Example 226 shows a code extract from the printer class, which shows
the function for printing multiply occurring elements (represented by the
IT Reflect::ElementList type) using the Artix reflection API.

Example 226:Code Example for Printing Multiple Occurrences

// C++
void
Printer: :print (
const IT Reflect::ElementList* data

assert (data != 0);

m in list true;

cout << endl;

for (size t 1 = 0; i < data->get list size(); ++i)

{

Var<const IT Reflect::Reflection>
element (data->get element (i));
print (element.get());
}

m in list = false;

bool
Printer::is in list()
{

return m in list;

Reflection Example

The preceding extract from the printer class implementation can be
explained as follows:

1.

The Printer: :print (const IT Reflect::ElementList*) function
prints multiply occurring elements (that is, elements whose occurrence
constraints have any values except the defaults, minoccurs="1" and
maxOccurs="2").

The IT Reflect::ElementList::get size() function returns the
number of elements in the element list.

Construct a var<const IT Reflect::Reflection> smart pointer type
to reference the ith element in the list.

497

CHAPTER 10 | Reflection

Print Nillables

Overview

Code extract

498

This subsection describes the print () function for printing nillable elements
(objects of IT Reflect::Nillable type). The print () function for a nillable
element has the following signature:

void Printer::print (const IT Reflect::Nillable¥*);

An IT Reflect::Nillable object is used to represent elements defined with
nillable="true". In this case, the value of the element might be absent
(IT Reflect::Nillable::is nil() equals true). If the element is non-nil,
it can be retrieved by calling IT Reflect::Nillable::get value().

Example 227 shows a code extract from the printer class, which shows
the function for printing nillables using the Artix reflection API.

Example 227:Code Example for Printing Nillables

// C++
void
Printer: :print (
const IT Reflect::Nillable* data
)
{
assert (data != 0);
if (data->get is nil())
{
cout << "<nil>" << endl;
}
else
{
Var<const IT Reflect::Reflection>
value (data->get value());
print (value.get());

Reflection Example

The preceding extract from the printer class implementation can be

explained as follows:

1. The printer::print (const IT Reflect::Nillable*) function prints
nillable elements (that is, elements defined with the attribute
xsd:nillable="true" in the XML schema).

2. Test the nillable element for nilness using the
IT Reflect::Nillable::is nil() function before attempting to print
the element value.

3. Construct a var<const IT Reflect::Reflection>smart pointer type
to reference the value of the nillable.

499

CHAPTER 10 | Reflection

500

In this chapter

CHAPTER 11

Persistent Maps

Artix provides a persistence mechanism, built on top of
Berkeley DB, which you can use to persist your Artix data types.
You must use this persistence mechanism, if you intend to
integrate your application with Artix high availability (HA).

This chapter discusses the following topics:

Introduction to Persistent Maps page 502
Creating a Persistent Map page 505
Inserting, Extracting and Removing Data page 508
Handling Exceptions page 512
Supporting High Availability page 515
Configuration Example page 518

501

CHAPTER 11 | Persistent Maps

Introduction to Persistent Maps

Overview Artix persistent maps constitute a simple persistence mechanism, which is
tailored to work with Artix data types and is based on Berkeley DB.

The persistent map API is concerned solely with inserting and extracting
records to and from a persistent map. The details of setting up the Berkeley
DB are taken care of by configuration—see “Configuration Example” on
page 518. Once you have configured your application to use Berkeley DB, a
new Berkeley DB instance is automatically created when you start the
application for the first time. No programming is required in order to create
the database or to connect to the database.

Header files The following header file is always needed for the persistent map API:
it_bus_pdk/persistent map.h
The following header files might also be needed, depending on your
persistence requirements:

it bus pdk/persistent string map.h
it _bus_pdk/gname persistence handler.h
it _bus pdk/any type persistence handler.h

DBConfig type An instance of IT Bus::DBConfig type encapsulates all of the Berkeley DB
configuration details. Implicitly, when a pBconfig instance is created, it
reads the configuration details from the application’s configuration scope (in
the artix.cfg configuration file).

You do not need to call any of the pBconfig member functions. A pBConfig
instance is needed only for passing to a persistent map constructor.

502

Persistent map templates

Persistence handler types

Introduction to Persistent Maps

The persistent map templates are used to construct hash tables that are
stored persistently in the Berkeley database. The hash table stores pairs of
items: the first item is a key, which can be of arbitrary type, and the second
item is data, which can also be of arbitrary type.

The following persistent map templates are provided:

IT Bus::PersistentStringMap<> template

A hash table that uses 1T _string (which can implicitly convert to and
from IT Bus::String) for the key and any atomic type (for example,
char or int) for the data. To use this type, you must include the

it bus pdk/persistent string map.h header.

IT Bus::PersistentMap<>template

A hash table that uses any atomic (for example, char or int) type for
the key and any atomic type for the data.
IT_Bus::PersistentMapBase<>tenprte

A hash table that uses any type (atomic or complex) for the key and
any type (atomic or complex) for the data.

The persistence handler types are used internally by Artix to make data
persistent. You do not need to use persistence handler types directly; you
provide them as template arguments to the persistentMapBase template.

The following handler types are provided:

IT Bus::PODPersistenceHandler

Used by Artix to make simple atomic types (such as char, int and so
on) persistent.

IT Bus::StringPersistenceHandler

Used by Artix to make the IT string type (or IT Bus::String type)
persistent. To use this type, you must include the

it bus pdk/persistent string map.h header.

IT Bus::QNamePersistenceHandler

Used by Artix to make the 1T Bus: :oname type persistent. To use this
type, you must include the

it bus_pdk/gname persistence handler.h header

503

CHAPTER 11 | Persistent Maps

504

IT Bus::AnyTypePersistenceHandler<> template

Used by Artix to make complex types persistent. Specifically, the
AnyTypePersistenceHandler can persist any type that inherits from
IT Bus::AnyType, Which includes any complex types generated from a
WSDL contract or an XML schema.

To use this type, you must include the

it bus pdk/any type persistence handler.h header and link with
the it _bus xml library.

Creating a Persistent Map

Creating a Persistent Map

Overview

Persistent map constructor

Lifetime of DBConfig instance

This section describes how to create persistent maps using the
PersistentStringMap<>, PersistentMap<>, and PersistentMapBase<>
templates.

In general, the constructor for a persistentMapType persistent map has the
following signature:

// C++

PersistentMapType: : PersistentMapType (
const char* id,
DBConfig* cfg

}i

The constructor takes the following arguments:

® id—a unique string that identifies the persistent map instance in the
database. You can choose any string for the iq, as long as it does not
clash with a pre-existing perstent map instance.

® cfg—a pointer to an IT Bus::DBConfig instance.

You can access the Berkeley DB only as long as the pBconfig instance
continues to exist. Therefore, you must avoid deleting this object
prematurely. Typically, you would create a beconfig instance near the
beginning of your application’s main () function (just after initializing an
IT Bus::Bus instance) and destroy the DBConfig instance near the end of
the main () function.

505

CHAPTER 11 | Persistent Maps

Creating a persistent string map

Creating a persistent map for
atomic types

506

An IT Bus::PersistentStringMap<>template is a persistent map type that
uses an IT String type or an IT Bus::String type as its key and any
atomic type (such as char or int) as its data.

Example 228 shows you how to create a string persistent map, £ map, that
uses float as its data type.

Example 228:Creating a String Persistent Map

// Ct+
using namespace IT Bus;

typedef IT Bus::PersistentStringMap<float> FloatMap;
DBConfig cfg (bus) ; // bus is an initialized bus instance
FloatMap f map ("StringToFloat", &cfg);

An IT Bus::PersistentMap<> template is a persistent map type that uses
any atomic type as its key and any atomic type as its data.

Example 229 shows you how to create a persistent map, i map, that uses
char as its key type and int as its data type.

Example 229:Creating a Persistent Map for Atomic Types

// C++
using namespace IT Bus;

typedef IT Bus::PersistentMap<char, int> IntMap;
DBConfig cfg (bus) ; // bus is an initialized bus instance
IntMap i map ("CharToInt", &cfg);

Creating a persistent map for
complex types

Creating a Persistent Map

To create a persistent map type, persistentMapType, for complex data,
define a typedef oOf the IT Bus::PersistentMapBase<> template as follows:

// C++
typedef IT Bus::PersistentMapBase<
KeyType,
DataType,
KeyPersistenceHandler,
DataPersistenceHandler
> PersistentMapType;

Where both the keyType and the pataType types can either be a atomic type
(char, int and so on) or a complex type. The KeyPersistenceHandler and
DataPersistenceHandler types must be chosen to match the corresponding
KeyType and DataType types. See “Persistence handler types” on page 503
for the complete list of persistence handler types.

Example 230 shows you how to create two persistent maps using the
PersistentMapBase template: the gtorMap type maps QNames to

IT Bus::Reference instances and the chartowspiMap type maps chars to
instances of a user complex type, MyWSDLType.

Example 230:Creating a Persistent Map for Complex Types

// C++
using namespace IT Bus;

typedef IT Bus::PersistentMapBase<
IT Bus::QName,
IT Bus::Reference,
IT Bus::QNamePersistenceHandler,
IT Bus::AnyTypePersistenceHandler<IT Bus::Reference>
> QtoRMap;

typedef IT Bus::PersistentMapBase<
char,
MyWSDLType,
IT Bus::PODPersistenceHandler,
IT Bus::AnyTypePersistenceHandler<MyWSDLType>
> ChartoWSDLMap;
DBConfig cfg(bus);
QOtoRMap map (“myRefMap”, &cfg);
ChartoWSDLMap myMap (“myDataMap”, &cfqg);

507

CHAPTER 11 | Persistent Maps

Inserting, Extracting and Removing Data

Overview

Inserting data into a persistent
map

508

This section explains how to perform basic operations on persistent maps.
The following tasks are described here:

® |Inserting data into a persistent map

® Extracting data from a persistent map

® Removing data from a persistent map

® Avoiding deadlock with iterators

To insert data into a persistent map of persistentMapType type, perform the
following steps:
1. Create a persistentMapType: :value_ type Object to hold the (key,
data) pair.
2. Insert the value type into the map using the
PersistentMapType: :insert () function.

If insert () succeeds, the data is committed right away to the database.
The operation is an atomic transaction and you do not have control over the
transactionality of the operation.

Example of a simple insert

Given a persistent map instance, i map, of IntMap type (see Example 229
on page 506), you can insert a (key, data) pair as follows:

// C++
IntMap::value type val('a', 175);
i map.insert (val);

Example of an insert with overwriting

The insert () function takes a second optional parameter that determines
whether to over-write an existing record in the persistent map. A value of
true implies the data is over-written, if the key matches an existing record;
a value of false (the default) implies the data is not over-written.

Extracting data from a persistent
map

Inserting, Extracting and Removing Data

Given a persistent map instance, i_map, of IntMap type, you can over-write
a (key, data) pair as follows:

// C++
IntMap::value type val('a', 190);
i map.insert(val, true);

Example of an insert with error checking

The insert () function returns an 1T _pair containing an
PersistentMapType: :iterator and an IT_Bool.Hence,yOU can optionally
define a pair object of IT Pair<PersistentMapType::iterator, IT Bool>
type to hold the return value from a persistentMapType: :insert () call.

If the insert succeeds in writing to the database, the returned iterator,
pair.first, is a valid pointer to the inserted record and the returned
boolean, pair.second, is true. If the insert cannot write the record (for
example, a record was already present and you did not specify overwriting)
the iterator points to the existing record and the boolean is false.

Given a persistent map instance, i_map, of IntMap type, you can check
whether a value insertions succeeds, as follows:

/Y Cir
IntMap::value type val('a', 200);
IT Pair<IntMap::iterator, IT Bool> pair;
pair = i map.insert (val);
if (!pair.second)
{
// handle the error

To retrieve data from a persistent database, call the
PersistentMapType::find () function, passing the key value of the record
you want to access. For example, if a persistent map consists of (char, int)
pairs, the find () function takes a char argument.

The find () function returns a persistentMapType: :iterator object, which
is effectively a pointer to an 1T_pair object. Using the iterator, you can view
the value of the desired record and also iterate through the remaining entries
in the database. Unlike iterators for in-memory hash maps, however, you
cannot alter the values in the database using this iterator.

509

CHAPTER 11 | Persistent Maps

Removing data from a persistent
map

510

Example of extracting data

To find a record keyed by the char value, 'a', from a persistent map, i _map,
of IntMap type, call find() as follows:

// C++

// Restrict the scope of the iterator object
{
IntMap::iterator iter = i map.find('a');
if (iter != i map.end()) {
// prints out the value of the int stored with key 'a'
cout << (*iter) .second << endl;

WARNING: An iterator object holds a lock on the Berkeley DB and this
lock is not released until the iterator is destroyed. Hence, to avoid
deadlock, it is essential to delete the iterator object (or let it go out of
scope) before making any further calls that require a lock, such as
insert () Of erase().

To remove a record from a persistent map, call the

PersistentMapType: :erase () function, passing the key value of the record
you want to erase as the sole argument. Like insert (), the erase ()
function is atomic: if it succeeds, the data on the disk is updated right away.

Example of removing a record

To erase a record keyed by the char value, 'a', from a persistent map,
i_map, Of IntMap type, call erase () as follows:

// C++
// Removes the record with key 'a'
if (i map.erase('a'")) {

cout << "Record successfully erased!" << endl;

}

Avoiding deadlock with iterators

Inserting, Extracting and Removing Data

Persistent map iterators are implemented using Berkeley DB cursors, which
acquire a read lock on the underlying database, and this lock is held until
the iterator is destroyed. It follows that you cannot perform any locking
operations (such as insert () or erase ()) as long as an iterator object exists
for the persistent map.

The following example shows an incorrect code fragment using iterators that
leads to deadlock:

// C++
IntMap::iterator iter = i map.find('a');
if (iter == 1 map.end())

{
IntMap::value type val('a', 123);
i map.insert(val); // DEADLOCK!
}

The correct way to implement this code is as follows:

// C++

bool found = false;

{
IntMap::iterator iter = i map.find('a');
found = (iter != i map.end());

if (!found)

IntMap::value type val('a', 123);
i map.insert(val); // No deadlock, iterator is gone.

511

CHAPTER 11 | Persistent Maps

Handling Exceptions

Overview

Exception handling sample

512

Artix provides a specific type, IT Bus::DBException, {0 represent the
database exceptions thrown by functions from the persistent map API.
Database exceptions should typically be handled on the server side (for
example, by writing the exception message to a server-side log).

Example 231 shows how Artix database exceptions should be handled on
the server side for applications that use the persistent map API.

Example 231:Sample Operation with DB Exception Handling

// C+t
#include <it bus_pdk/db exception.h>

void
foo() IT THROW DECL((IT Bus::Exception))
{
try
{
// Catch and process DBException explicitly
m persistent map.find(...);

}
catch (const IT Bus::DBException& db ex)
{

// Handle DB error locally...

}

The preceding exception handling sample can be explained as follows:

1. Inthis example, foo () represents the implementation of a WSDL
operation (in other words, it is a member function of a servant class).
2. Persistent map operations can throw exceptions of
IT Bus::DBException type, which inherits from the generic Artix
exception class, IT Bus::Exception.

3. The DB exceptions should be handled locally, on the server side.

Handling Exceptions

IT_Bus::DBException class Example 232 shows the signatures of the member functions from the
IT Bus::DBException Class.

Example 232:The IT_Bus::DBException Class

// C++
namespace IT Bus {
class IT BUS API DBException :
public Exception,
public Rethrowable<DBException>

public:
DBException (
unsigned long exception type,
int native error code,
const char* msg

)i
DBException (const DBExceptioné& rhs);
virtual ~DBException();

IT ULong error () const;

const char* error_as string() const;
const char* message() const;

int native error code() const;

The DBException class exposes the following member functions:
° error ()

Returns an Artix database error code (see “Database minor exception
codes” on page 514). The code returned from this function is usually
the most convenient way to distinguish the type of error that occurred.

error as_string()
Returns the name of an Artix database error code.
message ()

Returns a descriptive error message string, which you could use for
writing the error to a log.

native error code ()

Returns a native Berkeley DB error code.

513

CHAPTER 11 | Persistent Maps

Database minor exception codes The following minor exception codes can be returned by the
IT Bus::DBException::error () function.

Example 233:Database Exception Error Codes

// C++

// DBException error () codes.

IT Bus::DB_EXCEPTION CANNOT WRITE LOCK FILE

IT Bus::DB _EXCEPTION FAILURE DURING GET

IT Bus::DB EXCEPTION FAILURE DURING PUT

IT Bus::DB_EXCEPTION FAILURE DURING ERASE

IT Bus::DB EXCEPTION FAILURE DURING GET SIZE

IT Bus::DB EXCEPTION COULD NOT CREATE SHARED DB ENV
IT Bus::DB_EXCEPTION COULD NOT OPEN SHARED DB ENV
IT Bus::DB_EXCEPTION COULD NOT CREATE DB

IT Bus::DB EXCEPTION COULD NOT OPEN DB

IT Bus::DB_EXCEPTION NULL POINTER

IT Bus::DB EXCEPTION COULD NOT CREATE CURSOR

IT Bus::DB EXCEPTION COULD NOT DUP CURSOR

IT Bus::DB_EXCEPTION FAILURE DURING GET VALUE

IT Bus::DB EXCEPTION COULD NOT INITIALIZE REPLICATION
IT Bus::DB EXCEPTION COULD NOT INIT TXN

IT Bus::DB_EXCEPTION COULD NOT COMMIT TXN

IT Bus::DB_EXCEPTION COULD NOT MKDIR DB HOME

IT Bus::DB EXCEPTION BAD CONFIGURATION

IT Bus::DB_EXCEPTION COULD NOT OPEN SYNC DB

IT Bus::DB_EXCEPTION COULD NOT CREATE SYNC DB

IT Bus::DB EXCEPTION COULD NOT WRITE TO SYNC DB
IT Bus::DB_EXCEPTION SYNC DB NOT READY

IT Bus::DB_EXCEPTION COULD NOT PROMOTE

IT Bus::DB EXCEPTION COULD NOT DEMOTE

IT Bus::DB EXCEPTION SLAVE CANNOT UPDATE DB

IT Bus::DB EXCEPTION LICENSE CHECK FAILED

IT Bus::DB EXCEPTION ENV IN USE

514

Supporting High Availability

Supporting High Availability

Overview

Write-request forwarding

Write-request forwarding API

If you are going to use persistent maps in conjunction with the high
availability features of Artix, it is necessary to perform some additional
programming tasks to support write-request forwarding. Essentially, you
must write a few lines of code to tell Artix which WSDL operations need to
write to the database (using the persistent map API).

Note: The write-request forwarding feature is currently (as of Artix 3.0.2)
not supported by the CORBA binding.

The high availability model in Artix mirrors the high availability features of
the Berkeley DB. In this model, a replicated cluster consists of a master
replica and any number of s/ave replicas. The master replica can perform
both read and write operations to the database, but the slaves can perform
only read operations.

What happens, though, if a client sends a write-request to one of the slave
replicas? In this case, the slave replica needs to have some way of
forwarding the write-request to the master replica. Artix supports this
write-request forwarding feature using the request forwarder plug-in on
the server side. To enable the write-request forwarding feature, you must
appropriately configure the server replicas, as described in Deploying and
Managing Artix Solutions, and you must perform some programming steps,
as described here.

