
Designing Artix Solutions
Version 3.0, October 2005

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in
this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license
to these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.

IONA, IONA Technologies, the IONA logo, Orbix, Orbix Mainframe, Orbix Connect, Artix,
Artix Mainframe, Artix Mainframe Developer, Mobile Orchestrator, Orbix/E, Orbacus,
Enterprise Integrator, Adaptive Runtime Technology, and Making Software Work Together
are trademarks or registered trademarks of IONA Technologies PLC and/or its subsidiar-
ies.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. CORBA is a trademark or registered trademark of the
Object Management Group, Inc. in the United States and other countries. All other
trademarks that appear herein are the property of their respective owners.

IONA Technologies PLC makes no warranty of any kind to this material including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose. IONA Technologies PLC shall not be liable for
errors contained herein, or for incidental or consequential damages in connection with the furnishing, perform-
ance or use of this material.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of
any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IONA shall not be liable for errors contained herein, or for incidental or consequential dam-
ages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No
third-party intellectual property right liability is assumed with respect to the use of the information contained
herein. IONA Technologies PLC assumes no responsibility for errors or omissions contained in this publication.
This publication and features described herein are subject to change without notice.

Copyright © 1999-2005 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this publication are covered by the trademarks, service marks, or product
names as designated by the companies that market those products.

Updated: 10-Apr-2006

Contents

List of Figures xi

List of Tables xv

Preface xvii
What is Covered in this Book xvii
Who Should Read this Book xvii
How to Use this Book xvii
Finding Your Way Around the Library xviii
Searching the Artix Library xx
Online Help xx
Additional Resources xx
Document Conventions xxi

Chapter 1 Introducing Artix 1
What is Artix? 2
Artix Contracts and WSDL 3
Beyond the Contract 6

Chapter 2 Getting Started with Artix Designer 7
Introducing Artix Designer 8
Setting Up Artix Designer 9
Starting Artix Designer 11
Setting Artix Designer Preferences 13

Chapter 3 Creating an Artix Designer Project 17
What is an Artix Designer Project? 18
Creating a Project 20

Creating a Basic Web Services Project 21
Creating a CORBA Web Services Project 23

Creating a Project Using a Template 27
iii

CONTENTS
Chapter 4 Creating Artix Resources 31
What are Artix Resources? 32
Creating Design Resources 34

Creating a New Contract 35
Importing a Contract from a URL 38
Creating a Contract from CORBA IDL 40
Creating a Contract from a Java Class 50
Creating a Contract from a COBOL Copybook 62
Creating a Contract from a Data Set 69
Creating a Contract from an XML Schema Document 78
Creating an XML Schema 80
Importing an XML Schema from a URL 82
Creating Access Control Lists 83

Working with Generation Profiles 85

Chapter 5 Defining Data Types 91
Introducing Data Types 92
Creating New Type Systems 93
Specifying a Type System in a Contract 95
XML Schema Simple Types 96
Defining Complex Data Types 98

Defining Data Structures 99
Defining Arrays 107
Defining Types by Extension 109
Defining Types by Restriction 115
Defining Enumerated Types 117

Defining Elements 120

Chapter 6 Defining Messages 123

Chapter 7 Defining Your Interfaces 127

Chapter 8 Binding Interfaces to a Payload Format 135
Introducing Bindings 136
Adding a SOAP Binding 137

Adding a Default SOAP Binding 138
Adding SOAP Headers to a SOAP Binding 142
 iv

CONTENTS
Sending Data Using SOAP with Attachments 148
Adding a CORBA Binding 152
Adding an FML Binding 159
Adding a Fixed Binding 166
Adding a Tagged Binding 186
Adding a TibrvMsg Binding 203

Defining a TibrvMsg Binding 204
Defining Array Mapping Policies 211
Defining a Custom TibrvMsg Mapping 216
Adding Context Information to a TibrvMsg 234

Adding a Pure XML Binding 237
Adding a G2++ Binding 243

Chapter 9 Adding Transports 251
Introducing Services 252
Defining a Service 253
Creating an HTTP Service 255
Creating a CORBA Service 264

Configuring an Artix CORBA Port 265
Generating CORBA IDL 271

Creating an IIOP Service 273
Creating a WebSphere MQ Service 279
Creating a Java Messaging System Service 288
Adding a TIBCO Service 298
Creating a Tuxedo Service 305
Configuring a Service to Use Codeset Conversion 309

Chapter 10 Adding Routing Instructions 313
Artix Routing 314
Compatibility of Ports and Operations 315
Defining Routes in Artix Contracts 318

Using Port-Based Routing 319
Using Operation-Based Routing 322
Advanced Routing Features 325

Creating Routes Using Artix Designer 330
Creating Routes from the Command Line 334
Load Balancing 338
Error Handling 339
v

CONTENTS
Service Lifecycles 340
Routing References to Transient Servants 342

Chapter 11 Fastrack Service Enabling 345
Web Service Enabling a Service 346
CORBA Enabling a Service 348

Chapter 12 Editing Artix Resources 351
Editing Contracts and Schemas 352

Working with the Editor Views 353
Editing Types 356
Editing Messages 357
Editing Port Types 359
Editing Bindings 363
Editing Services 364
Editing Routes 365

Editing Generated Resources 367

Chapter 13 Using the Artix Transformer 369
Using the Artix Transformer as an Artix Server 370
Using Artix to Facilitate Interface Versioning 372
WSDL Messages and the Transformer 377
Writing XSLT Scripts 380

Elements of an XSLT Script 381
XSLT Templates 383
Common XSLT Functions 389

Appendix A SOAP Binding Extensions 391
soap:binding element 392
soap:operation element 394
soap:body element 395
 soap:header element 398
soap:fault element 400
soap:address element 402

Appendix B CORBA Type Mapping 403
Introducing CORBA Type Mapping 404
 vi

CONTENTS
Primitive Type Mapping 405
Complex Type Mapping 408

Structures 409
Enumerations 411
Fixed 412
Unions 414
Type Renaming 417
Arrays 418
Multidimensional Arrays 420
Sequences 421
Exceptions 423

Recursive Type Mapping 425
Mapping XML Schema Features that are not Native to IDL 427

Binary Types 428
Attributes 429
Nested Choices 431
Inheritance 433
Nillable 436
Optional Attributes 438

Artix References 440

Appendix C TibrvMsg Default Mappings 445

Appendix D HTTP Port Properties 451
Defining an HTTP Port 452
HTTP Client Configuration 453
HTTP Server Configuration 456
HTTP Attribute Details 459

SendTimeout 460
ReceiveTimeout 461
AutoRedirect 462
UserName 463
Password 464
AuthorizationType 465
Authorization 466
Accept 467
AcceptLanguage 468
AcceptEncoding 469
vii

CONTENTS
ContentType 470
ContentEncoding 471
Host 472
Connection 473
CacheControl 474
Cookie 478
BrowserType 479
Referer 480
ProxyServer 481
ProxyAuthorizationType 482
ProxyAuthorization 483
UseSecureSockets 484
ClientPrivateKey 485
SuppressClientSendErrors 486
SuppressClientReceiveErrors 487
HonorKeepAlive 488
RedirectURL 489
ServerType 490
ServerCertificateChain 491

Appendix E WebSphere MQ Port Properties 493
Defining an MQ Port 494
MQ Port Attributes 497

QueueManager 498
QueueName 499
ReplyQueueName 500
ReplyQueueManager 501
Server_Client 502
ModelQueueName 503
AliasQueueName 504
ConnectionName 506
ConnectionReusable 507
ConnectionFastPath 508
UsageStyle 509
CorrelationStyle 510
AccessMode 512
Timeout 514
MessageExpiry 515
MessagePriority 516
 viii

CONTENTS
Delivery 517
Transactional 518
ReportOption 520
Format 522
MessageId 524
CorrelationId 525
ApplicationData 526
AccountingToken 527
Convert 528
ApplicationIdData 529
ApplicationOriginData 530
UserIdentification 531

Appendix F Tibco Port Properties 533

Glossary 541

Index 547
ix

CONTENTS
 x

List of Figures

Figure 1: Workspace Selection 11

Figure 2: The Welcome Screen 12

Figure 3: The Artix Designer Icon 12

Figure 4: Eclipse Preferences Window 13

Figure 5: Common Artix Designer Preferences 14

Figure 6: Artix Designer Java Preferences 14

Figure 7: Artix Designer C++ Preferences 15

Figure 8: Artix Designer Validation Preferences 16

Figure 9: Project Structure 19

Figure 10: New Project Wizard 21

Figure 11: Basic Web Services Project Details 22

Figure 12: CORBA Web Services Project Details 23

Figure 13: CORBA Web Services Project Input Details 24

Figure 14: The Naming Service Contexts Dialog Box 25

Figure 15: The New Window 35

Figure 16: Entering WSDL Details 36

Figure 17: Entering WSDL Link Details 37

Figure 18: Entering WSDL URL Details 38

Figure 19: Entering Contract Name 41

Figure 20: Specifying CORBA IDL Details 42

Figure 21: Entering Contract Name for Java Import 51

Figure 22: Java Class Details 52

Figure 23: The Find Class Dialog Box 53

Figure 24: Select Data Format 62

Figure 25: The Set Defaults Window 63

Figure 26: The Operations Editor 64
xi

LIST OF FIGURES
Figure 27: Editing an Operation 65

Figure 28: Editing a Message 66

Figure 29: Editing a Fixed Field 71

Figure 30: Entering Defaults for a Contract from a Tagged Data Set 73

Figure 31: Editing a Tagged Data Set Operation 75

Figure 32: Editing a Tagged Data Set Message 76

Figure 33: Selecting Roles for an Access Control List 83

Figure 34: Editing ACL Roles for Operations 84

Figure 35: The Artix Generator Window 85

Figure 36: The Artix Generator General Tabbed page 86

Figure 37: The Artix Generator Generation Tabbed Page 87

Figure 38: The Artix Generator WSDL Details Tabbed Page 88

Figure 39: Select Resource to which a New Type is Added 100

Figure 40: Defining a Type’s General Properties 101

Figure 41: Adding Elements to a Structure 102

Figure 42: Adding Attributes to a Structure 103

Figure 43: Defining the Base Type for Extension 111

Figure 44: Adding Elements to an Extended Type 112

Figure 45: Adding Global Attributes to an Extended Complex Type 113

Figure 46: Defining the Values for an Enumeration 118

Figure 47: Defining the Base Values for an Element Definition 121

Figure 48: Naming a Message 125

Figure 49: Adding Parts to a Message 126

Figure 50: Naming a Port Type 130

Figure 51: Adding an Operation to a New Port Type 131

Figure 52: Defining the Messages in an Operation 132

Figure 53: Select the Type of Binding to Use 138

Figure 54: Setting the Defaults for a SOAP Binding 139

Figure 55: Setting CORBA Binding Defaults 153
 xii

LIST OF FIGURES
Figure 56: Setting the Default Values for a Fixed Binding 167

Figure 57: Editing the Fixed Binding Settings 168

Figure 58: Editing an Operation’s Fixed Binding Settings 168

Figure 59: Editing a Message’s Fixed Binding Settings 169

Figure 60: Setting the Default Values for a Tagged Binding 187

Figure 61: Editing the Operations in the Fixed Binding 188

Figure 62: Editing the Tagged Binding Settings for an Operation 189

Figure 63: Editing a Message’s Tagged Binding Settings 190

Figure 64: Setting the Default Values for an XML Binding 238

Figure 65: Specifying the Name and Binding for a Port 256

Figure 66: Setting the HTTP Transport Attributes 257

Figure 67: Specifying the Address of a CORBA Endpoint 268

Figure 68: Editing IIOP Tunnel Transport Attributes 274

Figure 69: Editing WebSphere MQ Transport Attributes 281

Figure 70: Editing JMS Transport Attributes 293

Figure 71: Editing TIBCO Transport Attributes 300

Figure 72: Editing Tuxedo Transport Attributes 306

Figure 73: Defining the Endpoints of a Route 331

Figure 74: Selecting the Operations to Use for the Route 332

Figure 75: Specifying Transport Attributes to Constrain a Route 333

Figure 76: SOAP Binding and Service Details Window 346

Figure 77: CORBA Binding and Service Details Window 348

Figure 78: Editing in Diagram View 353

Figure 79: Editing in Source View 354

Figure 80: The Outline View 355

Figure 81: MQ Remote Queues 505
xiii

LIST OF FIGURES
 xiv

List of Tables

Table 1: Artix Code Generation Profiles 32

Table 2: Java to WSDL Mappings 55

Table 3: complexType Descriptor Elements 104

Table 4: Part Data Type Attributes 124

Table 5: Operation Message Elements 128

Table 6: Attributes of the Input and Output Elements 129

Table 7: FML Type Support 159

Table 8: Attributes for fixed:binding 171

Table 9: Attributes for tagged:binding 192

Table 10: Attributes for tagged:operation 193

Table 11: Attributes for tagged:field 194

Table 12: Attributes for tagged:sequence 195

Table 13: Attributes for tagged:choice 197

Table 14: Attributes for tibrv:binding 205

Table 15: Attributes for tibrv:input 206

Table 16: Attributes for tibrv:output 207

Table 17: Effect of tibrv:array 211

Table 18: Attributes for tibrv:array 212

Table 19: Functions Used for Specifying TibrvMsg Array Element Names 213

Table 20: Valid Casts for TibrvMsg Binding 219

Table 21: Attributes for tibrv:msg 231

Table 22: Attributes for tibrv:field 232

Table 23: Required JMS Port Attributes 289

Table 24: Supported TIBCO Rendezvous Features 298

Table 25: Context QNames 328

Table 26: Context Names Used with wsdltorouting 335
xv

LIST OF TABLES
Table 27: Conditions Used with wsdltorouting 336

Table 28: Attributes for soap:header 399

Table 29: soap:fault attributes 401

Table 30: Primitive Type Mapping for CORBA Plug-in 405

Table 31: Complex Type Mapping for CORBA Plug-in 408

Table 32: Complex Content Identifiers in CORBA Typemap 433

Table 33: TIBCO to XSD Type Mapping 445

Table 34: HTTP Client Configuration Attributes 453

Table 35: HTTP Server Configuration Attributes 456

Table 36: Settings for http-conf:client CacheControl 474

Table 37: Settings for http-conf:server CacheControl 475

Table 38: WebSphere MQ Port Attributes 494

Table 39: Server_Client Settings for the MQ Transport 502

Table 40: UsageStyle Settings 509

Table 41: MQGET and MQPUT Actions 510

Table 42: Artix WebSphere MQ Access Modes 512

Table 43: Transactional Attribute Settings 518

Table 44: ReportOption Attribute Settings 520

Table 45: FormatType Attribute Settings 522

Table 46: TIB/RV Transport Properties 533

Table 47: TIB/RV Supported Payload formats 536
 xvi

Preface
What is Covered in this Book
Designing Artix Solutions outlines how to design, develop, and deploy

integration solutions with Artix using the graphical user interface (GUI), the

Artix command line tools, or both. It also guides you through producing Web

Services Description Language (WSDL), source code, and runtime

configuration files for your Artix integration solution.

For information on using the transports discussed in the book, such as

WebSphere MQ or Tuxedo, refer to the documentation for that product.

Who Should Read this Book
This guide is intended for all users of Artix. This guide assumes that you

have a working knowledge of the middleware transports that are being used

to implement the Artix system. It also assumes that you are familiar with

basic software design concepts, and that you have a basic understanding of

WSDL.

How to Use this Book

If you are new to Artix To learn about Artix, see “Introducing Artix” on page 1.

If you encounter terms you are unfamiliar with, turn to the “Glossary” on

page 541 for a list of Artix terms and definitions.

If you have used Artix before You probably know what you want to do with Artix. In this case, one of the

following suggestions may help.

• If you are creating a new project, see “Creating an Artix Designer

Project”
xvii

PREFACE
• If you're creating Artix resources, see “Creating Artix Resources”

• If you need to create or edit the data types, see “Defining Data Types”

• If you need to add a message or edit the existing messages used by

your system, see “Defining Messages”

• If you need to create or edit an interface definition, see “Defining Your

Interfaces”

• If you're creating or editing a binding, see “Binding Interfaces to a

Payload Format”

• If you're creating or editing a service, see “Adding Transports”

• If you're creating or editing a route, see “Adding Routing Instructions”

• If you are editing Artix resources using the Artix designer, see “Editing

Artix Resources”.

In addition, the following appendices are included to provide reference

material on using some the Artix bindings:

• “SOAP Binding Extensions” on page 391

• “CORBA Type Mapping” on page 403

• “WebSphere MQ Port Properties” on page 493

• “Tibco Port Properties” on page 533

Finding Your Way Around the Library
The Artix library contains several books that provide assistance for any of the

tasks you are trying to perform. The Artix library is listed here, with a short

description of each book.

If you are new to Artix

You may be interested in reading:

• Release Notes contains release-specific information about Artix.

• Installation Guide describes the prerequisites for installing Artix and the

procedures for installing Artix on supported systems.

• Getting Started with Artix describes basic Artix and WSDL concepts.

To design and develop Artix solutions

Read one or more of the following:

• Designing Artix Solutions provides detailed information about

describing services in Artix contracts and using Artix services to solve

problems.
 xviii

http://www.iona.com/support/docs/artix/3.0/release_notes/index.htm
http://www.iona.com/support/docs/artix/3.0/install_guide/index.htm
http://www.iona.com/support/docs/artix/3.0/getting_started/index.htm
http://www.iona.com/support/docs/artix/3.0/design/index.htm

PREFACE
• Developing Artix Applications in C++ discusses the technical aspects

of programming applications using the C++ API.

• Developing Artix Plug-ins with C++ discusses the technical aspects of

implementing plug-ins to the Artix bus using the C++ API.

• Developing Artix Applications in Java discusses the technical aspects

of programming applications using the Java API.

• Artix for CORBA provides detailed information on using Artix in a

CORBA environment.

• Artix for J2EE provides detailed information on using Artix to integrate

with J2EE applications.

• Artix Technical Use Cases provides a number of step-by-step examples

of building common Artix solutions.

To configure and manage your Artix solution

Read one or more of the following:

• Deploying and Managing Artix Solutions describes how to deploy

Artix-enabled systems, and provides detailed examples for a number of

typical use cases.

• Artix Configuration Guide explains how to configure your Artix

environment. It also provides reference information on Artix

configuration variables.

• IONA Tivoli Integration Guide explains how to integrate Artix with IBM

Tivoli.

• IONA BMC Patrol Integration Guide explains how to integrate Artix

with BMC Patrol.

• Artix Security Guide provides detailed information about using the

security features of Artix.

Reference material

In addition to the technical guides, the Artix library includes the following

reference manuals:

• Artix Command Line Reference

• Artix C++ API Reference

• Artix Java API Reference
xix

http://www.iona.com/support/docs/artix/3.0/prog_guide/index.htm
http://www.iona.com/support/docs/artix/3.0/plugin_guide/index.htm
http://www.iona.com/support/docs/artix/3.0/java_pguide/index.htm
http://www.iona.com/support/docs/artix/3.0/corba_ws/index.htm
http://www.iona.com/support/docs/artix/3.0/j2ee/index.htm
http://www.iona.com/support/docs/artix/3.0/cookbook/index.htm
http://www.iona.com/support/docs/artix/3.0/deploy/index.htm
http://www.iona.com/support/docs/artix/3.0/config_ref/index.htm
http://www.iona.com/support/docs/artix/3.0/tivoli/index.htm
http://www.iona.com/support/docs/artix/3.0/bmc/index.htm
http://www.iona.com/support/docs/artix/3.0/security_guide/index.htm
http://www.iona.com/support/docs/artix/3.0/command_ref/index.htm
http://www.iona.com/support/docs/artix/3.0/cpp_doc/index.html
http://www.iona.com/support/docs/artix/3.0/javadoc/index.html

PREFACE
Have you got the latest version?

The latest updates to the Artix documentation can be found at http://

www.iona.com/support/docs.

Compare the version dates on the web page for your product version with

the date printed on the copyright page of the PDF edition of the book you

are reading.

Searching the Artix Library
You can search the online documentation by using the Search box at the top

right of the documentation home page:

http://www.iona.com/support/docs

To search a particular library version, browse to the required index page,

and use the Search box at the top right. For example:

http://www.iona.com/support/docs/artix/3.0/index.xml

You can also search within a particular book. To search within an HTML

version of a book, use the Search box at the top left of the page. To search

within a PDF version of a book, in Adobe Acrobat, select Edit|Find, and

enter your search text.

Online Help
Artix Designer includes comprehensive online help, providing:

• Detailed step-by-step instructions on how to perform important tasks.

• A description of each screen.

• A comprehensive index, and glossary.

• A full search feature.

• Context-sensitive help.

There are two ways that you can access the online help:

• Click the Help button on the Artix Designer panel, or

• Select Contents from the Help menu

Additional Resources
The IONA Knowledge Base contains helpful articles written by IONA experts

about Artix and other products.

The IONA Update Center contains the latest releases and patches for IONA

products.
 xx

http://www.iona.com/support/docs
http://www.iona.com/support/docs
http://www.iona.com/support/docs
http://www.iona.com/support/docs/artix/3.0/index.xml
http://www.iona.com/support/knowledge_base/index.xml
http://www.iona.com/support/updates/index.xml

PREFACE
If you need help with this or any other IONA product, go to IONA Online

Support.

Comments, corrections, and suggestions on IONA documentation can be

sent to .

Document Conventions

Typographical conventions

This book uses the following typographical conventions:

Fixed width Fixed width (courier font) in normal text represents

portions of code and literal names of items such as

classes, functions, variables, and data structures. For

example, text might refer to the IT_Bus::AnyType

class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>

Fixed width italic Fixed width italic words or characters in code and
commands represent variable values you must
supply, such as arguments to commands or path
names for your particular system. For example:

% cd /users/YourUserName

Italic Italic words in normal text represent emphasis and
introduce new terms.

Bold Bold words in normal text represent graphical user
interface components such as menu commands and
dialog boxes. For example: the User Preferences
dialog.
xxi

http://www.iona.com/support/index.xml
http://www.iona.com/support/index.xml

PREFACE
Keying Conventions

This book uses the following keying conventions:

No prompt When a command’s format is the same for multiple
platforms, the command prompt is not shown.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the MS-DOS or Windows
command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{} Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| In format and syntax descriptions, a vertical bar
separates items in a list of choices enclosed in {}
(braces).

In graphical user interface descriptions, a vertical bar
separates menu commands (for example, select
File|Open).
 xxii

CHAPTER 1

Introducing Artix
Artix gives you the tools to design, develop, and deploy service
oriented integration solutions.

In this chapter This chapter discusses the following topics:

What is Artix? page 2

Artix Contracts and WSDL page 3

Beyond the Contract page 6
1

CHAPTER 1 | Introducing Artix
What is Artix?

Overview Artix is a flexible and easy-to-use tool for integrating your existing

applications across a number of different middleware platforms. Artix also

makes it easy to expose your existing applications as services for any

number of applications using other middleware transports.

In addition, Artix provides a flexible programming model that allows you to

create new services that can communicate using any of the protocols that

Artix supports.

Despite the flexibility and power of Artix, designing solutions using Artix is a

straightforward process.
 2

Artix Contracts and WSDL
Artix Contracts and WSDL

Overview When designing Artix solutions, you will be working directly with the WSDL

and XML Schema that makes up the Artix contract. In many instances, the

Artix Designer development tool automates many of the tasks involved in

creating a well-formed and valid WSDL document. When hand-editing Artix

contracts you will need to ensure that the contract is valid, as well as

correct. To do that you must have some familiarity with WSDL. You can find

the standard on the W3C web site, www.w3.org.

Structure of a WSDL document A WSDL document is, at its simplest, a collection of elements contained

within the root definition element. These elements describe a service and

how that service can is accessed.

The types, message, and portType elements describe the service’s interface

and make up the logical section of a contract. Within the types element,

XML Schema is used to define complex data types. A number of message

elements are used to define the structure of the messages used by the

service. The portType element contains one or more operation elements

that define the operations provided by the service.

The binding and service elements describe how the service connects to

the outside world and make up the physical section of the contract. binding

elements describe how the data defined in the message elements are

mapped into a concrete on-the-wire data format, such as SOAP. service

elements contain one or more port elements which define the network

interface for the service.

WSDL elements A WSDL document is made up of the following elements:

• definitions—the root element of a WSDL document. The attributes of

this element specfiy the name of the WSDL document, the document’s

target namespace, and the shorthand definitions for the namespaces

referenced by the WSDL.
3

http://www.w3.org/TR/wsdl

CHAPTER 1 | Introducing Artix
• types—the definition of complex data types. This element contains

XML Schema definitions of any complex datatypes used by your

service. For information about defining datatypes see “Defining Data

Types” on page 91.

• message—the abstract definition of the data being communicated.

These elements define the arguments of the operations making up your

service. For information on defining messages see “Defining Messages”

on page 123.

• portType—a collection of operation elements representing an abstract

endpoint. The port type elements can be thought of as the interface

description for a service. In fact, Artix generates code using a

one-to-one relationship between a port type and an interface. For

inforamtion about defining port types see “Defining Your Interfaces” on

page 127.

• operation—the abstract description of an action perfromed by a

service. For information on defining operaitons see “Defining Your

Interfaces” on page 127.

• binding—the concrete data format specification for a port type. A

binding element defines how the abstract messages are mapped into

the concrete data format sent between endpoints. This is where

specifics such as parameter order and return values are specified. For

information on defining bindings see “Binding Interfaces to a Payload

Format” on page 135.

• service—a collection of related port elements. These elements are

respositories for organizing endpoint definitions.

• port—the endpoint defined by a binding and a physical address.

These elements bring all of the abstract definitions together, combine it

with the definition of transport details, and define the physical

endpoint on which a service is exposed. For information on defining

endpoints see “Adding Transports” on page 251.

Artix extensions Artix extends the original concept of WSDL by describing services that use

transports and bindings beyond SOAP over HTTP. Artix also extends WSDL

to allow it to describe complex systems of services and how they are

integrated. To do this IONA has extended WSDL according to the

procedures outlined by W3C.
 4

Artix Contracts and WSDL
The majority of the IONA WSDL extension elements are used in the physical

section of the contract because they relate to how data is mapped into an

on-the-wire format and how different transports are configured. In addition,

Artix defines extensions for creating routes between services, CORBA data

type mappings, and working with service references.

Each extension is defined in a separate namespace and IONA provides the

XML Schema definitions for each extension so that any XML editor can

validate an Artix contract.

Designing a contract To design an Artix contract for your solution you must perform the following

steps:

1. Define the data types used in your solution.

2. Define the messages used in your solution.

3. Define the interfaces for each of the services in your solution.

4. Define the bindings between the messages used by each interface and

the concrete representation of the data on the wire.

5. Define the transport details for each of the services in your solution.

6. Define any routing rules used in your solution.
5

CHAPTER 1 | Introducing Artix
Beyond the Contract

Overview After you have created the contract defining your Artix solution, you still

have work to do before your solution is ready to go. There are two remaining

steps in developing a solution using Artix:

1. Develop any application-level code needed to complete the solution.

2. Configure the Artix components.

Developing application code Often, you will need to develop new application logic as a part of your

solution. Artix provides tools that allow you to develop this new functionality

using familiar programming paradigms.

For example, if you are a Java developer writing a client to interact with a

Tuxedo application, Artix will generate the Java stub code needed to develop

the application using either pure Java or as a J2EE bean.

Artix provides code generators to create stub and skeleton code in C++ and

Java. The APIs used by Artix make it easy to develop transport-independent,

Web services-based applications using standard programming techniques.

For more information on developing Artix applications, see Developing Artix

Applications in C++ or Developing Artix Applications in Java.

In addition, Artix provides tools for generating CORBA IDL from an Artix

contract. For more information, see Artix for CORBA.

Configuring the Artix components Before deploying your Artix solution you need to configure the runtime

environment for your Artix components and services. For a detailed

discussion of Artix configuration, see the Deploying and Managing Artix

Solutions.
 6

../prog_guide/index.htm
../prog_guide/index.htm
../java_pguide/index.htm
../deploy/index.htm
../deploy/index.htm
../corba_ws/index.htm

CHAPTER 2

Getting Started
with Artix Designer
Artix Designer is a comprehensive service development
environment that ships as a plug-in to the Eclipse platform.

In this chapter This chapter discusses the following topics:

Introducing Artix Designer page 8

Setting Up Artix Designer page 9

Starting Artix Designer page 11

Setting Artix Designer Preferences page 13
7

CHAPTER 2 | Getting Started with Artix Designer
Introducing Artix Designer

Overview Artix Designer is an Eclipse-based development environment that provides a

unified workspace for building Artix contracts, writing application code,

configuring Artix, and debugging solutions. By adding Artix contract creation

wizards and Artix code generators to the Eclipse platform, Artix Designer

provides many of the tools needed to build an Artix project from scratch.
 8

Setting Up Artix Designer
Setting Up Artix Designer

Overview When you install Artix, you get a default installation of Artix Designer. This

includes the

• Eclipse platform

• Eclipse Java Development Tools (JDT)

• Eclipse C/C++ Development Tools (CDT)

• Eclipse EMF plug-ins

• Artix Designer plug-ins

In addition, the installer places a start script for Artix Designer into your

installation’s bin directory.

With the default installation Artix Designer provides the following features:

• Wizards for adding XML Schema type definitions to your contracts

• Wizards for defining WSDL messages

• Wizards for Defining WSDL portType definitions for your service

interfaces

• Wizards for binding your service interfaces to a number of the payload

formats supported by Artix

• Wizards for adding the WSDL service elements needed to expose your

services using Artix transports

• Wizards for importing a CORBA IDL file into an Artix project and

building contracts based on it

• Wizards for importing a COBOL copybook into an Artix project and

building contracts based on it

• A Java code generator

• A C++ code generator

• An IDL generator

• Tools for configuring Artix services

• A Java compiler and debugger

• A WSDL editor with built-in validation
9

CHAPTER 2 | Getting Started with Artix Designer
Using with an existing Eclipse

installation

If you have an existing Eclipse installation, you can plug Artix Designer into

it. This way you can retain any of the plug-ins and setting you already use.

To plug Artix Designer into an existing Eclipse installation extract

InstallDir/artix/3.0/eclipse/ArtixDesignerPlugin.zip to the root

folder of your Eclipse installation.

When you start Eclipse, you must use the start_eclispe script if you want

to use the Artix Designer features.
 10

Starting Artix Designer
Starting Artix Designer

Windows On Windows platforms, you start Artix Designer using the Start menu

shortcut. If you installed Artix using the default settings the short cut for

stating Artix Designer is under Start|(All) Programs|IONA|Artix 3.0|Artix

Designer.

You can also use the start_eclipse script located under

InstallDir\artix\3.0\bin\.

UNIX On UNIX and Linux platforms you start Artix Designer using the supplied

start_eclipse script. The script is located in InstallDir/artix/3.0/bin.

Selecting the default workspace When you start Artix Designer, a dialog box, shown in Figure 1, asks you to

select a workspace. The workspace is the root folder into which all of your

Eclipse projects are stored. You can either accept the recommended default

or enter a new workspace.

If you do not want to see this dialog at start-up, select the Use this as the

default and do not ask again check box. Artix Designer will open in the

specified workspace from now on.

Once Artix Designer is running, you can change workspaces by selecting

File|Switch Workspace.

Figure 1: Workspace Selection
11

CHAPTER 2 | Getting Started with Artix Designer
The Welcome screen When you launch Artix Designer for the first time, the Welcome screen will

display.

You can click the Artix Designer icon on the right to access links to a series

of tutorials, release notes, online support, and the Artix documentation set.

Figure 2: The Welcome Screen

Figure 3: The Artix Designer Icon
 12

Setting Artix Designer Preferences
Setting Artix Designer Preferences

Overview Artix Designer uses a number of preferences that determine the defaults

used by the project templates. These preferences also specify the location of

your Artix installation and the Artix environment script used by Artix

Designer.

Opening the preference window The Artix preferences are set through the same window as the Eclipse

preferences. To open the Eclipse preference widow select

Window|Preferences from the toolbar. The Preferences window will open,

as shown in Figure 4.

The Artix preferences are located under the Artix Designer entry.

Figure 4: Eclipse Preferences Window
13

CHAPTER 2 | Getting Started with Artix Designer
Common preferences Artix Designer needs to be pointed to an Artix installation in order to work

properly. The settings for where Artix Designer finds its tools and

environment scripts is set in the Artix Designer|Common panel of the

Preferences window, as shown in Figure 5.

In general, you should not need to change these settings.

Java code generation preferences The Artix Designer|Java preferences panel, shown in Figure 6, allows you

to set the default package name used by the Artix Java code generator when

you use a template to create your projects. The default package name is also

used as the default for any Artix code generation configuration that is set up

to generate Java code.

If you want to ensure that your edits are maintained if you regenerate the

Artix Java stubs and Java skeletons, select Merge generated code.

Figure 5: Common Artix Designer Preferences

Figure 6: Artix Designer Java Preferences
 14

Setting Artix Designer Preferences
C++ code generation preferences The Artix Designer|C++ preferences panel, shown in Figure 7, allows you

to set the default C++ namespace and the default C++ declaration

statement used by the Artix C++ code generator when you use a template

to create your projects. The default settings are also used as the default for

any Artix code generation configuration that is set up to generate C++ code.

If you want to ensure that your edits are maintained if you regenerate the

Artix C++ stubs and C++ skeletons, select Merge generated code.

Validation preferences The Artix Designer|Validation panel, shown in Figure 8 allows you to

enable support for extra schema validation, by selecting the Validate WSDL

against schemas check box. You can add schemas to the Additional

Schemas list by clicking the New button and choosing a schema from your

file system.

Where you have multiple additional schemas, you can reorder the validation

sequence using the Up and Down buttons.

Select the Check for references prior to deletion check box to ensure that

you will be warned if you try to delete an element that is referenced

elsewhere, thus invalidating your WSDL.

Figure 7: Artix Designer C++ Preferences

Note: If you select Merge generated code for C++ projects, Eclipse will
launch a compare editor each time you regenerate C++ code. This
enables you to choose which code changes you want to retain.
15

CHAPTER 2 | Getting Started with Artix Designer
You can choose whether Artix Designer restricts reference-checking to the

same file, the same project, or your entire workspace by selecting the

appropriate radio button in the Scope section.

Figure 8: Artix Designer Validation Preferences
 16

CHAPTER 3

Creating an Artix
Designer Project
Artix projects provide a workspace within which you can design
Artix solutions.

In this chapter This chapter discusses the following topics:

What is an Artix Designer Project? page 18

Creating a Project page 20

Creating a Project Using a Template page 27
17

CHAPTER 3 | Creating an Artix Designer Project
What is an Artix Designer Project?

Overview An Artix Designer project is an Eclipse project that uses the Artix perspective

and includes the resources needed to build and deploy an Artix solution. The

resources included in an Artix Designer project include:

• Artix contracts

• XML Schema documents

• Generated Java code

• Generated C++ code

• Artix configuration files

You can also include other resources such as COBOL copybooks, text files,

scripts, or any other resources you want to group with a particular project.

In general, an Artix Designer project is intended to encompass a single Artix

solution. This, however, does not mean that a project cannot include a

number of services or applications. Often a single Artix solution has many

parts to it and all of these parts can associated with a common Artix project.

Organization of an Artix Project Eclipse organizes its workspaces into a file system as shown in Figure 9 on

page 19. Each project in a workspace is a root folder. Artix Designer

projects are represented using an icon.

At a minimum, an Artix Designer project will contain a .project file that

Eclipse uses to store information about the project and an outputs folder

that Artix uses to store generated resources for your project.

Projects that contain generated Java code will also contain a .classpath file

to define the classpath used to build the code and a bin folder to hold the

compiled Java classes.

Projects that contain generated C++ code will contain a .cdtproject file.

An Artix project’s outputs folder contains a number of sub-folders. Each

sub-folder groups together Artix generated resources according to the details

selected when creating the resource’s generation profile. For example, if you

select to generate resources for an Artix switch, the generated resources
 18

What is an Artix Designer Project?
would be placed in a folder under the switches sub-folder. For more

information on the different types of generation profiles see Table 1 on

page 32.

Types of projects Artix Designer provides two types of project:

Basic Web services project includes most of what you might do with Artix.

Select this type of project if you want to write a WSDL or XSD file or develop

an application from a new or pre-existing WSDL file. One option when

creating a basic Web services project is to use a code generation template

that is configured to automatically create typical client, server, or switch

applications.

CORBA Web services project is a special purpose project that allows rapid

design of an application in which an Artix client, using SOAP over HTTP

messaging, can communicate with a pre-existing CORBA server.

Figure 9: Project Structure
19

CHAPTER 3 | Creating an Artix Designer Project
Creating a Project

Overview All development done in Artix Designer is associated with a project. Artix

provides wizards that guide you through the creation of an Artix Designer

project.

In this section This section discusses the following topics:

Creating a Basic Web Services Project page 21

Creating a CORBA Web Services Project page 23
 20

Creating a Project
Creating a Basic Web Services Project

Overview A basic Web services project provides a base for all Artix projects. From this

project type, you can create any type of Artix solution. It provides you with a

completely blank slate from which to start developing. However, there are a

number of templates that you can use to help you create starting point

elements. For information on using templates see “Creating a Project Using

a Template” on page 27.

Procedure To create a basic web services:

1. Select File|New|Project to open the new project wizard shown in

Figure 10.

2. Select Basic Web Services Project under the IONA Artix Designer

folder.

Figure 10: New Project Wizard
21

CHAPTER 3 | Creating an Artix Designer Project
3. Click Next to open the Basic Web Services Project General Details

window, shown in Figure 11.

4. Enter a project name.

5. If you do not want to place your project into the default workspace

being used by Eclipse, clear the Use default check box and enter a

new directory in which to store your project.

6. If you want to use a template for your project select the Use a template

check box. See “Creating a Project Using a Template” on page 27.

7. Click Finish.

Figure 11: Basic Web Services Project Details
 22

Creating a Project
Creating a CORBA Web Services Project

Overview A CORBA Web Services Project is a special purpose project that allows

rapid design of an application in which a Web service client can

communicate with a pre-existing CORBA server. When you create this type

of project, Artix Designer walks you through the process of importing the IDL

definition of the running service, discovering the CORBA service’s IOR, and

identifying the endpoint to route requests from.

Procedure To create a CORBA Web services project:

1. Select File|New|Project to open the new project wizard.

2. Select CORBA Web Services Project under the IONA Artix Designer

folder.

3. Click Next to open the CORBA Web Services Project General Details

window, shown in Figure 12.

4. Enter a name for your project.

5. If you do not wish to store your project in the default workspace,

remove the check from the Use default box and enter a new directory

into which your project will be stored.

6. If you want to create a code generation profile for a Java test client,

select the Create Java test client configuration check box.

Figure 12: CORBA Web Services Project Details
23

CHAPTER 3 | Creating an Artix Designer Project
7. Click Next to open the Inputs and Web Service Options window,

shown in Figure 13.

8. Enter the location of the IDL file that defines the CORBA service’s

interface in IDL File.

Specifying the CORBA object

reference

You specify in the IOR for the CORBA server process in the Object Reference

section.

You can do this in one of the following ways:

• Selecting the Naming Service radio button, and then Specifying the

naming service reference.

• Selecting the IOR or CORBA URL radio button and pasting either an

IOR string or a corbaloc URL into the IOR text box.

Figure 13: CORBA Web Services Project Input Details
 24

Creating a Project
• Selecting the IOR from file radio button and clicking Browse to locate

an IOR file or a text file containing an IOR. This will populate the IOR

text box.

Specifying the naming service

reference

If you selected Naming Service in the Object Reference section, you now

need to specify the location of the CORBA naming service.

You can do this in one of the following ways:

• Select the Naming Service IOR or CORBA URL radio button and paste

an IOR string or corbaloc URL for the naming service into the text box.

• Populate the text box by selecting the Naming Service IOR from file

radio button, then clicking Browse to select an IOR file or a text file

containing an IOR.

Once you have located the naming service, click the Browse Naming

Service button to display the Naming Service Contexts dialog box, as shown

in Figure 14.

Select the IOR for the CORBA server process and then click OK. This will

populate the IOR text box.

Adding the Web service details Once the IDL and IOR text boxes have been populated, click the Load IDL

button to populate the Port and Address section.

In the Port and Address section, select the port type corresponding to the

desired CORBA servant from the PortType list.

Figure 14: The Naming Service Contexts Dialog Box
25

CHAPTER 3 | Creating an Artix Designer Project
You can also edit the value assigned to the SOAP Port Address text box if

you wish.
 26

Creating a Project Using a Template
Creating a Project Using a Template

Overview When creating a basic Web services project, you have the option of using a

template. The templates help you create the elements needed for specific

types of application. They prompt you for the contracts to import and set-up

code generation profiles using default settings for you. Template-generated

projects include the starting point code and other elements needed to deploy

and test an Artix solution.

Template types There are a total of seven templates that you can use when generating a

basic Web services project. These can be divided up into three broad

categories:

• The Artix switch template

• C++ templates

• Java templates

The Artix switch template The Artix switch template creates a directory structure for a basic web

services project and adds generation and configuration details for an Artix

switch.

The generated project will contain a folder under outputs\switches that
contains start and stop scripts for an Artix switch along with a configuration
domain under which the switch will run.

C++ templates There are three types of C++ template available:

• C++ client

• C++ server

• C++ client and server

In each case, the generated project will contain a folder under
outputs\applications containing the following:

• Start scripts for the compiled application or applications

• A configuration domain under which the applications will run

• The C++ code generated from the specified WSDL file

• The client and/or server executables
27

CHAPTER 3 | Creating an Artix Designer Project
Artix will create the code generation profile for a template project using the

default values set in the Artix Designer C++ preferences window. These

settings determine the namespace under which the C++ code is generated

and the default C++ declaration specification in the code.

The default setting for the C++ namespace is COM_IONA_ARTIX. The default

setting for the declaration specification is ARTIX_PROJECT.

For information on changing these settings see “Setting Artix Designer

Preferences” on page 13.

Java templates There are three types of Java template available:

• Java client

• Java server

• Java client and server

In each case, the generated project will contain a folder under
outputs\applications containing the following:

• Start scripts for the compiled application or applications

• A configuration domain under which the applications will run

• The Java code generated from the specified WSDL file

There will also be an additional folder, bin, added to your project. This

folder will contain the compiled Java classes for your application or

applications.

Artix will create the code generation profile for a template project using the

default values set in the Artix Designer Java preferences window. These

settings determine the default package name under which the Java code is

generated and if the generated code will overwrite any existing code.

The package name for generated code is determined by adding the project

name onto the end of the default package name specified in the preference

window. The default setting for the Java package name is com.iona.artix.

For information on changing these settings see “Setting Artix Designer

Preferences” on page 13.

Creating a project from a template To create an Artix Designer project using a template:

1. Select File|New|Project to open the new project wizard.

2. Select Basic Web Services Project under the IONA Artix Designer

folder.
 28

Creating a Project Using a Template
3. Enter a project name.

4. If you do not wish to store your project in the default workspace,

remove the check from the Use default box and enter a new directory

into which your project will be stored.

5. Place check in the Use a template box to make the templates

available.

6. Select a template from the list of available templates.

7. Enter the name of the WSDL file the defines the services and routes to

be connected.

8. If you are creating an Artix switch, proceed to step 11.

9. From the Service drop-down list, select the name of the WSDL service

from which to generate code.

10. From the Port drop-down list, select the name of the WSDL port on

which your server will listen for requests.

11. Select Finish to create the project.
29

CHAPTER 3 | Creating an Artix Designer Project
 30

CHAPTER 4

Creating Artix
Resources
An Artix resource is an artifact that defines a piece of an Artix
solution.

In this chapter This chapter discusses the following topics:

What are Artix Resources? page 32

Creating Design Resources page 34

Working with Generation Profiles page 85
31

CHAPTER 4 | Creating Artix Resources
What are Artix Resources?

Overview An Artix resource is an artifact that defines a piece of an Artix solution. In

Artix there are several types of Artix resources:

• Contracts define the services of an Artix solution.

• Schemas define the data types used by the services.

• Access control lists define security roles for services.

• Generation profiles define how Artix creates code and configuration

files from contracts and schemas.

• Java objects define the physical implementation of a service.

• C++ objects define the physical implementation of a service.

• Configuration files define the runtime behavior of the deployed

Artix-enabled services.

Using the WSDL editor Artix Designer’s WSDL editor provides wizards that guide you through the

process of adding elements to both schemas and full contracts. The wizards

simplify the process of building complex type definitions and interface

definitions by prompting you for only the relevant information. The wizards

also prevent you from entering invalid information.

Using the Artix Generator Artix code generation profiles allow you to specify the types of deployment

resources Artix will generate for you. They also allow you to specify what

Artix services will be deployed as part of a particular application. For

example, you can create a generation profile for a Java client and another

one for a C++ service based on the same contract.

Table 1 shows the type of code generation profiles that are available in the

Artix Generator.

Table 1: Artix Code Generation Profiles

Profile Description

Container Provides scripts for starting and stopping the Artix
container. It also creates a configuration file for
deploying an empty container.
 32

What are Artix Resources?
Service Plug-in Generates code for implementing a service as an Artix
plug-in. In addition, it generates configuration and
scripts for deploying the plug-in into the Artix
container.

Application Generates code for developing an Artix-enabled
application. You can specify if the application is a
client or a server. In addition, it generates a
configuration file and scripts for deploying the
application.

CORBA IDL Generates IDL from a contract that contains a CORBA
binding. In addition, it generates an environment
script to source the Artix environment and a
configuration file.

Switch Generates a start script and configuration file for
deploying an Artix router inside of the Artix container.
The deployed switch will use the specified contract as
the source of its routing rules.

Types Generates the code needed to support the types
defined in a contract or schema document. In
addition, it generates a environment script for
sourcing the Artix environment and a configuration
file template for a switch.

Table 1: Artix Code Generation Profiles

Profile Description
33

CHAPTER 4 | Creating Artix Resources
Creating Design Resources

Overview The first step in designing an Artix solution is to create contracts and

schemas to define your services. Artix designer provides wizards to guide

through the process of creating a contract shell and adding the needed

definitions to it.

Artix also provides a number of tools to create contracts from existing service

resources including existing WSDL, IDL files, Java classes, and COBOL

copybooks.

In this section This section discusses the following topics:

Creating a New Contract page 35

Importing a Contract from a URL page 38

Creating a Contract from CORBA IDL page 40

Creating a Contract from a Java Class page 50

Creating a Contract from a COBOL Copybook page 62

Creating a Contract from a Data Set page 69

Creating a Contract from an XML Schema Document page 78

Creating an XML Schema page 80

Importing an XML Schema from a URL page 82

Creating Access Control Lists page 83
 34

Creating Design Resources
Creating a New Contract

Overview When creating a new contract using the WSDL File wizard you have two

options:

• Creating an empty contract and the filling in the details.

• Linking to an existing WSDL document on a locally accessible file

system.

Creating an empty contract When you create an empty contract, the new contract is placed under the

project’s file system.

To add an empty contract to your project:

1. From the File menu, select New|Other to open the New window,

shown in Figure 15.

Figure 15: The New Window
35

CHAPTER 4 | Creating Artix Resources
2. Select WSDL File from under the IONA Artix Designer folder.

3. Click Next to open the WSDL File window, shown in Figure 16.

4. Select the folder where you want to store the contract.

5. Type the name of the file in the File name field.

6. Click Finish.

Linking to an existing WSDL When you link to an existing WSDL document, you create an entry in your

project for the WSDL document. The entry in your project is not a copy of

the original file. It is a hard link to the original document and any changes

made to the document are reflected in the original WSDL document.

To link to an existing WSDL document:

1. From the File menu, select New|Other.

2. Select WSDL File from under the IONA Artix Designer folder.

Figure 16: Entering WSDL Details
 36

Creating Design Resources
3. Click Next.

4. Select the folder where you want to store the contract.

5. Type the name of the file in the File name field.

6. Click Advanced to expand the WSDL File window as shown in

Figure 17.

7. Select the Link to file in the file system check box.

8. Click the Browse button to select the WSDL file that you want to link

to.

9. Click Finish.

Figure 17: Entering WSDL Link Details
37

CHAPTER 4 | Creating Artix Resources
Importing a Contract from a URL

Overview If you want to create a client or service from an existing WSDL document

that is posted at a URL, you can import a read-only version of the WSDL

document into an Artix Designer project.

Once imported, the contract can be used as an import for other contracts, a

target for an Artix switch, or as a basis for generating code.

Procedure To import a contract from a URL:

1. From the File menu, select New|Other to open the New window,

shown in Figure 15.

2. Select WSDL From URL from under the IONA Artix Designer folder.

3. Click Next to open the WSDL File window, shown in Figure 18.

Figure 18: Entering WSDL URL Details
 38

Creating Design Resources
4. Select the folder where you want to store the contract.

5. Type the name of the contract in the File name field.

6. Type the URL in the URL Path field.

7. Click Finish.
39

CHAPTER 4 | Creating Artix Resources
Creating a Contract from CORBA IDL

Overview If you are starting from a CORBA server or client, Artix can build the logical

portion of the Artix contract from IDL. Contracts generated from IDL have

CORBA-specific entries and namespaces added. The IDL to WSDL compiler

also generates the binding information required to format the operations

specified in the IDL. However, since port information is specific to the

deployment environment, the port information is left blank.

Artix provides two methods of generating Artix contracts from an IDL file:

• Using Artix Designer

• Using the idltowsdl tool

CORBA WSDL namespaces Contracts generated from IDL include two additional name spaces:

Unsupported type handling Be aware that the IDL to WSDL compiler ignores any definitions that use

unsupported CORBA types. The IDL to WSDL compiler also ignores any

definition that uses a previously ignored definition. For example, assume you

have the following IDL definitions in file.idl:

The IDL to WSDL compiler does not generate any corresponding contract

information for the structure S because it contains a member that uses an

unsupported type. Similarly, the IDL to WSDL compiler does not generate

any contract information for the operation get_op() because it references

structure S.

xmlns:corba="http://schemas.iona.com/bindings/corba"
xmlns:corbatm="http://schemas.iona.com/bindings/corba/typemap"

interface A
{
 struct S
 {
 wchar member;
 };

 S get_op();
};
 40

Creating Design Resources
Using Artix Designer To use an IDL file as the basis for a contract:

1. From the File menu, select New|Other to open the New window,

shown in Figure 15.

2. Select WSDL From IDL from under the IONA Artix Designer folder.

3. Click Next to open the WSDL File window, shown in Figure 19.

4. Select the folder where you want to store the WSDL file.

5. Type the name of the file in the File name field.

Figure 19: Entering Contract Name
41

CHAPTER 4 | Creating Artix Resources
6. Click Next to open the Select IDL File window, shown in Figure 20.

7. Enter the location of the IDL file that defines the CORBA service’s

interface in IDL File.

Specifying the CORBA object reference

You specify in the IOR for the CORBA server process in the Object Reference

section.

You can do this in one of the following ways:

• Selecting the Naming Service radio button, and then Specifying the

naming service reference.

• Selecting the IOR or CORBA URL radio button and pasting either an

IOR string or a corbaloc URL into the IOR text box.

Figure 20: Specifying CORBA IDL Details
 42

Creating Design Resources
• Selecting the IOR from file radio button and clicking Browse to locate

an IOR file or a text file containing an IOR. This will populate the IOR

text box.

Specifying the naming service reference

If you selected Naming Service in the Object Reference section, you now

need to specify the location of the CORBA naming service.

You can do this in one of the following ways:

• Select the Naming Service IOR or CORBA URL radio button and paste

an IOR string or corbaloc URL for the naming service into the text box.

• Populate the text box by selecting the Naming Service IOR from file

radio button, then clicking Browse to select an IOR file or a text file

containing an IOR.

Once you have located the naming service, click the Browse Naming

Service button to display the Naming Service Contexts dialog box, as shown

in Figure 14.

Select the IOR for the CORBA server process and then click OK. This will

populate the IOR text box.

 Using the idltowsdl tool IONA’s IDL to WSDL compiler supports several command line flags that

specify how to create a WSDL file from an IDL file. The default behavior of

the tool is to create WSDL file that uses wrapped doc/literal style messages.

Wrapped doc/literal style messages have a single part, defined using an

element, that wraps all of the elements in the message. See Example 2 on

page 47 for a sample.

The IDL to WSDL compiler is run using the following command:

The command has the following options:

idltowsdl [-usetypes][-unwrap][-a address][-f file][-o dir][-s
type][-r file][-L file][-P file] [-w namespace]
[-x namespace][-t namespace][-T file][-n file][-b][-I idlDir]
[-qualified][-inline][-3][-fasttrack][-interface name]
[-soapaddr port][-L file] [-q][-h][-V] idlfile

-usetypes Generate rpc style messages. rpc style messages have
parts defined using XML Schema types instead of XML
elements.
43

CHAPTER 4 | Creating Artix Resources
-unwrap Generate unwrapped doc/literal messages. Unwrapped
messages have parts that represent individual elements.
Unlike wrapped messages, unwrapped messages can
have multiple parts and are not allowed by the WS-I.

-a address Specifies an absolute address through which the object
reference may be accessed. The address may be a
relative or absolute path to a file, or a corbaname URL

-f file Specifies a file containing a string representation of an
object reference. The object reference is placed in the
corba:address element in the port definition of the
generated service. The file must exist when you run the
IDL compiler.

-o dir Specifies the directory into which the WSDL file is
written.

-s type Specifies the XML Schema type used to map the IDL
sequence<octet> type. Valid values are base64Binary
and hexBinary. The default is base64Binary.

-r file Specify the pathname of the schema file imported to
define the Reference type. If the -r option is not given,
the idl compiler gets the schema file pathname from
etc/idl.cfg.

-L file Specifies that the logical portion of the generated WSDL
specification into is written to file. file is then imported
into the default generated file.

-P file Specifies that the physical portion of the generated WSDL
specification into is written to file. file is then imported
into the default generated file.

-w namespace Specifies the namespace to use for the WSDL
targetNamespace. The default is
http://schemas.iona.com/idl/idl_name.

-x namespace Specifies the namespace to use for the Schema
targetNamespace. The default is
http://schemas.iona.com/idltypes/idl_name.

-t namespace Specifies the namespace to use for the CORBA
TypeMapping targetNamespace. The default is
http://schemas.iona.com/typemap/corba/idl_name.
 44

Creating Design Resources
-T file Specifies that the schema types are to be generated into
a separate file. The schema file is included in the
generated contract using an import statement. This
option cannot be used with the -n option.

-n file Specifies that a schema file, file, is to be included in the
generated contract by an import statement. This option
cannot be used with the -T option.

-b Specifies that bounded strings are to be treated as
unbounded. This eliminates the generation of the special
types for the bounded string.

-I idlDir Specify a directory to be included in the search path for
the IDL preprocessor. You can use this flag multiple
times.

-qualified Generates fully qualified WSDL.

-inline Generates a contract that includes all imported
documents in-line. This overrides all options that specify
that a section of the contract is to be imported.

-3 Use relaxed IDL grammar checking semantics to allow
IDL used by Orbix 3 to be parsed.

-fasttrack Use the fasttrack wizard. You must also use the
-interface and -soapaddr flags with this option. This
option also adds a SOAP port and a route between the
generated CORBA port and the generated SOAP port.

-interface name Specifies the IDL interface for which WSDL will be
generated by the fastrack wizard.

-soapaddr port Specifies the SOAP address to use in the generated port
element when using the fasttrack wizard.

-L file Specifies the location of your Artix license file. The default
behavior is to check IT_PRODUCT_DIR\etc\license.txt.

-q Specifies that the tool runs in quiet mode. No output will

be shown on the console. This includes error messages.

-h Specifies that the tool will display a usage message.

-V Specifies that the tool runs in verbose mode.
45

CHAPTER 4 | Creating Artix Resources
To combine multiple flags in the same command, use a colon-delimited list.

The colon is only interpreted as a delimiter if it is followed by a dash.

Consequently, the colons in a corbaname URL are interpreted as part of the

URL syntax and not as delimiters.

Example Imagine you needed to generate an Artix contract for a CORBA server that

exposes the interface shown in Example 1.

To generate the contract, you run it through the IDL compiler using either

Artix Designer or the command line. The resulting contract is similar to that

shown in Example 2.

Note: The command line flag entries are case sensitive even on
Windows. Capitalization in your generated WSDL file must match the
capitalization used in the prewritten code.

Example 1: personalInfoService Interface

interface personalInfoService
{
 enum hairColorType {red, brunette, blonde};
 struct personalInfo
 {
 string name;
 long age;
 hairColorType hairColor;
 };
 exception idNotFound
 {
 short id;
 };
 personalInfo lookup(in long empId)
 raises (idNotFound);
};
 46

Creating Design Resources
Example 2: personalInfoService Contract

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="personalInfo.idl"
 targetNamespace="http://schemas.iona.com/idl/personalInfo.idl"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://schemas.iona.com/idl/personalInfo.idl"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://schemas.iona.com/idltypes/personalInfo.idl"
 xmlns:corba="http://schemas.iona.com/bindings/corba"
 xmlns:corbatm="http://schemas.iona.com/typemap/corba/personalInfo.idl"
 xmlns:references="http://schemas.iona.com/references">
 <types>
 <schema targetNamespace="http://schemas.iona.com/idltypes/personalInfo.idl"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <xsd:simpleType name="personalInfoService.hairColorType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="red"/>
 <xsd:enumeration value="brunette"/>
 <xsd:enumeration value="blonde"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:complexType name="personalInfoService.personalInfo">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="age" type="xsd:int"/>
 <xsd:element name="hairColor" type="xsd1:personalInfoService.hairColorType"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="personalInfoService.idNotFound">
 <xsd:sequence>
 <xsd:element name="id" type="xsd:short"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:element name="personalInfoService.lookup">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="empId" type="xsd:int"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
47

CHAPTER 4 | Creating Artix Resources
 <xsd:element name="personalInfoService.lookupResult">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="return" type="xsd1:personalInfoService.personalInfo"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="personalInfoService.idNotFound"
 type="xsd1:personalInfoService.idNotFound"/>
 </schema>
 </types>
 <message name="personalInfoService.lookup">
 <part name="parameters" element="xsd1:personalInfoService.lookup"/>
 </message>
 <message name="personalInfoService.lookupResponse">
 <part name="parameters" element="xsd1:personalInfoService.lookupResult"/>
 </message>
 <message name="personalInfoService.idNotFound">
 <part name="exception" element="xsd1:personalInfoService.idNotFound"/>
 </message>
 <portType name="personalInfoService">
 <operation name="lookup">
 <input message="tns:personalInfoService.lookup" name="lookup"/>
 <output message="tns:personalInfoService.lookupResponse" name="lookupResponse"/>
 <fault message="tns:personalInfoService.idNotFound" name="personalInfoService.idNotFound"/>
 </operation>
 </portType>
 <binding name="personalInfoServiceBinding" type="tns:personalInfoService">
 <corba:binding repositoryID="IDL:personalInfoService:1.0"/>
 <operation name="lookup">
 <corba:operation name="lookup">
 <corba:param name="empId" mode="in" idltype="corba:long"/>
 <corba:return name="return" idltype="corbatm:personalInfoService.personalInfo"/>
 <corba:raises exception="corbatm:personalInfoService.idNotFound"/>
 </corba:operation>
 <input/>
 <output/>
 <fault name="personalInfoService.idNotFound"/>
 </operation>
 </binding>
 <service name="personalInfoServiceService">
 <port name="personalInfoServicePort" binding="tns:personalInfoServiceBinding">
 <corba:address location="..."/>
 </port>
 </service>

Example 2: personalInfoService Contract
 48

Creating Design Resources
 <corba:typeMapping targetNamespace="http://schemas.iona.com/typemap/corba/personalInfo.idl">
 <corba:enum name="personalInfoService.hairColorType"
 type="xsd1:personalInfoService.hairColorType"
 repositoryID="IDL:personalInfoService/hairColorType:1.0">
 <corba:enumerator value="red"/>
 <corba:enumerator value="brunette"/>
 <corba:enumerator value="blonde"/>
 </corba:enum>
 <corba:struct name="personalInfoService.personalInfo"
 type="xsd1:personalInfoService.personalInfo"
 repositoryID="IDL:personalInfoService/personalInfo:1.0">
 <corba:member name="name" idltype="corba:string"/>
 <corba:member name="age" idltype="corba:long"/>
 <corba:member name="hairColor" idltype="corbatm:personalInfoService.hairColorType"/>
 </corba:struct>
 <corba:exception name="personalInfoService.idNotFound"
 type="xsd1:personalInfoService.idNotFound"
 repositoryID="IDL:personalInfoService/idNotFound:1.0">
 <corba:member name="id" idltype="corba:short"/>
 </corba:exception>
 </corba:typeMapping>
</definitions>

Example 2: personalInfoService Contract
49

CHAPTER 4 | Creating Artix Resources
Creating a Contract from a Java Class

Overview To facilitate the integration of Java applications with Artix, Artix provides the

following tools for generating the logical portion of an Artix contract from

existing Java classes:

• Using Artix Designer

• Using the javatowsdl tool

These tools use the mapping rules described in Sun’s JAX-RPC 1.1

specification.

Using Artix Designer This functionality employs Eclipse's Java Development Tools (JDT). In order

to use it, your Artix Designer project will need to be Java-enabled, and the

class present on the build path.

Creating WSDL from Java is a three-step process:

1. Java-enabling your project

2. Adding the class to the build path

3. Running the WSDL from Java wizard

Java-enabling your project

Your Artix Designer project is Java-enabled as soon as you use Artix

Generator to generate some Java code.

If you have not already run a Java code configuration from your project, you

should do so now. The quickest way to do this is to create an empty WSDL

file and run the Types code generation configuration, since this does not

require the WSDL to contain any elements.

Adding the class to the build path

To add the Java class to your project's build path:

1. Package the class into a JAR file and save it somewhere on your hard

drive.

2. Right-click your Artix project and select Properties from the pop-up

menu.

3. In the Java Build Path page, click the Libraries tab.

4. Click the Add External JARs button.
 50

Creating Design Resources
5. In the JAR Selection dialog box, browse to the location of the JAR file

and select it.

6. Click OK.

Running the WSDL from Java wizard

To create a contract from a Java class using Artix Designer:

1. From the File menu, select New|Other to open the New window,

shown in Figure 15 on page 35.

2. Select WSDL From Java from under the IONA Artix Designer folder.

3. Click Next to open the WSDL File window, shown in Figure 21.

4. Select the folder where you want to store the WSDL file.

5. Type the name of the file in the File name field.

Figure 21: Entering Contract Name for Java Import
51

CHAPTER 4 | Creating Artix Resources
6. Click Next to open the Java Class File window, shown in Figure 22.

Figure 22: Java Class Details
 52

Creating Design Resources
7. Click Browse to open the Find Class dialog box shown in Figure 23.

8. Enter a search string to locate the class you wish to import in the

Select a class to use field.

9. Select the desired class from the list of types in the Matching types

list.

10. Click OK to return to the Java Class File window.

11. Select the WSDL settings check box if you do not want Artix to use

default values in the generated contract.

i. Enter the name you want to use for the generated portType

element in the Port type name: field.

ii. Enter the namespace you wish to use as the generated contract’s

target namespace in the Target namespace: field.

Figure 23: The Find Class Dialog Box
53

CHAPTER 4 | Creating Artix Resources
iii. Enter the namspace you wish to use as the target namespace for

the generated contract’s schema element in the Schema

namespace: field.

iv. Select the Use types check box if you want Artix to generate the

contract using types in the message parts.

12. Click Finish.

Using the javatowsdl tool Artix supplies a command line tool, javatowsdl, that generates the logical

portion of an Artix contract for existing Java class files. To generate the

logical portion of an Artix contract using the javatowsdl tool use the

following command:

The command has the following options:

javatowsdl [-t namespace][-x namespace][-i porttype]
 [-o file][-useTypes][-v][-?][-L file]
 [-q][-h][-V] ClassName

-t namespace Specifies the target namespace of the generated WSDL
document. By default, the java package name will be
used as the target namespace. If no package name is
specified, the generated target namespace will be
http:\\www.iona.com\ClassName.

-x namespace Specifies the target namespace of the XML Schema
information generated to represent the data types inside
the WSDL document. By default, the generated target
namespace of the XML Schema will be
http:\\www.iona.com\ClassName\xsd.

-i porttype Specifies the name of the generated portType in the
WSDL document. By default, the name of the class from
which the WSDL is generated is used.

-o file Specifies output file into which the WSDL is written.

-useTypes Specifies that the generated WSDL will use types in the
WSDL message parts. By default, messages are
generated using wrapped doc/literal style. A wrapper
element with a sequence will be created to hold method
parameters.

-v Prints out the version of the tool.
 54

Creating Design Resources
The generated WSDL will not contain any physical details concerning the

payload formats or network transports that will be used when exposing the

service. You will need to add this information manually.

Supported types Table 2 shows the Java types Artix can map to an Artix contract.

-? Prints out a help message explaining the command line
flags.

-L file Specifies the location of your Artix license file. The default
behavior is to check IT_PRODUCT_DIR\etc\license.txt.

-q Specifies that the tool runs in quiet mode. No output will

be shown on the console. This includes error messages.

-h Specifies that the tool will display a usage message.

-V Specifies that the tool runs in verbose mode.

Note: When generating contracts, javatowsdl will add newly generated
WSDL to an existing contract if a contract of the same name exists. It will
not generate a new file or warn you that a previous contract exists.

Table 2: Java to WSDL Mappings

Java Artix Contract

boolean xsd:boolean

byte xsd:byte

short xsd:short

int xsd:int

long xsd:long

float xsd:float

double xsd:double

byte[] xsd:base64binary

java.lang.String xsd:string

java.math.BigInteger xsd:integer
55

CHAPTER 4 | Creating Artix Resources
In the case of helper classes for a Java primitive, such as

java.lang.Integer, the instance is mapped to an element with the nillable

attribute set to true and the type set to the corresponding Java primitive

type. Example 3 shows the mapping for a java.lang.Float.

Exceptions Artix will map user-defined exceptions to the logical Artix contract according

to the rules laid out in the JAX-RPC specification. The exception will be

mapped to a fault element within the operation representing the

corresponding Java method. The generated fault element will reference a

generated message element describing the Java exception class. The name

attribute of the message element will be taken from the name of the Java

exception class.

Because SOAP only supports fault messages with a single part, the

generated message element is mapped to have only one part. When the

Java exception only has one field, it is used as the part and its name and

type attributes are mapped from the exception’s field. When the Java

exception contains more than one field, Artix generates a complexType to

describe the exception’s data. The generated complexType will have one

java.math.BigDecimal xsd:decimal

java.util.Calendar xsd:dateTime

java.util.Date xsd:dateTime

java.xml.namespace.QName xsd:QName

java.net.URI xsd:anyURI

Table 2: Java to WSDL Mappings (Continued)

Java Artix Contract

Example 3: Mapping of java.lang.Float to XML Schema

<element name="floatie" nillable="true" type="xsd:float"/>
 56

Creating Design Resources
element for each field of the exception. The name and type attributes of the

generated element will be taken from the corresponding field in the

exception.

Example For example, if you had a Java interface similar to that shown in Example 4,

you could generate an Artix contract on it by compiling the interface into a

.class file and running the command javatowsdl Base.

The resulting Artix contract will be similar to Example 5.

Note: Standard Java exceptions are not mapped into the generated Artix
contract.