The 1T Bus::DBConfig class provides the following member function to
support write-request forwarding:

// C++
void
mark as write operations (
IT Vector<IT Bus::String> operations,

const IT Bus::QName& service,
const IT Bus::String& port,
const IT Bus::Stringé& wsdl_url

) IT THROW DECL ((DBException));

515

CHAPTER 11 | Persistent Maps

Example code

516

After creating a DBCconfig instance on the server side, you should call this

function to identify those WSDL operations that require a database write.

The mark_as_write operations() function takes the following parameters:

® operations—the list of WSDL operation names that require a
database write (the names in this list are unqualified).

® service—the QName of the service whose operations are considered
for forwarding.

® port—the name of the port whose operations are considered for
forwarding.

® wsdl url—the location of the WSDL contract.

Example 234 is an example that shows you how to program write-request
forwarding. In this example, the add_employee and remove employee
operations are designated as write operations.

Example 234:Write-Request Forwarding Example

// C++
using namespace IT Bus;

// Typical Artix server mainline

QName service ("", "SOAPService",
"http://www.iona.com/hello world soap http");

String port name = "Server2";

String wsdl url = "hello world.wsdl";

Bus var bus = IT Bus::init(...);

DBConfig db cfg(bus) ;

IT Vector<String> write operations;
write operations.push back("add employee") ;
write operations.push back ("remove employee") ;

db cfg.mark as write operations(
write operations,
service,
port_name,
wsdl url

);

// Now register servant as normal
bus->register servant (
servant,

High availability demonstration

Supporting High Availability

Example 234:Write-Request Forwarding Example

);

wsdl url,
service,
port name

The preceding code can be described as follows:

1.

The service, service, and port, port name, defined here are used to
identify the port whose operations are considered for forwarding.

The list of write operations is constructed as a vector of strings,

IT Vector<IT Bus::String>, Which is similar to the std: :vector type
from the standard template library (see “IT_Vector Template Class” on
page 412).

Call the 1T Bus::DBConfig::mark as write operations () function to
set the write operations from the given service and port, which are
considered for forwarding.

The servant registered by this line of code is the one whose operations
are considered for forwarding. The service and port name arguments
used here are identical to the service and port name arguments passed
to the mark as write operations () function.

A demonstration that illustrates the Artix high availability functionality is
available at the following location:

ArtixInstallDir/artix/Version/demos/advanced/high availability pe

rsistent servers

517

CHAPTER 11 | Persistent Maps

Configuration Example

Overview

Reference

518

Example 235 shows the minimal configuration that is required to configure
persistence based on the Berkeley DB.

Example 235:Configuration Required for Using Berkeley DB in Artix

Artix Configuration File

foo_service {
plugins:artix:db:env_name = "myDB.env";
plugins:artix:db:home = "/etc/dbs/foo service";
}i

The following configuration variables must be set:

plugins:artix:db:env_name Specifies the filename for the Berkeley
DB environment file. It can be any
string and can have any file extension
(for example, myDB.env).

plugins:artix:db:home Specifies the directory where Berkeley
DB stores all the files for the service
databases. Each service should have a
dedicated folder for its data stores. This
is especially important for replicated
services.

For more details about how to configure persistence, particularly for
configuring high availability features, see the relevant chapter on high
availability in Deploying and Managing Artix Solutions.

In this chapter

CHAPTER 12

Transactions In

Artix

This chapter discusses the Artix support for distributed

transaction processing.

This chapter discusses the following topics:

Introduction to Transactions page 520
Selecting the Transaction System page 525
Transaction API page 536
Transaction Demarcation page 539
Participants and Resources page 542
Threading page 552
Transaction Propagation page 556
Notification Handlers page 560
Reliable Messaging with MQ Transactions page 562
Client Example page 571

519

CHAPTER 12 | Transactions in Artix

Introduction to Transactions

Overview This section gives a short overview of the main features supported by Artix
transactions. The Artix transaction API is designed to be compatible with a
variety of different underlying transaction systems. Generally, you can
access the transaction system using a technology-neutral API, but the
technology-specific APIs are also available, in case you need to access more
advanced functionality.

The main features of Artix transactions are as follows:
® Supported protocols

® (Client-side transaction support

® Server-side transaction support

® Compatibility with Orbix

® Pluggable transaction system

® One-phase commit

® Two-phase commit

® Transaction propagation

Supported protocols Artix supports distributed transactions using the following protocols:
® CORBA binding over I1OP
® SOAP binding over any compatible transport

Client-side transaction support Transaction demarcation functions (begin_transaction(),
commit transaction() and rollback transaction())can be used on the
client side to initiate and terminate a transaction. While the transaction is
active, all of the operations called from the current thread are included in
the transaction (that is, the operations’ request headers include a
transaction context).

520

Server-side transaction support

Compatibility with Orbix

Introduction to Transactions

On the server side, an API is provided that enables you to implement
transaction participants (sometimes referred to as transactional resources).
Using transaction participants, you can implement servers that participate in
a distributed transaction with the ACID transaction properties (Atomicity,
Consistency, Integrity, and Durability).

Artix supports several different approaches to implementing a transaction
participant, depending on what kind of transaction system is loaded into
your application. For example, you might take a technology-neutral
approach by implementing the 1T Bus::TransactionParticipant class, or
you might decide to exploit the special features of a particular transaction
system instead.

The Artix transaction facility is fully compatible with CORBA OTS in Orbix.
Hence, if you already have a transactional server implemented with Orbix
ASP, you can easily integrate this with an Artix client, as shown in

Figure 31.

Figure 31: Artix Client Invokes a Transactional Operation on a CORBA OTS
Server

Orbix Domain

Artix
Client

begin_transaction() :

invoke CORBA
ke : | server

‘commit transaction() : Resource

Transaction
Factory

521

CHAPTER 12 | Transactions in Artix

Pluggable transaction system The underlying transaction system used by Artix can be replaced within a
pluggable framework. Currently, the following transaction systems are
supported by Artix:

® QTS Lite
® QTS Encina
® WS-AtomicTransactions

One-phase commit Artix supports the one-phase commit (1PC) protocol for transactions. This
protocol can be used if there is only one resource participating in the
transaction. The 1PC protocol essentially delegates the transaction
completion to the single resource manager. Figure 32 shows a schematic
overview of the 1PC protocol for a simple client-server system.

Figure 32: One-Phase Commit Protocol

begin_transaction() :

Artix ¢ invoke -
Client : - z ® Artix Server
: invoke : -
@{commit_transaction() L

................................... @ Resource

A 4

A 4

Transaction
System

The 1PC protocol progresses through the following stages:

1. Theclient calls begin transaction() to initiate the transaction.

2. Within the transaction, the client calls one or more WSDL operations
on the remote server. The WSDL operations are transactional, requiring
updates to a persistent resource.

3. Theclient calls commit transaction() to make permanent any
changes caused during the transaction (alternatively, the client could
call rollback transaction() to abort the transaction).

4. The transaction system performs the commit phase by sending a
notification to the server that it should perform a 1PC commit.

522

Two-phase commit

Introduction to Transactions

The two-phase commit (2PC) protocol enables multiple resources to

participate in a transaction. In order to preserve the essential properties of a

transaction involving multiple distributed resources, it is necessary to use a

more elaborate algorithm. The 2PC algorithm consists of the following two

phases:

® Prepare phase—the transaction system notifies all of the participants
to prepare the transaction. The participants prepare the transaction by
saving the information that would be required to redo or undo the
changes made during the transaction. At the end of this phase, the
participants vote whether to commit or roll back the transaction.

® Commit (or rollback) phase—if all of the participants vote to commit
the transaction, the transaction system notifies the participants to
commit the changes. On the other hand, if one or more participants
vote to roll back the transaction, the transaction system notifies the
participants to roll back the changes.

Figure 33 shows a schematic overview of the 2PC protocol for a client and
two remote servers.

Figure 33: Two-Phase Commit Protocol

Artix Server
Resource
................................... Transaction
begin_transaction() ! System
Artix invoke ;
Client o
invoke
commit transaction ()=F]
Artix Server
Resource
Transaction
System

523

CHAPTER 12 | Transactions in Artix

Transaction propagation

524

The 2PC protocol progresses through the following stages:

1.
2.

The client calls begin transaction() to initiate the transaction.

Within the transaction, the client calls one or more WSDL operations
on both of the remote servers.

The client calls commit transaction() to make permanent any
changes caused during the transaction (alternatively, the client could
call rollback transaction() to abort the transaction).

The transaction system performs the prepare phase by polling all of the
remote transaction participants (the first phase of a two-phase
commit).

The transaction system performs the commit or rollback phase by
sending a notification to all of the remote transaction participants (the
second phase of a two-phase commit).

If you have a section of code executing within a transaction context, Artix
automatically propagates a transaction context with the request message,
whenever a remote operation is called.

For example, consider a three-tier system, where a client initiates a
transaction, invokes an operation on server 1, and then server 1 makes a
further call on server 2. In this scenario, Artix automatically propagates the
transaction to server 2. The transaction is propagated, even if the protocol
between the client and server 1 differs from the protocol used between
server 1 and server 2.

Selecting the Transaction System

Selecting the Transaction System

Overview Using the Artix plug-in architecture, you can choose between a number of
different transaction system implementations. Because the Artix transaction
APl is designed to be independent of the underlying transaction system, it is
possible to select a particular transaction system at runtime (by specifying
the appropriate configuration). Typically, you would choose the transaction
system that provides the best match for your services. For example, if the
majority of your services are SOAP-based, you would probably select the
WS-AT transaction system.

This section describes how to configure an application to use each of the
transaction systems supported by Artix.

In this section This section contains the following subsections:
Configuring OTS Lite page 526
Configuring OTS Encina page 529
Configuring WS-AT page 533

525

CHAPTER 12 | Transactions in Artix

Configuring OTS Lite

Overview

Default transaction provider

Loading the OTS plug-in

526

The OTS Lite plug-in is a lightweight transaction manager, which is subject
to the following restrictions: it supports the 1PC protocol only and it lets you
register only one resource. This plug-in allows applications that only access
a single transactional resource to use the OTS APIs without incurring a large
overhead, but allows them to migrate easily to the more powerful 2PC
protocol by switching to a different transaction manager. Figure 34 shows a
client-server deployment that uses the OTS Lite plug-in.

Figure 34: Overview of a Client-Server System that Uses OTS Lite

Artix Client » Artix Server i

Resource

oTS oTS

OTS Lite

The following variable specifies the default transaction system used by an
Artix client or server:

plugins:bus:default tx provider:plugin

To select the CORBA OTS transaction system, you must initialize this
configuration variable with the value, ots_tx provider.

In order to use the CORBA OTS transaction system, the OTS plug-in must be
loaded both by the client and by the server. To load the OTS plug-in, include
the ots plug-in name in the orb plugins list. For example:

Artix Configuration File

ots lite client or server {
plugins:bus:default tx provider:plugin = "ots tx provider";
orb plugins = [..., "ots"];

i

Selecting the Transaction System

Loading the OTS Lite plug-in The OTS Lite plug-in, which is capable of managing 1PC transactions, can

be loaded on the client side, but it is not usually needed on the server side.

You can load the OTS Lite plug-in in one of the following ways:

® Dynamic loading—configure Artix to load the ots lite plug-in
dynamically, if it is required. For this approach, you need to configure

the initial references:TransactionFactory:plugin variable as
follows:

Artix Configuration File
ots lite client or server {

plugins:bus:default tx provider:plugin= "ots tx provider";
orb plugins = [..., "ots"];

initial references:TransactionFactory:plugin = "ots lite";

bi

This style of configuration has the advantage that the OTS Lite plug-in
is loaded only if it is actually needed.

Explicit loading—load the ots_1lite plug-in by adding it to the list of
orb plugins, as follows:

Artix Configuration File
ots lite client {

plugins:bus:default tx provider:plugin= "ots tx provider";
orb plugins = [..., "ots", "ots lite"];

bi

527

CHAPTER 12 | Transactions in Artix

The following example shows a sample configuration for using the OTS Lite
transaction manager:

Sample configuration

Artix Configuration File

Basic configuration for transaction plug-ins (shared library

names and so on) included in the global configuration scope.

... (not shown)

ots lite client or server {
plugins:bus:default tx provider:plugin= "ots_tx provider";
orb plugins = ["xmlfile log stream", "iiop profile", "giop",
"iiop", "ots"];
initial references:TransactionFactory:plugin = "ots lite";
i

528

Selecting the Transaction System

Configuring OTS Encina

Overview

Default transaction provider

The Encina OTS Transaction Manager provides full recoverable 2PC
transaction coordination implemented on top of the industry proven Encina
Toolkit from IBM/Transarc. Encina supports both 1PC and 2PC protocols
and allows you to register multiple resources. Figure 35 shows a
client/server deployment that uses the OTS Encina plug-in.

Figure 35: Overview of a Client-Server System that Uses OTS Encina

| Artix Server i

Resource
OTS
Artix Client
OoTS
OTS Encina
.| Artix Server i
Resource
OTS

The following variable specifies the default transaction system used by an
Artix client or server:

plugins:bus:default tx provider:plugin
To select the CORBA OTS transaction system, you must initialize this
configuration variable with the value, ots_tx provider.

529

CHAPTER 12 | Transactions in Artix

Loading the OTS plug-in For applications that use the CORBA OTS transaction system, the OTS
plug-in must be loaded both by the client and by the server. To load the OTS
plug-in, include the ots plug-in name in the orb plugins list. For example:

Artix Configuration File

ots encina client or server {
plugins:bus:default tx provider:plugin = "ots tx provider";
orb plugins = [..., "ots"];

bi

Loading the OTS Encina plug-in The OTS Encina plug-in, which is capable of managing 1PC and 2PC
transactions, can be loaded on the client side, but it is not usually needed
on the server side. You can load the OTS Encina plug-in in one of the
following ways:
® Dynamic loading—configure Artix to load the ots_encina plug-in

dynamically, if it is required. For this approach, you need to configure
the initial references:TransactionFactory:plugin variable as
follows:

Artix Configuration File

ots encina client or server {
plugins:bus:default tx provider:plugin="ots_ tx provider";
orb plugins = [..., "ots"];
initial references:TransactionFactory:plugin="ots encina";

}i

This style of configuration has the advantage that the OTS Encina
plug-in is loaded only if it is actually needed.
® Explicit loading—Iload the ots_encina plug-in by adding it to the list of
orb plugins, as follows:
Artix Configuration File
ots lite client {
plugins:bus:default tx provider:plugin= "ots tx provider";

orb plugins = [..., "ots", "ots encina"];

}i

530

Sample configuration

(o) IS, BE

Selecting the Transaction System

Example 236 shows a complete configuration for using the OTS Encina
transaction manager:

Example 236:Sample Configuration for OTS Encina Plug-In
Artix Configuration File

ots lite client or server {
plugins:bus:default tx provider:plugin= "ots tx provider";

orb plugins = [..., "ots"];

initial references:TransactionFactory:plugin = "ots encina";
plugins:ots encina:direct persistence = "true";

plugins:ots encina:initial disk = "../../log/encina.log";
plugins:ots encina:initial disk size = "1";

plugins:ots_encina:restart file =
"../../log/encina restart";

plugins:ots encina:backup restart file =
"../../log/encina restart.bak";

Boilerplate configuration settings for OTS Encina:

(you should never need to change these)

plugins:ots_encina:shlib name = "it ots encina";

plugins:ots encina adm:shlib name = "it ots encina adm";

plugins:ots _encina adm:grammar db =

"ots encina adm grammar.txt";

plugins:ots encina adm:help db = "ots encina adm help.txt";
i

The preceding configuration can be described as follows:

1. These two lines configure Artix to use the CORBA OTS transaction
system and load the OTS plug-in.

2. This line configures Artix to load the ots_encina plug-in dynamically, if
it is needed by the application (typically needed on the client side).

3. Configuring Encina to use direct persistence means that the Encina
transaction manager service listens on a fixed IP port.

4. Theplugins:ots_encina:initial disk variable specifies the path for
the initial file used by the Encina OTS for its transaction logs.

If this file does not exist when you start the client, Encina OTS
automatically creates it (cold start).

531

CHAPTER 12 | Transactions in Artix

532

The plugins:ots encina:initial disk_size variable specifies the
size of the initial file used by the Encina OTS for its transaction logs.
Defaults to 2.

The plugins:ots_encina:restart file variable specifies the path for
the restart file, which Encina OTS uses to locate its transaction logs.
If this file does not exist when you start the client, Encina OTS
automatically creates it (cold start).

The plugins:ots_encina:backup restart file variable specifies the
path for the backup restart file, which Encina OTS uses to locate its
transaction logs.

If this file does not exist when you start the client, Encina OTS
automatically creates it (cold start).

The settings in the next few lines specify the basic configuration of the
OTS Encina plug-in. It should not be necessary ever to change the
values of these configuration settings.

Selecting the Transaction System

Configuring WS-AT

Overview The WS-AtomicTransactions (WS-AT) transaction system uses SOAP
headers to transmit transaction contexts between the participants in a
transaction. The WS-AT transaction system supports the 2PC protocol and
allows you to register multiple resources; unlike OTS Encina, however, it
does not support recovery. Figure 36 shows a client/server deployment that
uses the WS-AT transaction system.

Figure 36: Overview of a Client-Server System that Uses WS-AT

Artix Server i

Resource

WS-AT

Artix Client

WS-AT

WS-Coordination

.| Artix Server

Resource

WS-AT

Default transaction provider The following variable specifies the default transaction system used by an
Artix client or server:

plugins:bus:default tx provider:plugin
To select the WS-AT transaction system, you must initialize this
configuration variable with the value, wsat tx provider.

533

CHAPTER 12 | Transactions in Artix

Plug-ins for WS-AT

Sample configuration

534

The division of the WS-AT transaction system into separate plug-ins reflects

the fact that the WS-AT specification has two distinct parts:

WS-AtomicTransactions and WS-Coordination.

The following plug-ins are required to support the WS-AT transaction

system:

® wsat_protocol plug-in—implements WS-AtomicTransactions. It is
required by all services and clients that use WS-AT transactions. This
plug-in enables an Artix executable to receive and transmit WS-AT
transaction contexts.

® ws_coordination service plug-in—implements WS-Coordination.
Only one instance of this plug-in is required (typically, loaded into a
client). This plug-in coordinates the two-phase commit protocol.

Example 237shows a complete configuration for using the WS-AT
transaction manager:

Example 237:Sample Configuration for WS-AtomicTransactions

Artix Configuration File
ws_atomic transactions {
client
{
orb plugins = ["local log stream",
"ws_coordination service"];
plugins:bus:default tx provider:plugin ="wsat tx provider";
i

server

{

orb plugins ["local log stream", "wsat protocol",
"coordinator_stub wsdl"];
// No need to specify default tx provider here.
i
}i

References

Selecting the Transaction System

The preceding configuration can be described as follows:

1.

The ws_coordination_service plug-in is needed only on the client
side. Artix does not support auto-loading of this plug-in; you must
explicitly include it in the orb plugins list.