Example 4: Base Java Class

//Java
public interface Base
{
 public byte[] echoBase64(byte[] inputBase64);
 public boolean echoBoolean(boolean inputBoolean);
 public float echoFloat(float inputFloat);
 public float[] echoFloatArray(float[] inputFloatArray);
 public int echoInteger(int inputInteger);
 public int[] echoIntegerArray(int[] inputIntegerArray);
}

Example 5: Base Artix Contract

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions name="Base" targetNamespace="http://www.iona.com/Base"
 xmlns:ns1="http://www.iona.com/Base" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://www.iona.com/Base/xsd">
 <wsdl:types>
 <schema targetNamespace="http://www.iona.com/Base/xsd"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="echoBoolean">
 <complexType>
 <sequence>
 <element name="booleanParam0" type="xsd:boolean"/>
 </sequence>
 </complexType>
 </element>
57

CHAPTER 4 | Creating Artix Resources
 <element name="echoBooleanResponse">
 <complexType>
 <sequence>
 <element name="return" type="xsd:boolean"/>
 </sequence>
 </complexType>
 </element>
 <element name="echoBase64">
 <complexType>
 <sequence>
 <element maxOccurs="unbounded" minOccurs="0" name="_bParam0" type="xsd:byte"/>
 </sequence>
 </complexType>
 </element>
 <element name="echoBase64Response">
 <complexType>
 <sequence>
 <element maxOccurs="unbounded" minOccurs="0" name="return" type="xsd:byte"/>
 </sequence>
 </complexType>
 </element>
 <element name="echoHexBinary">
 <complexType>
 <sequence>
 <element maxOccurs="unbounded" minOccurs="0" name="_bParam0" type="xsd:byte"/>
 </sequence>
 </complexType>
 </element>
 <element name="echoHexBinaryResponse">
 <complexType>
 <sequence>
 <element maxOccurs="unbounded" minOccurs="0" name="return" type="xsd:byte"/>
 </sequence>
 </complexType>
 </element>
 <element name="echoFloat">
 <complexType>
 <sequence>
 <element name="floatParam0" type="xsd:float"/>
 </sequence>
 </complexType>
 </element>

Example 5: Base Artix Contract (Continued)
 58

Creating Design Resources
 <element name="echoFloatResponse">
 <complexType>
 <sequence>
 <element name="return" type="xsd:float"/>
 </sequence>
 </complexType>
 </element>
 <element name="echoFloatArray">
 <complexType>
 <sequence>
 <element maxOccurs="unbounded" minOccurs="0" name="_fParam0" type="xsd:float"/>
 </sequence>
 </complexType>
 </element>
 <element name="echoFloatArrayResponse">
 <complexType>
 <sequence>
 <element maxOccurs="unbounded" minOccurs="0" name="return" type="xsd:float"/>
 </sequence>
 </complexType>
 </element>
 <element name="echoInteger">
 <complexType>
 <sequence>
 <element name="intParam0" type="xsd:int"/>
 </sequence>
 </complexType>
 </element>
 <element name="echoIntegerResponse">
 <complexType>
 <sequence>
 <element name="return" type="xsd:int"/>
 </sequence>
 </complexType>
 </element>
 <element name="echoIntegerArray">
 <complexType>
 <sequence>
 <element maxOccurs="unbounded" minOccurs="0" name="_iParam0" type="xsd:int"/>
 </sequence>
 </complexType>
 </element>

Example 5: Base Artix Contract (Continued)
59

CHAPTER 4 | Creating Artix Resources
 <element name="echoIntegerArrayResponse">
 <complexType>
 <sequence>
 <element maxOccurs="unbounded" minOccurs="0" name="return" type="xsd:int"/>
 </sequence>
 </complexType>
 </element>
 </wsdl:types>
 <wsdl:message name="echoBoolean">
 <wsdl:part element="xsd1:echoBoolean" name="parameters"/>
 </wsdl:message>
 <wsdl:message name="echoBooleanResponse">
 <wsdl:part element="xsd1:echoBooleanResponse" name="parameters"/>
 </wsdl:message>
 <wsdl:message name="echoBase64">
 <wsdl:part element="xsd1:echoBase64" name="parameters"/>
 </wsdl:message>
 <wsdl:message name="echoBase64Response">
 <wsdl:part element="xsd1:echoBase64Response" name="parameters"/>
 </wsdl:message>
 <wsdl:message name="echoHexBinary">
 <wsdl:part element="xsd1:echoHexBinary" name="parameters"/>
 </wsdl:message>
 <wsdl:message name="echoHexBinaryResponse">
 <wsdl:part element="xsd1:echoHexBinaryResponse" name="parameters"/>
 </wsdl:message>
 <wsdl:message name="echoFloat">
 <wsdl:part element="xsd1:echoFloat" name="parameters"/>
 </wsdl:message>
 <wsdl:message name="echoFloatResponse">
 <wsdl:part element="xsd1:echoFloatResponse" name="parameters"/>
 </wsdl:message>
 <wsdl:message name="echoFloatArray">
 <wsdl:part element="xsd1:echoFloatArray" name="parameters"/>
 </wsdl:message>
 <wsdl:message name="echoFloatArrayResponse">
 <wsdl:part element="xsd1:echoFloatArrayResponse" name="parameters"/>
 </wsdl:message>
 <wsdl:message name="echoInteger">
 <wsdl:part element="xsd1:echoInteger" name="parameters"/>
 </wsdl:message>
 <wsdl:message name="echoIntegerResponse">
 <wsdl:part element="xsd1:echoIntegerResponse" name="parameters"/>
 </wsdl:message>

Example 5: Base Artix Contract (Continued)
 60

Creating Design Resources
 <wsdl:message name="echoIntegerArray">
 <wsdl:part element="xsd1:echoIntegerArray" name="parameters"/>
 </wsdl:message>
 <wsdl:message name="echoIntegerArrayResponse">
 <wsdl:part element="xsd1:echoIntegerArrayResponse" name="parameters"/>
 </wsdl:message>
 <wsdl:portType name="Base">
 <wsdl:operation name="echoBoolean">
 <wsdl:input message="ns1:echoBoolean" name="echoBoolean"/>
 <wsdl:output message="ns1:echoBooleanResponse" name="echoBoolean"/>
 </wsdl:operation>
 <wsdl:operation name="echoBase64">
 <wsdl:input message="ns1:echoBase64" name="echoBase64"/>
 <wsdl:output message="ns1:echoBase64Response" name="echoBase64"/>
 </wsdl:operation>
 <wsdl:operation name="echoHexBinary">
 <wsdl:input message="ns1:echoHexBinary" name="echoHexBinary"/>
 <wsdl:output message="ns1:echoHexBinaryResponse" name="echoHexBinary"/>
 </wsdl:operation>
 <wsdl:operation name="echoFloat">
 <wsdl:input message="ns1:echoFloat" name="echoFloat"/>
 <wsdl:output message="ns1:echoFloatResponse" name="echoFloat"/>
 </wsdl:operation>
 <wsdl:operation name="echoFloatArray">
 <wsdl:input message="ns1:echoFloatArray" name="echoFloatArray"/>
 <wsdl:output message="ns1:echoFloatArrayResponse" name="echoFloatArray"/>
 </wsdl:operation>
 <wsdl:operation name="echoInteger">
 <wsdl:input message="ns1:echoInteger" name="echoInteger"/>
 <wsdl:output message="ns1:echoIntegerResponse" name="echoInteger"/>
 </wsdl:operation>
 <wsdl:operation name="echoIntegerArray">
 <wsdl:input message="ns1:echoIntegerArray" name="echoIntegerArray"/>
 <wsdl:output message="ns1:echoIntegerArrayResponse" name="echoIntegerArray"/>
 </wsdl:operation>
 </wsdl:portType>
</wsdl:definitions>

Example 5: Base Artix Contract (Continued)
61

CHAPTER 4 | Creating Artix Resources
Creating a Contract from a COBOL Copybook

Overview To facilitate the mapping of COBOL operations to Artix contracts, Artix

provides the following tools for generating Artix contracts from COBOL

copybooks:

• Using Artix Designer

• Using the coboltowsdl tool

The generated contracts contain a fixed binding to define the COBOL

interface for Artix applications.

Using Artix Designer To add a contract containing a fixed binding from a COBOL copybook:

1. From the File menu, select New|Other to open the New window,

shown in Figure 15.

2. Select WSDL From DataSet from under the IONA Artix Designer

folder.

3. Click Next to open the WSDL File window.

4. Select the folder where you want to store the WSDL file.

5. Type the name of the file in the File name field.

6. Click Next to open the Select Data Format window, shown in

Figure 24.

7. Select Fixed from COBOL Copybook.

Figure 24: Select Data Format
 62

Creating Design Resources
8. Click Next to open the Set Defaults window, shown in Figure 25.

9. Enter the name for the generated binding element in the Binding

Name field.

10. Enter the name for the generated portType element in the Port Type

Name field.

11. Enter the namesapce for the generated contract’s target namespace in

the Target Namespace field.

12. Enter the namespace you wish to use as the target namespace for the

generated contract’s schema element in the Schema Namespace field.

13. Select the Create message parts with elements check box if you want

to generate a contract where the message parts are defined using

element elements.

14. Select the justification value to use in the generated fixed binding from

the Justification drop-down list.

15. Enter the character encoding you wish to use for the generated fixed

binding in the Encoding field.

16. Enter the character to use for padding on the wire in the Padding field.

Figure 25: The Set Defaults Window
63

CHAPTER 4 | Creating Artix Resources
17. Click Next to open the Input Data window, shown in Figure 26.

18. Click Add to add a new operation to the table.

19. Select the new operation from the table.

Figure 26: The Operations Editor
 64

Creating Design Resources
20. Click Edit to bring up the operation editing table shown in Figure 27.

21. Enter a name for the operation in the Name field.

22. Select what type of operation you want to define from the Style

drop-down list.

♦ REQUEST_RESPONSE specifies that the operation will use two

messages. One for the input message. The other message is for

the output message.

♦ ONE_WAY specifies that the operation will only have one

message. The message can be either an input message or an

output message.

23. Enter a discriminator string for the operation in the Discriminator field.

See “fixed:operation” on page 171.

Figure 27: Editing an Operation
65

CHAPTER 4 | Creating Artix Resources
24. Select one of the messages from tree on the left to bring up the

message editing table shown in Figure 28.

25. Enter a name for the message in the Name field.

26. Select if this message is an input message or an output message from

the Type drop-down list.

27. Enter the desired attributes for the message. See “fixed:body” on

page 171.

28. Click Import COBOL Copybook to bring up a file browser.

29. Select the copybook that defines the message from the file browser.

30. Repeat steps 24 through 29 for each message in the operation.

31. Repeat steps 18 through 30 for each operation in the service you are

defining.

32. Click Finish.

Figure 28: Editing a Message
 66

Creating Design Resources
Using the coboltowsdl tool You can also use the Artix command line tools to generate an Artix contract

from COBOL copybook data. To do so use the following command:

The command has the following options:

coboltowsdl -b binding -op operation -im [inmessage:]incopybook
 [-om [outmessage:]outcopybook]
 [-fm [faultmessage:]faultbook]
 [-i portType][-t target]
 [-x schema_name][-useTypes][-o file][-L file]
 [-q][-h][-V]

-b binding Specifies the name for the generated binding.

-op operation Specifies the name for the generated
operation.

-im [inmessage:]incopybook Specifies the name of the input message and
the copybook file from which the data
defining the message is taken. The input
message name, inmessage, is optional.
However, if the copybook has more than one
01 levels, you will be asked to choose the one
you want to use as the input message.

-om
[outmessage:]outcopybook

Specifies the name of the output message
and the copybook file from which the data
defining the message is taken. The output
message name, outmessage, is optional.
However, if the copybook has more than one
01 levels, you will be asked to choose the one
you want to use as the output message.

-fm

[faultmessage:]faultbook
Specifies the name of a fault message and
the copybook file from which the data
defining the message is taken. The fault
message name, faultmessage, is optional.
However, if the copybook has more than one
01 levels, you will be asked to choose the one
you want to use as the fault message. You
can specify more than one fault message.

-i portType Specifies the name of the port type in the
generated WSDL. Defaults to
bindingPortType.a
67

CHAPTER 4 | Creating Artix Resources
Once the new contract is generated, you will still need to add the port

information before you can use the contract to develop an Artix solution.

-t target Specifies the target namespace for the
generated WSDL. Defaults to
http://www.iona.com/binding.

-x schema_name Specifies the namespace for the schema in
the generated WSDL. Defaults to
http://www.iona.com/binding/types.

-useTypes Specifies that the generated WSDL will use
type elements. Default is to generate element
elements for schema types.

-o file Specifies the name of the generated WSDL
file. Defaults to binding.wsdl.

-L file Specifies the location of your Artix license
file. The default behavior is to check
IT_PRODUCT_DIR\etc\license.txt.

-q Specifies that the tool runs in quiet mode. No

output will be shown on the console. This

includes error messages.

-h Specifies that the tool will display a usage

message.

-V Specifies that the tool runs in verbose mode.

a. If binding ends in Binding or binding, it is stripped off before being used
in any of the default names.
 68

Creating Design Resources
Creating a Contract from a Data Set

Overview Another way you can create new contracts is by basing them on a data set.

Examples of this include:

• Entering a fixed data set

• Entering a tagged data set

When you create a contract in this way, you’re actually also creating the

associated binding at the same time. When creating contracts using the

other methods described in this chapter, the binding definition is a separate

step.

Procedure To create a contract from a data set that is not stored as a COBOL

copybook:

1. From the File menu, select New|Other to open the New.

2. Select WSDL From DataSet from under the IONA Artix Designer

folder.

3. Click Next to open the WSDL File window.

4. Select the folder where you want to store the WSDL file.

5. Type the name of the file in the File name field.

6. Click Next to open the Select Data Format window, as shown in

Figure 24 on page 62.

7. Select the type of binding you want added to the contract you are

creating.

♦ Fixed will create a contract with a fixed binding. See “Entering a

fixed data set” on page 69.

♦ Tagged will create a contract with a tagged binding. See

“Entering a tagged data set” on page 73.

Entering a fixed data set If you select Fixed do the following:

1. Click Next to bring up the Set Defaults window, shown in Figure 25 on

page 63.

2. Enter a name for the generated fixed binding in the Binding Name

field.
69

CHAPTER 4 | Creating Artix Resources
3. Enter a name for the generated portType element in the Port Type

Name field.

4. Enter a target namespace for the generated contract in the Target

Namespace field.

5. Enter a target namespace for the generated types element in the

Schema Namespace field.

6. If you want the generated message parts to reference elements instead

of types, check the Create message parts with elements box.

7. Select how you want the data in your binding justified from the

Justification drop-down list.

8. Enter the character set encoding to use for the data in the payload in

the Encoding field.

9. Enter a string to use for padding the data in the payload in the Padding

field.

10. Click Next to bring up the Operations Editor as shown in Figure 26 on

page 64.

11. Click Add to add a new operation to the table.

12. Select the new operation from the table.

13. Click Edit to bring up the operation editing table shown in Figure 27 on

page 65.

14. Enter a name for the operation in the Name field.

15. Select what type of operation you want to define from the Style

drop-down list.

♦ REQUEST_RESPONSE specifies that the operation will use two

messages. One for the input message. The other message is for

the output message.

♦ ONE_WAY specifies that the operation will only have one

message. The message can be either an input message or an

output message.

16. Enter a discriminator string for the operation in the Discriminator field.

See “fixed:operation” on page 171.

17. Select one of the messages from tree on the left to bring up the

message editing table shown in Figure 28 on page 66.

18. Enter a name for the message in the Name field.
 70

Creating Design Resources
19. Select if this message is an input message or an output message from

the Type drop-down list.

20. Enter the desired attributes for the message. See “fixed:body” on

page 171.

21. Select the desired field type from the Field Type To Add drop-down

list.

22. Click Add to add the new field to your message.

23. Select the field from the table.

24. Click Edit to define the new field.

♦ Fields are atomic elements of a fixed binding. They are edited in

the window, shown in Figure 29. For information on the values

for a fixed field’s attributes see “fixed:field” on page 173.

Figure 29: Editing a Fixed Field
71

CHAPTER 4 | Creating Artix Resources
♦ Sequence is a collection of fields that are mapped to a sequence

complex type. You need to specify the attributes for the fixed

sequence and then add at least one field to the sequence. For

more information see “fixed:sequence” on page 179.

♦ Choice is a collection of fields that are mapped to a choice

complex type. Each element of the complex type is mapped into a

fixed case elements. You must enter a name for the choice and an

optional discriminator string. You must also add at least one case

element to the choice.

To add a case to the choice click the Add button. When the new

case appears in the table, select it so that you can edit its

attributes. Cases are a collection of fields. For more information

see “fixed:choice” on page 176.

♦ Enumeration is a special type of fixed field that allows you to

specify the possible values that are valid for the field. They are

mapped using the mapping shown in “Defining an enumeration in

XML Schema” on page 119. You must add at least one possible

enumeration value. Enumerated values are made up of two parts.

Value is the value that is used in the logical description of the

type. Rendering is the value that is placed on the wire when the

data is written out. For more information see “fixed:field” on

page 173.

25. Repeat steps 21 through 24 until all of the fields for the message are

entered.

26. Repeat steps 17 through 25 for all messages in the operation.

27. Repeat steps 11 through 27 for all of the operations you want to define.

28. Click Finish.
 72

Creating Design Resources
Entering a tagged data set If you select Tagged do the following:

1. Click Next to bring up the Set Defaults window, shown in Figure 30.

2. Enter a name for the generated fixed binding in the Binding Name

field.

3. Enter a name for the generated portType element in the Port Type

Name field.

4. Enter a target namespace for the generated contract in the Target

Namespace field.

5. Enter a target namespace for the generated types element in the

Schema Namespace field.

6. Select a character to act as a field separator from the Field Separator

drop-down list.

7. Select an optional character to separate the field names and the field

values from the Field Name Value Separator drop-down list.

Figure 30: Entering Defaults for a Contract from a Tagged Data Set
73

CHAPTER 4 | Creating Artix Resources
8. Select a scoping character from the Scope Type drop-down list.

9. Select a character to place at the beginning of messages from the Start

Type drop-down list.

10. Select a character to place at the end of messages from the End Type

drop-down list.

11. If you want the field names to be included in the messages, Select the

Self Describing check box.

12. If you want data structures flattened when they are placed into

messages, Select Flattened.

13. If you want Artix to ignore unknown fields when it receives messages,

Select Ignore Unknown Elements.

14. If you want Artix to ignore the case of letters in field names, Select

Ignore Case.

15. Click Next to bring up the Operations Editor.

16. Click Add to add a new operation to the table.

17. Select the new operation from the table.
 74

Creating Design Resources
18. Click Edit to bring up the operation editing table shown in Figure 31.

19. Enter a name for the operation in the Name field.

20. Select what type of operation you want to define from the Style

drop-down list.

♦ REQUEST_RESPONSE specifies that the operation will use two

messages. One for the input message. The other message is for

the output message.

♦ ONE_WAY specifies that the operation will only have one

message. The message can be either an input message or an

output message.

21. Enter a discriminator string for the operation in the Discriminator field.

See “tagged:operation” on page 193.

Figure 31: Editing a Tagged Data Set Operation
75

CHAPTER 4 | Creating Artix Resources
22. Select one of the messages from tree on the left to bring up the

message editing table shown in Figure 32.

23. Enter a name for the message in the Name field.

24. Select if this message is an input message or an output message from

the Type drop-down list.

25. Enter the desired attributes for the message. See “tagged:body” on

page 194.

26. Select the desired field type from the Field Type To Add drop-down

list.

27. Click Add to add the new field to your message.

Figure 32: Editing a Tagged Data Set Message
 76

Creating Design Resources
28. Select the field from the table.

29. Click Edit to define the new field.

♦ Fields are atomic elements of a tagged binding. For information

on the values for a tagged field’s attributes see “tagged:field” on

page 194.

♦ Sequence is a collection of fields that are mapped to a sequence

complex type. You need to specify the attributes for the tagged

sequence and then add at least one field to the sequence. For

more information see “tagged:sequence” on page 195.

♦ Choice is a collection of fields that are mapped to a choice

complex type. Each element of the complex type is mapped into a

fixed case elements. You must enter a name for the choice and an

optional discriminator string. You must also add at least one case

element to the choice. To add a case to the choice, click the Add

button. When the new case appears in the table, select it. Cases

are a collection of fields. For more information see

“tagged:choice” on page 197.

♦ Enumeration is a special type of tagged field that allows you to

specify the possible values that are valid for the field. They are

mapped using the mapping shown in “Defining an enumeration in

XML Schema” on page 119. You must add at least one possible

enumeration value. For more information see

“tagged:enumeration” on page 194.

30. Repeat steps 26 through 29 until all of the fields for the message are

entered.

31. Repeat steps 22 through 30 for all messages in the operation.

32. Repeat steps 16 through 31 for all of the operations you want to define.

33. Click Finish.
77

CHAPTER 4 | Creating Artix Resources
Creating a Contract from an XML Schema Document

Overview If you have an XML Schema document that defines all of the types you wish

to use in a service, Artix provides a tool called xsdtowsdl that will import the

schema document and produce a skeleton Artix contract.

The generated contract will contain only the type definitions from the

imported schema document.

If you want to use the contract as a service definition, you will need to

provide the remaining elements of the contract. However, if you simply want

to import the generated contract into another contract, you do not need to

do anything.

Usage To generate an Artix contract from an XML Schema document use the

following command:

The command has the following options:

xsdtowsdl [-t namespace][-n name][-d dir][-o file][-?][-v]
 [-verbose][-L file][-q][-h][-V] xsdurl

-t namespace Specifies the target namespace for the
generated contract. The default is to use the
Artix target namespace.

-n name Specifies the name for the generated contract
and is the value of the name attribute in the
contract’s root definitions element. The
default is to use the schema document’s file
name.

-d dir Specifies the output directory for the
generated contract.

-o file Specifies the filename for the generated
contract. Defaults to the filename of the
imported schema document. For example, if
the imported schema document is stored in
maxwell.xsd the resulting contract will be
maxwell.wsdl.
 78

Creating Design Resources
-L file Specifies the location of your Artix license
file. The default behavior is to check
IT_PRODUCT_DIR\etc\license.txt.

-q Specifies that the tool runs in quiet mode. No

output will be shown on the console. This

includes error messages.

-h Specifies that the tool will display a usage

message.

-V Specifies that the tool runs in verbose mode.
79

CHAPTER 4 | Creating Artix Resources
Creating an XML Schema

Overview XML Schema documents can be used to define types used in Artix contracts.

Because XML Schema documents can be imported into any number of

contracts, they are a convenient way to define types that are shared by

multiple services.

When creating a new contract using the XSD File wizard you have two

options:

• Creating an empty XML Schema document and the filling in the type

definitions.

• Linking to an existing XML Schema document on a locally accessible

file system.

Creating an empty XML Schema

document

When you create an empty XML Schema document, the new document is

placed under the project’s file system. To create an empty XML Schema

document in your project’s workspace:

1. From the File menu, select New|Other to open the New window,

shown in Figure 15 on page 35.

2. Select XSD File from under the IONA Artix Designer folder.

3. Click Next to open the XSD File window.

4. Select the folder where you want to store the XML Schema document.

5. Type the name of the file in the File name field.

6. Click Finish.

Linking to an existing XML

Schema document

When you link to an existing XML Schema document, you create an entry in

your project for the XML Schema document. The entry in your project is not

a copy of the original file. It is a hard link to the original document and any

changes made to the document are reflected in the original XML Schema

document.

To link to an existing XML Schema document:

1. From the File menu, select New|Other.

2. Select XSD File from under the IONA Artix Designer folder.

3. Click Next.
 80

Creating Design Resources
4. Select the folder where you want to store the XML Schema document.

5. Type the name of the file in the File name field.

6. Click Advanced to expand the XSD File window.

7. Select the Link to file in the file system box.

8. Enter path name of the XML Schema document you want to import

into the text box.

9. Click Finish.
81

CHAPTER 4 | Creating Artix Resources
Importing an XML Schema from a URL

Overview If you want to import type definitions from an existing XML Schema

document that is posted at a URL, you can import a read-only version of the

XML Schema document into an Artix project.

Procedure To import an XML Schema document from a URL:

1. From the File menu, select New|Other to open the New window,

shown in Figure 15 on page 35.

2. Select XSD From URL from under the IONA Artix Designer folder.

3. Click Next to open the XSD File window.

4. Select the folder where you want to store the XML Schema document.

5. Type the name of the document in the File name field.

6. Type the URL in the URL Path field.

7. Click Finish.
 82

Creating Design Resources
Creating Access Control Lists

Overview Artix enables you to create access control lists (ACLs) to determine which

roles can access the different operations contained within a WSDL file's port

types. You can define ACLs at the port type level and have them applied to

all operations for that port type. Or you can define them at the operation

level. For more information on using ACLs see the Artix Secutiry Guide.

Procedure To create an access control list for a WSDL file:

1. Right-click the WSDL file.

2. Select Artix|New Access Control List from the pop-up menu to open

the Select ACL Role window, shown in Figure 33.

3. Enter the fully scoped Artix domain name for the server that is doing

the authentication in the Security Server field. See Deploying and

Managing Artix Solutions for more information on Artix domain names.

4. Select the name of the portType element that defines the interface you

want to secure from the Port Type drop-down list.

5. Enter a default security role in the Default Role field.

Figure 33: Selecting Roles for an Access Control List
83

http://www.iona.com/support/docs/artix/3.0/deploy/index.htm
http://www.iona.com/support/docs/artix/3.0/deploy/index.htm
../security_guide/index.htm

CHAPTER 4 | Creating Artix Resources
6. Enter a name for the generated ACL file in the ACL File Name field.

7. Click Next to bring up the Define ACL Operations window, shown in

Figure 34.

8. For each operation, select a enter a role into the Role Name field.

You can enter data in the field by either:

♦ Enter data into the field.

♦ Select an entry from the drop-down list.

9. Click Next to review the contents of the generated access control list.

10. Click Finish.

Figure 34: Editing ACL Roles for Operations
 84

Working with Generation Profiles
Working with Generation Profiles

Overview Generation profiles define the type of generated files Artix creates for a

project. They do not show up in a project’s file tree. Instead they are

managed by the Artix Generator.

Creating a generation profile To create a generation profile:

1. Click the icon on the tool bar to bring up the Artix Generator

window, shown in Figure 35.

2. Click New to switch the window to editing mode

3. Enter a name for the generation profile in the Name field

Figure 35: The Artix Generator Window
85

CHAPTER 4 | Creating Artix Resources
4. In the General tabbed page, enter an optional description of the

generation profile in the Description field.

5. From the Targeted Project: drop-down list, select the project for which

this profile generates files.

6. From the WSDL(XSD) File: drop-down list, select the file from which

this profile generates files.

7. Do not edit the values under Artix Details.

8. Click Apply to save your changes.

Figure 36: The Artix Generator General Tabbed page
 86

Working with Generation Profiles
9. Click the Generation tab, shown in Figure 37, to edit the details of

what this profile generates.

10. Select one of the generation profile types under Generation Type.

The generation profile types are defined in Table 1 on page 32.

11. If you selected Application, select the type of application code you

want to be generated under Application Type.

12. If you selected Service plug-in or Application, select your development

language under Development Language.

13. Under Optional Services, select any of the Artix services you want to

have included in the generated configuration domain.

14. Select the desired code generation settings.

15. Click Apply to save your changes.

16. If you are generating a Container or a Switch profile, skip to step 24.

Figure 37: The Artix Generator Generation Tabbed Page
87

CHAPTER 4 | Creating Artix Resources
17. Click the WSDL Details tab, shown in Figure 38, to specify the

services for which code will be generated.

18. Select the part of the contract for which you want to generate code.

19. From the list select the name of the node for which code will be

generated.

20. If you want starting point code for a server generated, click in the

Generate server implementation code box.

21. If you want to generate a sample client, click in the Generate client

sample box.

22. If you want to generate a new Artix configuration file every time you run

the profile, click in the Generate/Overwrite the artix.cfg file box.

23. Click Apply to save your changes.

24. Click Run to execute the generation profile.

Running a generation profile 1. Click the icon on the tool bar to bring up the Artix Generator

window, shown in Figure 35 on page 85.

2. Select the desired profile from the list.

3. Click Run.

Figure 38: The Artix Generator WSDL Details Tabbed Page
 88

Working with Generation Profiles
Editing a generation profile 1. Click the icon on the tool bar to bring up the Artix Generator.

2. Select the desired profile from the Configurations list.

3. Change any of the general settings you desire.

4. Click Apply to save your changes.

5. Click the Generation tab, shown in Figure 37 on page 87, to edit the

details of what this profile generates.

6. Change the desired generation settings.

7. Click Apply to save your changes.

8. Click on the WSDL Details tab, shown in Figure 38 on page 88, to

specify the services for which code will be generated.

9. Change the desired WSDL details.

10. Click Apply to save your changes.
89

CHAPTER 4 | Creating Artix Resources
 90

CHAPTER 5

Defining Data
Types
In Artix, complex data types are defined using XML Schema.

In this chapter This chapter discusses the following topics:

Introducing Data Types page 92

Creating New Type Systems page 93

Specifying a Type System in a Contract page 95

XML Schema Simple Types page 96

Defining Complex Data Types page 98

Defining Elements page 120
91

CHAPTER 5 | Defining Data Types
Introducing Data Types

Overview When defining an interface in an Artix contract, the first thing you need to

consider is the types of data that are used by the operation parameters of

the interface. Artix uses XML Schema as its native type system.

XML Schema supports a number of simple types that do not require you to

describe them in the contract. XML Schema also supports the definition of

complex data types that are either a collection of typed elements or a

derivative of a simple type.

In an Artix contract, complex type definitions are entered in the type

element.
 92

Creating New Type Systems
Creating New Type Systems

Overview Depending on how you choose to create your WSDL, creating new type

definitions requires varying amounts of WSDL knowledge.

Artix Designer uses wizards that generate the proper XML Schema tags for

you.

If you choose to use another XML editor when writing your contract, you will

need to have a much more complete understanding of XML Schema. You

will also be responsible for validating your schema.

Defining types in Artix Designer Artix Designer provides wizards to walk you through the creation of a type

system for your solution. It automatically generates the header sections of

the type section of a contract and the wizards lead you through the steps to

create different data types.

However, you will need to understand some XML Schema concepts when

using Artix Designer. Also, Artix Designer does not allow you to take full

advantage of XML Schema.

Using an XML editor Defining the types used in an Artix contract involves seven steps:

1. Determine all the data types used in the interface described by the

contract.

2. Create a type element in your contract.

3. Create a schema element, as a child of the type element, following the

guidelines in “Specifying a Type System in a Contract” on page 95.

4. For each complex type that is a collection of elements, define the data

type using a complexType element. See “Defining Data Structures” on

page 99.

5. For each array, define the data type using a complexType element. See

“Defining Arrays” on page 107.

6. For each complex type that is derived from a simple type, define the

data type using a simpleType element. See “Defining Types by

Restriction” on page 115.
93

CHAPTER 5 | Defining Data Types
7. For each enumerated type, define the data type using a simpleType

element. See “Defining Enumerated Types” on page 117.

8. For each element, define it using an element element. See “Defining

Elements” on page 120.
 94

Specifying a Type System in a Contract
Specifying a Type System in a Contract

Overview According to the WSDL specification, you can use any type system you like

to define data types in WSDL. However, the W3C specification states XML

Schema (XSD) is the preferred canonical type system for a WSDL document.

Therefore, XSD is the intrinsic type system in Artix and is the only type

system used by Artix Designer.

Specifying the type system The first child element of the types element in a contract is the schema

element. This element specifies the namespace for the types defined by the

WSDL. It also defines the type system used to define the new types and any

namespaces that are referenced in the type definitions.

Example 6 shows the standard schema element for an Artix contract. The

attribute targetNamespace is where you specify the namespace under which

your new data types are defined. The remaining entries are required. The

first specifies that the types are defined using XML Schema. The second

references a few special XML Schema types defined specifically for WSDL.

General guidelines The W3C also provides guidelines on using XML Schema to represent data

types in WSDL documents:

• Use elements, not attributes.

• Do not use protocol-specific types as base types.

• Define arrays using the SOAP 1.1 array encoding format.

Example 6: Artix Schema Element

<schema
 targetNamespace="http://schemas.iona.com/idltypes/bank.idl"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
95

CHAPTER 5 | Defining Data Types
XML Schema Simple Types

Overview If a message part is going to be of a simple type you do not need to create a

type definition for it. However, the complex types used by the interfaces

defined in the contract are defined using simple types.

Entering simple types XSD simple types are mainly placed in the type attribute of element

elements used in defining sequences in the types section of your contract.

They are also used in the base attribute of restriction elements and

extension elements.

Simple types are always entered using the xsd prefix. For example, to

specify that an element is of type int, you would enter xsd:int in its type

attribute.

Supported XSD simple types Artix supports the following XML Schema simple types:

• xsd:string

• xsd:normalizedString

• xsd:int

• xsd:insignedInt

• xsd:long

• xsd:unsignedLong

• xsd:short

• xsd:unsignedShort

• xsd:float

• xsd:double

• xsd:boolean

• xsd:byte

• xsd:unsignedByte

• xsd:integer

• xsd:positiveInteger

• xsd:negativeInteger

• xsd:nonPositiveInteger

• xsd:nonNegativeInteger
 96

XML Schema Simple Types
• xsd:decimal

• xsd:dateTime

• xsd:time

• xsd:date

• xsd:QName

• xsd:base64Binary

• xsd:hexBinary

• xsd:ID

• xsd:token

• xsd:language

• xsd:Name

• xsd:NCName

• xsd:NMTOKEN

• xsd:anySimpleType

• xsd:anyURI

• xsd:gYear

• xsd:gMonth

• xsd:gDay

• xsd:gYearMonth

• xsd:gMonthDay
97

CHAPTER 5 | Defining Data Types
Defining Complex Data Types

Overview XML Schema provides a flexible and powerful mechanism for building

complex data types from its simple data types. You can create data

structures by creating a sequence of elements and attributes. You can also

extend your defined types to create even more complex types.

In addition to allowing you to build complex data structures, you can also

describe specialized types such as enumerated types, data types that have a

specific range of values, or data types that need to follow certain patterns by

either extending or restricting the primitive types.

In this section This section discusses the following topics:

Defining Data Structures page 99

Defining Arrays page 107

Defining Types by Extension page 109

Defining Types by Restriction page 115

Defining Enumerated Types page 117
 98

Defining Complex Data Types
Defining Data Structures

Overview In XML Schema data structures that are a collection of data fields are

defined using complexType elements. The definition of a complexType has

three parts:

1. The name of the defined type is specified in the name attribute of the

complexType element.

2. The first child element of the complexType describes the behavior of

the structure’s fields when it is put on the wire. See “complexType

varieties” on page 104.

3. Each of the fields of the defined structure are defined in element

elements that are grandchildren of the complexType. See “Defining the

parts of a structure” on page 105.

For example the structure shown in Example 7 would be defined in XML

Schema as a complexType with two elements.

Example 8 shows one possible XML Schema mapping for personalInfo.

Example 7: Simple Structure

struct personalInfo
{
 string name;
 int age;
};

Example 8: A Complex Type

<complexType name="personalInfo>
 <sequence>
 <element name="name" type="xsd:string"/>
 <element name="age" type="xsd:int"/>
 </sequence>
</complexType>
99

CHAPTER 5 | Defining Data Types
Using Artix Designer To add a new data structure using theArtix Designer Diagram view:

1. Right-click the Types node to activate the pop-up menu.

2. Select New Type from the pop-up menu to bring up the Select Source

Resources window, shown in Figure 39.

3. Select at least one resource from the list to act as a source of

predefined types.

All of the predefined types in the selected resources will be made

available to you later in the process, as well as the native XML Schema

types. The resources will also be imported to the target resource using

WSDL import elements.

Figure 39: Select Resource to which a New Type is Added
 100

Defining Complex Data Types
4. Click Next to bring up the Define Type Properties window, shown in

Figure 40.

5. Enter a name for the new type in the Name field.

6. Enter the target namespace for the new type’s XML Schema in the

Schema Target Namespace field.

You can either enter a new target namespace manually or, if your

resource has multiple schema namespaces defined within it, you can

select one of the existing namespaces from the drop-down list.

7. Under Kind, select complexType.

Figure 40: Defining a Type’s General Properties
101

CHAPTER 5 | Defining Data Types
8. Click Next to bring up the Define Complex Type Data window, shown

in Figure 41.

9. Select the type of structure you want to add from the Group Type

drop-down list. See “complexType varieties” on page 104.

10. Select the type of the element you want to add to the structure from

the Type drop-down list.

11. Enter a name for the new element in the Name field.

12. Select the Nillable check box if this element could potentially be

omitted completely, or could pass an empty object across the wire.

13. To specify the minimum number of times the element must appear in

the structure, enter a value in the Min Occurrences field. The default

value is one.

14. To specify the maximum number of times the element can appear in

the structure, enter a value in the Max Occurrences field. The default

value is one.

Figure 41: Adding Elements to a Structure
 102

Defining Complex Data Types
15. If you want the element to be able to appear an unlimited number of

times, select the Unbounded check box.

16. Click Add to save the element to the Element List table.

17. If you need to edit an element definition:

i. Select the element from the Element List table.

ii. The values for the element will populate the Element Data fields

and the Add button will change to Update.

iii. Make your changes and then click Update

18. Repeat steps 10 through 17 until you have finished adding elements to

the structure.

19. Click Next to bring up the Define Types Attributes window, shown in

Figure 42.

20. Select the type of the attribute you want to add to the structure from

the Type drop-down list.

21. Enter a name for the new attribute in the Name field.

22. If the attribute must be present in every instance of this type, select the

Required check box.

Figure 42: Adding Attributes to a Structure
103

CHAPTER 5 | Defining Data Types
23. Click Add to save the attribute to the Attribute List table.

24. If you need to edit an attribute definition:

i. Select the attribute from the Attribute List table.

ii. The values for the attribute will populate the Attribute Data fields

and the Add button will change to Update.

iii. Make your changes and then click Update

25. Repeat steps 20 through 24 until you have finished adding attributes to

the structure.

26. Click Finish to add the structure.

complexType varieties XML Schema has three ways of describing how the fields of a complex type

are organized when represented as an XML document and when passed on

the wire. The first child element of the complexType determines which

variety of complex type is being used. Table 3 shows the elements used to

define complex type behavior.

If neither sequence, all, nor choice is specified, the default is sequence.

For example, the structure defined in Example 8 would generate a message

containing two elements: name and age.

Table 3: complexType Descriptor Elements

Element complexType Behavior

sequence All the complex type’s fields must be present and in the
exact order they are specified in the type definition.

all All the complex type’s fields must be present but can be in
any order.

choice Only one of the elements in the structure is placed in the
message.
 104

Defining Complex Data Types
If the structure was defined as a choice, as shown in Example 9, it would

generate a message with either a name element or an age element.

Defining the parts of a structure You define the data fields that make up a structure using element elements.

Every complexType should contain at least one element. Each element in

the complexType represents a field in the defined data structure.

To fully describe a field in a data structure, element elements have two

required attributes:

• name specifies the name of the data field and must be unique within

the defined complex type.

• type specifies the type of the data stored in the field. The type can be

either one of the XML Schema simple types or any named complex

type that is defined in the contract.

In addition to name and type, element elements have two other commonly

used optional attributes: minOcurrs and maxOccurs. These attributes place

bounds on the number of times the field occurs in the structure. By default,

each field occurs only once in a complex type.

Using these attributes, you can change how many times a field must or can

appear in a structure.

Example 9: Simple Complex Choice Type

<complexType name="personalInfo>
 <choice>
 <element name="name" type="xsd:string"/>
 <element name="age" type="xsd:int"/>
 </choice>
</complexType>
105

CHAPTER 5 | Defining Data Types
For example, you could define a field, previousJobs, that must occur at

least three times and no more than seven times as shown in Example 10.

You could also use minOccurs to make the age field optional by setting

minOccurs to zero as shown in Example 11. In this case age can be omitted

and the data will still be valid.

Defining attributes In XML documents attributes are contained in the element’s tag. For

example, in the complexType element name is an attribute. They are

specified using the attribute element. It comes after the all, sequence, or

choice element and are a direct child of the complexType element.

The attribute element has three attributes:

• name is a required attribute that specifies the string identifying the

attribute.

• type specifies the type of the data stored in the field. The type can be

either one of the XML Schema simple types.

• use specifies if the attribute is required or optional. Valid values are

required or optional.

If you specify that the attribute is optional you can add the optional attribute

default. default allows you to specify a default value for the attribute.

Example 10:Simple Complex Type with Occurrence Constraints

<complexType name="personalInfo>
 <all>
 <element name="name" type="xsd:string"/>
 <element name="age" type="xsd:int"/>
 <element name="previousJobs" type="xsd:string"
 minOccurs="3" maxOccurs="7"/>
 </all>
</complexType>

Example 11:Simple Complex Type with minOccurs

<complexType name="personalInfo>
 <choice>
 <element name="name" type="xsd:string"/>
 <element name="age" type="xsd:int" minOccurs="0"/>
 </choice>
</complexType>
 106

Defining Complex Data Types
Defining Arrays

Overview Artix supports two methods for defining arrays in a contract. The first is

define a complex type with a single element with occurrence constraint

placed on it. The second is to use SOAP arrays. SOAP arrays provide added

functionality such as the ability to easily define multi-dimensional arrays

and transmit sparsely populated arrays.

Complex type arrays Complex type arrays are nothing more than a special case of a sequence

complex type. You simply define a complex type with a single element and

specify a value for the maxOccurs attribute. For example to define an array of

twenty floats you would use a complex type similar to the one shown in

Example 12.

You could also specify a value for minOccurs.

SOAP arrays SOAP arrays are defined by deriving from the SOAP-ENC:Array base type

using the wsdl:arrayType. The syntax for this is shown in Example 13.

Example 12:Complex Type Array

<complexType name="personalInfo>
 <element name="averages" type="xsd:float" maxOccurs="20"/>
</complexType>

Example 13:Syntax for a SOAP Array derived using wsdl:arrayType

<complexType name="TypeName">
 <complexContent>
 <restriction base="SOAP-ENC:Array">
 <attribute ref="SOAP-ENC:arrayType"
 wsdl:arrayType="ElementType<ArrayBounds>"/>
 </restriction>
 </complexContent>
</complexType>
107

CHAPTER 5 | Defining Data Types
Using this syntax, TypeName specifies the name of the newly-defined array

type. ElementType specifies the type of the elements in the array.

ArrayBounds specifies the number of dimensions in the array. To specify a

single dimension array you would use []; to specify a two-dimensional array

you would use either [][] or [,].

For example, the SOAP Array, SOAPStrings, shown in Example 14, defines

a one-dimensional array of strings. The wsdl:arrayType attribute specifies

the type of the array elements, xsd:string, and the number of dimensions,

[] implying one dimension.

You can also describe a SOAP Array using a simple element as described in

the SOAP 1.1 specification. The syntax for this is shown in Example 15.

When using this syntax, the element's maxOccurs attribute must always be

set to unbounded.

Example 14: Definition of a SOAP Array

<complexType name="SOAPStrings">
 <complexContent>
 <restriction base="SOAP-ENC:Array">
 <attribute ref="SOAP-ENC:arrayType"
 wsdl:arrayType="xsd:string[]"/>
 </restriction>
 </complexContent>
</complexType>

Example 15:Syntax for a SOAP Array derived using an Element

<complexType name="TypeName">
 <complexContent>
 <restriction base="SOAP-ENC:Array">
 <sequence>
 <element name="ElementName" type="ElementType"
 maxOccurs="unbounded"/>
 </sequence>
 </restriction>
 </complexContent>
</complexType>
 108

Defining Complex Data Types
Defining Types by Extension

Overview Like most major development languages, XML Schema allows you to create

data types that inherit some of their elements from other data types. This is

called defining a type by extension. For example, you could create a new

type called alienInfo, that extends the personalInfo structure defined in

Example 8 on page 99 by adding a new element called planet.

Types defined by extension have four parts:

1. The name of the type is defined by the name attribute of the

complexType element.

2. The complexContent element specifies that the new type will have

more than one element.

3. The type from which the new type is derived, called the base type, is

specified in the base attribute of the extension element.

4. The new type’s elements and attributes are defined in the extenstion

element as they would be for a regular complex type.

For example, alienInfo would be defined as shown in Example 16.

Note: If you are only adding new attributes to the complex type, you
can use a simpleContent element.

Example 16:Type Defined by Extension

<complexType name="alienInfo">
 <complexContent>
 <extension base="personalInfo">
 <sequence>
 <element name="planet" type="xsd:string"/>
 </sequence>
 </extension>
 </complexContent>
</complexType>
109

CHAPTER 5 | Defining Data Types
Defining by extension in Artix

Designer

To define a complex type by extension in Artix Designer:

1. Right-click the Types node to activate the pop-up menu.

2. Select New Type. from the pop-up menu to bring up the Select Source

Resources window, shown in Figure 39 on page 100.

3. Select at least one resource from the list to act as a source of

predefined types. All of the predefined types in the selected resources

will be made available to you later in the process, as well as the native

XML Schema types. The resources will also be imported to the target

resource using WSDL import elements.

4. Click Next to bring up the Define Type Properties window, shown in

Figure 40 on page 101.

5. Enter a name for the new type in the Name field.

6. Enter the target namespace for the new type’s XML Schema in the

Schema Target Namespace field.

You can either enter a new target namespace manually or, if your

resource has multiple schema namespaces defined within it, you can

select one of the existing namespaces from the drop-down list.

7. Under Kind, select complexType.

8. Click Next to bring up the Define Complex Type Data window.
 110

Defining Complex Data Types
9. Select complexContent from the Group Type drop-down list to activate

the Content Base Type drop-down list as shown in Figure 43.

10. Select the type you want to extend from the Content Base Type

drop-down list.

11. To add attributes to the extended type:

i. Select a type for the new attribute from the Type drop-down list.

ii. Enter a name for the new attribute in the Name field.

iii. If the attribute is required, select the Required check box.

iv. Click Add to save the new attribute to the Attribute List table.

These attributes will be added inside of the extension element of the

new type.

12. If you need to edit an attribute definition:

i. Select the attribute from the Attribute List table.

ii. The values for the attribute will populate the Attribute Data fields

and the Add button will change to Update.

Figure 43: Defining the Base Type for Extension
111

CHAPTER 5 | Defining Data Types
iii. Make your changes and then click Update.

13. Repeat steps 11 and 12 until you have finished adding attributes.

14. Click Next to bring up the Define Complex Content Type Data window,

shown in Figure 44.

15. Select how you want the new elements in the extended type to be

organized from the Content Group Type drop-down list, as follows:

♦ all—all elements must be present, but the order does not matter.

♦ sequence—all elements must be present and listed in the order

specified.

♦ choice—only one element can be present in an instance of the

type.

16. To add elements to the extended type:

i. Select a type for the new element from the Type drop-down list.

ii. Enter a name for the new element in the Name field.

iii. Enter the minimum number of times the element must appear in

an instance of the type in the Min Occurrence field. Default is 1.

Figure 44: Adding Elements to an Extended Type
 112

Defining Complex Data Types
iv. Specify the maximum number of times the element can appear in

an instance of the type in the Max Occurrence field. Default is 1.

v. If the element can appear an unlimited number of times, select

the Unbounded check box.

vi. If the element is optional, select the Nillable check box.

vii. Click Add to save the new element to the Element List table.

17. If you need to edit an element definition:

i. Select the element from the Element List table.

ii. The values for the element will populate the Element Data fields

and the Add button will change to Update.

iii. Make your changes and then click Update

18. Repeat steps 16 and 17 until you have finished adding elements.

19. Click Next to bring up the Define Attributes in Complex Type window,

shown in Figure 45.

Figure 45: Adding Global Attributes to an Extended Complex Type
113

CHAPTER 5 | Defining Data Types
20. To add attributes to the new complex type:

i. Select a type for the new attribute from the Type drop-down list.

ii. Enter a name for the new attribute in the Name field.

iii. If the attribute is required, select the Required check box.

iv. Click Add to save the new attribute to the Attribute List table.

These attributes will be added outside of the extension element of the

new type.

21. If you need to edit an attribute definition:

i. Select the element from the Attribute List table.

ii. The values for the element will populate the Attribute Data fields

and the Add button will change to Update.

iii. Make your changes and then click Update.

22. Repeat steps 20 and 21 until you have finished adding elements.

23. Click Finish.
 114

Defining Complex Data Types
Defining Types by Restriction

Overview XML Schema allows you to create new types by restricting the possible

values of an XML Schema simple type. For example, you could define a

simple type, SSN, which is a string of exactly nine characters. New types

defined by restricting simple types are defined using a simpleType element.

The definition of a simpleType has three parts:

1. The name of the new type is specified by the name attribute of the

simpleType element.

2. The simple type from which the new type is derived, called the base

type, is specified in the restriction element. See “Specifying the base

type” on page 115.

3. The rules, called facets, defining the restrictions placed on the base

type are defined as children of the restriction element. See “Defining

the restrictions” on page 115.

Specifying the base type The base type is the type that is being restricted to define the new type. It is

specified using a restriction element. The restriction element is the

only child of a simpleType element and has one attribute, base, that

specifies the base type. The base type can be any of the XML Schema

simple types.

For example, to define a new type by restricting the values of an xsd:int

you would use a definition like Example 17.

Defining the restrictions The rules defining the restrictions placed on the base type are called facets.

Facets are elements with one attribute, value, that defines how the facet is

enforced. The available facets and their valid value settings depend on the

base type. For example, xsd:string supports six facets including:

Example 17: int as Base Type

<simpleType name="restrictedInt">
 <restriction base="xsd:int">
 ...
 </restriction>
</simpleType>
115

CHAPTER 5 | Defining Data Types
• length

• minLength

• maxLength

• pattern

• whitespace

• enumeration

Each facet element is a child of the restriction element.

Designing a simple type with Artix

Designer

The Designer has limited support for defining types by restriction. It will only

allow you to specify the maxLength and length facets for xsd:string. It is

more tailored to defining enumerations. See “Defining Enumerated Types”

on page 117.

Example Example 18 shows an example of a simple type, SSN, which represents a

social security number. The resulting type will be a string of the form

xxx-xx-xxxx. <SSN>032-43-9876<SSN> is a valid value for an element of this

type, but <SSN>032439876</SSN> is not.

Example 18:SSN Simple Type Description

<simpleType name="SSN">
 <restriction base="xsd:string">
 <pattern value="\d{3}-\d{2}-\d{4}"/>
 </restriction>
</simpleType>
 116

Defining Complex Data Types
Defining Enumerated Types

Overview Enumerated types in XML Schema are a special case of definition by

restriction. They are described by using the enumeration facet which is

supported by all XML Schema primitive types. As with enumerated types in

most modern programming languages, a variable of this type can only have

one of the specified values.

Defining an enumeration in Artix

Designer

To define a enumerated type from the Artix Designer Diagram view:

1. Right-click the Types node to activate the pop-up menu.

2. Select New Type from the pop-up menu to bring up the Select Source

Resources window, shown in Example 39 on page 100.

3. Select at least one resource from the list to act as a source of

predefined types.

All of the predefined types in the selected resources will be made

available to you later in the process, as well as the native XML Schema

types. The resources will also be imported to the target resource using

WSDL import elements.

4. Click Next to bring up the Define Type Properties window, shown in

Figure 40 on page 101.

5. Enter a name for the new type in the Name field.

6. Enter the target namespace for the new type’s XML Schema in the

Schema Target Namespace field.

You can either enter a new target namespace manually or, if your

resource has multiple schema namespaces defined within it, you can

select one of the existing namespaces from the drop-down list.

7. Under Kind, select simpleType.
117

CHAPTER 5 | Defining Data Types
8. Click Next to bring up the Define Type Data window, shown in

Figure 46.

9. Chose a base type for the enumeration from the Base Type drop-down

list.

10. Add the values for the enumeration:

i. Select enumeration from the Facet drop-down list.

ii. Enter a value in the Value field.

iii. Click Add to enter the value into the Restriction List table.

iv. Repeat until all of the values are added to the table.

11. If you need to edit an enumeration value:

i. Select the element from the Restriction List table.

ii. The values will populate the Restriction Data fields and the Add

button will change to Update.

iii. Make your changes and then click Update

iv. Repeat until all values are edited.

12. Click Finish.

Figure 46: Defining the Values for an Enumeration
 118

Defining Complex Data Types
Defining an enumeration in XML

Schema

The syntax for defining an enumeration is shown in Example 19.

EnumName specifies the name of the enumeration type. EnumType specifies

the type of the case values. CaseNValue, where N is any number one or

greater, specifies the value for each specific case of the enumeration. An

enumerated type can have any number of case values, but because it is

derived from a simple type, only one of the case values is valid at a time.

Example For example, an XML document with an element defined by the

enumeration widgetSize, shown in Example 20, would be valid if it

contained <widgetSize>big</widgetSize>, but not if it contained

<widgetSize>big,mungo</widgetSize>.

Example 19:Syntax for an Enumeration

<simpleType name="EnumName">
 <restriction base="EnumType">
 <enumeration value="Case1Value"/>
 <enumeration value="Case2Value"/>
 ...
 <enumeration value="CaseNValue"/>
 </restriction>
</simpleType>

Example 20:widgetSize Enumeration

<simpleType name="widgetSize">
 <restriction base="xsd:string">
 <enumeration value="big"/>
 <enumeration value="large"/>
 <enumeration value="mungo"/>
 </restriction>
</simpleType>
119

CHAPTER 5 | Defining Data Types
Defining Elements

Overview Elements in XML Schema represent an instance of an element in an XML

document generated from the schema. At their most basic, an element

consists of a single element element. Like the element element used to

define the members of a complex type, they have three attributes:

• name is a required attribute that specifies the name of the element as it

will appear in an XML document.

• type specifies the type of the element. The type can be any XML

Schema primitive type or any named complex type defined in the

contract. This attribute can be ommited if the type has an in-line

definition.

• nillable specifies if an element can be left out of a document entirely.

If nillable is set to true, the element can be omitted from any

document generated using the schema.

An element can also have an in-line type definition. In-line types are

specified using either a complexType element or a simpleType element.

Once you specify if the type of data is complex or simple, you can define any

type of data needed using the tools available for each type of data. In-line

type definitions are discouraged, because they are not reusable.

Defining an element using Artix

Designer

To define an element from the diagram view of Artix Designer :

1. Right-click the Types node to activate the pop-up menu.

2. Select New Type from the pop-up menu to bring up the Select Source

Resources window, shown in Figure 39.

3. Select at least one resource from the list to act as a source of

predefined types.

All of the predefined types in the selected resources will be made

available to you later in the process, as well as the native XML Schema

types. The resources will also be imported to the target resource using

WSDL import elements.

4. Click Next to bring up the Define Type Properties window, shown in

Figure 40.
 120

Defining Elements
5. Enter a name for the new type in the Name field.

6. Enter the target namespace for the new type’s XML Schema in the

Schema Target Namespace field.

You can either enter a new target namespace manually or, if your

resource has multiple schema namespaces defined within it, you can

select one of the existing namespaces from the drop-down list.

7. Under Kind, select Element.

8. Click Next to bring up the Define Element Data window, shown in

Figure 47.

9. Select how you intend to define the type of the element:

♦ Pre-declared Type allows you to choose a type you have already

defined or one of the native types from the drop down list.

♦ Inline complexType walks you through the process of defining a

new complex type to define the data stored in the element. See

“Defining Complex Data Types” on page 98.

♦ Inline simpleType walks you through the process of defining a

new enumeration to define the data stored in the element. See

“Defining Enumerated Types” on page 117.

Figure 47: Defining the Base Values for an Element Definition
121

CHAPTER 5 | Defining Data Types
10. Select Nillable if this element could potentially be omitted completely,

or could pass an empty object across the wire.

11. Select Abstract to define the element as an abstract head element.

This means the element can never appear in a document produced

using this schema.

12. If the element you are creating can replace another element in

documents generated from this schema, select the replaceable element

from the Substitution Group drop-down list. A substitution group

allows you to build a collection of elements that can be specified using

a generic element.

13. Click Next.

14. Click Finish.
 122

CHAPTER 6

Defining Messages
You can define complex messages to pass between your
services.

Overview WSDL is designed to describe how data is passed over a network and

because of this it describes data that is exchanged between two endpoints

in terms of abstract messages described in message elements.

Each abstract message consists of one or more parts, defined in part

elements. These abstract messages represent the parameters passed by the

operations defined by the WSDL document and are mapped to concrete

data formats in the WSDL document’s binding elements.

Messages and parameter lists For simplicity in describing the data consumed and provided by an

endpoint, WSDL documents allow abstract operations to have only one

input message, the representation of the operation’s incoming parameter

list, and one output message, the representation of the data returned by the

operation. In the abstract message definition, you cannot directly describe a

message that represents an operation's return value, therefore any return

value must be included in the output message

Messages allow for concrete methods defined in programming languages

like C++ to be mapped to abstract WSDL operations. Each message

contains a number of part elements that represent one element in a

parameter list. Therefore, all of the input parameters for a method call are

defined in one message and all of the output parameters, including the

operation’s return value, would be mapped to another message.
123

CHAPTER 6 | Defining Messages
Example For example, imagine a server that stored personal information and provided

a method that returned an employee’s data based on an employee ID

number. The method signature for looking up the data would look similar to

Example 21.

This method signature could be mapped to the WSDL fragment shown in

Example 22.

Message naming Each message in a WSDL document must have a unique name within its

namespace. It is also recommended that messages are named in a way that

represents whether they are input messages that represent a service request

or output messages that represent a response.

Message parts Message parts are the formal data elements of the abstract message. Each

part is identified by a name and an attribute specifying its data type. The

data type attributes are listed in Table 4

Example 21:personalInfo lookup Method

personalInfo lookup(long empId)

Example 22:WSDL Message Definitions

<message name="personalLookupRequest">
 <part name="empId" type="xsd:int"/>
<message/>
<message name="personalLookupResponse>
 <part name="return" element="xsd1:personalInfo"/>
<message/>

Table 4: Part Data Type Attributes

Attribute Description

type="type_name" The datatype of the part is defined by a
simpleType or complexType called type_name

element="elem_name" The datatype of the part is defined by an
element called elem_name.
 124

Messages are allowed to reuse part names. For instance, if a method has a

parameter, foo, that is passed by reference or is an in/out, it can be a part in

both the request message and the response message as shown in

Example 23.

Defining messages with Artix

Designer

To add a message to your contract using the Artix Designer Diagram view:

1. Right-click the Message node to activate the pop-up menu.

2. Select New Message to bring up the Select Source Resources window.

3. Select at least one resource from the list to act as a source of data

types.

All of the types defined in the selected resources, as well as the native

XML Schema types, will be made available for you to use in defining

messages. The resources will also be imported to the target resource

using WSDL import elements.

4. Click Next to bring up the Define Message Properties window, shown

in Figure 48.

Example 23:Reused Part

<message name="fooRequest">
 <part name="foo" type="xsd:int"/>
<message>
<message name="fooReply">
 <part name="foo" type="xsd:int"/>
<message>

Figure 48: Naming a Message
125

CHAPTER 6 | Defining Messages
5. Enter a name for your message in the Name field.

6. Click Next to bring up the Define Message Parts window, shown in

Figure 49.

7. Enter a name for the message part in the Name field.

8. Select a data type from the Type drop-down list.

9. Click Add to save the new part to the Part List table.

10. If you need to edit a part definition:

i. Select the part from the Part List table.

ii. The values for the part will populate the fields at the top of the

window and the Add button will change to Update.

iii. Make your changes and then click Update

11. Repeat steps 7 through 10 until you have finished adding parts to the

message.

12. Click Finish.

Figure 49: Adding Parts to a Message
 126

CHAPTER 7

Defining Your
Interfaces
In WSDL documents interfaces are defined using the portType
element.

Overview Interfaces are defined using the WSDL portType element. Like an interface,

the portType is a collection of operations that define the input, output, and

fault messages used by the service implementing the interface to complete

the transaction the operation describes. The difference is that the operations

in a port type are built up using messages that are defined outside of the

port type instead of parameter lists defined as part of the operation itself.

Defining an interface in an Artix contract entails following:

1. Creating a portType element to contain the interface definition and

give it a unique name. See “Port types” on page 128.

2. Creating an operation element for each operation defined in the

interface. See “Operations” on page 128.

3. For each operation, specifying the messages used represent the

operation’s parameter list, return type, and exceptions. See “Operation

messages” on page 128.

The Artix Designer automates the process of creating new port types. See

“Defining an interface with Artix Designer” on page 129.
127

CHAPTER 7 | Defining Your Interfaces
Port types A portType element is the root element in an interface definition and many

Web service implementations, including Artix, map port types directly to

generated implementation objects. In addition, the portType element is the

abstract unit of a WSDL document that is mapped into a concrete binding to

form the complete description of what is offered over a port.

Each portType element in a WSDL document must have a unique name,

specified using the name attribute, and is made up of a collection of

operations, described in operation elements. A WSDL document can

describe any number of port types.

Operations Operations, described in operation elements in a WSDL document are an

abstract description of an interaction between two endpoints. For example,

a request for a checking account balance and an order for a gross of widgets

can both be defined as operations.

Each operation defined within a portType element must have a unique

name, specified using the name attribute. The name attribute is required to

define an operation.

Operation messages Operations are made up of a set of elements representing the messages

communicated between the endpoints to execute the operation. The

elements that can describe an operation are listed in Table 5.

Table 5: Operation Message Elements

Element Description

input Specifies the message the client endpoint sends to the
service provider when a request is made. The parts of this
message correspond to the input parameters of the
operation.

output Specifies the message that the service provider sends to the
client endpoint in response to a request. The parts of this
message correspond to any operation parameters that can
be changed by the service provider, such as values passed
by reference. This includes the return value of the operation.

fault Specifies a message used to communicate an error
condition between the endpoints.
 128

An operation is required to have at least one input or one output element.

An operation can have both input and output elements, but it can only

have one of each. Operations are not required to have any fault messages,

but can have any number of fault messages needed.

The elements are defined by two attributes listed inTable 6.

It is not necessary to specify the name attribute for all input and output

elements; WSDL provides a default naming scheme based on the enclosing

operation’s name. If only one element is used in the operation, the element

name defaults to the name of the operation. If both an input and an output

element are used, the element name defaults to the name of the operation

with Request or Response respectively appended to the name.

Return values Because the operation element is an abstract definition of the data passed

during in operation, WSDL does not provide for return values to be specified

for an operation. If a method returns a value it will be mapped into the

output message as the last part of that message. The concrete details of

how the message parts are mapped into a physical representation are

described in “Binding Interfaces to a Payload Format” on page 135.

Defining an interface with Artix

Designer

The add a new interface to your contract from the Artix Designer Diagram

view:

1. Right-click the Port Types node to activate the pop-up menu.

2. Select New Port Type from the pop-up menu to bring up the Select

Source Resources window.

Table 6: Attributes of the Input and Output Elements

Attribute Description

name Identifies the message so it can be referenced when
mapping the operation to a concrete data format. The name
must be unique within the enclosing port type.

message Specifies the abstract message that describes the data
being sent or received. The value of the message attribute
must correspond to the name attribute of one of the abstract
messages defined in the WSDL document.
129

CHAPTER 7 | Defining Your Interfaces
3. Select at least one resource from the list to act as a source of

messages.

All of the messages defined in the selected resources will be made

available for you to use in defining the interface’s operations. The

resources will also be imported to the target resource using WSDL

import elements.

4. Click Next to bring up the Define Port Type Properties window, shown

in Figure 50.

5. Enter a name for the new interface in the Name field.

Figure 50: Naming a Port Type
 130

6. Click Next to bring up the Define Port Type Operations window,

shown in Figure 51.

7. Enter a name for the new operation in the Name field.

8. Select an operation style from the Style drop-down list.

Operations can have one of the following styles:

♦ One-way operations have only an input message. They cannot

return any data to the client.

♦ Request-response operations have an input message, an output

message, and any number of optional fault messages.

Figure 51: Adding an Operation to a New Port Type
131

CHAPTER 7 | Defining Your Interfaces
9. Click Next to open the Define Operation Messages window, shown in

Figure 52.

10. Select a message type for the new operation message from the Type

drop-down list.

Operation messages can be of one of the following types:

♦ input messages represent data that a client send to the server.

♦ output messages represent data that a service returns to a client.

♦ fault messages represent data that a service returns to a client in

the event that an error occurred while processing the request.

11. Select the global message that defines the data passed by this

operation message from the Message drop-down list.

12. Enter a name for the operation message in the Name field.

13. Click Add to add the message to the Operation Messages table.

Figure 52: Defining the Messages in an Operation

Note: If your operation is oneway, input will be the only message
type available.
 132

14. If you need to edit an operation message:

i. Select the part from the Operation Messages table.

ii. The values for the operation message will populate the fields

under Messages for Port Type Operation and the Add button will

change to Update.

iii. Make your changes and then click Update

15. Repeat steps 10 through 14 until all of the operational messages have

been specified.

16. Click Finish to write the changes to your resource.

If you want to add more than one operation to your interface, you can add

them using the New Operation pop-up menu option. For details on adding a

new operation to an interfaces see “Adding a new operation” on page 359.

Example For example, you might have an interface similar to the one shown in

Example 24.

This interface could be mapped to the port type in Example 25.

Example 24:personalInfo lookup interface

interface personalInfoLookup
{
 personalInfo lookup(in int empID)
 raises(idNotFound);
}

Example 25:personalInfo lookup port type

<message name="personalLookupRequest">
 <part name="empId" type="xsd:int"/>
<message/>
<message name="personalLookupResponse">
 <part name="return" element="xsd1:personalInfo"/>
<message/>
<message name="idNotFoundException">
 <part name="exception" element="xsd1:idNotFound"/>
<message/>
133

CHAPTER 7 | Defining Your Interfaces
Note that the return value of lookup() is mapped to the message used in

the output element of the WSDL definition. Because the operation does not

have any other parameters that can be returned the return parameter is the

only part of the message used for the output element.

<portType name="personalInfoLookup">
 <operation name="lookup">
 <input name="empID" message="personalLookupRequest"/>
 <output name="return" message="personalLookupResponse"/>
 <fault name="exception" message="idNotFoundException"/>
 </operation>
</portType>

Example 25:personalInfo lookup port type
 134

CHAPTER 8

Binding Interfaces
to a Payload
Format
You can bind your interfaces to a number of payload formats
in Artix.

In this chapter This chapter discusses the following topics:

Introducing Bindings page 136

Adding a SOAP Binding page 137

Adding a CORBA Binding page 152

Adding an FML Binding page 159

Adding a Fixed Binding page 166

Adding a Tagged Binding page 186

Adding a TibrvMsg Binding page 203

Adding a Pure XML Binding page 237

Adding a G2++ Binding page 243
135

CHAPTER 8 | Binding Interfaces to a Payload Format
Introducing Bindings

Overview To define an endpoint that corresponds to a running service, port types are

mapped to bindings that describe how the abstract messages used by the

interface’s operations map to the data format used on the wire. These

bindings are described in binding elements. A binding can map to only one

port type, but a port type can be mapped to any number of bindings.

It is within the bindings that details such as parameter order, concrete data

types, and return values are specified. For example, the parts of a message

can be reordered in a binding to reflect the order required by an RPC call.

Depending on the binding type, you can also identify which of the message

parts, if any, represent the return type of a method.
 136

Adding a SOAP Binding
Adding a SOAP Binding

Overview Artix provides a tool to generate a default SOAP binding which does not use

any SOAP headers. However, you can add SOAP header s to your binding

using any text or XML editor. In addition, you can define a SOAP binding

that uses MIME multipart attachments.

For more information For more detailed information on the SOAP binding and the specifics of the

elements used in defining it see “SOAP Binding Extensions” on page 391.

In this section This section discusses the following topics:

Adding a Default SOAP Binding page 138

Adding SOAP Headers to a SOAP Binding page 142

Sending Data Using SOAP with Attachments page 148
137

CHAPTER 8 | Binding Interfaces to a Payload Format
Adding a Default SOAP Binding

Overview Artix provides three ways to add a SOAP binding for a logical interface. The

first is to use the Artix Designer as described in “Using Artix Designer” on

page 138. The second is the command line tool wsdltosoap as described

in “Using wsdltosoap” on page 139. The third is to use the SOAP Enable

option as described in “Web Service Enabling a Service” on page 346.

For information on the elements used to define a SOAP binding see “SOAP

Binding Extensions” on page 391.

Using Artix Designer To add a SOAP binding from the Artix Designer Diagram view:

1. Right-click the Bindings node to activate the pop-up window.

2. Select New Binding to bring up the Select Source Resources window.

3. Select at least one contract from the list to act as a source for

interfaces. All of the interfaces in the selected contracts will be made

available to you later. The contracts will also be imported to the target

resource using WSDL import elements.

4. Click Next to bring up the Select Binding Type window, shown in

Figure 53.

Figure 53: Select the Type of Binding to Use
 138

Adding a SOAP Binding
5. Select SOAP.

6. Click Next to bring up the Set Binding Defaults window, shown in

Figure 54.

7. Select the interface which is being mapped to this SOAP binding from

the Port Type drop-down list.

8. Enter a name for the binding in the Name field.

9. Select a style for the SOAP elements from the Style drop-down list.

10. Select a value for the SOAP use attribute from the Use drop-down list.

11. Click Finish.

Using wsdltosoap To generate a SOAP binding using wsdltosoap use the following command:

The command has the following options:

Figure 54: Setting the Defaults for a SOAP Binding

wsdltosoap -i portType -n namespace wsdl_file
 [-b binding][-d dir][-o file]
 [-style {document|rpc}][-use {literal|encoded}]
 [-q]-[h][-V]

-i portType Specifies the name of the port type being mapped to a
SOAP binding.
139

CHAPTER 8 | Binding Interfaces to a Payload Format
wsdltosoap does not support thegeneration of document/encoded SOAP

bindings.

Example If your system had an interface that took orders and offered a single

operation to process the orders it would be defined in an Artix contract

similar to the one shown in Example 26.

-n namespace Specifies the namespace to use for the SOAP binding.

-b binding Specifies the name for the generated SOAP binding.
Defaults to portTypeBinding.

-d dir Specifies the directory into which the new WSDL file is
written.

-o file Specifies the name of the generated WSDL file. Defaults
to wsdl_file-soap.wsdl.

-style Specifies the encoding style to use in the SOAP binding.
Defaults to document.

-use Specifies how the data is encoded. Default is literal.

-q Specifies that the tool runs in quiet mode. No output will

be shown on the console. This includes error messages.

-h Specifies that the tool will display a usage message.

-V Specifies that the tool runs in verbose mode.

Example 26:Ordering System Interface

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"
 targetNamespace="http://widgetVendor.com/widgetOrderForm"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://widgetVendor.com/widgetOrderForm"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://widgetVendor.com/types/widgetTypes"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">
<message name="widgetOrder">
 <part name="numOrdered" type="xsd:int"/>
</message>
<message name="widgetOrderBill">
 <part name="price" type="xsd:float"/>
</message>
 140

Adding a SOAP Binding
The SOAP binding generated for orderWidgets is shown in Example 27.

This binding specifies that messages are sent using the rpc/encoded

message style. The value of the namespace attribute is, in this example, the

same as the contract’s target namespace.

<message name="badSize">
 <part name="numInventory" type="xsd:int"/>
</message>
<portType name="orderWidgets">
 <operation name="placeWidgetOrder">
 <input message="tns:widgetOrder" name="order"/>
 <output message="tns:widgetOrderBill" name="bill"/>
 <fault message="tns:badSize" name="sizeFault"/>
 </operation>
</portType>
...
</definitions>

Example 26:Ordering System Interface

Example 27:SOAP Binding for orderWidgets

<binding name="orderWidgetsBinding" type="tns:orderWidgets">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="placeWidgetOrder">
 <soap:operation soapAction="" style="rpc"/>
 <input name="order">
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://widgetVendor.com/widgetOrderForm" use="encoded"/>
 </input>
 <output name="bill">
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://widgetVendor.com/widgetOrderForm" use="encoded"/>
 </output>
 <fault name="sizeFault">
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://widgetVendor.com/widgetOrderForm" use="encoded"/>
 </fault>
 </operation>
</binding>
141

CHAPTER 8 | Binding Interfaces to a Payload Format
Adding SOAP Headers to a SOAP Binding

Overview SOAP headers are defined by adding soap:header elements to your default

SOAP binding. The soap:header element is an optional child of the input,

output, and fault elements of the binding. The SOAP header becomes part

of the parent message. A SOAP header is defined by specifying a message

and a message part. Each SOAP header can only contain one message part,

but you can insert as many SOAP headers as needed.

Syntax The syntax for defining a SOAP header is shown in Example 28. The

message attribute of soap:header is the qualified name of the message from

which the part being inserted into the header is taken. The part attribute is

the name of the message part inserted into the SOAP header. Because

SOAP headers are always doc style, the WSDL message part inserted into

the SOAP header must be defined using an element. Together the message

and the part attributes fully describe the data to insert into the SOAP

header.

As well as the mandatory message and part attributes, soap:header also

supports the namespace, the use, and the encodingStyle attributes. These

optional attributes function the same for soap:header as they do for

soap:body.

Example 28:SOAP Header Syntax

<binding name="headwig">
 <soap:binding style="rpc"

transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="weave">

 <soap:operation soapAction="" style="rpc"/>
 <input name="grain">
 <soap:body .../>
 <soap:header message="QName" part="partName"/>
 </input>
...
</binding>
 142

Adding a SOAP Binding
Development considerations When you use SOAP headers in your Artix applications, you are responsible

for creating and populating the SOAP headers in your application logic. For

details on Artix application development, see either Developing Artix

Applications in C++ or Developing Artix Applications in Java.

Splitting messages between body

and header

The message part inserted into the SOAP header can be any valid message

part from the contract. It can even be a part from the parent message which

is being used as the SOAP body. Because it is unlikely that you would want

to send information twice in the same message, the SOAP binding provides

a means for specifying the message parts that are inserted into the SOAP

body.

The soap:body element has an optional attribute, parts, that takes a space

delimited list of part names. When parts is defined, only the message parts

listed are inserted into the SOAP body. You can then insert the remaining

parts into the SOAP header.

Example Example 29 shows a modified version of the orderWidgets service shown in

Example 26. This version has been modified so that each order has an

xsd:base64binary value placed in the SOAP header of the request and

response. The SOAP header is defined as being the keyVal part from the

widgetKey message. In this case you would be responsible for adding the

SOAP header in your application logic because it is not part of the input or

output message.

Note: When you define a SOAP headers using parts of the parent
message, Artix automatically fills in the SOAP headers for you.

Example 29:SOAP Binding with a SOAP Header

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"
 targetNamespace="http://widgetVendor.com/widgetOrderForm"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://widgetVendor.com/widgetOrderForm"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://widgetVendor.com/types/widgetTypes"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">
143

../prog_guide/index.htm
../prog_guide/index.htm
../java_pguide/index.htm

CHAPTER 8 | Binding Interfaces to a Payload Format
<types>
 <schema targetNamespace="http://widgetVendor.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <element name="keyElem" type="xsd:base64Binary"/>
 </schema>
</types>
<message name="widgetOrder">
 <part name="numOrdered" type="xsd:int"/>
</message>
<message name="widgetOrderBill">
 <part name="price" type="xsd:float"/>
</message>
<message name="badSize">
 <part name="numInventory" type="xsd:int"/>
</message>
<message name="widgetKey">
 <part name="keyVal" element="xsd1:keyElem"/>
</message>
<portType name="orderWidgets">
 <operation name="placeWidgetOrder">
 <input message="tns:widgetOrder" name="order"/>
 <output message="tns:widgetOrderBill" name="bill"/>
 <fault message="tns:badSize" name="sizeFault"/>
 </operation>
</portType>
<binding name="orderWidgetsBinding" type="tns:orderWidgets">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="placeWidgetOrder">
 <soap:operation soapAction="" style="rpc"/>
 <input name="order">
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://widgetVendor.com/widgetOrderForm" use="encoded"/>
 <soap:header message="tns:widgetKey" part="keyVal"/>
 </input>
 <output name="bill">
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://widgetVendor.com/widgetOrderForm" use="encoded"/>
 <soap:header message="tns:widgetKey" part="keyVal"/>
 </output>

Example 29:SOAP Binding with a SOAP Header (Continued)
 144

Adding a SOAP Binding
<types>
 <schema targetNamespace="http://widgetVendor.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <element name="keyElem" type="xsd:base64Binary"/>
 </schema>
</types>
<message name="widgetOrder">
 <part name="numOrdered" type="xsd:int"/>
</message>
<message name="widgetOrderBill">
 <part name="price" type="xsd:float"/>
</message>
<message name="badSize">
 <part name="numInventory" type="xsd:int"/>
</message>
<message name="widgetKey">
 <part name="keyVal" element="xsd1:keyElem"/>
</message>
<portType name="orderWidgets">
 <operation name="placeWidgetOrder">
 <input message="tns:widgetOrder" name="order"/>
 <output message="tns:widgetOrderBill" name="bill"/>
 <fault message="tns:badSize" name="sizeFault"/>
 </operation>
</portType>
<binding name="orderWidgetsBinding" type="tns:orderWidgets">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="placeWidgetOrder">
 <soap:operation soapAction="" style="rpc"/>
 <input name="order">
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://widgetVendor.com/widgetOrderForm" use="encoded"/>
 <soap:header message="tns:widgetKey" part="keyVal"/>
 </input>
 <output name="bill">
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://widgetVendor.com/widgetOrderForm" use="encoded"/>
 <soap:header message="tns:widgetKey" part="keyVal"/>
 </output>

Example 29:SOAP Binding with a SOAP Header (Continued)
145

CHAPTER 8 | Binding Interfaces to a Payload Format
You could modify Example 29 so that the header value was a part of the

input and output messages as shown in Example 30. In this case keyVal is

a part of the input and output messages. In the <soap:body> elements the

parts attribute specifies that keyVal is not to be inserted into the body.

However, it is inserted into the SOAP header.

 <fault name="sizeFault">
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://widgetVendor.com/widgetOrderForm" use="encoded"/>
 </fault>
 </operation>
</binding>
...
</definitions>

Example 29:SOAP Binding with a SOAP Header (Continued)

Example 30:SOAP Binding for orderWidgets with a SOAP Header

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"
 targetNamespace="http://widgetVendor.com/widgetOrderForm"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://widgetVendor.com/widgetOrderForm"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://widgetVendor.com/types/widgetTypes"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">
<types>
 <schema targetNamespace="http://widgetVendor.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <element name="keyElem" type="xsd:base64Binary"/>
 </schema>
</types>
<message name="widgetOrder">
 <part name="numOrdered" type="xsd:int"/>
 <part name="keyVal" element="xsd1:keyElem"/>
</message>
<message name="widgetOrderBill">
 <part name="price" type="xsd:float"/>
 <part name="keyVal" element="xsd1:keyElem"/>
</message>
<message name="badSize">
 <part name="numInventory" type="xsd:int"/>
</message>
 146

Adding a SOAP Binding
<portType name="orderWidgets">
 <operation name="placeWidgetOrder">
 <input message="tns:widgetOrder" name="order"/>
 <output message="tns:widgetOrderBill" name="bill"/>
 <fault message="tns:badSize" name="sizeFault"/>
 </operation>
</portType>
<binding name="orderWidgetsBinding" type="tns:orderWidgets">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="placeWidgetOrder">
 <soap:operation soapAction="" style="rpc"/>
 <input name="order">
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://widgetVendor.com/widgetOrderForm" use="encoded"
 parts="numOrdered"/>
 <soap:header message="tns:widgetOrder" part="keyVal"/>
 </input>
 <output name="bill">
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://widgetVendor.com/widgetOrderForm" use="encoded"
 parts="bill"/>
 <soap:header message="tns:widgetOrderBill" part="keyVal"/>
 </output>
 <fault name="sizeFault">
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://widgetVendor.com/widgetOrderForm" use="encoded"/>
 </fault>
 </operation>
</binding>
...
</definitions>

Example 30:SOAP Binding for orderWidgets with a SOAP Header
147

CHAPTER 8 | Binding Interfaces to a Payload Format
Sending Data Using SOAP with Attachments

Overview SOAP messages generally do not carry binary data. However, the W3C

SOAP specification allows for using MIME multipart/related messages to

send binary data in SOAP messages. This technique is called using SOAP

with attachments. SOAP attachments are defined in the W3C’s SOAP

Messages with Attachments Note

(http://www.w3.org/TR/SOAP-attachments).

Namespace The WSDL extensions used to define the MIME multipart/related messages

are defined in the namespace http://schemas.xmlsoap.org/wsdl/mime/.

In the discussion that follows, it is assumed that this namespace is prefixed

with mime. The entry in the WSDL defintion element to set this up is

shown in Example 31.

Changing the message binding In a default SOAP binding the first child element of the input, output, and

fault elements is a soap:body element describing the body of the SOAP

message representing the data. When using SOAP with attachments, the

soap:body element is replaced with a mime:multipartRelated element.

The mime:multipartReleated element tells Artix that the message body is

going to be a multipart message that potentially contains binary data. The

contents of the element define the parts of the message and their contents.

mime:multipartReleated elements in Artix contain one or more mime:part

elements that describe the individual parts of the message.

The first mime:part element must contain the soap:body element that

would normally appear in a default SOAP binding. The remaining mime:part

elements define the attachments that are being sent in the message.

Example 31:MIM Namespace Specification in a Contract

xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"

Note: WSDL does not support using mime:multipartRelated for fault
messages.
 148

http://www.w3.org/TR/SOAP-attachments

Adding a SOAP Binding
Describing a MIME multipart

message

MIME multipart messages are described using a mime:multipartRelated

element that contains a number of mime:part elements. To fully describe a

MIME multipart message in an Artix contract:

1. Inside the input or output message you want to send as a MIME

multipart message, add a mime:mulipartRelated element as the first

child element of the enclosing message.

2. Add a mime:part child element to the mime:multipartRelated element

and set its name attribute to a unique string.

3. Add a soap:body element as the child of the mime:part element and

set its attributes appropriately.

If the contract had a default SOAP binding, you can copy the

soap:body element from the corresponding message from the default

binding into the MIME multipart message.

4. Add another mime:part child element to the mime:multipartReleated

element and set its name attribute to a unique string.

5. Add a mime:content child element to the mime:part element to

describe the contents of this part of the message.

To fully describe the contents of a MIME message part the

mime:content element has the following attributes:

♦ part—Specifies the name of the WSDL message part, from the

parent message definition, that is used as the content of this part

of the MIME multipart message being placed on the wire.

♦ type—The MIME type of the data in this message part. MIME

types are defined as a type and a subtype using the syntax

type/subtype.

There are a number of predefined MIME types such as

image/jpeg and text/plain. The MIME types are maintained by

IANA and described in detail in Multipurpose Internet Mail

Extensions (MIME) Part One: Format of Internet Message Bodies

(ftp://ftp.isi.edu/in-notes/rfc2045.txt) and Multipurpose Internet

Mail Extensions (MIME) Part Two: Media Types

(ftp://ftp.isi.edu/in-notes/rfc2046.txt).

6. For each additional MIME part, repeat steps 4 and 5.
149

ftp://ftp.isi.edu/in-notes/rfc2045.txt
ftp://ftp.isi.edu/in-notes/rfc2046.txt

CHAPTER 8 | Binding Interfaces to a Payload Format
Example Example 32 shows an Artix contract for a service that stores X-rays in JPEG

format. The image data, xRay, is stored as an xsd:base64binary and is

packed into the MIME multipart message’s second part, imageData. The

remaining two parts of the input message, patientName and patientNumber,

are sent in the first part of the MIME multipart image as part of the SOAP

body.

Example 32:Contract using SOAP with Attachments

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="XrayStorage"
 targetNamespace="http://mediStor.org/x-rays"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://mediStor.org/x-rays"
 xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <message name="storRequest">
 <part name="patientName" type="xsd:string"/>
 <part name="patientNumber" type="xsd:int"/>
 <part name="xRay" type="xsd:base64Binary"/>
 </message>
 <message name="storResponse">
 <part name="success" type="xsd:boolean"/>
 </message>
 <portType name="xRayStorage">
 <operation name="store">
 <input message="tns:storRequest" name="storRequest"/>
 <output message="tns:storResponse" name="storResponse"/>
 </operation>
 </portType>
 150

Adding a SOAP Binding
 <binding name="xRayStorageBinding" type="tns:xRayStorage">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="store">
 <soap:operation soapAction="" style="rpc"/>
 <input name="storRequest">
 <mime:multipartRelated>
 <mime:part name="bodyPart">
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://mediStor.org/x-rays" use="encoded"/>
 </mime:part>
 <mime:part name="imageData">
 <mime:content part="xRay" type="image/jpeg"/>
 </mime:part>
 </mime:multipartRelated>
 </input>
 <output name="storResponse">
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="urn:AttachmentService" use="encoded"/>
 </output>
 </operation>
 </binding>
 <service name="xRayStorageService">
 <port binding="tns:xRayStorageBinding" name="xRayStoragePort">
 <soap:address location="http://localhost:9000"/>
 </port>
 </service>
</definitions>

Example 32:Contract using SOAP with Attachments
151

CHAPTER 8 | Binding Interfaces to a Payload Format
Adding a CORBA Binding

Overview CORBA applications use a specific payload format when making and

responding to requests. The CORBA binding, described using an IONA

extension to WSDL, specifies the repository ID of the IDL interface

represented by the port type, resolves parameter order and mode ambiguity

in the operations’ messages, and maps the XML Schema data types to

CORBA data types.

In addition to the binding information, Artix also uses a <corba:typemap>

extension to unambiguously describe how data is mapped to CORBA data

types. For primitive types, the mapping is straightforward. However,

complex types such as structures, arrays, and exceptions require more

detailed descriptions. For a detailed description of the CORBA type

mappings see “CORBA Type Mapping” on page 403.

Options To add a CORBA binding to an Artix contract you can choose one of four

methods. The first option is to use the Artix Designer. The Designer provides

a wizard that automatically generates the binding and type map information

for a specified port type. See “Using Artix Designer” on page 153.

The second option is to use the wsdltocorba command line tool. The

command line tool automatically generates the binding and type map

information for a specified port type. See “Using wsdltocorba” on page 154.

The third option is to enter the binding and typemap information by hand

using a text editor or XML editor. This option provides you the flexibility to

customize the binding. However, hand editing Artix contracts can be a time

consuming process and provides no error checking mechanisms. For

information on the WSDL extensions used to specify a CORBA binding see

“Mapping to the binding” on page 155.

The fourth method CORBA enables your interface definition. It asks for basic

information about the IIOP address for the new service and the interface for

which the CORBA information will be generated. It then adds a CORBA

binding and fully defined CORBA port to your contract. For more information

see “CORBA Enabling a Service” on page 348.
 152

Adding a CORBA Binding
Using Artix Designer To add a CORBA binding to a contract:

1. Right-click the Bindings node to activate the pop-up window.

2. Select New Binding to bring up the Select Source Resources window.

3. Select at least one contract from the list to act as a source for

interfaces.

All of the interfaces in the selected contracts will be made available to

you later. The contracts will also be imported to the target resource

using WSDL import elements.

4. Click Next to bring up the Select Binding Type window, shown in

Figure 53 on page 138.

5. Select CORBA.

6. Click Next to bring up the Set Binding Defaults window, shown in

Figure 55.

7. Select the interface to be mapped to the CORBA binding from the Port

Type drop-down list.

8. Enter a name for the new binding in the Name field.

9. Enter a namespace to use for the generated CORBA typemap into the

Typemap Namespace field.

10. Click Finish.

Figure 55: Setting CORBA Binding Defaults
153

CHAPTER 8 | Binding Interfaces to a Payload Format
Using wsdltocorba The wsdltocorba tool adds CORBA binding information to an existing Artix

contract. To generate a CORBA binding using wsdltocorba use the following

command:

The command has the following options:

The generated WSDL file will also contain a CORBA port with no address

specified. To complete the port specification you can do so manually or use

Artix Designer.

wsdltocorba -corba -i portType [-d dir][-b binding][-o file]
 [-n namespace][-L file][-q][-h][-V] wsdl_file

-corba Instructs the tool to generate a CORBA binding for the
specified port type.

-i portType Specifies the name of the port type being mapped to a
CORBA binding.

-d dir Specifies the directory into which the new WSDL file is
written.

-b binding Specifies the name for the generated CORBA binding.
Defaults to portTypeBinding.

-o file Specifies the name of the generated WSDL file. Defaults
to wsdl_file-corba.wsdl.

-n namespace Specifies the namespace to use for the generated CORBA
typemap

-L file Specifies the location of your Artix license file. The default
behavior is to check IT_PRODUCT_DIR\etc\license.txt.

-q Specifies that the tool runs in quiet mode. No output will

be shown on the console. This includes error messages.

-h Specifies that the tool will display a usage message.

-V Specifies that the tool runs in verbose mode.
 154

Adding a CORBA Binding
WSDL Namespace The WSDL extensions used to describe CORBA data mappings and CORBA

transport details are defined in the WSDL namespace

http://schemas.iona.com/bindings/corba. To use the CORBA extensions

you will need to include the following in the definitions tag of your

contract:

Mapping to the binding The extensions used to map a logical operation to a CORBA binding are

described in detail below:

corba:binding indicates that the binding is a CORBA binding. This element

has one required attribute: repositoryID. repositoryID specifies the full

type ID of the interface. The type ID is embedded in the object’s IOR and

therefore must conform to the IDs that are generated from an IDL compiler.

These are of the form:

The corba:binding element also has an optional attribute, bases, that

specifies that the interface being bound inherits from another interface. The

value for bases is the type ID of the interface from which the bound

interface inherits. For example, the following IDL:

would produce the following corba:binding:

corba:operation is an IONA-specific element of the operation element and

describes the parts of the operation’s messages. corba:operation takes a

single attribute, name, which duplicates the name given in operation.

corba:param is a child of corba:operation. Each part element of the input

and output messages specified in the logical operation, except for the part

representing the return value of the operation, must have a corresponding

xmlns:corba="http://schemas.iona.com/bindings/corba"

IDL:module/interface:1.0

//IDL
interface clash{};
interface bad : clash{};

<corba:binding repositoryID="IDL:bad:1.0"
 bases="IDL:clash:1.0"/>
155

CHAPTER 8 | Binding Interfaces to a Payload Format
corba:param. The parameter order defined in the binding must match the

order specified in the IDL definition of the operation. <corba:param> has the

following required attributes:

corba:return is a child of corba:operation and specifies the return type, if

any, of the operation. It only has two attributes:

corba:raises is a child of corba:operation and describes any exceptions the

operation can raise. The exceptions are defined as fault messages in the

logical definition of the operation. Each fault message must have a

corresponding corba:raises element. corba:raises has one required

attribute, exception, which specifies the type of data returned in the

exception.

In addition to operations specified in corba:operation tags, within the

operation block, each operation in the binding must also specify empty

input and output elements as required by the WSDL specification. The

CORBA binding specification, however, does not use them.

mode Specifies the direction of the parameter. The values
directly correspond to the IDL directions: in, inout, out.
Parameters set to in must be included in the input
message of the logical operation. Parameters set to out
must be included in the output message of the logical
operation. Parameters set to inout must appear in both
the input and output messages of the logical operation.

idltype Specifies the IDL type of the parameter. The type names
are prefaced with corba: for primitive IDL types, and
corbatm: for complex data types, which are mapped out
in the corba:typeMapping portion of the contract.

name Specifies the name of the parameter as given in the
logical portion of the contract.

name Specifies the name of the parameter as given in the
logical portion of the contract.

idltype Specifies the IDL type of the parameter. The type names
are prefaced with corba: for primitive IDL types and
corbatm: for complex data types which are mapped out
in the corba:typeMapping portion of the contract.
 156

Adding a CORBA Binding
For each fault message defined in the logical description of the operation, a

corresponding fault element must be provided in the operation, as

required by the WSDL specification. The name attribute of the fault element

specifies the name of the schema type representing the data passed in the

fault message.

Example For example, a logical interface for a system to retrieve employee

information might look similar to personalInfoLookup, shown in

Example 33.

The CORBA binding for personalInfoLookup is shown in Example 34.

Example 33:personalInfo lookup port type

<message name="personalLookupRequest">
 <part name="empId" type="xsd:int"/>
</message>
<message name="personalLookupResponse">
 <part name="return" element="xsd1:personalInfo"/>
</message>
<message name="idNotFoundException">
 <part name="exception" element="xsd1:idNotFound"/>
</message>
<portType name="personalInfoLookup">
 <operation name="lookup">
 <input name="empID" message="personalLookupRequest"/>
 <output name="return" message="personalLookupResponse"/>
 <fault name="exception" message="idNotFoundException"/>
 </operation>
</portType>
157

CHAPTER 8 | Binding Interfaces to a Payload Format
Example 34:personalInfoLookup CORBA Binding

<binding name="personalInfoLookupBinding" type="tns:personalInfoLookup">
 <corba:binding repositoryID="IDL:personalInfoLookup:1.0"/>
 <operation name="lookup">
 <corba:operation name="lookup">
 <corba:param name="empId" mode="in" idltype="corba:long"/>
 <corba:return name="return" idltype="corbatm:personalInfo"/>
 <corba:raises exception="corbatm:idNotFound"/>
 </corba:operation>
 <input/>
 <output/>
 <fault name="personalInfoLookup.idNotFound"/>
 </operation>
</binding>
 158

Adding an FML Binding
Adding an FML Binding

Overview Tuxedo’s native data format is FML. The FML buffers used by Tuxedo

applications are described in one of two ways:

• A field table file that is loaded at run time.

• A C header file that is compiled into the application.

A field table file is a detailed and user readable text file describing the

contents of a buffer. It clearly describes each field’s name, ID number, data

type, and a comment. Using the FML library calls, Tuxedo applications map

the field table description to usable fldids at run time.

The C header file description of an FML buffer simply maps field names to

their fldid. The fldid is an integer value that represents both the type of

data stored in a field and a unique identifying number for that field.

Artix works with this data by mapping the native Tuxedo data descriptions

into a WSDL binding element. As part of developing an Artix solution to

integrate with legacy Tuxedo applications, you must add an FML binding to

the contract describing the integration.

FML/XML Schema support An FML buffer can only contain the data types listed in Table 7.

Table 7: FML Type Support

XML Schema Type FML Type

xsd:short short

xsd:unsignedShort short

xsd:int long

xsd:unsignedInt long

xsd:float float

xsd:double double

xsd:string string

xsd:base64Binary string
159

CHAPTER 8 | Binding Interfaces to a Payload Format
Due to FML limitations, support for complex types is limited to

xsd:sequence and xsd:all.

Mapping from a field table to an

Artix contract

Creating an Artix contract to represent an FML buffer is a two-step process:

1. Create the logical data representation of the FML buffer in the Artix

contract as described in “Mapping to logical type descriptions” on

page 160.

2. Enter the FML binding information using Artix WSDL extensors as

described in “Adding the FML binding” on page 164.

Mapping to logical type

descriptions

To create a logical data type to represent data in an FML buffer:

1. If the C header file for the FML buffer does not exist, generate it from

the field table using the Tuxedo mkfldhdr or mkfldhdr32 utility

program.

2. For each field in the FML buffer, create an element with the following

attribute settings:

♦ name is set to the name specified in the field table.

♦ type is set to the appropriate XML Schema type for the type

specified in the field table. See “FML/XML Schema support” on

page 159.

3. If your Tuxedo application has data fields that are always used

together, you can group the corresponding elements into complex

types.

xsd:hexBinary string

Table 7: FML Type Support (Continued)

XML Schema Type FML Type

Note: In Tuxedo, a WSDL operation is implicitly bound to the
Tuxedo service used. So, when the Tuxedo extensor is configured for
the WSDL port there must be a one-to-one mapping between the
WSDL operation and the Tuxedo service. We recommended,
therefore, that you group elements into complex types only if they
appear together in all exposed Tuxedo services.
 160

Adding an FML Binding
For example, you may have a Tuxedo application that returns personnel

records on employees that needs to be exposed through a new web

interface. The Tuxedo application uses the field table file shown in

Example 35.

The C++ header file generated by the Tuxedo mkfldhdr tool to represent

the personnelInfo FML buffer is shown in Example 36. Even if you are not

planning to access the FML buffer using the compile time method, you will

need to generate the header file when using Artix because this will give you

the fldid values for the fields in the buffer.

Before mapping the FML buffer into your contract, you need to look at the

operations exposed by the Tuxedo application. Suppose it exposes two

operations:

• infoByName() that returns the employee data based on a name search.

• infoByID() that returns the employee data based on the employees ID

number.

Example 35:personnelInfo Field Table File

personnelInfo Field Table
name number type flags comment
empId 100 long -
name 101 string -
age 102 short -
dept 103 string -
addr 104 string -
city 105 string -
state 106 string -
zip 107 string -

Example 36:personnelInfo C++ header

/* fname fldid */
/* ----- ----- */
#define empId ((FLDID)8293) /* number: 100 type: long */
#define name ((FLDID)41062) /* number: 101 type: string */
#define age ((FLDID)102) /* number: 102 type: short */
#define dept ((FLDID)41064) /* number: 103 type: string */
#define addr ((FLDID)41065) /* number: 104 type: string */
#define city ((FLDID)41066) /* number: 105 type: string */
#define state ((FLDID)41067) /* number: 106 type: string */
#define zip ((FLDID)41068) /* number: 107 type: string */
161

CHAPTER 8 | Binding Interfaces to a Payload Format
Because the employee data is always returned as a unit you can group it

into a complex type as show in Example 37.

The interface for your Tuxedo application would be mapped to a portType

similar to Example 38.

Example 37:Logical description of personneInfo FML buffer

<types>
 <schema targetNamespace="http://soapinterop.org/xsd"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <complexType name="personnelInfo">
 <sequence>
 <element name="empId" type="xsd:int"/>
 <element name="name" type="xsd:string"/>
 <element name="age" type="xsd:short"/>
 <element name="dept" type="xsd:string"/>
 <element name="addr" type="xsd:string"/>
 <element name="city" type="xsd:string"/>
 <element name="state" type="xsd:string"/>
 <element name="zip" type="xsd:string"/>
 </sequence>
 </complexType>
 </schema>
</types>

Example 38:personnelInfo Lookup Interface

<message name="idLookupRequest">
 <part name="empId" type="xsd:int"/>
</message>
<message name="nameLookupRequest">
 <part name="empId" type="xsd:int"/>
</message>
<message name="lookupResponse">
 <part name="return" element="xsd1:personnelInfo"/>
</message>
 162

Adding an FML Binding
Flattened XML and FML While XML Schema allows you to create structured data that is organized in

multiple layers, FML data is essentially flat. All of the elements in a field

table exist on the same level. To handle this difference Artix flattens out the

XML data when it is passed through the FML binding.

As a result, complex types defined in XML Schema are collapsed into their

composite elements. For instance, the message lookupResponse, which

uses the complex type defined in Example 37 on page 162, would be

equivalent to the message definition in Example 39 when processed by the

FML binding.

<portType name="personelInfoLookup">
 <operation name="infoByName">
 <input name="name" message="nameLookupRequest"/>
 <output name="return" message="lookupResponse"/>
 </operation>
 <operation name="infoByID">
 <input name="id" message="idLookupRequest"/>
 <output name="return" message="lookupResponse"/>
 </operation>
</portType>

Example 38:personnelInfo Lookup Interface

Example 39:Flattened Message for FML

<message name="lookupResponse">
 <part name="empId" type="xsd:int"/>
 <part name="name" type="xsd:string"/>
 <part name="age" type="xsd:short"/>
 <part name="dept" type="xsd:string"/>
 <part name="addr" type="xsd:string"/>
 <part name="city" type="xsd:string"/>
 <part name="state" type="xsd:string"/>
 <part name="zip" type="xsd:string"/>
</message>
163

CHAPTER 8 | Binding Interfaces to a Payload Format
Adding the FML binding To add the binding that maps the logical description of the FML buffer to a

physical FML binding:

1. Add the following line in the definition element at the beginning of

the contract.

2. Create a new binding element in your contract to define the FML

buffer’s binding.

3. Add an tuxedo:binding element to identify that this binding defines an

FML buffer.

4. Add an tuxedo:fieldTable element to the binding to describe how the

element names defined in the logical portion of the contract map to the

fldid values for the corresponding fields in the FML buffer.

The tuxedo:fieldTable has a mandatory type attribute. type can be

either FML for specifying that the application uses FML16 buffers or

FML32 for specifying that the application uses FML32 buffers.

5. For each element in the logical data type, add an tuxedo:field

element to the tuxedo:fieldTable element.

tuxedo:field defines how the logical data elements map to the

physical FML buffer. It has two mandatory attributes:

♦ name specifies the name of the logical type describing the field.

♦ id specifies the fldid value for the field in the FML buffer.

6. For each operation in the interface, create a standard WSDL operation

element to define the operation being bound.

7. For each operation, add a standard WSDL input and output elements

to the operation element to define the messages used by the

operation.

8. For each operation, add an tuxedo:operation element to the

operation element.

For example, the binding for the personalInfo FML buffer, defined in

Example 35 on page 161, will be similar to the binding shown in

Example 40.

xmlns:tuxedo="http://schemas.iona.com/transports/tuxedo"
 164

Adding an FML Binding
Example 40:personalInfo FML binding

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="personalInfoService" targetNamespace="http://info.org/"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://soapinterop.org/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:tuxedo="http://schemas.iona.com/transports/tuxedo">
...
 <binding name="personelInfoFMLBinding" type="tns:personnelInfoLookup">
 <tuxedo:binding/>
 <tuxedo:fieldTable type="FML">
 <tuxedo:field name="empId" id="8293"/>
 <tuxedo:field name="name" id="41062"/>
 <tuxedo:field name="age" id="102"/>
 <tuxedo:field name="dept" id="41064"/>
 <tuxedo:field name="addr" id="41065"/>
 <tuxedo:field name="city" id="41066"/>
 <tuxedo:field name="state" id="41067"/>
 <tuxedo:field name="zip" id="41068"/>
 </fml:idNameMapping>
 <operation name="infoByName">
 <tuxedo:operation/>
 <input name="name"/>
 <output name="return"/>
 </operation>
 <operation name="infoByName">
 <tuxedo:operation/>
 <input name="name"/>
 <output name="return"/>
 </operation>
 </binding>
...
</definitions>
165

CHAPTER 8 | Binding Interfaces to a Payload Format
Adding a Fixed Binding

Overview The Artix fixed binding is used to represent fixed record length data.

Common uses for this type of payload format are communicating with

back-end services on mainframes and applications written in COBOL. Artix

provides several means for creating a contract containing a fixed binding:

• If you are integrating with an application written in COBOL and have

the COBOL copybook defining the data to be used, you can import the

copybook to create a contract as shown in “Creating a Contract from a

COBOL Copybook” on page 62.

• If you have a description of the fixed data in some form other than a

COBOL copybook, you can create a contract by describing the data as

shown in “Creating a Contract from a Data Set” on page 69.

• If you have a logical interface you want to map to a fixed binding you

can use the Artix Designer to create a fixed binding as shown in “Using

Artix Designer” on page 166.

• You can enter the binding information using any text editor or XML

editor as described in “Hand editing” on page 170.

Using Artix Designer To add a fixed binding from the Artix Designer Diagram view:

1. Right-click the Bindings node to activate the pop-up window.

2. Select New Binding to bring up the Select Source Resources window.

3. Select at least one contract from the list to act as a source for

interfaces.

All of the interfaces in the selected contracts will be made available to

you later. The contracts will also be imported to the target resource

using WSDL import elements.

4. Click Next to bring up the Select Binding Type window.

5. Select Fixed.
 166

Adding a Fixed Binding
6. Click Next to bring up the Set Binding Defaults window, shown in

Figure 56.

7. Select the interface mapped to this binding from the Port Type

drop-down list.

8. Enter a name for the binding in the Binding Name field.

9. Select how you want the data in the payload to be justified from the

Justification drop-down list.

10. Enter the character set encoding to use for the data in the payload in

the Encoding field.

11. Enter a string to use for padding the data in the payload in the Padding

field.

Figure 56: Setting the Default Values for a Fixed Binding
167

CHAPTER 8 | Binding Interfaces to a Payload Format
12. Click Next to bring up the Edit Binding window, shown in Figure 57.

13. Expand the Operations node to list the operations in the interface.

14. Select an operation from the tree to display its attributes, shown in

Figure 58.

Figure 57: Editing the Fixed Binding Settings

Figure 58: Editing an Operation’s Fixed Binding Settings
 168

Adding a Fixed Binding
15. Enter a discriminator string for the operation in the Discriminator field.

See “fixed:operation” on page 171.

16. Select one of the operation’s messages from the Messages table.

17. Click Edit to display the message attributes, shown in Figure 59.

18. Edit the attributes for the message. See “fixed:body” on page 171.

19. Repeat step 18 for each message in the operation.

20. Repeat from step 14 until you have edited all the operations in the

interface.

21. Click Finish.

Figure 59: Editing a Message’s Fixed Binding Settings
169

CHAPTER 8 | Binding Interfaces to a Payload Format
Hand editing To map a logical interface to a fixed binding:

1. Add the proper namespace reference to the definition element of

your contract. See “Fixed binding namespace” on page 170.

2. Add a WSDL binding element to your contract to hold the fixed

binding, give the binding a unique name, and specify the port type that

represents the interface being bound.

3. Add a fixed:binding element as a child of the new binding element to

identify this as a fixed binding and set the element’s attributes to

properly configure the binding. See “fixed:binding” on page 171.

4. For each operation defined in the bound interface, add a WSDL

operation element to hold the binding information for the operation’s

messages.

5. For each operation added to the binding, add a fixed:operation child

element to the operation element. See “fixed:operation” on page 171.

6. For each operation added to the binding, add the input, output, and

fault children elements to represent the messages used by the

operation. These elements correspond to the messages defined in the

port type definition of the logical operation.

7. For each input, output, and fault element in the binding, add a

fixed:body child element to define how the message parts are mapped

into the concrete fixed record length payload. See “fixed:body” on

page 171.

Fixed binding namespace The IONA extensions used to describe fixed record length bindings are

defined in the namespace http://schemas.iona.com/bindings/fixed. Artix

tools use the prefix fixed to represent the fixed record length extensions.

Add the following line to your contract:

xmlns:fixed="http://schemas.iona.com/bindings/fixed
 170

Adding a Fixed Binding
fixed:binding fixed:binding specifies that the binding is for fixed record length data. Its

attributes are described in Table 8.

The settings for the attributes on these elements become the default settings

for all the messages being mapped to the current binding. All of the values

can be overridden on a message-by-message basis.

fixed:operation fixed:operation is a child element of the WSDL operation element and

specifies that the operation’s messages are being mapped to fixed record

length data.

fixed:operation has one attribute, discriminator, that assigns a unique

identifier to the operation. If your service only defines a single operation, you

do not need to provide a discriminator. However, if your service has more

than one service, you must define a unique discriminator for each operation

in the service. Not doing so will result in unpredictable behavior when the

service is deployed.

fixed:body fixed:body is a child element of the input, output, and fault messages

being mapped to fixed record length data. It specifies that the message body

is mapped to fixed record length data on the wire and describes the exact

mapping for the message’s parts.

Table 8: Attributes for fixed:binding

Attributes Purpose

justification Specifies the default justification of the data contained
in the messages. Valid values are left and right.
Default is left.

encoding Specifies the codeset used to encode the text data.
Valid values are any valid ISO locale or IANA codeset
name. Default is UTF-8.

padHexCode Specifies the hex value of the character used to pad
the record.
171

CHAPTER 8 | Binding Interfaces to a Payload Format
To fully describe how a message is mapped into the fixed message:

1. If the default justification, padding, or encoding settings for the

attribute are not correct for this particular message, override them by

setting the following optional attributes for fixed:body.

♦ justification specifies how the data in the messages are

justified. Valid values are left and right.

♦ encoding specifies the codeset used to encode text data. Valid

values are any valid ISO locale or IANA codeset name.

♦ padHexCode specifies the hex value of the character used to pad

the record.

2. For each part in the message the fixed:body element is binding, add

the appropriate child element to define the part’s concrete format on

the wire.

The following child elements are used in defining how logical data is

mapped to a concrete fixed format message:

♦ fixed:field maps message parts defined using a simple type.

See “XML Schema Simple Types” on page 96.

♦ fixed:sequence maps message parts defined using a sequence

complex type. Complex types defined using all are not supported

by the fixed format binding. See “Defining Data Structures” on

page 99.

♦ fixed:choice maps message parts defined using a choice

complex type. See “Defining Data Structures” on page 99.

3. If you need to add any fields that are specific to the binding and that

will not be passed to the applications, define them using a fixed:field

element with its bindingOnly attribute set to true.

 When bindingOnly is set to true, the field described by the

fixed:field element is not propagated beyond the binding. For input

messages, this means that the field is read in and then discarded. For

output messages, you must also use the fixedValue attribute.

The order in which the message parts are listed in the fixed:body element

represent the order in which they are placed on the wire. It does not need to

correspond to the order in which they are specified in the message element

defining the logical message.
 172

Adding a Fixed Binding
fixed:field fixed:field is used to map simple data types to a fixed length record. To

define how the logical data is mapped to a fixed field:

1. Create a fixed:field child element to the fixed:body element

representing the message.

2. Set the fixed:field element’s name attribute to the name of the

message part defined in the logical message description that this

element is mapping.

3. If the data being mapped is of type xsd:string, a simple type that has

xsd:string as its base type, or an enumerated type set the size

attribute of the fixed:field element.

size specifies the length of the string record in the concrete fixed

message. For example, the logical message part, raverID, described in

Example 41 would be mapped to a fixed:field similar to

Example 42.

In order to complete the mapping, you must know the length of the

record field and supply it. In this case, the field, raverID, can contain

no more than twenty characters.

4. If the data being mapped is of a numerical type, like xsd:int, or a

simple type that has a numerical type as its base type, set the

fixed:field element’s format attribute.

format specifies how non-string data is formatted. For example, if a

field contains a 2-digit numeric value with one decimal place, it would

Note: If the message part is going to hold a date you can opt to use
the format attribute described in step 4 instead of the size attribute.

Example 41: Fixed String Message

<message name="fixedStringMessage">
 <part name="raverID" type="xsd:string"/>
</message>

Example 42: Fixed String Mapping

<fixed:field name="raverID" size="20"/>
173

CHAPTER 8 | Binding Interfaces to a Payload Format
be described in the logical part of the contract as an xsd:float, as

shown in Example 43.

From the logical description of the message, Artix has no way of

determining that the value of rageLevel is a 2-digit number with one

decimal place because the fixed record length binding treats all data as

characters. When mapping rageLevel in the fixed binding you would

specify its format with ##.#, as shown in Example 44. This provides

Artix with the meta-data needed to properly handle the data.

Dates are specified in a similar fashion. For example, the format of the

date 12/02/72 is MM/DD/YY. When using the fixed binding it is

recommended that dates are described in the logical part of the

contract using xsd:string. For example, a message containing a date

would be described in the logical part of the contract as shown in

Example 45.

If goDate is entered using the standard short date format for US

English locales, mm/dd/yyyy, you would map it to a fixed record field as

shown in Example 46.

Example 43:Fixed Record Numeric Message

<message name="fixedNumberMessage">
 <part name="rageLevel" type="xsd:float"/>
</message>

Example 44:Mapping Numerical Data to a Fixed Binding

<fixed:flield name="rageLevel" format="##.#"/>

Example 45:Fixed Date Message

<message name="fixedDateMessage">
 <part name="goDate" type="xsd:string"/>
</message>

Example 46:Fixed Format Date Mapping

<fixed:field name="goDate" format="mm/dd/yyyy"/>
 174

Adding a Fixed Binding
5. If you want the message part to have a fixed value no matter what data

is set in the message part by the application, set the <fixed:field>

element’s fixedValue attribute instead of the size or the format

attribute.

fixedValue specifies a static value to be passed on the wire. When

used without bindingOnly="true", the value specified by fixedValue

replaces any data that is stored in the message part passed to the fixed

record binding. For example, if goDate, shown in Example 45 on

page 174, were mapped to the fixed field shown in Example 47, the

actual message returned from the binding would always have the date

11/11/2112.

6. If the data being mapped is of an enumerated type, see “Defining

Enumerated Types” on page 117, add a fixed:enumeration child

element to the fixed:field element for each possible value of the

enumerated type.

fixed:enumeration takes two required attributes, value and

fixedValue. value corresponds to the enumeration value as specified

in the logical description of the enumerated type. fixedValue specifies

the concrete value that will be used to represent the logical value on

the wire.

For example, if you had an enumerated type with the values

FruityTooty, Rainbow, BerryBomb, and OrangeTango the logical

description of the type would be similar to Example 48.

Example 47: fixedValue Mapping

<fixed:field name="goDate" fixedValue="11/11/2112"/>

Example 48: Ice Cream Enumeration

<xs:simpleType name="flavorType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="FruityTooty"/>
 <xs:enumeration value="Rainbow"/>
 <xs:enumeration value="BerryBomb"/>
 <xs:enumeration value="OrangeTango"/>
 </xs:restriction>
</xs:simpleType>
175

CHAPTER 8 | Binding Interfaces to a Payload Format
When you map the enumerated type, you need to know the concrete

representation for each of the enumerated values. The concrete

representations can be identical to the logical or some other value. The

enumerated type in Example 48 could be mapped to the fixed field

shown in Example 49. Using this mapping Artix will write OT to the

wire for this field if the enumerations value is set to OrangeTango.

Note that the parent fixed:field element uses the size attribute to

specify that the concrete representation is two characters long. When

mapping enumerations, the size attribute will always be used to

represent the size of the concrete representation.

fixed:choice fixed:choice is used to map choice complex types into fixed record length

messages. To map a choice complex type to a fixed:choice:

1. Add a fixed:choice child element to the fixed:body element.

2. Set the fixed:choice element’s name attribute to the name of the

logical message part being mapped.

3. Set the fixed:choice element’s optional discriminatorName attribute

to the name of the field used as the discriminator for the union.

The value for discriminatorName corresponds to the name of a

bindingOnly fixed:field element that describes the type used for the

union’s discriminator as shown in Example 50. The only restriction in

describing the discriminator is that it must be able to handle the values

Example 49:Fixed Ice Cream Mapping

<fixed:field name="flavor" size="2">
 <fixed:enumeration value="FruityTooty" fixedValue="FT"/>
 <fixed:enumeration value="Rainbow" fixedValue="RB"/>
 <fixed:enumeration value="BerryBomb" fixedValue="BB"/>
 <fixed:enumeration value="OrangeTango" fixedValue="OT"/>
</fixed:field>
 176

Adding a Fixed Binding
used to determine the case of the union. Therefore the values used in

the union mapped in Example 50 must be two-digit integers.

4. For each element in the logical definition of the message part, add a

fixed:case child element to the fixed:choice element.

fixed:case fixed:case elements describe the complete mapping of a choice complex

type element to a fixed record length message. To map a choice complex

type element to a fixed:case:

1. Set the fixed:case element’s name attribute to the name of the logical

definition’s element.

2. Set the fixed:case element’s fixedValue attribute to the value of the

discriminator that selects this element. The value of fixedValue must

correspond to the format specified by the discriminatorName attribute

of the parent fixed:choice element.

3. Add a child element to define how the element’s data is mapped into a

fixed record.

The child elements used to map the part’s type to the fixed message

are the same as the possible child elements of a fixed:body element.

As with a fixed:body element, a fixed:sequence is made up of

fixed:field elements to describe simple types, fixed:choice elements to

describe choice complex types, and fixed:sequence elements to

describe sequence complex types.

Example 50:Using discriminatorName

<fixed:field name="disc" format="##" bindingOnly="true"/>
<fixed:choice name="unionStation" discriminatorName="disc">
...
</fixed:choice>
177

CHAPTER 8 | Binding Interfaces to a Payload Format
Example 51 shows an Artix contract fragment mapping a choice complex

type to a fixed record length message.

Example 51:Mapping a Union to a Fixed Record Length Message

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="fixedMappingsample"

targetNamespace="http://www.iona.com/FixedService"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:fixed="http://schemas.iona.com/bindings/fixed"
 xmlns:tns="http://www.iona.com/FixedService"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<types>
 <schema targetNamespace="http://www.iona.com/FixedService"

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <xsd:complexType name="unionStationType">
 <xsd:choice>
 <xsd:element name="train" type="xsd:string"/>
 <xsd:element name="bus" type="xsd:int"/>
 <xsd:element name="cab" type="xsd:int"/>
 <xsd:element name="subway" type="xsd:string"/>
 </xsd:choice>
 </xsd:complexType>
...
</types>
<message name="fixedSequence">
 <part name="stationPart" type="tns:unionStationType"/>
</message>
<portType name="fixedSequencePortType">
...
</portType>
<binding name="fixedSequenceBinding"
 type="tns:fixedSequencePortType">
 <fixed:binding/>
...
 <fixed:field name="disc" format="##" bindingOnly="true"/>
 178

Adding a Fixed Binding
fixed:sequence fixed:sequence maps sequence complext types to a fixed record length

message. To map a sequence complex type to a fixed:sequence:

1. Add a fixed:sequnce child element to the fixed:body element.

2. Set the fixed:sequence element’s name attribute to the name of the

logical message part being mapped.

3. For each element in the logical definition of the message part, add a

child element to define the mapping for the part’s type to the physical

fixed message.

The child elements used to map the part’s type to the fixed message

are the same as the possible child elements of a fixed:body element.

As with a fixed:body element, a fixed:sequence is made up of

fixed:field elements to describe simple types, fixed:choice elements to

describe choice complex types, and fixed:sequence elements to

describe sequence complex types.

4. If any elements of the logical data definition have occurrence

constraints, see “Defining Data Structures” on page 99, map the

element into a fixed:sequence element with its occurs and

counterName attributes set.

 <fixed:choice name="stationPart"
 descriminatorName="disc">
 <fixed:case name="train" fixedValue="01">
 <fixed:field name="name" size="20"/>
 </fixed:case>
 <fixed:case name="bus" fixedValue="02">
 <fixed:field name="number" format="###"/>
 </fixed:case>
 <fixed:case name="cab" fixedValue="03">
 <fixed:field name="number" format="###"/>
 </fixed:case>
 <fixed:case name="subway" fixedValue="04">
 <fixed:field name="name" format="10"/>
 </fixed:case>
 </fixed:choice>
...
</binding>
...
</definition>

Example 51:Mapping a Union to a Fixed Record Length Message
179

CHAPTER 8 | Binding Interfaces to a Payload Format
The occurs attribute specifies the number of times this sequence

occurs in the message buffer. counterName specifies the name of the

field used for specifying the number of sequence elements that are

actually being sent in the message. The value of counterName

corresponds to a binding only fixed:field with at least enough digits

to count to the value specified in occurs as shown in Example 52. The

value passed to the counter field can be any number up to the value

specified by occurs and allows operations to use less than the

specified number of sequence elements. Artix will pad out the

sequence to the number of elements specified by occurs when the data

is transmitted to the receiver so that the receiver will get the data in

the promised fixed format.

For example, a structure containing a name, a date, and an ID number

would contain three fixed:field elements to fully describe the mapping of

the data to the fixed record message. Example 53 shows an Artix contract

fragment for such a mapping.

Example 52:Using counterName

<fixed:field name="count" format="##" bindingOnly="true"/>
<fixed:sequence name="items" counterName="count" occurs="10">
...
</fixed:sequence>

Example 53:Mapping a Sequence to a Fixed Record Length Message

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="fixedMappingsample"

targetNamespace="http://www.iona.com/FixedService"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:fixed="http://schemas.iona.com/bindings/fixed"
 xmlns:tns="http://www.iona.com/FixedService"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<types>
 <schema targetNamespace="http://www.iona.com/FixedService"

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 180

Adding a Fixed Binding
Example Example 54 shows an example of an Artix contract containing a fixed record

length message binding.

 <xsd:complexType name="person">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="date" type="xsd:string"/>
 <xsd:element name="ID" type="xsd:int"/>
 </xsd:sequence>
 </xsd:complexType>
...
</types>
<message name="fixedSequence">
 <part name="personPart" type="tns:person"/>
</message>
<portType name="fixedSequencePortType">
...
</portType>
<binding name="fixedSequenceBinding"
 type="tns:fixedSequencePortType">
 <fixed:binding/>
...
 <fixed:sequence name="personPart">
 <fixed:field name="name" size="20"/>
 <fixed:field name="date" format="MM/DD/YY"/>
 <fixed:field name="ID" format="#####"/>
 </fixed:sequence>
...
</binding>
...
</definition>

Example 53:Mapping a Sequence to a Fixed Record Length Message

Example 54:Fixed Record Length Message Binding

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"
 targetNamespace="http://widgetVendor.com/widgetOrderForm"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://widgetVendor.com/widgetOrderForm"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:fixed="http://schemas.iona.com/binings/fixed"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://widgetVendor.com/types/widgetTypes">
181

CHAPTER 8 | Binding Interfaces to a Payload Format
 <types>
 <schema targetNamespace="http://widgetVendor.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <xsd:simpleType name="widgetSize">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="big"/>
 <xsd:enumeration value="large"/>
 <xsd:enumeration value="mungo"/>
 <xsd:enumeration value="gargantuan"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:complexType name="Address">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="street1" type="xsd:string"/>
 <xsd:element name="street2" type="xsd:string"/>
 <xsd:element name="city" type="xsd:string"/>
 <xsd:element name="state" type="xsd:string"/>
 <xsd:element name="zipCode" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="widgetOrderInfo">
 <xsd:sequence>
 <xsd:element name="amount" type="xsd:int"/>
 <xsd:element name="order_date" type="xsd:string"/>
 <xsd:element name="type" type="xsd1:widgetSize"/>
 <xsd:element name="shippingAddress" type="xsd1:Address"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="widgetOrderBillInfo">
 <xsd:sequence>
 <xsd:element name="amount" type="xsd:int"/>
 <xsd:element name="order_date" type="xsd:string"/>
 <xsd:element name="type" type="xsd1:widgetSize"/>
 <xsd:element name="amtDue" type="xsd:float"/>
 <xsd:element name="orderNumber" type="xsd:string"/>
 <xsd:element name="shippingAddress" type="xsd1:Address"/>
 </xsd:sequence>
 </xsd:complexType>
 </schema>
 </types>
 <message name="widgetOrder">
 <part name="widgetOrderForm" type="xsd1:widgetOrderInfo"/>
 </message>

Example 54:Fixed Record Length Message Binding (Continued)
 182

Adding a Fixed Binding
 <types>
 <schema targetNamespace="http://widgetVendor.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <xsd:simpleType name="widgetSize">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="big"/>
 <xsd:enumeration value="large"/>
 <xsd:enumeration value="mungo"/>
 <xsd:enumeration value="gargantuan"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:complexType name="Address">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="street1" type="xsd:string"/>
 <xsd:element name="street2" type="xsd:string"/>
 <xsd:element name="city" type="xsd:string"/>
 <xsd:element name="state" type="xsd:string"/>
 <xsd:element name="zipCode" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="widgetOrderInfo">
 <xsd:sequence>
 <xsd:element name="amount" type="xsd:int"/>
 <xsd:element name="order_date" type="xsd:string"/>
 <xsd:element name="type" type="xsd1:widgetSize"/>
 <xsd:element name="shippingAddress" type="xsd1:Address"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="widgetOrderBillInfo">
 <xsd:sequence>
 <xsd:element name="amount" type="xsd:int"/>
 <xsd:element name="order_date" type="xsd:string"/>
 <xsd:element name="type" type="xsd1:widgetSize"/>
 <xsd:element name="amtDue" type="xsd:float"/>
 <xsd:element name="orderNumber" type="xsd:string"/>
 <xsd:element name="shippingAddress" type="xsd1:Address"/>
 </xsd:sequence>
 </xsd:complexType>
 </schema>
 </types>
 <message name="widgetOrder">
 <part name="widgetOrderForm" type="xsd1:widgetOrderInfo"/>
 </message>

Example 54:Fixed Record Length Message Binding (Continued)
183

CHAPTER 8 | Binding Interfaces to a Payload Format
 <message name="widgetOrderBill">
 <part name="widgetOrderConformation" type="xsd1:widgetOrderBillInfo"/>
 </message>
 <portType name="orderWidgets">
 <operation name="placeWidgetOrder">
 <input message="tns:widgetOrder" name="order"/>
 <output message="tns:widgetOrderBill" name="bill"/>
 </operation>
 </portType>
 <binding name="orderWidgetsBinding" type="tns:orderWidgets">
 <fixed:binding/>
 <operation name="placeWidgetOrder">
 <fixed:operation discriminator="widgetDisc"/>
 <input name="widgetOrder">
 <fixed:body>
 <fixed:sequence name="widgetOrderForm">
 <fixed:field name="amount" format="###"/>
 <fixed:field name="order_date" format="MM/DD/YYYY"/>
 <fixed:field name="type" size="2">
 <fixed:enumeration value="big" fixedValue="bg"/>
 <fixed:enumeration value="large" fixedValue="lg"/>
 <fixed:enumeration value="mungo" fixedValue="mg"/>
 <fixed:enumeration value="gargantuan" fixedValue="gg"/>
 </fixed:field>
 <fixed:sequence name="shippingAddress">
 <fixed:field name="name" size="30"/>
 <fixed:field name="street1" size="100"/>
 <fixed:field name="street2" size="100"/>
 <fixed:field name="city" size="20"/>
 <fixed:field name="state" size="2"/>
 <fixed:field name="zip" size="5"/>
 </fixed:sequence>
 </fixed:sequence>
 </fixed:body>
 </input>

Example 54:Fixed Record Length Message Binding (Continued)
 184

Adding a Fixed Binding
 <output name="widgetOrderBill">
 <fixed:body>
 <fixed:sequence name="widgetOrderConformation">
 <fixed:field name="amount" format="###"/>
 <fixed:field name="order_date" format="MM/DD/YYYY"/>
 <fixed:field name="type" size="2">
 <fixed:enumeration value="big" fixedValue="bg"/>
 <fixed:enumeration value="large" fixedValue="lg"/>
 <fixed:enumeration value="mungo" fixedValue="mg"/>
 <fixed:enumeration value="gargantuan" fixedValue="gg"/>
 </fixed:field>
 <fixed:field name="amtDue" format="####.##"/>
 <fixed:field name="orderNumber" size="20"/>
 <fixed:sequence name="shippingAddress">
 <fixed:field name="name" size="30"/>
 <fixed:field name="street1" size="100"/>
 <fixed:field name="street2" size="100"/>
 <fixed:field name="city" size="20"/>
 <fixed:field name="state" size="2"/>
 <fixed:field name="zip" size="5"/>
 </fixed:sequence>
 </fixed:sequence>
 </fixed:body>
 </output>
 </operation>
 </binding>
 <service name="orderWidgetsService">
 <port name="widgetOrderPort" binding="tns:orderWidgetsBinding">
 <http:address location="http://localhost:8080"/>
 </port>
 </service>
</definitions>

Example 54:Fixed Record Length Message Binding (Continued)
185

CHAPTER 8 | Binding Interfaces to a Payload Format
Adding a Tagged Binding

Overview The tagged data format supports applications that use self-describing, or

delimited, messages to communicate. Artix can read tagged data and write

it out in any supported data format. Similarly, Artix is capable of converting

a message from any of its supported data formats into a self-describing or

tagged data message.

Artix provides several ways of a creating a contract with a tagged binding:

• The Artix Designer can create a contract with a tagged binding from a

description of the tagged data. See “Creating a Contract from a Data

Set” on page 69.

• The Artix Designer can create a tagged binding for an existing interface

automatically. See “Using the Artix Desinger” on page 186.

• You can enter the binding information using any text editor or XML

editor. See “Hand editing” on page 191.

Using the Artix Desinger To add a tagged binding from the Artix Designer Diagram view:

1. Right-click the Bindings node to activate the pop-up window.

2. Select New Binding to bring up the Select Source Resources window.

3. Select at least one contract from the list to act as a source for

interfaces.

All of the interfaces in the selected contracts will be made available to

you later. The contracts will also be imported to the target resource

using WSDL import elements.

4. Click Next to display the Select Binding Type window, shown in

Figure 53 on page 138

5. Select Tagged.
 186

Adding a Tagged Binding
6. Click Next to bring up the Set Binding Defaults window, shown in

Figure 60.

7. Select the interface to mapped to the binding from the Port Type

drop-down list.

8. Enter a name for the binding in the Binding Name field.

9. Select the character to use a separator between data fields from the

Field Separator drop-down list.

10. Select the character that will separate field names and their associated

data values from the Field Name Value Separator drop-down list.

11. Select a character to use in scoping the data from the Scope Type

drop-down list.

12. Select a character to signify the beginning of a message from the Start

Type drop-down list.

Figure 60: Setting the Default Values for a Tagged Binding
187

CHAPTER 8 | Binding Interfaces to a Payload Format
13. Select a character to signify the end of a message from the End Type

drop-down list.

14. Under Attributes, select the true/false attributes to activate for the

tagged binding. See “tagged:binding” on page 192.

15. Click Next to bring up the Edit Binding window, shown in Figure 61.

Figure 61: Editing the Operations in the Fixed Binding
 188

Adding a Tagged Binding
16. Select one of the operations from the tree on the left to display its

attributes, shown in Figure 62.

17. Specify a discriminator for the operation in the Discriminator field. See

“tagged:operation” on page 193.

18. Select one of the operation’s messages from the Messages table.

Figure 62: Editing the Tagged Binding Settings for an Operation
189

CHAPTER 8 | Binding Interfaces to a Payload Format
19. Click Edit to bring up the message editor shown in Figure 63.

20. Edit the attributes for the message. See “tagged:body” on page 194.

21. Repeat step 20 for each message in the operation.

22. Repeat from step 16 until all operation in the interface have been

edited.

23. Click Finish.

Figure 63: Editing a Message’s Tagged Binding Settings
 190

Adding a Tagged Binding
Hand editing To map a logical interface to a tagged data format:

1. Add the proper namespace reference to the definition element of

your contract. See “Tagged binding namespace” on page 191.

2. Add a WSDL binding element to your contract to hold the tagged

binding, give the binding a unique name, and specify the port type that

represents the interface being bound.

3. Add a tagged:binding element as a child of the new binding element

to identify this as a tagged binding and set the element’s attributes to

properly configure the binding.

4. For each operation defined in the bound interface, add a WSDL

operation element to hold the binding information for the operation’s

messages.

5. For each operation added to the binding, add a tagged:operation child

element to the operation element.

6. For each operation added to the binding, add the input, output, and

fault children elements to represent the messages used by the

operation. These elements correspond to the messages defined in the

port type definition of the logical operation.

7. For each input, output, and fault element in the binding, add a

tagged:body child element to define how the message parts are

mapped into the concrete tagged data payload.

Tagged binding namespace The IONA extensions used to describe tagged data bindings are defined in

the namespace http://schemas.iona.com/bindings/tagged. Artix tools

use the prefix tagged to represent the tagged data extensions. Add the

following line to the definitions element of your contract:

xmlns:tagged="http://schemas.iona.com/bindings/tagged"
191

CHAPTER 8 | Binding Interfaces to a Payload Format
tagged:binding tagged:binding specifies that the binding is for tagged data format

messages. Its ten attributes are explained in Table 9.

Table 9: Attributes for tagged:binding

Attribute Purpose

selfDescribing Required attribute specifying if the
message data on the wire includes the field
names. Valid values are true or false. If
this attribute is set to false, the setting for
fieldNameValueSeparator is ignored.

fieldSeparator Required attribute that specifies the
delimiter the message uses to separate
fields. Supported values are newline(\n),
comma(,), semicolon(;), and pipe(|).

fieldNameValueSeparator Specifies the delimiter used to separate
field names from field values in
self-describing messages. Supported vales
are: equals(=), tab(\t), and colon(:).

scopeType Specifies the scope identifier for complex
messages. Supported values are tab(\t),
curlybrace({data}), and none. The default
is tab.

flattened Specifies if data structures are flattened
when they are put on the wire. If
selfDescribing is false, then this
attribute is automatically set to true.

messageStart Specifies a special token at the start of a
message. It is used when messages that
require a special character at the start of a
the data sequence. Currently the only
supported value is star(*).

messageEnd Specifies a special token at the end of a
message. Supported values are newline(\n)
and percent(%).
 192

Adding a Tagged Binding
The settings for the attributes on these elements become the default settings

for all the messages being mapped to the current binding.

tagged:operation tagged:operation is a child element of the WSDL operation element and

specifies that the operation’s messages are being mapped to a tagged data

format. It takes two optional attributes that are described in Table 10.

unscopedArrayElement Specifies if array elements need to be
scoped as children of the array. If set to
true arrays take the form
echoArray{myArray=2;item=abc;item=def

}. If set to false arrays take the form
echoArray{myArray=2;{0=abc;1=def;}}.
Default is false.

ignoreUnknownElements Specifies if Artix ignores undefined element
in the message payload. Default is false.

ignoreCase Specifies if Artix ignores the case with
element names in the message payload.
Default is false.

Table 9: Attributes for tagged:binding (Continued)

Attribute Purpose

Table 10: Attributes for tagged:operation

Attribute Purpose

discriminator Specifies a discriminator for identifying the
operation as it is sent down the wire by the
Artix runtime.

discriminatorStyle Specifies how the discriminator will identify
data as it is sent down the wire by the Artix
runtime. Supported values are msgname,
partlist, and fieldname.
193

CHAPTER 8 | Binding Interfaces to a Payload Format
tagged:body tagged:body is a child element of the input, output, and fault messages

being mapped to a tagged data format. It specifies that the message body is

mapped to tagged data on the wire and describes the exact mapping for the

message’s parts.

tagged:body will have one or more of the following child elements:

• tagged:field

• tagged:sequence

• tagged:choice

They describe the detailed mapping of the message to the tagged data to be

sent on the wire.

tagged:field tagged:field is used to map simple types and enumerations to a tagged

data format. Its two attributes are described in Table 11.

When describing enumerated types tagged:field will have a number of

tagged:enumeration child elements.

tagged:enumeration tagged:enumeration is a child element of taggeded:field and is used to

map enumerated types to a tagged data format. It takes one required

attribute, value, that corresponds to the enumeration value as specified in

the logical description of the enumerated type.

Table 11: Attributes for tagged:field

Attribute Purpose

name A required attribute that must correspond to the name
of the logical message part that is being mapped to
the tagged data field.

alias An optional attribute specifying an alias for the field
that can be used to identify it on the wire.
 194

Adding a Tagged Binding
For example, if you had an enumerated type, flavorType, with the values

FruityTooty, Rainbow, BerryBomb, and OrangeTango the logical description

of the type would be similar to Example 55.

flavorType would be mapped to the tagged data format shown in

Example 56.

tagged:sequence taggeded:sequence maps arrays and sequences to a tagged data format.

Its three attributes are described in Table 12.

Example 55: Ice Cream Enumeration

<xs:simpleType name="flavorType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="FruityTooty"/>
 <xs:enumeration value="Rainbow"/>
 <xs:enumeration value="BerryBomb"/>
 <xs:enumeration value="OrangeTango"/>
 </xs:restriction>
</xs:simpleType>

Example 56:Tagged Data Ice Cream Mapping

<tagged:field name="flavor">
 <tagged:enumeration value="FruityTooty"/>
 <tagged:enumeration value="Rainbow"/>
 <tagged:enumeration value="BerryBomb"/>
 <tagged:enumeration value="OrangeTango"/>
</tagged:field>

Table 12: Attributes for tagged:sequence

Attributes Purpose

name A required attribute that must correspond to the name
of the logical message part that is being mapped to
the tagged data sequence.

alias An optional attribute specifying an alias for the
sequence that can be used to identify it on the wire.

occurs An optional attribute specifying the number of times
the sequence appears. This attribute is used to map
arrays.
195

CHAPTER 8 | Binding Interfaces to a Payload Format
A tagged:sequence can contain any number of tagged:field,

tagged:sequence, or tagged:choice child elements to describe the data

contained within the sequence being mapped. For example, a structure

containing a name, a date, and an ID number would contain three

tagged:field elements to fully describe the mapping of the data to the fixed

record message. Example 57 shows an Artix contract fragment for such a

mapping.

Example 57:Mapping a Sequence to a Tagged Data Format

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="taggedDataMappingsample"

targetNamespace="http://www.iona.com/taggedService"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:fixed="http://schemas.iona.com/bindings/tagged"
 xmlns:tns="http://www.iona.com/taggedService"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<types>
 <schema targetNamespace="http://www.iona.com/taggedService"

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <xsd:complexType name="person">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="date" type="xsd:string"/>
 <xsd:element name="ID" type="xsd:int"/>
 </xsd:sequence>
 </xsd:complexType>
...
</types>
<message name="taggedSequence">
 <part name="personPart" type="tns:person"/>
</message>
<portType name="taggedSequencePortType">
...
</portType>
<binding name="taggedSequenceBinding"
 type="tns:taggedSequencePortType">
 <tagged:binding selfDescribing="false" fieldSeparator="pipe"/>
...
 196

Adding a Tagged Binding
tagged:choice tagged:choice maps unions to a tagged data format. Its three attributes are

described in .

A tagged:choice may contain one or more tagged:case child elements to

map the cases for the union to a tagged data format.

tagged:case tagged:case is a child element of tagged:choice and describes the

complete mapping of a union’s individual cases to a tagged data format. It

takes one required attribute, name, that corresponds to the name of the case

element in the union’s logical description.

 <tagged:sequence name="personPart">
 <tagged:field name="name"/>
 <tagged:field name="date"/>
 <tagged:field name="ID"/>
 </tagged:sequence>
...
</binding>
...
</definition>

Example 57:Mapping a Sequence to a Tagged Data Format

Table 13: Attributes for tagged:choice

Attributes Purpose

name A required attribute that must correspond to
the name of the logical message part that is
being mapped to the tagged data union.

discriminatorName Specifies the message part used as the
discriminator for the union.

alias An optional attribute specifying an alias for the
union that can be used to identify it on the
wire.
197

CHAPTER 8 | Binding Interfaces to a Payload Format
tagged:case must contain one child element to describe the mapping of the

case’s data to a tagged data format. Valid child elements are tagged:field,

tagged:sequence, and tagged:choice. Example 58 shows an Artix contract

fragment mapping a union to a tagged data format.