The ws_coordination_service plug-in implicitly loads the
wsat_protocol plug-in as well. Hence, it is unnecessary to include
wsat_protocol plug-in in the orb plugins list on the client side.

This line specifies that WS-AT is the default transaction provider. This
implies that whenever a client initiates a transaction (for example, by
calling begin_transaction()), Artix creates a new WS-AT transaction
by default.

The server needs to load the wsat_protocol plug-in, in order to
process incoming atomic transactions coordination contexts and to
propagate transaction contexts. The coordinator stub wsdl plug-in
enables the server to talk to the WS-Coordination service on the client
side.

Strictly speaking, it is unnecessary to specify a default transaction
provider on the server side. On the server side, the transaction provider
is automatically determined by the incoming transaction context.

If the server needs to initiate its own transactions, however, it would be
appropriate to set the default transaction provider here also.

The specifications for WS-AtomicTransactions and WS-Coordination are
available at the following locations:

WS-AtomicTransactions
(http://msdn.microsoft.com/library/en-us/dnglobspec/htm|/WS-AtomicT
ransaction.pdf).

WS-Coordination
(http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-Coordin
ation.pdf).

535

http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-AtomicTransaction.pdf
http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-Coordination.pdf

CHAPTER 12 | Transactions in Artix

Transaction API

Overview Figure 37 shows an overview of the main classes that make up the Artix
transaction API. The Artix transaction API is designed to function as a
generic wrapper for a wide variety of specific transaction systems. As long as
your code is restricted to using the generic classes, you will be able to
switch between any of the transaction systems supported by Artix.

On the server side it is likely that you will need to access advanced
functionality, which is available only from technology-specific transaction
manager classes, such as oTsTransactionManager Of

WSATTransactionManager

Figure 37: Overview of the Artix Transaction API

transactions ()

IT Bus::Bus TransactionSystem
[1

get transaction manager () |

| WSATTransactionManager

TransactionManager OTSTransactionManager

dynamic_cast<...>

TransactionParticipant

TransactionNotificationHandler

536

Accessing the transaction system

TransactionSystem class

TransactionManager class

OTSTransactionManager class

Transaction API

To access the Artix transaction system, call the transactions () function on
the Bus. The returned IT Bus::TransactionSystem reference provides the
starting point for accessing all aspects of Artix transactions.

The IT Bus::Bus::transactions() function has the following signature:

IT Bus::TransactionSystem&
transactions() IT THROW DECL((IT Bus::Exception));

The IT Bus::TransactionSystem class provides the basic functions needed
for transaction demarcation on the client side (begin transaction(),
commit transaction() and rollback_transaction()). For more details see
“Transaction Demarcation” on page 539.

To access server-side functions and advanced client-side functions, you
must call IT Bus::TransactionSystem::get transaction manager () to
obtain an IT Bus::TransactionManager instance.

The IT Bus::TransactionManager class provides server-side functions and
advanced transaction functionality. For the server side, the most important
member function is IT Bus::TransactionManager::enlist (), which
enables you to implement a transactional resource by enlisting a transaction
participant object.

In order to support multiple transaction systems, the TransactionManager
class is designed as a facade, which is layered above a specific
implementation. In some cases, if the functionality provided by the generic
TransactionManager is not sufficient, you might need to downcast the
TransactionManager reference to one of the following types:

® OTSTransactionManager class.
® WSATTransactionManager class.

The IT Bus::0TSTransactionManager class provides access to an
underlying CORBA OTS implementation of the transaction system. Using
this class, you can access the CosTransactions: :Coordinator and the
CosTransactions: :Current objects for this transaction.

A discussion of the CORBA OTS is beyond the scope of this guide. For more
details, see the CORBA OTS Guide
(http://www.iona.com/support/docs/orbix/6.2/develop.xml), which is
available from the Orbix documentation suite.

537

http://www.iona.com/support/docs/orbix/6.2/develop.xml
http://www.iona.com/support/docs/orbix/6.2/develop.xml

CHAPTER 12 | Transactions in Artix

WSATTransactionManager class

TransactionParticipant base class

TransactionNotificationHandler
base class

538

The IT Bus::WSATTransactionManager class provides access to an
underlying WS-AT implementation of the transaction system. Currently, the
WSATTransactionManager class provides access to the WS-AT context,
which is included in a SOAP header with every transactional operation call.

If you want to implement a transactional resource on the server side, you
can define and implement a class that inherits from the

IT Bus::TransactionParticipant base class. The
TransactionParticipant class receives callbacks from the transaction
manager that are used to coordinate the commit or rollback steps with other
transaction participants. For more details, see “Participants and Resources”
on page 542.

There are alternative ways of implementing a transactional resource, which
do not require you to implement a TransactionParticipant class. Some
transaction managers (for example, 0TSTransactionManager) support
alternative approaches.

If you want to synchronize certain actions with the committing or rolling
back of a transaction, you can define and implement a class that inherits
from the IT Bus::TransactionNotificationHandler base class. The

IT Bus::TransactionNotificationHandler class receives notification
callbacks from the transaction manager whenever a transaction is either
committed or rolled back.

Transaction Demarcation

Transaction

Overview

TransactionSystem member
functions

Demarcation

On the client side, the functions for beginning and committing (or rolling
back) a transaction are collectively referred to as transaction demarcation
functions. Within a given thread, any Artix operations invoked after the
transaction begin and before the transaction commit (or rollback) are
implicitly associated with the transaction. The transaction demarcation
functions are typically the only functions that you need on the client side.

For a detailed example of how to use the transaction demarcation functions,
see “Client Example” on page 571.

Example 238 shows the public member functions of the
IT Bus::TransactionSystem Class.

Example 238:The I/T_Bus::TransactionSystem Class

// C++
namespace IT Bus
{
class IT BUS API TransactionSystem
: public virtual RefCountedBase
{
public:
virtual ~TransactionSystem() ;

virtual void
begin transaction() IT THROW DECL((Exception)) = 0;

virtual Boolean
commit transaction (
Boolean report heuristics
) IT THROW DECL((Exception)) = 0;

virtual void
rollback transaction() IT THROW DECL ((Exception)) = 0;

virtual TransactionManagers&
get transaction manager (
const Stringé&
tx manager type=DEFAULT TRANSACTION TYPE

539

CHAPTER 12 | Transactions in Artix

Client transaction functions

Other transaction functions

540

Example 238:The IT_Bus::TransactionSystem Class

bi

) IT THROW DECL ((Exception)) = 0;

virtual Boolean
within transaction() = 0;

// String constants for transaction manager types

static const String DEFAULT TRANSACTION TYPE;
static const String WSAT TRANSACTION TYPE;
static const String OTS_TRANSACTION TYPE;
static const String XA TRANSACTION TYPE;

bi

typedef Var<TransactionSystem> TransactionSystem var;
typedef TransactionSystem* TransactionSystem ptr;

The following functions are used to demarcate transactions on the client

side:

begin transaction ()—initiates a transaction on the client side.
Implicitly, a new transaction is created and associated with the current
thread.

commit transaction ()—ends the transaction normally, making any
changes permanent.

rollback transaction ()—aborts the transaction, rolling back any
changes.

In addition to the preceding demarcation functions, which are intended for
use on the client side, the TransactionSystem class also provides the
following functions, which can be used both on the client side and on the
server side:

within transaction ()—returns true if the current thread is
associated with a transaction; otherwise, false.
get_transaction manager ()—treturns a reference to an

IT Bus::TransactionManager object, which provides access to
advanced transaction features.

Transaction Demarcation

Typically, a TransactionManager object is needed on the server side in
order to enlist participants in a transaction (for example, see
“Transaction Participants” on page 543). For advanced applications,
you can also downcast the TransactionManager reference to get a
particular implementation of the transaction system (for example, an
IT Bus::0TSTransactionManager object or an

IT Bus::WSATTransactionManager object).

541

CHAPTER 12 | Transactions in Artix

Participants and Resources

Overview This section describes those aspects of server side programming which
enable you to update a persistent resource transactionally.

In this section This section contains the following subsections:
Transaction Participants page 543
Interposition page 550

542

Participants and Resources

Transaction Participants

Overview

A transaction participant is an object on the server side that interfaces
between the Artix transaction manager and a persistent resource. The role of
the transaction participant is to receive callbacks from the transaction
manager, which tell the participant whether to make pending changes
permanent or whether to abort the current transaction and return the
resource to its previous consistent state.

Figure 38 shows an example of a two-phase commit involving two
transaction participant instances. Any operations meant to be transactional
should start by creating a transaction participant object and enlisting it with
the transaction manager.

Figure 38: Transaction Participants in a 2-Phase Commit Protocol

Artix Server [__enlist Resource
-------- >

Artix
Client

begin_transaction (

invoke

invoke

Transaction TransactionParticipant
System
delete

[.
b » Artix Server [__eniist Resource
]]
| “---prepare----- ----
1 | >
Transaction TransactionParticipant
System
delete

543

CHAPTER 12 | Transactions in Artix

Participants in a 2-phase commit As shown in Figure 38, the transaction participants participate in a
two-phase commit as follows:

Stage Description

1 | The client calls begin transaction () to initiate a distributed
transaction.

2 | Within the transaction, the client calls transactional operations
on Server A and on Server B. In order to participate in the
distributed transaction, the servant code creates a new
transaction participant and enlists it with the transaction
manager.

3 | Theclient calls commit_transaction() to make permanent any
changes caused during the transaction.

4 | The transaction system performs the prepare phase by polling
all of the remote transaction participants (the first phase of a
two-phase commit).

On the server side, the transaction manager calls prepare () on
all of the transaction participants.

5 | The transaction system performs the commit or rollback phase
by sending a notification to all of the remote transaction
participants (the second phase of a two-phase commit).

On the server side, the transaction manager calls cormit () or
rollback () on all of the transaction participants.

6 | When the transaction is finished, the transaction manager
automatically deletes the associated transaction participant

instances.
Implementing a transaction To implement a transaction participant, define a class that inherits from the
participant IT Bus::TransactionParticipant base class and implement all of its

member functions.

544

Alternatives to the Artix
transaction participant

Enlisting a transaction participant

=

Participants and Resources

Implementing and enlisting an ArtiXx TransactionParticipant class is not
the only way to make a WSDL operation transactional. By drilling down to
the underlying transaction manager type (for example,

IT Bus::0TSTransactionManager) it is sometimes possible to use an
alternative APl supported by a specific transaction system.

For example, the following demonstration shows how to use the OTS
transaction system:

ArtixInstallDir/artix/Version/demos/transactions/orbix client art
ix server

Example 239 shows an example of how to enlist a participant instance in a
transaction. You must enlist a participant at the start of any transactional
WSDL operation. Example 239 shows a sample implementation of a WSDL
operation, transactional op (), which is called in the context of a
transaction.

Example 239:E£xample of Enlisting a Transactional Participant

// C++

void

HelloWorldServantImpl: :transactional op (
const IT Bus::String value

) IT THROW DECL ((IT Bus::Exception))

{
cout << "HelloWorld transactional op() called" << endl;

IT Bus::Bus var bus = this->get bus();
if (bus->transactions () .within transaction())

{

cout << "This is a transaction" << endl;

TXParticipant * participant = new TXParticipant (this);
bus->transactions () .get transaction manager () .enlist (
participant,
true

)i
// Implementation of ’transactional op()’ comes here.

// Includes writing to DB or other persistent resources.
// (not shown)

545

CHAPTER 12 | Transactions in Artix

Example 239:Example of Enlisting a Transactional Participant

else

{
cout << "No transaction" << endl;
IT Bus::Exception ex("Invocation not in transaction");
throw ex;

}

The preceding code example can be explained as follows:

1. The get_bus() function is a standard servant function that returns a
stored reference to the Bus instance.

2. Inthis example, the transactional op() operation requires a
transaction. If it is not called in the context of a transaction, it raises an
exception back to the client.

It is an implementation decision whether or not an operation should
require a transaction. In some cases, it may be appropriate for the
operation to proceed with or without a transaction.

3. The TxParticipant class is a sample participant class, which is
implemented by inheriting from IT Bus::TransactionParticipant.

In this example, a new Txparticipant instance is created every time
transactional op() is called.

4. This line enlists the participant in the transaction, ensuring that the
participant receives callbacks either to commit or rollback any
changes.

The second parameter is a boolean flag that specifies the kind of

participant:

+ true indicates a durable participant, which participates in all
phases of the transaction.

¢+ falseindicates a volatile participant, which is only guaranteed to
participate in the prepare phase of the 2PC protocol. There is no
guarantee that a volatile participant will participate in the commit
phase.

546

Participants and Resources

5. The implementation of transactional op() involves writing to a
persistent resource. The committing or rolling back of any changes to
this persistent resource is controlled by the enlisted TxPersistent
instance.

TransactionParticipant member Example 240 shows the public member functions of the
functions IT Bus::TransactionParticipant Class.

Example 240:The IT_Bus::TransactionParticipant Class

// Ct++
namespace IT Bus
{
class IT BUS API TransactionParticipant
: public virtual RefCountedBase

public:
virtual ~TransactionParticipant();

enum VoteOutcome {
VoteCommit,
VoteRollback,
VoteReadOnly
bi

// 1PC Functions.
virtual void commit one phase ()=0;

// 2PC Functions.

virtual VoteOutcome prepare ()=0;
virtual void commit ()=0;
virtual void rollback()=0;

// Getting the transaction manager.
virtual String
preferred transaction manager ()=0;

virtual void
set manager (

TransactionManager* tx manager
)=0;

bi

typedef Var<TransactionParticipant>
TransactionParticipant var;

547

CHAPTER 12 | Transactions in Artix

1PC callback function

2PC callback functions

548

Example 240:The IT_Bus::TransactionParticipant Class

bi

typedef TransactionParticipant* TransactionParticipant ptr;

The following function is called during a one-phase commit:

commit one phase ()—the implementation of this function should
make permanent any changes associated with the current transaction.

The following functions are called during a two-phase commit:

prepare ()—called during phase one of a two-phase commit. Before
returning, this function should write a recovery log to persistent
storage. The recovery log should contain whatever data would be
necessary to restore the system to a consistent state, in the event that
the server crashes before the transaction is finished.

The prepare () function also votes on whether to commit or roll back
the transaction overall, by returning one of the following vote
outcomes:

. IT Bus::TransactionParticipant::VoteCommit—Vote to
commit the transaction.

¢ IT Bus::TransactionParticipant::VoteRollback—vote to roll
back the transaction. For example, you would return
VoteRollback, if an error occurred while attempting to write the
recovery log.

. IT Bus::TransactionParticipant::VoteReadOnly—explicitly
request not to be included in the commit phase of the 2PC
protocol.

commit ()—called during phase two of a two-phase commit, if the
transaction outcome was successful overall. The implementation of
this function should make permanent any changes associated with the
current transaction.

rollback ()—called during phase two of a two-phase commit, if the
transaction must be aborted. The implementation of this function
should undo any changes associated with the current transaction,
returning the system to the state it was in before.

Participants and Resources

Getting the transaction manager After the transaction participant is enlisted by a transaction manager
instance, the transaction system calls back to pass a transaction manager to
the participant. The following functions are relevant to this callback
behavior:
® preferred transaction manager ()—called just after the participant

is enlisted. The return value is a string that tells the transaction system
what type of transaction manager the participant requires. The
following return strings are supported:
+ DEFAULT TRANSACTION TYPE—NO preference; use the current
default.
¢ OTS TRANSACTION TyPE—prefer the
IT Bus::0TSTransactionManager interface (manager for CORBA
OTS transactions).
¢ WSAT TRANSACTION TyPE—prefer the
IT Bus::WSATTransactionManager interface (manager for
WS-AtomicTransactions).

b set_manager ()—called after the preferred transaction manager ()
call. The transaction system calls set manager () to pass a transaction
manager of the preferred type to the participant. If the type of
transaction manager requested by the participant differs from the one
currently in use, Artix uses interposition to simulate the preferred
transaction manager type.

For more details about interposition, see “Interposition” on page 550.

549

CHAPTER 12 | Transactions in Artix

Interposition

What is interposition?

Interposition matrix

Using interposition

550

Sometimes, there can be a mismatch between the transaction APl used by
the application code and the type of the underlying transaction system. For
example, imagine that you have a legacy CORBA server that manages
transactions with CORBA OTS. If you migrate this server code to a
WS-AT-based Artix service, you would obtain a mismatch between the
transaction API used by the application code (which is CORBA OTS-based)
and the underlying transaction system (which is WS-AT).

To bridge this APl mismatch, Artix uses interposition. With interposition,
the Artix runtime provides the application code with an object of the
preferred type (for example, an oTSTransactionManager object), but the
object is merely a facade, whose calls are ultimately translated into a form
suitable for the underlying transaction system (for example, WS-AT).

Artix supports interposition between every permutation of transaction
systems. Internally, Artix converts calls made on a specific transaction API
into a technology-neutral API. The calls are then converted from the
technology-neutral APl into one of the supported transaction APIs.

As an example of interposition, consider a service that loads the WS-AT
transaction system (for example, see “Configuring WS-AT” on page 533),
but actually implements the transaction functionality using the CORBA OTS
programming interface. In this case, it is necessary for the
TransactionParticipant implementation to request explicitly an OTS
transaction manager, instead of the default WS-AT transaction manager.

Example 241 shows the implementation of the
preferred transaction manager () function and the set manager ()
function for the transaction participant implementation, Txparticipant.

Example 241:Example of a TransactionParticipant that Uses Interposition
// C++
IT Bus::String

TXParticipant::preferred transaction manager ()

{

Participants and Resources

Example 241:Example of a TransactionParticipant that Uses Interposition

return IT Bus::TransactionSystem::0TS_ TRANSACTION TYPE;

void
TXParticipant::set manager (
IT Bus::TransactionManager* tx manager

m_ots_tx manager =
dynamic cast<IT Bus::0TSTransactionManager*>(tx manager) ;

When Artix calls back on set_manager (), it passes a transaction manager
object, tx_manager, of OTSTransactionManager type. There is no need to
query the type of the tx manager object before downcasting it, because its
type is already specified by the preferred transaction manager ()
callback.

551

CHAPTER 12 | Transactions in Artix

Threading

Overview

Default client threading model

begin_transaction ()

Artix supports a threading API that enables you to change the thread affinity
of a given transaction. Using the attach thread() and detach thread()
functions, you can flexibly re-assign threads to a transaction (subject to the
limitations imposed by the underlying transaction system).

Figure 39 shows the default threading model for transaction on the client
side. When you call begin transaction (), Artix creates a new transaction
and attaches it to the current thread. So long as the transaction remains
attached, any WSDL operations called from the current thread become part
of the transaction. When you call commit transaction() (or

rollback transaction(), if the transaction must be aborted), the
transaction is deleted.

Figure 39: Default Client Threading Model

commit_transaction ()

ThreadX X /. \ /2 N\ £\ AN AN L\ N £ AN A LN

Transaction Scope

Transaction identifiers

552

A transaction identifier is an opaque identifier of type

IT Bus::TransactionIdentifier that identifies a transaction uniquely.
Depending on the underlying transaction system, a transaction identifier can
be downcast (using dynamic_cast<...>) to an implementation-specific
transaction identifier.

For example, if OTS is the underlying transaction system, the transaction
identifier can be downcast to an instance of an o0TsTransactionIdentifier.
The OTS transaction identifier provides access to implementation-specific
features, such as the cosTransaction: :Control class.