Example 58:Mapping a Union to a Tagged Data Format

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="fixedMappingsample"

targetNamespace="http://www.iona.com/tagService"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:fixed="http://schemas.iona.com/bindings/tagged"
 xmlns:tns="http://www.iona.com/tagService"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<types>
 <schema targetNamespace="http://www.iona.com/tagService"

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <xsd:complexType name="unionStationType">
 <xsd:choice>
 <xsd:element name="train" type="xsd:string"/>
 <xsd:element name="bus" type="xsd:int"/>
 <xsd:element name="cab" type="xsd:int"/>
 <xsd:element name="subway" type="xsd:string"/>
 </xsd:choice>
 </xsd:complexType>
...
</types>
<message name="tagUnion">
 <part name="stationPart" type="tns:unionStationType"/>
</message>
<portType name="tagUnionPortType">
...
</portType>
<binding name="tagUnionBinding" type="tns:tagUnionPortType">
 <tagged:binding selfDescribing="false"
 fieldSeparator="comma"/>
...
 198

Adding a Tagged Binding
Example Example 59 shows an example of an Artix contract containing a tagged data

format binding.

 <tagged:choice name="stationPart" descriminatorName="disc">
 <tagged:case name="train">
 <tagged:field name="name"/>
 </tagged:case>
 <tagged:case name="bus">
 <tagged:field name="number"/>
 </tagged:case>
 <tagged:case name="cab">
 <tagged:field name="number"/>
 </tagged:case>
 <tagged:case name="subway">
 <tagged:field name="name"/>
 </tagged:case>
 </tagged:choice>
...
</binding>
...
</definition>

Example 58:Mapping a Union to a Tagged Data Format

Example 59:Tagged Data Format Binding

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"
 targetNamespace="http://widgetVendor.com/widgetOrderForm"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://widgetVendor.com/widgetOrderForm"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:taged="http://schames.iona.com/binings/tagged"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://widgetVendor.com/types/widgetTypes">
 <types>
 <schema targetNamespace="http://widgetVendor.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
199

CHAPTER 8 | Binding Interfaces to a Payload Format
 <xsd:simpleType name="widgetSize">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="big"/>
 <xsd:enumeration value="large"/>
 <xsd:enumeration value="mungo"/>
 <xsd:enumeration value="gargantuan"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:complexType name="Address">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="street1" type="xsd:string"/>
 <xsd:element name="street2" type="xsd:string"/>
 <xsd:element name="city" type="xsd:string"/>
 <xsd:element name="state" type="xsd:string"/>
 <xsd:element name="zipCode" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="widgetOrderInfo">
 <xsd:sequence>
 <xsd:element name="amount" type="xsd:int"/>
 <xsd:element name="order_date" type="xsd:string"/>
 <xsd:element name="type" type="xsd1:widgetSize"/>
 <xsd:element name="shippingAddress" type="xsd1:Address"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="widgetOrderBillInfo">
 <xsd:sequence>
 <xsd:element name="amount" type="xsd:int"/>
 <xsd:element name="order_date" type="xsd:string"/>
 <xsd:element name="type" type="xsd1:widgetSize"/>
 <xsd:element name="amtDue" type="xsd:float"/>
 <xsd:element name="orderNumber" type="xsd:string"/>
 <xsd:element name="shippingAddress" type="xsd1:Address"/>
 </xsd:sequence>
 </xsd:complexType>
 </schema>
 </types>
 <message name="widgetOrder">
 <part name="widgetOrderForm" type="xsd1:widgetOrderInfo"/>
 </message>
 <message name="widgetOrderBill">
 <part name="widgetOrderConformation" type="xsd1:widgetOrderBillInfo"/>
 </message>

Example 59:Tagged Data Format Binding (Continued)
 200

Adding a Tagged Binding
 <portType name="orderWidgets">
 <operation name="placeWidgetOrder">
 <input message="tns:widgetOrder" name="order"/>
 <output message="tns:widgetOrderBill" name="bill"/>
 </operation>
 </portType>
 <binding name="orderWidgetsBinding" type="tns:orderWidgets">
 <tagged:binding selfDescribing="false" fieldSeparator="pipe"/>
 <operation name="placeWidgetOrder">
 <tagged:operation discriminator="widgetDisc"/>
 <input name="widgetOrder">
 <tagged:body>
 <tagged:sequence name="widgetOrderForm">
 <tagged:field name="amount"/>
 <tagged:field name="order_date"/>
 <tagged:field name="type" >
 <tagged:enumeration value="big"/>
 <tagged:enumeration value="large"/>
 <tagged:enumeration value="mungo"/>
 <tagged:enumeration value="gargantuan"/>
 </tagged:field>
 <tagged:sequence name="shippingAddress">
 <tagged:field name="name"/>
 <tagged:field name="street1"/>
 <tagged:field name="street2"/>
 <tagged:field name="city"/>
 <tagged:field name="state"/>
 <tagged:field name="zip"/>
 </tagged:sequence>
 </tagged:sequence>
 </tagged:body>
 </input>

Example 59:Tagged Data Format Binding (Continued)
201

CHAPTER 8 | Binding Interfaces to a Payload Format
 <output name="widgetOrderBill">
 <tagged:body>
 <tagged:sequence name="widgetOrderConformation">
 <tagged:field name="amount"/>
 <tagged:field name="order_date"/>
 <tagged:field name="type">
 <tagged:enumeration value="big"/>
 <tagged:enumeration value="large"/>
 <tagged:enumeration value="mungo"/>
 <tagged:enumeration value="gargantuan"/>
 </tagged:field>
 <tagged:field name="amtDue"/>
 <tagged:field name="orderNumber"/>
 <tagged:sequence name="shippingAddress">
 <tagged:field name="name"/>
 <tagged:field name="street1"/>
 <tagged:field name="street2"/>
 <tagged:field name="city"/>
 <tagged:field name="state"/>
 <tagged:field name="zip"/>
 </tagged:sequence>
 </tagged:sequence>
 </tagged:body>
 </output>
 </operation>
 </binding>
 <service name="orderWidgetsService">
 <port name="widgetOrderPort" binding="tns:orderWidgetsBinding">
 <http:address location="http://localhost:8080"/>
 </port>
 </service>
</definitions>

Example 59:Tagged Data Format Binding (Continued)
 202

Adding a TibrvMsg Binding
Adding a TibrvMsg Binding

Overview Tibco Rendezvous applications typically use a Tibco specific data format

called a TibrvMsg. Artix provides a very flexible mechanism for mapping

messages into the TibrvMsg format. This allows you to integrate with

existing Tibco/RV applications by service enabling them.

The TibrvMsg binding provides default mappings for most XML Schema

constructs to simplify defining a TibrvMsg in an Artix contract. The TibrvMsg

binding also supports custom mappings between the messages defined in

an Artix contract and the physical representation of a TibrvMsg. Custom

mappings also support the inclusion of static binding-only data.

To further extend the functionality of the TibrvMsg binding, Artix includes a

mechanism for passing context data stored in an Artix application as part of

a TibrvMsg. For more information about using Artix contexts see either

Developing Artix Applications in C++ or Developing Artix Applications in

Java.

In this section This section discusses the following topics:

Defining a TibrvMsg Binding page 204

Defining Array Mapping Policies page 211

Defining a Custom TibrvMsg Mapping page 216

Adding Context Information to a TibrvMsg page 234
203

../prog_guide/index.htm
../java_pguide/index.htm
../java_pguide/index.htm

CHAPTER 8 | Binding Interfaces to a Payload Format
Defining a TibrvMsg Binding

Overview The Artix TibrvMsg binding provides a set of default mappings to make

writing a binding simple. By default, messages are mapped into a root

TibrvMsg such that parts defined using XML Schema native types become

TibrvMsgFields of the root TibrvMsg and parts defined using complex types

become TibrvMsgs within the root message. The elements comprising a

complex type also follow the same default mapping behavior. The default

mappings will work for most basic applications. For a detailed explanation

of how WSDL types are mapped to TibrvMsg see “TibrvMsg Default

Mappings” on page 445.

Procedure To map a logical interface to a TibrvMsg:

1. Add the proper namespace reference to the definition element of

your contract. See “TibrvMsg binding namespace” on page 205.

2. Add a WSDL binding element to your contract to hold the TibrvMsg

binding, give the binding a unique name, and specify the port type that

represents the interface being bound.

3. Add a tibrv:binding element as a child of the new binding element to

identify this as a TibrvMsg binding and specify any global parameters.

4. For each operation defined in the bound interface, add a WSDL

operation element to hold the binding information for the operation’s

messages.

5. For each operation in the binding, add a tibrv:operation child element

and set its attributes.

6. For each operation in the binding, add the input, output, and fault

children elements to represent the messages used by the operation.

These elements correspond to the messages defined in the port type

definition of the logical operation.

7. For each input element in the binding, add a tibrv:input child element

and set its attributes.

8. For each output element in the binding, add a tibrv:output child

element and set its attributes.
 204

Adding a TibrvMsg Binding
9. To add custom message mappings see “Defining a Custom TibrvMsg

Mapping” on page 216.

TibrvMsg binding namespace The IONA extensions used to describe TibrvMsg bindings are defined in the

namespace http://schemas.iona.com/transports/tibrv. Artix tools use

the prefix tibrv to represent the tagged data extensions. Add the following

line to the definitions element of your contract:

tibrv:binding tibrv:binding is an imediate child of the WSDL binding element and

identifies that the data is to be packed into a TibrvMsg. Its attributes are

described in Table 14.

In addition to the above properties, tibrv:binding can also specify a policy

for how array data is handled for messages using the binding. The array

policy is set using a child tibrv:array element. The array policy set at the

binding level can be overridden on a per-operation basis, per-message basis,

and a per-type basis. For information on defining array policies see “Defining

Array Mapping Policies” on page 211.

The tibrv:binding element can also define binding-only message data

using the tibrv:msg element, the tibrv:field element, or tibrv:context

element. Any binding-only data defined at the binding level is attached to all

messages that use the binding.

xmlns:tibrv="http://schemas.iona.com/transports/tibrv"

Table 14: Attributes for tibrv:binding

Attribute Purpose

stringEncoding An optional attribute that specifies the
character set used in encoding string data
included in the message. The default value
is utf-8.

stringAsOpaque An optional attribute that specifies how
string data is passed in messages. false,
the default value, specifies that strings data
is passed as TIRBMSG_STRING. true
specifies that string data is passed as
OPAQUE.
205

CHAPTER 8 | Binding Interfaces to a Payload Format
tibrv:operation tibrv:operation is the imediate child of a WSDL operation element.

tibrv:operation has no attributes. It can, however, specify an operation

specific array policy using a a child tibrv:array element. This array policy

overrides any array policy set at the binding level. For information on

defining array policies see “Defining Array Mapping Policies” on page 211.

Within a tibrv:operation element you can also define binding-only

message data using the tibrv:msg element, the tibrv:field element, or

tibrv:context element. Any binding-only data defined at the operation

level is attached to all messages that make up the operation.

tibrv:input tibrv:input is the imediate child of a WSDL input element and defines a

number of properties used in mapping the input message to a TibrvMsg. Its

attributes are described in Table 15.

Table 15: Attributes for tibrv:input

Attribute Purpose

messageNameFieldPath An optional attribute that specifies the field
path that includes the message name. If this
attribute is not specified, the first field in the
top level message will be used as the
message name and given the value
IT_BUS_MESSAGE_NAME.

messageNameFieldValue An optional attribute that specifies the field
value that corresponds to the message
name. If this attribute is not specified, the
WSDL message’s name will be used.

stringEncoding An optional attribute that specifies the
character set used in encoding string data
included in the message. This value will
override the value set in tibrv:binding.

stringAsOpaque An optional attribute that specifies how
string data is passed in the message. false
specifies that strings data is passed as
TIRBMSG_STRING. true specifies that string
data is passed as OPAQUE. This value will
override the value set in tibrv:binding.
 206

Adding a TibrvMsg Binding
In addition to the above properties, tibrv:input can also specify a policy

for how array data is handled for messages using the binding. The array

policy is set using a child tibrv:array element. The array policy set at this

level overrides any policies set at the binding level or the operation level. For

information on defining array policies see “Defining Array Mapping Policies”

on page 211.

The tibrv:input element also defines any custom mappings between the

WSDL messages defined in the contract and the physical TibrvMsg on the

wire. A custom mapping can also include binding-only message data and

context information. For information on defining custom data mappings see

“Defining a Custom TibrvMsg Mapping” on page 216.

tibrv:output tibrv:output is the imediate child of a WSDL output element and defines a

number of properties used in mapping the output message to a TibrvMsg. Its

attributes are described in Table 15.

Table 16: Attributes for tibrv:output

Attribute Purpose

messageNameFieldPath An optional attribute that specifies the field
path that includes the message name. If this
attribute is not specified, the first field in the
top level message will be used as the
message name and given the value
IT_BUS_MESSAGE_NAME.

messageNameFieldValue An optional attribute that specifies the field
value that corresponds to the message
name. If this attribute is not specified, the
WSDL message’s name will be used.

stringEncoding An optional attribute that specifies the
character set used in encoding string data
included in the message. This value will
override the value set in tibrv:binding.
207

CHAPTER 8 | Binding Interfaces to a Payload Format
In addition to the above properties, tibrv:output can also specify a policy

for how array data is handled for messages using the binding. The array

policy is set using a child tibrv:array element. The array policy set at this

level overides any policies set at the binding level or the operation level. For

information on defining array policies see “Defining Array Mapping Policies”

on page 211.

The tibrv:output element also defines any custom mappings between the

WSDL messages defined in the contract and the physical TibrvMsg on the

wire. A custom mapping can also include binding-only message data and

context information. For information on defining custom data mappings see

“Defining a Custom TibrvMsg Mapping” on page 216.

Example Example 60 shows an example of an Artix contract containing a default

TibrvMsg binding.

stringAsOpaque An optional attribute that specifies how
string data is passed in the message. false
specifies that strings data is passed as
TIRBMSG_STRING. true specifies that string
data is passed as OPAQUE. This value will
override the value set in tibrv:binding.

Table 16: Attributes for tibrv:output

Attribute Purpose

Example 60:Default TibrvMsg Binding

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"
 targetNamespace="http://widgetVendor.com/widgetOrderForm"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://widgetVendor.com/widgetOrderForm"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tibrv="http://schemas.iona.com/transports/tibrv"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://widgetVendor.com/types/widgetTypes">
 <types>
 <schema targetNamespace="http://widgetVendor.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 208

Adding a TibrvMsg Binding
 <xsd:complexType name="Address">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="street" type="xsd:string" minOccurs="1" maxOccurs="5"/>
 <xsd:element name="city" type="xsd:string"/>
 <xsd:element name="state" type="xsd:string"/>
 <xsd:element name="zipCode" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="widgetOrderInfo">
 <xsd:sequence>
 <xsd:element name="amount" type="xsd:int"/>
 <xsd:element name="order_date" type="xsd:string"/>
 <xsd:element name="type" type="xsd:string"/>
 <xsd:element name="shippingAddress" type="xsd1:Address"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="widgetOrderBillInfo">
 <xsd:sequence>
 <xsd:element name="amount" type="xsd:int"/>
 <xsd:element name="order_date" type="xsd:string"/>
 <xsd:element name="type" type="xsd:string"/>
 <xsd:element name="amtDue" type="xsd:float"/>
 <xsd:element name="orderNumber" type="xsd:string"/>
 <xsd:element name="shippingAddress" type="xsd1:Address"/>
 </xsd:sequence>
 </xsd:complexType>
 </schema>
 </types>
 <message name="widgetOrder">
 <part name="widgetOrderForm" type="xsd1:widgetOrderInfo"/>
 </message>
 <message name="widgetOrderBill">
 <part name="widgetOrderConformation" type="xsd1:widgetOrderBillInfo"/>
 </message>
 <portType name="orderWidgets">
 <operation name="placeWidgetOrder">
 <input message="tns:widgetOrder" name="order"/>
 <output message="tns:widgetOrderBill" name="bill"/>
 </operation>
 </portType>

Example 60:Default TibrvMsg Binding (Continued)
209

CHAPTER 8 | Binding Interfaces to a Payload Format
 <binding name="orderWidgetsBinding" type="tns:orderWidgets">
 <tibrv:binding/>
 <operation name="placeWidgetOrder">
 <tibrv:operation/>
 <input name="widgetOrder">
 <tibrv:input/>
 </input>
 <output name="widgetOrderBill">
 <tibrv:output/>
 </output>
 </operation>
 </binding>
 <service name="orderWidgetsService">
 <port name="widgetOrderPort" binding="tns:orderWidgetsBinding">
 ...
 </port>
 </service>
</definitions>

Example 60:Default TibrvMsg Binding (Continued)
 210

Adding a TibrvMsg Binding
Defining Array Mapping Policies

Overview Because TibrvMsg does not natively support sparsely populated arrays, the

Artix TibrvMsg binding allows you to define how array elements are mapped

into a TibrvMsg when they are written to the wire using the tibrv:array

element. In addition, the Artix TibrvMsg binding allows you to define the

naming schema used for array elements when they are mapped into

TibrvMsgField instances.

Policy scoping The tibrv:array element can define array properties at any level of

granuality by making it the child of different TibrvMsg binding elements.

Table 17 shows the effect of setting tibrv:array at different levels of a

binding.

Table 17: Effect of tibrv:array

Child of Effect

tibrv:binding Sets the array policies for all messages in the
binding.

tibrv:operation Array policies set at the operation level only affect
the messages defined within the parent operation
element. They override any array policies set at the
binding level.

tibrv:input Array policies set at this level only affect the input
message. They override any array policies set at the
binding or operation level.

tibrv:output Array policies set at this level only affect the output
message. They override any array policies set at the
binding or operation level.

tibrv:msg Array policies set at this level affect only the fields
defined within the tibrv:msg element. They override
any array policies set at higher levels.

tibrv:field Array policies set at this level affect only the
TibrvMsg field being defined. They override any
array policies set at higher levels.
211

CHAPTER 8 | Binding Interfaces to a Payload Format
Array policies The array policies are set using the attributes of tibrv:array. Table 18

describes the attributes used to set array policies.

Table 18: Attributes for tibrv:array

Attribute Purpose

elementName Specifies an expression that when
evaluated will be used as the name of the
TibrvMsg field to which array elements are
mapped. The default element naming
scheme is to concatenate the value of
WSDL element element’s name attribute
with a counter. For information on
specifying naming expressions see
“Custom array naming expressions” on
page 213.

integralAsSingleField Specifies how scalar array data is mapped
into TibrvMsgField instances. true, the
default, specifies that arrays are mapped
into a single TibrvMsgField. false specifies
that each member of an array is mapped
into a separate TibrvMsgField.

loadSize Specifies if the number of elements in an
array is included in the TibrvMsg. true
specifies that the number of elements in
the array is added as a TibrvMsgField in
the same TibrvMsg as the array. false, the
default, specifies that the number of
elements in the array is not included in the
TibrvMsg.

sizeName Specifies an expression that when
evaluated will be used as the name of the
TibrvMsgField to which the size of the
array is written. The default naming
scheme is to concatenate the value of
WSDL element element’s name attribute
with @size. For information on specifying
naming expressions see “Custom array
naming expressions” on page 213.
 212

Adding a TibrvMsg Binding
Sparse arrays A sparse array is an array with some of the elements set to nil. For instance,

if an array has 10 elements, the 3rd and fifth elements may be nil. Tibco/RV

has no way of natively representing sparse arrays or nil element members.

This presents two problems:

• Tibco/RV throws an exception when it encounters nil scalar values that

are mapped to a TibrvMsgField.

• There is no mechanism for maintaining the element positions of the

non-nil members of the array.

To solve both problems you would specify array policies such that the size of

the array is written to the wire and that each element of the array are written

to the wire as a separate TibrvMsgField. To specify that the array size is

written to the wire use loadSize="true". To specify that each member of

the array is written in a separate TibrvMsgField use

integralAsSingleField="false".

The resulting TibrvMsg would have one field for each non-nil member of the

array and a field specifying the size of the array. Artix can use this

information to reconstruct the sparse array when it is passed through the

TibrvMsg binding. A Tibco/RV application would need to implement the

logic to handle the information.

Custom array naming expressions When specifying a naming policy for array element names you use a string

expression that combines XML properties, strings, and custom naming

functions. For example, you could use the expression

concat(xml:attr(’name’), ’_’, counter(1,1)) to specify that each

element in the array street is named street_n.

Table 19 shows the available functions for use in building array element

names.

Table 19: Functions Used for Specifying TibrvMsg Array Element Names

Function Purpose

xml:attr(’attribute’) Inserts the value of the named
attribute.

concat(item1, item2, ...) Concatenates all of the elements
into a single string.
213

CHAPTER 8 | Binding Interfaces to a Payload Format
Example Example 61 shows an example of an Artix contract containing a TibrvMsg

binding that uses array policies. The policies are set at the binding level and:

• Force the name of the TibrvMsg containing array elements to be

named street0, street1,

• Write out the number of elements in each street array.

• Force each element of a street array to be written out as a separate

field.

counter(start, increment) Adds an increasing numerical
value. The counter starts at start
and increases by increment.

Table 19: Functions Used for Specifying TibrvMsg Array Element Names

Function Purpose

Example 61:TibrvMsg Binding with Array Policies Set

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"
 targetNamespace="http://widgetVendor.com/widgetOrderForm"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://widgetVendor.com/widgetOrderForm"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tibrv="http://schemas.iona.com/transports/tibrv"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://widgetVendor.com/types/widgetTypes">
 <types>
 <schema targetNamespace="http://widgetVendor.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <xsd:complexType name="Address">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="street" type="xsd:string" minOccurs="1" maxOccurs="5"
 nillable="true"/>
 <xsd:element name="city" type="xsd:string"/>
 <xsd:element name="state" type="xsd:string"/>
 <xsd:element name="zipCode" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </schema>
 </types>
 214

Adding a TibrvMsg Binding
 <message name="addressRequest">
 <part name="resident" type="xsd:string"/>
 </message>
 <message name="addressResponse">
 <part name="address" type="xsd1:Address"/>
 </message>
 <portType name="theFourOneOne">
 <operation name="lookUp">
 <input message="tns:addressRequest" name="request"/>
 <output message="tns:addressResponse" name="response"/>
 </operation>
 </portType>
 <binding name="lookUpBinding" type="tns:theFourOneOne">
 <tibrv:binding>
 <tibrv:array elementName="concat(xml:attr('name'), counter(0, 1))"
 integralsAsSingleField="false"
 loadSize="true"/>
 <\tibrv:binding>
 <operation name="lookUp">
 <tibrv:operation/>
 <input name="addressRequest">
 <tibrv:input/>
 </input>
 <output name="addressResponse">
 <tibrv:output/>
 </output>
 </operation>
 </binding>
 <service name="orderWidgetsService">
 <port name="widgetOrderPort" binding="tns:orderWidgetsBinding">
 ...
 </port>
 </service>
</definitions>

Example 61:TibrvMsg Binding with Array Policies Set (Continued)
215

CHAPTER 8 | Binding Interfaces to a Payload Format
Defining a Custom TibrvMsg Mapping

Overview For instances where the default mappings are insufficient to map the

TibrvMsgs to corresponding WSDL messages, you can define custom

mappings that allow you to specify exactly how the WSDL message parts

are mapped into a TibrvMsg. Custom TibrvMsg mappings allow you to:

• overriding the native XML Schema type specification of contract

elements.

• add binding-only elements to the TibrvMsg placed on the wire.

• placing globally used contract elements in higher levels of the binding.

• change how contract elements are mapped into nested TibrvMsg

structures.

Custom TibrvMsg binding elements are defined using a combination of

tibrv:msg elements and tibrv:field elements.

Contract elements vs.

binding-only elements

A contract element is an atomic piece of a message defined in the logical

description of the interface being bound. It can be a native XML Schema

type such as xsd:int, in which case it is mapped to a TibrvMsgField. Or it

can be an instance of a complex type, in which case it is mapped to a

TibrvMsg. For example, if a message has a part that is of type xsd:string,

the part is a contract element. In contract fragment shown in Example 62,

the message part title is a contract element that will be mapped to a

TibrvMsgField. The message part tale is a contract element that will be

mapped to a TibrvMsg that contains three TibrvMsgField entries.

Example 62:TibrvMsg Contract Elements

<types>
 ...
 <complextType name="leda">
 <sequence>
 <element name="castor" type="xsd:string"/>
 <element name="pollux" type="xsd:string"/>
 <element name="hellen" type="xsd:boolean"/>
 </sequence>
 </complexType>
 ...
</types>
 216

Adding a TibrvMsg Binding
A binding-only element is any artifact that is added to the message as part

of the binding. The main purpose of a binding-only element is to add data

required by a native Tibco application to a message produced by an Artix

application. Binding-only elements are not passed back into an Artix

application. However, a native Tibco application will have access to

binding-only elements.

Scoping You can add custom TibrvMsg binding elements to any of the TibrvMsg

binding elements. The order in which custom TibrvMsg binding elements

are serialized is as follows:

1. Immutable root TibrvMsg wrapper.

2. Custom elements defined in tibrv:binding are added for all

messages.

3. Custom elements defined in tibrv:operation for all messages used by

the WSDL operation.

4. Custom elements defined in tibrv:input or tibrv:output for the

specific message.

If you define a binding-only element in the tibrv:binding element, it will be

the first field in the TibrvMsg generated for all messages that are generated

by the binding. If you also added a binding-only field in the

tibrv:operation for the operation getHeader, messages used by getHeader

would have both binding only fields.

<message name="taleRequest">
 <part name="title" type="xsd:sting"/>
</message>
<message name="taleResponse">
 <part name="tale" type="xsd1:leda"/>
</message>

Example 62:TibrvMsg Contract Elements (Continued)

Note: If you add a custom mapped contract element at any scope above
the tibrv:input or the tibrv:output level, you must be certain that it is
part of the logical messages for all elements at a lower scope. For
example, if a contract element is given a custom mapping in a
tibrv:operation, the corresponding WSDL message must be used by
both the input and output messages. If it is not an exception will be
thrown.
217

CHAPTER 8 | Binding Interfaces to a Payload Format
Casting XMLSchema types If the default mapping between the type of a contract element and the type

of the corresponding TibrvMsgField is not appropriate, you can use the type

attribute of tibrv:field to change the type of the contract element. The

type attribute allows you to cast one native XML Schema type into another

native XML Schema type.

When the Artix finds a tibrv:field element whose name attribute

corresponds to a part defined in the contract, or an element of a complex

type used as a part, and whose type attribute is set, it will convert the

value of the message part into the specified type. For example, given the

contract fragment in Example 63, the value of casted would be converted

from an int to a string. So if casted had a value of 3, the TibrvMsg binding

would turn it into the string ’3’.

Example 63:Casting in a TibrvMsg Binding

<definitions ...>
 ...
 <message name="request">
 <part name="input1" type="xsd:int"/>
 </message>
 <portType name="castor">
 <operation name="ascend">
 <input message="tns:request" name="day"/>
 </operation>
 ...
 </portType>
 <binding name="castorTib" portType="castor">
 <tibrv:binding/>
 <operation name="ascend">
 <tibrv:operation/>
 <input message="tns:request" name="day">
 <tibrv:input>
 <tibrv:field name="input1" type="xsd:string"/>
 </tibrv:input>
 </input>
 </operation>
 ...
 </binding>
 ...
</definitions>
 218

Adding a TibrvMsg Binding
Table 20 shows the matrix of valid casts for native XML Schema types.

Table 20: Valid Casts for TibrvMsg Binding

Type Full Support Restricted Supporta

byte short, int, long,

float, double,

decimal, string,

boolean

unsignedByte,

usignedShort,

unsignedInt,

unsignedLong

unsignedByte short, usignedShort,

int, unsignedInt,

long, unsignedLong,

float, double,

decimal, string,

boolean

byte

short int, long, float,

double, decimal,

string, boolean

byte, unsignedByte,

usignedShort,

unsignedInt,

unsignedLong

unsignedShort byte, unsignedByte,

short

int, unsignedInt, long,

unsignedLong, float,

double, decimal, string,

boolean

int long, decimal,

string, boolean

byte, unsignedByte,

short, usignedShort,

unsignedInt,

unsignedLong, float,

double

unsignedInt long, unsignedLong,

decimal, string,

boolean

byte, unsignedByte,

short, usignedShort,

int, float, double

long decimal, string,

boolean

byte, unsignedByte,

short, usignedShort,

int, unsignedInt,

unsignedLong, float,

double
219

CHAPTER 8 | Binding Interfaces to a Payload Format
unsignedLong decimal, string,

boolean

byte, unsignedByte,

short, usignedShort,

int, unsignedInt, long,

float, double

float double, decimal,

string, boolean

byte, unsignedByte,

short, usignedShort,

int, unsignedInt, long,

unsignedLong

double decimal, string,

boolean

byte, unsignedByte,

short, usignedShort,

int, unsignedInt, long,

unsignedLong, float

decimal string, boolean byte, unsignedByte,

short, usignedShort,

int, unsignedInt, long,

unsignedLong, float,

double

stringb byte, unsignedByte,

short, usignedShort,

int, unsignedInt, long,

unsignedLong, float,

double, decimal,

boolean, QName, DateTime

boolean byte, unsignedByte,

short, usignedShort,

int, unsignedInt,

long, unsignedLong,

float, double

decimal, string

QName string

DateTime string

a. Must be within the appropriate value range.

b. In addition to a, the syntax must also conform

Table 20: Valid Casts for TibrvMsg Binding

Type Full Support Restricted Supporta
 220

Adding a TibrvMsg Binding
Adding binding-only elements to a

contract

As mentioned in “Scoping” on page 217, a binding-only element can be

added to a TibrvMsg binding at any point in its definition. Before adding a

binding-only element you should determine the proper placement for its

inclusion in the binding. For example, if you are interoperating with a Tibco

system that expects every message to have a header, you would most add

the header definition in the tibrv:binding element.

However, if the Tibco system required a static footer for every message, you

would need to add the footer to the tibrv:input and tibrv:output

elements. This is because of the serialization order of the elements in the

TibrvMsg binding. Elements are added to the serialized message from the

global scope to the local scope in order.

Binding-only elements are specified using a combination of tibrv:msg

elements and tibrv:field elements. When specifying a binding-only element

you need to specify a value for the alias attribute. The alias attribute

specifies the name of the generated TibrvMsg element. For tibrv:field

elements you also need to specify values for the type attribute and the

value attribute. The type attribute specifies the XML Schema type of the

element being added and the value attribute specifies the value to be

placed in the resulting TibrvMsgField.

Example 64 shows a TibrvMsg binding that adds a static header to each

message that is put on the wire.

Example 64:TibrvMsg Binding with Binding-only Elements

<binding name="headedTibcoBinding" portType="mythMaker">
 <tibrv:binding>
 <tibrv:msg alias="header">
 <tibrv:field alias="class" type="xs:string" value="greek"/>
 <tibrv:field alias="form" type="xs:string" value="poetry"/>
 </tibrv:msg>
 </tibrv:binding>
 <operation name="spinner">
 ...
 </operation>
 ...
</binding>
221

CHAPTER 8 | Binding Interfaces to a Payload Format
A message generated by the binding in Example 64 would have as its first

member a TibrvMsg called header as shown in Example 65.

Example 65:TibrvMsg with a Header

TibrvMsg
{
 TibrvMsgField
 {
 name = "header";
 id = 0;
 data.msg =
 {
 TibrvMsgField
 {
 name = "class";
 id = 0;
 data.str = "greek";
 size = sizeof(data);
 count = 1;
 type = TIBRVMSG_STRING;
 }
 TibrvMsgField
 {
 name = "form";
 id = 0;
 data.str = "poetry";
 size = sizeof(data);
 count = 1;
 type = TIBRVMSG_STRING;
 }
 }
 size = sizeof(data);
 count = 1;
 type = TIBRVMSG_MSG;
 }
...
}
 222

Adding a TibrvMsg Binding
Placing binding-only elements

between contract elements

In addition to adding extra-information at the beginning and ending of

messages, you can place binding-only elements between contract elements

in a message. For example, the default mapping of the message

taleResponse, defined in Example 62, would produce the TibrvMsg shown

in Example 66.

Example 66:Default TibrvMsg Example

TibrvMsg
{
 TibrvMsgField
 {
 name = "tale";
 id = 0;
 data.msg =
 {
 TibrvMsgField
 {
 name = "castor";
 id = 0;
 data.str = "This one is a horse trainer.";
 size = sizeof(data);
 count = 1;
 type = TIBRVMSG_STRING;
 }
 TibrvMsgField
 {
 name = "pollux";
 id = 0;
 data.str = "This one is a boxxer.";
 size = sizeof(data);
 count = 1;
 type = TIBRVMSG_STRING;
 }
 TibrvMsgField
 {
 name = "hellen";
 id = 0;
 data.str = "false";
 size = sizeof(data);
 count = 1;
 type = TIBRVMSG_BOOL;
 }
 }
223

CHAPTER 8 | Binding Interfaces to a Payload Format
If the Tibco application you are integrating with requires an additional

TibrvMsgField or an additional TibrvMsg between pollux and hellen, as

shown in Example 67, you could add it to the binding by redefining the

mapping of the entire contract element to include a binding-only element.

 size = sizeof(data);
 count = 1;
 type = TIBRVMSG_MSG;
 }
...
}

Example 66:Default TibrvMsg Example (Continued)

Example 67:TibrvMsg with added TibrvMsg Example

TibrvMsg
{
 TibrvMsgField
 {
 name = "tale";
 id = 0;
 data.msg =
 {
 TibrvMsgField
 {
 name = "castor";
 id = 0;
 data.str = "This one is a horse trainer.";
 size = sizeof(data);
 count = 1;
 type = TIBRVMSG_STRING;
 }
 TibrvMsgField
 {
 name = "pollux";
 id = 0;
 data.str = "This one is a boxxer.";
 size = sizeof(data);
 count = 1;
 type = TIBRVMSG_STRING;
 }
 224

Adding a TibrvMsg Binding
 TibrvMsgField
 {
 name = "clytemnestra";
 id = 0;
 data.msg =
 {
 TibrvMsgField
 {
 name = "father";
 id = 0;
 data.str = "tyndareus";
 size = sizeof(data);
 count = 1;
 type = TIBRVMSG_STRING;
 }
 TibrvMsgField
 {
 name = "husbands";
 id = 0;
 data.i32 = 2;
 size = sizeof(data);
 count = 1;
 type = TIBRVMSG_I32;
 }
 }
 size = sizeof(data);
 count = 1;
 type = TIBRVMSG_MSG;
 }
 TibrvMsgField
 {
 name = "hellen";
 id = 0;
 data.str = "false";
 size = sizeof(data);
 count = 1;
 type = TIBRVMSG_BOOL;
 }
 }
 size = sizeof(data);
 count = 1;
 type = TIBRVMSG_MSG;
 }
...
}

Example 67:TibrvMsg with added TibrvMsg Example
225

CHAPTER 8 | Binding Interfaces to a Payload Format
To add the binding-only element clytemnestra to the default binding of the

message leda:

1. Because the message leda is used as an output message, add a

tibrv:msg child element to the tibrv:output element.

2. Set the tibrv:msg element’s name attribute to the value of the

corresponding contract message part that uses the type leda.

3. Add a tibrv:field element as a child of the tibrv:msg element.

4. Set the new tibrv:field element’s name attribute to the value of the

corresponding element’s name attribute. In this instance, castor.

5. Repeat steps 3 and 4 for the second element, pollux, in leda.

6. To start the binding-only TibrvMsg element, add a tibrv:msg element

after the tibrv:field element for pollux.

7. Set the new tibrv:msg element’s alias attribute to clytemnestra.

8. Add a tibrv:field element as a child of the tibrv:msg element.

9. Set the tibrv:field element’s alias attribute to father.

10. Set the tibrv:field element’s type attribute to xsd:string.

11. Set the tibrv:field element’s value attribute to tyndareus.

12. Repeat steps 8 through 11 for the second TibrvMsgField in

clytemnestra.

13. On the same level as the tibrv:field elements mapping castor and

pollux, add a tibrv:field element to map helen.

Example 68 shows a binding for the message shown in Example 67.

Example 68:TibrvMsg Binding with an Added Binding-only Element

<binging name="tibBinding">
 <tibrv:binding/>
 <operation ...>
 <tibrv:operation/>
 <input ...>
 <tibrv:input/>
 </input>
 <output name="response" message="tns:taleResponse">
 <tibrv:output>
 <tibrv:msg name="tale">
 <tibrv:field name="castor"/>
 <tibrv:field name="pollux"/>
 226

Adding a TibrvMsg Binding
Creating a custom mapping for a

message defined in the contract

Using the tibrv:msg elements and tibrv:field elements you can change how

contract elements are broken into TibrvMsgs and TibrvMsgFields. For a

detailed discussion of the default TibrvMsg mapping see “TibrvMsg Default

Mappings” on page 445.

You can alter this default mapping to add more wrapping to the

TibrvMsgFields. For instance, if a message consists of a single xsd:string

part, it would be mapped to a TibrvMsg similar to the one shown in

Example 69.

 <tibrv:msg alias="clytemnestra">
 <tibrv:field alias="father" type="xsd:string"
 value="tyndareus"/>
 <tibrv:field alias="husbands" type="xsd:int"
 value="2"/>
 <tibrv:msg/>
 <tibrv:field name="hellen"/>
 </tibrv:msg>
 </tibrv:output>
 </output>
 </operation>
</binding>

Example 68:TibrvMsg Binding with an Added Binding-only Element

Example 69:TibrvMsg for a String

TibrvMsg
{
 TibrvMsgField
 {
 name = "electra";
 id = 0;
 data.str = "forelorn";
 size = sizeof(data);
 count = 1;
 type = TIBRVMSG_STRING;
 }
}

227

CHAPTER 8 | Binding Interfaces to a Payload Format
However, you could specify that instead of being mapped straight to a

TibrvMsgField, it be mapped to a TibrvMsg containing a TibrvMsgField as

shown in Example 70.

Example 70:TibrvMsg for with a TibrvMsg with a String

TibrvMsg
{
 TibrvMsgField
 {
 name = "grandchild";
 id = 0;
 data.msg =
 {
 TibrvMsgField
 {
 name = "electra";
 id = 0;
 data.str = "forelorn";
 size = sizeof(data);
 count = 1;
 type = TIBRVMSG_STRING;
 }
 size = sizeof(data);
 count = 1;
 type = TIBRVMSG_MSG;
 }
}

 228

Adding a TibrvMsg Binding
To increase the depth of the wrapping of contract elements you define a

custom TibrvMsg mapping that adds the desired number of levels. Each

new level of wrapping is specified by a tibrv:msg element. To create the

message shown in Example 70 you would use a binding definition similar to

the one shown in Example 71.

You can also use this feature to alter the wrapping of complex type

elements. For example, if you were using the message defined in

Example 62 the default TibrvMsg would consist of one TibrvMsg, leda,

containing 3 fields, one for each element in the structure, wrapped by the

root TibrvMsg. You could modify the mapping of the logical message to a

TibrvMsg the resembles the one shown in Example 72. The two elements

castor and pollux have been wrapped in a TibrvMsg called brothers.

Example 71:TibrvMsg Binding with an Extra TibrvMsg Level

<binging name="tibBinding">
 <tibrv:binding/>
 <operation ...>
 <tibrv:operation/>
 <input ...>
 <tibrv:input>
 <tibrv:msg alias="gradnchild">
 <tibrv:field name="electra" type="xsd:string"/>
 </tibrv:msg>
 </input>
 ...
 </operation>
</binding>

Example 72:TibrvMsg with Custom TibrvMsg Wrapping

TibrvMsg
{
 TibrvMsgField
 {
 name = "tale";
 id = 0;
 data.msg =
 {
229

CHAPTER 8 | Binding Interfaces to a Payload Format
 TibrvMsgField
 {
 name = "brothers"
 id = 0;
 data.msg =
 {
 TibrvMsgField
 {
 name = "castor";
 id = 0;
 data.str = "This one is a horse trainer.";
 size = sizeof(data);
 count = 1;
 type = TIBRVMSG_STRING;
 }
 TibrvMsgField
 {
 name = "pollux";
 id = 0;
 data.str = "This one is a boxxer.";
 size = sizeof(data);
 count = 1;
 type = TIBRVMSG_STRING;
 }
 }
 size = sizeof(data);
 count = 1;
 type = TIBRVMSG_MSG;
 }
 TibrvMsgField
 {
 name = "hellen";
 id = 0;
 data.bool = false;
 size = sizeof(data);
 count = 1;
 type = TIBRVMSG_BOOL;
 }
 }
 size = sizeof(data);
 count = 1;
 type = TIBRVMSG_MSG;
 }
...
}

Example 72:TibrvMsg with Custom TibrvMsg Wrapping (Continued)
 230

Adding a TibrvMsg Binding
Adding additional levels of wrapping with in a complex type is done the

same way as it is done with a message part. You place additional tibrv:msg

elements around the contract elements you want to be at a deeper level.

Example 73 shows a binding fragment that would create the TibrvMsg

shown in Example 72.

tibrv:msg tibrv:msg instructs the binding runtime to create an instance of a TibrvMsg.

Its attributes are described in Table 21.

Example 73:Binding of a Complex Type with an Extra TibrvMsg Level

<binging name="tibBinding">
 <tibrv:binding/>
 <operation ...>
 <tibrv:operation/>
 <input ...>
 <tibrv:input>
 <tibrv:msg name="tale">
 <tibrv:msg alais="brothers">
 <tibrv:field name="castor" type="xsd:string"/>
 <tibrv:field name="pollux" type="xsd:string"/>
 </tibrv:msg>
 <tibrv:field name="hellen" type="xsd:boolean"/>
 </tibrv:msg>
 </tibrv:input>
 </input>
 ...
 </operation>
</binding>

Table 21: Attributes for tibrv:msg

Attribute Purpose

name Specifies the name of the contract element which this
TibrvMsg instance gets its value. If this attribute is not
present, then the TibrvMsg is considered a binding-only
element.

alias Specifies the value of the name member of the TibrvMsg
instance. If this attribute is not specified, then the binding
will use the value of the name attribute.
231

CHAPTER 8 | Binding Interfaces to a Payload Format
tibrv:field tibrv:field instructs the binding to create an instance of a TibrvMsgField.

Its attributes are described in Table 22.

element Used only when tibrv:msg is an immediate child of
tibrv:context. Specifies the QName of the element
defining the context data to use when populating the
TibrvMsg. See “Adding Context Information to a TibrvMsg”
on page 234.

id Specifies the value of the id member of the TibrvMsg
instance. The default value is 0.

minOccurs/

maxOccurs

Used only with contract elements. The values must be
identical to the values specified in the schema definition.

Table 21: Attributes for tibrv:msg (Continued)

Attribute Purpose

Table 22: Attributes for tibrv:field

Attribute Purpose

name Specifies the name of the contract element which this
TibrvMsgField instance gets its value. If this attribute is
not present, then the TibrvMsgField is considered a
binding-only element.

alias Specifies the value of the name member of the
TibrvMsgField instance. If this attribute is not specified,
then the binding will use the value of the name attribute.

element Used only when tibrv:field is an immediate child of
tibrv:context. Specifies the QName of the element
defining the context data to use when populating the
TibrvMsgField. See “Adding Context Information to a
TibrvMsg” on page 234.

id Specifies the value of the id member of the TibrvMsgField
instance. The default value is 0.
 232

Adding a TibrvMsg Binding
type Specifies the XML Schema type of the data being used to
populate the data member of the TibrvMsgField instance.
For a list of supported types, see “TibrvMsg Default
Mappings” on page 445.

value Specifies the value inserted into the data member of the
TibrvMsgField instance when the field is a binding-only
element.

minOccurs/

maxOccurs

Used only with contract elements. The values must be
identical to the values specified in the schema definition.

Table 22: Attributes for tibrv:field

Attribute Purpose
233

CHAPTER 8 | Binding Interfaces to a Payload Format
Adding Context Information to a TibrvMsg

Overview By using Artix contexts, you can define binding-only data that is dynamically

generated and consumed by Artix applications. Contexts are a feature of the

Artix programming model that allow application developers to pass

metadata up and down the messaging chain. When using the TibrvMsg

binding, you can instruct your Artix application to use context data to

populate outgoing binding-only fields. On the receiving end, the TibrvMsg

binding takes the information and uses it to populate a context in the

application. For information on using contexts in Artix applications, see

Developing Artix Applications with C++ or Developing Artix Applications

with Java.

Telling the binding to get

information from Artix contexts

When defining a custom TibrvMsg binding, you use the tibrv:context

element to inform the binding that the immediate child element is populated

from an Artix context. The immediate child of a tibrv:context element

must be either a tibrv:msg element or a tibrv:field element depending on

what type of information is contained in the context.

You would use tibrv:msg for context data that is an instance of a complex

XML Schema type. You could also use tibrv:msg if you want an instance of a

native XML Schema type wrapped in a TibrvMsg. You would use tibrv:field

to insert context data that was an instance of a native XML Schema type as

a TibrvMsgField.

When a tibrv:msg element or a tibrv:field element are used to insert context

information into a TibrvMsg they use the element attribute in place of the

name attribute. The element attribute specifies the QName used to register

the context data with Artix bus. It must correspond to a globally defined

XML Schema element. Also, when inserting context information you cannot

specify values for any other attributes except the alias attribute.

Application considerations When using context data in your TibrvMsg binding there are some

application specific information you need to abide by:

• At least one piece of the integrated solution must me an Artix

application to process the context data.
 234

../java_pguide/index.htm
../java_pguide/index.htm
../prog_guide/index.htm

Adding a TibrvMsg Binding
• The Tibrv binding will automatically register, but not create an instance

of, any contexts used in its binding definition with the Artix bus.

Contexts are registered using the QName of the element specified in

the contract.

• For any context data that will be sent in an input message, client-side

Artix applications are responsible for creating an instance of the

appropriate context data in the request context container before the

message is handed off to the binding.

• Context data sent from a client in an input message will be available to

server-side Artix applications in the request context once the message

has been processed by the binding.

• For any context data that will be sent in an output message,

server-side Artix applications are responsible for creating an instance of

the appropriate context data in the reply context container before the

message is handed off to the binding.

• Context data sent from a server in an output message will be available

to client-side Artix applications in the reply context once the message

has been processed by the binding.

Example If you were integrating with a Tibco server that used a header to correlate

messages using an ASCII correlation ID, you could use the TibrvMsg

binding’s context support to implement the correlation ID on the Artix side of

the solution. The first step would be to define an XML Schema element

called corrID for the context that would hold the correlation ID. Then in

your TibrvMsg binding definition you would include a tibrv:context

element in the tibrv:binding element to specify that all messages passing

through the binding will have the header. Example 74 shows a contract

fragment containing the appropriate entries for this scenario.

Example 74:Using Context Data in a TibrvMsg Binding

<definitions
 xmlns:xsd1="http://widgetVendor.com/types/widgetTypes"
 ...>
235

CHAPTER 8 | Binding Interfaces to a Payload Format
When you develop the Artix side of the solution, you will need to supply the

logic for handling the context data stored in corrID. The context for corrID

will be registered with the Artix bus using the QName

"http://widgetVendor.com/types/widgetTypes", "corrID". If the Artix

side of your solution is a client, you will need to include logic to set an

appropriate corrID in the request context before each request and to read

each responses’ corrID from the response context. If the Artix side of your

application is a server, you will need to include logic to read requests’

corrID from the request context and set an appropriate corrID in the reply

context before sending the response.

 For information on using contexts in Artix applications, see Developing Artix

Applications with C++ or Developing Artix Applications with Java.

 <types>
 <schema
 targetNamespace="http://widgetVendor.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 ...
 <element name="corrID" type="xsd:string"/>
 ...
 </schema>
 </types>
 ...
 <portType name="correalatedService">
 ...
 </portType>
 <binding name="tibrvCorrBinding" type="correlatedService">
 <tibrv:binding>
 <tibrv:context>
 <tibrv:field element="xsd1:corrID"/>
 </tibrv:context>
 </tibrv:binding>
 ...
 </binding>
 ...
</definitions>

Example 74:Using Context Data in a TibrvMsg Binding
 236

../prog_guide/index.htm
../prog_guide/index.htm
../java_pguide/index.htm

Adding a Pure XML Binding
Adding a Pure XML Binding

Overview The pure XML payload format provides an alternative to the SOAP binding

by allowing services to exchange data using straight XML documents

without the overhead of a SOAP envelope.

The Artix Designer provides a wizard for generating an XML binding from a

logical interface. Alternatively, you can create an XML binding using any text

or XML editor. See “Hand editing” on page 239.

Using Artix Designer To add an XML binding from the Artix Designer Diagram view:

1. Right-click the Bindings node to activate the pop-up window.

2. Select New Bindingto bring up the Select Source Resources window.

3. Select at least one contract from the list to act as a source for

interfaces.

All of the interfaces in the selected contracts will be made available to

you later. The contracts will also be imported to the target resource

using WSDL import elements.

4. Click Next to bring up the Select Binding Type window.

5. Select XML.
237

CHAPTER 8 | Binding Interfaces to a Payload Format
6. Click Next to bring up the Set Binding Defaults window, shown in

Figure 64.

7. Select the interface to mapped to the binding from the Port Type

drop-down list.

8. Enter a name for the binding in the Binding Name field.

9. Enter an optional QName for the root node of the generated XML data

by filling in both the Namespace URI field and the Local Part field.

10. Under Operation Root Node, enter optional QNames for the root nodes

of the input and output messages for the operations defined by the

interface.

11. Click Finish.

Figure 64: Setting the Default Values for an XML Binding
 238

Adding a Pure XML Binding
Hand editing To map an interface to a pure XML payload format:

1. Add the namespace declaration to include the IONA extensions

defining the XML binding. See “XML binding namespace” on

page 239.

2. Add a standard WSDL binding element to your contract to hold the

XML binding, give the binding a unique name, and specify the name of

the WSDL portType element that represents the interface being bound.

3. Add an xformat:binding child element to the binding element to

identify that the messages are being handled as pure XML documents

without SOAP envelopes.

4. Optionally, set the xformat:binding element’s rootNode attribute to a

valid QName. For more information on the effect of the rootNode

attribute see “XML messages on the wire” on page 240.

5. For each operation defined in the bound interface, add a standard

WSDL operation element to hold the binding information for the

operation’s messages.

6. For each operation added to the binding, add the input, output, and

fault children elements to represent the messages used by the

operation. These elements correspond to the messages defined in the

interface definition of the logical operation.

7. Optionally add an xformat:body element with a valid rootNode

attribute to the added input, output, and fault elements to override

the value of rootNode set at the binding level.

XML binding namespace The IONA extensions used to describe XML format bindings are defined in

the namespace http://schemas.iona.com/bindings/xmlformat. Artix tools

use the prefix xformat to represent the XML binding extensions. Add the

following line to your contracts:

Note: If any of your messages have no parts, for example the output
message for an operation that returns void, you must set the rootNode
attribute for the message to ensure that the message written on the wire is
a valid, but empty, XML document.

xmlns:xformat="http://schemas.iona.com/bindings/xmlformat
239

CHAPTER 8 | Binding Interfaces to a Payload Format
XML messages on the wire When you specify that an interface’s message are to be passed as XML

documents, without a SOAP envelope, you must take care to ensure that

your messages form valid XML documents when they are written on the

wire. You also need to ensure that non-Artix participants that receive the

XML documents understand the messages generated by Artix.

A simple way to solve both problems is to use the optional rootNode

attribute on either the global xformat:binding element or on the individual

message’s xformat:body elements. The rootNode attribute specifies the

QName for the element that serves as the root node for the XML document

generated by Artix. When the rootNode attribute is not set, Artix uses the

root element of the message part as the root element when using doc style

messages or an element using the message part name as the root element

when using rpc style messages.

For example, without the rootNode attribute set the message defined in

Example 75 would generate an XML document with the root element

lineNumer.

For messages with one part, Artix will always generate a valid XML

document even without the rootNode attribute set. However, the message in

Example 76 would generate an invalid XML document.

Example 75:Valid XML Binding Message

<type ...>
 ...
 <element name="operatorID" type="xsd:int"/>
 ...
</types>
<message name="operator">
 <part name="lineNumber" element="ns1:operatorID"/>
</message>

Example 76: Invalid XML Binding Message

<types>
 ...
 <element name="pairName" type="xsd:string"/>
 <element name="entryNum" type="xsd:int"/>
 ...
</types>
 240

Adding a Pure XML Binding
Without the rootNode attribute specified in the XML binding, Artix will

generate an XML document similar to Example 77 for the message defined

in Example 76. The Artix generated XML document is invalid because it has

two root elements: pairName and entryNum.

If you set the rootNode attribute, as shown in Example 78 Artix will wrap

the elements in the specified root element. In this example, the rootNode

attribute is defined for the entire binding and specifies that the root element

will be named entrants.

<message name="matildas">
 <part name="dancing" element="ns1:pairName"/>
 <part name="number" element="ns1:entryNum"/>
</message>

Example 76: Invalid XML Binding Message (Continued)

Example 77: Invalid XML Document

<pairName>
 Fred&Linda
</pairName>
<entryNum>
 123
</entryNum>

Example 78:XML Format Binding with rootNode set

<portType name="danceParty">
 <operation name="register">
 <input message="tns:matildas" name="contestant"/>
 <output message="tns:space" name="entered"/>
 </operation>
</portType>
<binding name="matildaXMLBinding" type="tns:dancingMatildas">
 <xmlformat:binding rootNode="entrants"/>
 <operation name="register">
 <input name="contestant"/>
 <output name="entered"/>
 </operation>
</binding>
241

CHAPTER 8 | Binding Interfaces to a Payload Format
A an XML document generated from the input message would be similar to

Example 79. Notice that the XML document now only has one root element.

Overriding the binding’s rootNode

attribute setting

You can also set the rootNode attribute for each individual message, or

override the global setting for a particular message by using the

xformat:body element inside of the message binding. For example, if you

wanted the output message defined in Example 78 to have a different root

element from the input message, you could override the binding’s root

element as shown in Example 80.

Example 79:XML Document generated using the rootNode attribute

<entrants>
 <pairName>
 Fred&Linda
 </pairName>
 <entryNum>
 123
 </entryNum>
</entrants>

Example 80:Using xformat:body

<binding name="matildaXMLBinding" type="tns:dancingMatildas">
 <xmlformat:binding rootNode="entrants"/>
 <operation name="register">
 <input name="contestant"/>
 <output name="entered"/>
 <xformat:body rootNode="entryStatus"/>
 </operation>
</binding>
 242

Adding a G2++ Binding
Adding a G2++ Binding

Overview G2++ is a set of mechanisms for defining and manipulating hierarchically

structured messages. G2++ messages can be thought of as records, which

are described in terms of their structure and the data types they contain.

G2++ is an alternative to “raw” structures (such as C or C++ structs),

which rely on common data representation characteristics that may not be

present in a heterogeneous distributed system.

Simple G2++ mapping example Consider the following instance of a G2++ message:

This G2++ message can be mapped to the following logical description,

expressed in WSDL:

Note: Because tabs are significant in G2++ files (that is, tabs indicate
scoping levels and are not simply treated as “white space”), examples in
this chapter indicate tab characters as an up arrow (caret) followed by
seven spaces.

Example 81:ERecord G2++ Message

ERecord
^ XYZ_Part
^ ^ XYZ_Code^ someValue1
^ ^ password^ someValue2
^ ^ serviceFieldName^ someValue3
^ newPart
^ ^ newActionCode^ someValue4
^ ^ newServiceClassName^ someValue5
^ ^ oldServiceClassName^ someValue6

Example 82:WSDL Logical Description of ERecord Message

<types>
 <schema targetNamespace="http://soapinterop.org/xsd"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
243

CHAPTER 8 | Binding Interfaces to a Payload Format
Note that each of the message sub-structures (newPart and XYZ_Part) are

initially described separately in terms of their elements, then the two

sub-structure are aggregated to form the enclosing record (PRequest).

 <complexType name="XYZ_Part">
 <all>
 <element name="XYZ_Code" type="xsd:string"/>
 <element name="password" type="xsd:string"/>
 <element name="serviceFieldName" type="xsd:string"/>
 </all>
 </complexType>
 <complexType name="newPart">
 <all>
 <element name="newActionCode" type="xsd:string"/>
 <element name="newServiceClassName" type="xsd:string"/>
 <element name="oldServiceClassName" type="xsd:string"/>
 </all>
 <complexType name="PRequest">
 <all>
 <element name="newPart" type="xsd1:newPart"/>
 <element name="XYZ_Part" type="xsd1:XYZ_Part"/>
 </all>
 </complexType>

Example 82:WSDL Logical Description of ERecord Message (Continued)
 244

Adding a G2++ Binding
This logical description is mapped to a physical representation of the G2++

message, also expressed in WSDL:

Note that all G2++ definitions are contained within the scope of the

G2Definitions element. Each of the messages are defined with the scope of

a G2MessageDescription element. The type attribute for message

descriptions must be msg while the name attribute simply has to be unique.

Each record is described within the scope of a G2MessageComponent

element. Within this, the name attribute must reflect the G2++ record name

and the type attribute must be struct.

Nested within the records are the element definitions, however if required a

record could be nested here by inclusion of a nested G2MessageComponent

element (newPart and XYZ_Part are nested records of parent ERecord).

Element name attributes must match the G2 element name. Defining a

record and then referencing it as a nested struct of a parent is legal for the

logical mapping but not the physical. In the physical mapping, nested

structs must be defined in-place.

Example 83:WSDL Physical Representation of ERecord Message

<binding name="ERecordBinding" type="tns:ERecordRequestPortType">
 <soap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <artix:binding transport="tuxedo" format="g2++">
 <G2Definitions>
 <G2MessageDescription name="creation" type="msg">
 <G2MessageComponent name="ERecord" type="struct">
 <G2MessageComponent name="XYZ_Part" type="struct">
 <element name="XYZ_Code" type="element"/>
 <element name="password" type="element"/>
 <element name="serviceFieldName" type="element"/>
 </G2MessageComponent>
 <G2MessageComponent name="newPart" type="struct">
 <element name="newActionCode" type="element"/>
 <element name="newServiceClassName" type="element"/>
 <element name="oldServiceClassName" type="element"/>
 </G2MessageComponent>
 </G2MessageComponent>
 </G2MessageDescription>
 </G2Definitions>
</artix:binding>
245

CHAPTER 8 | Binding Interfaces to a Payload Format
The following example illustrates the custom mapping of arrays, which

differs from strictly defined G2++ array mappings. The array definition is

shown below:

This represents an array with two elements. When placed in a G2++

message, the result is as follows:

In this version of the ERecord record, XYZ_Part contains an array called

XYZ_MetaData, whose size is one. The single entry can be thought of as a

name/value pair: pushToTalk/PT01, which allows us to ignore columnName

and columnValue.

IMS_MetaData^ 2
^ 0
^ ^ columnName^ SERVICENAME
^ ^ columnValue^ someValue1
^ 1
^ ^ columnName^ SERVICEACTION
^ ^ columnValue^ someValue2

Example 84:Extended ERecord G2++ Message

ERecord
^ XYZ_Part
^ ^ XYZ_Code^ someValue1
^ ^ password^ someValue2
^ ^ serviceFieldName^ someValue3
^ XYZ_Metadata^ 1
^ ^ 0
^ ^ ^ columnName^ pushToTalk
^ ^ ^ columnValue^ PT01
^ newPart
^ ^ newActionCode^ someValue4
^ ^ newServiceClassName^ someValue5
^ ^ oldServiceClassName^ someValue6
 246

Adding a G2++ Binding
Mapping the new ERecord record to a WSDL logical description results in

the following:

Example 85:WSDL Logical Description of Extended ERecord Message

<types>
 <schema targetNamespace="http://soapinterop.org/xsd"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <complexType name="XYZ_Part">
 <all>
 <element name="XYZ_Code" type="xsd:string"/>
 <element name="password" type="xsd:string"/>
 <element name="serviceFieldName" type="xsd:string"/>
 <element name="pushToTalk" type="xsd:string"/>
 </all>
 </complexType>
 <complexType name="newPart">
 <all>
 <element name="newActionCode" type="xsd:string"/>
 <element name="newServiceClassName" type="xsd:string"/>
 <element name="oldServiceClassName" type="xsd:string"/>
 </all>
 <complexType name="PRequest">
 <all>
 <element name="newPart" type="xsd1:newPart"/>
 <element name="XYZ_Part" type="xsd1:XYZ_Part"/>
 </all>
 </complexType>
247

CHAPTER 8 | Binding Interfaces to a Payload Format
Thus the array elements columnName and columnValue are “promoted” to a

name/Value pair in the logical mapping. This physical G2++ representation

can now be mapped as follows:

This physical mapping of the extended ERecord message now contains an

array, described with its XYZ_MetaData name (as per the G2++ record

definition). Its type is "array" and its size is one. This

G2MessageComponent contains a single element called "pushToTalk".

Example 86:WSDL Physical Representation of Extended ERecord
Message

<binding name="ERecordBinding" type="tns:ERecordRequestPortType">
 <soap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <artix:binding transport="tuxedo" format="g2++">
 <G2Definitions>
 <G2MessageDescription name="creating" type="msg">
 <G2MessageComponent name="ERecord" type="struct">
 <G2MessageComponent name="XYZ_Part" type="struct">
 <element name="XYZ_Code" type="element"/>
 <element name="password" type="element"/>
 <element name="serviceFieldName" type="element"/>
 <G2MessageComponent name="XYZ_MetaData" type="array" size="1">
 <element name="pushToTalk" type="element"/>
 </G2MessageComponent>
 </G2MessageComponent>
 <G2MessageComponent name="newPart" type="struct">
 <element name="newActionCode" type="element"/>
 <element name="newServiceClassName" type="element"/>
 <element name="oldServiceClassName" type="element"/>
 </G2MessageComponent>
 </G2MessageComponent>
 </G2MessageDescription>
 </G2Definitions>
</artix:binding>
 248

Adding a G2++ Binding
Ignoring unknown elements It is possible to create a G2Definitions element that begins with a

G2-specific configuration scope. This configuration scope is called G2Config

in the following example:

In this scope, the only variable used is IgnoreUnknownElements, which can

have a value of true or false. If the value is set to true, elements or array

elements that are not defined in the G2 message definitions will be ignored.

For example the following record would be valid if IgnoreUnknownElements

is set to true.

When parsed, the above ERecord would not include the elements

"AnElement" or "AnArrayElement". If IgnoreUnknownElements is set to

false, the above record would be rejected as invalid.

<G2Definitions>
^ <G2Config>
^ ^ <IgnoreUnknownElements value="true"/>
</G2Config>
 .
 .
 .

Example 87:Valid G2++ Record With Ignored Fields

ERecord
^ XYZ_Part
^ XYZ_Code^ someValue1
^ AnElement^ foo
^ password^ someValue2
^ serviceFieldName^ someValue3
^ XYZ_MetaData^ 2
^ ^ 0
^ ^ ^ columnName^ pushToTalk
^ ^ ^ columnValue^ PT01
^ ^ 1
^ ^ ^ columnName^ AnArrayElement
^ ^ ^ columnValue^ bar
^ newPart
^ ^ newActionCode^ someValue4
^ ^ newServiceClassName^ someValue5
^ ^ oldServiceClassName^ someValue6
249

CHAPTER 8 | Binding Interfaces to a Payload Format
 250

CHAPTER 9

Adding Transports
To fully define a service you need to describe at least one
transport.

In this chapter This chapter discusses the following topics:

Introducing Services page 252

Defining a Service page 253

Creating an HTTP Service page 255

Creating a CORBA Service page 264

Creating an IIOP Service page 273

Creating a WebSphere MQ Service page 279

Creating a Java Messaging System Service page 288

Adding a TIBCO Service page 298

Creating a Tuxedo Service page 305

Configuring a Service to Use Codeset Conversion page 309
251

CHAPTER 9 | Adding Transports
Introducing Services

Overview To complete the definition of a service, you need to describe the transport

details used to connect the service to a network. Transport details are

defined inside a port element. Each port specifies the address and

configuration information for connecting the application to a network.

Ports are grouped within service elements. A service can contain one or

more ports. The convention is that the ports defined within a particular

service are related in some way. For example all of the ports might be bound

to the same port type, but use different network protocols, like HTTP and

WebSphere MQ.
 252

Defining a Service
Defining a Service

Overview All of the transport details for an endpoint are defined in service elements.

A service element defines a collection of port elements. The port elements

defines the relationship between a particular binding element and the

transport on which the messages are to be sent. The port element contains

all of the information defining the endpoints connection to a network

including what type of transport to use, the address, and any other transport

details.

The service element The service element contains a group of one or more ports that have some

relationship. How the ports are related is up to you. For example you could

build a contract where every port is contained in its own service, or you

could decide to group all of the ports that are bound to a particular interface

into service elements.

A service element has one required attribute, name, that identifies the

service. The identifier must be unique among all of the services defined in

the contract. Example 88 shows an example of a service named

riotService.

The port element The port element defines how a binding is tied to a specific network

transport. You specify the binding from which messages will be sent over

the network using the port element’s binding attribute. The value of the

binding attribute must correspond to a binding defined with in the same

contract, or a contract imported into the same contract, in which the port is

defined.

Example 88:Sample Service

<service name="riotService">
 <port>
 ...
 </port>
</service>
253

CHAPTER 9 | Adding Transports
The port element also has an attribute, name, that identifies the port. The

identifier must be unique among the ports describe within the containing

service element. shows a port element, riotPort, that defines a port

bound to riotBinding.

Contained within the port element are the elements used to define the

details of the transport that is used to send messages. In a standard WSDL

contract the transport details would be represented using a soap:address

element. However, Artix provides a number of transports and the elements

to define them. The following sections describe the details of adding the

details for these transports.

Example 89:Sample Port

<service name="riotService">
 <port name="riotPort" binding="riotBinding">
 ...
 </port>
</service>
 254

Creating an HTTP Service
Creating an HTTP Service

Overview HTTP is the standard TCP/IP-based protocol used for client-server

communications on the World Wide Web. The main function of HTTP is to

establish a connection between a web browser (client) and a web server for

the purposes of exchanging files and possibly other information on the Web.

Artix provides two ways of specifying an HTTP service’s address depending

on the payload format you are using. SOAP has a standardized

soap:address element. All other payload formats use Artix’s http:address

element.

As well as the standard soap:address element or http:address element,

Artix provides a number of HTTP extensions. The Artix extensions allow you

to specify a number of the HTTP port’s configuration in the contract.

soap:address When you are sending SOAP over HTTP you must use the soap:address

element to specify the service’s address. It has one attribute, location, that

specifies the service’s address as a URL.

Example 90 shows a port used to send SOAP over HTTP.

http:address When your messages are formatted using any other payload format than

SOAP, such as fixed, you must use Artix’s http:address element to specify

the service’s address.

Using Artix Designer To add an HTTP port to your contract from the Artix Designer Diagram view:

1. Right-click the Services node to activate the pop-up menu.

2. Select New Service to bring up the Select Source Resources window.

3. Select at least one resource from the list to act as a source of bindings.

Example 90:SOAP Port

<service name="artieSOAPService">
 <port binding="artieSOAPBinding" name="artieSOAPPort">
 <soap:address location="http://artie.com/index.xml">
 </port>
</service>
255

CHAPTER 9 | Adding Transports
All of the bindings defined in the selected contracts will be made

available for you to use in defining a service. The contracts will be

imported to contract using WSDL import elements.

4. Click Next to bring up the Define Service window.

5. Enter a name for the new service in the Name field.

6. Click Next to bring up the Define Port window, shown in Figure 65.

7. Enter a name for the new port in the Name field.

8. Select a binding to be exposed by this port from the Binding

drop-down list.

9. Click Next to bring up the Define Port Properties window.

10. Select http from the Transport Type drop-down list.

Figure 65: Specifying the Name and Binding for a Port

Note: If the payload being transmitted is SOAP, then select soap.
 256

Creating an HTTP Service
11. The http transport attributes editor will appear as shown in Figure 66.

12. Enter the HTTP address for the port in the location field of the Address

table.

13. Enter values for any of the optional configuration settings you desire.

See “HTTP Port Properties” on page 451.

14. Click Finish.

Figure 66: Setting the HTTP Transport Attributes
257

CHAPTER 9 | Adding Transports
Using the command line tool You can use the wsdltoservice command line tool to add an HTTP service

definition to an Artix contract. To use wsdltoservice to add an HTTP

service use the tool with the following options.

wsdltoservice -transport soap/http [-e service][-t port]
 [-b binding][-a address][-hssdt serverSendTimeout]
 [-hscvt serverReceiveTimeout]
 [-hstrc trustedRootCertificates]
 [-hsuss useSecureSockets]
 [-hsct contentType][-hscc serverCacheControl]
 [-hsscse supressClientSendErrors]
 [-hsscre supressClientReceiveErrors]
 [-hshka honorKeepAlive]
 [-hsmps serverMultiplexPoolSize]
 [-hsrurl redirectURL][-hscl contentLocation]
 [-hsce contentEncoding][-hsst serverType]
 [-hssc serverCentificate]
 [-hsscc serverCentificateChain]
 [-hsspk serverPrivateKey]
 [-hsspkp serverPrivateKeyPassword]
 [-hcst clientSendTimeout]
 [-hccvt clientReceiveTimeout]
 [-hctrc trustedRootCertificates]
 [-hcuss useSecureSockets][-hcct contentType]
 [-hccc clientCacheControl][-hcar autoRedirect]
 [-hcun userName][-hcp password]
 [-hcat clientAuthorizationType]
 [-hca clientAuthorization][-hca accept]
 [-hcal acceptLanguage][-hcae acceptEncoding]
 [-hch host][-hccn clientConnection][-hcck cookie]
 [-hcbt browserType][-hcr referer]
 [-hcps proxyServer][-hcpun proxyUserName]
 [-hcpp proxyPassword]
 [-hcpat proxyAuthorizationType]
 [-hcpa proxyAuthorization]
 [-hccce clientCertificate]
 [-hcccc clientCertificateChain]
 [-hcpk clientPrivateKey]
 [-hcpkp clientPrivateKeyPassword][-o file][-d dir]
 [-L file][-q][-h][-V]wsdlurl
 258

Creating an HTTP Service
The -transport soap/http flag specifies that the tool is to generate an

HTTP service. The other options are as follows.

-transport soap/http If the payload being sent over the wire is
SOAP, use -transport soap. For all other
payloads use -transport http.

-e service Specifies the name of the generated service.

-t port Specifies the value of the name attribute of the
generated port element.

-b binding Specifies the name of the binding for which
the service is generated.

-a address Specifies the value used in the address
element of the port.

-hssdt serverSendTimeout Specifies the number if milliseconds that the
server can continue to try to send a response
to the client before the connection is timed
out.

-hscvt

serverReceiveTimeout

Specifies the number of milliseconds that the
server can continue to try to receive a request
from the client before the connection is timed
out.

-hstrc

trustedRootCertificates

Specifies the full path to the X509 certificate
for the certificate authority.

-hsuss useSecureSockets Specifies if the server uses secure sockets.
Valid values are true or false.

-hsct contentType Specifies the media type of the information
being sent in a server response.

-hscc serverCacheControl Specifies directives about the behavior that
must be adhered to by caches involved in the
chain comprising a request from a client to a
server.

-hsscse

supressClientSendErrors

Specifies whether exceptions are thrown when
an error is encountered on receiving a client
request. Valid values are true or false.

-hsscre

supressClientReceiveErrors

Specifies whether exceptions are thrown when
an error is encountered on sending a response
to a client. Valid values are true or false.
259

CHAPTER 9 | Adding Transports
-hshka honorKeepAlive Specifies if the server honors client keep-alive
requests. Valid values are true or false.

-hsmps

serverMultiplexPoolSize

-hsrurl redirectURL Specifies the URL to which the client request
should be redirected if the URL specified in
the client request is no longer appropriate for
the requested resource.

-hscl contentLocation Specifies the URL where the resource being
sent in a server response is located.

-hsce contentEncoding Specifies what additional content codings
have been applied to the information being
sent by the server, and what decoding
mechanisms the client therefore needs to
retrieve the information.

-hsst serverType Specifies what type of server is sending the
response to the client.

-hssc serverCentificate Specifies the full path to the X509 certificate
issued by the certificate authority for the
server.

-hsscc

serverCentificateChain

Specifies the full path to the file that contains
all the certificates in the chain.

-hsspk serverPrivateKey Specifies the full path to the private key that
corresponds to the X509 certificate specified
by serverCertificate.

-hsspkp

serverPrivateKeyPassword

Specifies a password that is used to decrypt
the private key.

-hcst clientSendTimeout Specifies the number of milliseconds that the
client can continue to try to send a request to
the server before the connection is timed out.

-hccvt

clientReceiveTimeout

Specifies the number of milliseconds that the
client can continue to try to receive a response
from the server before the connection is timed
out.

-hctrc

trustedRootCertificates

Specifies the full path to the X509 certificate
for the certificate authority.

-hcuss ueSecureSockets Specifies if the client uses secure sockets.
Valid values are true or false.
 260

Creating an HTTP Service
-hcct contentType Specifies the media type of the data being
sent in the body of the client request.

-hccc clientCacheControl Specifies directives about the behavior that
must be adhered to by caches involved in the
chain comprising a request from a client to a
server.

-hcar autoRedirect Specifies if the server should automatically
redirect client requests.

-hcun userName Specifies the username the client uses to
register with servers.

-hcp password Specifies the password the client uses to
register with servers.

-hcat

clientAuthorizationType

Specifies the authorization mechanisms the
client uses when contacting servers.

-hca clientAuthorization Specifies the authorization credentials used to
perform the authorization.

-hca accept Specifies what media types the client is
prepared to handle.

-hcal acceptLanguage Specifies what language the client prefers for
the purposes of receiving a response

-hcae acceptEncoding Specifies what content codings the client is
prepared to handle.

-hch host Specifies the internet host and port number of
the resource on which the client request is
being invoked.

-hccn clientConnection Specifies if the client will open a new
connection for each request or if it will keep
the original one open. Valid values are close
and Keep-Alive.

-hcck cookie Specifies a static cookie to be sent to the
server.

-hcbt browserType Specifies information about the browser from
which the client request originates.

-hcr referer Specifies the value for the client’s referring
entity.

-hcps proxyServer Specifies the URL of the proxy server, if one
exists along the message path.
261

CHAPTER 9 | Adding Transports
-hcpun proxyUserName Specifies the username that the client uses to
authorize with proxy servers.

-hcpp proxyPassword Specifies the password that the client uses to
authorize with proxy servers.

-hcpat

proxyAuthorizationType

Specifies the authorization mechanism the
client uses with proxy servers.

-hcpa proxyAuthorization Specifies the actual data that the proxy server
should use to authenticate the client.

-hccce clientCertificate Specifies the full path to the X509 certificate
issued by the certificate authority for the
client.

-hcccc

clientCertificateChain

Specifies the full path to the file that contains
all the certificates in the chain.

-hcpk clientPrivateKey Specifies the full path to the private key that
corresponds to the X509 certificate specified
by clientCertificate.

-hcpkp

clientPrivateKeyPassword

Specifies a password that is used to decrypt
the private key.

-o file Specifies the filename for the generated
contract. The default is to append -service to
the name of the imported contract.

-d dir Specifies the output directory for the
generated contract.

-L file Specifies the location of your Artix license file.
The default behavior is to check
IT_PRODUCT_DIR\etc\license.txt.

-q Specifies that the tool runs in quiet mode. No

output will be shown on the console. This

includes error messages.

-h Specifies that the tool will display a usage

message.

-V Specifies that the tool runs in verbose mode.
 262

Creating an HTTP Service
Example Example 91 shows the namespace entries you need to add to the

definitions element of your contract to use the HTTP extensions.

The http:address element is similar to the soap:address element. It has

one attribute, location, that specifies the service’s address as a URL.

Example 92 shows a port used to send fixed data over HTTP.

Example 91:Artix HTTP Extension Namespaces

<definitions
 ...
 xmlns:http="http://schemas.iona.com/transports/http"
 ... >

Example 92:Generic HTTP Port

<service name="artieFixedService">
 <port binding="artieFixedBinding" name="artieFixedPort">
 <http:address location="http://artie.com/index.xml">
 </port>
</service>
263

CHAPTER 9 | Adding Transports
Creating a CORBA Service

Overview Generally, when you are creating a CORBA service with Artix, you need to

do two things. First, you must configure the Artix port information in the

Artix contract so that Artix can instantiate the appropriate port. Second, you

must generate the IDL describing your service so that a native CORBA

application can understand the interfaces of the new Artix service.

In this section This section discusses the following topics:

Configuring an Artix CORBA Port page 265

Generating CORBA IDL page 271
 264

Creating a CORBA Service
Configuring an Artix CORBA Port

Overview CORBA ports are described using the IONA-specific WSDL elements

corba:address and corba:policy within the WSDL port element, to

specify how a CORBA object is exposed.

Namespace The namespace under which the CORBA extensions are defined is

"http://schemas.iona.com/bindings/corba". If you are going to add a

CORBA port by hand you will need to add this to your contract’s definition

element.

CORBA address specification The IOR of the CORBA object is specified using the corba:address element.

You have four options for specifying IORs in Artix contracts:

• Specify the objects IOR directly, by entering the object’s IOR directly

into the contract using the stringified IOR format:

• Specify a file location for the IOR, using the following syntax:

• Specify that the IOR is published to a CORBA name service, by

entering the object’s name using the corbaname format:

For more information on using the name service with Artix see

Deploying and Managing Artix Solutions.

• Specify the IOR using corbaloc, by specifying the port at which the

service exposes itself, using the corbaloc syntax.

IOR:22342...

file:///file_name

Note: The file specification requires three backslashes (///).

corbaname:rir/NameService#object_name

corbaloc:iiop:host:port/service_name
265

../deploy/index.htm

CHAPTER 9 | Adding Transports
When using corbaloc, you must be sure to configure your service to

start up on the specified host and port.

Specifying POA policies Using the optional corba:policy element, you can describe a number of

POA polices the Artix service will use when creating the POA for connecting

to a CORBA application. These policies include:

• POA Name

• Persistence

• ID Assignment

Setting these policies lets you exploit some of the enterprise features of

IONA’s Orbix 6.x, such as load balancing and fault tolerance, when

deploying an Artix integration project. For information on using these

advanced CORBA features, see the Orbix documentation.

POA Name

Artix POAs are created with the default name of WS_ORB. To specify the

name of the POA Artix creates to connect with a CORBA object, you use the

following:

Persistence

By default Artix POA’s have a persistence policy of false. To set the POA’s

persistence policy to true, use the following:

ID Assignment

By default Artix POAs are created with a SYSTEM_ID policy, meaning that

their ID is assigned by the ORB. To specify that the POA connecting a

specific object should use a user-assigned ID, use the following:

This creates a POA with a USER_ID policy and an object id of POAid.

<corba:policy poaname="poa_name"/>

<corba:policy persistent="true"/>

<corba:policy serviceid="POAid"/>
 266

Creating a CORBA Service
Using Artix Designer To add a CORBA service to your contract from the Artix Designer Diagram

view:

1. Right-click the Services node to activate the pop-up menu.

2. Select New Service to bring up the Select Source Resources window.

3. Select at least one resource from the list to act as a source of bindings.

All of the bindings defined in the selected contracts will be made

available for you to use in defining a service. The contracts will be

imported to contract using WSDL import elements.

4. Click Next to bring up the Define Service window.

5. Enter a name for the new service in the Name field.

6. Click Next to bring up the Define Port window, shown in Figure 65 on

page 256

7. Enter a name for the new port in the Name field.

8. Select a CORBA binding to be exposed by this port from the Binding

drop-down list.

Note: Because CORBA defines both a payload format and a
transport, you can only expose a CORBA binding through a CORBA
endpoint. If you do not choose a CORBA binding, Artix Designer will
not allow you to select CORBA as your transport.
267

CHAPTER 9 | Adding Transports
9. Click Next to bring up the Define Port Properties window, shown in

Figure 67.

10. Enter a valid CPRBA address in the location field of the Address table.

See “CORBA address specification” on page 265.

11. Set any desired POA policies in the Policy table. See “Specifying POA

policies” on page 266.

12. Click Finish.

Figure 67: Specifying the Address of a CORBA Endpoint
 268

Creating a CORBA Service
Using the command line tool You can use the wsdltoservice command line tool to add a CORBA service

definition to an Artix contract. To use wsdltoservice to add a CORBA

service use the tool with the following options.

The -transport corba flag specifies that the tool is to generate an CORBA

service. The other options are as follows.

wsdltoservice -transport corba [-e service][-t port][-b binding]
 [-a address][-poa poaName][-sid serviceId]
 [-pst persists][-o file][-d dir][-L file]
 [-q][-h][-V] wsdlurl

-e service Specifies the name of the generated CORBA service.

-t port Specifies the value of the name attribute of the generated
port element.

-b binding Specifies the name of the binding for which the service is
generated.

-a address Specifies the value used in the corba:address element of
the port.

-poa poaName Specifies the value of the POA name policy.

-sid serviceId Specifies the value of the ID assignment policy.

-pst persists Specifies the value of the persistence policy. Valid values
are true and false.

-o file Specifies the filename for the generated contract. The
default is to append -service to the name of the
imported contract.

-d dir Specifies the output directory for the generated contract.

-L file Specifies the location of your Artix license file. The default
behavior is to check IT_PRODUCT_DIR\etc\license.txt.

-q Specifies that the tool runs in quiet mode. No output will

be shown on the console. This includes error messages.

-h Specifies that the tool will display a usage message.

-V Specifies that the tool runs in verbose mode.
269

CHAPTER 9 | Adding Transports
Example For example, a CORBA port for the personalInfoLookup binding would look

similar to Example 94:

Artix expects the IOR for the CORBA object to be located in a file called

objref.ior, and creates a persistent POA with an object id of personalInfo

to connect the CORBA application.

Example 93:CORBA personalInfoLookup Port

<service name="personalInfoLookupService">
 <port name="personalInfoLookupPort"
 binding="tns:personalInfoLookupBinding">
 <corba:address location="file:///objref.ior"/>
 <corba:policy persistent="true"/>
 <corba:policy serviceid="personalInfoLookup"/>
 </port>
</service>
 270

Creating a CORBA Service
Generating CORBA IDL

Overview Artix clients that use a CORBA transport require that the IDL defining the

interface exist and be accessible. Artix provides tools to generate the

required IDL from an existing WSDL contract. The generated IDL captures

the information in the logical portion of the contract and uses that to

generate the IDL interface. Each portType in the contract generates an IDL

module.

From the command line The wsdltocorba tool compiles Artix contracts and generates IDL for the

specified CORBA binding and port type. To generate IDL using wsdltocorba

use the following command:

The command has the following options:

wsdltocorba -idl -b binding [-corba][-i portType][-d dir]
 [-o file][-L file][-q][-h][-V] wsdl_file

-idl Instructs the tool to generate an IDL file from the
specified binding.

-b binding Specifies the CORBA binding from which to generate IDL.

-corba Instructs the tool to generate a CORBA binding for the
specified port type.

-i portType Specifies the name of the port type being mapped to a
CORBA binding.

-d dir Specifies the directory into which the new WSDL file is
written.

-o file Specifies the name of the generated WSDL file. Defaults
to wsdl_file.idl.

-L file Specifies the location of your Artix license file. The default
behavior is to check IT_PRODUCT_DIR\etc\license.txt.

-q Specifies that the tool runs in quiet mode. No output will

be shown on the console. This includes error messages.

-h Specifies that the tool will display a usage message.

-V Specifies that the tool runs in verbose mode.
271

CHAPTER 9 | Adding Transports
By combining the -idl and -corba flags with wsdltocorba, you can

generate a CORBA binding for a logical operation and then generate the IDL

for the generated CORBA binding. When doing so, you must also use the -i

portType flag to specify the port type from which to generate the binding

and the -b binding flag to specify the name of the binding from which to

generate the IDL.
 272

Creating an IIOP Service
Creating an IIOP Service

Overview Artix allows you to use IIOP as a generic transport for send data using any of

the payload formats. When using IIOP as a generic transport, you define

your service’s address using iiop:address. The benefit of using the generic

IIOP transport is that it allows you to use CORBA services without requiring

your applications to be CORBA applications. For example, you could use an

IIOP tunnel to send fixed format messages to an endpoint whose address is

published in a CORBA naming service.

Namespace The namespace under which the IIOP extensions are defined is

"http://schemas.iona.com/bindings/iiop_tunnel". If you are going to

add an IIOP port by hand you will need to add this to your contract’s

definition element.

Using Artix Designer To add an IIOP port from the Artix Designer Diagram view:

1. Right-click the Services node to activate the pop-up menu.

2. Select New Service to bring up the Select Source Resources window.

3. Select at least one resource from the list to act as a source of bindings.

All of the bindings defined in the selected contracts will be made

available for you to use in defining a service. The contracts will be

imported to contract using WSDL import elements.

4. Click Next to bring up the Define Service window.

5. Enter a name for the new service in the Name field.

6. Click Next to bring up the Define Port window.

7. Enter a name for the new port in the Name field.

8. Select a binding to be exposed by this port from the Binding

drop-down list.

9. Click Next to bring up the Define Port Properties window.

Note: Generic IIOP is unavailable in some editions of Artix. Please check
the conditions of your Artix license to see whether your installation
supports IIOP.
273

CHAPTER 9 | Adding Transports
10. Select tunnel from the Transport Type drop-down list to bring up the

IIOP tunnel transport properties editor shown in Figure 68.

11. Enter a valid IIOP address in the location field of the Address table.

See “IIOP address specification” on page 275.

12. Set any desired POA policies in the Policy table. See “Specifying POA

policies” on page 275.

13. Specify the type of payload being sent through the tunnel in the type

field of the Payload table. See “Specifying type of payload encoding”

on page 275.

14. Click Finish.

Figure 68: Editing IIOP Tunnel Transport Attributes
 274

Creating an IIOP Service
IIOP address specification The IOR, or address, of the IIOP port is specified using the iiop:address

element. You have four options for specifying IORs in Artix contracts:

• Specify the objects IOR directly, by entering the object’s IOR directly

into the contract using the stringified IOR format:

• Specify a file location for the IOR, using the following syntax:

• Specify that the IOR is published to a CORBA name service, by

entering the object’s name using the corbaname format:

For more information on using the name service with Artix see

Deploying and Managing Artix Solutions.

• Specify the IOR using corbaloc, by specifying the port at which the

service exposes itself, using the corbaloc syntax.

When using corbaloc, you must be sure to configure your service to

start up on the specified host and port.

Specifying type of payload

encoding

The IIOP transport can perform codeset negotiation on the encoded

messages passed through it if your CORBA system supports it. By default,

this feature is turned off so that the agents sending the message maintain

complete control over codeset conversion. If you wish to turn automatic

codeset negotiation on use the following:

Specifying POA policies Using the optional iiop:policy element, you can describe the POA polices

the Artix service will use when creating the IIOP port. These policies include:

IOR:22342....

file:///file_name

Note: The file specification requires three backslashes (///).

corbaname:rir/NameService#object_name

corbaloc:iiop:host:port/service_name

<iiop:payload type="string"/>
275

../deploy/index.htm

CHAPTER 9 | Adding Transports
• POA Name

• Persistence

• ID Assignment

Setting these policies lets you exploit some of the enterprise features of

IONA’s Orbix 6.x, such as load balancing and fault tolerance, when

deploying an Artix integration project using the IIOP transport. For

information on using these advanced CORBA features, see the Orbix

documentation.

POA Name

Artix POAs are created with the default name of WS_ORB. To specify a name

of the POA that Artix creates for the IIOP port, you use the following:

The POA name is used for setting certain policies, such as direct persistence

and well-known port numbers in the CORBA configuration.

Persistence

By default Artix POA’s have a persistence policy of false. To set the POA’s

persistence policy to true, use the following:

ID Assignment

By default Artix POAs are created with a SYSTEM_ID policy, meaning that

their ID is assigned by Artix. To specify that the IIOP port’s POA should use

a user-assigned ID, use the following:

This creates a POA with a USER_ID policy and an object id of POAid.

Using the command line tool You can use the wsdltoservice command line tool to add an IIOP service

definition to an Artix contract. To use wsdltoservice to add an IIOP service

use the tool with the following options.

<iiop:policy poaname="poa_name"/>

<iiop:policy persistent="true"/>

<corba:policy serviceid="POAid"/>

wsdltoservice -transport iiop [-e service][-t port][-b binding]
 [-a address][-poa poaName][-sid serviceId]
 [-pst persists][-paytype payload][-o file]
 [-d dir][-L file][-q][-h][-V] wsdlurl
 276

Creating an IIOP Service
The -transport iiop flag specifies that the tool is to generate an IIOP

service. The other options are as follows.

-e service Specifies the name of the generated IIOP service.

-t port Specifies the value of the name attribute of the generated
port element.

-b binding Specifies the name of the binding for which the service is
generated.

-a address Specifies the value used in the <iiop:address> element
of the port.

-poa poaName Specifies the value of the POA name policy.

-sid serviceId Specifies the value of the ID assignment policy.

-pst persists Specifies the value of the persistence policy. Valid values
are true and false.

-paytype payloadSpecifies the type of data being sent in the message
payloads. Valid values are string, octets, imsraw,
imsraw_binary, cicsraw, and cicsraw_binary.

-o file Specifies the filename for the generated contract. The
default is to append -service to the name of the
imported contract.

-d dir Specifies the output directory for the generated contract.

-L file Specifies the location of your Artix license file. The default
behavior is to check IT_PRODUCT_DIR\etc\license.txt.

-q Specifies that the tool runs in quiet mode. No output will

be shown on the console. This includes error messages.

-h Specifies that the tool will display a usage message.

-V Specifies that the tool runs in verbose mode.
277

CHAPTER 9 | Adding Transports
Example For example, an IIOP port for the personalInfoLookup binding would look

similar to Example 94:

Artix expects the IOR for the IIOP port to be located in a file called

objref.ior, and creates a persistent POA with an object id of personalInfo

to configure the IIOP port.

Example 94:CORBA personalInfoLookup Port

<service name="personalInfoLookupService">
 <port name="personalInfoLookupPort"
 binding="tns:personalInfoLookupBinding">
 <iiop:address location="file:///objref.ior"/>
 <iiop:policy persistent="true"/>
 <iiop:policy serviceid="personalInfoLookup"/>
 </port>
</service>
 278

Creating a WebSphere MQ Service
Creating a WebSphere MQ Service

Overview The description for an Artix WebSphere MQ port is entered in a port

element of the Artix contract containing the interface to be exposed over

WebSphere MQ. Artix defines two elements to describe WebSphere MQ

ports and their attributes:

• mq:client defines a port for a WebSphere MQ client application.

• mq:server defines a port a WebSphere MQ server application.

You can use one or both of the WebSphere MQ elements to describe the

Artix WebSphere MQ port. Each can have different configurations depending

on the attributes you choose to set.

WebSphere MQ namespace The WSDL extensions used to describe WebSphere MQ transport details are

defined in the WSDL namespace

http://schemas.iona.com/transports/mq. If you are going to add a

WebSphere MQ port by hand you will need to include the following in the

definitions tag of your contract:

Required attributes When you define a WebSphere MQ service you need to provide at least

enough information for the service to connect to its message queues. For

any WebSphere application that means setting the QueueManager and

QueueName attributes of the port. In addition, if you are configuring a client

that expects to receive replies from the server, you need to set the

ReplyQueueManager and ReplyQueueName attributes of the <mq:client>

element defining it.

In addition, if you are deploying applications on a machine with a full MQ

installation, you need to set the Server_Client attribute to client if the

Artix application is going to use remote queues. This setting instructs Artix to

load libmqic instead of libmqm.

xmlns:mq="http://schemas.iona.com/transports/mq"
279

CHAPTER 9 | Adding Transports
Using Artix Designer To add a WebSphere MQ port from the Artix Designer Diagram view:

1. Right-click the Services node to activate the pop-up menu.

2. Select New Service to bring up the Select Source Resources window.

3. Select at least one resource from the list to act as a source of bindings.

All of the bindings defined in the selected contracts will be made

available for you to use in defining a service. The contracts will be

imported to contract using WSDL import elements.

4. Click Next to bring up the Define Service window.

5. Enter a name for the new service in the Name field.

6. Click Next to bring up the Define Port window.

7. Enter a name for the new port in the Name field.

8. Select a binding to be exposed by this port from the Binding

drop-down list.

9. Click Next to bring up the Define Port Properties window.
 280

Creating a WebSphere MQ Service
10. Select mq from the Transport Type drop-down list to bring up the

WebSphere MQ transport properties editor shown in Figure 69.

11. If you are adding a port for an MQ client, enter the name of the client’s

request queue in the QueueName field of the Client table.

12. If you are adding a port for an MQ client, enter the name of the queue

manager for the client’s request queue in the QueueManager field of

the Client table.

13. If you are adding a port for an MQ client that will be getting responses

from its server, enter the name of the client’s reply queue in the

ReplyQueueName field of the Client table.

Figure 69: Editing WebSphere MQ Transport Attributes
281

CHAPTER 9 | Adding Transports
14. If you are adding a port for an MQ client that will be getting responses

from its server, enter the name of the queue manager for the client’s

reply queue in the ReplyQueueManager field of the Client table.

15. If you are adding a port for an MQ server, enter the name of the

server’s response queue in the QueueName field of the Server table.

16. If you are adding a port for an MQ server, enter the name of the queue

manager for the server’s response queue in the QueueManager field of

the Server table.

17. Edit any of the remaining optional attributes. See “WebSphere MQ Port

Properties” on page 493

18. Click Finish.

Using the command line tool You can use the wsdltoservice command line tool to add a WebSphere MQ

service definition to an Artix contract. To use wsdltoservice to add a

WebSphere MQ service use the tool with the following options.

wsdltoservice -transport mq [-e service][-t port][-b binding]
 [-sqm queueManager][-sqn queue][-srqm queueManager]
 [-srqn queue][-smqn modelQueue][-sus usageStyle]
 [-scs correlationStyle][-sam accessMode]
 [-sto timeout][-sme expiry][-smp priority]
 [-smi messageId][-sci correlationId][-sd delivery]
 [-st transactional][-sro reportOption][-sf format]
 [-sad applicationData][-sat accountingToken]
 [-scn connectionName][-sc convert][-scr reusable]
 [-scfp fastPath][-said idData][-saod originData]
 [-cqm queueManager][-cqn queue][-crqm queueManager]
 [-crqn queue][-cmqn modelQueue][-cus usageStyle]
 [-ccs correlationStyle][-cam accessMode]
 [-cto timeout][-cme expiry][-cmp priority]
 [-cmi messageId][-cci correlationId][-cd delivery]
 [-ct transactional][-cro reportOption][-cf format]
 [-cad applicationData][-cat accountingToken]
 [-ccn connectionName][-cc convert][-ccr reusable]
 [-ccfp fastPath][-caid idData][-caod originData]
 [-caqn queue][-cui userId][-o file][-d dir]
 [-L file][-q][-h][-V] wsdlurl
 282

Creating a WebSphere MQ Service
The -transport mq flag specifies that the tool is to generate a WebSphere

MQ service. The other options are as follows.

-e service Specifies the name of the generated service.

-t port Specifies the value of the name attribute of the
generated port element.

-b binding Specifies the name of the binding for which the
service is generated.

-sqm queueManager Specifies the name of the server’s queue
manager.

-sqn queue Specifies the name of the server’s request queue.

-srqm queueManager Specifies the name of the server’s reply queue
manager.

-srqn queue Specifies the name of the server’s reply queue.

-smqn modelQueue Specifies the name of the server’s model queue.

-sus usageStyle Specifies the value of the server’s UsageStyle
attribute. Valid values are Peer, Requester, or
Responder.

-scs correlationStyle Specifies the value of the server’s
CorrelationStyle attribute. Valid values are
messageId, correlationId, or messageId copy.

-sam accessMode Specifies the value of the server’s AccessMode
attribute. Valid values are peek, send, receive,
receive exclusive, or receive shared.

-sto timeout Specifies the value of the server’s Timeout
attribute.

-sme expiry Specifies the value of the server’s MessageExpiry
attribute.

-smp priority Specifies the value of the server’s
MessagePriority attribute.

-smi messageId Specifies the value of the server’s MessageId
attribute.

-sci correlationId Specifies the value of the server’s CorrelationId
attribute.

-sd delivery Specifies the value of the server’s Delivery
attribute.
283

CHAPTER 9 | Adding Transports
-st transactional Specifies the value of the server’s Transactional
attribute. Valid values are none, internal, or xa.

-sro reportOption Specifies the value of the server’s ReportOption
attribute. Valid values are none, coa, cod,
exception, expiration, or discard.

-sf format Specifies the value of the server’s Format
attribute.

-sad applicationData Specifies the value of the server’s
ApplicationData attribute.

-sat accountingToken Specifies the value of the server’s
AccountingToken attribute.

-scn connectionName Specifies the name of the connection by which
the adapter connects to the queue.

-sc convert Specifies if the messages in the queue need to be
converted to the system’s native encoding. Valid
values are true or false.

-scr reusable Specifies the value of the server’s
ConnectionReusable attribute. Valid values are
true or false.

-scfp fastPath Specifies the value of the server’s
ConnectionFastPath attribute. Valid values are
true or false.

-said idData Specifies the value of the server’s
ApplicationIdData attribute.

-saod originData Specifies the value of the server’s
ApplicationOriginData attribute.

-cqm queueManager Specifies the name of the client’s queue manager.

-cqn queue Specifies the name of the client’s request queue.

-crqm queueManager Specifies the name of the client’s reply queue
manager.

-crqn queue Specifies the name of the client’s reply queue.

-cmqn modelQueue Specifies the name of the client’s model queue.

-cus usageStyle Specifies the value of the client’s UsageStyle
attribute. Valid values are Peer, Requester, or
Responder.
 284

Creating a WebSphere MQ Service
-ccs correlationStyle Specifies the value of the client’s
CorrelationStyle attribute. Valid values are
messageId, correlationId, or messageId copy.

-cam accessMode Specifies the value of the client’s AccessMode
attribute. Valid values are peek, send, receive,
receive exclusive, or receive shared.

-cto timeout Specifies the value of the client’s Timeout
attribute.

-cme expiry Specifies the value of the client’s MessageExpiry
attribute.

-cmp priority Specifies the value of the client’s
MessagePriority attribute.

-cmi messageId Specifies the value of the client’s MessageId
attribute.

-cci correlationId Specifies the value of the client’s CorrelationId
attribute.

-cd delivery Specifies the value of the client’s Delivery
attribute.

-ct transactional Specifies the value of the client’s Transactional
attribute. Valid values are none, internal, or xa.

-cro reportOption Specifies the value of the client’s ReportOption
attribute. Valid values are none, coa, cod,
exception, expiration, or discard.

-cf format Specifies the value of the client’s Format attribute.

-cad applicationData Specifies the value of the client’s
ApplicationData attribute.

-cat accountingToken Specifies the value of the client’s
AccountingToken attribute.

-ccn connectionName Specifies the name of the connection by which
the adapter connects to the queue.

-cc convert Specifies if the messages in the queue need to be
converted to the system’s native encoding. Valid
values are true or false.

-ccr reusable Specifies the value of the client’s
ConnectionReusable attribute. Valid values are
true or false.
285

CHAPTER 9 | Adding Transports
-ccfp fastPath Specifies the value of the client’s
ConnectionFastPath attribute. Valid values are
true or false.

-caid idData Specifies the value of the client’s
ApplicationIdData attribute.

-caod originData Specifies the value of the client’s
ApplicationOriginData attribute.

-caqn queue Specifies the remote queue to which a server will
put replies if its queue manager is not on the
same host as the client’s local queue manager.

-cui userId Specifies the value of the client’s
UserIdentification attribute.

-o file Specifies the filename for the generated contract.
The default is to append -service to the name of
the imported contract.

-d dir Specifies the output directory for the generated
contract.

-L file Specifies the location of your Artix license file. The
default behavior is to check
IT_PRODUCT_DIR\etc\license.txt.

-q Specifies that the tool runs in quiet mode. No

output will be shown on the console. This

includes error messages.

-h Specifies that the tool will display a usage

message.

-V Specifies that the tool runs in verbose mode.
 286

Creating a WebSphere MQ Service
Example An Artix contract exposing an interface, monsterBash, bound to a SOAP

payload format, Raydon, on an WebSphere MQ queue, UltraMan would

contain a service element similar to Example 95.

More information For a detailed description of the WebSphere MQ transport configuration

attributes see “WebSphere MQ Port Properties” on page 493.

Example 95:Sample WebSphere MQ Port

<service name="Mothra">
 <port name="X" binding="tns:Raydon">
 <mq:server QueueManager="UMA"
 QueueName="UltraMan"
 ReplyQueueManager="WINR"
 ReplyQueueName="Elek"
 AccessMode="receive"
 CorrelationStyle="messageId copy"/>
 </port>
</service>
287

CHAPTER 9 | Adding Transports
Creating a Java Messaging System Service

Overview Artix provides a transport plug-in that enables systems to place and receive

messages from Java Messaging System (JMS) queues and topics. One large

advantage of this is that Artix allows C++ applications to interact directly

with Java applications over JMS.

Artix’s JMS transport plug-in uses JNDI to locate and obtain references to

the JMS provider that brokers for the JMS destination with which it wants to

connect. Once Artix has established a connection to a JMS provider, Artix

supports the passing of messages packaged as either a JMS ObjectMessage

or a JMS TextMessage.

Message formatting The JMS transport takes the payload formatting and packages it into either a

JMS ObjectMessage or a TextMessage. When a message is packaged as an

ObjectMessage the message information, including any format-specific

information, is serialized into a byte[] and placed into the JMS message

body. When a message is packaged as a TextMessage, the message

information, including any format-specific information, is converted into a

string and placed into the JMS message body.

When a message sent by Artix is received by a JMS application, the JMS

application is responsible for understanding how to interpret the message

and the formatting information. For example, if the Artix contract specifies

that the binding used for a JMS port is SOAP, and the messages are

packaged as TextMessage, the receiving JMS application will get a text

message containing all of the SOAP envelope information. For a message

encoded using the fixed binding, the message will contain no formatting

information, simply a string of characters, numbers, and spaces.
 288

Creating a Java Messaging System Service
Port configuration The JMS port configuration is done by using a jms:address element in your

service’s port description. jms:address uses the attributes described in

Table 23 to configure the JMS connection.

Table 23: Required JMS Port Attributes

Attribute Description

destinationStyle Specifies if the JMS destination is a
JMS queue or a JMS topic.

jndiProviderURL Specifies the URL of the JNDI service
where the connection information for
the JMS destination is stored.

initialContextFactory Specifies the name of the
InitialContextFactory class or a list
of package prefixes used to construct
URL context factory classnames. For
more details on specifying a JNDI
InitialContextFactory, see “JNDI
InitialContextFactory settings” on
page 296.

jndiConnectionFactoryName Specifies the JNDI name bound to the
JMS connection factory to use when
connecting to the JMS destination.

jndiDestinationName Specifies the JNDI name bound to the
JMS destination to which requests are
sent.

jndiReplyDestinationName Specifies the JNDI name bound to the
JMS destinations where replies are
sent. This attribute allows you to use a
user defined destination for replies. For
more details see “Using a named reply
destination”.

connectionUserName Specifies the username to use when
connecting to a JMS broker.

connectionPassword Specifies the password to use when
connecting to a JMS broker.
289

CHAPTER 9 | Adding Transports
Using a named reply destination By default Artix endpoints using JMS create a temporary queue for sending

replies back and forth. You can change this behavior by setting the

jndiReplyDestinationName attribute in the endpoints contract. An Artix

client endpoint will listen for replies on the specified destination and it will

specify the value of the attribute in the ReplyTo field of all outgoing

requests. An Artix service endpoint will use the value of the

jndiReplyDestinationName attribute as the location for placing replies if

there is no destination specified in the request’s ReplyTo field.

Using correlation IDs If you want to configure Artix to use JMS message IDs as the correlation IDs

you can set the optional useMessageIDAsCorrelationID attribute to true.

The default for this attribute is false.

Setting up durable subscriptions If you want to configure your Artix service to use durable subscriptions, you

can set the optional durableSubscriberName attribute. The value of the

attribute is the name used to register the durable subscription.

Using message selectors If you want to configure your Artix service to use a JMS message selector,

you can set the optional messageSelector attribute. The value of the

attribute is the string value of the selector. For more information on the

syntax used to specify message selectors, see the JMS 1.1 specification.

Using reliable messaging If you want your Artix service to use the local JMS broker’s transaction

capabilities, you can set the optional transactional attribute to true.

messageType Specifies how the message data will be
packaged as a JMS message. text
specifies that the data will be packaged
as a TextMessage. binary specifies
that the data will be packaged as an
ObjectMessage.

Table 23: Required JMS Port Attributes

Attribute Description
 290

Creating a Java Messaging System Service
When the transactional attribute is set, an Artix server’s JMS transport

layer will begin a transaction when it pulls a request from the queue. The

server will then process the request and send the response back to the JMS

transport layer. Once the JMS transport layer has successfully placed the

response on the response queue, the transport layer will commit the

transaction. So, if the Artix service crashes while processing a request or the

is unable to send the response, the JMS broker will hold the request in the

queue until it is successfully processed.

In cases where Artix is acting as a router between JMS and another

transport, setting the transactional attribute will ensure that the message

is delivered to the second server. The JMS portion of the router will not

commit the message until the message has been successfully consumed by

the outbound transport layer. If an exception is thrown during the

consumption of the message, the JMS transport will rollback the message

the message, pull it from the queue again, and attempt to resend it.

Optional JNDI settings To increase interoperability with JMS and JNDI providers, the

<jms:address> element has a number of optional attributes to facilitate

configuring a JNDI connection. These optional attributes are:

• java.naming.factory.initial

• java.naming.provider.url

• java.naming.factory.object

• java.naming.factory.state

• java.naming.factory.url.pkgs

• java.naming.dns.url

• java.naming.authoritative

• java.naming.batchsize

• java.naming.referral

• java.naming.security.protocol

• java.naming.security.authentication

• java.naming.security.principal

• java.naming.security.credentials

• java.naming.language

• java.naming.applet

For more details on what information to using these attributes, check your

JNDI provider’s documentation and consult the Java API reference material.
291

CHAPTER 9 | Adding Transports
Using Artix Designer To add a JMS port from the Artix Designer Diagram view:

1. Right-click the Services node to activate the pop-up menu.

2. Select New Service to bring up the Select Source Resources window.

3. Select at least one resource from the list to act as a source of bindings.

All of the bindings defined in the selected contracts will be made

available for you to use in defining a service. The contracts will be

imported to contract using WSDL import elements.

4. Click Next to bring up the Define Service window.

5. Enter a name for the new service in the Name field.

6. Click Next to bring up the Define Port window.

7. Enter a name for the new port in the Name field.

8. Select a binding to be exposed by this port from the Binding

drop-down list.

9. Click Next to bring up the Define Port Properties window.
 292

Creating a Java Messaging System Service
10. Select jms from the Transport Type drop-down list to bring up the JMS

transport properties editor shown in Figure 70.

11. Set the required port properties. See Table 23 on page 289.

12. Click Finish.

Figure 70: Editing JMS Transport Attributes
293

CHAPTER 9 | Adding Transports
Using the command line tools You can use the wsdltoservice command line tool to add a JMS service

definition to an Artix contract. To use wsdltoservice to add a JMS service

use the tool with the following options.

The -transport jms flag specifies that the tool is to generate a JMS service.

The other options are as follows.

wsdltoservice -transport jms [-e service][-t port][-b binding]
 [-jds destionationStyle][-jpu jndiProviderURL]
 [-jcf initialContextFactory]
 [-jfn jndiConnectionFactoryName]
 [-jdn jndiDestinationName][-jmt messageType]
 [-o file][-d dir][-L file][-q][-h][-V] wsdlurl

-e service Specifies the name of the generated
service.

-t port Specifies the value of the name attribute of
the generated port element.

-b binding Specifies the name of the binding for
which the service is generated.

-jds destinationStyle Specifies if the JMS destination is a JMS
queue or a JMS topic.

-jpu providerURL Specifies the URL of the JNDI service
where the connection information for the
JMS destination is stored.

-jcf initialContextFactory Specifies the name of the
InitialContextFactory class or a list of
package prefixes used to construct URL
context factory classnames. For more
details on specifying a JNDI
InitialContextFactory, see “JNDI
InitialContextFactory settings” on
page 296.

-jfn connectionFactoryName Specifies the JNDI name bound to the
JMS connection factory to use when
connecting to the JMS destination.

-jdn destinationName Specifies the JNDI name bound to the
JMS destination to which Artix connects.
 294

Creating a Java Messaging System Service
Example Example 96 shows an example of an Artix JMS port specification.

-jmt messageType Specifies how the message data will be
packaged as a JMS message. Valid values
are text or binary.

-o file Specifies the filename for the generated
contract. The default is to append
-service to the name of the imported
contract.

-d dir Specifies the output directory for the
generated contract.

-L file Specifies the location of your Artix license
file. The default behavior is to check
IT_PRODUCT_DIR\etc\license.txt.

-q Specifies that the tool runs in quiet mode.

No output will be shown on the console.

This includes error messages.

-h Specifies that the tool will display a usage

message.

-V Specifies that the tool runs in verbose

mode.

Example 96:Artix JMS Port

<service name="HelloWorldService">
 <port binding="tns:HelloWorldPortBinding" name="HelloWorldPort">
 <jms:address destinationStyle="queue"
 jndiProviderURL="tcp://localhost:2506"
 initialContextFactory="com.sonicsw.jndi.mfcontext.MFContextFactory"
 jndiConnectionFactoryName="QCF"
 jndiDestinationName="testQueue"
 messageType="text"/>
 </port>
</service>
295

CHAPTER 9 | Adding Transports
JNDI InitialContextFactory

settings

The usual method of specifying the JNDI is to enter the class name provided

by your JNDI provider. In Example 96, the JMS port is using the JNDI

provided with SonicMQ and the class specified,

com.sonicsw.jndi.mfcontext.MFContextFactory, is the class used by

Sonic’s JNDI server to create a JNDI context.

Alternatively, you can specify a colon-separated list of package prefixes to

use when loading URL context factories. The JNDI service takes each

package prefix and appends the URL schema name to form a sub-package.

It then prepends the URL schema name to URLContextFactory to form a

class name within the sub-package. Once the new class name is formed,

the JNDI service then tries to instantiate the class using the newly formed

name. For example, if your Artix contract described the JMS port shown in

Example 97, the JNDI service would instantiate a context factory with the

class name com.iona.jbus.jms.naming.sonic.sonicURLContextFactory to

perform lookups.

The URLContextFactory then uses the URL specified in the

jndiConnectionFactoryName and the jndiDestinationFactoryName

attributes to obtain references to the desired JMS ConnectionFactory and

the desired JMS Destination. The JNDI service is completely bypassed

using this method and allows you to connect to JMS implementations that

do not use JNDI or to connect to JMS Destination that are not registered

with the JNDI service.

So instead of looking up the JMS ConnectionFactory using the JNDI name

bound to it, Artix will get a reference directly to ConnectionFactory using

the name given to it when it was created. Using the contract in Example 97,

Example 97: JMS Port with Alternate InitialContextFactory Specification

<service name="HelloWorldService">
 <port binding="tns:HelloWorldPortBinding" name="HelloWorldPort">
 <jms:address destinationStyle="queue"
 jndiProviderURL="tcp://localhost:2506"
 initialContextFactory="com.iona.jbus.jms.naming"
 jndiConnectionFactoryName="sonic:jms/queue/connectionFactory"
 jndiDestinationName="sonic:jms/queue/helloWorldQueue"
 messageType="text"/>
 </port>
</service>
 296

Creating a Java Messaging System Service
Artix would use the URL sonic:jms/queue/helloWorldQueue to get a

reference to the desired queue. Artix would be handed a reference to a

queue named helloWorldQueue if the JMS broker has such a queue.

Note: Due to a known bug in the SonicMQ JNDI service, it is
recommended that you use this method of specifying the
InitialContextFactory when using SonicMQ.
297

CHAPTER 9 | Adding Transports
Adding a TIBCO Service

Overview The TIBCO Rendezvous transport lets you use Artix to integrate systems

based on TIBCO Rendezvous (TIB/RV) software.

Supported Features Table 24 shows the matrix of TIBCO Rendezvous features Artix supports.

Namespace To use the TIB/RV transport, you need to describe the port using TIB/RV in

the physical part of an Artix contract. The extensions used to describe a

TIB/RV port are defined in the namespace:

This namespace will need to be included in your Artix contract’s definition

element.

Describing the port As with other transports, the TIB/RV transport description is contained

within a port element. Artix uses tibrv:port to describe the attributes of a

TIB/RV port. The only required attribute for a tibrv:port is serverSubject

which specifies the subject to which the server listens.

Table 24: Supported TIBCO Rendezvous Features

Feature Supported Not
Supported

Server Side Advisory Callbacks x

Certified Message Delivery x

Fault Tolerance (TibrvFtMember/Monitor) x

Virtual Connections (TibrvVcTransport) x

Secure Daemon (rvsd/TibrvSDContext) x

TIBRVMSG_IPADDR32 x

TIBRVMSG_IPPORT16 x

xmlns:tibrv="http://schemas.iona.com/transports/tibrv"
 298

Adding a TIBCO Service
Using Artix Designer To add a TIB/RV port from the Artix Designer Diagram view:

1. Right-click the Services node to activate the pop-up menu.

2. Select New Service to bring up the Select Source Resources window.

3. Select at least one resource from the list to act as a source of bindings.

All of the bindings defined in the selected contracts will be made

available for you to use in defining a service. The contracts will be

imported to contract using WSDL import elements.

4. Click Next to bring up the Define Service window.

5. Enter a name for the new service in the Name field.

6. Click Next to bring up the Define Port window.

7. Enter a name for the new port in the Name field.

8. Select a binding to be exposed by this port from the Binding

drop-down list.

9. Click Next to bring up the Define Port Properties window.
299

CHAPTER 9 | Adding Transports
10. Select tibrv from the Transport Type drop-down list to bring up the

TIBCO transport properties editor shown in Figure 71.

11. Specify the name of the subject to which the server listens in the

serverSubject field.

12. Set any desired optional attributes. See “Tibco Port Properties” on

page 533.

13. Click Finish.

Figure 71: Editing TIBCO Transport Attributes
 300

Adding a TIBCO Service
Using the command line tools You can use the wsdltoservice command line tool to add a TIB/RV service

definition to an Artix contract. To use wsdltoservice to add a TIB/RV

service use the tool with the following options.

The -transport tibrv flag specifies that the tool is to generate a TIB/RV

service. The other options are as follows.

wsdltoservice -transport tibrv [-e service][-t port][-b binding]
 [-tss subject][-tcst subject][-tbt bindingType]
 [-tcl callbackLevel][-trdt timeout]
 [-tts transportService][-ttn transportNetwork]
 [-ttbm batchMode][-tqp priority]
 [-tqlp queueLimitPolicy][-tqme queueMaxEvents]
 [-tqda queueDiscardAmount][-tcs cmSupport]
 [-tctsn cmTransportServerName]
 [-tctcn cmTransportClientName]
 [-tctro cmTransportRequestOld]
 [-tctln cmTransportLedgerName]
 [-tctsl cmTransportSyncLedger]
 [-tctra cmTransportRelayAgent]
 [-tctdtl cmTransportDefaultTimeLimit]
 [-tclca cmListenerCancelAgreements]
 [-tcqtsn cmQueueTransportServerName]
 [-tcqtcn cmQueueTransportClientName]
 [-tcqtww cmQueueTransportWorkerWeight]
 [-tcqtws cmQueueTransportWorkerTasks]
 [-tcqtsw cmQueueTransportSchedulerWeight]
 [-tcqtsh cmQueueTransportSchedulerHeartbeat]
 [-tcqtsa cmQueueTransportSchedulerActivation]
 [-tcqtct cmQueueTransportCompleteTime]
 [-tmnfv messageNameFieldValue]
 [-tmnfp messageNameFieldPath]
 [-tbfi bindingFieldId][-tbfn bindingFieldName]
 [-o file][-d dir][-L file]
 [-q][-h][-V] wsdlurl

-e service Specifies the name of the generated
service.

-t port Specifies the value of the name attribute of
the generated port element.

-b binding Specifies the name of the binding for
which the service is generated.
301

CHAPTER 9 | Adding Transports
-tss subject Specifies the subject to which the server
listens.

-tbt bindingType Specifies the message binding type. Valid
vales are msg, xml, opaque, or string.

-tcl callbackLevel Specifies the server-side callback level
when TIB/RV system advisory messages
are received. Valid values are INFO, WARN,
or ERROR.

-trdt timeout Specifies the client-side response receive
dispatch timeout.

-tts transportService Specifies the UDP service name or port for
TibrvNetTransport.

-ttn transportNetwork Specifies the binding network addresses
for TibrvNetTransport.

-ttbm batchMode Specifies if the TIB/RV transport uses
batch mode to send messages. Valid
values are DEFAULT_BATCH and
TIMER_BATCH.

-tqp priority

-tqlp queueLimitPolicy Valid values are DISCARD_NONE,
DISCARD_NEW, DISCARD_FIRST, or
DISCARD_LAST.

-tqme queueMaxEvents

-tqda queueDiscardAmount

-tcs cmSupport Specifies if Certified Message Delivery
support is enabled. Valid values are true
or false.

-tctsn cmTransportServerName Specifies the server’s TibrvCmTransport
correspondent name.

-tctcn cmTransportClientName Specifies the client TibrvCmTransport
correspondent name.

-tctro cmTransportRequestOld Specifies if the endpoint can request old
messages on start-up. Valid values are
true or false.

-tctln cmTransportLedgerName Specifies the TibrvCmTransport ledger file.
 302

Adding a TIBCO Service
-tctsl cmTransportSyncLedger Specifies if the endpoint uses a
synchronous ledger. Valid values are true
or false.

-tctra cmTransportRelayAgent Specifies the endpoint’s TibrvCmTransport
relay agent.

-tctdtl

cmTransportDefaultTimeLimit

Specifies the default time limit for a
Certified Message to be delivered.

-tclca

cmListenerCancelAgreements

Specifies if Certified Message agreements
are canceled when the endpoint
disconnects. Valid values are true or
false.

-tcqtsn

cmQueueTransportServerName

Specifies the server’s
TibrvCmQueueTransport correspondent
name.

-tcqtcn

cmQueueTransportClientName

Specifies the client’s
TibrvCmQueueTransport correspondent
name.

-tcqtww

cmQueueTransportWorkerWeight

Specifies the endpoint’s
TibrvCmQueueTransport worker weight.

-tcqtws

cmQueueTransportWorkerTasks

Specifies the endpoint’s
TibrvCmQueueTransport worker tasks
parameter.

-tcqtsw
cmQueueTransportSchedulerWeight

Specifies the TibrvCmQueueTransport
scheduler weight parameter.

-tcqtsh
cmQueueTransportSchedulerHeartbeat

Specifies the endpoint’s
TibrvCmQueueTransport scheduler
heartbeat parameter.

-tcqtsa
cmQueueTransportSchedulerActivation

Specifies the TibrvCmQueueTransport
scheduler activation parameter.

-tcqtct

cmQueueTransportCompleteTime

Specifies the TibrvCmQueueTransport
complete time parameter.

-tmnfv messageNameFieldValue

-tmnfp messageNameFieldPath

-tbfi bindingFieldId

-tbfn bindingFieldName
303

CHAPTER 9 | Adding Transports
Example Example 98 shows an Artix description for a TIB/RV port.

More information For a complete listing of the attribute used in configuring a TIB/RV service

see “Tibco Port Properties” on page 533.

-o file Specifies the filename for the generated
contract. The default is to append
-service to the name of the imported
contract.

-d dir Specifies the output directory for the
generated contract.

-L file Specifies the location of your Artix license
file. The default behavior is to check
IT_PRODUCT_DIR\etc\license.txt.

-q Specifies that the tool runs in quiet mode.

No output will be shown on the console.

This includes error messages.

-h Specifies that the tool will display a usage

message.

-V Specifies that the tool runs in verbose

mode.

Example 98:TIB/RV Port Description

 <service name="BaseService">
 <port binding="tns:BasePortBinding" name="BasePort">
 <tibrv:port serverSubject="Artix.BaseService.BasePort"/>
 </port>
 </service>
 304

Creating a Tuxedo Service
Creating a Tuxedo Service

Overview Artix allows services to connect using Tuxedo’s transport mechanism. This

provides them with all of the qualities of service associated with Tuxedo.

Tuxedo namespaces To use the Tuxedo transport, you need to describe the port using Tuxedo in

the physical part of an Artix contract. The extensions used to describe a

Tuxedo port are defined in the following namespace:

This namespace will need to be included in your Artix contract’s definition

element.

Defining the Tuxedo services As with other transports, the Tuxedo transport description is contained

within a port element. Artix uses tuxedo:server to describe the attributes

of a Tuxedo port. tuxedo:server has a child element, tuxedo:service, that

gives the bulletin board name of a Tuxedo port. The bulletin board name for

the service is specified in the element’s name attribute. You can define more

than one Tuxedo service to act as an endpoint.

Mapping operations to a Tuxedo

service

For each of the Tuxedo services that are endpoints, you must specify which

of the operations bound to the port being defined are handled by the Tuxedo

service. This is done using one or more tuxedo:input child elements.

tuxedo:input takes one required attribute, operation, that specifies the

WSDL operation that is handled by this Tuxedo service endpoint.

Using Artix Designer To add a Tuxedo port from the Artix Designer Diagram view:

1. Right-click the Services node to activate the pop-up menu.

2. Select New Service to bring up the Select Source Resources window.

3. Select at least one resource from the list to act as a source of bindings.

All of the bindings defined in the selected contracts will be made

available for you to use in defining a service. The contracts will be

imported to contract using WSDL import elements.

xmlns:tuxedo="http://schemas.iona.com/transports/tuxedo"
305

CHAPTER 9 | Adding Transports
4. Click Next to bring up the Define Service window.

5. Enter a name for the new service in the Name field.

6. Click Next to bring up the Define Port window.

7. Enter a name for the new port in the Name field.

8. Select a binding to be exposed by this port from the Binding

drop-down list.

9. Click Next to bring up the Define Port Properties window.

10. Select tuxedo from the Transport Type drop-down list to bring up the

Tuxedo transport properties editor shown in Figure 72.

11. Click the Add button under the Services table to add a Tuxedo service

to the table.

12. Click in the Name column to edit the service’s name.

Figure 72: Editing Tuxedo Transport Attributes
 306

Creating a Tuxedo Service
13. Add an optional value for the function attribute in the Function

column.

14. With the service selected in the Service table, click the Add button

under the Operations table.

15. Select one of the operations from the window that pops up.

16. Click OK to return to editing the transport properties.

17. Repeat steps 14 through 16 until you have added all of the desired

operations for the service.

18. Repeat steps 11 through 17 until you have added all of the desired

Tuxedo services to the port.

19. Click Finish.

Using the command line tools You can use the wsdltoservice command line tool to add a Tuxedo service

definition to an Artix contract. To use wsdltoservice to add a Tuxedo

service use the tool with the following options.

The -transport tuxedo flag specifies that the tool is to generate a Tuxedo

service. The other options are as follows.

wsdltoservice -transport tuxedo [-e service][-t port]
 [-b binding][-tsn tuxService]
 [-tfn tuxService:tuxFunction]
 [-ton tuxService:operation]
 [-o file][-d dir][-L file][-q][-h][-V] wsdlurl

-e service Specifies the name of the generated
service.

-t port Specifies the value of the name attribute of
the generated port element.

-b binding Specifies the name of the binding for
which the service is generated.

-tsn tuxService Specifies the name of the Tuxedo bulletin
board to which Artix connects.

-tsn tuxService:tuxFunction Specifies the name of the function to be
used on the specified Tuxedo bulletin
board.

-ton tuxService:operation Specifies the WSDL operation that is
handled by the specified Tuxedo endpoint.
307

CHAPTER 9 | Adding Transports
Example An Artix contract exposing the personalInfoService as a Tuxedo service

would contain a service element similar to Example 99 on page 308.

-o file Specifies the filename for the generated
contract. The default is to append
-service to the name of the imported
contract.

-d dir Specifies the output directory for the
generated contract.

-L file Specifies the location of your Artix license
file. The default behavior is to check
IT_PRODUCT_DIR\etc\license.txt.

-q Specifies that the tool runs in quiet mode.

No output will be shown on the console.

This includes error messages.

-h Specifies that the tool will display a usage

message.

-V Specifies that the tool runs in verbose

mode.

Example 99:Tuxedo Port Description

<service name="personalInfoService">
 <port binding="tns:personalInfoBinding" name="tuxInfoPort">
 <tuxedo:server>
 <tuxedo:service name="personalInfoService">
 <tuxedo:input operation="infoRequest"/>
 </tuxedo:service>
 </tuxedo:server>
 </port>
</service>
 308

Configuring a Service to Use Codeset Conversion
Configuring a Service to Use Codeset
Conversion

Overview While many of the bindings support by Artix provide a means for handling

codeset conversion, some do not. It is also possible that any custom

bindings you developed do not support codeset conversion. To allow

bindings that do not natively support codeset conversion to participate in

environments where more than one codeset is used, Artix provides an i18n

message level interceptor that will perform codeset conversion on the

message buffer before it is placed on the wire.

The i18n interceptor can be configured by defining the codeset conversion in

your endpoint’s Artix contract using an Artix port extensor. You can also

configure the i18n interceptor programatically using the context mechanism.

The programatic settings will override any settings described in the contract.

For more information on using the context mechanism see the appropriate

development guide for your development environment.

Configuring Artix to use the i18n

interceptor

Before your application can use the generic i18n interceptor for code

conversion you must configure the Artix bus to load the required plug-ins

and add the interceptor to the appropriate message interceptor lists. To

configure your application to use the i18n interceptor:

1. If your application includes a client that needs to use codeset

conversion, add "i18n-context:I18nInterceptorFactory" to the

binding:artix:client_message_interceptor_list variable for your

application.

2. If your application includes a service that needs to use codeset

conversion, add "i18n-context:I18nInterceptorFactory" to the

binding:artix:server_message_interceptor_list variable for your

application.

For more information on configuring Artix see Deploying and Managing Artix

Solutions.
309

CHAPTER 9 | Adding Transports
Describing the codeset

conversions in the contract

You define the codeset conversions performed by the i18n interceptor in the

port element defining an endpoint. There are two extensors used to define

the codeset conversions. One, i18n-context:server, is for service providers

and the other, i18n-context:client, is for clients. They both provide

settings for how both incoming messages and outgoing messages are to be

encoded. These extensions are defined in the namespace

"http://schemas.iona.com/bus/i18n/context".

To define the codeset conversions performed by the i18n interceptor:

1. Add the following line to the definitions element of your contract.

2. If your application provides a service that requires codeset conversion

add a i18n-context:server element to the port definition of the

service endpoint.

i18n-context:server has the following attributes for defining how

message codesets are converted:

♦ LocalCodeSet specifies the server’s native codeset. Default is the

codeset specified by the local system’s locale setting.

♦ OutboundCodeSet specifies the codeset into which replies are

converted. Default is the codeset specified in InboundCodeSet.

♦ InboundCodeSet specifies the codeset into which requests are

converted. Default is the codeset specified in LocalCodeSet.

3. If your application includes a client that requires codeset conversion

add an i18n-context:client element to the port definition of the

service endpoint.

i18n-context:client has the following attributes for defining how

message codesets are converted:

♦ LocalCodeSet specifies the server’s native codeset. Default is the

codeset specified by the local system’s locale setting.

♦ OutboundCodeSet specifies the codeset into which requests are

converted. Default is the codeset specified in LocalCodeSet.

♦ InboundCodeSet specifies the codeset into which replies are

converted. Default is the codeset specified in OutboundCodeSet.

xmlns:i18n-context="http://schemas.iona.com/bus/i18n/context"
 310

Configuring a Service to Use Codeset Conversion
Example The contract fragment in Example 100 show a port definition for an

endpoint that defines a server/client pair. The server uses UTF-8 as its local

codeset and the client uses ISO-8859-1 as its local codeset.

Using the endpoint definition above, the client will convert its requests into

UTF-8 before sending them to the server. The server will convert its replies

into ISO-8859-1 before sending them to the client. The client’s

InboundCodeSet is set to ISO-8859-1 because if left unset the value would

have defaulted to UTF-8. The client would then perform an extra

conversion.

Example 100:Specifying Codeset Conversion

...
<service name="covertedService">
 <port binding="tns:convertedFixedBinding"
 name="convertedPort">
 <http:address location="localhost:0"/>
 <i18n:client LocalCodeSet="ISO-8859-1"
 OutboundCodeSet="UTF-8"
 InboundCodeSet="ISO-8859-1"/>
 <i18n:server LocalCodeSet="UTF-8"
 OutboundCodeSet="ISO-8859-1"/>
 </port>
</service>
...
311

CHAPTER 9 | Adding Transports
 312

CHAPTER 10

Adding Routing
Instructions
Artix provides messages routing based on operations, ports, or
message attributes.

In this chapter This chapter discusses the following topics:

Artix Routing page 314

Compatibility of Ports and Operations page 315

Defining Routes in Artix Contracts page 318

Creating Routes Using Artix Designer page 330

Creating Routes from the Command Line page 334

Load Balancing page 338

Error Handling page 339

Service Lifecycles page 340

Routing References to Transient Servants page 342
313

CHAPTER 10 | Adding Routing Instructions
Artix Routing

Overview Artix routing is implemented within an Artix service and is controlled by

rules specified in the service’s contract. Artix services that include routing

rules can be deployed either in standalone mode or embedded into an Artix

service.

Artix supports the following types of routing:

• Port-based

• Operation-based

A router's contract must include definitions for the source services and

destination services. The contract also defines the routes that connect

source and destination ports. This routing information is all that is required

to implement port-based or operation-based routing.

Port-based Port-based routing acts on the port or transport-level identifier, specified by

a port element in an Artix contract. This is the most efficient form of

routing. Port-based routing can also make a routing decision based on port

properties, such as the message header or message identifier. Thus Artix

can route messages based on the origin of a message or service request, or

based on the message header or identifier.

Operation-based Operation-based routing lets you route messages based on the logical

operations described in an Artix contract. Messages can be routed between

operations whose arguments are equivalent. Operation-based routing can be

specified on the interface, portType, level or the finer grained operation

level.
 314

Compatibility of Ports and Operations
Compatibility of Ports and Operations

Overview Artix can route messages between services that expect similar messages.

The services can use different message transports and different payload

formats, but the messages must be logically identical. For example, if you

have a baseball scoring service that is hosted on a mainframe, it may send

data using fixed record length fields over a WebSphere MQ queue. Using

Artix, you can route the score data to a reporting service that consumes

SOAP data over HTTP. The only requirement for operation-based routing is

that the two services have an operation that uses messages with the same

logical description in the Artix contract defining their integration. For

port-based routing, the destination service must have a matching operation

defined for each of the operations defined for the source service.

Port-based routing Port-based routing is rough grained in that the routing rules are defined on

the port elements of an Artix contract and do not look at the individual

operations defined in the logical interface, or portType, to which the port is

bound. Therefore, port-based routing requires that the services between

which messages are being routed must have compatible logical interface

descriptions.

For two ports to have compatible logical interfaces the following conditions

must be met:

• The destination’s logical interface must contain a matching operation

for each operation in the source’s logical interface. Matching

operations must have the same name.

• Each of the matching operations must have the same number of input,

output, and fault messages.

• Each of the matching operations’ messages must have the same

sequence of part types.

For example, given the two logical interfaces defined in Example 101 you

could construct a route from a port bound to baseballScorePortType to a

port bound to baseballGamePortType. However, you could not create a
315

CHAPTER 10 | Adding Routing Instructions
route from a port bound to finalScorePortType to a port bound to

baseballGamePortType because the message types used for the getScore

operation do not match.

Example 101:Logical interface compatibility example

<message name="scoreRequest>
 <part name="gameNumber" type="xsd:int"/>
</message>
<message name="baseballScore">
 <part name="homeTeam" type="xsd:int"/>
 <part name="awayTeam" type="xsd:int"/>
 <part name="final" type="xsd:boolean"/>
</message>
<message name="finalScore">
 <part name="home" type="xsd:int"/>
 <part name="away" type="xsd:int"/>
 <part name="winningTeam" type="xsd:string"/>
</message>
<message name="winner">
 <part name="winningTeam" type="xsd:string"/>
</message>
<portType name="baseballGamePortType">
 <operation name="getScore">
 <input message="tns:scoreRequest" name="scoreRequest"/>
 <output message="tns:basballScore" name="baseballScore"/>
 </operation>
 <operation name="getWinner">
 <input message="tns:scoreRequest" name="winnerRequest"/>
 <output message="tns:winner" name="winner"/>
 </operation>
</portType>
<portType name="baseballScorePortType">
 <operation name="getScore">
 <input message="tns:scoreRequest" name="scoreRequest"/>
 <output message="tns:basballScore" name="baseballScore"/>
 </operation>
</portType>
<portType name="finalScorePortType">
 <operation name="getScore">
 <input message="tns:scoreRequest" name="scoreRequest"/>
 <output message="tns:finalScore" name="finalScore"/>
 </operation>
</portType>
 316

Compatibility of Ports and Operations
Operation-based routing Operation-based routing provides a finer grained level of control over how

messages can be routed. Operation-based routing rules check for

compatibility on the operation level of the logical interface description.

Therefore, messages can be routed between any two compatible messages.

The following conditions must be met for operations to be compatible:

• The operations must have the same number of input, output, and fault

messages.

• The messages must have the same sequence of part types.

For example, if you added the logical interface in Example 102 to the

interfaces in Example 101 on page 316, you could specify a route from

getFinalScore defined in fullScorePortType to getScore defined in

finalScorePortType. You could also define a route from getScore defined

in fullScorePortType to getScore defined in baseballScorePortType.

Example 102:Operation-based routing interface

<portType name="fullScorePortType">
 <operation name="getScore">
 <input message="tns:scoreRequest" name="scoreRequest"/>
 <output message="tns:basballScore" name="baseballScore"/>
 </operation>
 <operation name="getFinalScore">
 <input message="tns:scoreRequest" name="scoreRequest"/>
 <output message="tns:finalScore" name="finalScore"/>
 </operation>
</portType>
317

CHAPTER 10 | Adding Routing Instructions
Defining Routes in Artix Contracts

Overview Artix port-based and operation-based routing are fully implemented in the

contract defining the integration of your systems. Routes are defined using

WSDL extensions that are defined in the namespace

http://schemas.iona.com/routing. The most commonly used of these

extensions are:

routing:route is the root element of any route defined in the contract.

routing:source specifies the port that serves as the source for messages that

will be routed using the route.

routing:destination specifies the port to which messages will be routed.

You do not need to do any programming and your applications need not be

aware that any routing is taking place.

In this section This section discusses the following topics:

Using Port-Based Routing page 319

Using Operation-Based Routing page 322

Advanced Routing Features page 325
 318

Defining Routes in Artix Contracts
Using Port-Based Routing

Overview Port-based routing is the highest performance type of routing Artix performs.

It is also the easiest to implement. All of the rules are specified in the Artix

contract describing how your systems are integrated. The routes specify the

source port for the messages and the destination port to which messages

are routed.

Describing routes in an Artix

contract

The Artix routing elements are defined in the

http://schemas.iona.com/routing namespace. When describing routes in

an Artix contract you must add the following to your contract’s definition

element:

To describe a port-based route you use three elements:

routing:route

routing:route is the root element of each route you describe in your

contract. It takes on required attribute, name, that specifies a unique

identifier for the route. route also has an optional attribute, multiRoute,

which is discussed in “Advanced Routing Features” on page 325.

routing:source

routing:source specifies the port from which the route will redirect

messages. A route can have several source elements as long as they all

meet the compatibility rules for port-based routing discussed in “Port-based

routing” on page 315.

routing:source requires two attributes, service and port. service

specifies the service element in which the source port is defined. port

specifies the name of the port element from which messages are being

received. The router will create a proxy for to listen for mesages on this port.

<definition ...
 xmlns:routing="http://schemas.iona.com/routing"
 ...>
319

CHAPTER 10 | Adding Routing Instructions
routing:destination

routing:destination specifies the port to which the source messages are

directed. The destination must be compatible with all of the source

elements. For a discussion of the compatibility rules for port-based routing

see “Port-based routing” on page 315.

In standard routing only one destination is allowed per route. Multiple

destinations are allowed in conjunction with the route element’s muliRoute

attribute that is discussed in “Advanced Routing Features” on page 325.

routing:destination requires two attributes, service and port. service

specifies the service element in which the destination port is defined. port

specifies the name of the port element to which messages are being sent.

Example For example, to define a route from baseballScorePortType to

baseballGamePortType, defined in Example 101 on page 316, your Artix

contract would contain the elements in Example 103.