Controlling thread affinity

Threading

On the client side, thread affinity is controlled by the following
TransactionManager member functions:

Example 242:Functions for Controlling Thread Affinity

// C++
namespace IT Bus
{
class IT BUS API TransactionManager
: public virtual RefCountedBase
{
public:
virtual TransactionIdentifier* detach thread()=0;

virtual Boolean attach thread(
TransactionIdentifier* tx identifier
) = 0;

virtual TransactionIdentifier* get tx identifier()=0;
i

These functions can be explained as follows:

® detach thread()
Detach the transaction from the current thread. After the call to
detach_thread (), WSDL operations called from the current thread do
not participate in the transaction. The returned transaction identifier
can be used to re-attach the transaction to the current thread at a later
stage.

hd attach thread()

Attach the transaction, specified by the tx_identifier argument, to

the current thread.

get tx identifier()

Return the identifier of the transaction that is attached to the current

thread. If no transaction is attached, return nNuLL.

553

CHAPTER 12 | Transactions in Artix

Detaching and re-attaching a
transaction to a thread

begin_transaction()

Figure 40 shows how to use the detach thread() and attach thread()
functions to suspend temporarily the association between a transaction and
a thread. This can be useful if, in the midst of a transaction, you need to
perform some non-transactional tasks.

Figure 40: Detaching and Re-Attaching a Transaction to a Thread

detach_thread() attach_thread() commit_transaction ()

Theesx NS SWEWE __UaUsUale.

Transaction Scope

Attaching atransaction to multiple
threads

begin_transaction()

Figure 41 shows how to use the get tx identifier() and

attach thread() functions to associate a transaction with multiple threads.
The get tx identifier () function is called from within the thread that
initiated the transaction. The transaction ID can then be passed to the other
threads, Y and Z, enabling them to attach the transaction.

Figure 41: Attaching a Transaction to Multiple Threads

id = get_tx_identifier() commit_ transaction()

Thread X 7 [N AN AN @ A\ A A\ i A A A A

Transaction Scope

esdy NN\ DU aUaUaU el e

eV UaVUaUa\VaUaUaUal aUaUa W

554

attach_thread(id) attach_thread (id)

Threading

Note: Some transaction systems do not allow you to associate multiple
threads with a transaction. In this case, an attach thread() call fails
(returning false), if you attempt to attach a second thread to the

transaction.

Transferring a transaction from Figure 42 shows how to use the detach thread() and attach thread()
functions to transfer a transaction from thread X to thread Y. The transaction

ID returned from the detach thread() call must be passed to thread Y,
enabling it to attach the transaction.

one thread to another

Figure 42: Transferring a Transaction from One Thread to Another

begin_transaction() id = detach_thread()

Thread X N\ U\ DU U U UL

Transaction Scope

TN VaaWaWa —
! !

attach_thread(id) commit_transaction|()

Note: Some transaction systems do not allow you to transfer a
transaction from one thread to another. In this case, an attach thread()
call fails (returning false), unless you are re-attaching the original thread

to the transaction.

555

CHAPTER 12 | Transactions in Artix

Transaction Propagation

Overview

Transaction contexts

Propagation scenario

556

In a multi-tier application, Artix automatically propagates transactions from
tier to tier. This ensures that all of the processes that are relevant to the
outcome of a transaction can participate in the transaction. You do not have
to do anything special to switch on transaction propagation; it is enabled by
default. However, the receiver of a transaction context must have a
transaction plug-in loaded, otherwise the transaction context would be
ignored.

A transaction context is a data structure that is transmitted to a remote
server and used to recreate the transaction at a remote location. The type of
transaction context that is transmitted depends on the middleware protocol.
Artix supports the following kinds of transaction context:

® QTS transaction context—a transaction context that is sent in a GIOP
header (part of the CORBA standard).

® WS-AT transaction context—a transaction context that is embedded in
a SOAP header.

The propagation scenario shown in Figure 43 shows two different kinds of

transaction propagation, as follows:

® Transaction propagation within a single middleware technology—the
OTS transaction context, which propagates across the top half of
Figure 43, illustrates a simple kind of propagation, where the client
and the servers all use the same CORBA OTS transaction technology.

® Transaction propagation across middleware technologies—the WS-AT
transaction context, which propagates across the bottom half of
Figure 43, illustrates a kind of propagation, where the transaction
crosses technology domains. While the client uses OTS Encina to

Transaction Propagation

manage the transaction, it must generate a WS-AT transaction context
to send to the server. The ability to transform transaction contexts is
known as interposition.

Figure 43: Overview of Different Kinds of Transaction Propagation

Artix Server e ST : Artix Server
CORBA Tx Context ’ CORBA

Scenario steps

oTS : Resource
i Tx Context :
@ B NI s OTS OTS
Artix Client
@ p------
1
oOTS | e Lo,
WS-AT
. Tx Context
OTS Encina | “«-veeeery Joseneesd
@ : Artix Server
L » SOAP/HTTP
Resource
WS-AT

The propagation scenario shown in Figure 43 can be described as follows:

Stage Description

1 | The Artix client (which is configured to use the OTS Encina
transaction system) initiates a transaction by calling the
begin transaction() function. The client then invokes a
remote operation, which results in a request message being
sent over an [IOP connection.

2 | The request received by the server includes an OTS transaction
context embedded in a GIOP header. Although this server does
not participate directly in the transaction (it registers no
resources), it is capable of propagating the transaction context
to the next tier in the application.

557

CHAPTER 12 | Transactions in Artix

Limitation of using OTS Lite with
propagation

558

Stage Description

3 | The third tier of the application receives a request containing
an OTS transaction context. This server participates in the
transaction by registering a database resource with the OTS
transaction manager.

4 | The client invokes a remote operation, which results in a
request message being sent over a SOAP/HTTP connection.

5 | In this case, Artix automatically translates the OTS transaction
into a WS-AT transaction context, which is suitable for
transmission in the header of the SOAP/HTTP request.

There is no need to perform any special configuration or
programming to enable interposition; it occurs automatically.

Figure 44 shows an interposition scenario where the client, which uses an
OTS transaction system, connects to a SOAP/HTTP server, which uses the
WS-AT transaction system.

Figure 44: Limitation of Transaction Propagation Using OTS Lite

] T Artix Server
Artix Client P WS-AT
|77 Tx Context _i___’ SOAPHTTP i

Resource

oTS WS-AT

OTS Encina

Because there is only one explicitly registered resource in this scenario (the
database connected to the server), it would seem that the client could use
an OTS Lite transaction manager for this scenario. In reality, however, the
client must use the OTS Encina transaction manager. The reason for this is
that Artix implicitly registers an interposition resource to bridge the
OTS-to-WS-AT middleware boundary. Therefore, there are really two
resources in this scenario.

Suppressing propagation

Transaction Propagation

In summary, interposition requires additional resources as follows:

® OTS-to-WS-AT middleware boundary—one interposition resource is
registered automatically. Applications with one explicitly registered
resource must use OTS Encina.

® WS-AT-to-OTS middleware boundary—no interposition resource

required. Applications with one explicitly registered resource may use
OTS Lite.

Once you have selected a transaction system (for example, the application
loads an OTS plug-in or a WS-AT plug-in), transaction contexts are
propagated by default.

It is possible, however, to suppress transaction propagation selectively using
the IT Bus::TransactionManager::detach thread() and

IT Bus::TransactionManager::attach thread() functions. After calling
detach thread (), subsequent operation invocations do not participate in
the transaction and, therefore, do not propagate any transaction context.
You can re-establish an association with a transaction by calling

attach thread().

For more details on these functions, see “Threading” on page 552.

559

CHAPTER 12 | Transactions in Artix

Notification Handlers

Overview

Implementing a notification
handler

Enlisting a notification handler

560

A notification handler is an object that can be used either on the server side
or on the client side to record the outcome of a transaction. For example,
you might use a notification handler to log transaction outcomes or to
synchronize other events with a transaction.

To implement a notification handler, define a class that inherits from the
IT Bus::TransactionNotificationHandler base class and implement all of
its member functions.

To use a notification handler, you must enlist it with a TransactionManager
object while there is a current transaction. You can enlist a notification
handler at any time prior to the termination of the transaction.

Example 243 shows how to enlist a sample notification handler,
NotificationHandlerImpl.

Example 243:Example of Enlisting a Notification Handler

// C++
IT Bus::Bus_var bus = ... // Get reference to Bus object
if (bus->transactions() .within transaction())
{
// Enlist notification handler
NotificationHandlerImpl * handler
= new NotificationHandlerImpl () ;
TransactionManageré& tx manager
= bus->transactions() .get transaction manager ()
tx manager.enlist for notification (handler) ;
}
else
{
IT Bus::Exception ex("Invocation not in transaction");
throw ex;

Notification Handlers

TransactionNotificationHandler Example 244 shows the public member functions of the

member functions IT Bus::TransactionNotificationHandler class. These operations will be
called, only if an appropriate notification mechanism is available in the
underlying transaction system.

Example 244:The IT_Bus::TransactionNotificationHandler Class

// C++
namespace IT Bus
{
class IT BUS API TransactionNotificationHandler
: public virtual RefCountedBase
{
public:
virtual ~TransactionNotificationHandler () ;

virtual void commit initiated(
TransactionIdentifier ptr tx identifier

)=0;

virtual void committed()=0;

virtual void aborted()=0;

bi

typedef Var<TransactionNotificationHandler>
TransactionNotificationHandler var;

typedef TransactionNotificationHandler*
TransactionNotificationHandler ptr;

Notification callback functions The following notification handler functions receive callbacks from the
transaction manager:

® commit initiated()—informs the handler that a commit has been
initiated. This function is called before any participants are prepared.

Note: WS-AT does not support this notification point.

® committed ()—informs the handler that the transaction completed
successfully.

® aported()—informs the handler that the transaction did not complete
successfully and was aborted.

561

CHAPTER 12 | Transactions in Artix

Reliable Messaging with MQ Transactions

Overview This section describes how to enable reliable messaging with MQ
transactions in your Artix applications. MQ transactions differ in several
important respects from ordinary Artix transactions, in particular:
® MQ transactions are managed by a transaction manager that is internal
to the MQ-Series product.

® MQ transactions are enabled by setting the relevant attributes of a
WSDL port in the WSDL contract.

® You can not initiate and terminate MQ transactions on the client side
using the Artix transaction API (for example, the functions in
IT Bus::TransactionSystem are not used for MQ on the client side).

On the client side, MQ transactions follow a completely different model from
Artix transactions. On the server side, however, the MQ transaction is
integrated with an Artix transaction, so that an incoming message is
considered to have been processed, only if the Artix transaction completes
successfully on the server side.

562

Reliable Messaging with MQ Transactions

Oneway invocation scenario Figure 45 shows a oneway invocation scenario, where an Artix client
invokes oneway operations on an Artix server over the MQ transport with
MQ transactions enabled. Because the WSDL operations are oneway (that
is, consisting only of output messages), the MQ transport does not require a
reply queue in this scenario.

Figure 45: Oneway Operation Invoked Over an MQ Transport with MQ
Transactions Enabled

ix Cli § @ i ; propagation. . .
Artix Client : | send MQ RequestQueus Mma |_receive | Artix Server
MQ : @ MQ
Transaction
E Scope, ... WS-AT
WS-Coordination

Transaction Scope

Description of oneway invocation The oneway operation invocation shown in Figure 45 is executed in the
following stages:

Stage Description

1 | When the client invokes a oneway operation over MQ, an MQ
transaction is initiated. After the request message is pushed
onto the client side of the MQ request queue, the MQ
transaction is committed.

Note: The client MQ transaction is local and does not extend
beyond the client side.

2 | MQ-Series is responsible for reliably transmitting the request
message from the client side of the MQ transport to the server
side of the MQ transport.

3 | When the server pulls the request message off the incoming
queue, an Artix transaction is initiated before dispatching the
request to the relevant Artix servant.

563

CHAPTER 12 | Transactions in Artix

Stage

Description

If the Artix servant now invokes operations on some other Artix
servers, these invocations occur within a transaction context.
Hence, these follow-on invocations propagate a transaction
context (for example, a WS-AT context) and enable the remote
servers to participate in the transaction.

If the operation completes its work successfully, the transaction
is committed and the request message permanently disappears
from the queue.

On the other hand, if the operation is unsuccessful, the
transaction is rolled back and the request message is pushed
back onto the queue. The request message is immediately
reprocessed (the maximum number of times the message can
be processed is determined by the queue’s backout threshold—
see “Configuring the backout threshold” on page 569).

Oneway client configuration To enable transactional semantics for a client that invokes oneway
operations over the MQ transport, you should define a WSDL port as shown
in Example 245.

Example 245:WSDL Port Configuration for Oneway Client Over MQ

<wsdl:service name="MQOService">
<wsdl:port binding="tns:BindingName" name="PortName">

<mg:client QueueManager="MY DEF QM"

QueueName="HW_ REQUEST"

AccessMode="send"
CorrelationStyle="correlationId"
Transactional="internal"
Delivery="persistent"
UsageStyle="peer"

/>

</wsdl:port>
</wsdl:service>

564

Oneway server configuration

Reliable Messaging with MQ Transactions

Because the invocation is oneway, there is no need to specify a reply queue
manager. To enable transactions, you must set the Transactional attribute
to internal and the pelivery attribute to persistent.

On the server side, you must configure both the WSDL contract and the
Artix configuration file appropriately for using MQ transactions.

WSDL Contract Configuration

To enable transactional semantics for a server that receives oneway
invocations over the MQ transport, you should define a WSDL port as shown
in Example 246.

Example 246:WSDL Port Configuration for Oneway Server Over MQ

<wsdl:service name="MQOService">
<wsdl:port binding="tns:BindingName" name="PortName">

<mg:server QueueManager="MY DEF QM"
QueueName="HW_ REQUEST"

AccessMode="receive"
CorrelationStyle="correlationId"
Transactional="internal"
Delivery="persistent"
UsageStyle="peer"
/>
</wsdl :port>
</wsdl:service>

To enable transactions, you must set the Transactional attribute to
internal and the pelivery attribute to persistent.

Artix Configuration File

On the server side, Artix initiates a transaction whenever it receives a
request message from the MQ transport. Because this transaction is
managed by an Artix transaction manager, you must load and configure one
of the Artix transaction systems (for example, OTS or WS-AT).

For details of how to select a transaction system, see “Selecting the
Transaction System” on page 525.

565

CHAPTER 12 | Transactions in Artix

Synchronous invocation scenario

Description of synchronous

invocation

566

Figure 46 shows a synchronous invocation scenario, where an Artix client

invokes normal operations on an Artix server over the MQ transport with MQ
transactions enabled. Because the WSDL operations are synchronous (that
is, consisting of output messages and input messages), the MQ transport
requires a reply queue.

Figure 46: Synchronous Operation Invoked Over the MQ Transport with MQ
Transactions Enabled

@ ®

Artix Client

MQ

RequestQueue MQ l_receive

©)

Artix Server propagation. . .
MQ «

ReplyQueue Md ‘4

WS-AT

® ®

WS-Coordination

Transaction Scope

The synchronous operation invocation shown in Figure 46 is executed in the

following stages:

Stage

Description

1

When the client invokes a synchronous operation over MQ, an
MQ transaction is initiated.

MQ-Series is responsible for reliably transmitting the request
message from the client side of the MQ transport to the server
side of the MQ transport.

When the server pulls the request message off the incoming
gueue, an Artix transaction is initiated before dispatching the
request to the relevant Artix servant.

Synchronous client configuration

Reliable Messaging with MQ Transactions

Stage Description

4 | If the Artix servant now invokes operations on some other Artix
servers, these invocations occur within a transaction context.
Hence, these follow-on invocations propagate a transaction
context (for example, a WS-AT context) and enable the remote
servers to participate in the transaction.

5 | If the operation completes its work successfully, the transaction
is committed, the request message permanently disappears
from the request queue, and a reply message gets pushed onto
the reply queue.

On the other hand, if the operation is unsuccessful, the
transaction is rolled back. No reply message is sent and the
request message is pushed back onto the request queue. The
request message is immediately reprocessed (the maximum
number of times the message can be processed is determined
by the request queue’s backout threshold—see “Configuring
the backout threshold” on page 569).

6 | MQ-Series is responsible for reliably transmitting the reply
message from the server side of the MQ transport to the client
side of the MQ transport.

7 | When the client receives the reply message, the synchronous
operation call returns and the client transaction is committed.
Because the client is independent of the server side
transaction, however, it is not possible for the client code to
receive a rollback exception from the server.

It is possible to manage blocked calls by defining the Timeout
attribute on the mg:client element in the WSDL contract. If
the timeout is exceeded, an exception will be thrown.

To enable transactional semantics for a client that invokes synchronous
operations over the MQ transport, you should define a WSDL port as shown
in Example 247.

Example 247:WSDL Port Configuration for Synchronous Client Over MQ
<wsdl:service name="MQOService">

<wsdl:port binding="tns:BindingName" name="PortName">
<mg:client QueueManager="MY DEF OM"

567

CHAPTER 12 | Transactions in Artix

Example 247:WSDL Port Configuration for Synchronous Client Over MQ

/>

</wsdl:port>
</wsdl:service>

QueueName="HW_ REQUEST"
ReplyQueueManager="MY DEF QM"
ReplyQueueName="HW REPLY"
AccessMode="send"
CorrelationStyle="correlationId"
Transactional="internal"
Delivery="persistent"
UsageStyle="responder"

To enable transactions, you must set the Transactional attribute to
internal and the pelivery attribute to persistent.

Synchronous server configuration On the server side, you must configure both the WSDL contract and the
Artix configuration file appropriately for using MQ transactions.

WSDL Contract Configuration

To enable transactional semantics for a server that receives synchronous
invocations over the MQ transport, define a WSDL port as shown in

Example 248.

Example 248:WSDL Port Configuration for Synchronous Server Over MQ

<wsdl:service name="MQOService">
<wsdl:port binding="tns:BindingName" name="PortName">

<mg:server QueueManager="MY DEF QM"

/>

</wsdl :port>
</wsdl:service>

568

QueueName="HW REQUEST"
ReplyQueueManager="MY DEF QM"
ReplyQueueName="HW REPLY"
AccessMode="receive"
CorrelationStyle="correlationId"
Transactional="internal"
Delivery="persistent"
UsageStyle="responder"

Configuring the backout threshold

Accessing the backout count

Reliable Messaging with MQ Transactions

To enable transactions, you must set the Transactional attribute to
internal and the pelivery attribute to persistent.

Artix Configuration File

On the server side, Artix initiates a transaction whenever it receives a
request message from the MQ transport. Because this transaction is
managed by an Artix transaction manager, you must load and configure one
of the Artix transaction systems (for example, OTS or WS-AT).

For details of how to select a transaction system, see “Selecting the
Transaction System” on page 525.

You can configure the backout threshold using the runmgsc command-line

tool, which is provided as part of the MQ-Series product. To configure a

queue to use backouts, set the following MQ attributes:

® poTHRESH—the backout threshold, which defines the maximum
number of times a message can be pushed back onto the queue.

® pooNaME—the backout queue name. If the current backout count
equals the backout threshold, Artix puts the message onto the backout
queue whose name is given by BOONAME.