Example 103:Port-based routing example

1 <service name="baseballScoreService">
 <port binding="tns:baseballScoreBinding"
 name="baseballScorePort">
 <soap:address location="http://localhost:8991"/>
 </port>
</service>
<service name="baseballGameService">
 <port binding="tns:baseballGameBinding"
 name="baseballGamePort">
 <tibrv:port serverSubject="com.mycompany.baseball"/>
 </port>
</service>

2 <routing:route name="baseballRoute">
 <routing:source service="tns:baseballScoreService"
 port="tns:baseballScorePort"/>
 <routing:destination service="tns:baseballGameService"
 port="tns:baseballGamePort"/>
</routing:route>
 320

Defining Routes in Artix Contracts
There are two sections to the contract fragment shown in Example 103:

1. The logical interfaces must be bound to physical ports in service

elements of the Artix contract.

2. The route, baseballRoute, is defined with the appropriate service and

port attributes.
321

CHAPTER 10 | Adding Routing Instructions
Using Operation-Based Routing

Overview Operation-based routing is a refinement of port-based routing. With

operation-based routing you can specify specific operations within a logical

interface as a source or a destination.

Like port-based routing, operation-based routing is fully implemented by

adding routing rules to Artix contracts.

Describing routes in an Artix

contract

The contract elements for defining operation-based routes are defined in the

same namespace as the elements for port-based routing and you will need

to include in your contract’s namespace declarations to use operation based

routing.

To specify an operation-based route you need to specify one additional

element in your route description: <routing:operation>.

<routing:operation> specifies an operation defined in the source port’s

logical interface and an optional target operation in the destination port’s

logical interface. You can specify any number of operation elements in a

route. The operation elements must be specified after all of the source

elements and before any destination elements.

operation takes one required attribute, name, that specifies the name of the

operation in the source port’s logical interface that is to be used in the route.

operation also has an optional attribute, target, that specifies the name

operation in the destination port’s logical interface to which the message is

to be sent. If a target is specified, messages are routed between the two

operations. If no target is specified, the source operation’s name is used as

the name of the target operation. The source and target operations must

meet the compatibility requirements discussed in “Operation-based routing”

on page 317.

How operation-based rules are

applied

Operation-based routing rules apply to all of the source elements listed in

the route. Therefore, if an operation-based routing rule is specified, a

message will be routed if all of the following are true:

• The message is received from one of the ports specified in a source

element.
 322

Defining Routes in Artix Contracts
• The operation name associated with the received message is specified

in one of the operation elements.

If there are multiple operation-based rules in the route, the message will be

routed to the destination specified in the matching operation’s target

attribute.

Example For example to route messages from getFinalScore defined in

fullScorePortType, shown in Example 102 on page 317, to getScore

defined in finalScorePortType, shown in Example 101 on page 316, your

Artix contract would contain the elements in Example 104.

There are two sections to the contract fragment shown in Example 104:

1. The logical interfaces must be bound to physical ports in service

elements of the Artix contract.

2. The route, scoreRoute, is defined using the <route:operation>

element.

Example 104:Operation to Operation Routing

1 <service name="fullScoreService">
 <port binding="tns:fullScoreBinding"
 name="fullScorePort">
 <mq:server QueueManager="BBQM"
 QueueName="MLBQueue"
 ReplyQueueManager="BBRQM"
 ReplyQueueName="MLBScoreQueue"/>
 </port>
</service>
<service name="finalScoreSerice">
 <port binding="tns:finalScoreBinding"
 name="finalScorePort">
 <soap:address location="http://artie.com/finalScoreServer"/>
 </port>
</service>

2 <routing:route name="scoreRoute">
 <routing:source service="tns:fullScoreService"
 port="tns:fullScorePort"/>
 <routing:operation name="getFinalScore" target="getScore"/>
 <routing:destination service="tns:finalScoreService"
 port="tns:finalScorePort"/>
</routing:route>
323

CHAPTER 10 | Adding Routing Instructions
You could also create a route between getScore in baseballGamePortType

to a port bound to baseballScorePortType; see Example 101 on

page 316.The resulting contract would include the fragment shown in

Example 105.

Note that the <routing:operation> element only uses the name attribute.

In this case the logical interface bound to baseballScorePort,

baseballScorePortType, must contain an operation getScore that has

matching messages as discussed in “Port-based routing” on page 315.

Example 105:Operation to Port Routing Example

<service name="baseballGameService">
 <port binding="tns:baseballGameBinding"
 name="baseballGamePort">
 <soap:address location="http://localhost:8991"/>
 </port>
</service>
<service name="baseballScoreService">
 <port binding="tns:baseballScoreBinding"
 name="baseballScorePort">
 <iiop:address location="file:\\score.ref"/>
 </port>
</service>
<routing:route name="scoreRoute">
 <routing:source service="tns:baseballGameService"
 port="tns:baseballGamePort"/>
 <routing:operation name="getScore"/>
 <routing:destination service="tns:baseballScoreService"
 port="tns:baseballScorePort"/>
</routing:route>
 324

Defining Routes in Artix Contracts
Advanced Routing Features

Overview Artix routing also supports the following advanced routing capabilities:

• Broadcasting a message to a number of destinations.

• Specifying a failover service to route messages to provide a level of

high-availability.

• Routing messages based on transport attributes in the received

message’s header.

Message broadcasting Broadcasting a message with Artix is controlled by the routing rules in an

Artix contract. Setting the multiRoute attribute to the <routing:route>

element to fanout in your route definition allows you to specify multiple

destinations in your route definition to which the source messages are

broadcast.

There are three restrictions to using the fanout method of message

broadcasting:

• All of the sources and destinations must be oneways. In other words,

they cannot have any output messages.

• The sources and destinations cannot have any fault messages.

• The input messages of the sources and destinations must meet the

compatibility requirements as described in “Compatibility of Ports and

Operations” on page 315.

Example 106 shows an Artix contract fragment describing a route for

broadcasting a message to a number of ports.

Example 106:Fanout Broadcasting

<message name="statusAlert">
 <part name="alertType" type="xsd:int"/>
 <part name="alertText" type="xsd:string"/>
</message>
<portType name="statusGenerator">
 <operation name="eventHappens">
 <input message="tns:statusAlert" name="statusAlert"/>
 </operation>
</portType>
325

CHAPTER 10 | Adding Routing Instructions
Failover routing Artix failover routing is also specified using the routing:route’s multiRoute

attribute. To define a failover route you set multiRoute to equal failover.

When you designate a route as failover, the routed message’s target is

selected using a round robin algorithm. If the first target in the list is unable

to receive the message, it is routed to the second target. The route will

traverse the destination list until either one of the target services can receive

the message or the end of the list is reached. On the next failure, the router

<portType name="statusChecker">
 <operation name="eventChecker">
 <input message="tns:statusAlert" name="statusAlert"/>
 </operation>
</portType>
<service name="statusGeneratorService">
 <port binding="tns:statusGeneratorBinding"
 name="statusGeneratorPort">
 <soap:address location="http:\\localhost:8081"/>
 </port>
</service>
<service name="statusCheckerService">
 <port binding="tns:statusCheckerBinding"
 name="statusCheckerPort1">
 <corba:address location="file:\\status1.ref"/>
 </port>
 <port binding="tns:statusCheckerBinding"
 name="statusCheckerPort2">
 <tuxedo:server>
 <tuxedo:service name="personalInfoService">
 <tuxedo:input operation="infoRequest"/>
 </tuxedo:service>
 </tuxedo:server>
 </port>
</service>
<routing:route name="statusBroadcast" multiRoute="fanout">
 <routing:source service="tns:statusGeneratorService"
 port="tns:statusGeneratorPort"/>
 <routing:operation name="eventHappens" target="eventChecker"/>
 <routing:destination service="tns:statusCheckerService"
 port="tns:statusCheckerPort1"/>
 <routing:destination service="tns:statusCheckerService"
 port="tns:statusCheckerPort2"/>
</routing:route>

Example 106:Fanout Broadcasting
 326

Defining Routes in Artix Contracts
will start searching from the last position on the list. So if the message was

routed to the second entry on the list to deal with an initial failure, the router

will start directing requests to the third entry on the list to handle the second

failure. When the end of the list is reached, the router will start at the

beginning again. If the router is unsuccessful in delivering a message after

trying each service in the failover route once, the router will report that the

message is undeliverable.

Given the route shown in Example 107, the message will first be routed to

destinationPortA. If service on destinationPortA cannot receive the

message, it is routed to destinationPortB.

If destinationPortB fails at some future point, the messages are then

routed to destinationPortC. If destinationPortC cannot receive messages,

the router will then try destinationPortA. If destinationPortA is not

available, the router will try destinationPortB. If destinationPortB is

unavailable, the router will report that the message cannot be delivered.

Routing based on transport

attributes

Artix allows you to specify routing rules based on the transport attributes set

in a message’s header when using HTTP or WebSphere MQ. Rules based on

message header transport attributes are defined in

routing:transportAttribute elements in the route definition. Transport

attribute rules are defined after all of the operation-based routing rules and

before any destinations are listed.

The criteria for determining if a message meets the transport attribute rule

are specified in sub-elements to the <routing:tranportAttribute>. A

message passes the rule if it meets each criterion specified in the listed

sub-element.

Example 107:Failover Route

<routing:route name="failoverRoute" multiRoute="failover">
 <routing:source service="tns:sourceService"
 port="tns:sourcePort"/>
 <routing:destination service="tns:destinationServiceA"
 port="tns:destinationPortA"/>
 <routing:destination service="tns:destinationServiceB"
 port="tns:destinationPortB"/>
 <routing:destination service="tns:destinationServiceC"
 port="tns:destinationPortC"/>
</routing:route>
327

CHAPTER 10 | Adding Routing Instructions
Each sub-element has a contextName attribute to specify the context in

which the attribute is defined and contextAttributeName attribute to

specify the name of the attribute to be evaluated. The contextName attribute

is specified using the QName of the context in which the attribute is defined.

The contexts shipped with Artix are described in Table 25.The

contextAttributeName is also a QName and is relative to the context

specified. For example, UserName is a valid attribute name for any of the

HTTP contexts, but not for the MQ contexts.

Most sub-elements have a value attribute that can be tested. Attributes

dealing with string comparisons have an optional ignorecase attribute that

can have the values yes or no (no is the default). Each of the sub-elements

can occur zero or more times, in any order:

routing:equals applies to string or numeric attributes. For strings, the

ignorecase attribute may be used.

routing:greater applies only to numeric attributes and tests whether the

attribute is greater than the value.

routing:less applies only to numeric attributes and tests whether the

attribute is less than the value.

routing:startswith applies to string attributes and tests whether the attribute

starts with the specified value.

Table 25: Context QNames

Context QName Details

http-conf:HTTPServerIncomingContexts Contains the attributes for
HTTP messages being
received by a server.

corba:corba_input_attributes Contains the data stored in
the CORBA principle

bus-security Contains the attributes
used by the IONA security
service to secure your
services.
 328

Defining Routes in Artix Contracts
routing:endswith applies to string attributes and tests whether the attribute

ends with the specified value.

routing:contains applies to string or list attributes. For strings, it tests

whether the attribute contains the value. For lists, it tests whether the value

is a member of the list. contains accepts an optional ignorecase attribute

for both strings and lists.

routing:empty applies to string or list attributes. For lists, it tests whether

the list is empty. For strings, it tests for an empty string.

routing:nonempty applies to string or list attributes. For lists, it passes if the

list is not empty. For strings, it passes if the string is not empty.

For information on the transport attributes for HTTP see “HTTP Port

Properties” on page 451. For information on the transport attributes for

WebSphere MQ see “WebSphere MQ Port Properties” on page 493.

Example 108 shows a route using transport attribute rules based on HTTP

header attributes. Only messages sent to the server whose UserName is equal

to JohnQ will be passed through to the destination port.

Example 108:Transport Attribute Rules

<routing:route name="httpTransportRoute">
 <routing:source service="tns:httpService"
 port="tns:httpPort"/>
 <routing:trasnportAttributes>
 <rotuing:equals
 contextName="http-conf:HTTPServerIncomingContexts"
 contextAttributeName="UserName"
 value="JohnQ"/>
 </routing:transportAttributes>
 <routing:destination service="tns:httpDest"
 port="tns:httpDestPort"/>
</routing:route>
329

CHAPTER 10 | Adding Routing Instructions
Creating Routes Using Artix Designer

Overview Artix Designer includes a routing wizard that assists you in creating routes

from the services available in your contract. It walks you through the steps

of creating a route and provides you with the valid options for the services

available. It performs all of the compatibility testing for you and will never

allow you to create an invalid route.

Using Artix Designer To create a route from the Artix Designer Diagram view:

1. Right-click the Routes node to activate the pop-up menu.

2. Select New Route to bring up the Select Source Resources window.

3. Select at least one contract from the list to act as a source of services

between which to route.

All of the services defined in the selected contracts will be made

available for you to use in defining a route. The contracts will be

imported to contract using WSDL import elements.
 330

Creating Routes Using Artix Designer
4. Click Next to bring up the Define Endpoints window, shown in

Figure 73.

5. Enter a name for the new route in the Route Name field.

6. Select the interface that bound to the service that will be the source

endpoint for the route from the Port Type drop-down list.

7. Select one service from the Source Endpoint table to be the source

endpoint for the route.

8. Select one of the routing styles from Destination Preferences.

♦ Single specifies that the route will be a standard point to point

route.

Figure 73: Defining the Endpoints of a Route
331

CHAPTER 10 | Adding Routing Instructions
♦ Failover specifies that the route will be a multipoint route that will

be used to redirect messages when one of the destination

endpoints fails. See “Failover routing” on page 326.

♦ Fanout specifies that the route will be a multipoint route that

broadcasts messages to all of the selected endpoints. See

“Message broadcasting” on page 325.

♦ Load Balance specifies that the route will be used to load balance

among all of the selected destination endpoints. See “Load

Balancing” on page 338.

9. Select the endpoints that you want to be endpoints from the

Destination Endpoints table.

10. Click Next to bring up the Specify Operations window, shown in

Figure 74.

Note: When the route is created, the destination endpoints are
placed according to their position in the Destination Endpoint table.
For failover and load balancing routes, you can use the arrows to the
left of the table to rearrange the order of the endpoints in the table.

Figure 74: Selecting the Operations to Use for the Route
 332

Creating Routes Using Artix Designer
11. Select at least one operation to use in the route.

12. Click Next to bring up the Set Transport Attributes window, shown in

Figure 75.

13. Define an attribute routing rule. See “Routing based on transport

attributes” on page 327.

14. Click Add to add the rule to the Transport Attributes table.

15. Repeat steps 13 and 14 until you have added all of the desired

attribute routing rules.

16. Click Finish.

Figure 75: Specifying Transport Attributes to Constrain a Route
333

CHAPTER 10 | Adding Routing Instructions
Creating Routes from the Command Line

Overview If you do not wish to use the Artix Designer or want to add routes to

contracts as part of a makefile, you can use the wsdltorouting command

line tool. wsdltorouting will import an existing contract and generate a new

contract containing the specified routing instructions. The imported contract

must contain the specified source and destination, otherwise the tool will

generate an error.

Usage To generate a route using the command line tool, use the following

command.

wsdltorouting has the following options.

wsdltorouting [-rn name][-ssn service][-spn port]
 [-dsn service][-dpn port][-on operation]
 [-ta attribute] [-d dir][-o file][-?][-v]
 [-verbose][-L file][-q][-h][-V] wsdlurl

-rn name Specifies the name of the generated route. If no name is
given a unique name will be generated for the route.

-ssn service Specifies the name of the service to use as the source of
the route.

-spn port Specifies the name of the port to use as the source of the
route. The port must correspond to a port element in the
specified service.

-dsn service Specifies the name of the service to use as the
destination of the route.

-dpn port Specifies the name of the port to use as the destination of
the route. The port must correspond to a port element in
the specified service.

-on operation Specifies the name of the operation to use for the route. If
the route is port-based, you do not need to use this flag.

-ta attribute Specifies a transport attribute to use in defining the route.
For details on how to specify the transport attributes, see
“Specifying transport attributes” on page 335.

-d dir Specifies the output directory for the generated contract.
 334

Creating Routes from the Command Line
Specifying transport attributes When using wsdltorouting, transport attributes are specified using four

comma-separated values. The first value specifies the name of the

attribute’s context. The second value specifies the name of the attribute. The

third value is the condition used to evaluate the attribute. The fourth value is

the values against which the attribute is evaluated.

Table 26 shows the valid context names to use in specifying a transport

attribute.

For more information on the properties available in the contexts see either

Developing Artix Applications in C++ or Developing Artix Applications in

Java.

-o file Specifies the filename of the generated contract.

-? Displays the tool’s usage statement.

-v Displays the tool’s version.

-verbose Turns on verbose mode.

-L file Specifies the location of your Artix license file. The default
behavior is to check IT_PRODUCT_DIR\etc\license.txt.

-q Specifies that the tool runs in quiet mode. No output will

be shown on the console. This includes error messages.

-h Specifies that the tool will display a usage message.

-V Specifies that the tool runs in verbose mode.

Table 26: Context Names Used with wsdltorouting

Context Name Artix Context

HTTP_SERVER_INCOMING_CONTEXTS HTTP properties received as part
of a client request

CORBA_CONTEXT_ATTRIBUTES CORBA transport properties

SECURITY_SERVER_CONTEXT Properties used to configure
security settings
335

../prog_guide/index.htm
../java_pguide/index.htm
../java_pguide/index.htm

CHAPTER 10 | Adding Routing Instructions
Table 27 shows the valid condition entries used in specifying transport

attributes when using wsdltorouting.

Example If you had a contract that contained the services itchy and scratchy, both

with an equivalent operation gouge, you could use the command shown in

Example 109 to add a route to your contract.

The resulting route is shown in Example 110.

Table 27: Conditions Used with wsdltorouting

Condition WSDL Equivalent

equals routing:equals

startswith routing:startswith

endswith routing:endswith

contains routing:contains

empty routing:empty

nonempty routing:nonempty

greater routing:greater

less routing:less

Example 109:Adding a Route with wsdltorouting

wsdltorouting -rn itchyGougeScratchy -ssn itchy -spn gougerPort
 -dsn scratchy -dpn gougedPort -on gouge
 -ta HTTP_SERVER_INCOMING_CONTEXTS,UserName,equals,Goering
 itchyscratchy.wsdl
 336

Creating Routes from the Command Line
Example 110:Route from wsdltorouting

<routing:route name="itchyGougeScratchy">
 <routing:source service="tns:itchy"
 port="tns:gougerPort"/>
 <routing:operation name="gouge"/>
 <routing:trasnportAttributes>
 <rotuing:equals
 contextName="http-conf:HTTPServerIncomingContexts"
 contextAttributeName="UserName"
 value="Goering"/>
 </routing:transportAttributes>
 <routing:destination service="tns:scratchy"
 port="gougedPort"/>
</routing:route>
337

CHAPTER 10 | Adding Routing Instructions
Load Balancing

Overview The router can load balance requests across a number of servers without

requiring any special configuration or programming. It uses a round-robin

algorithm to route requests that match a routing rule to one of the specified

destination services.

Specifying router based load

balancing

Router based load balancing rules are defined using the routing:route

element’s multiRoute attribute. To define a failover route you set

multiRoute to equal loadBalance. Within the route definition you define a

message source as you would for any other route. You also specify a number

of destination endpoints to which messages will be routed. Using a

round-robin algorithm the router will direct each request from the source

endpoint to one of the specified destination endpoints.

Example For example, if you had three services that could process requests for

baseball scores and wanted to balance the request load among them, you

could create a route similar to the one shown in Example 111.

Using this route, each time a new request was received for the getScore

operation, the router would direct it to whichever service was next in the

rotation. So, the first request would be routed to baseballScoreService1,

the second request would be routed to baseballScoreService2, the third

request would be routed baseballScoreService3, and so forth.

Example 111:Router Based Load Balancing

<routing:route name="scoreRoute" nultiRoute="loadBalance">
 <routing:source service="tns:baseballGameService"
 port="tns:baseballGamePort"/>
 <routing:operation name="getScore"/>
 <routing:destination service="tns:baseballScoreService1"
 port="tns:baseballScorePort"/>
 <routing:destination service="tns:baseballScoreService2"
 port="tns:baseballScorePort"/>
 <routing:destination service="tns:baseballScoreService3"
 port="tns:baseballScorePort"/>
</routing:route>
 338

Error Handling
Error Handling

Initialization errors Errors that can be detected during initialization while parsing the WSDL,

such as routing between incompatible logical interfaces and some kinds of

route ambiguity, are logged and an exception is raised. This exception aborts

the initialization and shuts down the server.

Runtime errors Errors that are detected at runtime are reported as exceptions and returned

to the client; for example “no route” or “ambiguous routes”.
339

CHAPTER 10 | Adding Routing Instructions
Service Lifecycles

Overview When the Artix router uses dynamic proxy services, you can configure

garbage collection of old proxies. Dynamic proxies are used when the router

bridges services that have patterns such as callback, factory, or any

interaction that passes references to other services. When the router

encounters a reference in a message, it proxifies the reference into one that

a receiving application can use. For example, an IOR from a CORBA server

cannot be used by a SOAP client, so the router dynamically creates a new

route for the SOAP client.

However, dynamic proxies persist in the router memory and can have a

negative effect on performance. To overcome this, Artix provides service

lifecycle garbage collection, which cleans up old proxy services that are no

longer used. This garbage collection service cleans up unused proxies when

a threshold has been reached on a least recently used basis.

Configuring service lifecycle To configure service garbage collection for the Artix router, perform the

following steps:

1. Add the service_lifecycle plug-in to the orb_plugins list:

2. Configure the service lifecycle cache size:

orb_plugins = ["xmlfile_log_stream", "service_lifecycle",
"routing"];

plugins:service_lifecycle:max_cache_size = "30";
 340

Service Lifecycles
Writing client applications When writing client applications, you must also make allowances for the

garbage collection service; in particular, ensure that exceptions are handled

appropriately.

For example, a client may attempt to proxify to a service that has already

been garbage collected. To prevent this, do either of the following:

• Handle the exception, get a new reference, and continue. However, in

some cases, this may not be possible if the service has state.

• Set max_cache_size to a reasonable limit to ensure that all your clients

can be accommodated. For example, if you always expect to support

20 concurrent clients, each with a transient service session, you might

wish to configure the max_cache_size to 30.

You do not want to impact any clients, and must ensure that a service is no

longer needed when it is garbage collected. However, if you set

max_cache_size too high, this may use up too much router memory and

have a negative impact on performance. For example, a suggested range for

this setting is 30-100.
341

CHAPTER 10 | Adding Routing Instructions
Routing References to Transient Servants

Overview Applications create transient servants by cloning a service defined in your

contract. The cloned service uses the same interface, binding, and transport

as the service defined in the contract. However, it has a unique QName and

a unique address. So, when a transient servant’s service definition only

exists in the memory of the application that created it and possesses no link

back to the service from which it was cloned.

Because a transient servant does not have a service definition in the

physical contract and no link to one, the router, when it receives a reference

to a transient servant, has no concrete information about how to create a

proxy for the referenced servant. The router must make a best guess about

which service in its contract to use as the template for the proxy to the

transient servant. To do this, the router chooses the first compatible service

definition in its contract.

Compatibility of services A service is considered compatible with a transient servant if it uses the

same interface, binding, and transport as the transient servant. For example,

if transient servant was created using the templateVendor service defined in

Example 112 it would be compatible with IIOPVendor. However, it would

not be compatible with SOAPVendor because SOAPVendor uses a different

transport than template. Also, if IIOPVendor was defined using different

transport properties, such as having a defined POA name, transient servants

created from templateVendor would not be compatible.

Example 112:Contract with a Service Template

<definitions ...>
 ...
 <message name="mangoRequest">
 <part name="num" type="xsd:int"/>
 </message>
 <message name="mangoPrice">
 <part name="cost" type="xsd:float"/>
 </message>
 342

Routing References to Transient Servants
 <portType name="fruitVendor">
 <operation name="sellMangos">
 <input name="num" message="tns:mangoRequest"/>
 <output name="price" message="tns:mangoPrice"/>
 </operation>
 </portType>
 <binding name="fruitVendorBinding" type="tns:fruitVendor">
 <soap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="sellMangos">
 <soap:operation soapAction="" style="rpc"/>
 <input name="num">
 <soap:body
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://fruitVendor.com" use="encoded"/>
 </input>
 <output name="cost">
 <soap:body
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://fruitVendor.com" use="encoded"/>
 </output>
 </operation>
 </binding>
 <service name="templateVendor">
 <port binding="tns:fruitVendorBinding"
 name="transientVendor">
 <iiop:address location="ior:"/>
 </port>
 </service>
 <service name="SOAPVendor">
 <port binding="tns:fruitVendorBinding"
 name="SOAPVendorPort">
 <soap:address location="lcoalhost:5150"/>
 </port>
 </service>
 <service name="IIOPVendor">
 <port binding="tns:fruitVendorBinding"
 name="IIOPVendorPort">
 <iiop:address location="file:///objref.ior"/>
 </port>
 </service>
</definitions>

Example 112:Contract with a Service Template
343

CHAPTER 10 | Adding Routing Instructions
Contract design issues The router’s means of selecting a compatible service to create proxies for

transient servants can result in odd behavior if you use the same interface to

create both static servants and transient servants. When passing references

to these services through the router, the potential exists for the router to

select the static service to create proxies for the transient servants. When

this happens, the router will silently redirect all of the messages to the

servant defined by the static service definition.

To avoid this situation be sure to place the service templates used to create

transient servants before the service definitions that will be used to create

static servants. This will ensure that the router will find the service

templates first when it proxifies a reference to a transient servant.
 344

CHAPTER 11

Fastrack Service
Enabling
The Artix Designer offers fastrack paths to Web and CORBA
service enabling.

In this chapter This chapter discusses the following topics:

Web Service Enabling a Service page 346

CORBA Enabling a Service page 348
345

CHAPTER 11 | Fastrack Service Enabling
Web Service Enabling a Service

Overview If you have a contract with a fully defined interface and you know that it is

going to be exposed as a Web service using SOAP/HTTP, then you can use

the Artix Designer’s SOAP Enable menu option.

This option automatically adds a default SOAP binding and a SOAP port to

your contract.

You provide the name of the interface from which to generate the binding,

how you want the SOAP binding configured, the address of the HTTP port

the service will be exposed on, and the names for the binding and the

service. The Artix Designer does the rest.

Procedure To Web service enable an interface using SOAP Enable:

1. Right-click the contract defining the interface you want to Web service

enable to activate the pop-up menu.

2. Select Artix|SOAP Enable to bring up the SOAP Binding and Service

Details window, shown in Figure 76.

3. Select the interface you want to enable from the PortType drop-down

list.

Figure 76: SOAP Binding and Service Details Window
 346

Web Service Enabling a Service
4. Enter a name for the generated binding in the Binding Name field.

5. Select the SOAP style, rpc or doc, from the Style drop-down list.

6. Select the SOAP usage, literal or encoded, from the Use drop-down

list.

7. Enter a name for the generated service in the Service Name field.

8. Enter a name for the generated port in the Port Name field.

9. Enter the HTTP address of the new service in the Address Location

field.

10. Click OK.

11. Save the contract.
347

CHAPTER 11 | Fastrack Service Enabling
CORBA Enabling a Service

Overview If you have a contract with a fully defined interface and you know that it is

going to be exposed as a CORBA service, then you can use the Artix

Designer’s CORBA Enable menu option.

This option automatically adds a CORBA binding and a CORBA port to your

contract.

You provide the name of the interface from which to generate the binding,

the name for the binding, and the name for the service. The generated port

element will need to be edited to have a valid IOR.

Procedure To CORBA enable an interface using CORBA Enable:

1. Right-click the contract defining the interface you want to CORBA

enable to activate the pop-up menu.

2. Select Artix|CORBA Enable to bring up the CORBA Binding and

Service Details window, shown in Figure 77.

3. Select the interface you want to enable from the PortType drop-down

list.

4. Enter a name for the generated binding in the Binding Name field.

5. Enter a name for the generated service in the Service Name field.

6. Enter a name for the generated port in the Port Name field.

7. Click OK.

Figure 77: CORBA Binding and Service Details Window
 348

CORBA Enabling a Service
8. In the contract, edit the corba:address element in the port definition

to have a valid IOR.

9. Save the contract.
349

CHAPTER 11 | Fastrack Service Enabling
 350

CHAPTER 12

Editing Artix
Resources
The Artix Designer makes it easy to edit the resources in your
Artix project.

In this chapter This chapter discusses the following topics:

Editing Contracts and Schemas page 352

Editing Generated Resources page 367
351

CHAPTER 12 | Editing Artix Resources
Editing Contracts and Schemas

Overview The Artix Designer provides two views for editing your contracts and schema

documents. Diagram view shows a graphical representation of the elements

in the file and provides you with wizards that allow you to edit the elements.

Source view shows the file’s XML source and allows you to manually edit it.

In this section This section discusses the following topics:

Working with the Editor Views page 353

Editing Types page 356

Editing Messages page 357

Editing Port Types page 359

Editing Bindings page 363

Editing Services page 364

Editing Routes page 365
 352

Editing Contracts and Schemas
Working with the Editor Views

Overview The Artix Designer’s WSDL editor contains two views:

• Diagram view

• Source view

Editing in Diagram view The Diagram view, shown in Figure 78, is selected by clicking the Diagram

tab at the bottom of the WSDL editor view.

The Diagram view shows all of the sections of a contract. Sections that have

entries are expandable. Empty sections, such as the Services and Routes

sections in Figure 78 are not.

To edit an entry, right-click the element to bring up the pop-up menu. To

add new elements, right-click a root element.

Figure 78: Editing in Diagram View
353

CHAPTER 12 | Editing Artix Resources
Editing in Source view The Source view, shown in Figure 79, is selected by clicking the Source tab

at the bottom of the WSDL editor view.

This view displays the file in its native XML format. You can use it to directly

modify the document’s XML source. This can be useful if you want to add a

type that is not supported by the Artix Designer wizards, or if you want just

make a quick change to a file.

Figure 79: Editing in Source View
 354

Editing Contracts and Schemas
To navigate through a file’s XML, you can select elements from the Outline

view, shown in Figure 80.

This will bring you to the element’s XML root in the WSDL editor Source

view. For example, selecting Employee from the Outline view, will cause the

cursor to jump to the <complexType name="Employee"> element in the

WSDL source.

Before saving a WSDL file, Artix will validate the WSDL. If it contains any

errors, they will be displayed in the Problems window and the Output

window will show the message Invalid WSDL - no data available. The error

messages will tell you which line in the WSDL appears to be invalid.

Figure 80: The Outline View
355

CHAPTER 12 | Editing Artix Resources
Editing Types

Overview Types define particles of data that are used to build the messages

exchanged by services. A type can be made up of smaller pieces that can be

combined in a variety of ways. For more information on types, see “Defining

Data Types” on page 91.

When editing types in diagram view you have the following options:

• Renaming a type

• Deleting a type

Renaming a type To rename a type from diagram view:

1. Select the type you want to rename from the diagram.

2. Right-click the type to activate the pop-up menu.

3. Select Rename Type from the pop-up menu to bring up the Rename

Component window.

4. Enter a new name for the type in the New Name field.

5. Click OK.

Deleting a type To delete a type from diagram view:

1. Select the type you want to delete from the diagram.

2. Right-click the type to activate the pop-up menu.

3. Select Delete Type from the pop-up menu to bring up the Confirm

Deletion window.

4. Click Yes.
 356

Editing Contracts and Schemas
Editing Messages

Overview A message defines a block of data that is used by a service. It consists of

one or many parts. Each part in the message represents a discreet piece of

data that is either a native XML Schema type, or a type defined in the

contract. For more information on messages see “Defining Messages” on

page 123.

In diagram view you have the following options available for editing a

message:

• Changing a message

• Renaming a message

• Deleting a message

Changing a message To edit a message in diagram view:

1. Select the message you want to edit from the diagram.

2. Right-click the message to activate the pop-up menu.

3. Select Edit Message from the pop-up menu to bring up the Define

Message Properties window.

4. If you want to change the name of the message, enter a new name in

the Name field.

5. Click Next to open the Define Message Parts window.

6. If you want to edit one of the existing message parts:

i. Select the message part from the Part List.

ii. The message will appear in the fields above the list and the Add

button will change to Update.

iii. To change the name of the message part, enter a new name in

the Name field.

iv. To change the data type of the message part, select a new data

type from the Type drop-down list.

v. Click Update to make your changes to the message part.
357

CHAPTER 12 | Editing Artix Resources
7. To add a new part to the message:

i. Enter a name for the message part in the Name field.

ii. Select a data type for the message part from the Type drop-down

list.

iii. Click Add.

8. Repeat steps 6 and 7 until you finished editing the message.

9. Click Finish to write the message changes to the contract.

Renaming a message To rename a message from diagram view:

1. Select the message you want to rename from the diagram.

2. Right-click the message to activate the pop-up menu.

3. Select Rename Message from the pop-up menu to bring up the

Rename Component window.

4. Enter a new name for the message in the New Name field.

5. Click OK.

Deleting a message To delete a message from diagram view:

1. Select the message you want to delete from the diagram.

2. Right-click the message to activate the pop-up menu.

3. Select Delete Message from the pop-up menu to bring up the Confirm

Deletion window.

4. Click Yes.
 358

Editing Contracts and Schemas
Editing Port Types

Overview A port type defines a service’s interface. It is a collection of operations

provided by a service. The operations defined inside of the port type are

defined by specifying the messages that are exchanged when the operation

is evoked. When Artix generates code from a contract, the port types are

translated into objects and the operations are mapped into methods for the

generated objects. For more information on port types see “Defining Your

Interfaces” on page 127.

In diagram view you have the following options available for editing a port

type:

• Adding a new operation

• Renaming a port type

• Deleting a port type

• Editing an operation

• Renaming an operation

• Deleting an operation

Adding a new operation To add a new operation to a port type:

1. Select the port type you to which you want add the new operation.

2. Right-click the port type to activate the pop-up menu.

3. Select New Operation from the pop-up menu to bring up the Define

Port Type Operations window.

4. Enter a name for the new operation in the Name field.

5. Select an operation style from the Style drop-down list.

Operations can have one of the following styles:

♦ One-way operations have only an input message. They cannot

return any data to the client.

♦ Request-response operations have an input message, an output

message, and any number of optional fault messages.

6. Click Next to open the Define Operation Messages window.

7. Select a message type for the new operation message from the Type

drop-down list.
359

CHAPTER 12 | Editing Artix Resources
Operation messages can be of one of the following types:

♦ input messages represent data that a client send to the server.

♦ output messages represent data that a service returns to a client.

♦ fault messages represent data that a service returns to a client in

the event that an error occurred while processing the request.

8. Select the global message that defines the data passed by this

operation message from the Message drop-down list.

9. Enter a name for the operation message in the Name field.

10. Click Add to add the message to the Operation Messages table.

11. Repeat steps 7 through 10 until all of the operational messages have

been specified.

12. Click Finish.

Renaming a port type To rename a port type from diagram view:

1. Select the port type you want to rename from the diagram.

2. Right-click the port type to activate the pop-up menu.

3. Select Rename Port Type from the pop-up menu to bring up the

Rename Component window.

4. Enter a new name for the port type in the New Name field.

5. Click OK.

Deleting a port type To delete a port type from diagram view:

1. Right-click the desired port type to activate the pop-up menu.

2. Select Delete Port Type from the pop-up menu to open the Confirm

Deletion widow.

3. Select Yes.

Note: If your operation is oneway, input will be the only message
type available.
 360

Editing Contracts and Schemas
Editing an operation To edit an operation from diagram view:

1. Right-click the desired operation to activate the pop-up menu.

2. Select Edit Operation from the pop-up menu to bring up the Define

Port Type Operations window.

3. To change the name of the operation, enter a new name in the Name

field.

4. To change the style of the operation, select a new operation style from

the Style drop-down list.

5. Click Next to open the Define Operation Messages window.

6. To edit an existing operation message:

i. Select a message from the Operation Messages table.

ii. The details of the message will appear in the Messages for Port

Type Operation fields and the Add button will change to Update.

iii. To change the message’s type, select a new type from the Type

drop-down list.

iv. To change the global message associated with the operation

message, select a new global message from the Message

drop-down list.

v. To change the message’s name, enter a new name in the Name

field.

vi. To save the changes, click Update.

7. To add a new operation message:

i. Select a message type for the new operation message from the

Type drop-down list.

ii. Select the global message that defines the data passed by this

operation message from the Message drop-down list.

iii. Enter a name for the operation message in the Name field.

iv. Click Add to add the message to the Operation Messages table.

8. Repeat steps 6 and 7 until you have made all of your changes.

9. Click Finish.
361

CHAPTER 12 | Editing Artix Resources
Renaming an operation To rename an operation from diagram view:

1. Right-click the desired operation to activate the pop-up menu.

2. Select Rename Operation from the pop-up menu to bring up the

Rename Component window.

3. Enter a new name for the operation in the New Name field.

4. Click OK.

Deleting an operation To delete an operation from diagram view:

1. Right-click the desired operation to activate the pop-up menu.

2. Select Delete Operation from the pop-up menu to open the Confirm

Deletion window.

3. Select Yes.
 362

Editing Contracts and Schemas
Editing Bindings

Overview Bindings map the abstract data used to define operations into a concrete

data format that can be passed over a network. For more information on

bindings, see “Binding Interfaces to a Payload Format” on page 135.

When editing bindings in diagram view you have the following options:

• Renaming a binding

• Deleting a binding

Renaming a binding To rename a binding from diagram view:

1. Right-click the desired binding to activate the pop-up menu.

2. Select Rename Binding from the pop-up menu to bring up the Rename

Component window.

3. Enter a new name for the binding in the New Name field.

4. Click OK.

Deleting a binding To delete a binding from diagram view:

1. Right-click the desired binding to activate the pop-up menu.

2. Select Delete Binding from the pop-up menu to bring up the Confirm

Deletion window.

3. Click Yes.
363

CHAPTER 12 | Editing Artix Resources
Editing Services

Overview Services define the network interface over which a service is exposed. For

more information on services, see “Adding Transports” on page 251.

When editing services in diagram view you have the following options:

• Renaming a service

• Deleting a service

Renaming a service To rename a service from diagram view:

1. Right-click the desired service to activate the pop-up menu.

2. Select Rename Service from the pop-up menu to bring up the Rename

Component window.

3. Enter a new name for the service in the New Name field.

4. Click OK.

Deleting a service To delete a service from diagram view:

1. Right-click the desired service to activate the pop-up menu.

2. Select Delete Binding from the pop-up menu to bring up the Confirm

Deletion window.

3. Click Yes.
 364

Editing Contracts and Schemas
Editing Routes

Overview Routes define how different systems with similar endpoints are integrated.

They can also be used for load balancing. For more information on routes,

see “Adding Routing Instructions” on page 313.

When editing routes in diagram view you have the following options:

• Editing a route

• Renaming a route

• Deleting a route

Editing a route To edit a route from diagram view:

1. Right-click the desired route to activate the pop-up menu.

2. Select Edit Route from the pop-up menu to bring up the Define

Endpoints window.

3. To change the route’s name, enter a new name in the Route Name

field.

4. To change the port type that defines the source endpoint, select a new

port type from the Port Types drop-down list.

5. To change the source endpoint, select a new endpoint from the Source

Endpoint table.

6. To change the routes destination change the settings under Select

Destination and Multi-Route Properties. See “Adding Routing

Instructions” on page 313.

7. Click Next to bring up the Specify Operations windowSelect the

operation for which you want to this route to apply.

8. Click Next to bring up the Set Transport Attributes window

9. To change an existing transport attribute rule:

i. Select a transport attribute from the Transport Attributes table.

ii. The details of the rule will appear in the Specify Transport

Attributes fields and the Add button will change to Update.

iii. To change the rule’s predicate, select a new predicate from the

Predicate drop-down list.
365

CHAPTER 12 | Editing Artix Resources
iv. To change the transport attribute context on which the rule is

based, select a new transport context from the Context

drop-down list.

v. To change the attribute which the rule evaluates, select a new

attribute from the Attributes drop-down list.

vi. To change the attribute value on which the rule matches, enter a

new value in the Attribute Value field.

vii. To save the changes, click Update.

10. To add a new transport attribute rule:

i. Select a predicate for the new rule from the Predicate drop-down

list.

ii. Select the transport attribute context on which to base the rule

from the Context drop-down list.

iii. Select the attribute to be evaluated by the rule from the Attributes

drop-down list.

iv. Enter a the value on which the rule matches into the Attribute

Value field.

v. Click Add to add the rule to the Transport Attributes table.

11. Repeat steps 9 and 10 until all of your changes are complete.

12. Click Finish to save the changes to the contract.

Renaming a route To rename a route from diagram view:

1. Right-click the desired route to activate the pop-up menu.

2. Select Rename Route from the pop-up menu to bring up the Rename

Component window.

3. Enter a new name for the route in the New Name field.

4. Click OK.

Deleting a route To delete a route from diagram view:

1. Right-click the desired route to activate the pop-up menu.

2. Select Delete Route from the pop-up menu to bring up the Confirm

Deletion window.

3. Click Yes.
 366

Editing Generated Resources
Editing Generated Resources

Overview Generated resources include C++ code, Java code, configuration domains,

and deployment scripts. These resources are the physical implementation

and the deployment details of the services defined in the contracts and XML

Schema documents in a project.

You specify what resources are generated for a project by defining

generation profiles. A project can have multiple generation profiles. Each

profile will be responsible for generating the implementation and the

deployment details for a different piece of an overall solution.

Editing generated resources All of the generated resources are editable using the built in text and code

edit facilities of the Eclipse platform. For example, if you need to edit a

configuration domain, Eclipse will open the file in a text editor. However, if

you edit a Java class, Eclipse will open the file in its Java editor.
367

CHAPTER 12 | Editing Artix Resources
 368

CHAPTER 13

Using the Artix
Transformer
The Artix transformer allows you to perform message
transformations, data validation, and interface versioning
without having to write additional code.

In this chapter This chapter discusses the following topics:

Using the Artix Transformer as an Artix Server page 370

Using Artix to Facilitate Interface Versioning page 372

WSDL Messages and the Transformer page 377

Writing XSLT Scripts page 380
369

CHAPTER 13 | Using the Artix Transformer
Using the Artix Transformer as an Artix Server

Overview Using the Artix transformer, you can create a Web service that does simple

tasks such as converting dates into the proper format or generating HTML

output without writing any code. You can also develop services to validate

the format of requests before they are sent to a busy server for processing.

The data processing is performed by the Artix transformer which uses an

XSLT script to determine how to process the data.

Procedure To use the Artix transformer as an Artix server you:

1. Define the data, interface, binding, and transport details for the server

in an Artix contract.

2. Write the XSLT script that defines the data processing you want the

transformer to perform.

3. Configure the server with the transformer’s configuration details.

Defining the server The contract for a service that is implemented by the Artix Transformer is

the same as the Artix contract for any other service in Artix. You need to

define the complex types, if any, that the service uses. Then you need to

define the messages used by the service to receive and respond to requests.

Once the data types and messages are defined, you then define the service’s

interface. The only limitation for a service that is implemented by the Artix

Transformer is that it cannot have any fault messages. The interface can

define multiple operations. Each operation will be processed using different

XSLT scripts.

After defining the logical details of the service, you need to define the

binding and network details for the service. The transformer can use any of

the bindings and transports supported by Artix. For information on adding a

binding for the transformer read “Binding Interfaces to a Payload Format” on

page 135. For information on adding network details for the transformer

read “Adding Transports” on page 251.
 370

Using the Artix Transformer as an Artix Server
Writing the scripts The XSLT scripts tell the transformer what it needs to do to process the data

it receives. The scripts can be as simple or complex as they need to be to

perform the task. The only requirement is that they are valid XSLT

documents. For more information about writing XSLT scripts read “Writing

XSLT Scripts” on page 380.

Configure the transformer The Artix Transformer is an Artix plug-in and can be loaded by an Artix

process. This provides a great deal of flexibility in how you configure and

deploy the process. There are two common deployment patterns for

deploying the Artix Transformer as an Artix server. The first is to configure

the transformer to load in its own process using the Artix Standalone

Service. The second is to configure the transformer to load directly into the

client process which is making requests against it.

For a detailed discussion of how to configure and deploy the Artix

Transformer see Deploying and Managing Artix Solutions.
371

../deploy/index.htm

CHAPTER 13 | Using the Artix Transformer
Using Artix to Facilitate Interface Versioning

Overview One of the most common and difficult problems faced in large scale client

server deployments is upgrading systems. For example, if you change the

interface for your server to add new functionality or streamline

communications, you then need to change all of the clients that access the

server. This can mean upgrading thousands of clients that may be scattered

across the globe.

The Artix Transformer provides a solution to this problem that allows you to

slowly upgrade the clients without disrupting their ability to function. Using

the transformer you can develop an XSLT script that converts messages

between the different interfaces. Then you can place the transformer

between the old clients and the new server. This solution eliminates the

need for operating two versions of the same server, or trying to do a massive

client and server upgrade. It also does this without requiring you to do any

custom programing.

Procedure To use the Artix transformer for interface versioning:

1. Create a composite Artix contract defining both versions of the

interfaces that need to be supported.

2. Define an interface for the transformer that defines operations for

mapping the interfaces.

3. Add a SOAP binding to the contract for the transformer’s interface.

4. Add an HTTP port to the contract to define how the transformer can be

contacted.

5. Write the XSLT scripts that define the message transformations.

6. Configure the transformer.

7. Configure the Artix Chain Builder to create a chain containing the

transformer and the server on which clients will make requests.
 372

Using Artix to Facilitate Interface Versioning
Creating a composite contract While the server and the client applications can be run without knowledge

of the other’s interface, the transformer responsible for translating the

messages between to the two interface versions must know about all of the

interface versions used. This includes all data type definitions and message

definitions used by both versions of the interface.

You can create this composite contract in several ways. The most

straightforward way is to create a new contract which imports both the new

interface’s contract and the old interface’s contract. To import the contracts

you place an import element for each contract just after the definitions

element in the new contract and before any other elements in the new

contract. The import element has two attributes. location specifies the

pathname of the file containing the contract that is being imported.

namespace defines the XML namespace under which the imported contract

can be referenced.

For example, if you were creating a composite contract for interface

versioning you would have two contracts; one for the server with the

updated interface and one for the client using the legacy interface. The file

name for the server’s contract is r2e2.wsdl and the contract for the client is

r2e1.wsdl. For simplicity, they are located in the same directory as the

composite contract. The composite contract importing both versions of the

interface is shown in Example 113.

Example 113:Composite WSDL

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="transformer"
 targetNamespace="http://www.widgets.com/transformer"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:r1="http://www.widgets.com/r2e2Server"
 xmlns:r2="http://www.widgets.com/r2e1Client"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.widgets.com/transformer"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <import location="r2e2.wsdl"
 namespace="http://www.widgets.com/r2e2Server/>
 <import location="r2e1.wsdl"
 namespace="http://www.widgets.com/r2e1Client"/>
</definitions>
373

CHAPTER 13 | Using the Artix Transformer
Note that in the definitions element of the contract, XML namespace

shortcuts are defined for the imported contracts namespace. This makes

using items defined in the imported contracts much easier.

Define the transformer’s interface Once you have imported all versions of the interface that you need to

support into the transformer’s composite contract, you need to define the

transformer’s interface. The transformer must have one operation defined for

each transformation that is required to support all of the interface versions.

For example, if you only changed the structure of the request message in

when upgrading the server’s interface, the transformer only needs one

operation because the transformation is only one way. If you changed both

the request and response messages, the transformer’s interface will need

two operations; one for the request message and one for the response.

The operation to transform a request from the client to the proper format for

the server takes the client’s message as its input element and the server’s

message as its output message. The operation to transform a response from

the server to the proper format for a client takes the server’s outgoing

message as its input element and the client’s incoming message as its

output element.

When adding the operations, be sure to use the proper namespaces when

referencing the messages for the different versions of the interface. Using

the wrong namespaces could result in an invalid contract at the very least. If

the contract is valid, and the namespaces are incorrect, your system will

behave erratically.

For example, if the interface in Example 113 on page 373 was updated so

that both the client’s request and the server’s response need to be

transformed the transformer’s interface would need two operations. In this

Note: Fault messages are not supported.
 374

Using Artix to Facilitate Interface Versioning
example the name of the request message is widgetRequest and the name

of the response message is widgetResponse. The interface for the

transformer, versionTransform, is shown in Example 114.

In the operation transforming the request, requestTransform, the input

message is taken from the namespace r1 which is the namespace under

which the client’s contract is imported. The output message is taken from r2

which is the namespace under which the server’s contract is imported. For

the response message transformation, responseTransform, the order is

reversed. The input message is from r2 and the output message is from r1.

Defining the physical details for

the transformer

After defining the operations used in transforming between the different

version of the interface, you need to define the binding and network details

for the transformer. The transformer can use any of the bindings and

transports supported by Artix. For information on adding a binding for the

transformer read “Binding Interfaces to a Payload Format” on page 135. For

information on adding network details for the transformer read “Adding

Transports” on page 251.

Writing the XSLT scripts The XSLT scripts tell the transformer what it needs to do to process the data

it receives. The scripts can be as simple or complex as they need to be to

perform the task. The only requirement is that they are valid XSLT

documents. For more information about writing XSLT scripts read “Writing

XSLT Scripts” on page 380.

Example 114:Versioning Interface

<portType name="versionTransform">
 <operation name="requestTransform">
 <input name="oldRequest" message="r1:widgetRequest"/>
 <output name="newRequest" message="r2:widgetRequest"/>
 </operation>
 <operation name="responseTransform">
 <input name="newResponse" message="r2:widgetResponse"/>
 <output name="oldReponse" message="r1:widgetResponse"/>
 </operation>
</portType>
375

CHAPTER 13 | Using the Artix Transformer
Configuring the transformer The Artix Transformer is an Artix plugin and can be loaded by an Artix

process. This provides a great deal of flexibility in how you configure and

deploy the process. For a detailed discussion of how to configure and deploy

the Artix Transformer see Deploying and Managing Artix Solutions.

Configuring a chain When using the transformer to do interface versioning, you need to deploy it

as part of a service chain. To build a service chain in Artix you deploy the

Artix Chain Builder. Like the transformer, the chain builder is an Artix plugin

and provides a number of deployment options. One way of deploying the

chain builder along with the transformer is to deploy it alongside of the

transformer in an instance of the Artix Standalone service.

For a detailed discussion of how to configure and deploy the Artix Chain

Builder see Deploying and Managing Artix Solutions.
 376

../deploy/index.htm
../deploy/index.htm

WSDL Messages and the Transformer
WSDL Messages and the Transformer

Overview Conceptually, the Artix Transformer works on XML representations of the

data passed along the wire. Your XSLT scripts are written based on the

WSDL descriptions of the message’s being processed. This relieves you of

the burden of understanding how the data on the wire is represented.

The incoming message The virtual XML document the transformer uses as input is created by using

the Artix contract to map the raw data from the input port into a DOM

facade. The mapping is done as follows:

1. The root element of the incoming message is taken from the name

attribiute of the operation’s input message.

2. Each part of the input message is placed in an element derived from

the name attribute of the part.

3. If the part is of a complex type, or an element of a complex type, the

type’s elements appear inside of the element containing the part.

For example, if you had a service defined by the WSDL fragment in

Example 115 and the transformer implemented the operation configure

the XML document would be constructed using the message

oldClientInput, which is the input message.

Example 115:WSDL Fragment for Transformer

<types ...>
...
 <complexType name="vehicleType">
 <element name="vin" type="xsd:string" />
 <element name="model" type="xsd:string" />
 </complexType>
</types>
...
<message name="original">
 <part name="vehicle" type="xsd1:vehicleType"/>
 <part name="name" type="xsd:string"/>
</message>
377

CHAPTER 13 | Using the Artix Transformer
When the message is reconstructed, the transformer uses the input

message’s name, given in the input element, as the name of the root

element of the XML document. It then uses the message parts and the

schema types to recreate the data as an XML message. So if the transformer

was using the contract defined in Example 115 on page 377 an input

message processed by the transformer could look like Example 116.

Output message The results from the transformer goes through the reverse of the process that

turns the input message into a virtual XML document. The transformer uses

the output message definition from the Artix contract to place the result

message back onto the wire in the proper payload format. If the result

message is not properly formed this attempt will fail, so you must be careful

when writing your XSLT script to ensure that the results match the expected

format.

<message name="transformed">
 <part name="vehicle" type="xsd:string"/>
 <part name="firstName" type="xsd:string"/>
 <part name="lastName" type="xsd:string"/>
</message>
...
<portType name="parkingLotMeter">
 <operation name="configure">
 <input name="oldClientInput" message="original"/>
 <output name="updatedInput" message="transformed"/>
 </operation>
...
</portType>
...

Example 115:WSDL Fragment for Transformer

Example 116:Transformer Input Message

<oldClientInput>
 <vehicle>
 <VIN>0123456789</VIN>
 <model>Prius</model>
 </vehicle>
 <name>Old MacDonald</name>
</oldClientInput>
 378

WSDL Messages and the Transformer
When the result message is deconstructed, the transformer expects the

following:

• The root element of the result has the name of the output message, as

defined in the output element in the Artix contract.

• There are the same number of elements in the result as there are part

elements in the output message definition.

• The elements in the result are based on the name attributes of the part

elements in the output message definition.

• The data contained in the element representing the output message’s

part elements matched the XMLSchema definitions in the contract.

For example, a result message for the configure operation defined in

Example 115 on page 377 would look like Example 117.

Example 117:Transformer Output Message

<updatedInput>
 <vehicle>Prius</vehicle>
 <firstName>Old</firstName>
 <lastName>MacDonald</lastName>
</updatedInput>
379

CHAPTER 13 | Using the Artix Transformer
Writing XSLT Scripts

Overview XML Stylesheet Language Transformations(XSLT) is a language used to

describe the transformation of XML documents. The current W3C standard

for XSLT is 1.0 and can be read at the W3C web site

(http://www.w3.org/TR/xslt). XSLT documents, called scripts, are

well-formed XML documents that describe how a source XML document is

transformed into a resulting XML document. It can be used to perform tasks

as simple as splitting a name entry into first and last name entries and as

complex as validating that a complex XML document matches the

expectations of an interface described in a WSDL document.

Procedure Writing an XSLT script can be done in a number of ways and using a

number of tools. The steps given here assume that you are writing fairly

simple scripts using a text editor.

To write a XSLT script you:

1. Create an XML stylesheet with the required <xsl:transform> element.

2. Determine which elements in your source message need to be

processed and create <xsd:template> elements for each of them.

3. For each element that has a matching template element, define how

you want the element processed to produce a new output document.

4. If child elements need to be processed as part of processing a parent

element, define a template for the child element and apply it as part of

the parent element’s template using <xsd:apply-templates>.

In this section This section discusses the following topics:

Elements of an XSLT Script page 381

XSLT Templates page 383

Common XSLT Functions page 389
 380

http://www.w3.org/TR/xslt

Writing XSLT Scripts
Elements of an XSLT Script

Overview An XSLT script is essentially an XML stylesheet containing a special set of

elements that instruct an XSLT engine in the processing of other XML

documents. An XSLT script must be defined in an <xsl:transform> element

or an <xsl:stylesheet> element. In addition, it needs at least one valid

top-level element to define the transformation.

The transform element The <xsl:transform> element denotes that the document is an XML

stylesheet. The <xsl:stylesheet> element can be used in place of the

<xsl:transform> element. They are equivalent.

When creating an XSLT script you must set the version attribute to 1.0 to

inform the transformer what version of XSLT you are using. In addition, you

must provide an XML namespace shortcut for the XSLT namespace in the

<xsl:transform> element. Example 118 shows a valid <xsl:transform>

element for an XSLT script.

Top level elements While all that is needed to make an XML document a valid XSLT script is

the <xsl:transform> element, the <xsl:transform> element does not

provide any instructions for processing data. The data processing

instructions in an XSLT script are provided by a number of top-level XSLT

elements. These element’s include:

• xsl:import

• xsl:include

• xsl:strip-space

• xsl:preserve-space

• xsl:output

• xsl:key

• xsl:decimal-format

Example 118:XSLT Script Stylesheet Element

<xsl:transform version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
...
</stylesheet>
381

CHAPTER 13 | Using the Artix Transformer
• xsl:namespace-alias

• xsl:attribute-set

• xsl:variable

• xsl:param

• xsl:template

An XSLT script can have any number and combination of top-level elements.

Other than xsl:import, which must occur before any other elements, the

top-level elements can be used in any order. However, be aware that the

order determines the order in which processing steps happen.

Example Example 119 shows a simple XSLT script that transforms SSN elements into

acctNum elements.

Using this XSLT script the transformer would change a message that

contained <SSN>012457890</SSN> into a message that contained

<acctNum>012457890</acctNum>.

Example 119:Simple XSLT Script

<xsl:transform version = '1.0'
 xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>
 <xsl:template match="SSN">
 <acctNum>
 <xsl:value-of select="."/>
 </acctNum>
 </xsl:template>
</xsl:stylesheet>
 382

Writing XSLT Scripts
XSLT Templates

Overview XSLT processors use templates to determine the elements on which to apply

a set of transformations. Documents are processed from the top element

through their structure to determine if elements match a defined template. If

a match is found, the rules specified by the template are applied.

To write a template in XSLT:

1. Create an <xsl:template> element.

2. Provide the path to the source element it processes.

3. Write the processing rules.

<xsl:template> elements Templates are defined using <xsl:template> elements. These elements

take one required attribute, match, which specifies the source element that

triggers the rules. In addition, you can use the name attribute to give the

template a unique identifier for referencing it elsewhere in the contract.

Specifying source elements You specify the elements of the source document to which template rules

are matched using the match attribute of the xsl:template element. The

source elements are specified using the syntax specified by the XPath

specification (http://www.w3.org/TR/xpath). The source element address

looks very similar to a file path where slash(/) specifies the root element and

child elements are listed in top down order separated by a slash(/). For

example to specify the surname element of the XML document shown in

Example 120, you would specify it as /name/surname.

Example 120:Sample XML Document

<name>
 <firstname>
 Joe
 </firstname>
 <surname>
 Friday
 </surname>
<name>
383

http://www.w3.org/TR/xpath

CHAPTER 13 | Using the Artix Transformer
Template matching order XSLT processors start processing with the <xsl:template match="/">

element if it is present. All of the processing directives for this template act

on the top-level elements of the source document. For example, given the

XML document shown in Example 120 on page 383 any processing rules

specified in <xsl:template match="/"> would apply to the name element. In

addition, specifying a template for the root element(/) forces you to make all

your source element paths explicit from the root element. The XSLT script

shown in Example 121 generates the string Friday when run on

Example 120 on page 383.

You do not need to specify a template for the root element of the source

document in an XSLT script. When you omit the root element’s template the

processor treats all template paths as though they originated from the

source documents top level element. The XSLT script in Example 122

generates the same output as the script in Example 121.

Template rules The contents of an <xsl:template> element define how the source

document is processed to produce an output document. You can use a

combination of XSLT elements, HTML, and text to define the processing

rules. Any plain text and HTML that are used in the processing rules are

placed directly into the output document. For example, if you wanted to

generate an HTML document from an XML document you would use an

XSLT script that included HTML tags as part of its processing rules. The

Example 121:XSLT Script with Root Element Template

<xsl:transform version = '1.0'
 xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>
 <xsl:template match="/">
 <xsl:value-of select="/name/surname"/>
 </xsl:template>
</xsl:transform>

Example 122:XSLT Script without Root Element Template

<xsl:transform version = '1.0'
 xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>
 <xsl:template match="surname">
 <xsl:value-of select="."/>
 </xsl:template>
</xsl:transform>
 384

Writing XSLT Scripts
script in Example 123 takes an XML document with a title element and a

subTitle element and produces an HTML document where the contents of

title are displayed using the <h1> style and the contents of subTitle are

displayed using the <h2> style.

Applying templates to child

elements

You can instruct the XSLT processor to apply any templates defined in the

script to the children of the element being processed using an

xsl:apply-templates element as one of the rules in a template.

xsl:apply-templates instructs the XSLT processor to treat the current

element as a root element and run the templates in the script against it.

For example you could rewrite Example 123 as shown in Example 124

using xsl:apply-templates and defining a template for the title and

subTitle elements.

Example 123:XSLT Template with HTML

<xsl:transform version = '1.0'
 xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>
 <xsl:template match="/">
 <h1>
 <xsl:value-of select="//title"/>
 </h1>
 <h2>
 <xsl:value-of select="//subTitle"/>
 </h2>
 </xsl:template>
</xsl:transform>

Example 124:XSLT Template Using apply-templates

<xsl:transform version = '1.0'
 xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>
 <xsl:template match="/">
 <xsl:apply-templates/>
 </xsl:template>
 <xsl"template match="title">
 <h1>
 <xsl:value-of select="."/>
 </h1>
 </xsl:template>
385

CHAPTER 13 | Using the Artix Transformer
You can use the optional select attribute to limit the child elements to

which the templates are applied. select takes an XPath value and operates

in the same manner as the match attribute of xsl:template.

Example For example, if your ordering system produced bills that looked similar to

the XML document in Example 125, you could use an XSLT script to

reformat the bill for a system that required the customer’s name in a single

element, name, and the city and state to be in a comma-separated field,

city.

 <xsl"template match="subTitle">
 <h2>
 <xsl:value-of select="."/>
 </h2>
 </xsl:template>
</xsl:transform>

Example 124:XSLT Template Using apply-templates

Example 125:Bill XML Document

<widgetBill>
 <customer>
 <firstName>
 Joe
 </firstName>
 <lastName>
 Cool
 </lastName>
 </customer>
 <address>
 <street>
 123 Main Street
 </street>
 <city>
 Hot Coffee
 </city>
 <state>
 MS
 </state>
 <zipCode>
 3942
 </zipCode>
 </address>
 386

Writing XSLT Scripts
The XSLT script shown in Example 126 would result in the desired

transformation.

The script does the following:

1. Creates an element, widgetBill, in the output document and places

the results of the other templates as its children.

2. Creates an element, name, and sets its value to the result of the

concatenation.

 <amtDue>
 123.50
 </amtDue>
</widgetBill>

Example 125:Bill XML Document

Example 126:XSLT Script for widgetBill

<xsl:transform version = '1.0'
 xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>

1 <xsl:template match="widgetBill">
 <xsl:element name="widgetBill">
 <xsl:apply-templates/>
 </xsl:element>
 </xsl:template>

2 <xsl:template match="customer">
 <xsl:element name="name">
 <xsl:value-of select="concat(//firstName,’ ’,//lastName)"/>
 </xsl:element>
 </xsl:template>

3 <xsl:template match="address">
 <xsl:element name="address">
 <xsl:copy-of select="//street"/>
 <xsl:element name="city">
 <xsl:value-of select="concat(//city,’, ’,//state)"/>
 </xsl:element>
 <xsl:copy-of select="//zipCode"/>
 </xsl:element>
 </xsl:template>

4 <xsl:template match="amtDue">
 <xsl:copy-of select="."/>
 </xsl:template>
</xsl:transform>
387

CHAPTER 13 | Using the Artix Transformer
3. Creates an element, address, and sets its value to the results of the

rules. address will contain a copy of the street element from the

source document, a new element, city, that is a concatenation, and a

copy of the zipCode element from the source document.

4. Copy the amtDue element from the source document into the output

document.

Processing the document in Example 125 on page 386 with this XSLT

script would result in the XML document shown in Example 127.

Example 127:Processed Bill XML Document

<widgetBill>
 <customer>
 Joe Cool
 </customer>
 <address>
 <street>
 123 Main Street
 </street>
 <city>
 Hot Coffee, MS
 </city>
 <zipCode>
 3942
 </zipCode>
 </address>
 <amtDue>
 123.50
 </amtDue>
</widgetBill>
 388

Writing XSLT Scripts
Common XSLT Functions

Overview XSLT provides a range of capabilities in processing XML documents. These

include conditional statements, looping, creating variables, and sorting.

However, there are a few common functions that are used to generate

output documents. These include:

• xsl:value-of

• xsl:copy-of

• xsl:element

xsl:value-of <xsl:value-of> creates a text node in the ouput document. It has a

required select attribute that specifies the text to be inserted into the

output document.

The value of select is evaluated as an expression describing the data to

insert. It can contain any of the XSLT string functions, such as concat(), or

an XSLT axis describing an element in the source document.

Once the select expression is evaluated the result is placed in the output

document.

xsl:copy-of <xsl:copy-of> copies data from the source document into the output

document. It has a required select. The value of select is an expression

describing the elements to be copied.

When the result of evaluating the expression is a tree fragment, the

complete fragment is copied into the output document. When the result is

an element, the element, its attributes, its namespaces, and its children are

copied into the output document. When the result is neither an element nor

a result tree fragment, the result is converted to a string and then inserted

into the output document.

xsl:element <xsl:element> creates an element in the output document. It takes a

required name attribute that specifies the name of the element that is

created. In addtion, you can specify a namespace for the element using the

optional namespace attribute.
389

CHAPTER 13 | Using the Artix Transformer
 390

APPENDIX A

SOAP Binding
Extensions
This appendix describes the attributes that can be set in the
WSDL extensions to configure the Artix SOAP plug-in.

In this appendix This appendix the following topics:

soap:binding element page 392

soap:operation element page 394

soap:body element page 395

soap:header element page 398

soap:fault element page 400

soap:address element page 402
391

CHAPTER A | SOAP Binding Extensions
soap:binding element

Overview The soap:binding element in a WSDL contract is defined within the

binding component, as follows:

The soap:binding element is used to signify that SOAP is the message

format being used for the binding.

Attributes The following attributes are defined within the soap:binding element.

• style

• transport

style

The value of the style attribute within the soap:binding element acts as

the default for the style attribute within each soap:operation element. It

indicates whether request/response operations within this binding are

RPC-based (that is, messages contain parameters and return values) or

document-based (that is, messages contain one or more documents).

Valid values are rpc and document. The specified value determines how the

SOAP Body within a SOAP message is structured.

If rpc is specified, each message part within the SOAP Body is a parameter

or return value and will appear inside a wrapper element within the SOAP

Body. The name of the wrapper element must match the operation name.

The namespace of the wrapper element is based on the value of the

soap:body namespace attribute. The message parts within the wrapper

element correspond to operation parameters and must appear in the same

order as the parameters in the operation. Each part name must match the

parameter name to which it corresponds.

<binding name="…" type="…">
 <soap:binding style="…" transport="…">
 392

soap:binding element
For example, the SOAP Body of a SOAP request message is as follows if the

style is RPC-based:

If document is specified, message parts within the SOAP Body appear

directly under the SOAP Body element as body entries and do not appear

inside a wrapper element that corresponds to an operation. For example, the

SOAP Body of a SOAP request message is as follows if the style is

document-based:

transport

The transport attribute defaults to the URL that corresponds to the HTTP

binding in the W3C SOAP specification

(http://schemas.xmlsoap.org/soap/http). If you want to use another transport

(for example, SMTP), modify this value as appropriate for the transport you

want to use.

<SOAP-ENV:Body>
 <m:GetStudentGrade xmlns:m="URL">
 <StudentCode>815637</StudentCode>
 <Subject>History</Subject>
 </m:GetStudentGrade>
</SOAP-ENV:Envelope>

<SOAP-ENV:Body>
 <StudentCode>815637</StudentCode>
 <Subject>History</Subject>
</SOAP-ENV:Envelope>
393

CHAPTER A | SOAP Binding Extensions
soap:operation element

Overview A soap:operation element in a WSDL contract is defined within an

operation element, which is defined in turn within the binding element, as

follows:

A soap:operation element is used to encompass information for an

operation as a whole, in terms of input criteria, output criteria, and fault

information.

Attributes The following attributes are defined within a soap:operation element:

• style

• soapAction

style

This indicates whether the relevant operation is RPC-based (that is,

messages contain parameters and return values) or document-based (that

is, messages contain one or more documents).

Valid values are rpc and document. The default value for soap:operation

style is based on the value specified for the soap:binding style attribute.

See “style” on page 392 for more details of the style attribute.

soapAction

This specifies the value of the SOAPAction HTTP header field for the relevant

operation. The value must take the form of the absolute URI that is to be

used to specify the intent of the SOAP message.

<binding name="…" type="…" >
 <soap:binding style="…" transport="…">
 <operation name="…" >
 <soap:operation style=”…” soapAction=”…”>

Note: This attribute is mandatory only if you want to use SOAP over
HTTP. Leave it blank if you want to use SOAP over any other transport.
 394

soap:body element
soap:body element

Overview A <soap:body> element in a binding is a child of the input, output, and

fault child elements of the WSDL operation element, as follows:

A <soap:body> element is used to provide information on how message

parts are to be appear inside the body of a SOAP message. As explained in

“soap:operation element” on page 394, the structure of the SOAP Body

within a SOAP message is dependent on the setting of the soap:operation

style attribute.

Attributes The following attributes are defined within a soap:body element:

• use

• encodingStyle

• namespace

• parts

use

This mandatory attribute indicates how message parts are used to denote

data types. Each message part relates to a particular data type that in turn

might relate to an abstract type definition or a concrete schema definition.

<binding name="…" type="…">
 <soap:binding style="…" transport="…">
 <operation name="…">
 <soap:operation style="…" soapAction="…">
 <input>
 <soap:body use=”…” encodingStyle=”…”
 namespace=”…” parts="..."/>
 </input>
 <output>
 <soap:body use=”…” encodingStyle=”…”
 namespace=”…” parts="..."/>
 </output>
 <fault>
 <soap:body use=”…” encodingStyle=”…”
 namespace=”…” parts="..."/>
 </fault>
 </operation>
395

CHAPTER A | SOAP Binding Extensions
An abstract type definition is a type that is defined in some remote encoding

schema whose location is referenced in the WSDL contract via an

encodingStyle attribute. In this case, types are serialized based on the set

of rules defined by the specified encoding style.

A concrete schema definition relates to types that are defined in the WSDL

contract itself, within a schema element within the types component of the

contract.

The following are valid values for the use attribute:

• encoded

• literal

If encoded is specified, the type attribute that is specified for each message

part (within the message component of the WSDL contract) is used to

reference an abstract type defined in some remote encoding schema. In this

case, a concrete SOAP message is produced by applying encoding rules to

the abstract types. The encoding rules are based on the encoding style

identified in the soap:body encodingStyle attribute. The encoding takes as

input the name and type attribute for each message part (defined in the

message component of the WSDL contract). If the encoding style allows

variation in the message format for a given set of abstract types, the receiver

of the message must ensure they can understand all the format variations.

If literal is specified, either the element or type attribute that is specified

for each message part (within the message component of the WSDL

contract) is used to reference a concrete schema definition (defined within

the types component of the WSDL contract). If the element attribute is used

to reference a concrete schema definition, the referenced element in the

SOAP message appears directly under the SOAP Body element (if the

operation style is document-based) or under a part accessor element that

has the same name as the message part (if the operation style is

RPC-based). If the type attribute is used to reference a concrete schema

definition, the referenced type in the SOAP message becomes the schema

type of the SOAP Body (if the operation style is documented-based) or of the

part accessor element (if the operation style is document-based).

encodingStyle

This attribute is used when the soap:body use attribute is set to encoded. It

specifies a list of URIs (each separated by a space) that represent encoding

styles that are to be used within the SOAP message. The URIs should be

listed in order, from the most restrictive encoding to the least restrictive.
 396

soap:body element
This attribute can also be used when the soap:body use attribute is set to

literal, to indicate that a particular encoding was used to derive the

concrete format, but that only the specified variation is supported. In this

case, the sender of the SOAP message must conform exactly to the specified

schema.

namespace

If the soap:operation style attribute is set to rpc, each message part

within the SOAP Body of a SOAP message is a parameter or return value

and will appear inside a wrapper element within the SOAP Body. The name

of the wrapper element must match the operation name. The namespace of

the wrapper element is based on the value of the soap:body namespace

attribute.

parts

This attribute is a space separated list of parts from the parent input,

output, or fault element. When parts is set, only the specified parts of the

message are included in the SOAP body. The unlisted parts are not

transmitted unless they are placed into the SOAP header.
397

CHAPTER A | SOAP Binding Extensions
 soap:header element

Overview A soap:header element in a binding is an optional child of the input,

output, and fault elements of the WSDL operation element, as follows:

A soap:header element defines the information that is placed in a SOAP

header element. You can define any number of soap:header elements for an

operation. As explained in “soap:operation element” on page 394, the

structure of the SOAP header within a SOAP message is dependent on the

setting of the soap:operation element’s style attribute.

Attributes Table 28 describes the attributes defined within the soap:header element.

<binding name="..." type="...">
 <soap:binding style="..." transport="...">
 <operation name="...">
 <soap:operation style="..." soapAction="...">
 <input>
 <soap:body use="..." encodingStyle="..."
 namespace="..." parts="..."/>
 <soap:header message="..." part="..." use="..."
 encodingStyle="..." namespace="..."/>
 </input>
 <output>
 <soap:body use="..." encodingStyle="..."
 namespace="..." parts="..."/>
 <soap:header message="..." part="..." use="..."
 encodingStyle="..." namespace="..."/>
 </output>
 <fault>
 <soap:body use="..." encodingStyle="..."
 namespace="..." parts="..."/>
 <soap:header message="..." part="..." use="..."
 encodingStyle="..." namespace="..."/>
 </fault>
 </operation>
 398

soap:header element
Table 28: Attributes for soap:header

Configuration
Attribute

Explanation

message Specifies the qualified name of the message from
which the contents of the SOAP header is taken.

part Specifies the name of the message part that is placed
into the SOAP header.

use Used in the same way as the use attribute within the
soap:body element. See “use” on page 395 for more
details.

encodingStyle Used in the same way as the encodingStyle
attribute within the soap:body element. See
“encodingStyle” on page 396 for more details.

namespace If the soap:operation style attribute is set to rpc,
each message part within the SOAP header of a
SOAP message is a parameter or return value and
will appear inside a wrapper element within the
SOAP header. The name of the wrapper element
must match the operation name. The namespace of
the wrapper element is based on the value of the
soap:header namespace attribute.
399

CHAPTER A | SOAP Binding Extensions
soap:fault element

Overview A soap:fault element in a WSDL contract is defined within the fault

component within an operation component, as follows:

Only one soap:fault element is defined for a particular operation. The

operation must be a request-response or solicit-response type of operation,

with both input and output elements. The soap:fault element is used to

transmit error and status information within a SOAP response message.

Attributes Table 29 describes the attributes defined within the soap:fault element.

<binding name="…" type="…">
 <soap:binding style="…" transport="…">
 <operation name="…">
 <soap:operation style="…" soapAction="…">
 <input>
 <soap:body use="…" encodingStyle="…">
 </input>
 <output>
 <soap:body use="…" encodingStyle="…">
 </output>
 <fault>
 <soap:fault name=”…” use=”…” encodingStyle=”…”
 </fault>
 </operation>
</binding>

Note: A fault message must consist of only a single message part. Also, it
is assumed that the soap:operation element’s style attribute is set to
document, because faults do not contain parameters.
 400

soap:fault element
Table 29: soap:fault attributes

Configuration
Attribute

Explanation

name This specifies the name of the fault. This relates back
to the name attribute for the fault element specified
for the corresponding operation within the portType
component of the WSDL contract.

use This attribute is used in the same way as the use
attribute within the soap:body element. See “use” on
page 395 for more details.

encodingStyle This attribute is used in the same way as the
encodingStyle attribute within the soap:body
element. See “encodingStyle” on page 396 for more
details.
401

CHAPTER A | SOAP Binding Extensions
soap:address element

Overview The soap:address element in a WSDL contract is defined within the port

component within the service component, as follows:

The soap:address element is only specified when you want to use SOAP

over HTTP.

If you want to use SOAP over IIOP, the element name is iiop:address.

Similarly, if you want to use a different payload format over HTTP, the

http-conf:client URL attribute is used instead.

Attribute The soap:address element takes one attribute: location. This specifies the
URL of the server to which the client request is being sent.

Valid values are of the form:

<service name="…">
 <port binding="…" name="…">
 <soap:address location=”…”>
 </port>
</service>

Note: When you are using SOAP over HTTP, the http-conf:client and
http-conf:server elements can still be validly specified as peer elements
of the soap:address element. See “Creating an HTTP Service” on
page 255 for more details of http-conf:client and http-conf:server.

http://myserver/mypath/
https://myserver/mypath
http://myserver:9001/mypath
http://myserver:9001-9010/mypath
 402

APPENDIX B

CORBA Type
Mapping
The Artix CORBA plug-in uses a detailed type map to ensure
that data is transmitted without ambiguity.

In this appendix This appendix discusses the following topics:

Introducing CORBA Type Mapping page 404

Primitive Type Mapping page 405

Complex Type Mapping page 408

Recursive Type Mapping page 425

Mapping XML Schema Features that are not Native to IDL page 427

Artix References page 440
403

CHAPTER B | CORBA Type Mapping
Introducing CORBA Type Mapping

Overview To ensure that messages are converted into the proper format for a CORBA

application to understand, Artix contracts need to unambiguously describe

how data is mapped to CORBA data types.

For primitive types, the mapping is straightforward. However, complex types

such as structures, arrays, and exceptions require more detailed

descriptions.

Unsupported types The following CORBA types are not supported:

• Value types

• Boxed values

• Local interfaces

• Abstract interfaces

• Forward-declared interfaces
 404

Primitive Type Mapping
Primitive Type Mapping

Mapping chart Most primitive IDL types are directly mapped to primitive XML Schema

types. Table 30 lists the mappings for the supported IDL primitive types.

Table 30: Primitive Type Mapping for CORBA Plug-in

IDL Type XML Schema Type CORBA Binding
Type

Artix C++ Type Artix Java Type

Any xsd:anyType corba:any IT_Bus::AnyHolder com.iona.webservices

.reflect.types.AnyTy

pe

boolean xsd:boolean corba:boolean IT_Bus::Boolean boolean

char xsd:byte corba:char IT_Bus::Char byte

wchar xsd:string corba:wchar java.lang.String

double xsd:double corba:double IT_Bus::Double double

float xsd:float corba:float IT_Bus::Float float

octet xsd:unsignedByte corba:octet IT_Bus::Octet short

long xsd:int corba:long IT_Bus::Long int

long long xsd:long corba:longlong IT_Bus::LongLong long

short xsd:short corba:short IT_Bus::Short short

string xsd:string corba:string IT_Bus::String java.lang.String

wstring xsd:string corba:wstring java.lang.String

unsigned short xsd:unsignedShort corba:ushort IT_Bus::UShort int

unsigned long xsd:unsignedInt corba:ulong IT_Bus::ULong long

unsigned long

long

xsd:unsignedLong corba:ulonglong IT_Bus::ULongLong java.math.BigInteger

TimeBase::UtcT xsd:dateTimea corba:dateTime IT_Bus::DateTime java.util.Calendar
405

CHAPTER B | CORBA Type Mapping
Unsupported types Artix does not support the CORBA long double type.

Unsupported time/date values The following xsd:dateTime values cannot be mapped to TimeBase::UtcT:

• Values with a local time zone. Local time is treated as a 0 UTC time

zone offset.

• Values prior to 15 October 1582.

• Values greater than approximately 30,000 A.D.

The following TimeBase::UtcT values cannot be mapped to xsd:dateTime:

• Values with a non-zero inacclo or inacchi.

• Values with a time zone offset that is not divisible by 30 minutes.

• Values with time zone offsets greater than 14:30 or less than -14:30.

• Values with greater than millisecond accuracy.

• Values with years greater than 9999.

Example The mapping of primitive types is handled in the CORBA binding section of

the Artix contract. For example, consider an input message that has a part,

score, that is described as an xsd:int as shown in Example 128.

a. The mapping between xsd:dateTime and TimeBase:UtcT is only partial. For the restrictions see “Unsupported
time/date values” on page 406

Example 128:WSDL Operation Definition

<message name="runsScored">
 <part name="score"/>
</message>
<portType ...>
 <operation name="getRuns">
 <input message="tns:runsScored" name="runsScored"/>
 </operation>
</portType>
 406

Primitive Type Mapping
 It is described in the CORBA binding as shown in Example 129.

The IDL is shown in Example 130.

Example 129:Example CORBA Binding

<binding ...>
 <operation name="getRuns">
 <corba:operation name="getRuns">
 <corba:param name="score" mode="in" idltype="corba:long"/>
 </corba:operation>
 <input/>
 <output/>
 </operation>
</binding>

Example 130:getRuns IDL

// IDL
void getRuns(in score);
407

CHAPTER B | CORBA Type Mapping
Complex Type Mapping

Overview Because complex types (such as structures, arrays, and exceptions) require

a more involved mapping to resolve type ambiguity, the full mapping for a

complex type is described in a corba:typeMapping element at the bottom of

an Artix contract. This element contains a type map describing the metadata

required to fully describe a complex type as a CORBA data type. This

metadata may include the members of a structure, the bounds of an array,

or the legal values of an enumeration.

The corba:typeMapping element requires a targetNamespace attribute that

specifies the namespace for the elements defined by the type map. The

default URI is http://schemas.iona.com/bindings/corba/typemap. By

default, the types defined in the type map are referred to using the corbatm:

prefix.

Mapping chart Table 31 shows the mappings from complex IDL types to XML Schema,

Artix CORBA type, and Artix C++ types.

Table 31: Complex Type Mapping for CORBA Plug-in

IDL Type XML Schema Type CORBA Binding Type Artix C++ Type

struct See Example 132 corba:struct IT_Bus::SequenceComplexType

enum See Example 133 corba:enum IT_Bus::AnySimpleType

fixed xsd:decimal corba:fixed IT_Bus::Decimal

union See Example 138 corba:union IT_Bus::ChoiceComplexType

typedef See Example 141

array See Example 143 corba:array IT_Bus::ArrayT<>

sequence See Example 149 corba:sequence IT_Bus::ArrayT<>

exception See Example 152 corba:exception IT_Bus::UserFaultException
 408

Complex Type Mapping
Structures

Mapping Structures are mapped to corba:struct elements. A corba:struct element

requires three attributes:

The elements of the structure are described by a series of corba:member

elements. The elements must be declared in the same order used in the IDL

representation of the CORBA type. A corba:member requires two attributes:

Example For example, you may have a structure, personalInfo, similar to the one in

Example 131.

name A unique identifier used to reference the CORBA type in
the binding.

type The logical type the structure is mapping.

repositoryID The fully specified repository ID for the CORBA type.

name The name of the element

idltype The IDL type of the element. This type can be either a
primitive type or another complex type that is defined in
the type map.

Example 131:personalInfo

enum hairColorType {red, brunette, blonde};

struct personalInfo
{
 string name;
 int age;
 hairColorType hairColor;
}

409

CHAPTER B | CORBA Type Mapping
It can be represented in the CORBA type map as shown in Example 132:

The idltype corbatm:hairColorType refers to a complex type that is defined

earlier in the CORBA type map.

Example 132:CORBA Type Map for personalInfo

<corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
...
 <corba:struct name="personalInfo" type="xsd1:personalInfo" repositoryID="IDL:personalInfo:1.0">
 <corba:member name="name" idltype="corba:string"/>
 <corba:member name="age" idltype="corba:long"/>
 <corba:member name="hairColor" idltype="corbatm:hairColorType"/>
 </corba:struct>
</corba:typeMapping>
 410

Complex Type Mapping
Enumerations

Mapping Enumerations are mapped to corba:enum elements. A corba:enum element

requires three attributes:

The values for the enumeration are described by a series of

corba:enumerator elements. The values must be listed in the same order

used in the IDL that defines the CORBA enumeration. A corba:enumerator

element takes one attribute, value.

Example For example, the enumeration defined in Example 131 on page 409,

hairColorType, can be represented in the CORBA type map as shown in

Example 133:

name A unique identifier used to reference the CORBA type in
the binding.

type The logical type the structure is mapping.

repositoryID The fully specified repository ID for the CORBA type.

Example 133:CORBA Type Map for hairColorType

<corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
...
 <corba:enum name="hairColorType" type="xsd1:hairColorType"

repositoryID="IDL:hairColorType:1.0">
 <corba:enumerator value="red"/>
 <corba:enumerator value="brunette"/>
 <corba:enumerator value="blonde"/>
 </corba:enum>
</corba:typeMapping>
411

CHAPTER B | CORBA Type Mapping
Fixed

Mapping Fixed point data types are a special case in the Artix contract mapping. A

CORBA fixed type is represented in the logical portion of the contract as the

XML Schema primitive type xsd:decimal. However, because a CORBA fixed

type requires additional information to be fully mapped to a physical CORBA

data type, it must also be described in the CORBA type map section of an

Artix contract.

CORBA fixed data types are described using a corba:fixed element. A

corba:fixed element requires five attributes:

Example For example, the fixed type defined in Example 134, myFixed, would be

described by a type entry in the logical type description of the contract, as

shown in Example 135.

name A unique identifier used to reference the CORBA type in
the binding.

repositoryID The fully specified repository ID for the CORBA type.

type The logical type the structure is mapping (for CORBA
fixed types, this is always xsd:decimal).

digits The upper limit for the total number of digits allowed.
This corresponds to the first number in the fixed type
definition.

scale The number of digits allowed after the decimal point.
This corresponds to the second number in the fixed type
definition.

Example 134:myFixed Fixed Type

\\IDL
typedef fixed<4,2> myFixed;

Example 135:Logical description from myFixed

<xsd:element name="myFixed" type="xsd:decimal"/>
 412

Complex Type Mapping
In the CORBA type map portion of the contract, it would be described by an

entry similar to Example 136. Notice that the description in the CORBA

type map includes the information needed to fully represent the

characteristics of this particular fixed data type.

Example 136:CORBA Type Map for myFixed

<corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
...
 <corba:fixed name="myFixed" repositoryID="IDL:myFixed:1.0" type="xsd:decimal" digits="4"

scale="2"/>
</corba:typeMapping>
413

CHAPTER B | CORBA Type Mapping
Unions

Overview Unions are particularly difficult to describe using the WSDL framework of an

Artix contract. In the logical data type descriptions, the difficulty is how to

describe the union without losing the relationship between the members of

the union and the discriminator used to select the members. The easiest

method is to describe a union using an xsd:choice and list the members in

the specified order. The OMG’s proposed method is to describe the union as

an xsd:sequence containing one element for the discriminator and an

xsd:choice to describe the members of the union. However, neither of

these methods can accurately describe all the possible permutations of a

CORBA union.

Artix Mapping Artix’s IDL compiler generates a contract that describes the logical union

using both methods. The description using xsd:sequence is named by

prepending _omg_ to the types name. The description using xsd:choice is

used as the representation of the union throughout the contract.

For example consider the union, myUnion, shown in Example 137:

Example 137:myUnion IDL

//IDL
union myUnion switch (short)
{
 case 0:
 string case0;
 case 1:
 case 2:
 float case12;
 default:
 long caseDef;
};
 414

Complex Type Mapping
This union is described in the logical portion of the contact with entries

similar to those shown in Example 138:

CORBA type mapping In the CORBA type map portion of the contract, the relationship between

the union’s discriminator and its members must be resolved. This is

accomplished using a corba:union element. A corba:union element has

four mandatory attributes.

The members of the union are described using a series of nested

corba:unionbranch elements. A corba:unionbranch element has two

required attributes and one optional attribute.

Example 138:myUnion Logical Description

<xsd:complexType name="myUnion">
 <xsd:choice>
 <xsd:element name="case0" type="xsd:string"/>
 <xsd:element name="case12" type="xsd:float"/>
 <xsd:element name="caseDef" type="xsd:int"/>
 </xsd:choice>
</xsd:complexType>
<xsd:complexType name="_omg_myUnion4">
 <xsd:sequence>
 <xsd:element minOccurs="1" maxOccurs="1" name="discriminator" type="xsd:short"/>
 <xsd:choice minOccurs="0" maxOccurs="1">
 <xsd:element name="case0" type="xsd:string"/>
 <xsd:element name="case12" type="xsd:float"/>
 <xsd:element name="caseDef" type="xsd:int"/>
 </xsd:choice>
 </xsd:sequence>
</xsd:complexType>

name A unique identifier used to reference the CORBA type in
the binding.

type The logical type the structure is mapping.

discriminator The IDL type used as the discriminator for the union.

repositoryID The fully specified repository ID for the CORBA type.

name A unique identifier used to reference the union member.

idltype The IDL type of the union member. This type can be
either a primitive type or another complex type that is
defined in the type map.
415

CHAPTER B | CORBA Type Mapping
Each corba:unionbranch except for one describing the union’s default

member will have at least one nested corba:case element. The corba:case

element’s only attribute, label, specifies the value used to select the union

member described by the corba:unionbranch.

For example myUnion, Example 137 on page 414, would be described with

a CORBA type map entry similar to that shown in Example 139.

default The optional attribute specifying if this member is the
default case for the union. To specify that the value is the
default set this attribute to true.

Example 139:myUnion CORBA type map

<corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
...
 <corba:union name="myUnion" type="xsd1:myUnion" discriminator="corba:short"

repositoryID="IDL:myUnion:1.0">
 <corba:unionbranch name="case0" idltype="corba:string">
 <corba:case label="0"/>
 </corba:unionbranch>
 <corba:unionbranch name="case12" idltype="corba:float">
 <corba:case label="1"/>
 <corba:case label="2"/>
 </corba:unionbranch>
 <corba:unionbranch name="caseDef" idltype="corba:long" default="true"/>
 </corba:union>
</corba:typeMapping>
 416

Complex Type Mapping
Type Renaming

Mapping Renaming a type using a typedef statement is handled using a corba:alias

element in the CORBA type map. The Artix IDL compiler also adds a logical

description for the renamed type in the types section of the contract, using

an xsd:simpleType.

Example For example, the definition of myLong in Example 140, can be described as

shown in Example 141:

Example 140:myLong IDL

//IDL
typedef long myLong;

Example 141:myLong WSDL

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="typedef.idl" ...>
 <types>
 ...
 <xsd:simpleType name="myLong">
 <xsd:restriction base="xsd:int"/>
 </xsd:simpleType>
 ...
 </types>
...
 <corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
 <corba:alias name="myLong" type="xsd:int" repositoryID="IDL:myLong:1.0"

basetype="corba:long"/>
 </corba:typeMapping>
</definitions>
417

CHAPTER B | CORBA Type Mapping
Arrays

Logical mapping Arrays are described in the logical portion of an Artix contract, using an

xsd:sequence with its minOccurs and maxOccurs attributes set to the value

of the array’s size. For example, consider an array, myArray, as defined in

Example 142.

Its logical description will be similar to that shown in Example 143:

CORBA type mapping In the CORBA type map, arrays are described using a <corba:array>

element. A <corba:array> has five required attributes.

For example, the array myArray will have a CORBA type map description

similar to the one shown in Example 144.

Example 142:myArray IDL

//IDL
typedef long myArray[10];

Example 143:myArray logical description

<xsd:complexType name="myArray">
 <xsd:sequence>
 <xsd:element name="item" type="xsd:int" minOccurs="10" maxOccurs="10"/>
 </xsd:sequence>
</xsd:complexType>

name A unique identifier used to reference the CORBA type in
the binding.

repositoryID The fully specified repository ID for the CORBA type.

type The logical type the structure is mapping.

elemtype The IDL type of the array’s element. This type can be
either a primitive type or another complex type that is
defined within the type map.

bound The size of the array.
 418

Complex Type Mapping
Example 144:myArray CORBA type map

<corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
 <corba:array name="myArray" repositoryID="IDL:myArray:1.0" type="xsd1:myArray"

elemtype="corba:long" bound="10"/>
</corba:typeMapping>
419

CHAPTER B | CORBA Type Mapping
Multidimensional Arrays

Logical mapping Multidimensional arrays are handled by creating multiple arrays and

combining them to form the multidimensional array. For example, an array

defined as shown in Example 145

generates the logical description shown in Example 146.

CORBA type mapping The corresponding entry in the CORBA type map is:

Example 145:Multidimensional Array

\\ IDL
typedef long array2d[10][10];

Example 146:Logical Description of a Multidimensional Array

<xsd:complexType name="_1_array2d">
 <xsd:sequence>
 <xsd:element name="item" type="xsd:int" minOccurs="10" maxOccurs="10"/>
 </xsd:sequence>
</xsd:complexType>
<xsd:complexType name="array2d">
 <xsd:sequence>
 <xsd:element name="item" type="xsd1:_1_array2d" minOccurs="10" maxOccurs="10"/>
 </xsd:sequence>
</xsd:complexType>

Example 147:CORBA Type Map for a Multidimensional Array

<corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
 <corba:anonarray name="_2_array2d" type="xsd1:_2_array2d" elemtype="corba:long" bound="10"/>
 <corba:array name="array2d" repositoryID="IDL:array2d:1.0" type="xsd1:array2d"

elemtype="corbatm:_2_array2d" bound="10"/>
</corba:typeMapping>
 420

Complex Type Mapping
Sequences

Logical mapping Because CORBA sequences are an extension of arrays, sequences are

described in Artix contracts similarly. Like arrays, sequences are described

in the logical type section of the contract using xsd:sequence elements.

Unlike arrays, the minOccurs and maxOccurs attributes do not have the

same value. minOccurs is set to 0 and maxOccurs is set to the upper limit of

the sequence. If the sequence is unbounded, maxOccurs is set to unbounded.

For example, the two sequences defined in Example 148, longSeq and

charSeq:

are described in the logical section of the contract with entries similar to

those shown in Example 149.

CORBA type mapping In the CORBA type map, sequences are described using a corba:sequence

element. A corba:sequence has five required attributes.

Example 148:IDL Sequences

\\ IDL
typedef sequence<long> longSeq;
typedef sequence<char, 10> charSeq;

Example 149:Logical Description of Sequences

<xsd:complexType name="longSeq">
 <xsd:sequence>
 <xsd:element name="item" type="xsd:int" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
</xsd:complexType>
<xsd:complexType name="charSeq">
 <xsd:sequence>
 <xsd:element name="item" type="xsd:byte" minOccurs="0" maxOccurs="10"/>
 </xsd:sequence>
</xsd:complexType>

name A unique identifier used to reference the CORBA type in
the binding.

repositoryID The fully specified repository ID for the CORBA type.
421

CHAPTER B | CORBA Type Mapping
For example, the sequences described in Example 149 has a CORBA type

map description similar to that shown in Example 150:

type The logical type the structure is mapping.

elemtype The IDL type of the sequence’s elements. This type can
be either a primitive type or another complex type that is
defined within the type map.

bound The size of the sequence.

Example 150:CORBA type map for Sequences

<corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
 <corba:sequence name="longSeq" repositoryID="IDL:longSeq:1.0" type="xsd1:longSeq"

elemtype="corba:long" bound="0"/>
 <corba:sequence name="charSeq" repositoryID="IDL:charSeq:1.0" type="xsd1:charSeq"

elemtype="corba:char" bound="10"/>
 </corba:typeMapping>
 422

Complex Type Mapping
Exceptions

Mapping Because exceptions typically return more than one piece of information, they

require both an abstract type description and a CORBA type map entry. In

the abstract type description, exceptions are described much like structures.

In the CORBA type map, exceptions are described using corba:exception

elements. A corba:exception element has three required attributes:

The pieces of data returned with the exception are described by a series of

corba:member elements. The elements must be declared in the same order

as in the IDL representation of the exception. A corba:member has two

required attributes:

Example For example, the exception defined in Example 151, idNotFound,

name A unique identifier used to reference the CORBA type in
the binding.

type The logical type the structure is mapping.

repositoryID The fully specified repository ID for the CORBA type.

name The name of the element

idltype The IDL type of the element. This type can be either a
primitive type or another complex type that is defined
within the type map.

Example 151:idNotFound Exception

\\IDL
exception idNotFound
{
 short id;
};
423

CHAPTER B | CORBA Type Mapping
would be described in the logical type section of the contract, with an entry

similar to that shown in Example 152:

In the CORBA type map portion of the contract, idNotFound is described by

an entry similar to that shown in Example 153:

Example 152:idNotFound logical structure

<xsd:complexType name="idNotFound">
 <xsd:sequence>
 <xsd:element name="id" type="xsd:short"/>
 </xsd:sequence>
</xsd:complexType>

Example 153:CORBA Type Map for idNotFound

<corba:typeMapping targetNamespace="http://schemas.iona.com/bindings/corba/typemap">
...
 <corba:exception name="idNotFound" type="xsd1:idNotFound" repositoryID="IDL:idNotFound:1.0">
 <corba:member name="id" idltype="corba:short"/>
 </corba:exception>
</corba:typeMapping>
 424

Recursive Type Mapping
Recursive Type Mapping

Overview Both CORBA IDL and XML Schema allow you define recursive data types.

Because both type definition schemes support recursion, Artix directly maps

recursive types between IDL and XML Schema. The CORBA typemap

generated by Artix to support the CORBA binding is straightforward and

directly reflects the recursive nature of the data types.

Defining recursive types in XML

Schema

Recursive data types are defined in XML Schema as complex types using the

complexType element. XML Schema supports two means of defining a

recursive type. The first is to have an element of a complex type be of a type

that includes an element of the type being defined. Example 154 shows a

recursive complex type XML Schema type, allAboutMe, defined using a

named type.

XML Schema also supports the definition of recursive types using

anonymous types. However, Artix does not support this style of defining

recursive types.

CORBA typemap As shown in Example 155, Artix maps recursive types into the CORBA

typemap section of the Artix contract as it would non-recursive types, except

that it maps the recursive element, which is a sequence in this case, to an

Example 154:Recursive XML Schema Type

<complexType name="allAboutMe">
 <sequence>
 <element name="shoeSize" type="xsd:int"/>
 <element name="mated" type="xsd:boolean"/>
 <element name="conversation" type="tns:moreMe"/>
 </sequence>
</complexType>
<complexType name="moreMe">
 <sequence>
 <element name="item" type="tns:allAboutMe"
 maxOccurs="unbounded"/>
 </sequence>
</complexType>
425

CHAPTER B | CORBA Type Mapping
anonymous type using the corba:anonsequence element. The

corba:anonsequence specifies that when IDL is generated from this binding

the associated sequence will not generate a new type for itself.

Generated IDL While the XML in the CORBA typemap does not explicitly retain the

recursive nature of recursive XML Schema types, the IDL generated from the

typemap restores the recursion in the IDL type. The IDL generated from the

typemap in Example 155 on page 426 defines allAboutMe using recursion.

Example 156 shows the generated IDL.

Example 155:Recursive CORBA Typemap

<corba:anonsequence name="moreMe" bound="0"
 elemtype="ns1:allAboutMe" type="xsd1:me"/>
<corba:struct name="allAboutMe"
 repositoryID="IDL:allAboutMe:1.0"
 type="tns:allAboutMe">
 <corba:member name="shoeSize" idltype="corba:long"/>
 <corba:member name="mated" idltype="corba:boolean"/>
 <corba:member name="conversation" idltype="ns1:moreMe"/>
</corba:struct>

Example 156:IDL for a Recursive Data Type

\\IDL
struct allAboutMe
{
 long shoeSize;
 boolean mated;
 sequence<allAboutMe> conversation;
};
 426

Mapping XML Schema Features that are not Native to IDL
Mapping XML Schema Features that are not
Native to IDL

Overview There are a number of data types that you can describe in your Artix

contract using XML Schema that are not native to IDL. Artix can map these

data types into legal IDL so that your CORBA systems can interoperate with

applications that use these data type descriptions in their contracts.

These features include:

• Binary Types

• Attributes

• Nested Choices

• Inheritance

• Nillable
427

CHAPTER B | CORBA Type Mapping
Binary Types

Overview There are three binary types defined in XML Schema that have direct

correlation to IDL data-types. These types are:

• xsd:base64Binary

• xsd:hexBinary

• soapenc:base64

These types are all mapped to octet sequences in CORBA.

Example For example, the schema type, joeBinary, described in Example 157

results in the CORBA typemap description shown in Example 158.

The resulting IDL for joeBinary is shown in Example 159.

The mappings for xsd:base64Binary and soapenc:base64 would be similar

except that the type attribute in the CORBA typemap would specify the

appropriate type.

Example 157:joeBinary schema description

<xsd:element name="joeBinary type="xsd:hexBinary"/>

Example 158:joeBinary CORBA typemap

<corba:sequence name="joeBinary" bound="0"
 elemtype="corba:octet" repositoryID="IDL:joeBinary:1.0"
 type="xsd:hexBinary"/>

Example 159:joeBinary IDL

\\IDL
typedef sequence<octet> joeBinary;
 428

Mapping XML Schema Features that are not Native to IDL
Attributes

Mapping Required XML Schema attributes are treated as normal elements in a

CORBA structure.

Example For example, the complex type, madAttr, described in Example 160

contains two attributes, material and size.

madAttr would generate the CORBA typemap shown in Example 161.

Notice that size and material are simply incorporated into the madAttr

structure in the CORBA typemap.

Note: Attributes are not supported for complex types defined with choice
element.

Example 160:madAttr XML Schema

<complexType name="madAttr">
 <sequence>
 <element name="style" type="xsd:string"/>
 <element name="gender" type="xsd:byte"/>
 </sequence>
 <attribute name="size" type="xsd:int"/>
 <attribute name="material"/>
 <simpleType>
 <restriction base="xsg:string">
 <maxLength value="3"/>
 </restriction>
 </simpleType>
 </attribute>
<complexType>

Example 161:madAttr CORBA typemap

<corba:annonstring bound="3" name="materialType" type="tns:material"/>
<corba:struct name="madAttr" repositoryID="IDL:madAttr:1.0" type="typens:madAttr">
 <corba:member name="style" idltype="corba:string"/>
 <corba:member name="gender" idltype="corba:char"/>
 <corba:member name="size" idltype="corba:long"/>
 <corba:member name="material" idltype="ns1:materialType"/>
</corba:struct>
429

CHAPTER B | CORBA Type Mapping
Similarly, in the IDL generated using a contract containing madAttr, the

attributes are made elements of the structure and are placed in the order in

which they are listed in the contract. The resulting IDL structure is shown in

Example 162.

Example 162:madAttr IDL

\\IDL
struct madAttr
{
 string style;
 char gender;
 long size;
 string<3> material;
}

 430

Mapping XML Schema Features that are not Native to IDL
Nested Choices

Mapping When mapping complex types containing nested xsd:choice elements into

CORBA, Artix will break the nested xsd:choice elements into separate

unions in CORBA. The resulting union will have the name of the original

complex type with ChoiceType appended to it. So, if the original complex

type was named joe, the union representing the nested choice would be

named joeChoiceType.

The nested choice in the original complex type will be replaced by an

element of the new union created to represent the nested choice. This

element will have the name of the new union with _f appended. So if the

original structure was named carla, the replacement element will be named

carlaChoiceType_f.

The original type description will not be changed, the break out will only

appear in the CORBA typemap and in the resulting IDL.

Example For example, the complex type details, shown in Example 163, contains a

nested choice.

The resulting CORBA typemap, shown in Example 164, contains a new

union, detailsChoiceType, to describe the nested choice. Note that the

type attribute for both details and detailsChoiceType has the name of the

Example 163:details XML Schema

<complexType name="Details">
 <sequence>
 <element name="name" type="xsd:string"/>
 <element name="address" type="xsd:string"/>
 <choice>
 <element name="employer" type="xsd:string"/>
 <element name="unemploymentNumber" type="xsd:int"/>
 </choice>
 </sequence>
</complexType>
431

CHAPTER B | CORBA Type Mapping
original complex type defined in the schema. The nested choice is

represented in the original structure as a member of type

detailsChoiceType.

The resulting IDL is shown in Example 165.

Example 164:details CORBA typemap

<corba:struct name="details" repositoryID="IDL:details:1.0" type="xsd1:details">
 <corba:member idltype="corba:string" name="name"/>
 <corba:member idltype="corba:string" name="address"/>
 <corba:member idltype="ns1:detailsChoiceType" name="detailsChoiceType_f"/>
</corba:struct>
<corba:union discriminator="corba:long" name="detailsChoiceType"
 repositoryID="IDL:detailsChoiceType:1.0" type="xsd1:details">
 <corba:unionbranch idltype="corba:string" name="employer">
 <corba:case label="0"/>
 </corba:unionbranch>
 <corba:unionbranch idltype="corba:long" name="unemploymentNumber">
 <corba:case label="1"/>
 </corba:unionbranch>
</corba:union>

Example 165:details IDL

\\IDL
union detailsChoiceType switch(long)
{
 case 0:
 string employer;
 case 1:
 long unemploymentNumber;
};
struct details
{
 string name;
 string address;
 detailsChoiceType DetailsChoiceType_f;
};
 432

Mapping XML Schema Features that are not Native to IDL
Inheritance

Mapping XML Schema describes inheritance using the complexContent tag and the

extension tag. For example the complex type seaKayak, described in

Example 166, extends the complex type kayak by including two new fields.

When complex types using complexContent are mapped into CORBA types,

Artix creates generates an intermediate type to represent the complex data

defined within the complexContent element. The intermediate type is

named by appending an identifier describing the complex content to the

new type’s name. Table 32 shows the complex content identifiers used

appended to the intermediate type name.

Example 166:seaKayak XML Schema

<complexType name="kayak">
 <sequence>
 <element name="length" type="xsd:int"/>
 <element name="width" type="xsd:int"/>
 <element name="material" type="xsd:string"/>
 </sequence>
</complexType>
<complexType name="seaKayak">
 <complexContent>
 <extension base="kayak">
 <sequence>
 <element name="chines" type="xsd:string"/>
 <element name="cockpitStyle" type="xsd:string"/>
 </sequence>
 </extension>
 </complexContent>
</complexType>

Table 32: Complex Content Identifiers in CORBA Typemap

XML Schema Type Typemap Identifier

sequence SequenceStruct

all AllStruct

choice ChoiceType
433

CHAPTER B | CORBA Type Mapping
The CORBA type generated to represent the XML Schema type generated to

represent the type derived by extension will have an element of the type that

it extends, named baseType_f and an element of the intermediate type,

named intermediateType_f. Any attributes that are defined in the extended

type are then mapped into the new CORBA type following the rules for

mapping XML Schema attributes into CORBA types.

Example Example 167 shows how Artix maps the complex types defined in

Example 166 on page 433 into a CORBA type map.

The IDL generated by Artix for the types defined in Example 166 on

page 433 is shown in Example 168.

Example 167:seaKayak CORBA type map

<corba:struct name="kayak" repositoryID="IDL:kayak:1.0" type="tns:kayak">
 <corba:element name="length" idltype="corba:long"/>
 <corba:element name="width" idltype="corba:long"/>
 <corba:element name="material" idltype="corba:string"/>
</corba:struct>
<corba:struct name="seaKayak" repositoryID="IDL:seaKayak:1.0" type="tns:seaKayak">
 <corba:element name="kayak_f" idltype="ns1:kayak"/>
 <corba:element name="seaKayakSequenceStruct_f" idltype="ns1:seaKayakSequenceStruct"/>
</corba:struct>
<corba:struct name="seaKayakSequenceStruct" repositoryID="IDL:seaKayakSequenceStruct:1.0"
 type="tns:seaKayakSequenceStruct">
 <corba:element name="chines" idltype="corba:string"/>
 <corba:element name="cockpitStyle" idltype="corba:string"/>
</corba:struct>

Example 168:seaKayak IDL

\\ IDL
struct kayak
{
 long length;
 long width;
 string material;
};
struct seaKayakSequenceStruct
{
 string chines;
 string cockpitStyle;
};
 434

Mapping XML Schema Features that are not Native to IDL
struct seaKayak
{
 kayak kayak_f;
 seaKayakSequenceStruct seqKayakSequenceStruct_f;
};

Example 168:seaKayak IDL
435

CHAPTER B | CORBA Type Mapping
Nillable

Mapping XML Schema supports an optional attribute, nillable, that specifies that an

element can be nil. Setting an element to nil is different than omitting an

element whose minOccurs attribute is set to 0; the element must be

included as part of the data sent in the message.

Elements that have nillable="true" set in their logical description are

mapped to a CORBA union with a single case, TRUE, that holds the value of

the element if it is not set to nil.

Example For example, imagine a service that maintains a database of information on

people who download software from a web site. The only required piece of

information the visitor needs to supply is their zip code. Optionally, visitors

can supply their name and e-mail address. The data is stored in a data

structure, webData, shown in Example 169.

Example 169:webData XML Schema

<complexType name="webData">
 <sequence>
 <element name="zipCode" type="xsd:int"/>
 <element name="name" type="xsd:string" nillable="true/>
 <element name="emailAddress" type="xsd:string"
 nillable="true"/>
 </sequence>
</complexType>
 436

Mapping XML Schema Features that are not Native to IDL
When webData is mapped to a CORBA binding, it will generate a union,

string_nil, to provide for the mapping of the two nillable elements, name

and emailAddress. Example 170 shows the CORBA typemap for webData.

The type assigned to the union, string_nil, does not matter as long as the

type assigned maps back to an xsd:string. This is true for all nillable

element types.

Example 171 shows the IDL for webData.

Example 170:webData CORBA Typemap

<corba:typemapping ...>
 <corba:struct name="webData" repositoryID="IDL:webData:1.0" type="xsd1:webData">
 <corba:member idltype="corba:long" name="zipCode"/>
 <corba:member idltype="ns1:string_nil" name="name"/>
 <corba:member idltype="ns1:string_nil" name="emailAddress"/>
 </corba:struct>
 <corba:union discriminator="corba:boolean" name="string_nil" repositoryID="IDL:string_nil:1.0"
 type="xsd1:emailAddress">
 <corba:unionbranch idltype="corba:string" name="value">
 <corba:case label="TRUE"/>
 </corba:unionbranch>
 </corba:union>
</corba:typeMapping>

Example 171:webData IDL

\\IDL
union string_nil switch(boolean) {
 case TRUE:
 string value;
};
struct webData {
 long zipCode;
 string_nil name;
 string_nil emailAddress;
};
437

CHAPTER B | CORBA Type Mapping
Optional Attributes

Overview Attributes defined as optional in XML Schema are mapped similar to

nillable elements. Attributes that do not have use="required" set in their

logical description are mapped to a CORBA union with a single case, TRUE,

that holds the value of the element if it is set.

For example, you could define the complex type in Example 169 using

attributes instead of a sequence. The data description for webData defined

with attributes is shown in Example 172.

CORBA type mapping When webData is mapped to a CORBA binding, it will generate a union,

string_nil, to provide for the mapping of the two nillable elements, name

and emailAddress. Example 173 shows the CORBA typemap for webData.

Note: By default attributes are optional if use is not set to required.

Example 172:webData XML Schema Using Attributes

<complexType name="webData">
 <attribute name="zipCode" type="xsd:int" use="required"/>
 <attribute name="name" type="xsd:string"/>
 <attribute name="emailAddress" type="xsd:string"/>
</complexType>

Example 173:webData CORBA Typemap

<corba:typemapping ...>
 <corba:union discriminator="corba:boolean" name="string_nil" repositoryID="IDL:string_nil:1.0"
 type="xsd1:emailAddress">
 <corba:unionbranch idltype="corba:string" name="value">
 <corba:case label="TRUE"/>
 </corba:unionbranch>
 </corba:union>
 <corba:struct name="webData" repositoryID="IDL:webData:1.0" type="xsd1:webData">
 <corba:member idltype="corba:long" name="zipCode"/>
 <corba:member idltype="ns1:string_nil" name="name"/>
 <corba:member idltype="ns1:string_nil" name="emailAddress"/>
 </corba:struct>
</corba:typeMapping>
 438

Mapping XML Schema Features that are not Native to IDL
The type assigned to the union, string_nil, does not matter as long as the

type assigned maps back to an xsd:string. This is true for all optional

attributes.

Example 174 shows the IDL for webData.

Example 174:webData IDL

\\IDL
union string_nil switch(boolean) {
 case TRUE:
 string value;
};
struct webData {
 long zipCode;
 string_nil name;
 string_nil emailAddress;
};
439

CHAPTER B | CORBA Type Mapping
Artix References

Overview Artix references provide a means of passing a reference to a service between

two operations. Because Artix services are Web services, their references are

very different than references used in CORBA. Artix does, however, provide

a mechanism for passing Artix references to CORBA applications over the

Artix CORBA transport. This functionality allows CORBA applications to

make calls on Artix services that return references to other Artix services.

For a detailed discussion of Artix references read Developing Artix

Applications in C++.

Specifying references to map to

CORBA

Artix references are mapped into a CORBA in one of two ways. The simplest

way is to just specify your reference types as you would for an Artix service

using SOAP. In this case, the Artix references are mapped into generic

CORBA Objects.

The second method allows you to generate type-specific CORBA references,

but requires some planning in the creation of your XML Schema type

definitions. When creating a reference type, you can specify the name of the

CORBA binding that describes the interface in the physical section of the

contract using an xsd:annotation element. Example 175 shows the syntax

for specifying the binding in the type definition.

When you specify a reference using the annotation, the CORBA binding

generator and the IDL generator will inspect the specified binding and create

a type-specific reference in the IDL generated for the contract that allows

you to make use of the reference.

Example 175:Reference Binding Specification

<xsd:element name="typeName" type="references:Reference">
 <xsd:annotation>
 <xsd:appinfo>corba:binding=CORBABindingName</xsd:appinfo>
 </xsd:annotation>
</xsd:element>

Note: Before you can generate a type-specific reference you need to
generate the CORBA binding of the referenced interface.
 440

../prog_guide/index.htm
../prog_guide/index.htm

Artix References
CORBA typemap representation Artix references are mapped to corba:object elements in the CORBA

typemap section of an Artix contract. corba:object elements have four

attributes:

Example Example 176 shows an Artix contract fragment that uses Artix references.

binding Specifies the binding to which the object refers. If the
annotation element is left off the reference declaration in
the schema, this attribute will be blank.

name Specifies the name of the CORBA type. If the annotation
element is left off the reference declaration in the
schema, this attribute will be Object. If the annotation is
used and the binding can be found, this attribute will be
set to the name of the interface that the binding
represents.

repositoryID Specifies the repository ID of the generated IDL type. If
the annotation element is left off the reference declaration
in the schema, this attribute will be set to
IDL:omg.org/CORBA/Object/1.0. If the annotation is
used and the binding can be found, this attribute will be
set to a properly formed repository ID based on the
interface name.

type Specifies the schema type from which the CORBA type is
generated. This attribute is always set to
references:Reference.

Example 176:Reference Sample

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="bankService"
 targetNamespace="http://schemas.myBank.com/bankTypes"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://schemas.myBank.com/bankService"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://schemas.myBank.com/bankTypes"
 xmlns:corba="http://schemas.iona.com/bindings/corba"
 xmlns:corbatm="http://schemas.iona.com/typemap/corba/bank.idl"
 xmlns:references="http://schemas.iona.com/references">
441

CHAPTER B | CORBA Type Mapping
 <types>
 <schema
 targetNamespace="http://schemas.myBank.com/bankTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <xsd:import schemaLocation="./references.xsd"
 namespace="http://schemas.iona.com/references"/>
...
 <xsd:element name="account" type="references:Reference">
 <xsd:annotation>
 <xsd:appinfo>
 corba:binding=AccountCORBABinding
 </xsd:appinfo>
 </xsd:annotation>
 </xsd:element>
 </schema>
</types>
...
 <message name="find_accountResponse">
 <part name="return" element="xsd1:account"/>
 </message>
 <message name="create_accountResponse">
 <part name="return" element="xsd1:account"/>
 </message>
 <portType name="Account">
 <operation name="account_id">
 <input message="tns:account_id" name="account_id"/>
 <output message="tns:account_idResponse"
 name="account_idResponse"/>
 </operation>
 <operation name="balance">
 <input message="tns:balance" name="balance"/>
 <output message="tns:balanceResponse"
 name="balanceResponse"/>
 </operation>
 <operation name="withdraw">
 <input message="tns:withdraw" name="withdraw"/>
 <output message="tns:withdrawResponse"
 name="withdrawResponse"/>
 <fault message="tns:InsufficientFundsException"

name="InsufficientFunds"/>
 </operation>

Example 176:Reference Sample (Continued)
 442

Artix References
The element named account is a reference to the interface defined by the

Account port type and the find_account operation of Bank returns an

element of type account. The annotation element in the definition of

account specifies the binding, AccountCORBABinding, of the interface to

which the reference refers. Because you typically create the data types

before you create the bindings, you must be sure that the generated binding

name matches the name you specified. This can be controlled using the -b

flag to wsdltocorba.

The first step to generating the Bank interface to use a type-specific

reference to an Account is to generate the CORBA binding for the Account

interface. You would do this by using the command wsdltocorba -corba -i

Account -b AccountCORBABinding wsdlName.wsdl and replace wsdlName

with the name of your contract. Once you have generated the CORBA

binding for the Account interface, you can generate the CORBA binding and

IDL for the Bank interface.

 <operation name="deposit">
 <input message="tns:deposit" name="deposit"/>
 <output message="tns:depositResponse"
 name="depositResponse"/>
 </operation>
 </portType>
 <portType name="Bank">
 <operation name="find_account">
 <input message="tns:find_account" name="find_account"/>
 <output message="tns:find_accountResponse"
 name="find_accountResponse"/>
 <fault message="tns:AccountNotFound"
 name="AccountNotFound"/>
 </operation>
 <operation name="create_account">
 <input message="tns:create_account" name="create_account"/>
 <output message="tns:create_accountResponse"
 name="create_accountResponse"/>
 <fault message="tns:AccountAlreadyExistsException"
 name="AccountAlreadyExists"/>
 </operation>
 </portType>
</definitions>

Example 176:Reference Sample (Continued)
443

CHAPTER B | CORBA Type Mapping
Example 177 shows the generated CORBA typemap resulting from

generating both the Account and the Bank interfaces into the same contract.

There are two entries because wsdltocorba was run twice on the same file.

The first CORBA object is generated from the first pass of wsdltocorba to

generate the CORBA binding for Account. Because wsdltocorba could not

find the binding specified in the annotation, it generated a generic Object

reference. The second CORBA object, Account, is generated by the second

pass when the binding for Bank was generated. On that pass, wsldtocorba

could inspect the binding for the Account interface and generate a

type-specific object reference.

Example 178 shows the IDL generated for the Bank interface.

Example 177:CORBA Typemap with References

<corba:typeMapping
 targetNamespace="http://schemas.myBank.com/bankService/corba/typemap/">
...
 <corba:object binding="" name="Object"
 repositoryID="IDL:omg.org/CORBA/Object/1.0" type="references:Reference"/>
 <corba:object binding="AccountCORBABinding" name="Account"
 repositoryID="IDL:Account:1.0" type="references:Reference"/>
</corba:typeMapping>

Example 178:IDL Generated From Artix References

//IDL
...
interface Account
{
 string account_id();
 float balance();
 void withdraw(in float amount)
 raises(::InsufficientFundsException);
 void deposit(in float amount);
};
interface Bank
{
 ::Account find_account(in string account_id)
 raises(::AccountNotFoundException);
 ::Account create_account(in string account_id,
 in float initial_balance)
 raises(::AccountAlreadyExistsException);
};
 444

APPENDIX C

TibrvMsg Default
Mappings
The default mappings between the logically defined messages
in an Artix contract and a TibrvMsg are sufficient for most
cases.

TIBRVMSG type mapping Table 33 shows how TibrvMsg data types are mapped to XSD types in Artix

contracts.

Table 33: TIBCO to XSD Type Mapping

TIBRVMSG XSD

TIBRVMSG_STRING xsd:string

TIBRVMSG_BOOL xsd:boolean

TIBRVMSG_I8 xsd:byte

TIBRVMSG_I16 xsd:short

TIBRVMSG_I32 xsd:int

TIBRVMSG_I64 xsd:long

TIBRVMSG_U8 xsd:unsignedByte

TIBRVMSG_U16 xsd:unsignedShort
445

CHAPTER C | TibrvMsg Default Mappings
TIBRVMSG_U32 xsd:unsignedInt

TIBRVMSG_U64 xsd:unsignedLong

TIBRVMSG_F32 xsd:float

TIBRVMSG_F64 xsd:double

TIBRVMSG_STRING xsd:decimal

TIBRVMSG_DATETIMEa xsd:dateTime

TIBRVMSG_OPAQUE xsd:base64Binary

TIBRVMSG_OPAQUE xsd:hexBinary

TIBRVMSG_STRING xsd:QName

TIBRVMSG_STRING xsd:nonPositiveInteger

TIBRVMSG_STRING xsd:negativeInteger

TIBRVMSG_STRING xsd:nonNegativeInteger

TIBRVMSG_STRING xsd:positiveInteger

TIBRVMSG_STRING xsd:time

TIBRVMSG_STRING xsd:date

TIBRVMSG_STRING xsd:gYearMonth

TIBRVMSG_STRING xsd:gMonthDay

TIBRVMSG_STRING xsd:gDay

TIBRVMSG_STRING xsd:gMonth

TIBRVMSG_STRING xsd:anyURI

TIBRVMSG_STRING xsd:token

TIBRVMSG_STRING xsd:language

TIBRVMSG_STRING xsd:NMTOKEN

Table 33: TIBCO to XSD Type Mapping (Continued)

TIBRVMSG XSD
 446

Sequence complex types Sequence complex types are mapped to a TibrvMsg message as follows:

• The elements of the complex type are enclosed in a TibrvMsg instance.

• If the complex type is specified as a message part, the value of the

part element’s name attribute is used as the name of the generated

TibrvMsg.

• If the complex type is specified as an element, the value of the element

element’s name attribute is used as the name of the generated

TibrvMsg.

• The TibrvMsg id is 0.

• The sequence's elements are the mapped to child TibrvMsgField

instances of the wrapping TibrvMsg.

• If an element of the sequence is of a complex type, it will be mapped

into a TibrvMsg instance that conforms to the default mapping rules.

• The value of the element element’s name attribute is used as the name

of the generated TibrvMsgField instance.

• The child field’s ids are 0.

• The child fields are serialized in the same order as they appear in the

schema definition.

• The child fields are deserialized in the same order as they appear in

schema definition.

All complex types All complex types are mapped to a TibrvMsg message as follows:

• The elements of the complex type are enclosed in a TibrvMsg instance.

TIBRVMSG_STRING xsd:Name

TIBRVMSG_STRING xsd:NCName

TIBRVMSG_STRING xsd:ID

a. While TIBRVMSG_DATATIME has microsecond precision, xsd:dateTime
only supports millisecond precision. Therefore, Artix rounds all times to the
nearest millisecond.

Table 33: TIBCO to XSD Type Mapping (Continued)

TIBRVMSG XSD
447

CHAPTER C | TibrvMsg Default Mappings
• If the complex type is specified as a message part, the value of the

part element’s name attribute is used as the name of the generated

TibrvMsg.

• If the complex type is specified as an element, the value of the element

element’s name attribute is used as the name of the generated

TibrvMsg.

• The TibrvMsg id is 0.

• The all's elements are the mapped to child TibrvMsgField instances of

the wrapping TibrvMsg.

• If an element of the all is of a complex type, it will be mapped into a

TibrvMsg instance that conforms to the default mapping rules.

• The value of the element element’s name attribute is used as the name

of the generated TibrvMsgField instance.

• The child field’s ids are 0.

• The child fields are serialized in the same order as they appear in the

schema definition.

• The child fields can be deserialized in any order.

Choice complex types Choice complex types are mapped to a TibrvMsg message as follows:

• The elements of the complex type are enclosed in a TibrvMsg instance.

• If the complex type is specified as a message part, the value of the

part element’s name attribute is used as the name of the generated

TibrvMsg.

• If the complex type is specified as an element, the value of the element

element’s name attribute is used as the name of the generated

TibrvMsg.

• The TibrvMsg id is 0

• There must only be one and only child field in this TibrvMsg message

that corresponds to the active choice element.

• The child field has the name of the corresponding choice's active

element name.

• The child field id is zero.

• During deserialization the binding runtime will extract the first child

field from this message using index equal to 0 as the key. If no field is

found then this choice is considered an empty choice.
 448

NMTOKEN Built-in schema type NMTOKENs are mapped as follows:

• The NMTOKEN is enclosed in a TibrvMsg instance.

• If the NMTOKEN is specified as a message part, the value of the part

element’s name attribute is used as the name of the generated

TibrvMsg.

• If the NMTOKEN is specified as an element, the value of the element

element’s name attribute is used as the name of the generated

TibrvMsg.

• The TibrvMsg id is 0

• Each NMTOKEN is mapped to a child TibrvMsgField instance of this

TibrvMsg.

• The names of the children fields are an ever increasing counter values

beginning with 0.

Default mapping of arrays XML Schema elements that are not mapped to native Tibrv scalar types and

have minOccurs != 1 and maxOccurs != 1 are mapped as follows:

• Array elements are stored in a TibrvMsg instances at the same scope

as the sibling elements of this array element.

• Array element names are a result of an expression evaluation. The

expression is evaluated for every array element.

• The default array element name expression is

concat(xml:attr('name'), '_', counter(1, 1).

• If an instance of an array element has 0 elements then this array

instance will have nothing loaded onto the wire. Currently this is not

true for scalar arrays that are loaded as a single field.

Default mapping for scalar arrays The XML Schema elements that are mapped to native Tibrv scalar types and

have minOccurs != 1 and maxOccurs != 1 are mapped as follows:

• Array elements are stored in TibrvMsg at the same scope as sibling

elements of this array element.

• The binding utilizes the Tibrv native array mapping to store XML

Schema arrays. Hence, there will be only one TibrvMsgField with the

name equal to that of the XML Schema element name defining this

array.
449

CHAPTER C | TibrvMsg Default Mappings
 450

APPENDIX D

HTTP Port
Properties
HTTP has a number of settings that can be specified in the
transport definition.

In this appendix This appendix contains the following topics:

Defining an HTTP Port page 452

HTTP Client Configuration page 453

HTTP Server Configuration page 456

HTTP Attribute Details page 459
451

CHAPTER D | HTTP Port Properties
Defining an HTTP Port

Overview To allow you more flexibility in configuring an HTTP port, Artix has its own

set of WSDL extensions that can be used to define an HTTP port. All of the

configuration elements are optional.

An HTTP port is fully defined by the address element.

Using the HTTP extension Example 179 shows the namespace entries you need to add to the

definitions element of your contract to use the HTTP extensions.

HTTP configuration elements Because HTTP client ports and HTTP server ports have slightly different

configuration options, Artix uses two elements to configure an HTTP port:

• http-conf:client defines a client port.

• http-conf:server defines a server port.

Example 179: Artix HTTP Extension Namespaces

<definitions
 ...
 xmlns:http-conf="http://schemas.iona.com/transports/http/configuration"
 ... >
 452

HTTP Client Configuration
HTTP Client Configuration

Confirguration attributes Table 34 describes the client-side configuration attributes for the HTTP

transport that are defined within the http-conf:client element.

In most cases, a link is provided to additional detail on the attribute in the

“HTTP Attribute Details” section.

Table 34: HTTP Client Configuration Attributes

Configuration Attribute Explanation

SendTimeout Specifies the length of time the client
tries to send a request to the server
before the connection is timed out.

ReceiveTimeout Specifies the length of time the client
tries to receive a response from the
server before the connection is timed
out.

AutoRedirect Specifies if a request should be
automatically redirected when the server
issues a redirection reply via
RedirectURL.

UserName Specifies the user name that is to be
used for authentication.

Password Specifies the password that is to be
used for authentication.

AuthorizationType Specifies the name of the authorization
scheme in use.

Authorization Specifies the authorization credentials
used to perform the authorization.

Accept Specifies what media types the client is
prepared to handle.

AcceptLanguage Specifies the client’s preferred language
for receiving responses.
453

CHAPTER D | HTTP Port Properties
AcceptEncoding Specifies what content codings the
client is prepared to handle.

ContentType Specifies the media type of the data
being sent in the body of the client
request.

Host Specifies the internet host and port
number of the resource on which the
client request is being invoked.

Connection Specifies whether a particular
connection is to be kept open or closed
after each request/response dialog.

ConnectionAttempts Specifies the number of times a client
will transparently attempt to connect to
server.

CacheControl Specifies directives about the behavior
that must be adhered to by caches
involved in the chain comprising a
request from a client to a server.

Cookie Specifies a static cookie to be sent to the
server.

BrowserType Specifies information about the browser
from which the client request originates.

Referer Specifies the URL of the resource that
provided the hyperlink to the requested
service.

ProxyServer Specifies the URL of the proxy server, if
one exists along the message path.

ProxyUserName Specifies the username to use for
authentication on the proxy server if it
requires separate authorization.

Table 34: HTTP Client Configuration Attributes (Continued)

Configuration Attribute Explanation
 454

HTTP Client Configuration
ProxyPassword Specifies the password to use for
authentication on the proxy server if it
requires separate authorization.

ProxyAuthorizationType Specifies the name of the authorization
scheme used with the proxy server.

ProxyAuthorization Specifies the authorization credentials
used to perform the authorization with
the proxy server.

UseSecureSockets Indicates if the client wants to open a
secure connection.

ClientCertificate Specifies the full path to the
PKCS12-encoded X509 certificate
issued by the certificate authority for the
client.

ClientCertificateChain Specifies the full path to the file that
contains all the certificates in the chain.

ClientPrivateKey Specifies the full path to the
PKCS12-encoded private key that
corresponds to the X509 certificate
specified by ClientCertificate.

ClientPrivateKeyPassword Specifies a password that is used to
decrypt the PKCS12-encoded private
key.

TrustedRootCertificate Specifies the full path to the
PKCS12-encoded X509 certificate for
the certificate authority.

Table 34: HTTP Client Configuration Attributes (Continued)

Configuration Attribute Explanation
455

CHAPTER D | HTTP Port Properties
HTTP Server Configuration

Configuration attributes Table 35 describes the server-side configuration attributes for the HTTP

transport that are defined within the http-conf:server element.

In most cases, a link is provided to additional detail on the attribute in the

“HTTP Attribute Details” section

Table 35: HTTP Server Configuration Attributes

Configuration Attribute Explanation

SendTimeout Sets the length of time the server
tries to send a response to the client
before the connection times out.

ReceiveTimeout Sets the length of time the server
tries to receive a client request
before the connection times out.

SuppressClientSendErrors Specifies whether exceptions are to
be thrown when an error is
encountered on receiving a client
request.

SuppressClientReceiveErrors Specifies whether exceptions are to
be thrown when an error is
encountered on sending a response
to a client.

HonorKeepAlive Specifies whether the server should
honor client requests for a
connection to remain open after a
server response has been sent to a
client.

RedirectURL Sets the URL to which the client
request should be redirected if the
URL specified in the client request is
no longer appropriate for the
requested resource.
 456

HTTP Server Configuration
CacheControl Specifies directives about the
behavior that must be adhered to by
caches involved in the chain
comprising a response from a server
to a client.

ContentLocation Sets the URL where the resource
being sent in a server response is
located.

ContentType Sets the media type of the
information being sent in a server
response, for example, text/html or
image/gif.

ContentEncoding Specifies what additional content
codings have been applied to the
information being sent by the server.

ServerType Specifies what type of server is
sending the response to the client.

UseSecureSockets Indicates whether the server wants a
secure HTTP connection running
over SSL or TLS.

ServerCertificate Sets the full path to the
PKCS12-encoded X509 certificate
issued by the certificate authority for
the server.

ServerCertificateChain Sets the full path to the file that
contains all the certificates in the
server’s certificate chain.

ServerPrivateKey Sets the full path to the
PKCS12-encoded private key that
corresponds to the X509 certificate
specified by ServerCertificate.

Table 35: HTTP Server Configuration Attributes (Continued)

Configuration Attribute Explanation
457

CHAPTER D | HTTP Port Properties
ServerPrivateKeyPassword Sets a password that is used to
decrypt the PKCS12-encoded private
key, if it has been encrypted with a
password.

TrustedRootCertificate Sets the full path to the
PKCS12-encoded X509 certificate
for the certificate authority. This is
used to validate the certificate
presented by the client.

Table 35: HTTP Server Configuration Attributes (Continued)

Configuration Attribute Explanation
 458

HTTP Attribute Details
HTTP Attribute Details

Overview This section provides more detail on the client and server attributes listed in

Table 34 and Table 35.
459

CHAPTER D | HTTP Port Properties
SendTimeout

Overview SendTimeout specifies the length of time, in milliseconds, that an

application can continue to try to send a message before the connection

times out. The default is 30000.

This property is valid for both servers and clients.

Example Example 180 shows a definition of an HTTP client that will attempt to send

a request for one minute before the connection times out.

Example 180: HTTP SendTimeout Example

<http-conf:client SendTimeout="60000"/>
 460

HTTP Attribute Details
ReceiveTimeout

Overview ReceiveTimeout specifies the length of time, in milliseconds, that an

application can continue to try to recieve a message before the connection

times out. The default is 30000.

This property is valid for both servers and clients.

Example Example 181 shows a definition of an HTTP server that will attempt to

receive a request for one minute before the connection times out.

Example 181: HTTP ReceiveTimeout Example

<http-conf:server ReceiveTimeout="60000"/>
461

CHAPTER D | HTTP Port Properties
AutoRedirect

Overview AutoRedirect is a client-side property that specifies whether a client request

should be automatically redirected on behalf of the client when the server

issues a redirection reply via the RedirectURL server-side configuration

attribute. Valid values are true and false. The default is false, to let the

client redirect the request itself.
 462

HTTP Attribute Details
UserName

Overview To ensure a level of security, some servers require that client users be

authenticated before their requests are processed. In the case of basic

authentication, the server requires the client user to supply a username and

password. UserName specifies the user name that is to be used for

authentication. If set, UserName is sent as a transport attribute in the header

of request messages from the client to the server.
463

CHAPTER D | HTTP Port Properties
Password

Overview To ensure a level of security, some servers require that client users be

authenticated before their requests are processed. In the case of basic

authentication, the server requires the client user to supply a username and

password. Password specifies the password that is to be used for

authentication. If set, Password is sent as a transport attribute in the header

of request messages from the client to the server.
 464

HTTP Attribute Details
AuthorizationType

Overview AuthorizationType specifies the name of the authorization scheme in use.

This information is specified and handled at application level. Artix does not

perform any validation on this value. It is the user’s responsibility to ensure

that the correct scheme name is specified, as appropriate. If this is set, it is

sent as a transport attribute in the header of a request message from the

client to the server.

Note: If basic username and password-based authentication is being
used, this does not need to be set.
465

CHAPTER D | HTTP Port Properties
Authorization

Overview Authorization specifies the authorization credentials used to perform the

authorization. These are encoded and handled at application-level. Artix

does not perform any validation on the specified value. It is the user’s

responsibility to ensure that the correct authorization credentials are

specified, as appropriate. If this is set, it is sent as a transport attribute in

the header of a request message from the client to the server.

Note: If basic username and password-based authentication is being
used, this does not need to be set.
 466

HTTP Attribute Details
Accept

Overview Accept specifies what media types the client is prepared to handle. These

are also known as multipurpose internet mail extensions (MIME) types.

MIME types are regulated by the Internet Assigned Numbers Authority

(IANA). See http://www.iana.org/assignments/media-types/ for more details.

If this is set, it is sent as a transport attribute in the header of a request

message from the client to the server.

Specifying the media type Specified values consist of a main type and sub-type, separated by a

forward slash. For example, a main type of text might be qualified as

follows: text/html or text/xml. Similarly, a main type of image might be

qualified as follows: image/gif or image/jpeg.

An asterisk (*) can be used as a wildcard to specify a group of related types.

For example, if you specify image/*, this means that the client can accept

any image, regardless of whether it is a GIF or a JPEG, and so on. A value of

/ indicates that the client is prepared to handle any type.

Examples of typical types that might be set are:

• text/xml

• text/html

• text/text

• image/gif

• image/jpeg

• application/jpeg

• application/msword

• application/xbitmap

• audio/au

• audio/wav

• video/avi

• video/mpeg

A full list of MIME types is available at

http://www.iana.org/assignments/media-types/.
467

http://www.iana.org/assignments/media-types/
http://www.iana.org/assignments/media-types/

CHAPTER D | HTTP Port Properties
AcceptLanguage

Overview AcceptLanguage specifies what language (for example, American English)

the client prefers for the purposes of receiving a response. If this is set, it is

sent as a transport attribute in the header of a request message from the

client to the server.

Specifying the language Language tags are regulated by the International Organization for Standards

(ISO) and are typically formed by combining a language code, determined

by the ISO-639 standard, and country code, determined by the ISO-3166

standard, separated by a hyphen. For example, en-US represents American

English.

More details A full list of language codes is available at

http://www.w3.org/WAI/ER/IG/ert/iso639.htm.

A full list of country codes is available at

http://www.iso.ch/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/l

ist-en1.html.
 468

http://www.w3.org/WAI/ER/IG/ert/iso639.htm
http://www.iso.ch/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html
http://www.iso.ch/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html

HTTP Attribute Details
AcceptEncoding

Overview AcceptEncoding specifies what content codings the client is prepared to

handle. The primary use of content codings is to allow documents to be

compressed using some encoding mechanism, such as zip or gzip. Artix

performs no validation on content codings. It is the user’s responsibility to

ensure that a specified content coding is supported at application level.