Hence, the BoonaME queue would contain all of the messages that have been
rolled back more than BoTHrESH times. The administrator can then manually
examine the messages stored in the BooNAME queue and take appropriate
remedial action.

For more details about how to set MQ attributes, see your MQ-Series user
documentation.

On the server side, you can obtain the backout count for the current
message using Artix contexts. To access the current backout count, perform
the following steps:
1. Retrieve the server context identified by the
IT ContextAttributes::MQ INCOMING MESSAGE ATTRIBUTES QName.
2. Cast the returned context instance to the
IT ContextAttributes::MQMessageAttributesType type.
3. Invoke the getBackoutcount () function to access the current backout
count.

569

CHAPTER 12 | Transactions in Artix

For more details about programming with Artix contexts, see “Artix
Contexts” on page 179.

570

Client Example

Client Example

Overview

WSDL sample

This section describes a transactional Artix client that connects to two
remote transactional Artix servers. The client uses the Artix transaction
demarcation API to delimit the transaction. The client must also be
configured to load a transaction system plug-in (see “Selecting the
Transaction System” on page 525).

Example 249 is a sample WSDL contract that defines the pata port type
with two operations, read () and write (). The effect of these operations is
to read or write a single integer value from persistent storage. The write ()
operation is required to be transactional (but this does not need to be
indicated in the WSDL contract).

Example 249:Sample WSDL Contract for the Data Port Type

<?xml version="1.0" encoding="UTF-8"7?>

<definitions name="data.idl"
targetNamespace="http://schemas.iona.com/idl/data.idl"
xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:tns="http://schemas.iona.com/idl/data.idl"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsdl="http://schemas.iona.com/idltypes/data.idl">
<types>
<schema
targetNamespace="http://schemas.iona.com/idltypes/data.idl"
xmlns="http://www.w3.0rg/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
<element name="Data.read.value" type="xsd:int"/>
<element name="Data.write.value" type="xsd:int"/>
</schema>
</types>
<message name="Data.read"/>
<message name="Data.readResponse">
<part element="xsdl:Data.read.value" name="value"/>
</message>
<message name="Data.write">
<part element="xsdl:Data.write.value" name="value"/>
</message>
<message name="Data.writeResponse"/>

571

CHAPTER 12 | Transactions in Artix

Example 249:Sample WSDL Contract for the Data Port Type

<portType name="Data'>
<operation name="read">
<input message="tns:Data.read" name="read"/>
<output message="tns:Data.readResponse"
name="readResponse" />
</operation>
<operation name="write">
<input message="tns:Data.write" name="write"/>
<output message="tns:Data.writeResponse"
name="writeResponse" />
</operation>
</portType>

</definitions>

Client example Example 250 shows how to use the transaction demarcation functions in an
Artix client. Two remote services, DataServiceA and DataServiceB,
participate in the transaction. Hence, this example requires support for the
two-phase commit protocol.

Example 250:Transaction Demarcation in an Artix Client

// C+t

#include <it bus/bus.h>

#include <it bus/exception.h>

#include <it bus/transaction system.h>
#include <it cal/iostream.h>

#include "DataClient.h"
IT USING NAMESPACE STD

using namespace ArtixTransactions;
using namespace IT Bus;

int
main (

int argc,
char* argvl[]

IT Bus::Bus_var bus;
bus = IT Bus::init(argc, argv);

572

Client Example

Example 250:Transaction Demarcation in an Artix Client

try

// Client of "DataServiceA" WSDL service.
DataClient clientA (serviceA wsdl, serviceA name, bus);

// Client of "DataServiceB" WSDL service.
DataClient clientB (serviceB wsdl, serviceB name, bus);

IT Bus::Int valueA, valueB;
bus->transactions () .begin_transaction() ;

// Perform a 2PC transaction

clientA.read (valued) ;

clientB.read (valueB) ;

cout << "The current values are:" << endl;
cout << "\tA value: " << valueA << endl;
cout << "\tB value: " << valueB << endl;

cout << "Changing both values" << endl;
clientA.write(valueA + 10);
clientB.write(valueB - 10);

bus->transactions () .commit transaction (true);

}
catch (IT Bus::Exception& e)

{

if (bus->transactions() .within transaction())

{
cout << endl << "Aborting transaction!" << endl;
bus->transactions () .rollback transaction();

}

return -1;

}
if (bus.get() != 0) { bus->shutdown (true); }
return 0;

573

CHAPTER 12 | Transactions in Artix

574

The preceding code example can be explained as follows:

1.

You should always enclose a transaction in a try block, because it
might be necessary to catch an exception and roll back the transaction.

The IT Bus::TransactionSystem::begin transaction() call initiates
the transaction.

The IT Bus::TransactionSystem::commit transaction() call
attempts to commit the changes made to server A and server B. The
boolean argument is the report heuristics flag, which can take the
following values:

+ true—specifies that heuristic decisions should be reported during
the commit protocol (if supported by the underlying transaction
system).

+ false—specifies that heuristic decisions should not be reported.

The within transaction() call is needed at this point, because the

rollback transaction() function must only be called from within a

transaction. If rollback transaction() is called outside a transaction,

it raises an exception.

If an exception is thrown, the transaction must be aborted by calling

IT Bus::TransactionSystem::rollback transaction().

APPENDIX A

http-conf Context
Data Types

This appendix lists the http-conf context data types. You can
use these C++ types in conjunction with the context API to
set the properties of the HTTP transport plug-in
programatically.

C++ mapped classes Example 251 shows the context data types that are generated when the
http-conf.xsd schema is mapped to C++.

Example 251:http-conf Context Data Types

// C++

namespace IT ContextAttributes

{

class clientType
: public IT tExtensibilityElementData,
public virtual IT Bus::ComplexContentComplexType
{
public:

clientType () ;
clientType (const clientType & copy);

virtual ~clientType () ;

IT Bus::Int * getSendTimeout () ;

575

CHAPTER A | http-conf Context Data Types

576

Example 251:http-conf Context Data Types (Continued)

const IT Bus::Int *getSendTimeout () const;
void setSendTimeout (const IT Bus::Int * val);
void setSendTimeout (const IT Bus::Int & val);

IT Bus::Int *getReceiveTimeout () ;

const IT Bus::Int *getReceiveTimeout () const;
void setReceiveTimeout (const IT Bus::Int * val);
void setReceiveTimeout (const IT Bus::Int & val);

IT Bus::Boolean *getAutoRedirect();

const IT Bus::Boolean *getAutoRedirect() const;
void setAutoRedirect (const IT Bus::Boolean * val);
void setAutoRedirect (const IT Bus::Boolean & val);

IT Bus::String *getUserName () ;

const IT Bus::String *getUserName () const;
void setUserName (const IT Bus::String * val);
void setUserName (const IT Bus::String & val);

IT Bus::String *getPassword() ;

const IT Bus::String *getPassword() const;
void setPassword (const IT Bus::String * val);
void setPassword (const IT Bus::String & val);

IT Bus::String *getAuthorizationType () ;

const IT Bus::String *getAuthorizationType () const;
void setAuthorizationType (const IT Bus::String * val);
void setAuthorizationType (const IT Bus::String & val);

IT Bus::String *getAuthorization();

const IT Bus::String *getAuthorization() const;
void setAuthorization(const IT Bus::String * val);
void setAuthorization(const IT Bus::String & val);

IT Bus::String *getAccept () ;

const IT Bus::String *getAccept () const;
void setAccept (const IT Bus::String * val);
void setAccept (const IT Bus::String & val);

IT Bus::String *getAcceptLanguage () ;

const IT Bus::String *getAcceptlanguage () const;
void setAcceptLanguage (const IT Bus::String * val);
void setAcceptlLanguage (const IT Bus::String & val);

IT Bus::String *getAcceptEncoding () ;

Example 251:http-conf Context Data Types (Continued)

const IT Bus::String *getAcceptEncoding() const;
void setAcceptEncoding(const IT Bus::String * val);
void setAcceptEncoding (const IT Bus::String & val);

IT Bus::String *getContentType () ;

const IT Bus::String *getContentType () const;
void setContentType (const IT Bus::String * val);
void setContentType (const IT Bus::String & val);
IT Bus::String *getHost();

const IT Bus::String *getHost() const;

void setHost (const IT Bus::String * val);

void setHost (const IT Bus::String & val);

Connection *getConnection () ;

const Connection *getConnection() const;
void setConnection (const Connection * val);
void setConnection (const Connection & wval);

CacheControl *getCacheControl () ;

const CacheControl *getCacheControl () const;
void setCacheControl (const CacheControl * wval);
void setCacheControl (const CacheControl & val);

IT Bus::String *getCookie();

const IT Bus::String *getCookie() const;
void setCookie (const IT Bus::String * val);
void setCookie (const IT Bus::String & val);

IT Bus::String *getBrowserType () ;

const IT Bus::String *getBrowserType () const;
void setBrowserType (const IT Bus::String * val);
void setBrowserType (const IT Bus::String & val);

IT Bus::String *getReferer();

const IT Bus::String *getReferer() const;
void setReferer (const IT Bus::String * val);
void setReferer (const IT Bus::String & val);

IT Bus::String *getProxyServer () ;

const IT Bus::String *getProxyServer () const;
void setProxyServer (const IT Bus::String * val)
void setProxyServer (const IT Bus::String & val)

’
’

IT Bus::String *getProxyUserName () ;

577

CHAPTER A | http-conf Context Data Types

Example 251:http-conf Context Data Types (Continued)

const IT Bus::String *getProxyUserName () const;
void setProxyUserName (const IT Bus::String * val);
void setProxyUserName (const IT Bus::String & val);

IT Bus::String *getProxyPassword();

const IT Bus::String *getProxyPassword() const;
void setProxyPassword(const IT Bus::String * val);
void setProxyPassword(const IT Bus::String & val);

IT Bus::String *getProxyAuthorizationType () ;

const IT Bus::String *getProxyAuthorizationType () const;

void setProxyAuthorizationType (const IT Bus::String *
val) ;

void setProxyAuthorizationType (const IT Bus::String &
val);

IT Bus::String *getProxyAuthorization();

const IT Bus::String *getProxyAuthorization() const;
void setProxyAuthorization (const IT Bus::String * val);
void setProxyAuthorization (const IT Bus::String & val);

IT Bus::Boolean *getUseSecureSockets();

const IT Bus::Boolean *getUseSecureSockets() const;
void setUseSecureSockets (const IT Bus::Boolean * val);
void setUseSecureSockets (const IT Bus::Boolean & val);

IT Bus::String *getClientCertificate();

const IT Bus::String *getClientCertificate() const;
void setClientCertificate (const IT Bus::String * val);
void setClientCertificate(const IT Bus::String & val);

IT Bus::String *getClientCertificateChain () ;

const IT Bus::String *getClientCertificateChain() const;

void setClientCertificateChain(const IT Bus::String *
val) ;

void setClientCertificateChain (const IT Bus::String &
val) ;

IT Bus::String *getClientPrivateKey();
const IT Bus::String *getClientPrivateKey() const;
void setClientPrivateKey(const IT Bus::String * val);

void setClientPrivateKey (const IT Bus::String & val);

IT Bus::String *getClientPrivateKeyPassword();

578

Example 251:http-conf Context Data Types (Continued)

const IT Bus::String *getClientPrivateKeyPassword ()
const;

void setClientPrivateKeyPassword (const IT Bus::String *
val) ;

void setClientPrivateKeyPassword(const IT Bus::String &

val) ;

IT Bus::String *getTrustedRootCertificates();

const IT Bus::String *getTrustedRootCertificates() const;

void setTrustedRootCertificates(const IT Bus::String *
val) ;

void setTrustedRootCertificates (const IT Bus::String &

val) ;

bi
typedef IT AutoPtr<clientType> clientTypePtr;

class Connection : public IT Bus::AnySimpleType
{
public:
Connection () ;
Connection (const Connection & copy);
Connection (const IT Bus::String & value);
virtual ~Connection () ;

void set value(const IT Bus::String & value);
const IT Bus::String & get value() const;

}i
typedef IT AutoPtr<Connection> ConnectionPtr;

class CacheControl : public IT Bus::AnySimpleType
{
public:
CacheControl () ;
CacheControl (const CacheControl & copy);
CacheControl (const IT Bus::String & value);
virtual ~CacheControl () ;

void set value(const IT Bus::String & value);
const IT Bus::String & get value() const;

579

CHAPTER A | http-conf Context Data Types

Example 251:http-conf Context Data Types (Continued)
typedef IT AutoPtr<CacheControl> CacheControlPtr;

class CacheControl 1 : public IT Bus::AnySimpleType
{
public:

CacheControl 1();

CacheControl 1 (const CacheControl 1 & copy);
CacheControl 1(const IT Bus::String & value);
virtual ~CacheControl 1();

void setvalue (const IT Bus::String & value);

const IT Bus::String & getvalue() const;

virtual IT Reflect::Reflection* get reflection()
IT THROW DECL ((IT Reflect::ReflectException)) ;

bi

class serverType
: public IT tExtensibilityElementData,
public virtual IT Bus::ComplexContentComplexType

public:

serverType () ;
serverType (const serverType & copy);
virtual ~serverType();

IT Bus::Int *getSendTimeout ();

const IT Bus::Int *getSendTimeout () const;
void setSendTimeout (const IT Bus::Int * val);
void setSendTimeout (const IT Bus::Int & val);

IT Bus::Int *getReceiveTimeout ();

const IT Bus::Int *getReceiveTimeout () const;
void setReceiveTimeout (const IT Bus::Int * val);
void setReceiveTimeout (const IT Bus::Int & val);

IT Bus::Boolean *getSuppressClientSendErrors () ;

const IT Bus::Boolean *getSuppressClientSendErrors ()
const;

void setSuppressClientSendErrors (const IT Bus::Boolean *
val);

580

Example 251:http-conf Context Data Types (Continued)

void setSuppressClientSendErrors (const IT Bus::Boolean &
val);

IT Bus::Boolean *getSuppressClientReceiveErrors();
const IT Bus::Boolean *getSuppressClientReceiveErrors ()
const;
void setSuppressClientReceiveErrors (const IT Bus::Boolean
* val);
void setSuppressClientReceiveErrors (const IT Bus::Boolean
& val);

IT Bus::Boolean *getHonorKeepAlive () ;

const IT Bus::Boolean *getHonorKeepAlive () const;
void setHonorKeepAlive (const IT Bus::Boolean * val);
void setHonorKeepAlive (const IT Bus::Boolean & val);

IT Bus::Int *getMultiplexPoolSize();

const IT Bus::Int *getMultiplexPoolSize() const;
void setMultiplexPoolSize (const IT Bus::Int * val);
void setMultiplexPoolSize (const IT Bus::Int & val);
IT Bus::String *getRedirectURL() ;

const IT Bus::String *getRedirectURL() const;

void setRedirectURL(const IT Bus::String * val);
void setRedirectURL(const IT Bus::String & val);

CacheControl 1 *getCacheControl () ;

const CacheControl 1 *getCacheControl () const;
void setCacheControl (const CacheControl 1 * val);
void setCacheControl (const CacheControl 1 & val);

IT Bus::String *getContentlLocation();

const IT Bus::String *getContentLocation() const;
void setContentlLocation(const IT Bus::String * val);
void setContentlLocation(const IT Bus::String & val);

IT Bus::String *getContentType () ;

const IT Bus::String *getContentType () const;
void setContentType (const IT Bus::String * val);
void setContentType (const IT Bus::String & val);

IT Bus::String *getContentEncoding();

const IT Bus::String *getContentEncoding() const;
void setContentEncoding(const IT Bus::String * val);
void setContentEncoding(const IT Bus::String & val);

581

CHAPTER A | http-conf Context Data Types

582

Example 251:http-conf Context Data Types (Continued)

IT Bus::String *getServerType () ;

const IT Bus::String *getServerType () const;
void setServerType (const IT Bus::String * val);
void setServerType (const IT Bus::String & val);

IT Bus::Boolean *getUseSecureSockets();

const IT Bus::Boolean *getUseSecureSockets() const;
void setUseSecureSockets (const IT Bus::Boolean * val);
void setUseSecureSockets (const IT Bus::Boolean & val);

IT Bus::String *getServerCertificate();

const IT Bus::String *getServerCertificate() const;
void setServerCertificate (const IT Bus::String * val);
void setServerCertificate(const IT Bus::String & val);

IT Bus::String *getServerCertificateChain () ;

const IT Bus::String *getServerCertificateChain() const;

void setServerCertificateChain(const IT Bus::String *
val) ;

void setServerCertificateChain (const IT Bus::String &
val) ;

IT Bus::String *getServerPrivateKey();

const IT Bus::String *getServerPrivateKey() const;
void setServerPrivateKey(const IT Bus::String * val);
void setServerPrivateKey (const IT Bus::String & val);

IT Bus::String *getServerPrivateKeyPassword();

const IT Bus::String *getServerPrivateKeyPassword ()
const;

void setServerPrivateKeyPassword (const IT Bus::String *

val);

void setServerPrivateKeyPassword (const IT Bus::String &
val);

IT Bus::String *getTrustedRootCertificates();

const IT Bus::String *getTrustedRootCertificates() const;

void setTrustedRootCertificates(const IT Bus::String *
val) ;

void setTrustedRootCertificates(const IT Bus::String &
val);

i
typedef IT AutoPtr<serverType> serverTypePtr;

Example 251:http-conf Context Data Types (Continued)

583

CHAPTER A | http-conf Context Data Types

584

APPENDIX B

MQ-Series Context
Data Types

This appendix lists the MQ-Series context data types. You can
use these C++ types in conjunction with the context API to
set the properties of the MQ transport plug-in programatically.

C++ mapped classes Example 252 shows the context data types that are generated when the
mg.xsd schema is mapped to C+ +.