If this is set, it is sent as a transport attribute in the header of a request

message from the client to the server.

Content encodings Content codings are regulated by the Internet Assigned Numbers Authority

(IANA). Possible content coding values include zip, gzip, compress,

deflate, and identity. See

http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html for more details of

content codings.
469

http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html

CHAPTER D | HTTP Port Properties
ContentType

Overview ContentType specifies the media type of the data being sent in the body of a

message. If this is set, it is sent as a transport attribute in the header of a

request message from the client to the server. Flor clients this is only

relevant if the client request specifies the POST method to send data to the

server for processing.

Type specification Types are specified as multipurpose internet mail extensions (MIME) types.
MIME types are regulated by the Internet Assigned Numbers Authority
(IANA). See http://www.iana.org/assignments/media-types/ for more details.

Specified values consist of a main type and sub-type, separated by a
forward slash. For example, a main type of text might be qualified as
follows: text/html or text/xml. Similarly, a main type of image might be
qualified as follows: image/gif or image/jpeg.

The default type is text/xml. Other specifically supported types include:

application/jpeg, application/msword, application/xbitmap, audio/au,

audio/wav, text/html, text/text, image/gif, image/jpeg, video/avi,

video/mpeg. Any content that does not fit into any type in the preceding list

should be specified as application/octet-stream.

Typical client settings For web services, this should be set to text/xml. If the client is sending

HTML form data to a CGI script, this should be set to

application/x-www-form-urlencoded. If the HTTP POST request is bound to

a fixed payload format (as opposed to SOAP), the content type is typically

set to application/octet-stream.
 470

http://www.iana.org/assignments/media-types/

HTTP Attribute Details
ContentEncoding

Overview ContentEncoding can be used in conjunction with ContentType. It specifies

what additional content codings have been applied to the information being

sent by the server, and what decoding mechanisms the client therefore

needs to retrieve the information.

The primary use of ContentEncoding is to allow a document to be

compressed using some encoding mechanism, such as zip or gzip.

If this is set, it is sent as a transport attribute in the header of a response

message from the server to the client.
471

CHAPTER D | HTTP Port Properties
Host

Overview Host specifies the internet host and port number of the resource on which

the client request is being invoked. This is sent by default based upon the

URL specified in the URL attribute. It indicates what host the client prefers

for clusters (that is, for virtual servers mapping to the same internet protocol

(IP) address).

If set, Host is sent as a transport attribute in the header of a request

message from the client to the server.

Note: Certain DNS scenarios or application designs might request you to
set this, but it is not typically required.
 472

HTTP Attribute Details
Connection

Overview Connection specifies whether a particular connection is to be kept open or

closed after each request/response dialog. Valid values are close and

Keep-Alive. The default is Keep-Alive, specifying that the client wishes to

maintain the connection to the server after the initial request is processed. If

the server honors the request, the connection is reused for subsequent

request/response dialogs. If close is specified, the connection to the server

is closed after each request/response dialog.

Note: The server can choose to not honor a request to keep the
connection open, and many servers and proxies (caches) do not honor
such requests.
473

CHAPTER D | HTTP Port Properties
CacheControl

Overview CacheControl specifies directives about the behavior of caches involved in

the message chain between client and server. The attribute is settable for

both client and server. However, clients and servers have different settings

for specifying cache behavior.

Client-side Table 36 shows the valid settings for CacheControl in http-conf:client.

Table 36: Settings for http-conf:client CacheControl

Directive Behavior

no-cache Caches cannot use a particular response to satisfy
subsequent client requests without first revalidating
that response with the server. If specific response
header fields are specified with this value, the
restriction applies only to those header fields within
the response. If no response header fields are
specified, the restriction applies to the entire
response.

no-store Caches must not store any part of a response or
any part of the request that invoked it.

max-age The client can accept a response whose age is no
greater than the specified time in seconds.

max-stale The client can accept a response that has exceeded
its expiration time. If a value is assigned to
max-stale, it represents the number of seconds
beyond the expiration time of a response up to
which the client can still accept that response. If
no value is assigned, it means the client can accept
a stale response of any age.

min-fresh The client wants a response that will be still be
fresh for at least the specified number of seconds
indicated.
 474

HTTP Attribute Details
Server-side Table 37 shows the valid values for CacheControl in http-conf:server.

no-transform Caches must not modify media type or location of
the content in a response between a server and a
client.

only-if-cached Caches should return only responses that are
currently stored in the cache, and not responses
that need to be reloaded or revalidated.

cache-extension Specifies additional extensions to the other cache
directives. Extensions might be informational or
behavioral. An extended directive is specified in the
context of a standard directive, so that applications
not understanding the extended directive can at
least adhere to the behavior mandated by the
standard directive.

Table 36: Settings for http-conf:client CacheControl (Continued)

Directive Behavior

Table 37: Settings for http-conf:server CacheControl

Directive Behavior

no-cache Caches cannot use a particular response to satisfy
subsequent client requests without first revalidating
that response with the server. If specific response
header fields are specified with this value, the
restriction applies only to those header fields within
the response. If no response header fields are
specified, the restriction applies to the entire
response.

public Any cache can store the response.
475

CHAPTER D | HTTP Port Properties
private Public (shared) caches cannot store the response
because the response is intended for a single user.
If specific response header fields are specified with
this value, the restriction applies only to those
header fields within the response. If no response
header fields are specified, the restriction applies to
the entire response.

no-store Caches must not store any part of response or any
part of the request that invoked it.

no-transform Caches must not modify the media type or location
of the content in a response between a server and a
client.

must-revalidate Caches must revaildate expired entries that relate
to a response before that entry can be used in a
subsequent response.

proxy-revelidate Means the same as must-revalidate, except that
it can only be enforced on shared caches and is
ignored by private unshared caches. If using this
directive, the public cache directive must also be
used.

max-age Clients can accept a response whose age is no
greater that the specified number of seconds.

s-maxage Means the same as max-age, except that it can only
be enforced on shared caches and is ignored by
private unshared caches. The age specified by
s-maxage overrides the age specified by max-age. If
using this directive, the proxy-revalidate directive
must also be used.

Table 37: Settings for http-conf:server CacheControl (Continued)

Directive Behavior
 476

HTTP Attribute Details
cache-extension Specifies additional extensions to the other cache
directives. Extensions might be informational or
behavioral. An extended directive is specified in the
context of a standard directive, so that applications
not understanding the extended directive can at
least adhere to the behavior mandated by the
standard directive.

Table 37: Settings for http-conf:server CacheControl (Continued)

Directive Behavior
477

CHAPTER D | HTTP Port Properties
Cookie

Overview Cookie specifies a static cookie to be sent to the server. Some session

designs that maintain state use cookies to identify sessions.

Note: If the cookie is dynamic, it must be set by the server when the
server is first accessed, and is then handled automatically by the
application runtime.
 478

HTTP Attribute Details
BrowserType

Overview BrowserType specifies information about the browser from which the client

request originates. In the standard HTTP specification from the World Wide

Web consortium (W3C) this is also known as the user-agent. Some servers

optimize based upon the client that is sending the request.
479

CHAPTER D | HTTP Port Properties
Referer

Overview If a client request is as a result of the browser user clicking on a hyperlink

rather than typing a URL, this specifies the URL of the resource that

provided the hyperlink.

This is sent automatically if AutoRedirect is set to true. This can allow the

server to optimize processing based upon previous task flow, and to

generate lists of back-links to resources for the purposes of logging,

optimized caching, tracing of obsolete or mistyped links, and so on.

However, it is typically not used in web services applications.

If this is set, it is sent as a transport attribute in the header of a request

message from the client to the server.
 480

HTTP Attribute Details
ProxyServer

Overview ProxyServer specifies the URL of the proxy server, if one exists along the

message path. A proxy can receive client requests, possibly modify the

request in some way, and then forward the request along the chain possibly

to the target server. A proxy can act as a special kind of security firewall.

Note: Artix does not support the existence of more than one proxy server
along the message path.
481

CHAPTER D | HTTP Port Properties
ProxyAuthorizationType

Overview ProxyAuthorizationType specifies the name of the authorization scheme in

use with the proxy server. This name is specified and handled at application

level. Artix does not perform any validation on this value. It is the user’s

responsibility to ensure that the correct scheme name is specified, as

appropriate.

Note: If basic username and password-based authentication is being
used by the proxy server, this does not need to be set.
 482

HTTP Attribute Details
ProxyAuthorization

Overview ProxyAuthorization specifies the authorization credentials used to perform

authorization with the proxy server. These are encoded and handled at

application-level. Artix does not perform any validation on the specified

value. It is the user’s responsibility to ensure that the correct authorization

credentials are specified, as appropriate.

Note: If basic username and password-based authentication is being
used by the proxy server, this does not need to be set.
483

CHAPTER D | HTTP Port Properties
UseSecureSockets

Overview UseSecureSockets indicates if the application wants to open a secure

connection using SSL or TLS. A secure HTTP connection is commonly

referred to as HTTPS.

Valid values are true and false. The default is false, to indicate that the

client does not want to open a secure connection.

Note: If the http-conf:client URL attribute has a value with a prefix of
https://, a secure HTTP connection is automatically enabled, even if
UseSecureSockets is not set to true.
 484

HTTP Attribute Details
ClientPrivateKey

Overview ClientPrivateKey is used in conjunction with ClientCertificate. It

specifies the full path to the PKCS12-encoded private key that corresponds

to the X509 certificate specified by ClientCertificate.

This is required only if ClientCertificate has been specified.
485

CHAPTER D | HTTP Port Properties
SuppressClientSendErrors

Overview SuppressClientSendErrors specifies whether exceptions are to be thrown

when an error is encountered on receiving a client request.

Valid values are true and false. The default is false, to throw exceptions

on encountering errors.
 486

HTTP Attribute Details
SuppressClientReceiveErrors

Overview SuppressClientReceiveErrors specifies whether exceptions are to be

thrown when an error is encountered on sending a response to a client.

Valid values are true and false. The default is false, to throw exceptions

on encountering errors.
487

CHAPTER D | HTTP Port Properties
HonorKeepAlive

Overview HonorKeepAlive specifies whether the server should honor client requests

for a connection to remain open after a server response has been sent to a

client. Servers can achieve higher concurrency per thread by honoring

requests to keep connections alive.

Values HonorKeepAlive can be set to true or false:

• true(default) specifies that the request socket is kept open provided

the client is using at least version 1.1 of HTTP and has requested that

the connection is kept alive. Otherwise, the connection is closed.

• false specifies that the socket is automatically closed after a server

response is sent.
 488

HTTP Attribute Details
RedirectURL

Overview RedirectURL specifies the URL to which the client request should be

redirected if the URL specified in the client request is no longer appropriate

for the requested resource.

In this case, if a status code is not automatically set in the first line of the

server response, the status code is set to 302 and the status description is

set to Object Moved.

If this is set, it is sent as a transport attribute in the header of a response

message from the server to the client.
489

CHAPTER D | HTTP Port Properties
ServerType

Overview ServerType Specifies what type of server is sending the response to the

client. If set, it is sent as a transport attribute in the header of a response

message from the server to the client.

Specifying the value Values in this case take the form program-name/version. For example,

Apache/1.2.5.
 490

HTTP Attribute Details
ServerCertificateChain

Overview PKCS12-encoded X509 certificates can be issued by intermediate certificate

authorities that are not trusted by the client, but which have had their

certificates issued in turn by a trusted certificate authority. If this is the case,

you can use ServerCertificateChain to allow the certificate chain of

PKCS12-encoded X509 certificates to be presented to the client for

verification. It specifies the full path to the file that contains all the

certificates in the chain.
491

CHAPTER D | HTTP Port Properties
 492

APPENDIX E

WebSphere MQ
Port Properties
Artix provides a number of WSDL extensions to configure a
WebSphere MQ service.

Overview To enable Artix to interoperate with WebSphere MQ, you must describe the

WebSphere MQ port in the Artix contract defining the behavior of your Artix

instance. Artix uses a number of WSDL extensions to specify all of the

attributes that can be set on an WebSphere MQ port. The XML Schema

describing the extensions used for the WebSphere MQ port definition is

included in the Artix installation under the schemas directory.
493

CHAPTER E | WebSphere MQ Port Properties
Defining an MQ Port

MQ port attributes Table 38 lists the attributes that are use to define the properties of a

WebSphere MQ port.

Each attribute is described in detail in the sections that follow the table.

Table 38: WebSphere MQ Port Attributes

Attributes Description

QueueManager Specifies the name of the queue manager.

QueueName Specifies the name of the message queue.

ReplyQueueName Specifies the name of the queue where
response messages are received. This setting
is ignored by WebSphere MQ servers when
the client specifies the ReplyToQ in the
request message’s message descriptor.

ReplyQueueManager Specifies the name of the reply queue
manager. This setting is ignored by
WebSphere MQ servers when the client
specifies the ReplyToQMgr in the request
message’s message descriptor.

Server_Client Specifies that the client libraries are to be
used because the application is using queues
on a remote machine.

ModelQueueName Specifies the name of the queue to be used
as a model for creating dynamic queues.

AliasQueueName Specifies the remote queue to which a server
will put replies if its queue manager is not on
the same host as the client’s local queue
manager.

ConnectionName Specifies the name of the connection by
which the adapter connects to the queue.
 494

Defining an MQ Port
ConnectionReusable Specifies if the connection can be used by
more than one application.

ConnectionFastPath Specifies if the queue manager will be loaded

in process.

UsageStyle Specifies if messages can be queued without

expecting a response.

CorrelationStyle Specifies what identifier is used to correlate

request and response messages.

AccessMode Specifies the level of access applications
have to the queue.

Timeout Specifies the amount of time within which

the send and receive processing must begin

before an error is generated.

MessageExpiry Specifies the value of the MQ message

descriptor’s Expiry field.

MessagePriority Specifies the value of the MQ message

descriptor’s Priority field.

Delivery Specifies the value of the MQ message

descriptor’s Persistence field.

Transactional Specifies if transaction operations must be

performed on the messages.

ReportOption Specifies the value of the MQ message

descriptor’s Report field.

Format Specifies the value of the MQ message
descriptor’s Format field.

MessageId Specifies the value for the MQ message

descriptor’s MsgId field.

Table 38: WebSphere MQ Port Attributes (Continued)

Attributes Description
495

CHAPTER E | WebSphere MQ Port Properties
CorrelationId Specifies the value for the MQ message

descriptor’s CorrelId field.

ApplicationData Specifies optional information to be

associated with the message.

AccountingToken Specifies the value for the MQ message

decscriptor’s AccountingToken field.

Convert Specifies if the messages in the queue need

to be converted to the system’s native

encoding.

ApplicationIdData Specifies the value for the MQ message

descriptor’s ApplIdentityData field.

ApplicationOriginData Specifies the value for the MQ message

descriptor’s ApplOriginData field.

UserIdentification Specifies the value for the MQ message

descriptor’s UserIdentifier field.

Table 38: WebSphere MQ Port Attributes (Continued)

Attributes Description
 496

MQ Port Attributes
MQ Port Attributes

Overview This section provides more detail on the attributes listed in WebSphere MQ

Port Attributes page 494.
497

CHAPTER E | WebSphere MQ Port Properties
QueueManager

Overview QueueManager specifies the name of the WebSphere MQ queue manager

used for request messages. Client applications will use this queue manager

to place requests and server applications will use this queue manager to

listen for request messages. You must provide this information when

configuring a WebSphere MQ port.

Example Example 182 shows a simple WebSphere MQ server port configuration for

servers that listen for requests using a queue manager called leo.

Example 182:MQ Port Definition

<mq:server QueueManager="leo" QueueName="requestQ"/>
 498

MQ Port Attributes
QueueName

Overview QueueName is a required attribute for a WebSphere MQ port. It specifies the

request message queue. Client applications place request messages into this

queue. Server applications take requests from this queue. The queue must

be configured under the specified queue manager before it can be used.

Example Example 183 shows a definition of a simple WebSphere MQ client that

places oneway requests onto a queue called ether.

Example 183:WebSphere MQ QueueName example

<mq:client QueueManager="Qmgr" QueueName="ether"/>
499

CHAPTER E | WebSphere MQ Port Properties
ReplyQueueName

Overview ReplyQueueName is mapped to the MQ message descriptor’s ReplyToQ field.

It specifies the name of the reply message queue used by the port. When

configuring an MQ client port this attribute is required if the clients expect

replies to their requests. When configuring an MQ server port you can leave

this attribute unset if you are sure that all clients are populating the

ReplyToQ field in the message descriptor of their requests.

Server handling of

ReplyQueueName

When a WebSphere MQ server receives a request, it first looks at the

request’s message descriptor’s ReplyToQ field. If the request’s message

descriptor has ReplyToQ set, the server uses the reply queue specified in the

message descriptor and ignores the ReplyQueueName setting. If the ReplyToQ

field in the message descriptor is not set, the server will use the

ReplyQueueName to determine where to send reply messages.

Example Example 184 shows a WebSphere MQ server port that defaults to placing

reply messages onto the queue outbox.

Example 184:MQ Server with ReplyQueueName Set

<mq:server QueueName="ether" QueueManager="leo"
 ReplyQueueName="outbox" ReplyQueueManager="pager"/>
 500

MQ Port Attributes
ReplyQueueManager

Overview ReplyQueueManager is mapped to the MQ message descriptor’s ReplyToQMgr

field. It specifies the name of the WebSphere MQ queue manager that

controls the reply message queue. When configuring an MQ client port this

attribute is required if the clients expect replys to their requests. When

configuring an MQ server port you can leave this attribute unset if you are

sure that all clients are populating the ReplyToQMgr field in the message

descriptor of their requests.

Server handling of

ReplyQueueManager

When a WebSphere MQ server receives a request, it first looks at the

request’s message descriptor’s ReplyToQMgr field. If the request’s message

descriptor has ReplyToQMgr set, the server uses the reply queue specified in

the message descriptor and ignores the ReplyQueueManager setting. If the

ReplyToQMgr field in the message descriptor is not set, the server will use

the ReplyQueueManager to determine where to send reply messages.

Example Example 185 shows a WebSphere MQ client port that is configured to

receive replies from the server defined in Example 184 on page 500.

Example 185:MQ Client with ReplyQueueName Set

<mq:client QueueName="ether" QueueManager="leo"
 ReplyQueueName="outbox" ReplyQueueManager="pager"/>
501

CHAPTER E | WebSphere MQ Port Properties
Server_Client

Overview Server_Client specifies which shared libraries to load on systems with a

full WebShere MQ installation. Table 39 describes the settings for this

attribute for each type of WebShere MQ installation.

Table 39: Server_Client Settings for the MQ Transport

MQ
Installation

Server_Client
Setting

Behavior

Full The server shared library(libmqm) is
loaded and the application will use
queues hosted on the local machine.

Full server The server shared library(libmqm) is
loaded and the application will use
queues hosted on the local machine.

Full client The client shared library(libmqic) is
loaded and the application will use
queues hosted on a remote machine.

Client The application will attempt to load the
server shared library(libmqm) before
loading the client shared
library(libmqic). The application
accesses queues hosted on a remote
machine.

Client server The application will fail because it cannot
load the server shared libraries.

Client client The client shared library(libmqic) is
loaded and the application accesses
queues hosted on a remote machine.
 502

MQ Port Attributes
ModelQueueName

Overview ModelQueueName is only needed if you are using dynamically created queues.

It specifies the name of the queue from which the dynamically created

queues are created.
503

CHAPTER E | WebSphere MQ Port Properties
AliasQueueName

Overview When interoperating between WebSphere MQ applications whose queue

managers are on different hosts, Artix requires that you specify the name of

the remote queue to which the server will post reply messages. This ensures

that the server will put the replies on the proper queue. Otherwise, the

server will receive a request message with the ReplyToQ field set to a queue

that is managed by a queue manager on a remote host and will be unable to

send the reply.

You specify this server’s local reply queue name in the WebSphere MQ

client’s AliasQueueName attribute when you define it in an Artix contract.

Effect of AliasQueueName When you specify a value for AliasQueueName in a WebSphere MQ client

port definition, you are altering how Artix populates the request message’s

ReplyToQ field and ReplyToQMgr field. Typically, Artix populates the reply

queue information in the request message’s message descriptor with the

values specified in ReplyQueueManager and ReplyQueueName. Setting

AliasQueueName causes Artix to leave ReplytoQMgr empty, and to set

ReplyToQ to the value of AliasQueueName. When the ReplyToQMgr field of

the message descriptor is left empty, the sending queue manager inspects

the queue named in the ReplyToQ field to determine who its queue manager

is and uses that value for ReplyToQMgr. The server puts the message on the

remote queue that is configured as a proxy for the client’s local reply queue.

Example If you had a system defined similar to that shown in Figure 81, you would

need to use the AliasQueueName attribute setting when configuring your

WebSphere MQ client. In this set up the client is running on a host with a

local queue manager QMgrA. QMgrA has two queues configured. RqA is a

remote queue that is a proxy for RqB and RplyA is a local queue. The server

is running on a different machine whose local queue manager is QMgrB.
 504

MQ Port Attributes
QMgrB also has two queues. RqB is a local queue and RplyB is a remote

queue that is a proxy for RplyA. The client places its request on RqA and

expects replies to arrive on RplyA.

The Artix WebSphere MQ port definitions for the client and server for this

deployment are shown in Example 186. AliasQueueName is set to RplyB

because that is the remote queue proxying for the reply queue in server’s

local queue manager. ReplyQueueManager and ReplyQueueName are set to

the client’s local queue manager so that it knows where to listen for

responses. In this example, the server’s ReplyQueueManager and

ReplyQueueName do not need to be set because you are assured that the

client is populating the request’s message descriptor with the needed

information for the server to determine where replies are sent.

Figure 81: MQ Remote Queues

Example 186:Setting Up WebSphere MQ Ports for Intercommunication

<mq:client QueueManager="QMgrA" QueueName="RqA"
 ReplyQueueManager="QMgrA" ReplyQueueName="RplyA"
 AliasQueueName="RplyB"
 Format="string" Convert="true"/>
<mq:server QueueManager="QMgrB" QueueName="RqB"
 Format="String" Convert="true"/>
505

CHAPTER E | WebSphere MQ Port Properties
ConnectionName

Overview ConnectionName specifies the name of the connection Artix uses to connect

to its queue.

Note: If you set CorrelationStyle to messageID copy and specify a
value for ConnectionName your system will not work as expected.
 506

MQ Port Attributes
ConnectionReusable

Overview ConnectionReusable specifies if the connection named in the

ConnectionName field can be used by more than one application. Valid

entries are true and false. Defaults to false.
507

CHAPTER E | WebSphere MQ Port Properties
ConnectionFastPath

Overview ConnectionFastPath specifies if you want to load the request queue

manager in process. Valid entries are true and false. Defaults to false.

Example Example 187 shows a WebSphere MQ client port that loads its request

queue manager in process.

Example 187:WebSphere Client Port using ConnectionFastPath

<mq:client QueueName="gate" QueueManager="dhd"
 ReplyQueueName="inbound" ReplyQueueManager="flipside"
 ConnectionFastPath="true"/>
 508

MQ Port Attributes
UsageStyle

Overview UsageStyle specifies if a message can be queued without expecting a

response. Valid entries are peer, requester, and responder. The default

value is peer.

Attribute settings The behavior of each setting is described in Table 40.

Example In Example 188, the WebSphere MQ client wants a response from the

server and needs to be able to associate the response with the request that

generated it. Setting the UsageStyle to responder ensures that the server’s

response will properly populate the response message descriptor’s CorrelID

field according to the defined correlation style. In this case, the correlation

style is set to correlationId.

Table 40: UsageStyle Settings

Attribute Setting Description

peer Specifies that messages can be queued without
expecting any response.

requester Specifies that the message sender expects a
response message.

responder Specifies that the response message must contain
enough information to facilitate correlation of the
response with the original message.

Example 188:MQ Client with UsageStyle Set

<mq:client QueueManager="postmaster" QueueName="eddie"
 ReplyQueueManager="postmaster" ReplyQueueName="fred"
 UsageStyle="responder"
 CorrelationStyle="correlationId"/>
509

CHAPTER E | WebSphere MQ Port Properties
CorrelationStyle

Overview CorrelationStyle determines how WebSphere MQ matches both the

message identifier and the correlation identifier to select a particular

message to be retrieved from the queue (this is accomplished by setting the

corresponding MQMO_MATCH_MSG_ID and MQMO_MATCH_CORREL_ID in the

MatchOptions field in MQGMO to indicate that those fields should be used as

selection criteria).

The valid correlation styles for an Artix WebSphere MQ port are messageId,

correlationId, and messageId copy.

Attribute settings Table 41 shows the actions of MQGET and MQPUT when receiving a message

using a WSDL specified message ID and a WSDL specified correlation ID.

Example Example 189 shows a WebSphere MQ client application that wants to

correlate messages using the messageID copy setting.

Note: When a value is specified for ConnectionName, you cannot use
messageID copy as the correlation style.

Table 41: MQGET and MQPUT Actions

Artix Port
Setting

Action for MQGET Action for MQPUT

messageId Set the CorrelId of the
message descriptor to
MessageID.

Copy MessageID onto the
message descriptor’s
CorrelId.

correlationId Set CorrelId of the
message descriptor to
CorrelationID.

Copy CorrelationID onto
message descriptor’s
CorrelId.

messageId copy Set MsgId of the
message descriptor to
messageID.

Copy MessageID onto
message descriptor’s
MsgId.
 510

MQ Port Attributes
Example 189:MQ Client using messageID copy

<mq:client QueueManager="grub" QueueName="gnome"
 ReplyQueueManager="lilo" ReplyQueueName="kde"
 CorrelationStyle="messageId copy"/>
511

CHAPTER E | WebSphere MQ Port Properties
AccessMode

Overview AccessMode controls the action of MQOPEN in the Artix WebSphere MQ

transport. Its values can be peek, send, receive, receive exclusive, and

receive shared. Each setting mapping corresponds to a WebSphere MQ

setting for the MQOPEN. The default is receive.

Attribute settings Table 42 describes the correlation between the Artix attribute settings and

the MQOPEN settings.

Table 42: Artix WebSphere MQ Access Modes

Attribute Setting Description

peek Equivalent to MQOO_BROWSE. peek opens a queue
to browse messages. This setting is not valid for
remote queues.

send Equivalent to MQOO_OUTPUT. send opens a queue
to put messages into. The queue is opened for
use with subsequent MQPUT calls.

receive (default) Equivalent to MQOO_INPUT_AS_Q_DEF. receive
opens a queue to get messages using a
queue-defined default. The default value depends
on the DefInputOpenOption queue attribute
(MQOO_INPUT_EXCLUSIVE or MQOO_INPUT_SHARED).

receive exclusive Equivalent to MQOO_INPUT_EXCLUSIVE. receive
exclusive opens a queue to get messages with
exclusive access. The queue is opened for use
with subsequent MQGET calls. The call fails with
reason code MQRC_OBJECT_IN_USE if the queue is
currently open (by this or another application) for
input of any type.
 512

MQ Port Attributes
Example Example 190 shows the settings for a WebSphere MQ server port that is

set-up so that only one application at a time can access the queue.

receive shared Equivalent to MQOO_INPUT_SHARED. receive
shared opens queue to get messages with shared
access. The queue is opened for use with
subsequent MQGET calls. The call can succeed if
the queue is currently open by this or another
application with MQOO_INPUT_SHARED.

Table 42: Artix WebSphere MQ Access Modes (Continued)

Attribute Setting Description

Example 190:WebSphere MQ Server setting AccessMode

<mq:server QueueManager="welk" QueueName="anacani"
 ReplyQueueManager="severinsen" ReplyQueueName="johnny"
 AccessMode="recieve exclusive"/>
513

CHAPTER E | WebSphere MQ Port Properties
Timeout

Overview Timeout specifies the amount of time, in milliseconds, between a request

and the corresponding reply before an error message is generated. If the

reply to a particular request has not arrived after the specified period, it is

treated as an error.

Example Example 191 shows the settings for a MQ client port where replies are

required in at most 3 minutes.

Example 191:WebSphere MQ Client Port with a 3 Minute Timeout

<mq:client QueueManager="jpl" QueueName="appollo"
 ReplyQueueManager="jpl" ReplyQueueName="mercury"
 Timeout="180000"/>
 514

MQ Port Attributes
MessageExpiry

Overview MessageExpiry is mapped to the MQ message descriptor’s Expiry field. It

specifies message lifetime, expressed in tenths of a second. It is set by the

Artix endpoint that puts the message onto the queue. The message becomes

eligible to be discarded if it has not been removed from the destination

queue before this period of time elapses.

The value is decremented to reflect the time the message spends on the

destination queue, and also on any intermediate transmission queues if the

put is to a remote queue. It may also be decremented by message channel

agents to reflect transmission times, if these are significant.

MessageExpiry can also be set to INFINITE which indicates that the

messages have unlimited lifetime and will never be eligible for deletion. If

MessageExpiry is not specified, it defaults to INFINITE lifetime.

Example Example 192 shows the settings for a WebSphere MQ client port where the

messages sent from applications using this port have a lifetime of 30

minutes.

Example 192:Client Port with a 3 Minute Message Lifetime

<mq:client QueueManager="domino" QueueName="dot"
 ReplyQueueManager="domino" ReplyQueueName="cash"
 MessageExpiry="18000"/>
515

CHAPTER E | WebSphere MQ Port Properties
MessagePriority

Overview MessagePriority is mapped to the MQ message descriptor’s Priority

fileld. It specifies the message’s priority. Its value must be greater than or

equal to zero; zero is the lowest priority. If not specified, this field defaults to

priority normal, which is 5. The special values for MessagePriority

include highest (9), high (7), medium (5), low (3) and lowest (0).
 516

MQ Port Attributes
Delivery

Overview Delivery can be persistent or not persistent. persistent means that

the message survives both system failures and restarts of the queue

manager. Internally, this sets the MQMD’s Persistence field to

MQPER_PERSISTENT or MQPER_NOT_PERSISTENT. The default value is not

persistent. To support transactional messaging, you must make the

messages persistent.

Example Example 193 shows the settings for a WebSphere MQ port that sends

persistent oneway messages.

Example 193:Persistent WebSphere MQ Port

<mq:client QueueManager="mointor" QueueName="msgQ"
 Delivery="persistent"/>
517

CHAPTER E | WebSphere MQ Port Properties
Transactional

Overview Transactional controls how messages participate in transactions and what

role Webshpere MQ plays in the transactions.

Attribute settings The values of the Transactional attribute are explained in Table 43.

Reliable MQ messages When the transactional attribute to internal for an Artix service, the

following happens during request processing:

1. When a request is placed on the service’s request queue, MQ begins a

transaction.

2. The service processes the request.

3. Control is returned to the server transport layer.

4. If no reply is required, the local transaction is committed and the

request is permanently discarded.

5. If a reply message is required, the local transaction is committed and

the request is permanently discarded only after the reply is successfully

placed on the reply queue.

6. If an error is encountered while the request is being processed, the

local transaction is rolled back and the request is placed back onto the

service’s request queue.

Table 43: Transactional Attribute Settings

Attribute Setting Description

none (Default) The messages are not part of a transaction. No
rollback actions will be taken if errors occur.

internal The messages are part of a transaction with
WebSphere MQ serving as the transaction manager.

xa The messages are part of a flowed transaction with
WebSphere MQ serving as an enlisted resource
manager.
 518

MQ Port Attributes
Example Example 194 shows the settings for a WebSphere MQ server port whose

requests will be part of transactions managed by WebSphere MQ. Note that

the Delivery attribute must be set to persistent when using transactions.

Example 194:MQ Client Setup to use Transactions

<mq:server QueueManager="herman" QueueName="eddie"
 ReplyQueueManager="gomez" ReplyQueueName="lurch"
 UsageStyle="responder" Delivery="persistent"
 CorrelationStyle="correlationId"
 Transactional="internal"/>
519

CHAPTER E | WebSphere MQ Port Properties
ReportOption

Overview ReportOption is mapped to the MQ message descriptor’s Report field. It

enables the application sending the original message to specify which report

messages are required, whether the application message data is to be

included in them, and how the message and correlation identifiers in the

report or reply message are to be set. Artix only allows you to specify one

ReportOption per Artix port. Setting more than one will result in

unpredictable behavior.

Attribute settings The values of this attribute are explained in Table 44.

Table 44: ReportOption Attribute Settings

Attribute Setting Description

none (Default) Corresponds to MQRO_NONE. none specifies that no
reports are required. You should never specifically
set ReportOption to none; it will create validation
errors in the contract.

coa Corresponds to MQRO_COA. coa specifies that
confirm-on-arrival reports are required. This type of
report is generated by the queue manager that owns
the destination queue, when the message is placed
on the destination queue.

cod Corresponds to MQRO_COD. cod specifies that
confirm-on-delivery reports are required. This type
of report is generated by the queue manager when
an application retrieves the message from the
destination queue in a way that causes the message
to be deleted from the queue.
 520

MQ Port Attributes
Example Example 195 shows the settings for a WebSphere MQ client that wants to

be notified if any of its messages expire before they are delivered.

exception Corresponds to MQRO_EXCEPTION. exception
specifies that exception reports are required. This
type of report can be generated by a message
channel agent when a message is sent to another
queue manager and the message cannot be
delivered to the specified destination queue. For
example, the destination queue or an intermediate
transmission queue might be full, or the message
might be too big for the queue.

expiration Corresponds to MQRO_EXPIRATION. expiration
specifies that expiration reports are required. This
type of report is generated by the queue manager if
the message is discarded prior to delivery to an
application because its expiration time has passed.

discard Corresponds to MQRO_DISCARD_MSG. discard
indicates that the message should be discarded if it
cannot be delivered to the destination queue. An
exception report message is generated if one was
requested by the sender

Table 44: ReportOption Attribute Settings (Continued)

Attribute Setting Description

Example 195:MQ Client Setup to Receive Expiration Reports

<mq:client QueueManager="herman" QueueName="eddie"
 ReplyQueueManager="gomez" ReplyQueueName="lurch"
 ReportOption="expiration"/>
521

CHAPTER E | WebSphere MQ Port Properties
Format

Overview Format is mapped to the MQ message descriptor’s Format field. It specifies

an optional format name to indicate to the receiver the nature of the data in

the message. The name may contain any character in the queue manager's

character set, but it is recommended that the name be restricted to the

following:

• Uppercase A through Z

• Numeric digits 0 through 9

Special values FormatType can take the special values none, string, event, programmable

command, and unicode. These settings are described in Table 45.

Table 45: FormatType Attribute Settings

Attribute Setting Description

none (Default) Corresponds to MQFMT_NONE. No format name
is specified.

string Corresponds to MQFMT_STRING. string
specifies that the message consists entirely of
character data. The message data may be
either single-byte characters or double-byte
characters.

unicode Corresponds to MQFMT_STRING. unicode
specifies that the message consists entirely of
Unicode characters. (Unicode is not
supported in Artix at this time.)

event Corresponds to MQFMT_EVENT. event specifies
that the message reports the occurrence of an
WebSphere MQ event. Event messages have
the same structure as programmable
commands.
 522

MQ Port Attributes
When you are interoperating with WebSphere MQ applications host on a

mainframe and the data needs to be converted into the systems native data

format, you should set Format to string. Not doing so will result in the

mainframe receiving corrupted data.

Example Example 196 shows a WebSphere MQ client port used for making requests

against a server on a mainframe system. Note that the Convert attribute is

set to true signifying that WebSphere will convert the data into the

mainframes native data mapping.

programmable command Corresponds to MQFMT_PCF. programmable
command specifies that the messages are
user-defined messages that conform to the
structure of a programmable command format
(PCF) message.

For more information, consult the IBM
Programmable Command Formats and
Administration Interfaces documentation at
http://publibfp.boulder.ibm.com/epubs/html/c
sqzac03/csqzac030d.htm#Header_12.

Table 45: FormatType Attribute Settings (Continued)

Attribute Setting Description

Example 196:WebSphere MQ Client Talking to the Mainframe

<mq:client QueueManager="hunter" QueueName="bigGuy"
 ReplyQueueManager="slate" ReplyQueueName="rusty"
 Format="string" Convert="true"/>
523

http://publibfp.boulder.ibm.com/epubs/html/csqzac03/csqzac030d.htm#Header_12
http://publibfp.boulder.ibm.com/epubs/html/csqzac03/csqzac030d.htm#Header_12

CHAPTER E | WebSphere MQ Port Properties
MessageId

Overview MessageId is is mapped to the MQ message descriptor’s MsgId field. It is an

alphanumeric string of up to 20 bytes in length. Depending on the setting of

CorrelationStyle, this string may be used to correlate request and

response messages with each other. A value must be specified in this

attribute if CorrelationStyle is set to none.

Example Example 197 shows the settings for a WebSphere MQ client that wants to

use message IDs to correlate response and request messages.

Example 197:WebSphere MQ Client using MessageID

<mq:client QueueManager="QM" QueueName="reqQueue"
 ReplyQueueManager="RQM" ReplyQueueName="RepQueue"
 CorrelationStyle="messageId" MessageID="foo"/>
 524

MQ Port Attributes
CorrelationId

Overview CorrelationId is mapped to the MQ message descriptor’s CorrelId field. It

is an alphanumeric string of up to 20 bytes in length. Depending on the

setting of CorrelationStyle, this string will be used to correlate request

and response messages with each other. A value must be specified in this

attribute if CorrelationStyle is set to none.

Example Example 198 shows the settings for a WebSphere MQ client that wants to

use correlation Ids to correlate response and request messages.

Example 198:WebSphere MQ Client using CorrelationID

<mq:client QueueManager="QM" QueueName="reqQueue"
 ReplyQueueManager="RQM" ReplyQueueName="RepQueue"
 CorrelationStyle="correlationId" CorrelationID="foo"/>
525

CHAPTER E | WebSphere MQ Port Properties
ApplicationData

Overview ApplicationData specifies any application-specific information that needs

to be set in the message header.
 526

MQ Port Attributes
AccountingToken

Overview AccountingToken is mapped to the MQ message descriptor’s

AccountingToken field. It specifies application-specific information used for

accounting purposes.

Example Example 199 shows the settings for a WebSphere MQ client used for

making requests against a server on a mainframe system that keeps tracks

of what department is using its resources.

Example 199:WebSphere MQ Client Sending Accounting Token

<mq:client QueueManager="hunter" QueueName="bigGuy"
 ReplyQueueManager="slate" ReplyQueueName="rusty"
 Format="string" Convert="true"
 AccountingToken="darkHorse"/>
527

CHAPTER E | WebSphere MQ Port Properties
Convert

Overview Convert specifies if messages are to be converted to the receiving system’s

native data format. Valid values are true and false. Default is false.

Example Example 200 shows a WebSphere MQ client port used for making requests

against a server on a Unix system.

Note: The WebSphere MQ transport will always attempt to convert string
data and always ignore non-string data. This setting is ignored.

Example 200:WebSphere MQ Client using Convert

<mq:client QueueManager="atm5" QueueName="ReqQ"
 ReplyQueueManager="hpux1" ReplyQueueName="RepQ"
 Format="string" Convert="true"/>
 528

MQ Port Attributes
ApplicationIdData

Overview ApplicationIdData is mapped to the MQ message descriptor’s

ApplIdentityData field. It is application-specific string data that can be

used to provide additional information about the message or the applciation

from which it originated. This attribute is only valid when defining

WebSphere MQ clients using an <mq:client> element.
529

CHAPTER E | WebSphere MQ Port Properties
ApplicationOriginData

Overview ApplicationOriginData is mapped to the MQ message descriptor’s

ApplOriginData field. It is application-specific string data that can be used

to provide additional information about the origin of the message.

Example Example 201 shows the settings for a WebSphere MQ client that wants to

identify itself to the server.

Example 201:WebSphere MQ Client Sending Origin Data

<mq:client QueueManager="QM" QueueName="reqQueue"
 ReplyQueueManager="RQM" ReplyQueueName="RepQueue"
 ApplicationOriginData="SSLclient"/>
 530

MQ Port Attributes
UserIdentification

Overview UserIdentification is mapped to the MQ message descriptor’s

UserIdentifier field. It is a string that represents the User ID of the

application from which the message originated. This attribute is only valid

when defining Websphere MQ clients using an <mq:client> element.

Example Example 202 shows the settings for a WebSphere MQ client that needs to

specify the User that is making the request.

Example 202:WebSphere MQ Client Sending UserID

<mq:client QueueManager="QM" QueueName="reqQueue"
 ReplyQueueManager="RQM" ReplyQueueName="RepQueue"
 UserIdentification="tux"/>
531

CHAPTER E | WebSphere MQ Port Properties
 532

APPENDIX F

Tibco Port
Properties
Artix provides a number of attributes used in defining a TIB/RV
service.

Port attributes Table 46 lists the attributes of the tibrv:port element.

Table 46: TIB/RV Transport Properties

Attribute Explanation

serverSubject A required element that
specifies the subject to which
the server listens. This
parameter must be the same
between client and server.

clientSubject Specifies the prefix to the
subject that the client listens
to. The default is to use a
uniquely generated name.
This parameter only affects
clients.

bindingType Specifies the message binding
type.
533

CHAPTER F | Tibco Port Properties
callbackLevel Specifies the server-side
callback level when TIB/RV
system advisory messages are
received.

responseDispatchTimeout Specifies the client-side
response receive dispatch
timeout.

transportService Specifies the UDP service
name or port for
TibrvNetTransport.

transportNetwork Specifies the binding network
addresses for
TibrvNetTransport.

transportDaemon Specifies the TCP daemon
port for the
TibrvNetTransport.

transportBatchMode Specifies if the TIB/RV
transport uses batch mode to
send messages.

cmSupport Specifies if Certified Message
Delivery support is enabled.

cmTransportServerName Specifies the server’s
TibrvCmTransport
correspondent name.

cmTransportClientName Specifies the client
TibrvCmTransport
correspondent name.

cmTransportRequestOld Specifies if the endpoint can
request old messages on
start-up.

cmTransportLedgerName Specifies the
TibrvCmTransport ledger file.

Table 46: TIB/RV Transport Properties (Continued)

Attribute Explanation
 534

cmTransportSyncLedger Specifies if the endpoint uses
a synchronous ledger.

cmTransportRelayAgent Specifies the endpoint’s
TibrvCmTransport relay agent.

cmTransportDefaultTimeLimit Specifies the default time limit
for a Certified Message to be
delivered.

cmListenerCancelAgreements Specifies if Certified Message
agreements are canceled
when the endpoint
disconnects.

cmQueueTransportServerName Specifies the server’s
TibrvCmQueueTransport
correspondent name.

cmQueueTransportWorkerWeight Specifies the endpoint’s
TibrvCmQueueTransport
worker weight.

cmQueueTransportWorkerTasks Specifies the endpoint’s
TibrvCmQueueTransport
worker tasks parameter.

cmQueueTransportSchedulerWeight Specifies the
TibrvCmQueueTransport
scheduler weight parameter.

cmQueueTransportSchedulerHeartbeat Specifies the endpoint’s
TibrvCmQueueTransport
scheduler heartbeat
parameter.

cmQueueTransportSchedulerActivation Specifies the
TibrvCmQueueTransport
scheduler activation
parameter.

Table 46: TIB/RV Transport Properties (Continued)

Attribute Explanation
535

CHAPTER F | Tibco Port Properties
bindingType bindingType specifies the message binding type. TIB/RV Artix ports support

three types of payload formats as described in Table 47.

callbackLevel callbackLevel specifies the server-side callback level when TIB/RV system

advisory messages are received. It has three settings:

• INFO

• WARN

• ERROR (default)

This parameter only affects servers.

responseDispatchTimeout responseDispatchTimeout specifies the client-side response receive

dispatch timeout. The default is TIBRV_WAIT_FOREVER. Note that if only the

TibrvNetTransport is used and there is no server return response for a

request, then not setting a timeout value causes the client to block forever.

cmQueueTransportCompleteTime Specifies the
TibrvCmQueueTransport
complete time parameter.

Table 46: TIB/RV Transport Properties (Continued)

Attribute Explanation

Table 47: TIB/RV Supported Payload formats

Setting Payload Formats TIB/RV Message Implications

msg TibrvMsg The message data is encapsulated in
a TibrvMsg described by the binding
section of the service’s contract.

xml SOAP, tagged data The message data is encapsulated in
a field of TIBRVMSG_XML with a null
name and an ID of 0.

opaque fixed record length
data, variable
record length data

The message data is encapsulated in
a field of TIBRVMSG_OPAQUE with a null
name and an ID of 0.
 536

This is because client has no way to know whether any server is processing

on the sending subject or not. In this case, we recommend that

responseDispatchTimeout is set.

transportService transportService specifies the UDP service name or port for
TibrvNetTransport. If empty or omitted, the default is rendezvous. If no
corresponding entry exists in /etc/services, 7500 for the TRDP daemon, or
7550 for the PGM daemon will be used. This parameter must be the same for
both client and server.

transportNetwork transportNetwork specifies the binding network addresses for
TibrvNetTransport. The default is to use the interface IP address of the host
for the TRDP daemon, 224.0.1.78 for the PGM daemon. This parameter must
be interoperable between the client and the server.

transportDaemon transportDaemon specifies the TCP daemon port for TibrvNetTransport. The

default is to use 7500 for the TRDP daemon, or 7550 for the PGM daemon.

transportBatchMode transportBatchMode specifies if the TIB/RV transport uses batch mode to

send messages. The default is false which specifies that the endpoint will

send messages as soon as they are ready. When set to true, the endpoint

will send its messages in timed batches.

cmSupport cmSupport specifies if Certified Message Delivery support is enabled. The

default is false which disables CM support. Set this parameter to true to

enable CM support.

cmTransportServerName cmTransportServerName specifies the server’s TibrvCmTransport

correspondent name. The default is to use a transient correspondent name.

This parameter must be the same for both client and server if the client also

uses Certified Message Delivery.

cmTransportClientName cmTransportClientName specifes the client’s TibrvCMTransport

correspondent name. The default is to use a transient correspondent name.

Note: When CM support is disabled all other CM properties are ignored.
537

CHAPTER F | Tibco Port Properties
cmTransportRequestOld cmTransportRequestOld specifies if the endpoint can request old messages

on start-up. requestOld parameter. The default is false which disables the

endpoint’s ability to request old messages when it starts up. Setting this

property to true enables the ability to request old messages.

cmTransportLedgerName cmTransportLedgerName specifes the file name of the endpoint’s

TibrvCMTrasnport ledger. The default is to use an in-process ledger that is

stored in memory.

cmTransportSyncLedger cmTransportSyncLedger Specifies if the endpoint uses a synchronous

ledger. true specifies that the endpoint uses a synchronous ledger. The

default is false.

cmTransportRelayAgent cmTransportRelayAgent Specifies the endpoint’s TibrvCmTransport relay

agent. If this property is not set, the endpoint does not use a relay agent.

cmTransportDefaultTimeLimit cmTransportDefaultTimeLimit specifies TibrvCmTransport message default

time limit. The default is that no message time limit will be set.

cmListenerCancelAgreements cmListenerCancelAgreements specifies if the TibrvCmListener cancels
Certified Message agreements when the endpoint disconnects. parameter. If
set to true, CM agreements are cancelled when the endpoint disconnects.
The default is false.

cmQueueTransportServerName cmQueueTransportServerName specifies the server’s

TibrvCmQueueTransport correspondent name. If this property is set, the

server listener joins to the distributed queue of the specified name. This

parameter must be the same among the server queue members.

cmQueueTransportWorkerWeight cmQueueTransportWorkerWeight specifies the endpoint’s

TibrvCmQueueTransport worker weight. The default is

TIBRVCM_DEFAULT_WORKER_WEIGHT.
 538

cmQueueTransportWorkerTasks cmQueueTransportWorkerTasks specifies the endpoint’s

TibrvCmQueueTransport worker tasks parameter. The default is

TIBRVCM_DEFAULT_WORKER_TASKS.

cmQueueTransportSchedulerWeight cmQueueTransportSchedulerWeight specifies the TibrvCmQueueTransport

scheduler weight parameter. The default is

TIBRVCM_DEFAULT_SCHEDULER_WEIGHT.

cmQueueTransportSchedulerHeartbeat cmQueueTransportSchedulerHeartbeat specifies the
TibrvCmQueueTransport scheduler heartbeat parameter. The default is
TIBRVCM_DEFAULT_SCHEDULER_HB.

cmQueueTransportSchedulerActivation cmQueueTransportSchedulerActivation Specifies the

TibrvCmQueueTransport scheduler activation parameter. The default is

TIBRVCM_DEFAULT_SCHEDULER_ACTIVE.

cmQueueTransportCompleteTime cmQueueTransportCompleteTime specifies the TibrvCmQueueTransport

complete time parameter. The default is 0.
539

CHAPTER F | Tibco Port Properties
 540

Glossary

B Binding

A binding associates a specific protocol and data format to operations defined

in a portType.

Bus

See Service Bus

Bridge

A usage mode in which Artix is used to integrate applications using different

payload formats.

C Collection

A group of related WSDL contracts that can be deployed as one or more

physical entities such as Java, C++, or CORBA-based applications. A

collection can also be deployed as a switch process.

Connection

An established communication link between any two Artix endpoints.

Contract

An Artix contract is a WSDL file that defines the interface and all connection

(binding) information for that interface. In the context of the Artix Designer,

this contract is referred to as a Resource.

A contract contains two components: logical and physical. The logical

contract defines things that are independent of the underlying transport and

wire format: portType, operation, message, and type.

The physical contract defines the wire format, middleware transport, and

service groupings, as well as the mapping between the portType and the

wire formats, and the buffer layout for fixed formats and extensors. The

physical contract defines: port, binding, and service.
541

Glossary
CORBA

CORBA (Common Object Request Broker Architecture) defines standards for

interoperability and portability among distributed objects, independently of

the language in which those objects are written. It is a robust,

industry-accepted standard from the OMG (Object Management Group),

deployed in thousands of mission critical systems.

CORBA also specifies an extensive set of services for creating and managing

distributed objects, accessing them by name, storing them in persistent stores,

externalizing their state, and defining ad hoc relationships between them. An

ORB is the core element of the wider OMG framework for developing and

deploying distributed components.

E End-point

The runtime deployment of one or more contracts, where one or more

transports and its marshalling is defined, and at least one contract results in

a generated stub or skeleton (thus an end-point can be compiled into an

application).

Extensible Style Sheet Transformation

A set of extensions to the XML style sheet language that describes

transformations between XML documents. For more information see the XSLT

specification.

H Host

The network node on which a particular service resides.

M Marshalling Format

A marshalling format controls the layout of a message to be delivered over a

transport. A marshalling format is bound to a transport in the WSDL definition

of a port and its binding. A binding can also be specified in a logical contract

port type, which allows for a logical contract to have multiple bindings and

thus multiple wire message formats for the same contract.

Message

A WSDL message is an abstract definition of the data being communicated.

Each part of a message is associated with defined types. A WSDL message

is analogous to a parameter in object-oriented programming.
 542

http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt

Glossary
N nillable

nillable is an attribute of an element that specifies that the element can be

left out of an instance of the containing complext type.

O Operation

A WSDL operation is an abstract definition of the action supported by the

service. It is defined in terms of input and output messages. An operation is

loosely analogous to a function or method in object-oriented programming, or

a message queue or business process.

P Payload Format

The on-the-wire structure of a message over a given transport. A payload

format is associated with a port (transport) in the WSDL file using the binding

definition.

Port Type

A WSDL port type is a collection of abstract operations, supported by one or

more endpoints. A port type is loosely analogous to a class in object-oriented

programming. A port type can be mapped to multiple transports using multiple

bindings.

Protocol

A protocol is a transport whose format is defined by an open standard.

R Resource

A resource can be one of two things:

• A WSDL file that defines the interface of your Artix solution

• A Schema that defines one or more types. This schema can be a stand

alone resource or it can define the types within a WSDL contract.

Resources are contained within collections. There can be one or more

resources in a collection, and the resources can either be specific to that

collection, or shared across several collections (shared resources).

Resources are created either from scratch using the Resource Editor wizards

and dialogs to define them, or are based on an existing files. For example,

you can use Artix Designer to convert an IDL file into WSDL.
543

Glossary
Resource Editor

A GUI tool used for editing Artix resources. It provides several wizards for

adding services, transports, and bindings to an Artix resource.

Routing

The redirection of a message from one WSDL binding to another. Routing

rules apply to an end-point, and the specification of routing rules is required

for a some Artix services. Artix supports topic-, subject- and content-based

routing. Topic- and subject-based routing rules can be fully expressed in the

WSDL contract. However, content-based routing rules may need to be placed

in custom handlers (C plug-ins). Content-based routing handler plug-ins are

dynamically loaded.

Router

A usage mode in which Artix redirects messages based on rules defined in an

Artix contract.

S Service

An Artix service is instance of an Artix runtime deployed with one or more

contracts, but no generated language bindings (contrast this with end-point).

The service acts as a daemon that has no compile-time dependencies. A

service is dynamically configured by deploying one or more contracts on it.

Service Bus

The infrastructure that allows service providers and service consumers to

interact in a distributed environment. Handles the delivery of messages

between different middleware systems. Also known as an Enterprise Service

Bus.

SOAP

SOAP is an XML-based messaging framework specifically designed for

exchanging formatted data across the Internet. It can be used for sending

request and reply messages or for sending entire XML documents. As a

protocol, SOAP is simple, easy to use, and completely neutral with respect to

operating system, programming language, or distributed computing platform.
 544

Glossary
Standalone Mode

An Artix instance running independently of either of the applications it is

integrating. This provides a minimally invasive integration solution and is fully

described by an Artix contract.

Switch

The implementation of an Artix WSDL service contract.

System

A collection of services and transports.

T Transport

An on-the-wire format for messages.

Transport Plug-In

A plug-in module that provides wire-level interoperation with a specific type

of middleware. When configured with a given transport plug-in, Artix will

interoperate with the specified middleware at a remote location or in another

process. The transport is specified in the ‘Port’ property in of an Artix contract.

Type

A WSDL data type is a container for data type definitions that is used to

describe messages (for example an XML schema).

W Web Services Description Language

An XML based specification for defining Web services. For more information

see the WSDL specification.

WSDL

WSDL is an XML format for describing network services as a set of endpoints

operating on messages containing either document-oriented or

procedure-oriented information.

A WSDL document defines services as collections of network endpoints, or

ports. In WSDL, the abstract definition of endpoints and messages is

separated from their concrete network deployment or data binding formats.

This allows the reuse of abstract definitions: messages, which are abstract

descriptions of the data being exchanged, and port types which are abstract
545

http://www.w3.org/TR/wsdl

Glossary
collections of operations. The concrete protocol and data format specifications

for a particular port type constitutes a reusable binding. A port is defined by

associating a network address with a reusable binding, and a collection of

ports define a service. Hence, a WSDL document uses the following elements

in the definition of network services:

• Types—a container for data type definitions using some type system.

• Message—an abstract, typed definition of the data being

communicated.

• Operation—an abstract definition of an action supported by the

service.

• Port Type—an abstract set of operations supported by one or more

endpoints.

• Binding—a concrete protocol and data format specification for a

particular port type.

• Port—a single endpoint defined as a combination of a binding and a

network address.

• Service—a collection of related endpoints.

Source: Web Services Description Language (WSDL) 1.1. W3C Note 15

March 2001. (http://www.w3.org/TR/wsdl)

X XML

XML is a simpler but restricted form of SGML (Standard General Markup

Language). The markup describes the meaning of the text. XML enables the

separation of content from data. XML was created so that richly structured

documents could be used over the web.

XSD

XML Schema Definition (XSD) is the language used to define an XML

Schema. The XML Schema defines the structure of an XML document.

In Artix, a schema can be a standalone resource within a collection, or it can

be used as an import do define the types within a WSDL contract.
 546

Index

A
adding

IDL 41
Address specification

CORBA 265
HTTP 255
IIOP 275
SOAP 255

arrays
CORBA 418

B
bindings

adding
CORBA 153
fixed 166
FML 164
SOAP 138
SOAP with Attachments 149
tagged 186
XML 237

mapping
CORBA 155
fixed 170
FML field tables 160
G2++ 243
tagged 191, 204
XML 239

bus-security 328

C
C++ code generation preferences 15
coboltowsdl 67
complexContent 433
complexType 425
configuring IIOP 275
Connecting to remote queues 504
corba:address 265
corba:alias 417
corba:anonsequence 426
corba:array 418
corba:binding 155
corba:case 416
corba:corba_input_attributes 328
corba:enum 411
corba:enumerator 411
corba:excepetion 423
corba:fixed 412
corba:member 409, 423
corba:object 441
corba:operation 155
corba:param 155
corba:policy 266
corba:raises 156
corba:return 156
corba:struct 409
corba:union 415
corba:unionbranch 415

E
enumerations

CORBA 411
exceptions

CORBA 423
extension 433

F
fixed:binding 171
fixed:body 171
fixed:enumeration 175

fixedValue 175
value 175

fixed:field 173
bindingOnly 172
fixedValue 175
format 173
size 173

fixed:operation 171
fixed:sequence 179
fixed data types

CORBA 412

G
generating contracts
547

INDEX
from COBOL 62
from IDL 40
from Java 50

H
HTTP

Accept 467
AcceptEncoding 469
AcceptLanguage 468
Authorization 466
AuthorizationType 465
AutoRedirect 462
BrowserType 479
CacheControl 474
ClientCertificate 455
ClientCertificateChain 455
ClientPrivateKey 485
ClientPrivateKeyPassword 455
Connection 473
ConnectionAttempts 454
ContentEncoding 471
ContentLocation 457
ContentType 470
Cookie 478
HonorKeepAlive 488
Host 472
Password 464
ProxyAuthorization 483
ProxyAuthorizationType 482
ProxyPassword 455
ProxyServer 481
ProxyUserName 454
ReceiveTimeout 461
RedirectURL 489
Referer 480
SendTimeout 460
ServerCertificate 457
ServerCertificateChain 491
ServerPrivateKey 457
ServerPrivateKeyPassword 458
ServerType 490
SuppressClientReceiveErrors 487
SuppressClientSendErrors 486
TrustedRootCertificate 455, 458
UserName 463
UseSecureSockets 484

http:address 255
http-conf:HTTPServerIncomingContexts 328
 548
I
i18n-context:client 310

InboundCodeSet 310
LocalCodeSet 310
OutboundCodeSet 310

i18n-context:server 310
InboundCodeSet 310
LocalCodeSet 310
OutboundCodeSet 310

idltowsdl 43
ignorecase 328
iiop:address 275
iiop:payload 275
iiop:policy 275
IOR specification 265, 275

J
Java code generation preferences 14
javatowsdl 50
jms:address

durableSubscriberName 290
messageSelector 290
transactional 290
useMessageIDAsCorrelationID 290

M
mime:content 149
mime:multipartRelated 148
mime:part 148
mq:client 279
mq:server 279
MQ remote queues 504

N
nillable 436

P
portType 128

R
route

creating 330
routing

broadcast 325
failover 326
fanout 325
load balancing 338

INDEX
routing:contains 329
routing:destination 320

port 320
service 320

routing:empty 329
routing:endswith 329
routing:equals 328
routing:equals:contextAttributeName 328
routing:equals:contextName 328
routing:equals:value 328
routing:greater 328
routing:less 328
routing:nonempty 329
routing:operation 322

name 322
target 322

routing:route 319
multiRoute 325, 326, 338

failover 326
fanout 325
loadBalance 338

name 319
routing:source 319

port 319
service 319

routing:startswith 328
routing:transportAttribute 327

S
soap:address 255
soap:body

parts 143
soap:header 142

encodingStyle 142
message 142
namespace 142
part 142
use 142

soapenc:base64 428
Specifying POA policies 266, 275
structures

CORBA 409

T
tagged:binding 192
tagged:body 194
tagged:case 197
tagged:choice 197
tagged:enumeration 194
tagged:field 194
tagged:operation 193
tagged:sequence 195
tibrv:array 211
tibrv:binding 205
tibrv:context 234
tibrv:field 232
tibrv:input 206
tibrv:msg 231
tibrv:operation 206
tibrv:output 207
tibrv:port 298
tibrv:port@bindingType 536
tibrv:port@callbackLevel 536
tibrv:port@clientSubject 533
tibrv:port@cmListenerCancelAgreements 538
tibrv:port@cmQueueTransportCompleteTime 539
tibrv:port@cmQueueTransportSchedulerActivation 5

39
tibrv:port@cmQueueTransportSchedulerHeartbeat 5

39
tibrv:port@cmQueueTransportSchedulerWeight 539
tibrv:port@cmQueueTransportServerName 538
tibrv:port@cmQueueTransportWorkerTasks 539
tibrv:port@cmQueueTransportWorkerWeight 538
tibrv:port@cmSupport 537
tibrv:port@cmTransportClientName 537
tibrv:port@cmTransportDefaultTimeLimit 538
tibrv:port@cmTransportLedgerName 538
tibrv:port@cmTransportRelayAgent 538
tibrv:port@cmTransportRequestOld 538
tibrv:port@cmTransportServerName 537
tibrv:port@cmTransportSyncLedger 538
tibrv:port@serverSubject 533
tibrv:port@transportBatchMode 537
tibrv:port@transportDaemon 537
tibrv:port@transportNetwork 537
tibrv:port@transportService 537
tuxedo:binding 164
tuxedo:field 164
tuxedo:fieldTable 164
tuxedo:input 305
tuxedo:operation 164
tuxedo:server 305
tuxedo:service 305
typedefs

CORBA 417
549

INDEX
U
unions

Artix mapping 414
CORBA 414, 415
logical description 414

W
WebSphere MQ

AccessMode 512
AccountingToken 527
AliasQueueName 504
ApplicationData 526
ApplicationIdData 529
ApplicationOriginData 530
ConnecitonName 506
ConnectionFastPath 508
ConnectionReusable 507
Convert 528
CorrelationId 525
CorrelationStyle 510
Delivery 517
Format 522

working with mainframes 523
MessageExpiry 515
MessageId 524
MessagePriority 516
ModelQueueName 503
QueueManager 498
QueueName 499
ReplyQueueManager 501
ReplyQueueName 500
ReportOption 520
Server_Client 502
Timeout 514
Transactional 518
UsageStyle 509
UserIdentification 531

wsdltocorba 154, 271
wsdltoservice

adding a CORBA service 269
adding a JMS service 294
adding an HTTP service 258
adding an IIOP service 276
adding a TIBCO service 301
adding a Tuxedo service 307
adding a WebSphere MQ service 282

wsdltosoap 138, 139
 550
X
xformat:binding 239

rootNode 239
xformat:body 239

rootNode 239
XML Schema 95
XML Stylesheet Language Transformations 380
XPath 383
XSD 95
xsd:annotation 440
xsd:base64Binary 428
xsd:hexBinary 428
xsdtowsdl 78
xsl:apply-templates 385

select 386
xsl:copy-of 389

select 389
xsl:element 389

name 389
namespace 389

xsl:stylesheet 381
xsl:template 383

match 383
xsl:transform 381
xsl:value-of 389

select 389
XSLT 380

	List of Figures
	List of Tables
	Preface
	What is Covered in this Book
	Who Should Read this Book
	How to Use this Book
	Finding Your Way Around the Library
	Searching the Artix Library
	Online Help
	Additional Resources
	Document Conventions

	Introducing Artix
	What is Artix?
	Artix Contracts and WSDL
	Beyond the Contract

	Getting Started with Artix Designer
	Introducing Artix Designer
	Setting Up Artix Designer
	Starting Artix Designer
	Setting Artix Designer Preferences

	Creating an Artix Designer Project
	What is an Artix Designer Project?
	Creating a Project
	Creating a Basic Web Services Project
	Creating a CORBA Web Services Project

	Creating a Project Using a Template

	Creating Artix Resources
	What are Artix Resources?
	Creating Design Resources
	Creating a New Contract
	Importing a Contract from a URL
	Creating a Contract from CORBA IDL
	Creating a Contract from a Java Class
	Creating a Contract from a COBOL Copybook
	Creating a Contract from a Data Set
	Creating a Contract from an XML Schema Document
	Creating an XML Schema
	Importing an XML Schema from a URL
	Creating Access Control Lists

	Working with Generation Profiles

	Defining Data Types
	Introducing Data Types
	Creating New Type Systems
	Specifying a Type System in a Contract
	XML Schema Simple Types
	Defining Complex Data Types
	Defining Data Structures
	Defining Arrays
	Defining Types by Extension
	Defining Types by Restriction
	Defining Enumerated Types

	Defining Elements

	Defining Messages
	Defining Your Interfaces
	Binding Interfaces to a Payload Format
	Introducing Bindings
	Adding a SOAP Binding
	Adding a Default SOAP Binding
	Adding SOAP Headers to a SOAP Binding
	Sending Data Using SOAP with Attachments

	Adding a CORBA Binding
	Adding an FML Binding
	Adding a Fixed Binding
	Adding a Tagged Binding
	Adding a TibrvMsg Binding
	Defining a TibrvMsg Binding
	Defining Array Mapping Policies
	Defining a Custom TibrvMsg Mapping
	Adding Context Information to a TibrvMsg

	Adding a Pure XML Binding
	Adding a G2++ Binding

	Adding Transports
	Introducing Services
	Defining a Service
	Creating an HTTP Service
	Creating a CORBA Service
	Configuring an Artix CORBA Port
	Generating CORBA IDL

	Creating an IIOP Service
	Creating a WebSphere MQ Service
	Creating a Java Messaging System Service
	Adding a TIBCO Service
	Creating a Tuxedo Service
	Configuring a Service to Use Codeset Conversion

	Adding Routing Instructions
	Artix Routing
	Compatibility of Ports and Operations
	Defining Routes in Artix Contracts
	Using Port-Based Routing
	Using Operation-Based Routing
	Advanced Routing Features

	Creating Routes Using Artix Designer
	Creating Routes from the Command Line
	Load Balancing
	Error Handling
	Service Lifecycles
	Routing References to Transient Servants

	Fastrack Service Enabling
	Web Service Enabling a Service
	CORBA Enabling a Service

	Editing Artix Resources
	Editing Contracts and Schemas
	Working with the Editor Views
	Editing Types
	Editing Messages
	Editing Port Types
	Editing Bindings
	Editing Services
	Editing Routes

	Editing Generated Resources

	Using the Artix Transformer
	Using the Artix Transformer as an Artix Server
	Using Artix to Facilitate Interface Versioning
	WSDL Messages and the Transformer
	Writing XSLT Scripts
	Elements of an XSLT Script
	XSLT Templates
	Common XSLT Functions

	SOAP Binding Extensions
	soap:binding element
	soap:operation element
	soap:body element
	soap:header element
	soap:fault element
	soap:address element

	CORBA Type Mapping
	Introducing CORBA Type Mapping
	Primitive Type Mapping
	Complex Type Mapping
	Structures
	Enumerations
	Fixed
	Unions
	Type Renaming
	Arrays
	Multidimensional Arrays
	Sequences
	Exceptions

	Recursive Type Mapping
	Mapping XML Schema Features that are not Native to IDL
	Binary Types
	Attributes
	Nested Choices
	Inheritance
	Nillable
	Optional Attributes

	Artix References

	TibrvMsg Default Mappings
	HTTP Port Properties
	Defining an HTTP Port
	HTTP Client Configuration
	HTTP Server Configuration
	HTTP Attribute Details
	SendTimeout
	ReceiveTimeout
	AutoRedirect
	UserName
	Password
	AuthorizationType
	Authorization
	Accept
	AcceptLanguage
	AcceptEncoding
	ContentType
	ContentEncoding
	Host
	Connection
	CacheControl
	Cookie
	BrowserType
	Referer
	ProxyServer
	ProxyAuthorizationType
	ProxyAuthorization
	UseSecureSockets
	ClientPrivateKey
	SuppressClientSendErrors
	SuppressClientReceiveErrors
	HonorKeepAlive
	RedirectURL
	ServerType
	ServerCertificateChain

	WebSphere MQ Port Properties
	Defining an MQ Port
	MQ Port Attributes
	QueueManager
	QueueName
	ReplyQueueName
	ReplyQueueManager
	Server_Client
	ModelQueueName
	AliasQueueName
	ConnectionName
	ConnectionReusable
	ConnectionFastPath
	UsageStyle
	CorrelationStyle
	AccessMode
	Timeout
	MessageExpiry
	MessagePriority
	Delivery
	Transactional
	ReportOption
	Format
	MessageId
	CorrelationId
	ApplicationData
	AccountingToken
	Convert
	ApplicationIdData
	ApplicationOriginData
	UserIdentification

	Tibco Port Properties
	Glossary
	Index