Example 252:MQ-Series Context Data Types

// C++

namespace IT ContextAttributes

{

class transactionType : public IT Bus::AnySimpleType
{
public:

transactionType () ;

transactionType (const transactionType & copy) ;
transactionType (const IT Bus::String & value);
virtual ~transactionType();

void setvalue (const IT Bus::String & value);
const IT Bus::String & getvalue() const;

585

CHAPTER B | MQ-Series Context Data Types

586

Example 252:MQ-Series Context Data Types (Continued)

typedef IT AutoPtr<transactionType> transactionTypePtr;
class correlationStyleType : public IT Bus::AnySimpleType

public:

correlationStyleType () ;

correlationStyleType (const correlationStyleType & copy);
correlationStyleType (const IT Bus::String & value);
virtual ~correlationStyleType () ;

void setvalue (const IT Bus::String & value);
const IT Bus::String & getvalue() const;

typedef IT AutoPtr<correlationStyleType>
correlationStyleTypePtr;

class deliveryType : public IT Bus::AnySimpleType

public:

deliveryType () ;

deliveryType (const deliveryType & copy);
deliveryType (const IT Bus::String & value);
virtual ~deliveryType () ;

void setvalue (const IT Bus::String & value);
const IT Bus::String & getvalue() const;

typedef IT AutoPtr<deliveryType> deliveryTypePtr;
class reportOptionType : public IT Bus::AnySimpleType

public:

reportOptionType () ;

reportOptionType (const reportOptionType & copy) ;
reportOptionType (const IT Bus::String & value);
virtual ~reportOptionType () ;

void setvalue (const IT Bus::String & value);
const IT Bus::String & getvalue() const;

Example 252:MQ-Series Context Data Types (Continued)

bi
typedef IT AutoPtr<reportOptionType> reportOptionTypePtr;

class formatType : public IT Bus::AnySimpleType

{
public:

formatType () ;

formatType (const formatType & copy);
formatType (const IT Bus::String & value);
virtual ~formatType () ;

void setvalue (const IT Bus::String & value);
const IT Bus::String & getvalue() const;

bi
typedef IT AutoPtr<formatType> formatTypePtr;

class usageStyleType : public IT Bus::AnySimpleType

{
public:

usageStyleType () ;

usageStyleType (const usageStyleType & copy);
usageStyleType (const IT Bus::String & value);
virtual ~usageStyleType();

void setvalue (const IT Bus::String & value);
const IT Bus::String & getvalue() const;

bi
typedef IT AutoPtr<usageStyleType> usageStyleTypePtr;

class accessModeType : public IT Bus::AnySimpleType

{
public:

accessModeType () ;

accessModeType (const accessModeType & copy) ;
accessModeType (const IT Bus::String & value);
virtual ~accessModeType () ;

void setvalue (const IT Bus::String & value);
const IT Bus::String & getvalue() const;

587

CHAPTER B | MQ-Series Context Data Types

588

Example 252:MQ-Series Context Data Types (Continued)

typedef IT AutoPtr<accessModeType> accessModeTypePtr;

class MQConnectionAttributesType
: public IT tExtensibilityElementData,

public virtual IT Bus::ComplexContentComplexType

public:

MQConnectionAttributesType () ;
MQOConnectionAttributesType (const

MQConnectionAttributesType & copy);

virtual ~MQConnectionAttributesType () ;

IT Bus::String * getQueueManager () ;

const IT Bus::String * getQueueManager () const;
void setQueueManager (const IT Bus::String * val);
void setQueueManager (const IT Bus::String & val);

IT Bus::String & getQueueName () ;
const IT Bus::String & getQueueName () const;
void setQueueName (const IT Bus::String & val);

IT Bus::String * getReplyQueueManager () ;

const IT Bus::String *getReplyQueueManager () const;
void setReplyQueueManager (const IT Bus::String * val);
void setReplyQueueManager (const IT Bus::String & val);

IT Bus::String *getReplyQueueName () ;

const IT Bus::String *getReplyQueueName () const;
void setReplyQueueName (const IT Bus::String * val);
void setReplyQueueName (const IT Bus::String & val);

IT Bus::String *getModelQueueName () ;

const IT Bus::String *getModelQueueName () const;
void setModelQueueName (const IT Bus::String * val);
void setModelQueueName (const IT Bus::String & val);

IT Bus::String *getAliasQueueName () ;

const IT Bus::String *getAliasQueueName () const;
void setAliasQueueName (const IT Bus::String * val);
void setAliasQueueName (const IT Bus::String & val);

IT Bus::String *getConnectionName () ;

Example 252:MQ-Series Context Data Types (Continued)

const IT Bus::String *getConnectionName () const;
void setConnectionName (const IT Bus::String * val);
void setConnectionName (const IT Bus::String & val);

transactionType *getTransactional();

const transactionType *getTransactional () const;
void setTransactional (const transactionType * val);
void setTransactional (const transactionType & val);
bi

typedef IT AutoPtr<MQConnectionAttributesType>
MQConnectionAttributesTypePtr;

class mgClientType : public IT tExtensibilityElementData ,
public virtual IT Bus::ComplexContentComplexType

{

public:

maClientType () ;
mgClientType (const mgClientType & copy) ;
virtual ~mgClientType () ;

IT Bus::String *getQueueManager () ;

const IT Bus::String *getQueueManager () const;
void setQueueManager (const IT Bus::String * val);
void setQueueManager (const IT Bus::String & val);

IT Bus::String & getQueueName () ;
const IT Bus::String & getQueueName () const;
void setQueueName (const IT Bus::String & val);

IT Bus::String *getReplyQueueManager () ;

const IT Bus::String *getReplyQueueManager () const;
void setReplyQueueManager (const IT Bus::String * val);
void setReplyQueueManager (const IT Bus::String & val);
IT Bus::String *getReplyQueueName () ;

const IT Bus::String *getReplyQueueName () const;

void setReplyQueueName (const IT Bus::String * val);
void setReplyQueueName (const IT Bus::String & val);

IT Bus::String *getModelQueueName () ;

const IT Bus::String *getModelQueueName () const;
void setModelQueueName (const IT Bus::String * val)
void setModelQueueName (const IT Bus::String & val)

’
’

589

CHAPTER B | MQ-Series Context Data Types

590

Example 252:MQ-Series Context Data Types (Continued)

val) ;

val) ;

usageStyleType *getUsageStyle();

const usageStyleType *getUsageStyle() const;
void setUsageStyle (const usageStyleType * val);
void setUsageStyle (const usageStyleType & val);

correlationStyleType *getCorrelationStyle();
const correlationStyleType *getCorrelationStyle() const;
void setCorrelationStyle (const correlationStyleType *

void setCorrelationStyle (const correlationStyleType &

accessModeType *getAccessMode () ;

const accessModeType *getAccessMode () const;
void setAccessMode (const accessModeType * val);
void setAccessMode (const accessModeType & val);

deliveryType *getDelivery();

const deliveryType *getDelivery() const;
void setDelivery(const deliveryType * val);
void setDelivery(const deliveryType & val);

transactionType *getTransactional () ;

const transactionType *getTransactional () const;
void setTransactional (const transactionType * val);
void setTransactional (const transactionType & val);

reportOptionType *getReportOption () ;

const reportOptionType *getReportOption() const;
void setReportOption (const reportOptionType * val);
void setReportOption (const reportOptionType & val) ;

formatType *getFormat();

const formatType *getFormat () const;
void setFormat (const formatType * val);
void setFormat (const formatType & val);

IT Bus::String *getMessageID();

const IT Bus::String *getMessageID() const;
void setMessageID(const IT Bus::String * val);
void setMessageID(const IT Bus::String & val);

IT Bus::String *getCorrelationID();

Example 252:MQ-Series Context Data Types (Continued)

const IT Bus::String *getCorrelationID() const;
void setCorrelationID(const IT Bus::String * val);
void setCorrelationID(const IT Bus::String & val);

IT Bus::String *getApplicationData();

const IT Bus::String *getApplicationData() const;
void setApplicationData (const IT Bus::String * val);
void setApplicationData (const IT Bus::String & val);

IT Bus::String *getAccountingToken () ;

const IT Bus::String *getAccountingToken () const;
void setAccountingToken (const IT Bus::String * val);
void setAccountingToken (const IT Bus::String & val);

IT Bus::Boolean *getConvert () ;

const IT Bus::Boolean *getConvert () const;
void setConvert (const IT Bus::Boolean * val);
void setConvert (const IT Bus::Boolean & val);

IT Bus::String *getConnectionName () ;

const IT Bus::String *getConnectionName () const;
void setConnectionName (const IT Bus::String * val)
void setConnectionName (const IT Bus::String & val)

’
’

IT Bus::Boolean *getConnectionReusable () ;

const IT Bus::Boolean *getConnectionReusable () const;

void setConnectionReusable (const IT Bus::Boolean * val);
void setConnectionReusable (const IT Bus::Boolean & val);

IT Bus::Boolean *getConnectionFastPath () ;

const IT Bus::Boolean *getConnectionFastPath () const;

void setConnectionFastPath (const IT Bus::Boolean * val);
void setConnectionFastPath (const IT Bus::Boolean & val);

IT Bus::String *getAliasQueueName () ;

const IT Bus::String *getAliasQueueName () const;
void setAliasQueueName (const IT Bus::String * val);
void setAliasQueueName (const IT Bus::String & val);
IT Bus::String *getApplicationIdData();

const IT Bus::String *getApplicationIdData() const;

void setApplicationIdData (const IT Bus::String * val);
void setApplicationIdData (const IT Bus::String & val);

IT Bus::String *getApplicationOriginData();

591

CHAPTER B | MQ-Series Context Data Types

Example 252:MQ-Series Context Data Types (Continued)

const IT Bus::String *getApplicationOriginData () const;

void setApplicationOriginData (const IT Bus::String *
val) ;

void setApplicationOriginData (const IT Bus::String &
val);

IT Bus::String *getUserIdentifier();

const IT Bus::String *getUserIdentifier() const;
void setUserIdentifier (const IT Bus::String * val);
void setUserIdentifier (const IT Bus::String & val);

}i
typedef IT AutoPtr<mgClientType> mgClientTypePtr;

class mgServerType
: public IT tExtensibilityElementData,
public virtual IT Bus::ComplexContentComplexType

public:

mgServerType () ;
mgServerType (const mgServerType & copy) ;
virtual ~mgServerType () ;

IT Bus::String *getQueueManager () ;

const IT Bus::String *getQueueManager () const;
void setQueueManager (const IT Bus::String * val);
void setQueueManager (const IT Bus::String & val);

IT Bus::String & getQueueName () ;
const IT Bus::String & getQueueName () const;
void setQueueName (const IT Bus::String & val);

IT Bus::String *getReplyQueueManager () ;

const IT Bus::String *getReplyQueueManager () const;
void setReplyQueueManager (const IT Bus::String * val);
void setReplyQueueManager (const IT Bus::String & val);

IT Bus::String *getReplyQueueName () ;

const IT Bus::String *getReplyQueueName () const;
void setReplyQueueName (const IT Bus::String * val);
void setReplyQueueName (const IT Bus::String & val);

IT Bus::String *getModelQueueName () ;
const IT Bus::String *getModelQueueName () const;

592

Example 252:MQ-Series Context Data Types (Continued)

void setModelQueueName (const IT Bus::String * val);
void setModelQueueName (const IT Bus::String & val);
usageStyleType *getUsageStyle () ;

const usageStyleType *getUsageStyle() const;

void setUsageStyle (const usageStyleType * val);
void setUsageStyle (const usageStyleType & val);

correlationStyleType *getCorrelationStyle () ;

const correlationStyleType *getCorrelationStyle() const;

void setCorrelationStyle (const correlationStyleType *
val);

void setCorrelationStyle (const correlationStyleType &
val);

accessModeType *getAccessMode () ;

const accessModeType *getAccessMode () const;
void setAccessMode (const accessModeType * val);
void setAccessMode (const accessModeType & val);

deliveryType *getDelivery();

const deliveryType *getDelivery() const;
void setDelivery(const deliveryType * wval);
void setDelivery(const deliveryType & val);

transactionType *getTransactional();

const transactionType *getTransactional () const;
void setTransactional (const transactionType * val);
void setTransactional (const transactionType & val);
reportOptionType *getReportOption () ;

const reportOptionType *getReportOption() const;
void setReportOption (const reportOptionType * val);
void setReportOption (const reportOptionType & val);

formatType *getFormat () ;

const formatType *getFormat () const;
void setFormat (const formatType * val);
void setFormat (const formatType & val);

IT Bus::String *getMessageID();

const IT Bus::String *getMessageID() const;
void setMessageID(const IT Bus::String * val);
void setMessageID(const IT Bus::String & val);

593

CHAPTER B | MQ-Series Context Data Types

594

Example 252:MQ-Series Context Data Types (Continued)

val) ;

IT Bus::String *getCorrelationID();

const IT Bus::String *getCorrelationID() const;
void setCorrelationID(const IT Bus::String * val);
void setCorrelationID(const IT Bus::String & val);

IT Bus::String *getApplicationData();

const IT Bus::String *getApplicationData() const;
void setApplicationData (const IT Bus::String * val);
void setApplicationData (const IT Bus::String & val);

IT Bus::String *getAccountingToken () ;

const IT Bus::String *getAccountingToken () const;
void setAccountingToken (const IT Bus::String * val);
void setAccountingToken (const IT Bus::String & val);
IT Bus::Boolean *getConvert();

const IT Bus::Boolean *getConvert () const;

void setConvert (const IT Bus::Boolean * val);

void setConvert (const IT Bus::Boolean & val);

IT Bus::String *getConnectionName () ;

const IT Bus::String *getConnectionName () const;
void setConnectionName (const IT Bus::String * val);
void setConnectionName (const IT Bus::String & val);

IT Bus::Boolean *getConnectionReusable () ;

const IT Bus::Boolean *getConnectionReusable() const;
void setConnectionReusable (const IT Bus::Boolean * val);
void setConnectionReusable (const IT Bus::Boolean & val);

IT Bus::Boolean *getConnectionFastPath () ;

const IT Bus::Boolean *getConnectionFastPath() const;
void setConnectionFastPath (const IT Bus::Boolean * val);
void setConnectionFastPath (const IT Bus::Boolean & val);

IT Bus::String *getApplicationIdData();

const IT Bus::String *getApplicationIdData() const;
void setApplicationIdData(const IT Bus::String * val);
void setApplicationIdData(const IT Bus::String & val);

IT Bus::String *getApplicationOriginData () ;
const IT Bus::String *getApplicationOriginData() const;
void setApplicationOriginData (const IT Bus::String *

Example 252:MQ-Series Context Data Types (Continued)

void setApplicationOriginData (const IT Bus::String &
val);

}i
typedef IT AutoPtr<mgServerType> mgServerTypePtr;

class MQAttributesType
: public IT tExtensibilityElementData,
public virtual IT Bus::ComplexContentComplexType

public:

MOAttributesType () ;
MOAttributesType (const MQOAttributesType & copy) ;
virtual ~MQAttributesType () ;

IT Bus::String *getQueueManager () ;

const IT Bus::String *getQueueManager () const;
void setQueueManager (const IT Bus::String * val);
void setQueueManager (const IT Bus::String & val);

IT Bus::String &getQueueName () ;
const IT Bus::String &getQueueName () const;
void setQueueName (const IT Bus::String & val);

IT Bus::String *getReplyQueueManager () ;

const IT Bus::String *getReplyQueueManager () const;
void setReplyQueueManager (const IT Bus::String * val);
void setReplyQueueManager (const IT Bus::String & val);

IT Bus::String *getReplyQueueName () ;

const IT Bus::String *getReplyQueueName () const;
void setReplyQueueName (const IT Bus::String * val);
void setReplyQueueName (const IT Bus::String & val);

IT Bus::String *getModelQueueName () ;

const IT Bus::String *getModelQueueName () const;
void setModelQueueName (const IT Bus::String * val);
void setModelQueueName (const IT Bus::String & val);

usageStyleType *getUsageStyle () ;

const usageStyleType *getUsageStyle() const;
void setUsageStyle (const usageStyleType * val);
void setUsageStyle (const usageStyleType & val);

595

CHAPTER B | MQ-Series Context Data Types

Example 252:MQ-Series Context Data Types (Continued)

correlationStyleType *getCorrelationStyle();

const correlationStyleType *getCorrelationStyle() const;

void setCorrelationStyle (const correlationStyleType *
val) ;

void setCorrelationStyle (const correlationStyleType &
val);

accessModeType *getAccessMode () ;

const accessModeType *getAccessMode () const;
void setAccessMode (const accessModeType * val);
void setAccessMode (const accessModeType & val);

deliveryType *getDelivery();

const deliveryType *getDelivery () const;
void setDelivery (const deliveryType * val);
void setDelivery(const deliveryType & val);

transactionType *getTransactional () ;

const transactionType *getTransactional () const;
void setTransactional (const transactionType * val);
void setTransactional (const transactionType & val) ;

reportOptionType * getReportOption();

const reportOptionType * getReportOption () const;
void setReportOption (const reportOptionType * val);
void setReportOption (const reportOptionType & val);

formatType * getFormat();

const formatType * getFormat () const;
void setFormat (const formatType * val);
void setFormat (const formatType & val);

IT Bus::Baseb64Binary * getMessageID();

const IT Bus::Base64Binary * getMessageID() const;
void setMessageID(const IT Bus::Base64Binary * val);
void setMessageID(const IT Bus::Base64Binary & val);

IT Bus::Base64Binary * getCorrelationID();

const IT Bus::Base64Binary * getCorrelationID() const;
void setCorrelationID(const IT Bus::Base64Binary * val);
void setCorrelationID(const IT Bus::Base64Binary & val);

IT Bus::String * getApplicationData();

const IT Bus::String * getApplicationData() const;
void setApplicationData (const IT Bus::String * val);

596

Example 252:MQ-Series Context Data Types (Continued)

void setApplicationData (const IT Bus::String & val);

IT Bus::String * getAccountingToken () ;

const IT Bus::String * getAccountingToken() const;
void setAccountingToken (const IT Bus::String * val);
void setAccountingToken (const IT Bus::String & val);

IT Bus::Boolean * getConvert () ;

const IT Bus::Boolean * getConvert () const;
void setConvert (const IT Bus::Boolean * val);
void setConvert (const IT Bus::Boolean & val);

IT Bus::String * getConnectionName () ;

const IT Bus::String * getConnectionName () const;
void setConnectionName (const IT Bus::String * val);
void setConnectionName (const IT Bus::String & val);

IT Bus::Boolean * getConnectionReusable();

const IT Bus::Boolean * getConnectionReusable() const;
void setConnectionReusable (const IT Bus::Boolean * val);
void setConnectionReusable (const IT Bus::Boolean & val);

IT Bus::Boolean * getConnectionFastPath();

const IT Bus::Boolean * getConnectionFastPath() const;
void setConnectionFastPath (const IT Bus::Boolean * val);
void setConnectionFastPath (const IT Bus::Boolean & val);

IT Bus::String * getAliasQueueName () ;

const IT Bus::String * getAliasQueueName () const;
void setAliasQueueName (const IT Bus::String * val);
void setAliasQueueName (const IT Bus::String & val);

IT Bus::String * getApplicationIdData () ;

const IT Bus::String * getApplicationIdData() const;
void setApplicationIdData(const IT Bus::String * val);
void setApplicationIdData (const IT Bus::String & val);

IT Bus::String * getApplicationOriginData () ;

const IT Bus::String * getApplicationOriginData () const;

void setApplicationOriginData (const IT Bus::String *
val);

void setApplicationOriginData (const IT Bus::String &
val) ;

IT Bus::String * getUserIdentifier();

597

CHAPTER B | MQ-Series Context Data Types

Example 252:MQ-Series Context Data Types (Continued)

const IT Bus::String * getUserIdentifier() const;
void setUserIdentifier (const IT Bus::String * val);
void setUserIdentifier (const IT Bus::String & val);

IT Bus::Int * getBackoutCount () ;

const IT Bus::Int * getBackoutCount () const;
void setBackoutCount (const IT Bus::Int * val);
void setBackoutCount (const IT Bus::Int & val);

}i
typedef IT AutoPtr<MQAttributesType> MQOAttributesTypePtr;

class MQMessageAttributesType
: public IT tExtensibilityElementData,
public virtual IT Bus::ComplexContentComplexType

public:

MQMessageAttributesType () ;
MQMessageAttributesType (const MQOMessageAttributesType &

copy) ;
virtual ~MQMessageAttributesType () ;

correlationStyleType * getCorrelationStyle();

const correlationStyleType * getCorrelationStyle() const;

void setCorrelationStyle (const correlationStyleType *
val);

void setCorrelationStyle (const correlationStyleType &
val);

deliveryType * getDelivery();

const deliveryType * getDelivery() const;
void setDelivery (const deliveryType * val);
void setDelivery(const deliveryType & val);

reportOptionType * getReportOption () ;

const reportOptionType * getReportOption() const;
void setReportOption (const reportOptionType * val);
void setReportOption (const reportOptionType & val) ;

formatType * getFormat();

const formatType * getFormat () const;
void setFormat (const formatType * val);
void setFormat (const formatType & val);

598

Example 252:MQ-Series Context Data Types (Continued)

IT Bus::Base64Binary * getMessageID();

const IT Bus::Base64Binary * getMessageID() const;
void setMessagelD(const IT Bus::Base64Binary * val);
void setMessageID(const IT Bus::Base64Binary & val);

IT Bus::Base64Binary * getCorrelationID();

const IT Bus::Base64Binary * getCorrelationID() const;
void setCorrelationID(const IT Bus::Base64Binary * val);
void setCorrelationID(const IT Bus::Base64Binary & val);

IT Bus::String * getApplicationData () ;

const IT Bus::String * getApplicationData() const;
void setApplicationData (const IT Bus::String * val);
void setApplicationData (const IT Bus::String & val);

IT Bus::String * getAccountingToken () ;

const IT Bus::String * getAccountingToken() const;
void setAccountingToken (const IT Bus::String * val);
void setAccountingToken (const IT Bus::String & val);

IT Bus::Boolean * getConvert();

const IT Bus::Boolean * getConvert () const;
void setConvert (const IT Bus::Boolean * val);
void setConvert (const IT Bus::Boolean & val);

IT Bus::String * getApplicationIdData();
const IT Bus::String * getApplicationIdData () const;
void setApplicationIdData (const IT Bus::String * val);
void setApplicationIdData(const IT Bus::String & val);
IT Bus::String * getApplicationOriginData();
const IT Bus::String * getApplicationOriginData() const;
void setApplicationOriginData(const IT Bus::String *
val) ;
void setApplicationOriginData (const IT Bus::String &
val);

IT Bus::String * getUserIdentifier();

const IT Bus::String * getUserIdentifier() const;
void setUserIdentifier(const IT Bus::String * val);
void setUserIdentifier(const IT Bus::String & val);
IT Bus::Int * getBackoutCount () ;

const IT Bus::Int * getBackoutCount () const;

void setBackoutCount (const IT Bus::Int * val);

599

CHAPTER B | MQ-Series Context Data Types

Example 252:MQ-Series Context Data Types (Continued)
void setBackoutCount (const IT Bus::Int & val);
}i
typedef IT AutoPtr<MQMessageAttributesType>

MQOMessageAttributesTypePtr;
}i

600

Index

Symbols
##any namespace constraint 341
##local namespace constraint 341
##other namespace constraint 342
##targetNamespace namespace constraint 341
<bus-security

security> 183
<extension> tag 311
<fault> tag 48
<http-conf

server> 182
<http-conf:client> port extensor 214
<http-conf:server> port extensor 217
<il18n-context

server> 182
<mq

client> 182

server> 182
<restriction> tag 310
<simpleContent> tag 310
<soap

header> element 190
<soap:header> element 232

Numerics
16-bit characters 252

A
abstract interface type 423
_add_ref() function 445
add_service() function 68, 69, 77
All class 456
all complex type
nillable example 375
AllComplexType class 296
all groups 296
anonymous types
avoiding 306
AnyHolder class 336
get_any type() function 337
get type() function 338
inserting and extracting atomic types 337

inserting and extracting user types 337
set_any_type() function 337
AnyType class 216, 219, 233, 337, 443
AnyType type
printing 477
anyType type 336
nillable 371
anyURI type 334
arithmetical operators
for integers 265
arrays
multi-dimensional native 325
native 323
SOAP 400
arrayType attribute 402
array types
nillable elements 387
artix.cfg file 89
Artix Designer
and routing 135
Artix foundation classes 24
Artix locator
overview 149
Artix namespaces 7
Artix services
locator 153
ART library 24
assign() 413
at() 413
atomic types 247
nillable example 372
nillable types 371
attach_thread() function
and suppressing propagation 559
attributes
defining with anyURI 334
in extended types 315
mapping 299
optional 299
optional, C++ mapping 300
optional, example 300
prohibited 299
reflection of 495

601

INDEX

required 299

required, C++ mapping 301

required, example 301
auto_ptr template 60

B
backout count 569
backout threshold 564, 567
configuring 569
Base64Binary type 268
base64Binary type
nillable 372
begin_session() 173
binary types 268
Base64Binary type 268
HexBinary type 268
binding name
specifying to code generator 3
bindings
configuration of 181
boolean type
nillable 371
BOQNAME attribute 569
BOTHRESH attribute 569
bounded sequences 431
boxed value type 423
building Artix applications 336
BuiltinType class 451
BuiltInType type 482
Bus

add_service() function 68, 69, 77

Bus library 24
byte type
nillable 371

C

C++ mapping
parameter order 37
parameters 36, 42
callbacks
and routing 134
and threading 133
client implementation 141
Clientlmpl servant class 143
client main function 141
demonstration 132
example scenario 133
overview 131

602

sample WSDL contract 138
server implementation 145
Serverlmpl servant class 147
server main function 145
casting
from plain pointer to Var 448
checked facets 275
Choice class 462
choice complex type 306
ChoiceComplexType class 292
choice complex types 292
Choice type 488
clear() 413
client
developing 14
proxy object 14
stub code, files 2
client proxies
and multi-threading 82
and threading 81
client stub code 2
clone() function 87
cloning
and transient servants 73

service for transient reference 125

cloning services 72
Code generation 2
code generation
from the command line 3
impl flag 10
code generator
command-line 3
files generated 2
compare() 263, 266
compilation
-reflect flag 442
compiler requirements 24
compiling a context schema 224
ComplexContent class 467
complexContent tag 315
ComplexContent type 493
complex datatypes
generated files 2
complex type
deallocating 59
deriving from simple 310
ComplexType class 451
complex types 288
assignment operators 57

copying 57
deriving 313
nesting 306
recursive copying 58
complexType tag 314, 315
configuration
-ORBname switch 159
configuration contexts
example 209
header files 192
library 192
overview 181
pre-registered 192
registering 187
reply contexts 182
request contexts 182
schema-based 182
ConnectException type 45
const_cast_var casting operator 448
ContextContainer class 215, 218, 232
context containers
reply context 198
request context 198
ContextCurrent class 198, 215, 218, 232
ContextCurrent type 181
context data
registering 232, 236
context names 232
context registry
registering 186
ContextRegistry class 187, 188, 215, 218, 232
ContextRegistry type 232
contexts
client main function 214, 229
context name 232
ContextRegistry type 232
example 220
get context() function 200
get_context_container() function 186
overview 180
overview of configuration contexts 181
overview of header contexts 184
protocols 184
register_context() function 186
registering a context type 186
reply_contexts() function 198
request_contexts() function 198
sample schema 223
scenario description 222

schema, target namespace 224
server main function 217, 234
service implementation 237
set_context() function 200
stub files, generating 203

type factories for 186
user-defined data 203

CORBA

abstract interface 423
any 424

basic types 424
boolean 424

boxed value 423
char 424

configuring internationalization 249

enum type 426

exception type 432

fixed 424

forward-declared interfaces 423
header context 185

local interface type 423

Object 424

registering a header context 190
sequence type 430

string 424

struct type 429

typedef 433

union type 427, 431

value type 423

wchar 424

wstring 424

CORBA headers

and contexts 185

dateTime type

nillable 372

Date type 262
date type

nillable 372

decimal type

nillable 372

declaration specifiers 26
-declspec option 26
Delivery attribute 565
derivation

by extension 310
by restriction 310

complex type from complex type 313

INDEX

603

INDEX

get derived() function 318
get simpleTypeValue() 312
set_simpleTypeValue() 312
DerivedSimpleType type 482
DeserializationException type 45
detach_thread() function
and suppressing propagation 559
developing a server 10
dispatch() function 86
DLL
building stub libraries 26
DLL library
building Artix stubs ina 5
document/literal wrapped style
C++ default mapping 42
C++ mapping using -wrapped flag 43
declaring WSDL operations 40
overview 39
-wrapped flag 6
double type
nillable 371
duration 287
dynamic_cast_var casting operator 448

E
ElementList class 470
ElementList type 496
elements

defining with anyURI 334
embedded mode

compiling 24

linking 24
encoding of SOAP array 406
EndpointNotExist fault 156
endpoint reference 104
endpoints 151

registering with the locator 159
end_session() 178
ENTITIES 287
ENTITIES type 302
ENTITY 287
ENTITY type 302
enumeration facet 275
enum type 426
exception

raising a fault exception 48
exception handling

CORBA mapping 432
Exception type 45

604

exception type 432

extension
attributes defined in 315
deriving complex types 315
get_derived() function 318
holder types 318

extension tag 315

extensors
and configuration contexts 181

F
facets 275
checked 275
FaultException type 47
fixed decimal
compare() 263
Digitlterator 264
is_negative() 263
left_most_digit() 263
number_of digits() 263
past_right most_digit() 263
round() 263
scale() 263
truncate() 263
float type
nillable 371
forward-declared interfaces 423
fractionDigits facet 275

G
GDay type 262
gDay type

nillable 372
generating code

complete sample application 19
get_all_endpoints() 174
get_any namespace() function 348
get_any_type() function 337
get_attribute_value() function 495
getBackoutCount() function 569
get_base() function 486
get_context() function 200, 233
get_context_container() function 186
get_current() function 215, 232, 238
get_current_element() function 490
get_derived() function 318
get_discriminator() 428
get discriminator_as_uint() 428

get_element_name() function 489
get_extents() 402, 407, 410
get item_name() 351
get_max_occurs() 350
get_max_occurs() function 357, 361
get_min_occurs() 350
get_min_occurs() function 357, 361
get_namespace_constraints() function 348
get _process_contents() function 348
get reference() function 127, 129
get _reflected() function 443
get_reflection() function 442
get simpleTypeValue() 312
get size() 351
get_size() function 497
get type() function 338
get type kind() function 443, 481, 489
get type name() function 489
get_value_kind() function 487
GIOP

and Artix contexts 185

service contexts 191
GlobalBusORBPIlugln class 23
GMonthDay type 262
gMonthDay type

nillable 372
GMonth type 262
gMonth type

nillable 372
GYearMonth type 262
gYearMonth type

nillable 372
GYear type 262
gYear type

nillable 372

H
header contexts
CORBA, registering 190
example 220
overview 184
sample schema type 223
SOAP, registering 189
three-tier systems 240
headers
<soap:header> element 232
HelloWorld port type 8
HexBinary type 268
hexBinary type

INDEX

nillable 372
high water mark 89
high_water_mark configuration variable 90
holder types, and extension 318
HTTP

example port 15

schema for transport 182
http-conf:clientType type 211
http-conf schema 210

ReceiveTimeout 211

SendTimeout 211

|
IANA character set 250
IDL
bounded sequences 431
enum type 426
exception type 432
object references 436
oneway operations 438
sequence type 430
struct type 429
typedef 433
union type 427, 431
IDL attributes
mapping to C++ 438
IDL basic types 424
IDL interfaces
mapping to C++ 435
IDL modules
mapping to C++ 435
IDL operations
mapping to C++ 437
parameter order 438
return value 438
IDL readonly attribute 439
IDL-to-C+ + mapping
Artix and CORBA 422
IDL types
unsupported 423
idl utility 422
IDREF 287
IDREFS 287
IDREFS type 302
imported schema
C++ namespace for 4
inheritance relationships
between complex types 313
init()

605

INDEX

-ORBname parameter 164
init() function 11, 14
Initializing the Bus 11
initial_threads configuration variable 90
inout parameter ordering 38
inout parameters 438
in parameters 438
input message 35, 40
input parameters 35
instance namespace 369
integer
compare() 266
is_negative() 266
is_non_negative() 266
is_non_positive() 266
is_positive() 266
is_valid_integer() 266
to_string() 266
Integer type 265
integer type
nillable 372
integer types
arithmetical operators 265
Integer type 265
maximum precision 265
Negativelnteger type 265
NonNegativelnteger type 265
NonPositivelnteger type 265
Positivelnteger type 265
interceptors
configuration of 181
International Components for Unicode 250
internationalization
16-bit characters 252
configuring 249
IANA character set 250
International Components for Unicode 250
narrow characters 251
plugins:codeset:char:ccs configuration
variable 249
plugins:codeset:char:ncs configuration
variable 249
plugins:codeset:wchar:ccs configuration
variable 249
plugins:codeset:wchar:ncs configuration
variable 249
plugins:soap:encoding configuration variable 249
schema 182
wchar_t characters 252

606

interoperability
transaction propagation 556
interposition
resource for 558
int type
nillable 371
InvalidRouteException type 46
IOException type 45
IONA foundation classes 24
IOP
context ID 185
IOP::Serviceld type 191
IP ports
in cloned service 73
is_empty() 410
is_negative() 263, 266
is_nil() function 374, 377, 384, 499
is_non_negative() 266
is_non_positive() 266
is_positive() 266
is_valid_integer() 266
IT_AutoPtr template 60
IT_Bus::AllComplexType 296
IT_Bus::Any::get_any namespace() function 348
IT_Bus::Any::get namespace_constraints()
function 348
IT_Bus::Any::get process_contents() function 348
IT_Bus::Any::set_any_data() function 344
IT_Bus::Any::set_string data() function 344
IT_Bus::AnyList class 364
IT_Bus::AnyType::get_reflection() function 442
IT_Bus::AnyType::Kind type 443, 481
IT_Bus::AnyType class 216, 219, 233, 443
IT_Bus::AnyType type
printing 477
IT_Bus::Base64Binary 268
IT_Bus::Base64Binary type 268
IT_Bus::BinaryBuffer 248
IT_Bus::Boolean 247
IT_Bus::Bus::register_servant() function 70
IT_Bus::Bus::remove_service() function 71
IT_Bus::Byte 247
IT_Bus::ChoiceComplexType 292
IT_Bus::ConnectException 45
IT_Bus::ContextContainer::get_context()
function 233
IT_Bus::ContextContainer::request_contexts()
function 233
IT_Bus::ContextContainer class 215, 218, 232

IT_Bus::ContextCurrent::request_contexts()
function 238

IT_Bus::ContextCurrent class 198, 215, 218, 232

IT_Bus::ContextRegistry::get_current()
function 215, 232, 238

IT_Bus::ContextRegistry::register_context()
function 189, 190

IT_Bus::ContextRegistry class 187, 188, 215, 218,
232

IT _Bus::ContextRegistry type 232

IT_Bus::Date 248

IT_Bus::DateTime 248, 261

IT Bus::Date type 262

IT_Bus::Decimal 248, 263

IT_Bus::Decimal::Digitlterator 264

IT_Bus::DerivedSimpleType::get_base()
function 486

IT_Bus::DeserializationException 45

IT Bus::Double 247

IT_Bus::Exception 45

IT_Bus::Exception::message() 45

IT_Bus::Exception type 45

IT_Bus::FaultException 47

IT_Bus::Float 247

IT Bus::GDay 248

IT _Bus::GDay type 262

IT_Bus::get context_container() function 186

IT_Bus::GlobalBusORBPIlugln class 23

IT_Bus::GMonth 248

IT_Bus::GMonthDay 248

IT_Bus::GMonthDay type 262

IT_Bus::GMonth type 262

IT_Bus::GYear 248

IT_Bus::GYearMonth 248

IT_Bus::GYearMonth type 262

IT_Bus::GYear type 262

IT_Bus::HexBinary 248, 268

IT_Bus::HexBinary type 268

IT Bus::ID 248

IT _Bus::init() 11, 14

IT Bus::Int 247

IT_Bus::Integer 248

IT_Bus::Integer type 265

IT_Bus::I0Exception 45

IT _Bus::Language 247

IT_Bus::Long 247

IT Bus::Name 248

IT_Bus::NCName 248

IT_Bus::Negativelnteger 248

INDEX

IT_Bus::Negativelnteger type 265
IT_Bus::NMTOKEN 247
IT_Bus::NMTOKENS 247
IT_Bus::NonNegativelnteger 248
IT_Bus::NonNegativelnteger type 265
IT_Bus::NonPositivelnteger 248
IT_Bus::NonPositivelnteger type 265
IT_Bus::NormalizedString 247
IT_Bus::Positivelnteger 248
IT_Bus::Positivelnteger type 265
IT_Bus::QName 248
IT_Bus::QName type 259
IT_Bus::RefCountedBase class 445
IT_Bus::Reference class 105, 130
IT_Bus::run() 12, 14
IT_Bus::SequenceComplexType 289
IT_Bus::SerializationException 45
IT_Bus::Service::get_reference() function 127, 129
IT_Bus::Service::register_servant() 68, 69, 77
IT_Bus::Service::register_servant() function
and transient servants 74
IT_Bus::ServiceException 45
IT_Bus::Short 247
IT_Bus::shutdown() 16
IT_Bus::SoapEncArrayT 402
IT _Bus::String 247, 249
IT_Bus::String::iterator 249
IT_Bus::Time 248
IT _Bus::Time type 262
IT_Bus::Token 247
IT_Bus::TransportException 45
IT _Bus::UByte 247
IT_Bus::Ulnt 247
IT_Bus::ULong 247
IT_Bus::UShort 247
IT_Bus::Var template class 445
IT_Bus namespace 7
IT_Bus_Services::renewSessionFaultException 177
iterators
in IT_Vector 414
IT_FixedPoint class 263
IT_Reflect::All class 456
IT_Reflect::BuiltinType::get_value_kind()
function 487
IT_Reflect::BuiltinType::ValueKind type 487
IT_Reflect::BuiltinType class 451
IT_Reflect::BuiltinType type 482
IT_Reflect::Choice::get_current_element()
function 490

607

INDEX

IT_Reflect::Choice class 462
IT_Reflect::Choice type 488
IT_Reflect::ComplexContent class 467
IT_Reflect::ComplexContent type 493
IT_Reflect::ComplexType class 451
IT_Reflect::DerivedSimpleType type 482
IT_Reflect::ElementList::get_size() function 497
IT_Reflect::ElementList class 470
IT_Reflect::ElementList type 496
IT_Reflect::ModelGroup class 451
IT_Reflect::ModelGroup type 488
IT_Reflect::Nillable::is_nil() function 499
IT_Reflect::Nillable class 473
IT_Reflect::Nillable type 498
IT_Reflect::Reflection::get_reflected() function 443
IT_Reflect::Reflection::get_type kind()
function 481, 489
IT_Reflect::Reflection::get_type name()
function 489

IT_Reflect::Reflection class 442, 451
IT_Reflect::Sequence class 459
IT_Reflect::SimpleContent class 465
IT_Reflect::SimpleContent type 491
IT_Reflect::SimpleType class 451
IT_Reflect::ValueRef template type 443
IT_Reflect::Value template class 452
IT_Routing::InvalidRouteException 46
IT_UString class 249
IT_Vectof class

resize() 413
IT_Vector class

assign() 413

at() 413

clear() 413

converting to 327

differences from std::vector 413

iterators 414

operations 416

overview 412

resize() 413
IT_Vector template class

and AnyList type 364
IT_WSDL namespace 7

K
Kind type 481

608

L
lax 342
leaks
avoiding 60
left_most_digit() 263
length() 253
length facet 275
libraries
Artix foundation classes 24
ART library 24
Bus 24
IONA foundation classes 24
license
display current 5
linker requirements 24
load balancing
with the locator 150
local interface type 423
locator
binding and protocol 153
demonstration code 151
embedded deployment 151
EndpointNotExist fault 156
load balancing 150, 152
LocatorService port type, C++ mapping 156
lookupEndpointResponse type 156
lookupEndpoint type 155
reading a reference from 161
registering endpoints 159
standalone deployment 151
WSDL contract 153
locator, Artix 149
locator_endpoint plug-in 159
LocatorService port type 156
logical contract
and servants 65
long type
nillable 371
lookupEndpointResponse type 156
lookupEndpoint type 155
low water mark 89
low_water_mark configuration variable 90

M

makefile

generating with wsdltocpp 4
mapping

IDL attributes 438

IDL interfaces 435

IDL modules 435

IDL operations 437

IDL to C++ 422
maxExclusive facet 275
maxlInclusive facet 275
maxLength facet 275
maxOccurs 323, 350
max_size() 413
memory management 51

client side 53

copying and assignment 57

deallocating 59

reflection 445

rules 52

server side 54

smart pointers 60
message() function 45
message headers

and contexts 184
messages

input 35, 40

output 35, 41
minExclusive facet 275
mininclusive facet 275
minLength facet 275
minOccurs 350
ModelGroup class 451
ModelGroup type 488
MQ-Series

BOQNAME attribute 569

BOTHRESH attribute 569

runmgsc command-line tool 569

schema for transport 182
MQ transactions 562
backout count 569

backout threshold 564, 567, 569

Delivery attribute 565
synchronous invocation 566
Transactional attribute 565

multi-dimensional native arrays 325

multiple occurrences
printing with reflection 496

multi-threaded threading model 83

multi-threading
client side 81
server side 83

N

namespace

for generated C++ code 3
namespace constraints

accessing 347

xsd:any element 341
namespace prefix 259
namespaces

IT Bus 7

IT WSDL 7

using in C++ 7
namespace URI

and QName type 259

anyURI type 334

exclude from code generation 4

include in code generation 4
narrow characters 251
native arrays 323
Negativelnteger type 265
negativelnteger type

nillable 372
nesting complex types 306

nillable atomic member elements 378

Nillable class
and reflection 473
NillablePtr template class 384
Nillable type 498
nillable type
reflection 473
nillable types 378
atomic type, example 372
atomic types 371
IT_Bus::NillableValue 369
nillable array elements 387

NillablePtr template class 384
nillable user-defined member elements 382

overview 368

syntax 369

user-defined types 375

xsi:nil attribute 369
NillableValue class 369
nmake

generating makefile for 4
NMTOKENS type 302
NMTOKEN type 302
NonNegativelnteger type 265
nonNegativelnteger type

nillable 372
NonPositivelnteger type 265

INDEX

609

INDEX

nonPositivelnteger type
nillable 372
NOTATION 287
NOTATION type 302
number of digits() 263

o)
object references
mapping to C++ 436
occurrence constraints 357, 361
and reflection 470
AnyList class 364
get_item_name() 351
get_max_occurs() 350
get_max_occurs() function 357, 361
get_ min_occurs() 350
get size() 351
in all groups 296
in choice groups 292
in sequence groups 289
overview of 350
sequence 355, 359
set_size() 350
set_size() function 357, 361
xsd:any element 341
xsd:any type 363
offset attribute 411
oneway invocations
and MQ transactions 563
oneway operations
in IDL 438
operations
declaring 35, 40
optional attributes 299

-ORBname, parameter to IT_Bus::init() 164
-ORBname command-line parameter 159

-ORBname command-line switch 89
orb_plugins list 106
order of parameters 37
OTS Lite
limitations on using 558
out parameters 438
output directory
specifying to code generator 3
output message 35, 41
output parameters 35

610

P
parameters
in IDL-to-C++ mapping 438
parsing
WSDL model 107
partially transmitted arrays 411
past_right most_digit() 263
pattern facet 275
Perlnvocation threading model 85
threading
Perlnvocation threading model
87

per-port threading model 84, 86
PerThread threading model 85, 87
physical contract

and servants 65
plug-in

servant registration 21

servant registration code 5
plug-ins

locator_endpoint 159

plugins:codeset:char:ccs configuration variable 249
plugins:codeset:char:ncs configuration variable 249

plugins:codeset:wchar:ccs configuration
variable 249

plugins:codeset:wchar:ncs configuration
variable 249

plugins:sm_simple_policy:max_session_timeout 17
3

plugins:sm_simple_policy:min_session_timeout 173
plugins:soap:encoding configuration variable 249

port
specifying on the client side 14
port extensors
<bus-security
security> 183
<http-conf
server> 182
<http-conf:client> 214
<http-conf:server> 217
<il18n-context
server> 182
<mq
client> 182
server> 182
and configuration contexts 181
ports
activating all together 67

activating individually 68, 69, 77
activating with register_servant() 67
and endpoints 151
port type
specifying to code generator 3
Positivelnteger type 265
positivelnteger type
nillable 372
print_atom template function 486
Printer class 477
printing Choice type 488
printing DerivedSimpleType type 482
print_random demonstration 476
print_value() template function 486
processContents attribute 342
get process_contents() function 348
lax 342
skip 342
strict 342
prohibited attributes 299
protocols
and contexts 184
proxification 134
definition 136
proxy
initializing from reference 130
proxy object
and multi-threading 82
constructors 14
proxy objects
constructor with reference argument 16

Q

QName type 259
equality testing 260
nillable 371

R

recursive copying 58
recursive deallocating 59
recursive descent parsing 442
RefCountedBase class 445
reference

C++ representation 105

contents 105

to an endpoint 104

XML schema for 105
Reference class 105

INDEX

reference counting 445
_add_ref() function 445
_remove_ref() function 445
Var assignment 446
references
and WSDL publish plug-in 108
callbacks, overview 131
cloning from a service 125
CORBA mapping 436
creating 126
get_reference() function 129
importing the XML schema 123
IT_Bus::Reference class 130
looking up in the locator 151
programming with 116
proxy constructor 16, 130
reading from the locator 161
register_transient_servant() function 129
XML schema 105, 117
XML type 117
references:Reference type 123
-reflect flag 6, 442
reflection
All class 456
API overview 450
attributes 495
casting 448
Choice class 462
ComplexContent class 467
converting a built-in type 443
converting reflection to AnyType 443
ElementList class 470
example 476
get_attribute_value() function 495
get_base() function 486
get_current_element() function 490
get_element_name() function 489
get_size() function 497
get type kind() function 443, 481, 489
get type name() function 489
get value_kind() function 487
is_nil() function 499
Kind type 443, 481
memory management 445
multiple occurrences 496
Nillable class 473
occurrence constraints 470
overview 442
print_atom template function 486

611

INDEX

Printer class 477
printing BuiltinType type 482
printing ComplexContent type 493
printing ElementList type 496
printing ModelGroup type 488
printing Nillable type 498
printing SimpleContent type 491
print_value() template function 486
RefCountedBase class 445
-reflect flag 6, 442
Sequence class 459
SimpleContent class 465
simple types 452
type descriptions 443
ValueKind type 487
Value template class 452
Var template class 445
Reflection class 442, 451
register_context() function 184, 186, 187, 188,
189, 190, 232, 236
register_servant() function 67, 70, 127
and transient servants 74
register_transient_servant() function 75, 79, 129
reliable messaging
and transactions 562
_remove_ref() function 445
remove_service() function 71
renew_session() 177
reply context container 198
reply contexts
and configuration contexts 182
reply_contexts() function 198
reply message
document/literal wrapped 40
request context
propagating automatically 241
request context container 198
request contexts
and configuration contexts 182
request_contexts() function 182, 198, 233, 238
request message
document/literal wrapped 39
required attributes 299
resize() 413
restriction tag 314
round() 263
router contract 135
routing
and callbacks 134

612

Artix Designer 135
proxification 136
run() function 12, 14
runmgsc command-line tool 569
Running the Bus 12

S
sample context schema 223
scale() 263
schemas
and configuration contexts 182
context, example 223
for references 105
http-conf schema 210
HTTP transport 182
internationalization 182
MQ-series transport 182
pre-registered contexts, for 192
Sequence class 459
sequence complex type 306
SequenceComplexType class 289
sequence complex types 289
and arrays 323
sequence type 430
get_max_occurs() function 357, 361
get_min_occurs() function 357, 361
occurrence constraints 355, 359
set_size() function 357, 361
Serialization type 45
Serialized threading model 87
serialized threading model 84
servant
and threading models 85
registration in plug-in 5
static, example 70
servants
add_service() function 68, 69, 77
clone() function 87
dispatch() function 86
registering 64
register_servant() function 67
static, registering 65
transient, registering 72
wrapper, registering 87
wrapper classes 86
server
developing 10
implementation class 10
main() function 11

skeleton code, files 2
server skeleton code 2
service

specifying on the client side 14
Service::register_servant() 68, 69, 77
service contexts

and CORBA 185

context ID 191

IOP context ID 185
ServiceException type 45
service name

specifying to code generator 3
services

cloning 72

cloning, IP ports 73
SessionManagerClient 172
set_any_data() function 344
set_any_type() function 337
set_context() function 200
set_simpleTypeValue() 312
set_size() 350
set_size() function 357, 361
set_string_data() function 344
short type

nillable 371
shutdown() function 16
Shutting the Bus down 13
SimpleContent class 465
SimpleContent type 491
SimpleType class 451
simple types

deriving by restriction 275
skeleton code

files 2

generating with wsdltocpp 4
skip 342
smart pointers 60

Var type 489
SOAP

header context 184

internationalization 249

registering a header context 189
SOAP arrays 400

encoding 406

get_extents() 402, 407

multi-dimensional 405

one-dimensional 402

partially transmitted 411

sparse 408

INDEX

syntax 401
SOAP bindings 153
SOAP-ENC:Array type 401
SOAP-ENC:offset attribute 411
SoapEncArrayT class 402
SOAPHeaderInfo type 223
SOAP headers
and contexts 184
sparse arrays 408
get_extents() 410
initializing 409
is_empty() 410
static_cast_var casting operator 448
static servant
definition 65
static servants 65
register_servant() function 127
std::vector class 412
strict 342
strings
iterator 249
IT_UString class 249
length() 253
String type
conversion functions 252
string type
nillable 371
Stroustrup, Bjarne 253
struct type 429
stub code
files 2
stub libraries
building on Windows 26
stubs
DLL library, packaging as 5
synchronous invocation
and MQ transactions 566

T

target namespace
for a context schema 224
threading
and callbacks 133
and configuration contexts 181
and ContextCurrent type 181
client proxy in two threads 81
multi-threaded model 83
overview 80
Perlnvocation threading model 85

613

INDEX

per-port threading model 84, 86
PerThread threading model 85, 87
Serialized threading model 87
serialized threading model 84
work queue 85
threading model
default 83
default, for servants 77
default for servant 69
thread pool
configuration settings 89
initial threads 89
thread_pool:high _water_mark configuration
variable 90

thread_pool:initial_threads configuration variable 90

thread_pool:low_water_mark configuration
variable 90
time
Date type 262
GDay type 262
GMonthDay type 262
GMonth type 262
GYearMonth type 262
GYear type 262
Time type 262
time type
nillable 372
to_string() 266
totalDigits facet 275
Transactional attribute 565
transaction contexts 556
transaction propagation 556
suppressing, how to 559
transactions
compatibility with CORBA OTS 521
transient servants 72
registering 74
TransportException type 45
transports
configuration of 181
truncate() 263
Tuxedo
example port 15
typedef 433
type factories
and contexts 186

U
union type 427, 431

614

unsignedByte type
nillable 371
unsignedint type
nillable 371
unsignedLong type
nillable 371
unsignedShort type
nillable 371
unsupported IDL types 423
UsageStyle attribute 568
user defined exceptions
propagation 47
user-defined types
nillable 375

\"

ValueKind type 487

ValueRef template type 443

Value template class 452

value type 423

Var template class 445

Var type
assignment 446
casting, from plain pointer to Var 448
casting, from Var to Var 448
const_cast_var casting operator 448
dynamic_cast_var casting operator 448
static_cast_var casting operator 448

W

wchar_t characters 252
wchar type 423
whiteSpace facet 275
wildcarding types 333
anyURI type 334
xsd:any element 341
work queue 85
-wrapped flag 6, 43
wrapped parameters
-wrapped flag 6
wrapper servants 86, 87
WSDL
anyType syntax 336
atomic types 247
attributes 299
binary types 268
complex types 288
deriving by restriction 275

INDEX

wsdl:arrayType attribute 402
WSDL contract
location of 15
WSDL facets 275
WSDL faults 432
WSDL model 107
and multiple Bus instances 112
WSDL publish plug-in 106
WSDL model 107
wsdl_publish plug-in 106
wsdltocpp
command-line options 3
command-line switches 3
files generated 2
XML schemas, generating from 203
wsdltocpp compiler 224
generating an application 19
wsdltocpp utility 336, 422
-declspec option 26
-reflect flag 442
-wrapped flag 43
wstring type 423

X
XML schema
wildcarding types 333
xsd:any element 341
namespace constraint 341
occurrence constraints 341
process contents attribute 342
xsd:any type
AnyList class 364
occurrence constraints 363
xsd:anyURI type 334
xsd:boolean 276
xsd:dateTime type 261
xsd:day schema type 262
xsd:decimal type 263
xsd:duration 287
xsd:ENTITIES 287, 302
xsd:ENTITY 287, 302
xsd:IDREF 287
xsd:IDREFS 287, 302
xsd:NMTOKEN 302
xsd:NMTOKENS 302
xsd:NOTATION 287, 302
xsd:time schema type 262
xsi:nil attribute 369
xsi namespace 369

615

INDEX

616

	Developing Artix Applications in C++
	List of Tables
	Preface
	Developing Artix Enabled Clients and Servers
	Generating Stub and Skeleton Code
	C++ Namespaces
	Defining a WSDL Interface
	Developing a Server
	Developing a Client
	Generating a Sample Application from WSDL
	Compiling and Linking an Artix Application
	Building Artix Stub Libraries on Windows

	Artix Programming Considerations
	Bootstrapping Service
	How Clients Find Initial References
	How Servers Find WSDL Contracts

	Operations and Parameters
	RPC/Literal Style
	Document/Literal Wrapped Style

	Exceptions
	Built-In Exceptions
	User-Defined Exceptions

	Memory Management
	Managing Parameters
	Assignment and Copying
	Deallocating
	Smart Pointers

	Registering Servants
	Registering a Static Servant
	Registering a Transient Servant

	Multi-Threading
	Client Threading Issues
	Servant Threading Models
	Setting the Servant Threading Model
	Thread Pool Configuration

	Converting with to_string() and from_string()
	Locating Services with UDDI
	Overriding a HTTP Address in a Client

	Artix References
	Introduction to References
	The WSDL Publish Plug-In
	References to Transient Services
	Programming with References
	Bank WSDL Contract
	Creating References
	Resolving References

	Callbacks
	Overview of Artix Callbacks
	Routing and Callbacks
	Callback WSDL Contract
	Client Implementation
	Server Implementation

	The Artix Locator
	Overview of the Locator
	Locator WSDL
	Registering Endpoints with the Locator
	Reading a Reference from the Locator

	Using Sessions in Artix
	Introduction to Session Management in Artix
	Registering a Server with the Session Manager
	Working with Sessions

	Artix Contexts
	Introduction to Contexts
	Configuration Contexts
	Header Contexts
	Registering Contexts

	Pre-Registered Contexts
	Reading and Writing Context Data
	Getting a Context Instance
	Reading and Writing Basic Types
	Reading and Writing User-Defined Types
	Reading and Writing Custom Types
	Durability of Context Settings

	Configuration Context Example
	HTTP-Conf Schema
	Setting a Configuration Context on the Client Side
	Setting a Configuration Context on the Server Side

	Header Context Example
	Custom SOAP Header Demonstration
	SOAP Header Context Schema
	Declaring the SOAP Header Explicitly
	Client Main Function
	Server Main Function
	Service Implementation

	Header Contexts in Three-Tier Systems

	Artix Data Types
	Including and Importing Schema Definitions
	Simple Types
	Atomic Types
	String Type
	NormalizedString and Token Types
	QName Type
	Date and Time Types
	Decimal Type
	Integer Types
	Binary Types
	Deriving Simple Types by Restriction
	List Type
	Union Type
	Holder Types
	Unsupported Simple Types

	Complex Types
	Sequence Complex Types
	Choice Complex Types
	All Complex Types
	Attributes
	Attribute Groups
	Nesting Complex Types
	Deriving a Complex Type from a Simple Type
	Deriving a Complex Type from a Complex Type
	Arrays
	Model Group Definitions

	Wildcarding Types
	anyURI Type
	anyType Type
	any Type

	Occurrence Constraints
	Element Occurrence Constraints
	Sequence Occurrence Constraints
	Choice Occurrence Constraints
	Any Occurrence Constraints

	Nillable Types
	Introduction to Nillable Types
	Nillable Atomic Types
	Nillable User-Defined Types
	Nested Atomic Type Nillable Elements
	Nested User-Defined Nillable Elements
	Nillable Elements of an Array

	Substitution Groups
	SOAP Arrays
	Introduction to SOAP Arrays
	Multi-Dimensional Arrays
	Sparse Arrays
	Partially Transmitted Arrays

	IT_Vector Template Class
	Introduction to IT_Vector
	Summary of IT_Vector Operations

	Unsupported XML Schema Constructs in Artix

	Artix IDL to C++ Mapping
	Introduction to IDL Mapping
	IDL Basic Type Mapping
	IDL Complex Type Mapping
	IDL Module and Interface Mapping

	Reflection
	Introduction to Reflection
	The IT_Bus::Var Template Type
	Reflection API
	Overview of the Reflection API
	IT_Reflect::Value<T>
	IT_Reflect::All
	IT_Reflect::Sequence
	IT_Reflect::Choice
	IT_Reflect::SimpleContent
	IT_Reflect::ComplexContent
	IT_Reflect::ElementList
	IT_Reflect::SimpleTypeList
	IT_Reflect::Nillable

	Reflection Example
	Print an IT_Bus::AnyType
	Print Atomic and Simple Types
	Print Sequence, Choice and All Types
	Print SimpleContent Types
	Print ComplexContent Types
	Print Multiple Occurrences
	Print Nillables

	Persistent Maps
	Introduction to Persistent Maps
	Creating a Persistent Map
	Inserting, Extracting and Removing Data
	Handling Exceptions
	Supporting High Availability
	Configuration Example

	Transactions in Artix
	Introduction to Transactions
	Selecting the Transaction System
	Configuring OTS Lite
	Configuring OTS Encina
	Configuring WS-AT

	Transaction API
	Transaction Demarcation
	Participants and Resources
	Transaction Participants
	Interposition

	Threading
	Transaction Propagation
	Notification Handlers
	Reliable Messaging with MQ Transactions
	Client Example

	http-conf Context Data Types
	MQ-Series Context Data Types
	Index

